TWI673723B - Intelligent pre-diagnosis and health management system and method - Google Patents

Intelligent pre-diagnosis and health management system and method Download PDF

Info

Publication number
TWI673723B
TWI673723B TW107133178A TW107133178A TWI673723B TW I673723 B TWI673723 B TW I673723B TW 107133178 A TW107133178 A TW 107133178A TW 107133178 A TW107133178 A TW 107133178A TW I673723 B TWI673723 B TW I673723B
Authority
TW
Taiwan
Prior art keywords
module
analysis
health management
tree
intelligent
Prior art date
Application number
TW107133178A
Other languages
Chinese (zh)
Other versions
TW202013388A (en
Inventor
韋建名
胡維桓
范國晏
Original Assignee
帆宣系統科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帆宣系統科技股份有限公司 filed Critical 帆宣系統科技股份有限公司
Priority to TW107133178A priority Critical patent/TWI673723B/en
Application granted granted Critical
Publication of TWI673723B publication Critical patent/TWI673723B/en
Publication of TW202013388A publication Critical patent/TW202013388A/en

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本發明關於一種智慧型預診斷和健康管理系統以及方法,該系統包括分析引擎服務管理模組、智能預測及健康管理物件分析樹模組、機器學習庫模組、以及檔案系統模組,先以該分析引擎服務管理模組根據待監控機台的組件定義出分析樹後,智能預測及健康管理物件分析樹模組受到分析引擎服務管理模組控管而取得待監控機台的監控資料,並在系統預設的參考假說模型集間選擇相似度最高者進行建模,據此快速完成模型選擇與布署。The invention relates to an intelligent pre-diagnosis and health management system and method. The system includes an analysis engine service management module, an intelligent prediction and health management object analysis tree module, a machine learning library module, and a file system module. After the analysis engine service management module defines the analysis tree according to the components of the machine to be monitored, the intelligent prediction and health management object analysis tree module is controlled by the analysis engine service management module to obtain the monitoring data of the machine to be monitored, and The model with the highest similarity is selected among the preset reference hypothesis model sets for modeling, and the model selection and deployment are quickly completed accordingly.

Description

智慧型預診斷和健康管理系統與方法Intelligent pre-diagnosis and health management system and method

本發明關於一種預診斷系統及方法,尤指一種建立物件分析樹來進行機台管理同時可根據新機台特性以適性化方法挑選預測模型的智慧型預診斷和健康管理系統以及方法。 The present invention relates to a pre-diagnosis system and method, and more particularly to an intelligent pre-diagnosis and health management system and method that establishes an object analysis tree for machine management and can select a prediction model in an adaptive manner according to the characteristics of the new machine.

製造業為了確保生產機台的製程穩定並且提高稼動率,必須要對生產機台的運作狀態進行嚴密的品質監控。 In order to ensure the stability of the production process and improve the production rate, the manufacturing industry must carry out strict quality control on the operation status of the production machine.

習知技術中為了達到品質要求,對於關鍵製程參數有嚴密的監控與觀察。所謂「關鍵製程參數」指的是與設備故障最相關的因素,實務上會對該些因素進行監控以作為設備維護預診斷的重要指標。為提升預診斷的精準性,已有許多公開技術提出各式改良,包括申請人在美國專利申請號US16/001,520中提出一種領先輔助參數的選擇方法以及結合關鍵參數及領先輔助參數進行設備維護預診斷的方法,將感測器蒐集到的資料進行篩選並區分為關鍵參數(critical parameters,CP)集合以及其他特徵參數集合後,再從特徵參數集合中鑑定出提前影響關鍵參數時間最早者作為領先輔助參數(leading associated parameters,LAP),並進一步利用關鍵參數(CP)集合及該領先輔助參數(LAP)建立一種有效提升提前預警能力的設備維護預診斷模型。 In order to meet the quality requirements in the conventional technology, critical process parameters are closely monitored and observed. The so-called "key process parameters" refer to the factors most relevant to equipment failure. In practice, these factors will be monitored as important indicators for equipment maintenance pre-diagnosis. In order to improve the accuracy of the pre-diagnosis, many public technologies have been proposed for various improvements, including the applicant's proposal of a leading auxiliary parameter selection method in U.S. Patent Application No. US16 / 001,520 and equipment maintenance pre-combination with key parameters and leading auxiliary parameters. The method of diagnosis is to filter and collect the data collected by the sensor into a set of critical parameters (CP) and other characteristic parameters, and then identify from the characteristic parameter set the earliest time that affects the key parameter as the lead Auxiliary parameters (leading associated parameters (LAP)), and further use the key parameter (CP) set and the leading auxiliary parameters (LAP) to establish an equipment maintenance pre-diagnosis model that effectively enhances early warning capabilities.

此外,習知技術需針對每一個機台個別建構各自的特徵資料庫以建構預測模型,如此一來,當複數類與異質性機台導入機台預診斷及健康管理系統時,除了增加系統的複雜度之外,更會耗費大量的資源與成本。 In addition, the conventional technology needs to construct a separate feature database for each machine to build a predictive model. In this way, when plural types and heterogeneous machines are introduced into the machine pre-diagnosis and health management system, in addition to increasing the system's In addition to complexity, it will consume a lot of resources and costs.

因此,需要開發出一種智慧型預診斷和健康管理系統以及方法以解決上述導入大量同一類型或不同類型的生產機台的時候面臨的預診斷及健康管理系統維護與管理問題。 Therefore, it is necessary to develop an intelligent pre-diagnosis and health management system and method to solve the maintenance and management problems of the pre-diagnosis and health management system that are faced when introducing a large number of production machines of the same type or different types.

本發明的主要目的,在於解決習知技術在導入大量同一類型或不同類型的生產機台的時候面臨的預診斷及健康管理系統難以維護及管理的缺點。 The main purpose of the present invention is to solve the shortcomings of the conventional technology that it is difficult to maintain and manage the pre-diagnosis and health management system when introducing a large number of production machines of the same type or different types.

為了達到上述目的,本發明提供一種智慧型預診斷和健康管理系統,包括:一分析引擎服務管理(analytic engine service manager,AESM)模組;一智能預測及健康管理物件分析樹(SMART prognostics and health management object analytics tree,SPHM-OAT)模組、一機器學習庫模組、以及一檔案系統模組,其中,該智能預測及健康管理物件分析樹模組(SPHM-OAT)連結該分析引擎服務管理模組(AESM)且該智能預測及健康管理物件分析樹模組(SPHM-OAT)包括複數個分析樹(OAT),且每一分析樹包括複數個分析樹節點(SPHM-object)以取得一待監控機台的監控資料;該機器學習庫模組連結該智能預測及健康管理物件分析樹模組以提供至少一演算法予該智能預測及健康管理物件分析樹模組(SPHM-OAT);以及該檔案系統模組連結該智能預測及健康管理物件分析樹模組(SPHM-OAT)以提供該智能預測及健康管理物件分析樹模組一參考假說模型與相應之特徵樣本資料。 In order to achieve the above object, the present invention provides an intelligent pre-diagnosis and health management system, including: an analytical engine service manager (AESM) module; an intelligent prediction and health management object analysis tree (SMART prognostics and health management object analytics tree (SPHM-OAT) module, a machine learning library module, and a file system module, wherein the intelligent prediction and health management object analysis tree module (SPHM-OAT) is connected to the analysis engine service management Module (AESM) and the intelligent prediction and health management object analysis tree module (SPHM-OAT) includes a plurality of analysis trees (OAT), and each analysis tree includes a plurality of analysis tree nodes (SPHM-object) to obtain a Monitoring data of the machine to be monitored; the machine learning library module is connected to the intelligent prediction and health management object analysis tree module to provide at least one algorithm to the intelligent prediction and health management object analysis tree module (SPHM-OAT); And the file system module is connected to the intelligent prediction and health management object analysis tree module (SPHM-OAT) to provide the intelligent prediction and health management object analysis tree module Hypothesis model and a corresponding reference characteristic of the sample data.

本發明並提供一種智慧型預診斷和健康管理方法,該方法包括一新樹建立及相似度分析步驟、以及一建模步驟:該新樹建立及相似度分析步驟係根據一待監控機台的組件定義出至少一分析樹(OAT),該分析樹(OAT)包括複數個分析樹節點(SPHM-objoct)並內建各分析樹節點的參考假說模型與相應之特徵樣本資料之一存儲指標,根據該存儲指標以向一檔案系統取得一待監控機台的監控資料,並將該監控資料與預設的該些參考假說模型的特徵樣本資料進行一相似度分析;且該建模步驟為下述步驟S1或步驟S2中擇一進行,其中:步驟S1:當該相似度分析超過一門檻值時,從預設的該些參考假說模型中挑選出一相似度最高的參考假說模型以對該監控資料進行建模;步驟S2:當該相似度分析未超過該門檻值時,透過一擴充模組導入一外部假說模型以對該監控資料進行建模。 The invention also provides a smart pre-diagnosis and health management method. The method includes a new tree establishment and similarity analysis step, and a modeling step: the new tree establishment and similarity analysis step is defined according to a component of a machine to be monitored. Produce at least one analysis tree (OAT), the analysis tree (OAT) includes a plurality of analysis tree nodes (SPHM-objoct) and a built-in reference hypothesis model of each analysis tree node and one of the corresponding feature sample data storage indicators, according to the Store the index to obtain monitoring data of a machine to be monitored from a file system, and perform a similarity analysis on the monitoring data and the characteristic sample data of the preset reference hypothesis models; and the modeling step is the following steps Either S1 or step S2, where: step S1: when the similarity analysis exceeds a threshold value, a reference hypothesis model with the highest similarity is selected from the preset reference hypothesis models to the monitoring data Perform modeling; step S2: when the similarity analysis does not exceed the threshold value, import an external hypothesis model through an expansion module to model the monitoring data.

是以,本發明相較於習知技術所能達到的功效在於: Therefore, the effect that the present invention can achieve compared with the conventional technology lies in:

(1)透過分析樹(OAT)反映待監控機台預診斷及健康管理系統的樹狀結構,從分析樹節點出發,向上傳遞末端零組件設備的監控點的資訊,藉由量化每個分析樹節點的監控狀態,以遞迴的方式自下而上(bottom up)地逐步分析每一個分析樹節點的健康狀態,最終彙集到頂部以形成描述完整單一特定機台設備健康狀態的分析樹,並由複數個分析樹組成為智能預測及健康管理物件分析樹模組。本發明的系統架構可通用在任何的系統機台設備,不僅可簡化預診斷和健康管理系統的導入流程,更能有效地利用各種計算資源,快速地完成參考假說模型並且完成布署。 (1) The tree structure of the pre-diagnosis and health management system of the machine to be monitored is reflected through the analysis tree (OAT). Starting from the analysis tree node, the information of the monitoring points of the end component equipment is transmitted upward, and by quantifying each analysis tree The monitoring status of the nodes is analyzed in a recursive manner from bottom to top (bottom up) to gradually analyze the health status of each analytic tree node, and finally collected at the top to form an analysis tree describing the complete single specific equipment health status, and The analysis tree module is composed of a plurality of analysis trees for intelligent prediction and health management objects. The system architecture of the present invention can be universally used in any system machine equipment, which can not only simplify the introduction process of the pre-diagnosis and health management system, but also effectively utilize various computing resources, quickly complete the reference hypothesis model, and complete deployment.

(2)本發明的智慧型預診斷和健康管理系統中導入新機台時,該分析引擎服務管理模組將會根據該新機台的特徵樣本資料進行相似度的分析,依智能預測及健康管理物件分析樹模組中複數個預設的參考假說模型 集指標,從檔案系統模組中適性化挑選合適的參考假說模型進行預測模型,以節省系統管理與參考假說模型布署時間。 (2) When a new machine is introduced into the intelligent pre-diagnosis and health management system of the present invention, the analysis engine service management module will perform similarity analysis based on the characteristic sample data of the new machine, according to intelligent prediction and health Multiple preset reference hypothesis models in the management object analysis tree module Set indicators and select appropriate reference hypothesis models from the file system module for prediction models to save system management and reference hypothesis model deployment time.

(3)倘若導入的新機台之監控資料與本發明系統中預設的參考假說模型所屬之特徵集相似度低於指定門檻值時,則可藉由擴充模組導入外部假說模型以於該智能預測及健康管理物件分析樹模組中建立參考假說模型,保持建模過程中的彈性及可擴充性。 (3) If the imported monitoring data of the new machine and the feature set of the reference hypothesis model preset in the system of the present invention have a similarity lower than the specified threshold value, an external hypothesis model can be imported through the expansion module to Establish a reference hypothesis model in the intelligent prediction and health management object analysis tree module to maintain flexibility and scalability in the modeling process.

10‧‧‧智慧型預診斷和健康管理系統 10‧‧‧ Smart Pre-diagnosis and Health Management System

20‧‧‧分析引擎服務管理模組 20‧‧‧Analysis Engine Service Management Module

30‧‧‧智能預測及健康管理物件分析樹模組 30‧‧‧Smart Prediction and Health Management Object Analysis Tree Module

31‧‧‧分析樹 31‧‧‧analysis tree

32、33、34‧‧‧分析樹節點 32, 33, 34‧‧‧‧analysis tree nodes

35‧‧‧映射表 35‧‧‧ mapping table

36a‧‧‧資料前處理層 36a‧‧‧Data pre-processing layer

36b‧‧‧資料假說層 36b‧‧‧Data Hypothesis

36c‧‧‧資料整體學習層 36c‧‧‧Data overall learning layer

40‧‧‧機器學習庫模組 40‧‧‧ Machine Learning Library Module

50‧‧‧檔案系統模組 50‧‧‧File System Module

60a‧‧‧第一可交換應用程式介面 60a‧‧‧The first exchangeable application interface

60b‧‧‧第二可交換應用程式介面 60b‧‧‧Second exchangeable application program interface

60c‧‧‧可交換驅動程式介面 60c‧‧‧Interchangeable driver interface

70‧‧‧外部機器學習模組 70‧‧‧External Machine Learning Module

80‧‧‧外部參考模型模組 80‧‧‧ External Reference Model Module

90‧‧‧外部資料收集驅動裝置 90‧‧‧ external data collection driving device

91‧‧‧外部資料庫 91‧‧‧external database

S100、S110、S120、S130、S131、S140、S150、S160、S170、S180、S190、S200、S210、S230、S240、S250、S260、S270、S280‧‧‧步驟 S100, S110, S120, S130, S131, S140, S150, S160, S170, S180, S190, S200, S210, S230, S240, S250, S260, S270, S280

CK1~CK5‧‧‧監控點 CK1 ~ CK5‧‧‧Monitoring points

『圖1A』為本發明一實施例的智慧型預診斷和健康管理系統架構示意圖。 [Figure 1A] Schematic diagram of the intelligent pre-diagnosis and health management system according to an embodiment of the present invention.

『圖1B』為本發明一實施例中,智能預測及健康管理物件分析樹模組的工作流程架構示意圖。 [FIG. 1B] is a schematic diagram of a workflow architecture of an intelligent prediction and health management object analysis tree module according to an embodiment of the present invention.

『圖2』為本發明一實施例的智慧型預診斷和健康管理系統的運作流程示意圖。 [Figure 2] Schematic diagram of the operation flow of the intelligent pre-diagnosis and health management system according to an embodiment of the present invention.

『圖3』為本發明一實施例的生態架構示意圖。 [Figure 3] is a schematic diagram of an ecological architecture according to an embodiment of the present invention.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:本發明提供一種系統架構的設計模式與方法,用來建立或更新一智能預測及健康管理物件分析樹模組(SPHM-OAT)以進行設備健康管理。本發明的系統及方法可通用於如風力發電機、碎煤機、有機金屬化學氣相沉積系統(MOCVD)、電漿輔助化學氣相沉積系統(PECVD)等各類型機台設備。 The detailed description and technical contents of the present invention are described below with reference to the drawings. The present invention provides a system architecture design pattern and method for establishing or updating a smart prediction and health management object analysis tree module (SPHM-OAT). ) For equipment health management. The system and method of the present invention can be commonly used for various types of machine equipment such as wind turbines, coal crushers, organic metal chemical vapor deposition systems (MOCVD), plasma assisted chemical vapor deposition systems (PECVD), and the like.

『圖1A』為本發明一實施例的智慧型預診斷和健康管理系統10架構示意圖,主要包括一分析引擎服務管理(analytic engine service manager,AESM)模組20、一智能預測及健康管理物件分析樹(SPHM-OAT)模組30、一機器學習庫模組40、以及一檔案系統模組50。且為了使本發明的系統的應用更具擴展性,本發明的智慧型預診斷和健康管理系統10可進一步包括一擴充模組,該擴充模組連結該智能預測及健康管理物件分析樹模組30,且該擴充模組可包括一第一可交換應用程式介面60a、一第二可交換應用程式介面60b、以及一可交換驅動程式介面60c,其中該第一可交換應用程式介面60a用以連接一外部機器學習模組70,該第二可交換應用程式介面60b用以連接一外部參考模型模組80,而該可交換驅動程式介面60c則用以連接一外部資料收集驅動裝置(EDCD)90來取得設置在一待監控機台設備的資料庫91的原始資料。 [Figure 1A] is a schematic diagram of the intelligent pre-diagnosis and health management system 10 according to an embodiment of the present invention, which mainly includes an analytic engine service manager (AESM) module 20, an intelligent prediction and analysis of health management objects Tree (SPHM-OAT) module 30, a machine learning library module 40, and a file system module 50. And in order to make the application of the system of the present invention more extensible, the intelligent pre-diagnosis and health management system 10 of the present invention may further include an expansion module, which is connected to the intelligent prediction and health management object analysis tree module 30, and the expansion module may include a first exchangeable application program interface 60a, a second exchangeable application program interface 60b, and an exchangeable driver program interface 60c, wherein the first exchangeable application program interface 60a is used for An external machine learning module 70 is connected, the second exchangeable application program interface 60b is used to connect an external reference model module 80, and the exchangeable driver program interface 60c is used to connect an external data collection driving device (EDCD) 90 to obtain original data set in a database 91 of a machine to be monitored.

該分析引擎服務管理模組20為本發明智慧型預診斷和健康管理系統10的核心,可控管該智能預測及健康管理物件分析樹(SPHM-OAT)模組30中各部件的狀態。 The analysis engine service management module 20 is the core of the intelligent pre-diagnosis and health management system 10 of the present invention, and can control and manage the states of various components in the intelligent prediction and health management object analysis tree (SPHM-OAT) module 30.

請搭配參考『圖1B』,該智能預測及健康管理物件分析樹模組30連結該分析引擎服務管理模組20,並包括複數個分析樹31,每一分析樹31包括複數個分析樹節點33、34,每一分析樹節點33、34則分別對應一關鍵參數(CP)以及複數個相關參數(AP)。該些關鍵參數(CP)以及相關參數(AP)的資料來源可為感應器取得的資訊、也可為由子節點的關鍵參數(CP)及其他相關參數(AP)聚合而成。每一分析樹節點33、34由一物件控制表(OCB)與之連結,該些物件控制表是用來儲存對應的該分析樹節點33、34在分析過程中的運算結果,並且具有定期備份以及還原的效果。如此一來,若在分析過程中發生災難事件,透過該些物件控制表即可快速進行回復作業, 從上一次的檢查點取得該分析樹節點33、34的狀態,再以遞迴的方式,從兄弟節點(sibling node)往父節點(parent node),由下而上地持續進行階層式集成運算分析直到位於最高階層的分析樹節點(即,根(root))分析完成為止。關於上述的兄弟節點及父節點,譬如,對於某一分析樹節點34而言,其他的該些分析樹節點34即為其兄弟節點,而該些分析樹節點33則為其父節點。 Please refer to "Figure 1B". The intelligent prediction and health management object analysis tree module 30 is connected to the analysis engine service management module 20 and includes a plurality of analysis trees 31. Each analysis tree 31 includes a plurality of analysis tree nodes 33. , 34, each parse tree node 33, 34 corresponds to a key parameter (CP) and a plurality of related parameters (AP), respectively. The data source of these key parameters (CP) and related parameters (AP) may be information obtained by the sensor, or may be aggregated from the key parameters (CP) of the child nodes and other related parameters (AP). Each analysis tree node 33, 34 is linked to it by an object control table (OCB). The object control tables are used to store the calculation results of the corresponding analysis tree node 33, 34 during the analysis process, and have regular backups. And the effect of reduction. In this way, if a disaster event occurs during the analysis, the object control table can be used to quickly restore the operation. The state of the analytic tree nodes 33 and 34 is obtained from the last checkpoint, and the hierarchical integration operation is continuously performed from the sibling node to the parent node in a recursive manner from bottom to top. The analysis is completed until the analysis tree node (ie, root) at the highest level is completed. Regarding the above sibling nodes and parent nodes, for example, for a certain parse tree node 34, other parse tree nodes 34 are its sibling nodes, and these parse tree nodes 33 are its parent nodes.

據此,在監控資料來源正確且關鍵參數(CP)及相關參數(AP)的選擇也正確的前提下,本發明的智慧型預診斷和健康管理系統10可透過該些分析樹節點33、34適時地反映該些分析樹節點33、34的健康狀態,做好提前預警與健康管理。 According to this, on the premise that the source of the monitoring data is correct and the selection of the key parameters (CP) and related parameters (AP) is correct, the intelligent pre-diagnosis and health management system 10 of the present invention can use these analysis tree nodes 33, 34 Reflect the health status of the analysis tree nodes 33 and 34 in a timely manner, and do a good job of early warning and health management.

該智能預測及健康管理物件分析樹(SPHM-OAT)模組30除了管理上述代表著對應複數類機台的該些分析樹31外,也負責該些分析樹節點33、34上的工作流程(workflow)管理。所謂的「工作流程」是由一映射表35負責管理,且可包括堆疊而成的資料前處理層(data preprocessing layer)36a、資料假說層(data hypothesis layer)36b、以及資料整體學習層(data ensemble layer)36c,該工作流程的層次、順序與實際工作內容可根據需求而調整,並不僅限於上述內容。 The Intelligent Prediction and Health Management Object Analysis Tree (SPHM-OAT) module 30 not only manages the above analysis trees 31 representing the corresponding plural types of machines, but also is responsible for the workflow on the analysis tree nodes 33 and 34 ( workflow) management. The so-called "workflow" is managed by a mapping table 35, and may include a stacked data preprocessing layer 36a, a data hypothesis layer 36b, and a data overall learning layer (data ensemble layer) 36c, the level, sequence and actual work content of the workflow can be adjusted according to requirements, and is not limited to the above.

該映射表35透過表格驅動(table driven)機制運作,從表格中依預先設定的工作方法,從與該智能預測及健康管理物件分析樹模組30連結的該機器學習庫模組40中挑選出至少一種適當的演算法給上述如資料前處理層36a、資料假說層36b、或資料整體學習層36c等工作流程使用。舉例來說,適用於資料前處理層36a的演算法可包括特徵選取(feature selection)演算法或特徵萃取(feature extraction)演算法等具備特徵挑選能力的演算法;適用於資料假說層36b的演算法可包括迴歸(regression)演算法、自回歸移動平均模 型(autoregressive integrated moving average model,ARIMA)演算法、相對強弱指數(relative strength index,RSI)演算法或其他具備預測能力的演算法;而該資料整體學習層36c的工作方法則是透過構建一組由該映射表35指定的多個參考假說模型來進行投票、或依照當前該分析樹指定的階層式集成運算。除此之外,該分析引擎服務管理模組20亦根據該映射表35的機制以對每個分析樹的該工作流程進行控制。 The mapping table 35 operates through a table driven mechanism, and is selected from the machine learning library module 40 connected to the intelligent prediction and health management object analysis tree module 30 according to a preset working method from the table. At least one appropriate algorithm is used for the above-mentioned workflows such as the data pre-processing layer 36a, the data hypothesis layer 36b, or the data overall learning layer 36c. For example, algorithms applicable to the data pre-processing layer 36a may include algorithms with feature selection capabilities such as feature selection algorithms or feature extraction algorithms; algorithms applicable to the data hypothesis layer 36b Methods can include regression algorithms, autoregressive moving average models Type (autoregressive integrated moving average model (ARIMA) algorithm, relative strength index (RSI) algorithm, or other algorithms with predictive power; the working method of the overall learning layer 36c of this data is to build a group A plurality of reference hypothesis models specified by the mapping table 35 are used for voting, or according to the hierarchical integration operation currently specified by the analysis tree. In addition, the analysis engine service management module 20 also controls the workflow of each analysis tree according to the mechanism of the mapping table 35.

本實施例中的該檔案系統模組50可作為系統將檔案寫回及/或儲存檔案的場所,上述的「檔案」,舉例可包括該智能預測及健康管理物件分析樹模組30中該些分析樹31生命週期的量化分析資訊、或者預設的參考假說模型集在建模前的特徵樣本資料集、或者計算過程中系統發生故障時的備援資料、或者各分析樹節點所屬的參考假說,以在必要時提供該智能預測及健康管理物件分析樹模組30所要求的資訊。 The file system module 50 in this embodiment may be used as a place where the system writes back files and / or stores files. The “files” mentioned above may include, for example, the intelligent prediction and health management object analysis tree module 30. Quantitative analysis information of the life cycle of the analysis tree 31, or the pre-modeling feature sample data set of the reference hypothesis model set, or the backup data when the system fails during the calculation process, or the reference hypothesis to which each analysis tree node belongs To provide the information required by the intelligent prediction and health management object analysis tree module 30 when necessary.

必要時本發明的系統可透過該擴充模組連接外部裝置進行擴充,舉例來說,當現有之該機器學習庫模組40的資料不足時,可藉由該擴充模組的該第一可交換應用程式介面60a連接該外部機器學習模組70以擴充既有的機器學習庫功能;或者,可藉由該擴充模組的該第二可交換應用程式介面60b連接該外部參考模型模組80以擴充該智能預測及健康管理物件分析樹模組30的該映射表35的參考假說模型並參與手動模式的一外部假說模型的選擇與布署;又可藉由該擴充模組的該可交換驅動程式介面60c以連接一外部資料收集驅動裝置90,該外部資料收集驅動裝置90連接該外部資料庫91,故可透過該外部資料收集驅動裝置90取得儲存於該待監控機台設備的該外部資料庫91的原始資料。 If necessary, the system of the present invention can be expanded by connecting external devices through the expansion module. For example, when the existing data of the machine learning library module 40 is insufficient, the first exchangeable module can be used The application program interface 60a is connected to the external machine learning module 70 to expand the existing machine learning library function; or, the second exchangeable application program interface 60b of the extension module can be connected to the external reference model module 80 to Extend the reference hypothesis model of the mapping table 35 of the intelligent prediction and health management object analysis tree module 30 and participate in the selection and deployment of an external hypothesis model in the manual mode; or by the interchangeable driver of the expansion module The program interface 60c is connected to an external data collection driving device 90, and the external data collection driving device 90 is connected to the external database 91, so the external data stored in the equipment to be monitored can be obtained through the external data collection driving device 90 Source of Library 91.

請續搭配參考『圖2』,為本發明一實施例的智慧型預診斷和健康管理系統10的運作流程示意圖,主要包括一新樹建立及相似度分析步驟以及一建模步驟。 Please continue to refer to “FIG. 2”, which is a schematic diagram of the operation flow of the intelligent pre-diagnosis and health management system 10 according to an embodiment of the present invention, which mainly includes a new tree establishment and similarity analysis step and a modeling step.

關於該新樹建立及相似度分析步驟,首先,可先以手動方式建立新樹,並透過該分析引擎服務管理模組20將相關建樹資訊傳遞至該智能預測及健康管理物件分析樹模組30而建立一個新的分析樹。其次,利用該外部資料收集器90進一步收集該分析樹所需的資料,該些資料包含該待監控機台各末端元件的監控點的前n筆原始資料(5110)。這裡的「手動方式」指的是工程人員根據該待監控機台中各零組件之間的上、下、先、後的從屬關係來分類第一級設備、第二級設備及第三級設備等,據此決定層數以定義出專屬於該待監控機台生態架構的分析樹。 With regard to the new tree establishment and similarity analysis steps, first, a new tree can be manually established, and the related tree construction information is transmitted to the intelligent prediction and health management object analysis tree module 30 through the analysis engine service management module 20 A new parse tree. Secondly, the external data collector 90 is used to further collect the data required for the analysis tree. The data includes the first n pieces of original data of the monitoring points of each end component of the machine to be monitored (5110). The `` manual method '' here refers to the classification of the first-level equipment, second-level equipment, and third-level equipment by the engineering personnel according to the up, down, first, and subsequent subordinate relationships among the components in the machine to be monitored. Based on this, the number of layers is determined to define an analysis tree specific to the ecological architecture of the machine to be monitored.

接著,該分析引擎服務管理模組20對收集到的原始資料開始進行相似度分析(S120),係先透過該智能預測及健康管理物件分析樹模組30依該智能預測及健康管理物件分析樹模組30中內存的各分析樹節點的參考假說模型指標與相應之特徵樣本資料之存儲指標所指定位置對該檔案系統模組50提出要求(S130)並取得建立參考假說模型的特徵樣本的資料矩陣(S131),再檢查所取得的該待監控機台的樣本特徵與該檔案系統模組50提供的參考模型假說建模前的樣本特徵相似度(S140)。當相似度超過門檻值且最高時則取用該參考假說模型作為一基線模型假說模型,並以該基線模型假說模型選定的工作流程作為預設基本工作流程(S160)。 Then, the analysis engine service management module 20 starts to perform similarity analysis on the collected raw data (S120). The intelligent prediction and health management object analysis tree module 30 first uses the intelligent prediction and health management object analysis tree according to the intelligent prediction and health management object analysis tree. The location specified by the reference hypothesis model index of each analysis tree node in the memory in the module 30 and the storage index of the corresponding feature sample data requests the file system module 50 (S130) and obtains the data of the feature sample of the reference hypothesis model. Matrix (S131), and then check the similarity between the obtained sample features of the machine to be monitored and the sample feature before the reference model hypothesis provided by the file system module 50 (S140). When the similarity exceeds the threshold value and is the highest, the reference hypothesis model is used as a baseline model hypothesis model, and the workflow selected by the baseline model hypothesis model is used as a preset basic workflow (S160).

該分析引擎服務管理模組20在收到由該智能預測及健康管理物件分析樹模組30傳送來的工作流程相關資訊後(S170),即透過該智能預測及健康管理物件分析樹模組30的該映射表35,從該機器學習庫模組40中選擇需要的演算法並完成自動建模設定(S180),再由該智能預測及健康管理物 件分析樹模組30添加適合該待監控機台的假說模型指標與工作流程到該映射表35中(S190),同時將新的參考假說模型與特徵樣本資料存入該檔案系統模組50而完成模型移植(S200),最後再由該檔案系統模組50通知該智能預測及健康管理物件分析樹模組30更新該映射表35中新的待監控機台的假說分析模組設定,同時通知該分析引擎服務管理模組20移植完成(S210)。 After the analysis engine service management module 20 receives the workflow-related information transmitted by the intelligent prediction and health management object analysis tree module 30 (S170), it passes the intelligent prediction and health management object analysis tree module 30. The mapping table 35, select the required algorithm from the machine learning library module 40 and complete the automatic modeling setting (S180), and then the intelligent prediction and health management objects The analysis tree module 30 adds hypothetical model indexes and workflows suitable for the machine to be monitored to the mapping table 35 (S190), and simultaneously stores the new reference hypothesis model and feature sample data into the file system module 50. The model migration is completed (S200). Finally, the file system module 50 notifies the intelligent prediction and health management object analysis tree module 30 to update the hypothesis analysis module settings of the new to-be-monitored machine in the mapping table 35, and notifies The analysis engine service management module 20 is transplanted (S210).

倘若該智能預測及健康管理物件分析樹模組30在該檔案系統模組50找不到相似度高的特徵樣本時,譬如,當待監控機台的前n筆特徵樣本資料與既有參考模型假說集建模前的特徵樣本資料間相似度指標值皆低於指定門檻值的時候,則先由該智能預測及健康管理物件分析樹模組30通知該分析引擎服務管理模組20(S230),先提示工程人員需進行外部擴充指令。再由該分析引擎服務管理模組20指示該智能預測及健康管理物件分析樹模組30透過該擴充模組由工程人員從外部手動插入(plugin)適當的參考假說模型指標、特徵資料集指標、以及對應之工作流程設定至該智能預測及健康管理物件分析樹模組30(S240)。接下來,該智能預測及健康管理物件分析樹模組30自該機器學習庫模組40調用外部插件工作流程所需要的演算法後(S250),完成一手動建模設定(S260),再將外部插件資訊與建模資訊寫回,如上之參考假說模型指標、特徵資料集指標指定該檔案系統模組50(S270)的儲存位置,並通知該分析引擎服務管理模組20完成假說模型擴充(S280)。 If the intelligent prediction and health management object analysis tree module 30 cannot find feature samples with high similarity in the file system module 50, for example, when the first n feature sample data of the machine to be monitored and the existing reference model When the similarity index values between the feature sample data before the hypothesis set modeling are all lower than the specified threshold value, the intelligent prediction and health management object analysis tree module 30 first notifies the analysis engine service management module 20 (S230) , First remind the engineering staff to carry out external expansion instructions. Then, the analysis engine service management module 20 instructs the intelligent prediction and health management object analysis tree module 30 to manually insert appropriate reference hypothesis model indicators, characteristic data set indicators, And the corresponding workflow is set to the intelligent prediction and health management object analysis tree module 30 (S240). Next, the intelligent prediction and health management object analysis tree module 30 calls the algorithms required by the external plug-in workflow from the machine learning library module 40 (S250), completes a manual modeling setting (S260), and then The external plug-in information and modeling information are written back. The reference hypothesis model indicators and feature data set indicators above specify the storage location of the file system module 50 (S270), and notify the analysis engine service management module 20 to complete the hypothesis model expansion ( S280).

上述「相似度」是為了瞭解本發明的系統中預設的該些參考假說模型集中是否存在有合適分析該待監控機台的假說模型。具體的比較方式,舉例來說,可以比較系統中預設的該些假說模型在建模前的特徵集與該待監控機台的前n筆原始資料轉換為同一特徵空間後的距離相似度。若兩者之間的特徵相對距離愈小,則相似度愈高;反之則相似度愈低。常見的 相似度計算方法可利用如歐基里德距離(euclidean distance)、馬哈拉諾比斯距離(mahalanobis distance)、曼哈頓距離(manhattan distance)、馬可夫斯基距離(minkowski distance)、餘弦相似度(cosine similarity)等。透過上述之相似度量化計算,即可從預設的參考假說模型集中挑選合適的假說模型作為該待監控機台的基線預測模型。 The above-mentioned "similarity" is to understand whether there is a hypothesis model suitable for analyzing the machine to be monitored in the reference hypothesis model set preset in the system of the present invention. A specific comparison manner, for example, may compare the distance similarity between the feature set of the hypothetical models preset in the system before modeling and the first n pieces of original data of the machine to be monitored into the same feature space. The smaller the relative distance between the two features, the higher the similarity; otherwise, the lower the similarity. Common Similarity calculation methods can be used such as euclidean distance, mahalanobis distance, manhattan distance, minkowski distance, cosine similarity (cosine similarity) and so on. Through the similarity quantification calculation described above, a suitable hypothesis model can be selected from the preset reference hypothesis model set as the baseline prediction model of the machine to be monitored.

於下文中,係將本發明的系統應用於監控一有機金屬化學氣相沉積(MOCVD)機台作為實例加以說明,請參照『圖3』並搭配『圖1』、『圖2』。 In the following, the system of the present invention is applied as an example to monitor an organic metal chemical vapor deposition (MOCVD) machine. Please refer to "Fig. 3" and match "Fig. 1" and "Fig. 2".

在此實例中,先依階層式架構定義所有MOCVD設備零組件與一分析樹節點的關係,『圖3』中,每一分析樹節點對應一個關鍵參數(CP)與複數個相關參數(AP),並由指定之一健康指標(SPHM Health Indicator,SPHM-HI)適時地反映分析樹各節點的健康狀態,做好提前預警與健康管理。 In this example, the relationship between all MOCVD equipment components and an analytic tree node is first defined according to a hierarchical structure. In Figure 3, each analytic tree node corresponds to a key parameter (CP) and a plurality of related parameters (AP). , And one of the designated health indicators (SPHM Health Indicator (SPHM-HI)) timely reflects the health status of each node of the analysis tree, and do a good job of early warning and health management.

該健康指標(SPHM-HI)為可擴充式,基本項目舉例可包括故障預防與判斷功能(Next N-Run Fail,NRF)指標、設備關鍵零組件剩餘壽命估計(Remaining Useful Life,RUL)指標、一般健康指標(Health Indicator,HI)、以及其他類似相關的健康指標,由於該些健康指標的功能、種類、實際量化與分析方式為熟悉此技藝之人士所熟知,故不在此贅述。 The health index (SPHM-HI) is extensible. Examples of basic items may include the Next N-Run Fail (NRF) index, the Remaining Useful Life (RUL) index of key equipment components, General Health Indicators (HI) and other similar health indicators are not known here because their functions, types, actual quantification and analysis methods are well known to those skilled in the art.

接下來,該分析引擎服務管理模組20從一分析樹節點32開始向下分支,依MOCVD設備內各零組間之間的上、下、先、後的從屬關係,定義一專屬於MOCVD機台生態架構(Ecological Hierarchy)的智能預測及健康管理物件分析樹模組30。其中,樹根(root)代表MOCVD機台(即,該分析樹節點32),連結到一個或數個子節點上(即,次級設備,該分析樹節點33),再由該些子節點繼續連結到一個或數個新的子節點上(即,第三級設備,該 分析樹節點34)。如此反覆連結,就好像樹根般地慢慢向下長,從而形成一完整的智能預測及健康管理物件分析樹模組30(S100)。補充說明的是,在此僅以第一級設備、第二級設備以及第三級設備的三層設定進行說明,但在其他的實施例中,亦可視實際情況及需求增減層數,本發明對此並無限制。 Next, the analysis engine service management module 20 branches downward from an analysis tree node 32, and defines an exclusive MOCVD machine according to the up, down, first, and subsequent subordinate relationship between the zero groups in the MOCVD device. An ecological prediction and health management object analysis tree module 30 of Ecological Hierarchy. The root of the tree represents the MOCVD machine (that is, the analysis tree node 32), which is connected to one or several child nodes (that is, the secondary device, the analysis tree node 33), and then continued by the child nodes. Connected to one or several new child nodes (ie, a third-level device, the Analysis tree node 34). Repeatedly connecting in this way, it slowly grows downward like a tree root, thereby forming a complete intelligent prediction and health management object analysis tree module 30 (S100). It is added that only the three-level settings of the first-level device, the second-level device, and the third-level device are described here. However, in other embodiments, the number of layers may be increased or decreased according to actual conditions and requirements. The invention is not limited to this.

續搭配『圖2』及『圖1』,該智能預測及健康管理物件分析樹模組30建立完成後,即從葉節點(terminal node,即,該分析樹節點33、34)出發,開始資料收集(S110),並將該些資料匯聚於該外部資料庫91。該些葉節點(terminal node,即,該分析樹節點33、34)代表的是MOCVD機台的末端設備零組件的監控狀態,其資料來源為監控點CK1、CK2、CK3、CK4、CK5。 Continuing with "Figure 2" and "Figure 1", after the intelligent prediction and health management object analysis tree module 30 is set up, it starts from the leaf node (terminal node (ie, the analysis tree nodes 33, 34) and starts data Collect (S110) and aggregate the data in the external database 91. The leaf nodes (ie, the analysis tree nodes 33 and 34) represent the monitoring status of the end equipment components of the MOCVD machine, and the data sources are the monitoring points CK1, CK2, CK3, CK4, and CK5.

接著,該智能預測及健康管理物件分析樹模組30從該外部資料庫91取得末端監控點的原始資料並開始進行相似度分析(S120):首先,該智能預測及健康管理物件分析樹模組30根據該映射表35找出預設的參考假說模型集,並依據每一參考假說模型建構前的資料特徵樣本(S130與S131),與MOCVD末端監控點收集之前n筆原始資料轉換為特徵型態後進行相似度比對(S140)。當相似度高於一指定門檻值時,挑選相似度最高的該參考假說集設定為該基線預測模型假說(S150)。 Next, the intelligent prediction and health management object analysis tree module 30 obtains the raw data of the terminal monitoring points from the external database 91 and starts the similarity analysis (S120): first, the intelligent prediction and health management object analysis tree module 30 According to the mapping table 35, a preset reference hypothesis model set is found, and according to the data feature samples (S130 and S131) before the construction of each reference hypothesis model, it is converted into the feature type with the n original data before the MOCVD end monitoring point collection. After the state, the similarity comparison is performed (S140). When the similarity is higher than a specified threshold, the reference hypothesis set with the highest similarity is selected as the baseline prediction model hypothesis (S150).

接著指定該基線預測模型假說的工作流程,從該機器學習庫模組40中引入相關的演算法(S160、S170與S180),並於該智能預測及健康管理物件分析樹模組30的該映射表35中,新增上述該相似度最高的參考假說模型集指標與特徵資料集指標至該智能預測及健康管理物件分析樹模組30的該映射表35,如此即可完成專屬MOCVD機台的建模設定(S190)。最後,將 上述移植的該基線預測模型存入該檔案系統模組50(S200)並通知該分析引擎服務管理模組20完成自動模型移植(S210)。 Then specify the workflow of the baseline prediction model hypothesis, introduce related algorithms (S160, S170, and S180) from the machine learning library module 40, and map the mapping in the intelligent prediction and health management object analysis tree module 30 In Table 35, the above-mentioned most similar reference hypothesis model set index and feature data set index are added to the mapping table 35 of the intelligent prediction and health management object analysis tree module 30, so that the dedicated MOCVD machine can be completed. Modeling settings (S190). Finally, will The transplanted baseline prediction model is stored in the file system module 50 (S200), and the analysis engine service management module 20 is notified to complete the automatic model migration (S210).

然當相似度低於一指定門檻值時,則由該智能預測及健康管理物件分析樹模組30通知該分析引擎服務管理模組20找不到相似的特徵樣本資料及對應的假說模型(S230)。該分析引擎服務管理模組20遂透過該擴充模組的該第二可交換應用程式介面60b連接該外部參考模型模組80,以手動方式從該外部參考模型模組80導入適用於MOCVD機台的假說模型並新增指標至該智能預測及健康管理物件分析樹模組30的該映射表35中(S240),同時從該機器學習庫模組40調用建模需要的演算法(S250)。待建模完成後,即寫入該檔案系統模組50,並通知該分析引擎服務管理模組20完成該手動模型擴充(S280)。 However, when the similarity is lower than a specified threshold value, the intelligent prediction and health management object analysis tree module 30 notifies the analysis engine service management module 20 that it cannot find similar feature sample data and corresponding hypothetical models (S230 ). The analysis engine service management module 20 is then connected to the external reference model module 80 through the second exchangeable application program interface 60b of the expansion module, and is manually imported from the external reference model module 80 to the MOCVD machine. And add indicators to the mapping table 35 of the intelligent prediction and health management object analysis tree module 30 (S240), and call the algorithm required for modeling from the machine learning library module 40 (S250). After the modeling is completed, the file system module 50 is written, and the analysis engine service management module 20 is notified to complete the manual model expansion (S280).

最後終如『圖3』所示,當本發明的智慧型預診斷和健康管理系統10開始針對MOCVD機台進行預診斷分析時,該智能預測及健康管理物件分析樹模組30即根據每一節點於該映射表35中指定的工作流程,依關鍵參數(CP)與相關參數(AP)的特性,透過階層式集成運算,以遞迴的方式自下而上地量化分析各節點的健康狀態,最終匯聚到頂部(root)。同樣的也可以應用於其他諸如PECVD等機台的預診斷分析。 Finally, as shown in FIG. 3, when the intelligent pre-diagnosis and health management system 10 of the present invention starts to perform pre-diagnosis analysis on the MOCVD machine, the intelligent prediction and health management object analysis tree module 30 is based on each The workflow specified by the node in the mapping table 35, based on the characteristics of the key parameters (CP) and related parameters (AP), through a hierarchical integrated operation, quantitatively analyzes the health status of each node from the bottom up. , Finally converging to the top (root). The same can also be applied to other machines such as PECVD for pre-diagnosis analysis.

本發明所強調的「樹狀結構」為計算機科學中的一種資料概念。依本發明之實施例,該智能預測及健康管理物件分析樹模組30具有以下特性:(1)一棵樹只有一個最高階層的節點稱之為「根(root)」32,可視為一待監控機台最上層的現況;(2)每一個節點可以衍生一個以上的子節點。如果所有節點所衍生的子節點都在兩個以內,則稱為二元樹;(3)底層最末端的節點稱之為「葉(leaf)」或可稱為「終端節點(terminal node)」(譬如分析樹節點33、34),可視為該待監控機台的末端元件,包括末端元件的資料來源的 監控點CK1、CK2、CK3、CK4、CK5;(4)沒有相連的很多子樹稱為「森林(forest)」,可視為同時管理的複數個待監控機台。由以上說明可知,「樹狀結構」為階層式結構,一新的待監控機台從「根」開始,連結到一個或數個子節點上(secondary level equipment,第二級設備,譬如該分析樹節點33),再由該些子節點繼續連結到一個或數個新的子節點上(third level equipment,第三級設備,譬如該分析樹節點34)。如此反覆連結,就如同樹根般地慢慢成長形成一棵完整的分析樹(OAT)。樹狀結構的優點在於層次分明並且有條理,可以清楚表示出該待監控機台內各零組件之間的上、下、先、後的從屬關係。因此適合用來進行複數類設備預診斷和健康管理。 The "tree structure" emphasized by the present invention is a data concept in computer science. According to an embodiment of the present invention, the intelligent prediction and health management object analysis tree module 30 has the following characteristics: (1) A tree with only one highest-level node is called a "root" 32, which can be regarded as a wait. Monitor the status of the top layer of the machine; (2) Each node can derive more than one child node. If all the children derived from all nodes are within two, it is called a binary tree; (3) the bottom-most node at the bottom is called a "leaf" or it can be called a "terminal node" (Such as analysis tree nodes 33, 34), can be regarded as the terminal components of the machine to be monitored, including the data source of the terminal components. Monitoring points CK1, CK2, CK3, CK4, CK5; (4) Many sub-trees that are not connected are called "forests" and can be considered as multiple machines to be monitored at the same time. As can be seen from the above description, the "tree structure" is a hierarchical structure. A new machine to be monitored starts from the "root" and is connected to one or more child nodes (secondary level equipment, such as the analysis tree). Node 33), and the child nodes continue to connect to one or more new child nodes (third level equipment, such as the analysis tree node 34). Repeatedly connecting like this, slowly grows like a tree root to form a complete analysis tree (OAT). The advantage of the tree structure is that the hierarchy is clear and organized, and it can clearly show the subordinate relationship among the components in the machine to be monitored. Therefore, it is suitable for pre-diagnosis and health management of plural types of equipment.

如此一來,除了可降低複數類與異質性機台導入機台預診斷及健康管理系統的管理複雜度與人力成本外,並可維持系統具備一定的精度,進一步搭配自動選模機制,不僅簡化了預診斷和健康管理系統的導入流程,更能有效率地利用計算資源,快速完成預測模型選擇與布署。 In this way, in addition to reducing the management complexity and labor costs of introducing multiple types and heterogeneous machines into the machine pre-diagnosis and health management system, and maintaining a certain degree of accuracy in the system, further matching the automatic model selection mechanism not only simplifies The introduction process of the pre-diagnosis and health management system can make more efficient use of computing resources and quickly complete the selection and deployment of predictive models.

以上已將本發明做一詳細說明,惟以上所述者,僅為本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。 The present invention has been described in detail above, but the above is only a preferred embodiment of the present invention, and the scope of implementation of the present invention cannot be limited. That is, all equivalent changes and modifications made in accordance with the scope of the application of the present invention should still fall within the scope of the patent of the present invention.

Claims (6)

一種智慧型預診斷和健康管理系統,包括:一分析引擎服務管理模組;一智能預測及健康管理物件分析樹模組,該智能預測及健康管理物件分析樹模組連結該分析引擎服務管理模組且該智能預測及健康管理物件分析樹模組包括複數個分析樹,每一分析樹包括複數個分析樹節點以取得一待監控機台的監控資料,其中,該分析引擎服務管理模組根據該待監控機台的組件,於該智能預測及健康管理物件分析樹模組中定義出該分析樹;一機器學習庫模組,該機器學習庫模組連結該智能預測及健康管理物件分析樹模組以提供至少一演算法予該智能預測及健康管理物件分析樹模組;以及一檔案系統模組,該檔案系統模組連結該智能預測及健康管理物件分析樹模組以提供該智能預測及健康管理物件分析樹模組一參考假說模型與相應之特徵樣本資料;其中,該智能預測及健康管理物件分析樹模組包括一映射表,該分析引擎服務管理模組基於該智能預測及健康管理物件分析樹模組中的該映射表以控制該些分析樹節點的工作流程。 An intelligent pre-diagnosis and health management system includes: an analysis engine service management module; an intelligent prediction and health management object analysis tree module; the intelligent prediction and health management object analysis tree module is connected to the analysis engine service management module The intelligent prediction and health management object analysis tree module includes a plurality of analysis trees, and each analysis tree includes a plurality of analysis tree nodes to obtain monitoring data of a machine to be monitored. The analysis engine service management module is based on The components of the machine to be monitored define the analysis tree in the intelligent prediction and health management object analysis tree module; a machine learning library module, the machine learning library module is connected to the intelligent prediction and health management object analysis tree module Module to provide at least one algorithm to the intelligent prediction and health management object analysis tree module; and a file system module, the file system module is connected to the intelligent prediction and health management object analysis tree module to provide the intelligent prediction And health management object analysis tree module-a reference hypothesis model and corresponding feature sample data; Measurement and health management object tree analysis module includes a mapping table, which is based on the intelligent analysis and forecasting analysis engine health management service object mapping table management module of the module tree in order to control the workflow of these parse tree nodes. 如申請專利範圍第1項所述之智慧型預診斷和健康管理系統,更包括一擴充模組,該擴充模組連結該智能預測及健康管理物件分析樹模組,並包括一第一可交換應用程式介面、一第二可交換應用程式介面、以及一可交換驅動程式介面,其中該第一可交換應用程式介面用以連接一外部機器學習模組,該第二可交換應用程式介面用以連接一外部參考模型模組,而該可交換驅動程式介面則用以連接一外部資料收集驅動裝置以取得設置在該待監控機台設備的一資料庫的原始資料。 The intelligent pre-diagnosis and health management system described in item 1 of the patent application scope further includes an expansion module, which is connected to the intelligent prediction and health management object analysis tree module, and includes a first exchangeable An application program interface, a second exchangeable application program interface, and an exchangeable driver program interface, wherein the first exchangeable application program interface is used to connect an external machine learning module, and the second exchangeable application program interface is used to An external reference model module is connected, and the interchangeable driver interface is used to connect an external data collection driving device to obtain the original data of a database set in the machine equipment to be monitored. 如申請專利範圍第1項所述之智慧型預診斷和健康管理系統,其中,每一該分析樹節點對應一關鍵參數(CP)以及複數個相關參數(AP)。 The intelligent pre-diagnosis and health management system described in item 1 of the scope of patent application, wherein each analysis tree node corresponds to a key parameter (CP) and a plurality of related parameters (AP). 一種智慧型預診斷和健康管理方法,該方法包括一新樹建立及相似度分析步驟、以及一建模步驟:該新樹建立及相似度分析步驟係根據一待監控機台的組件定義出至少一分析樹,該分析樹包括複數個分析樹節點並內建各分析樹節點的參考假說模型與相應之特徵樣本資料之一存儲指標,以向一檔案系統取得一待監控機台的監控資料,並將該監控資料與預設的該些參考假說模型的特徵樣本資料進行一相似度分析;且該建模步驟為下述步驟S1或步驟S2中擇一進行,其中:步驟S1:當該相似度分析超過一門檻值時,從預設的該些參考假說模型中挑選出一相似度最高的參考假說模型以對該監控資料進行建模;步驟S2:當該相似度分析未超過該門檻值時,透過一擴充模組導入一外部假說模型以對該監控資料進行建模;其中,在該新樹建立及相似度分析步驟中,係利用一分析引擎服務管理模組根據該待監控機台的組件,於一智能預測及健康管理物件分析樹模組中定義出該分析樹,並該智能預測及健康管理物件分析樹模組包括一映射表,該映射表從與該智能預測及健康管理物件分析樹模組連結的一機器學習庫模組中挑選出至少一演算法予該些分析樹節點進行一工作流程管理。 An intelligent pre-diagnosis and health management method. The method includes a new tree establishment and similarity analysis step, and a modeling step: the new tree establishment and similarity analysis step defines at least one analysis according to a component of a machine to be monitored. Tree, the analysis tree includes a plurality of analysis tree nodes and a built-in reference hypothesis model of each analysis tree node and one of the corresponding feature sample data storage indicators to obtain monitoring data of a machine to be monitored from a file system, and The monitoring data is subjected to a similarity analysis with the preset feature sample data of the reference hypothesis models; and the modeling step is performed in one of the following steps S1 or S2, where: step S1: when the similarity analysis When a threshold value is exceeded, a reference hypothesis model with the highest similarity is selected from the preset reference hypothesis models to model the monitoring data; Step S2: When the similarity analysis does not exceed the threshold value, An external hypothesis model is introduced through an expansion module to model the monitoring data; wherein, in the new tree establishment and similarity analysis steps, the system An analysis engine service management module is used to define the analysis tree in an intelligent prediction and health management object analysis tree module according to the components of the machine to be monitored, and the intelligent prediction and health management object analysis tree module includes a A mapping table that selects at least one algorithm from a machine learning library module connected to the intelligent prediction and health management object analysis tree module to the analysis tree nodes for a workflow management. 如申請專利範圍第4項所述之智慧型預診斷和健康管理方法,其中,該相似度分析係透過將該待監控機台的前n筆原始資料轉換為與預設的該些參考假說模型在建模前的特徵集同一特徵空間之後並進行距離相似度的比較而進行。 The intelligent pre-diagnosis and health management method described in item 4 of the scope of patent application, wherein the similarity analysis is performed by converting the first n pieces of original data of the machine to be monitored into preset reference hypothesis models. The feature set before modeling is after the same feature space and the distance similarity is compared. 如申請專利範圍第4項所述之智慧型預診斷和健康管理方法,在該新樹建立及相似度分析步驟中,係藉由該智能預測及健康管理物件分析樹模組將該些監控資料與預設的該些參考假說模型的特徵樣本資料進行該相似度分析。 According to the intelligent pre-diagnosis and health management method described in item 4 of the scope of patent application, in the new tree establishment and similarity analysis steps, the monitoring data and the monitoring data are combined with the intelligent prediction and health management object analysis tree module. The similarity analysis is performed on the preset feature sample data of the reference hypothesis models.
TW107133178A 2018-09-20 2018-09-20 Intelligent pre-diagnosis and health management system and method TWI673723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107133178A TWI673723B (en) 2018-09-20 2018-09-20 Intelligent pre-diagnosis and health management system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107133178A TWI673723B (en) 2018-09-20 2018-09-20 Intelligent pre-diagnosis and health management system and method

Publications (2)

Publication Number Publication Date
TWI673723B true TWI673723B (en) 2019-10-01
TW202013388A TW202013388A (en) 2020-04-01

Family

ID=69023892

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133178A TWI673723B (en) 2018-09-20 2018-09-20 Intelligent pre-diagnosis and health management system and method

Country Status (1)

Country Link
TW (1) TWI673723B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200805018A (en) * 2005-07-11 2008-01-16 Brooks Automation Inc Intelligent condition-monitoring and fault diagnostic system for robotized manufacturing tools
CN101126929A (en) * 2007-09-05 2008-02-20 东北大学 Continuous miner remote real-time failure forecast and diagnosis method and device
CN1926489B (en) * 2004-03-03 2012-02-15 费舍-柔斯芒特系统股份有限公司 Data presentation system for abnormal situation prevention in a process plant
US20160217387A1 (en) * 2015-01-22 2016-07-28 Preferred Networks, Inc. Machine learning with model filtering and model mixing for edge devices in a heterogeneous environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926489B (en) * 2004-03-03 2012-02-15 费舍-柔斯芒特系统股份有限公司 Data presentation system for abnormal situation prevention in a process plant
TW200805018A (en) * 2005-07-11 2008-01-16 Brooks Automation Inc Intelligent condition-monitoring and fault diagnostic system for robotized manufacturing tools
CN101126929A (en) * 2007-09-05 2008-02-20 东北大学 Continuous miner remote real-time failure forecast and diagnosis method and device
US20160217387A1 (en) * 2015-01-22 2016-07-28 Preferred Networks, Inc. Machine learning with model filtering and model mixing for edge devices in a heterogeneous environment

Also Published As

Publication number Publication date
TW202013388A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
US20200250897A1 (en) Intelligent prognostics and health management system and method
WO2018051097A1 (en) System for analysing data relationships to support query execution
WO2018051096A1 (en) System for importing data into a data repository
WO2018051098A1 (en) System for data management in a large scale data repository
CN112016828B (en) Industrial equipment health management cloud platform architecture based on streaming big data
TWI667660B (en) Intelligent pre-diagnosis and health management system modeling method and computer program product
CN111241129B (en) Industrial production enterprise index data acquisition and calculation system
CN114003791B (en) Depth map matching-based automatic classification method and system for medical data elements
CN112181960A (en) Intelligent operation and maintenance framework system based on AIOps
CN113779272A (en) Data processing method, device and equipment based on knowledge graph and storage medium
CN112905380A (en) System anomaly detection method based on automatic monitoring log
CN115564071A (en) Method and system for generating data labels of power Internet of things equipment
CN111090643A (en) Mass electricity consumption data mining method based on data analysis system
CN112817958A (en) Electric power planning data acquisition method and device and intelligent terminal
CN110826237A (en) Bayesian belief network-based wind power equipment reliability analysis method and device
CN117371933A (en) Intelligent laboratory management system based on Internet of things
TWI673723B (en) Intelligent pre-diagnosis and health management system and method
CN112905845B (en) Multi-source unstructured data cleaning method for discrete intelligent manufacturing application
CN114461784A (en) Method for classifying and extracting unstructured equipment fault knowledge
CN111061148A (en) Intelligent pre-diagnosis and health management system and method
Lei et al. Application of distributed machine learning model in fault diagnosis of air preheater
CN112306730A (en) Defect report severity prediction method based on historical item pseudo label generation
CN111581200B (en) Production management system based on MES
CN111948992B (en) Method and system for performing multistage progressive modeling on industrial batch type big data
CN116703321B (en) Pharmaceutical factory management method and system based on green production