TWI667660B - Intelligent pre-diagnosis and health management system modeling method and computer program product - Google Patents

Intelligent pre-diagnosis and health management system modeling method and computer program product Download PDF

Info

Publication number
TWI667660B
TWI667660B TW107141248A TW107141248A TWI667660B TW I667660 B TWI667660 B TW I667660B TW 107141248 A TW107141248 A TW 107141248A TW 107141248 A TW107141248 A TW 107141248A TW I667660 B TWI667660 B TW I667660B
Authority
TW
Taiwan
Prior art keywords
branch
model
analysis
prediction
modeling
Prior art date
Application number
TW107141248A
Other languages
Chinese (zh)
Other versions
TW202020887A (en
Inventor
韋建名
范國晏
胡維桓
Original Assignee
帆宣系統科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帆宣系統科技股份有限公司 filed Critical 帆宣系統科技股份有限公司
Priority to TW107141248A priority Critical patent/TWI667660B/en
Application granted granted Critical
Publication of TWI667660B publication Critical patent/TWI667660B/en
Publication of TW202020887A publication Critical patent/TW202020887A/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本發明提供一種智慧型預診斷與健康管理系統建模方法,該方法包括新樹建立步驟、雙分支建模步驟、以及模型自適性優化步驟,可隨著監控資料的增加以由雙分支建模步驟所建構出的預測假說模型中挑選出最佳方案做為最佳化決策的基準,此基準為下一次預測使用,並令系統的預測結果符合預期目標值。本發明同時提供一種智慧型預診斷與健康管理系統的電腦程式產品,令執行該電腦程式產品時完成上述的智慧型預診斷與健康管理系統建模方法。The invention provides a smart pre-diagnosis and health management system modeling method, which comprises a new tree establishing step, a dual-branch modeling step, and a model self-adaptation optimization step, which can be modeled by a dual branch with the increase of monitoring data. The proposed prediction hypothesis model selects the best solution as the benchmark for the optimal decision, which is used for the next forecast and makes the system's prediction result meet the expected target value. The invention also provides a computer program product of a smart pre-diagnosis and health management system, which performs the above-mentioned intelligent pre-diagnosis and health management system modeling method when executing the computer program product.

Description

智慧型預診斷與健康管理系統建模方法及其電腦程式產品Intelligent pre-diagnosis and health management system modeling method and computer program product

本發明關於一種智慧型預診斷與健康管理 (smart prognostics and health management, SPHM) 系統建模方法及其電腦程式產品,特別是關於一種可自適性最佳化的智慧型預診斷系統建模方法及其電腦程式產品。The invention relates to a smart prognostics and health management (SPHM) system modeling method and a computer program product thereof, in particular to a smart pre-diagnosis system modeling method for optimizing self-adaptation and Its computer program product.

製造業為了確保生產機台的製程穩定並且提高稼動率,必須要對生產機台的運作狀態進行嚴密的品質監控。利用機台預診斷及健康管理技術,可藉由分析機台資料來監控和評估設備以及零件的健康狀態,並根據狀態來決定最佳的維護或更換時機,以減少非預期性停機並降低維修頻率。In order to ensure the stability of the production process of the production machine and increase the rate of production, the manufacturing industry must strictly monitor the operation status of the production machine. Using machine pre-diagnosis and health management technology, you can monitor and evaluate the health status of equipment and parts by analyzing machine data, and determine the optimal maintenance or replacement timing based on status to reduce unplanned downtime and reduce maintenance. frequency.

習知技術中為了達到品質要求,對於關鍵製程參數有嚴密的監控與觀察。所謂「關鍵製程參數」指的是與設備故障最相關的因素,實務上會對該些因素進行監控以作為設備維護預診斷的重要指標。為提升預診斷的精準性,已有許多公開技術提出各式改良,包括申請人在美國專利申請號US16/001,520中提出一種領先輔助參數的選擇方法以及結合關鍵參數及領先輔助參數進行設備維護預診斷的方法,將感測器蒐集到的資料進行篩選並區分為關鍵參數(critical parameters, CP)集合以及其他特徵參數集合後,再從特徵參數集合中鑑定出提前影響關鍵參數時間最早者作為領先輔助參數(leading associated parameters, LAP),並進一步利用關鍵參數(CP)集合及該領先輔助參數(LAP)建立一種有效提升提前預警能力的設備維護預診斷模型。In order to meet quality requirements, the prior art has strict monitoring and observation of key process parameters. The so-called "key process parameters" refer to the factors most relevant to equipment failures. In practice, these factors are monitored as an important indicator for equipment maintenance pre-diagnosis. In order to improve the accuracy of the pre-diagnosis, a number of public technologies have been proposed for various improvements, including the applicant's selection of leading auxiliary parameters in US Patent Application No. US16/001,520, and the maintenance of equipment in combination with key parameters and leading auxiliary parameters. The method of diagnosis is to filter the data collected by the sensor and distinguish it into a set of critical parameters (CP) and other feature parameter sets, and then identify the earliest time in the feature parameter set to influence the key parameters in advance. Leading associated parameters (LAP), and further use the key parameter (CP) set and the leading auxiliary parameter (LAP) to establish a device maintenance pre-diagnosis model that effectively improves the early warning capability.

然而在進行設備維護預診斷模型建模的時候,習知技術須累積一定量之監控資料與維修紀錄方能開始建模。但新機台設備導入預診斷系統初期,工程師往往無法快速且有效地從少量且不具備維修紀錄的監控資料中找出重要參數並建立預測模型。因此,需提供一種智慧型預診斷與健康管理系統之建模方法及其電腦程式產品,以克服上述習知技術的缺點。However, when performing equipment maintenance pre-diagnosis model modeling, the prior art technology must accumulate a certain amount of monitoring data and maintenance records to begin modeling. However, in the early days when new machine equipment was introduced into the pre-diagnostic system, engineers often could not quickly and effectively find important parameters and establish predictive models from a small number of monitoring data without maintenance records. Therefore, there is a need to provide a smart pre-diagnosis and health management system modeling method and computer program product thereof to overcome the shortcomings of the above-mentioned prior art.

本發明的目的之一,在於解決新機台設備導入預診斷系統初期,難以透過少量且不具備維修紀錄的監控資料中找出重要參數並建立預測模型的缺點。One of the objects of the present invention is to solve the shortcomings in the initial stage of introducing a new machine equipment into a pre-diagnostic system, and it is difficult to find important parameters and establish a prediction model through a small amount of monitoring data without maintenance records.

本發明的另一目的,在於透過雙分支建模方法,依自適性優化機制從雙分支模型中挑選最佳方案 (golden model)進行最佳化決策,使得預診斷與健康管理系統的預測結果符合預期目標值。Another object of the present invention is to select a best model from a bi-branched model to optimize the decision through the two-branch modeling method, so that the pre-diagnosis is consistent with the prediction result of the health management system. Expected target value.

為了達到上述目的,本發明提供一種智慧型預診斷與健康管理系統建模方法,該方法係透過一內建有複數個參考假說模型的智慧型預診斷和健康管理系統進行。該方法包括:In order to achieve the above object, the present invention provides a smart pre-diagnosis and health management system modeling method by a smart pre-diagnosis and health management system with a plurality of reference hypothesis models built therein. The method includes:

(S1) 新樹建立步驟,係根據一待監控機台定義出至少一分析樹節點(Object),每一分析樹節點(Object)經由至少一監控點以取得一監控資料;(S1) a new tree establishing step, wherein at least one analysis tree node (Object) is defined according to a to-be-monitored machine, and each analysis tree node (Object) obtains a monitoring data via at least one monitoring point;

(S2) 雙分支建模步驟,係於一分支1實施一資料前處理步驟a以將該監控資料轉換為一指定特徵格式並進行一相似度分析以從該些參考假說模型中挑選相似度最高且超過一指定門檻的參考假說模型作為該分析樹節點的一分支1預測假說模型;同時於一分支2對該監控資料實施一資料前處理步驟b以利用一因果關係檢定確認該分析樹節點(Object)所對應的一關鍵參數(CP)以及複數個相關參數(AP)並建構一適用於該待監控機台的假說模型以作為該分析樹節點的一分支2預測假說模型;以及(S2) A two-branch modeling step is performed by performing a data pre-processing step a on a branch 1 to convert the monitoring data into a specified feature format and performing a similarity analysis to select the highest similarity from the reference hypothesis models. And a reference hypothesis model exceeding a specified threshold is used as a branch 1 prediction hypothesis model of the analysis tree node; and a data pre-processing step b is performed on the monitoring data in a branch 2 to confirm the analysis tree node by using a causality check ( Object) a key parameter (CP) and a plurality of related parameters (AP) and construct a hypothesis model applicable to the machine to be monitored as a branch 2 prediction hypothesis model of the analysis tree node;

(S3) 模型自適性優化步驟,隨著該監控資料不斷地產生,於該分析樹節點(Object)進行一「機台是否無法繼續維運」的判斷結束後,倘若該判斷結果為「是」,則從該雙分支建模步驟所建構的該分支1預測假說模型或該分支2預測假說模型之中挑選一最佳方案做為該分析樹節點(Object)最佳化決策的基準,此基準為下一次預測使用,並令系統的預測結果符合預期目標值。(S3) The model adaptive optimization step, if the monitoring data is continuously generated, after the judgment of the analysis tree node (Object) is "whether the machine can not continue the maintenance", if the judgment result is "Yes" And selecting an optimal solution from the branch 1 prediction hypothesis model or the branch 2 prediction hypothesis model constructed by the dual branch modeling step as a benchmark for the optimization decision of the analysis tree node (Object), the benchmark Used for the next forecast and the system's forecast results are in line with the expected target value.

根據本發明一實施例,在該新樹建立步驟中,該待監控機台可為一不具維修紀錄的新機台。According to an embodiment of the present invention, in the new tree establishing step, the machine to be monitored may be a new machine without a maintenance record.

根據本發明一實施例,在該雙分支建模步驟的分支1中,該指定特徵格式可具有與該參考假說模型建模前相同的特徵格式。According to an embodiment of the present invention, in branch 1 of the dual branch modeling step, the specified feature format may have the same feature format as before the reference hypothesis model is modeled.

根據本發明一實施例,在該模型自適性優化步驟指定該最佳方案後,更可包括將該監控資料轉換為該指定特徵格式並更新至該智慧型預診斷和健康管理系統內建的該些參考假說模型中。According to an embodiment of the present invention, after the model optimization step is specified, the monitoring data may be further converted into the specified feature format and updated to the smart pre-diagnosis and health management system. Some reference hypothesis models.

根據本發明一實施例,在該模型自適性優化步驟中,更可包括獲取至少一維修紀錄,該組維修紀錄包含至少一個該監控點的維修狀態值,使該監控資料與該維修紀錄為一對一的關係。According to an embodiment of the present invention, in the step of optimizing the model, the method further includes: acquiring at least one maintenance record, wherein the set of maintenance records includes at least one maintenance status value of the monitoring point, so that the monitoring data and the maintenance record are one The relationship to one.

根據本發明一實施例,在該雙分支建模步驟的分支1中,該相似度分析可採用至少一選自由歐基里德距離(Eucledian Distance)、馬哈拉諾比斯距離(Mahalanobis Distance)、曼哈頓距離(Manhattan Distance)、馬可夫斯基距離(Minkowski distance)、餘弦相似度(Cosine Similarity)、及其組合作為該相似度分析的一量化方法。According to an embodiment of the present invention, in the branch 1 of the two-branch modeling step, the similarity analysis may adopt at least one selected from the Eucliled Distance, the Mahalanobis Distance, and the Mahalanobis Distance. Manhattan Distance, Minkowski distance, Cosine Similarity, and combinations thereof are used as a quantification method for this similarity analysis.

根據本發明一實施例,在該雙分支建模步驟的分支1中,當該相似度分析的結果未超過該指定門檻時,可先以一由該分支2所確認的該關鍵參數(CP)以及該些相關參數(AP)所組成的特徵矩陣作為該分支1預測假說模型建模的基礎,並於模型自適性優化步驟中取得一維修紀錄標籤後,依一監督式學習方法重建該分支1預測假說模型。According to an embodiment of the present invention, in the branch 1 of the two-branch modeling step, when the result of the similarity analysis does not exceed the specified threshold, the key parameter (CP) confirmed by the branch 2 may be first used. And the feature matrix composed of the relevant parameters (AP) is used as the basis for modeling the branch 1 prediction hypothesis model, and after obtaining a maintenance record label in the model adaptive optimization step, the branch is reconstructed according to a supervised learning method. Forecast hypothesis model.

根據本發明一實施例,該監督式學習方法可包括至少一選自由支援向量機(support Vector Machine;SVM)、迴歸分析(Regression)、隨機森林(Random Forest)、及其組合所組成的群組。According to an embodiment of the invention, the supervised learning method may include at least one selected from the group consisting of a support vector machine (SVM), a regression analysis (Regression), a random forest (Random Forest), and combinations thereof. .

根據本發明一實施例,在該模型自適性優化步驟中,當該分支1預測假說模型連續m次優於該分支2預測假說模型時,可設定該分支1預測假說模型為該最佳方案;當該分支1預測假說模型連續m次未優於該分支2預測假說模型時,則可指定該分支2預測假說模型為該最佳方案。According to an embodiment of the present invention, in the model adaptive optimization step, when the branch 1 prediction hypothesis model is superior to the branch 2 prediction hypothesis model for m consecutive times, the branch 1 prediction hypothesis model may be set as the optimal solution; When the branch 1 prediction hypothesis model is not better than the branch 2 prediction hypothesis model for m consecutive times, the branch 2 prediction hypothesis model can be specified as the optimal solution.

根據本發明一實施例,在該模型自適性優化步驟中,m值可為一大於2的正整數。According to an embodiment of the present invention, in the model adaptive optimization step, the m value may be a positive integer greater than 2.

本發明更提供一種智慧型預診斷與健康管理系統的電腦程式產品,令執行該電腦程式產品時可完成上述的智慧型預診斷與健康管理系統建模方法。The invention further provides a computer program product of a smart pre-diagnosis and health management system, which can complete the above-mentioned intelligent pre-diagnosis and health management system modeling method when executing the computer program product.

是以,本發明可從少量且不具備維修紀錄的分析樹節點監控資料開始分析,找出重要參數並利用分析樹節點雙分支建模來建立預測模型。隨著分析樹節點監控資料與相應之維修紀錄不斷地增加,透過模型自適性優化步驟,從分析樹節點雙分支模型挑選最佳方案(golden model)進行最佳化決策,分析並得知重要的監控參數對於機台運作狀態的影響程度,進而找出當下最佳的零件維修與更換時機,以確保生產機台的製程穩定及提高產能與稼動率。Therefore, the present invention can start analysis from a small amount of analysis tree node monitoring data without maintenance records, find important parameters and use the analysis tree node bifurcation modeling to establish a prediction model. As the analysis tree node monitoring data and the corresponding maintenance records continue to increase, through the model adaptive optimization step, the best model is selected from the analysis tree node double-branch model to select the best solution (golden model), analyze and know the important Monitor the impact of the parameters on the operating state of the machine, and then find out the best time to repair and replace the parts to ensure the stability of the production process and increase the productivity and utilization rate.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention will now be described as follows:

『圖1A』為本發明一實施例的智慧型預診斷系統架構圖,該智慧型預診斷和健康管理(SPHM)系統10至少包括一分析引擎服務管理(analytic engine service manager, AESM)模組20、一智能預測及健康管理物件分析樹(SPHM-OAT)模組30、一機器學習庫模組40、以及一檔案系統模組50。1A is a structural diagram of a smart pre-diagnosis system according to an embodiment of the present invention. The smart pre-diagnosis and health management (SPHM) system 10 includes at least an analytic engine service manager (AESM) module 20 A smart prediction and health management object analysis tree (SPHM-OAT) module 30, a machine learning library module 40, and a file system module 50.

為了使本發明的系統的應用更具擴展性,上述的智慧型預診斷和健康管理系統10可進一步包括一擴充模組,該擴充模組連結該智能預測及健康管理物件分析樹模組30,且該擴充模組可包括一第一可交換應用程式介面60a、一第二可交換應用程式介面60b、以及一可交換驅動程式介面60c,其中該第一可交換應用程式介面60a用以連接一外部機器學習模組70,該第二可交換應用程式介面60b用以連接一外部參考模型模組80,而該可交換驅動程式介面60c則用以連接一外部資料收集驅動裝置(EDCD)90來取得設置在一待監控機台設備的資料庫91的原始資料。In order to make the application of the system of the present invention more scalable, the intelligent pre-diagnosis and health management system 10 may further include an expansion module that is coupled to the intelligent prediction and health management object analysis tree module 30. The expansion module can include a first exchangeable application interface 60a, a second exchangeable application interface 60b, and an exchangeable driver interface 60c. The first exchangeable application interface 60a is used to connect a An external machine learning module 70, the second exchangeable application interface 60b is connected to an external reference model module 80, and the exchangeable driver interface 60c is connected to an external data collection drive (EDCD) 90. The original data set in the database 91 of the equipment to be monitored is obtained.

該分析引擎服務管理模組20為本發明智慧型預診斷和健康管理系統10的核心,可控管該智能預測及健康管理物件分析樹(SPHM-OAT)模組30中各部件的狀態。The analysis engine service management module 20 is the core of the intelligent pre-diagnosis and health management system 10 of the present invention, and can control the state of each component in the intelligent prediction and health management object analysis tree (SPHM-OAT) module 30.

該智能預測及健康管理物件分析樹模組30連結該分析引擎服務管理模組20,並包括複數個分析樹(OAT),每一分析樹(OAT)包括複數個分析樹節點(Object),每一分析樹節點(Object)則分別對應一關鍵參數(CP)以及複數個相關參數(AP),並由指定之一健康指標(SPHM Health Indicator, SPHM-HI)適時地反映分析樹各節點的健康狀態,做好提前預警與健康管理。該健康指標(SPHM-HI)為可擴充式,基本項目舉例可包括故障預防與判斷功能(Next N-Run Fail, NRF)指標、設備關鍵零組件剩餘壽命估計(Remaining Useful Life, RUL)指標、一般健康指標(Health Indicator, HI)、以及其他類似相關的健康指標,由於該些健康指標的功能、種類、實際量化與分析方式為熟悉此技藝之人士所熟知,故不在此贅述。The intelligent predictive and health management object analysis tree module 30 is coupled to the analysis engine service management module 20 and includes a plurality of analysis trees (OATs), each of which includes a plurality of analysis tree nodes (Object), each An analysis tree node corresponds to a key parameter (CP) and a plurality of related parameters (AP), and the SPHM Health Indicator (SPHM-HI) timely reflects the health of each node of the analysis tree. State, make early warning and health management. The Health Indicator (SPHM-HI) is scalable, and examples of basic items may include Next N-Run Fail (NRF) indicators, Remaining Useful Life (RUL) indicators for equipment critical components. General Health Indicators (HI), and other similarly related health indicators, are not described here because the functions, types, actual quantification and analysis methods of these health indicators are well known to those familiar with the art.

該些關鍵參數(CP)以及相關參數(AP)的資料來源可為感應器取得的資訊、也可為由該些分析樹節點(Object)的關鍵參數(CP)及其他相關參數(AP)聚合而成。每一分析樹節點由一物件控制表(OCB)與之連結,該些物件控制表是用來儲存對應的該分析樹節點在分析過程中的運算結果,並且具有定期備份以及還原的效果。如此一來,若在分析過程中發生災難事件,透過該些物件控制表即可快速進行回復作業,從上一次的檢查點取得該分析樹節點的狀態,再以遞迴的方式,從兄弟節點(sibling node)往父節點(parent node),由下而上地持續進行階層式集成運算分析直到位於最高階層的分析樹節點(即,根(root))分析完成為止。The data sources of the key parameters (CP) and related parameters (AP) may be information obtained by the sensor, or may be aggregated by key parameters (CP) and other related parameters (AP) of the analysis tree nodes (Object). Made. Each analysis tree node is connected by an object control table (OCB), which is used to store the corresponding operation result of the analysis tree node in the analysis process, and has the effects of regular backup and restoration. In this way, if a disaster event occurs during the analysis process, the object control table can quickly perform the reply operation, obtain the state of the analysis tree node from the last checkpoint, and then recursively, from the sibling node. The (sibling node) goes to the parent node and continues the hierarchical integration operation analysis from bottom to top until the analysis of the highest level analysis tree node (ie, root) is completed.

據此,在監控資料來源正確且關鍵參數(CP)及相關參數(AP)的選擇也正確的前提下,本發明的智慧型預診斷和健康管理系統10可透過該些分析樹節點適時地反映該些分析樹節點的健康狀態,做好提前預警與健康管理。Accordingly, the intelligent pre-diagnosis and health management system 10 of the present invention can timely reflect through the analysis tree nodes under the premise that the monitoring data source is correct and the key parameters (CP) and related parameters (AP) are also selected correctly. The health status of the analysis tree nodes is well prepared for early warning and health management.

該智能預測及健康管理物件分析樹(SPHM-OAT)模組30除了管理上述代表著對應複數類機台的該些分析樹外,也負責該些分析樹節點上的工作流程管理。所謂的「工作流程」是由一映射表負責管理,且可包括堆疊而成的資料前處理層(data preprocessing layer)、資料假說層(data hypothesis layer)、以及資料整體學習層(data ensemble layer),該工作流程的層次、順序與實際工作內容可根據需求而調整,並不僅限於上述內容。The Intelligent Prediction and Health Management Object Analysis Tree (SPHM-OAT) module 30 is responsible for workflow management on the analysis tree nodes in addition to managing the analysis trees representing the corresponding complex class machines. The so-called "workflow" is managed by a mapping table, and may include a stacked data preprocessing layer, a data hypothesis layer, and a data ensemble layer. The level, order and actual work content of the workflow can be adjusted according to needs, and is not limited to the above.

該映射表透過表格驅動(table driven)機制運作,從表格中依預先設定的工作方法,從與該智能預測及健康管理物件分析樹模組30連結的該機器學習庫模組40中挑選出至少一種適當的演算法給上述如資料前處理層、資料假說層、或資料整體學習層等工作流程使用。舉例來說,適用於資料前處理層的演算法可包括特徵選取(feature selection)演算法或特徵萃取(feature extraction)演算法等具備特徵挑選能力的演算法;適用於資料假說層的演算法可包括迴歸(regression)演算法、自迴歸移動平均模型(autoregressive integrated moving average model, ARIMA)演算法、相對強弱指數(relative strength index, RSI)演算法或其他具備預測能力的演算法;而資料整體學習層的工作方法則是透過構建一組由該映射表指定的多個假說模型來進行投票、或依照當前該分析樹指定的階層式集成運算。除此之外,該分析引擎服務管理模組20亦根據該映射表的機制以對每個分析樹的該工作流程進行控制。The mapping table is operated by a table driven mechanism, and at least the selected one of the machine learning library modules 40 connected to the intelligent prediction and health management object analysis tree module 30 is selected from the table according to a preset working method. A suitable algorithm is used for the above-mentioned workflows such as the data pre-processing layer, the data hypothesis layer, or the data learning layer. For example, the algorithm applicable to the data pre-processing layer may include an algorithm with feature selection ability such as feature selection algorithm or feature extraction algorithm; the algorithm applicable to the data hypothesis layer may be Including regression algorithm, autoregressive integrated moving average model (ARIMA) algorithm, relative strength index (RSI) algorithm or other algorithms with predictive ability; The working method of the layer is to vote by constructing a set of multiple hypothesis models specified by the mapping table, or according to the hierarchical integrated operation specified by the current analysis tree. In addition, the analysis engine service management module 20 also controls the workflow of each analysis tree according to the mechanism of the mapping table.

該檔案系統模組50可作為系統將檔案寫回及/或儲存檔案的場所,上述的「檔案」,舉例可包括該智能預測及健康管理物件分析樹模組30中該些分析樹生命周期的量化分析資訊、或者預設的參考假說模型集在建模前的特徵樣本資料集、或者計算過程中系統發生故障時的備援資料、或者各分析樹節點所屬的參考假說,以在必要時提供該智能預測及健康管理物件分析樹模組30所要求的資訊。The file system module 50 can be used as a place for the system to write back files and/or save files. The above-mentioned "files" can include, for example, the life cycle of the analysis trees in the intelligent prediction and health management object analysis tree module 30. Quantitative analysis information, or a preset reference hypothesis model set, a set of feature sample data before modeling, or a backup material when the system fails in the calculation process, or a reference hypothesis to which each analysis tree node belongs, to provide when necessary The intelligent prediction and health management object analysis tree module 30 requires information.

必要時本發明的系統可透過該擴充模組連接外部裝置進行擴充,舉例來說,當現有的該機器學習庫模組40的資料不足時,可藉由該擴充模組的該第一可交換應用程式介面60a連接該外部機器學習模組70以擴充既有的該機器學習庫模組40功能;或者,可藉由該擴充模組的該第二可交換應用程式介面60b連接該外部參考模型模組80以擴充該智能預測及健康管理物件分析樹模組30的該映射表的假說模型指標並參與手動模式的外部假說模型的選擇與布署;又可藉由該擴充模組的該可交換驅動程式介面60c以連接一外部資料收集驅動裝置90,該外部資料收集驅動裝置90連接該外部資料庫91,故可透過該外部資料收集驅動裝置90取得儲存於該待監控機台設備的該外部資料庫91的原始資料。If necessary, the system of the present invention can be expanded by connecting the external device to the external device. For example, when the existing information of the machine learning library module 40 is insufficient, the first exchangeable by the expansion module can be The application interface 60a is connected to the external machine learning module 70 to expand the functionality of the existing machine learning library module 40; or the external reference model can be connected by the second exchangeable application interface 60b of the expansion module. The module 80 is configured to expand the hypothesis model indicator of the mapping table of the intelligent prediction and health management object analysis tree module 30 and participate in the selection and deployment of the external hypothesis model of the manual mode; The switch driver interface 60c is connected to an external data collection drive device 90. The external data collection drive device 90 is connected to the external data library 91. Therefore, the external data collection drive device 90 can obtain the device stored in the device to be monitored. The original data of the external database 91.

接下來,將透過一實例說明本發明的智慧型預診斷與健康管理系統建模方法。Next, the intelligent pre-diagnosis and health management system modeling method of the present invention will be described by way of an example.

首先,於新機台導入本發明的智慧型預診斷與健康管理系統初期,從無到有地累績n筆不具備維修紀錄的該分析樹節點(object)的監控資料,該些監控資料可為原始資料(raw data),且每一筆監控資料包括了複數個監控參數。Firstly, in the initial stage of introducing the intelligent pre-diagnosis and health management system of the present invention in a new machine, the monitoring data of the analysis tree node having no maintenance record is obtained from scratch, and the monitoring data can be It is raw data, and each monitoring data includes a plurality of monitoring parameters.

完成上述的初始化設定後,開啟該分析樹節點(object)的雙分支建模模式。請搭配參考『圖1B』、『圖2A』及『圖2B』,該分析樹節點(object)的雙分支建模分別為分支1預測假說模型建模以及分支2預測假說模型建模。After completing the above initialization settings, the dual branch modeling mode of the analysis tree object is turned on. Please refer to "Figure 1B", "Figure 2A" and "Figure 2B". The bifurcation modeling of the analysis tree object is the branch 1 prediction hypothesis model modeling and the branch 2 prediction hypothesis model modeling.

分支1預測假說模型建模Branch 1 prediction hypothesis model modeling

本發明之分支1建模的流程包括:步驟200a的資料前處理步驟a以及步驟300a的相似度分析步驟,並根據上述兩步驟以進行接下來的步驟400a,即分支1預測假說模型的建模及預測。The flow of the branch 1 modeling of the present invention includes the data pre-processing step a of step 200a and the similarity analysis step of step 300a, and performs the following step 400a according to the above two steps, that is, the modeling of the branch 1 prediction hypothesis model And forecasting.

步驟200a的資料前處理步驟a係將新機台的該分析樹節點(object)的監控資料轉換為與該智慧型預診斷和健康管理系統10內建參考假說模型建模前相同的特徵格式。The data pre-processing step a of step 200a converts the monitoring data of the analysis tree object of the new machine into the same feature format as before the modeling of the built-in reference hypothesis model of the intelligent pre-diagnosis and health management system 10.

步驟300a的相似度分析步驟則以該映射表內建的參考假說模型指標做為參考,並依據每一參考假說模型建模前的特徵資料樣本,依相似度指標挑選建模特徵相似度超過門檻值的該參考假說模型作為該分析樹節點(object)的「分支1預測假說模型」(步驟400a)。The similarity analysis step of step 300a takes the reference hypothesis model index built in the mapping table as a reference, and selects the feature similarity of the model according to the similarity index according to the feature data sample before each reference hypothesis model modeling. The reference hypothesis model of the value is used as the "branch 1 prediction hypothesis model" of the analysis tree object (step 400a).

步驟300a的該相似度分析是藉由計算特徵距離來量化相似度,並由內建的參考假說模型中挑選出與某一參考假說模型的建模特徵相似度最高的假說模型以作為該分析樹節點(object)的分支1預測假說模型。於此步驟中,各種不同空間的特徵距離計算方法都可以用來量化相似度,其技術為熟悉此技藝之人士所熟知,故不在此贅述。The similarity analysis of step 300a is to quantize the similarity by calculating the feature distance, and the hypothesis model with the highest similarity to the modeling feature of a reference hypothesis model is selected from the built-in reference hypothesis model as the analysis tree. The branch 1 prediction hypothesis model of the object. In this step, the feature distance calculation methods of various spaces can be used to quantify the similarity, and the technique is well known to those skilled in the art, and therefore will not be described here.

然而,倘若該新機台的該監控資料在經過轉換後的特徵資料與該智慧型預診斷和健康管理系統10中內建的參考假說模型建模前的特徵資料間相似度指標值皆低於指定門檻值時,表示該智慧型預診斷和健康管理系統10中內建的參考假說模型沒有適用於該新機台的假說模型。那麼,將會暫時進行分支2的步驟300b的領先輔助參數分析步驟所取得的該關鍵參數(CP)與該些相關參數(AP)所組成的特徵矩陣作為該分析樹節點(object)的分支1預測假說模型(步驟400a)建模步驟的特徵。待執行模型自適性優化步驟(步驟500)並取得維修紀錄標籤(labels)後,再依監督式學習(supervised learning)方法重建該分析樹節點(object)的分支1預測假說模型。最後再新增一假說模型於一智慧型預診斷與健康管理(SPHM)物件容器內,該智慧型預診斷與健康管理(SPHM)物件容器置入於該智能預測及健康管理物件分析樹模組30的映射表中,並將該智慧型預診斷與健康管理(SPHM)物件容器所對應的建模的特徵樣本資料儲存在該檔案系統模組50,即可完成分支1的預測假說模型的自動擴充。關於前文所提到的監督式學習方法,一般常見的有支援向量機(support vector machine, SVM)、迴歸分析(regression)與隨機森林(random forest)等,上述方法的功能、種類、實際量化與分析方式為熟悉此技藝之人士所熟知,故不在此贅述。However, if the monitoring data of the new machine is lower than the similarity index value between the converted feature data and the feature data before the reference hypothesis model built in the intelligent pre-diagnosis and health management system 10 When the threshold value is specified, it indicates that the reference hypothesis model built into the smart pre-diagnosis and health management system 10 does not have a hypothesis model applicable to the new machine. Then, the key parameter (CP) obtained by the leading auxiliary parameter analysis step of the step 300b of the branch 2 and the feature matrix composed of the related parameters (AP) will be temporarily used as the branch 1 of the analysis tree node. The hypothesis model (step 400a) is characterized by the modeling steps. After the model adaptive optimization step (step 500) is performed and the maintenance record labels are obtained, the branch 1 prediction hypothesis model of the analysis tree object is reconstructed according to the supervised learning method. Finally, a hypothesis model is added to a smart pre-diagnosis and health management (SPHM) object container. The intelligent pre-diagnosis and health management (SPHM) object container is placed in the intelligent prediction and health management object analysis tree module. In the mapping table of 30, the modeled feature sample data corresponding to the smart pre-diagnosis and health management (SPHM) object container is stored in the file system module 50, and the prediction hypothesis model of the branch 1 is automatically completed. expansion. Regarding the supervised learning methods mentioned above, there are commonly supported support vector machines (SVMs), regression analysis (regression), and random forests. The functions, types, and actual quantification of the above methods are The method of analysis is well known to those skilled in the art and will not be described here.

分支2預測假說模型建模Branch 2 prediction hypothesis model modeling

本發明之分支2預測假說建模流程包括以下步驟:步驟200b的進行資料前處理步驟b以及步驟300b的領先輔助參數分析步驟,並根據上述兩步驟以進行接下來的步驟400b,即分支2預測假說模型的建模及預測。The branch 2 prediction hypothesis modeling process of the present invention comprises the following steps: performing data pre-processing step b of step 200b and leading auxiliary parameter analysis step of step 300b, and performing the following step 400b, that is, branch 2 prediction according to the above two steps Hypothesis model modeling and prediction.

步驟200b係利用資料清理步驟(請參考『圖2B』的步驟210b)將該分析樹節點(object)的監控資料處理成可以使用的狀態。上述的資料清理步驟包含但不限於:資料對齊、遺漏值(missing value)處理、錯誤資料修正及其他類似相關步驟,其功能、種類與實際作業方式為熟悉此技藝之人士所熟知,故不在此贅述。Step 200b uses the data cleansing step (refer to step 210b of FIG. 2B) to process the monitoring data of the analysis tree object into a usable state. The above data cleaning steps include, but are not limited to, data alignment, missing value processing, error data correction, and other similar related steps. The functions, types, and actual operation methods are well known to those skilled in the art, and are therefore not included herein. Narration.

隨後進行統計特徵處理步驟(請參考『圖2B』的步驟220b)以及混合特徵處理步驟(請參考『圖2B』的步驟230b),係依統計方法,例如:最大值、最小值、平均值、變異數、峰態、偏態等,生成各項統計特徵;以及依特徵萃取(feature extraction)方法,如主成份分析(principal components analysis, PCA)、獨立成份分析 (independent components analysis, ICA)等,生成各種線性轉換特徵;依機器學習方法(machine learning),如類神經網路(neural networks, NNs)演算法、套索演算法(least absolute shrinkage and selection operator;LASSO)等生成混和特徵並獲得一特徵集合。Then perform the statistical feature processing step (refer to step 220b of FIG. 2B) and the mixed feature processing step (refer to step 230b of FIG. 2B), according to statistical methods, such as: maximum value, minimum value, average value, Variants, kurtosis, skewness, etc., generate various statistical features; and feature extraction methods such as principal component analysis (PCA), independent components analysis (ICA), etc. Generating various linear transformation features; generating hybrid features based on machine learning, such as neural networks (NNs) algorithm, LSSO, and obtaining a hybrid feature Feature set.

接下來,依照步驟300b所述地進行領先輔助參數分析步驟。先將所搜集到的該特徵集合分為關鍵參數集合及非關鍵參數集合。並依因果關係檢定,例如,格蘭傑因果關係檢定(Granger causality test)找出該新機台的該分析樹節點(object)的關鍵參數(CP)的有效領先輔助參數(leading associated parameters, LAP)。Next, the lead assist parameter analysis step is performed as described in step 300b. The collected feature set is first divided into a key parameter set and a non-key parameter set. According to the causality test, for example, the Granger causality test finds the leading leading parameters (LP) of the key parameters (CP) of the analysis tree of the new machine. ).

關於上述的關鍵參數(CP)、有效領先輔助參數(LAP),簡單來說,一關鍵參數(CP)的變動由一有效領先輔助參數(LAP)引起,即該有效領先輔助參數(LAP)對於該關鍵參數(CP)具有領先反應的能力。隨後再以譬如迴歸模型(regression model)、ARIMA模型(autoregressive integrated moving average model)等趨勢建模技術(trend modeling techniques)來建立預測假說模型,再以集成學習(ensemble learning)構建該分析樹節點(object)的分支2預測假說模型。最後再新增一假說模型於一智慧型預診斷與健康管理(SPHM)物件容器內,該智慧型預診斷與健康管理(SPHM)物件容器置入於該智能預測及健康管理物件分析樹模組30的該映射表中,並將該智慧型預診斷與健康管理(SPHM)物件容器所對應的建模的特徵樣本資料儲存在該檔案系統模組50,即可完成該分析樹節點(object)的分支2預測假說模型自動擴充。上述之特徵生成、特徵轉換、趨勢建模技術、迴歸模型、ARIMA模型與集成學習等方法,已為習於此技藝之人士所熟知,故不在此贅述。Regarding the above-mentioned key parameters (CP) and effective leading auxiliary parameters (LAP), in simple terms, a key parameter (CP) variation is caused by an effective leading auxiliary parameter (LAP), that is, the effective leading auxiliary parameter (LAP) This key parameter (CP) has the ability to lead reactions. Then, the prediction hypothesis model is established by using trend modeling techniques such as regression model and autoregressive integrated moving average model, and then the analysis tree node is constructed by ensemble learning ( Branch 2 prediction hypothesis model of object). Finally, a hypothesis model is added to a smart pre-diagnosis and health management (SPHM) object container. The intelligent pre-diagnosis and health management (SPHM) object container is placed in the intelligent prediction and health management object analysis tree module. In the mapping table of 30, the modeled feature sample data corresponding to the smart pre-diagnosis and health management (SPHM) object container is stored in the file system module 50, and the analysis tree node is completed. The branch 2 prediction hypothesis model is automatically expanded. The above-described methods of feature generation, feature transformation, trend modeling techniques, regression models, ARIMA models, and integrated learning are well known to those skilled in the art and are not described herein.

雙分支建模實施例Dual branch modeling embodiment

請續參考『圖1B』,其繪示依照本發明之一實施例的智慧型預診斷系統之建模方法的流程圖。在此實施例中假設過往的訓練經驗中分支2為最佳方案,故第一步的步驟110中,將會依據過往的訓練經驗而優先指定分支2預測模型為最佳方案(golden model)。Please refer to FIG. 1B for a flowchart of a modeling method of the intelligent pre-diagnosis system according to an embodiment of the present invention. In this embodiment, it is assumed that branch 2 is the best solution in the past training experience, so in step 110 of the first step, the branch 2 prediction model will be preferentially designated as the golden model based on the past training experience.

接著執行步驟120,獲取一新機台設備的該些分析樹節點(Object)的前n筆監控資料集X,其中每一組分析樹節點(Object)的監控資料X中包含有複數個監控值xij,其中i係以指出第i個監控參數,j係用以指出第j筆監控資料。該些分析樹節點(Object)的監控資料X以一對一的方式對應至監控點i。Then, step 120 is performed to obtain the first n monitoring data sets X of the analysis tree nodes of the new machine device, wherein the monitoring data X of each group of analysis tree nodes includes a plurality of monitoring values. Xij, where i is used to indicate the i-th monitoring parameter, and j is used to indicate the j-th monitoring data. The monitoring data X of the analysis tree nodes corresponds to the monitoring point i in a one-to-one manner.

下一步實施雙分支建模的資料前處理步驟200a與200b。上述的分析樹節點(Object)雙分支的資料前處理步驟200a與200b的目的在於過濾無效或無影響力的監控資料,並將可使用的監控資料轉換為適用於分支1及/或適用於分支2後續步驟的資料格式。舉例來說,一MOCVD機台上的微粒過濾器上的感測器可透過該資料前處理步驟200a將監控資料轉換為適用於後續相似度分析步驟300a的資料格式;或透過該資料前處理步驟200b將監控資料轉換為後續適用找尋領先輔助參數分析步驟300b的資料格式。Next, the data pre-processing steps 200a and 200b of the dual-branch modeling are implemented. The purpose of the data pre-processing steps 200a and 200b of the double branch of the analysis tree node above is to filter invalid or non-influenced monitoring data, and convert the usable monitoring data into branches 1 and/or for branches. 2 The data format of the subsequent steps. For example, the sensor on the particulate filter on a MOCVD machine can convert the monitoring data into a data format suitable for the subsequent similarity analysis step 300a through the data pre-processing step 200a; or through the data pre-processing step 200b converts the monitoring data into a data format for subsequent application of the leading auxiliary parameter analysis step 300b.

以下分別說明分支1的該前處理步驟200a與分支2的該前處理步驟200b。The pre-processing step 200b of the pre-processing step 200a and the branch 2 of the branch 1 will be separately described below.

關於該前處理步驟200a請搭配參考『圖2A』。首先實施步驟210a以從該智慧型預診斷和健康管理系統中預存的假說模型中挑選出一組建模前實施特徵工程後的特徵矩陣。其次,將步驟200a所取得的監控資料轉換為與上述建模前實施特徵工程後的特徵矩陣相同格式的特徵矩陣(即,步驟220a)。Please refer to "Fig. 2A" for the pre-processing step 200a. First, step 210a is implemented to select a set of feature matrices after pre-modeling feature engineering from the hypothesis models pre-stored in the intelligent pre-diagnosis and health management system. Next, the monitoring data obtained in step 200a is converted into a feature matrix of the same format as the feature matrix after the feature engineering is performed before the modeling (ie, step 220a).

至於該前處理步驟200b請參考『圖2B』。首先,實施步驟210b以進行如前文所描述的資料清理步驟。其次,實施一統計特徵處理步驟220b及一混和特徵處理步驟230b。最後,實施步驟240b將所有特徵置於特徵池內以做為下一階段中該領先輔助參數分析步驟300b的基礎。For the pre-processing step 200b, please refer to "Fig. 2B". First, step 210b is implemented to perform the data cleaning step as described above. Next, a statistical feature processing step 220b and a blending feature processing step 230b are implemented. Finally, implementation step 240b places all features in the feature pool as the basis for the lead assist parameter analysis step 300b in the next phase.

接下來說明分支1的相似度分析步驟300a與分支2的領先輔助參數分析步驟300b。Next, the similarity analysis step 300a of the branch 1 and the leading auxiliary parameter analysis step 300b of the branch 2 will be described.

請續搭配參照『圖3A』,為本發明一實施例分支1的該相似度分析步驟300a流程圖。分支1的該相似度分析步驟300a的目的是為了瞭解在本發明的智慧型預診斷和健康管例系統中預存的假說模型中是否存在合適分析該新機台設備的的假說模型(步驟330a)。透過上述的相似度分析,若預存的假說模型中存在某一個假說模型建模前的特徵集與特定該分析樹節點(Object)的監控資料轉換後的特徵矩陣的相似度不僅高於指定門檻值、且空間距離也最相近的情況下,表示該假說模型適於該新機台特定的該分析樹節點(Object)的預測(步驟350a)。適用於該相似度分析步驟300a的量化方式舉例可包括歐基里德距離(Eucledian Distance)、馬哈拉諾比斯距離(Mahalanobis Distance)、曼哈頓距離(Manhattan Distance)、馬可夫斯基距離(Minkowski distance)、餘弦相似度(Cosine Similarity)等。其功能、種類係為熟悉此技藝之人士所熟知,故不在此贅述。Please refer to FIG. 3A, which is a flowchart of the similarity analysis step 300a of the branch 1 according to an embodiment of the present invention. The purpose of the similarity analysis step 300a of the branch 1 is to understand whether there is a hypothesis model suitable for analyzing the new machine equipment in the hypothesis model pre-stored in the intelligent pre-diagnosis and health management system of the present invention (step 330a) . Through the above similarity analysis, if the pre-existing hypothesis model has a hypothesis model, the feature set before modeling is similar to the characteristic matrix of the monitoring data node of the analysis tree node (Object), which is not only higher than the specified threshold value. And the spatial distance is also the closest, indicating that the hypothesis model is suitable for the prediction of the analysis tree node (Object) specific to the new machine (step 350a). Examples of quantization methods suitable for the similarity analysis step 300a may include Eucliled Distance, Mahalanobis Distance, Manhattan Distance, Minkowski distance (Minkowski distance) ), Cosine Similarity, etc. The functions and types are well known to those skilled in the art and will not be described here.

然在另一種情況中,倘若相似度比對結果低於指定門檻值,代表內建的參考假說模型之中不存在適用於該新機台的假說模型。此時,改以如分支2步驟340a、步驟360a所述地,取得該關鍵參數(CP)與該輔助參數(AP)所組成的特徵矩陣(步驟340a),同時指定監督式學習假說方法(步驟360a)用以作為分支1預測建模步驟400a建模的基礎。In another case, if the similarity comparison result is lower than the specified threshold, there is no hypothesis model applicable to the new machine among the built-in reference hypothesis models. At this time, the feature matrix composed of the key parameter (CP) and the auxiliary parameter (AP) is obtained as described in the branch 2 step 340a and the step 360a (step 340a), and the supervised learning hypothesis method is specified (step 360a) is used as the basis for modeling the branch 1 predictive modeling step 400a.

當步驟400a完成後,即可將該分析樹節點(Object)的建模的假說模型指標新增或更新至該智能預測及健康管理物件分析樹模組30的該映射表中並完成該分析樹節點(Object)的分支1預測假說模型擴充或更新。After the step 400a is completed, the modeled hypothesis model indicator of the analysis tree node may be added or updated to the mapping table of the intelligent prediction and health management object analysis tree module 30 and the analysis tree is completed. The branch 1 of the node predicts the hypothesis model expansion or update.

請搭配參考圖『3B』,係本發明之一實施例分支2的該領先輔助參數分析步驟300b流程圖。該領先輔助參數分析步驟300b包含一設定關鍵參數步驟310b、一設定特徵參數步驟320b、一特徵選擇步驟330b、一因果分析步驟340b、一輔助參數設定步驟350b及一產生領先輔助參數步驟360b。Please refer to the reference figure "3B", which is a flowchart of the leading auxiliary parameter analysis step 300b of the branch 2 of an embodiment of the present invention. The lead assist parameter analysis step 300b includes a set key parameter step 310b, a set feature parameter step 320b, a feature selection step 330b, a causal analysis step 340b, an auxiliary parameter setting step 350b, and a lead assist parameter step 360b.

首先,該設定關鍵參數步驟310b與該設定特徵參數步驟320b係將該分析樹節點(Object)的監控資料經過資料清理後,由一領域專家指定該關鍵參數(CP),再透過該特徵擷取方法將資料轉換成統計特徵與混合特徵(如『圖2B』的步驟220b及230b),由該關鍵參數(CP)外的其他參數組成一個與該關鍵參數(CP)最接近的參數。First, the setting key parameter step 310b and the setting characteristic parameter step 320b are performed after the monitoring data of the analysis tree node is cleared by a domain expert, and the key parameter (CP) is specified by a domain expert, and then the feature is captured through the feature. The method converts the data into statistical features and mixed features (such as steps 220b and 230b of FIG. 2B), and other parameters other than the key parameters (CP) form a parameter that is closest to the key parameter (CP).

這些特徵組成一個龐大的特徵集合,並將該特徵集合分類為一關鍵參數(CP)集合與一個沒有關鍵參數(CP)特徵的特徵集合。接下來,於該因果分析步驟(步驟340b)中透過格蘭傑因果關係檢定(Granger Causality Test)找到該關鍵參數(CP)的有效領先輔助參數(LAP)。These features form a large set of features and classify the feature set into a set of key parameters (CP) and a set of features without key parameter (CP) features. Next, in the causal analysis step (step 340b), the effective leading auxiliary parameter (LAP) of the key parameter (CP) is found through the Granger Causality Test.

若上述的特徵集合過大時,可改由該特徵選擇步驟(步驟330b),係先選取與該關鍵參數(CP)相關最高的特徵,再進行格蘭傑因果關係檢定,據此作為該分析樹節點(Object)的分支2預測假說模型建模步驟(步驟400b)的基礎。If the feature set is too large, the feature selection step may be changed (step 330b), and the feature with the highest correlation with the key parameter (CP) is selected first, and then the Granger causality check is performed, and the analysis tree is used as the analysis tree. The branch 2 of the node predicts the basis of the hypothesis model modeling step (step 400b).

當步驟400b完成後,即可將該分析樹節點(Object)建模的假說模型指標新增或更新至該智能預測及健康管理物件分析樹模組30的該映射表中並完成該分析樹節點(Object)的分支2假說模型擴充或更新。After the step 400b is completed, the hypothesis model indicator of the analysis tree node (Object) can be added or updated to the mapping table of the intelligent prediction and health management object analysis tree module 30 and the analysis tree node is completed. The branch 2 hypothesis model of (Object) is expanded or updated.

關於上述格蘭傑因果關係檢定步驟400b與分支2假說模型建模步驟400b的分析流程,首先,假設該關鍵參數(CP)和所選定的一輔助參數(AP)為穩定序列(stationary time series)。虛無假設為:「該輔助參數非該關鍵參數的格蘭傑原因」,並建立該關鍵參數的自迴歸模型(AR model on CP),如下式1:Regarding the analysis flow of the above-described Granger causality check step 400b and the branch 2 hypothesis model modeling step 400b, first, it is assumed that the key parameter (CP) and the selected one auxiliary parameter (AP) are a stationary time series. . The null hypothesis is: "The auxiliary parameter is not the Granger cause of the key parameter", and an autoregressive model (AR model on CP) of the key parameter is established, as shown in the following equation 1:

[式1] [Formula 1]

其中CP t表示在時間t的CP觀測值,根據F檢定,如果落後期CP t被加入模型後可提高自迴歸模型的解釋力,此落後期將被留在模型中,m表示的是關鍵參數變量落後期中檢定為顯著的時間上最早一個,而error t為估計誤差項。 Where CP t represents the CP observation at time t, according to the F test, if the backward period CP t is added to the model, the explanatory power of the autoregressive model can be improved, and the backward period will be left in the model, and m represents the key parameter. The variable lag period is determined to be the most significant one at the time, and error t is the estimated error term.

加入該輔助參數(AP)的落後期,建立如式2的模型:Add the backward period of the auxiliary parameter (AP) and establish the model as Equation 2:

[式2] [Formula 2]

同樣的,根據F檢定當該輔助參數落後期加入模型後可提高模型的解釋力時,此落後期將被留在模型中。其中,p代表該輔助參數(AP)變量落後期中檢定為顯著的時間上最早一個,q則是該輔助參數(AP)變量落後期中檢定為顯著的時間上最近一個。Similarly, according to the F-check, when the auxiliary parameter is added to the model to increase the explanatory power of the model, the backward period will be left in the model. Where p is the earliest time in the backward period of the auxiliary parameter (AP) variable, and q is the most recent time in the backward period of the auxiliary parameter (AP) variable.

如果沒有任何該輔助參數(AP)的落後期被留在模型中,無格蘭傑因果關係的虛無假設就成立。If no backward period of the auxiliary parameter (AP) is left in the model, the null hypothesis without Granger causality is established.

如果該輔助參數(AP)與該關鍵參數(CP)有因果關係,則將該輔助參數(AP)納入一輔助參數候選集合(associated parameter candidate set)之中。If the auxiliary parameter (AP) has a causal relationship with the key parameter (CP), the auxiliary parameter (AP) is included in an associated parameter candidate set.

最後從該輔助參數候選集合的所有輔助參數(AP)以下列兩個模型(式3、式4)再做一次F檢定,以確認該輔助參數(AP)可以提早多久對該關鍵參數(CP)的變化產生反應。式3相較於式4而言,多了一期的資料AP t -q,因此當比較式3與式4的結果時可以判斷多加的該期的資料是否有差異產生,若有,則代表多加的該期的資料是可資利用的資料。 Finally, all the auxiliary parameters (AP) of the auxiliary parameter candidate set are subjected to another F-test in the following two models (Formula 3, Equation 4) to confirm how long the auxiliary parameter (AP) can be earlier than the key parameter (CP). The change produces a reaction. Compared with Equation 4, Equation 3 has an additional period of information AP t -q . Therefore, when comparing the results of Equations 3 and 4, it can be judged whether there is a difference in the data of the period, and if so, it represents More information on this period is available.

[式3] [Formula 3]

[式4] [Formula 4]

最後我們選取可以最早反應該關鍵參數(CP)變化的輔助參數(AP)作為一領先輔助參數(LAP)。Finally, we select the auxiliary parameter (AP) that can reflect this key parameter (CP) change as a leading auxiliary parameter (LAP).

關於『圖1B』中提到的該模型自適性優化步驟(適性化切換機制,步驟500)的實例請參照『圖4』。Refer to Figure 4 for an example of the model adaptive optimization step (adaptability switching mechanism, step 500) mentioned in Figure 1B.

首先,實施步驟510以確認一機台是否無法繼續維運。倘若「判斷該機台是否無法繼續維運」的結果為「是」,則實施步驟520來獲取監控點當下的該分析樹節點(Object)的監控資料與維修紀錄。其中,維修紀錄以一對一的方式對應至每一筆監控資料。每一個該分析樹節點(Object)具備至少一個監控點,每一筆維修紀錄yi包含至少一個監控點的維修狀態值,以一具體的例子來說,一分析樹節點(Object)可代表一有機金屬化學氣相沉積(metal-organic chemical vapor deposition, MOCVD)機台,且機台包括有k個監控點,意即,一個該分析樹節點(設備)至少含有一個如電流、電壓、震動頻率等監測點。First, step 510 is implemented to confirm whether a machine cannot continue to transport. If the result of "determining whether the machine is unable to continue the transportation" is "Yes", then step 520 is implemented to obtain the monitoring data and the maintenance record of the analysis tree node (Object) currently under the monitoring point. Among them, the maintenance records correspond to each monitoring data in a one-to-one manner. Each of the analysis tree nodes has at least one monitoring point, and each maintenance record yi includes a maintenance status value of at least one monitoring point. In a specific example, an analysis tree node can represent an organic metal. A metal-organic chemical vapor deposition (MOCVD) machine, and the machine includes k monitoring points, that is, one analysis tree node (device) contains at least one monitoring such as current, voltage, and vibration frequency. point.

接著,進行步驟530以計算分支1及分支2的模型評估指標(model evaluation index, MEI),常見的模型評估指標包括但不限於準確率、召回率、F值與ROC曲線下方面積等。Next, step 530 is performed to calculate the model evaluation index (MEI) of the branch 1 and the branch 2. The common model evaluation indicators include, but are not limited to, the accuracy rate, the recall rate, the F value, and the area under the ROC curve.

隨後,實施步驟540與550以確認該分析樹節點(object)的雙分支建模模式中是否存在任一分支預測模型的模型評估指標優於另一分支模型。具體而言,上述步驟均與演算相關,在步驟540中根據上述的模型評估指標(MEI)結果,以決定後續步驟550是否使用承襲過去訓練經驗的最佳方案(本實施例中預設最佳方案為分支2)。Subsequently, steps 540 and 550 are implemented to confirm whether the model evaluation index of any branch prediction model exists in the bi-branch modeling mode of the analysis tree object is better than the other branch model. Specifically, the above steps are all related to the calculus, and in step 540, according to the above-mentioned model evaluation index (MEI) result, it is determined whether the subsequent step 550 uses the best solution to inherit the past training experience (the preset is optimal in this embodiment). The scheme is branch 2).

如果分析的結果分支1假說模型的MEI連續m次優於分支2模型時,則實施步驟560,即設定分支1預測模型為該分析樹節點(object)的最佳方案(golden model)並開始系統之預診斷分析;但相反的,如果分支1假說模型的模型評估指標並沒有連續m次優於分支2模型,則實施步驟570並指定分支2­假說模型為最佳方案並開始系統之預診斷分析,將該分析樹節點(object)監控資料轉換為與步驟300a相同的特徵格式,最後重建分支1的預測模型,將該分析樹節點(object)的假說模型指標新增或更新至該智能預測及健康管理物件分析樹模組30中的該映射表中以完成分支1假說模型的擴充或更新。If the result of the analysis is that the MEI of the hypothesis model is better than the branch 2 model for m consecutive times, then step 560 is implemented, that is, the branch 1 prediction model is set as the golden model of the analysis tree and the system is started. Pre-diagnostic analysis; but conversely, if the model evaluation index of the branch 1 hypothesis model is not superior to the branch 2 model for m consecutive times, then step 570 is implemented and the branch 2 hypothesis model is specified as the best solution and the pre-diagnostic analysis of the system is started. Converting the analysis tree object monitoring data into the same feature format as step 300a, finally reconstructing the prediction model of branch 1 and adding or updating the hypothesis model indicator of the analysis tree object to the intelligent prediction and The mapping table in the health management object analysis tree module 30 is used to complete the expansion or update of the branch 1 hypothesis model.

上述實施例可利用電腦程式產品來實現,更具體地,可作為一電腦程式產品並透過一包括有多個指令的系統可讀取媒體進行上述實施例中的步驟而實現。The above embodiments can be implemented by using a computer program product, more specifically, as a computer program product and by performing the steps in the above embodiments through a system readable medium including a plurality of instructions.

該包括有多個指令的系統可讀取媒體包括但不限定於軟碟、光碟、唯讀光碟、磁光碟、唯讀記憶體、隨機存取記憶體、可抹除可程式唯讀記憶體 (EPROM)、電子式可抹除可程式唯讀記憶體 (EEPROM)、光卡(optical card)或磁卡、快閃記憶體、或任何適用於儲存電子指令的機器可讀取媒體。或者,上述的智慧型預診斷和健康管理系統10也可作為電腦程式產品下載,並藉由諸如網路連線等通訊連接的資料訊號從遠端轉移至本地端電腦。The system readable medium including a plurality of instructions includes, but is not limited to, a floppy disk, a compact disk, a CD-ROM, a magneto-optical disk, a read-only memory, a random access memory, and an erasable programmable read-only memory ( EPROM), electronic erasable programmable read only memory (EEPROM), optical card or magnetic card, flash memory, or any machine readable medium suitable for storing electronic instructions. Alternatively, the intelligent pre-diagnosis and health management system 10 described above can also be downloaded as a computer program product and transferred from a remote location to a local computer via a data signal such as a network connection.

本發明可有效的利用雙分支建模模式,快速地對於僅有少量且不具備維修紀錄的新機台開始進行預測分析。且隨著監控資料與相應的維修紀錄不斷地增加,本發明的智慧型預診斷和健康管理系統將於每個分析樹節點的「是否無法繼續維運」的判斷為「是」之後,進行分支1及分支2的預測假說模型比對,當確認雙分支模型中存在一分支預測模型的模型評估指標連續m次優於另一分支預測模型時,即以較佳的該分支預測模型作為該分析樹節點的最佳方案(golden model)並進行最佳決策,使智慧型預診斷和健康管理系統的預測結果符合預期目標值。The invention can effectively utilize the two-branch modeling mode, and quickly start predictive analysis for a new machine with only a small amount and no maintenance record. And as the monitoring data and the corresponding maintenance records continue to increase, the intelligent pre-diagnosis and health management system of the present invention branches to "Yes" after the "cannot continue the maintenance" of each analysis tree node. 1 and branch 2 prediction hypothesis model comparison, when it is confirmed that there is a branch prediction model in the bifurcation model, the model evaluation index is better than the other branch prediction model for m times, that is, the better branch prediction model is used as the analysis. The golden node of the tree node and the best decision make the prediction results of the intelligent pre-diagnosis and health management system meet the expected target value.

以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.

10‧‧‧智慧型預診斷和健康管理系統10‧‧‧Smart pre-diagnosis and health management system

20‧‧‧分析引擎服務管理模組 20‧‧‧Analysis Engine Service Management Module

30‧‧‧智能預測及健康管理物件分析樹模組 30‧‧‧Intelligent Forecasting and Health Management Object Analysis Tree Module

40‧‧‧機器學習庫模組 40‧‧‧Machine Learning Library Module

50‧‧‧檔案系統模組 50‧‧‧File System Module

60a‧‧‧第一可交換應用程式介面 60a‧‧‧First exchangeable application interface

60b‧‧‧第二可交換應用程式介面 60b‧‧‧Second exchangeable application interface

60c‧‧‧可交換驅動程式介面 60c‧‧‧ Exchangeable Driver Interface

70‧‧‧外部機器學習模組 70‧‧‧External Machine Learning Module

80‧‧‧外部參考模型模組 80‧‧‧External Reference Model Module

90‧‧‧外部資料收集驅動裝置 90‧‧‧External data collection drive

91‧‧‧外部資料庫 91‧‧‧External database

110、120、200a、210a、220a、200b、210b、220b、230b、240b、300a、300b、310a、310b、320a、320b、330a、330b、340a、340b、350a、350b、360a、360b、400a、400b、500、510、520、530、540、550、560、570‧‧‧步驟 110, 120, 200a, 210a, 220a, 200b, 210b, 220b, 230b, 240b, 300a, 300b, 310a, 310b, 320a, 320b, 330a, 330b, 340a, 340b, 350a, 350b, 360a, 360b, 400a, 400b, 500, 510, 520, 530, 540, 550, 560, 570 ‧ ‧ steps

『圖1A』為本發明一實施例的智慧型預診斷系統架構圖。 『圖1B』為本發明一實施例的智慧型預診斷系統建模方法的流程圖。 『圖2A』至『圖2B』為本發明一實施例的資料前處理步驟a與資料前處理步驟b的流程圖。 『圖3A』至『3B』為本發明一實施例的相似度分析步驟與領先輔助參數分析步驟的流程圖。 『圖4』為本發明一實施例的模型自適性優化步驟的流程圖。FIG. 1A is a structural diagram of a smart pre-diagnosis system according to an embodiment of the present invention. FIG. 1B is a flowchart of a method for modeling a smart pre-diagnosis system according to an embodiment of the present invention. 2A to 2B are flowcharts of the data pre-processing step a and the data pre-processing step b according to an embodiment of the present invention. 3A to 3B are flowcharts of the similarity analysis step and the lead assistant parameter analysis step according to an embodiment of the present invention. FIG. 4 is a flowchart of a model adaptive optimization step according to an embodiment of the present invention.

Claims (11)

一種智慧型預診斷與健康管理系統建模方法,該方法係透過一內建有複數個參考假說模型的智慧型預診斷和健康管理系統進行,該方法包括: 新樹建立步驟,係根據一待監控機台定義出至少一分析樹節點(Object),每一分析樹節點(Object)經由至少一監控點以取得一監控資料; 雙分支建模步驟,係於一分支1實施一資料前處理步驟a以將該監控資料轉換為一指定特徵格式並進行一相似度分析以從該些參考假說模型中挑選相似度最高且超過一指定門檻的參考假說模型作為該分析樹節點的一分支1預測假說模型;同時於一分支2對該監控資料實施一資料前處理步驟b以利用一因果關係檢定確認該分析樹節點(Object)所對應的一關鍵參數(CP)以及複數個相關參數(AP)並建構一適用於該待監控機台的假說模型以作為該分析樹節點的一分支2預測假說模型;以及 模型自適性優化步驟,隨著該監控資料不斷地產生,於該分析樹節點(Object)進行一「機台是否無法繼續維運」的判斷結束後,倘若該判斷結果為「是」,則從該雙分支建模步驟所建構的該分支1預測假說模型或該分支2預測假說模型之中挑選一最佳方案做為該分析樹節點(Object)最佳化決策的基準,令該系統的一預測結果符合預期目標值。A smart pre-diagnosis and health management system modeling method is implemented by a smart pre-diagnosis and health management system with a plurality of reference hypothesis models built therein, the method comprising: a new tree establishment step, which is based on a to-be-monitored The machine defines at least one analysis tree node, and each analysis tree node acquires a monitoring data via at least one monitoring point; the double branch modeling step is performed on a branch 1 to implement a data preprocessing step a Converting the monitoring data into a specified feature format and performing a similarity analysis to select a reference hypothesis model with the highest similarity and exceeding a specified threshold from the reference hypothesis models as a branch 1 prediction hypothesis model of the analysis tree node Simultaneously performing a data pre-processing step b on the monitoring data in a branch 2 to confirm and construct a key parameter (CP) corresponding to the analysis tree node (Object) and a plurality of related parameters (AP) by using a causal relationship check a hypothesis model applicable to the machine to be monitored as a branch 2 prediction hypothesis model of the analysis tree node; and an excellent model self-adaptation In the step, as the monitoring data is continuously generated, after the analysis tree node (Object) performs a judgment that "whether the machine can not continue the maintenance", if the determination result is "Yes", the double branch is constructed. Selecting an optimal solution among the branch 1 prediction hypothesis model or the branch 2 prediction hypothesis model constructed by the modular step as a benchmark for optimizing the decision of the analysis tree node, so that a prediction result of the system conforms to the expectation Target value. 如申請專利範圍第1項所述之建模方法,其中在該新樹建立步驟中,該待監控機台為一不具維修紀錄的新機台。The modeling method of claim 1, wherein in the new tree establishing step, the machine to be monitored is a new machine with no maintenance record. 如申請專利範圍第1項所述之建模方法,其中在該雙分支建模步驟的該分支1中,該指定特徵格式具有與該參考假說模型建模前相同的特徵格式。The modeling method of claim 1, wherein in the branch 1 of the two-branch modeling step, the specified feature format has the same feature format as before the reference hypothesis model is modeled. 如申請專利範圍第3項所述之建模方法,其中在該模型自適性優化步驟指定該最佳方案後,更包括將該監控資料轉換為該指定特徵格式並更新至該智慧型預診斷和健康管理系統內建的該些參考假說模型中。The modeling method of claim 3, wherein after the model optimization step specifies the optimal solution, the method further includes converting the monitoring data into the specified feature format and updating to the smart pre-diagnosis and These reference hypothesis models built into the health management system. 如申請專利範圍第1項所述之建模方法,其中在該模型自適性優化步驟中,更包括獲取至少一維修紀錄,該組維修紀錄包含至少一個該監控點的維修狀態值,使該監控資料與該維修紀錄為一對一的關係。The modeling method of claim 1, wherein in the model optimization step, the method further includes acquiring at least one maintenance record, the group maintenance record including at least one maintenance status value of the monitoring point, so that the monitoring The information is in a one-to-one relationship with the maintenance record. 如申請專利範圍第1項所述之建模方法,其中在該雙分支建模步驟的該分支1中,該相似度分析係採用至少一選自由歐基里德距離(Eucledian Distance)、馬哈拉諾比斯距離(Mahalanobis Distance)、曼哈頓距離(Manhattan Distance)、馬可夫斯基距離(Minkowski distance)、餘弦相似度(Cosine Similarity)、及其組合作為該相似度分析的一量化方法。The modeling method of claim 1, wherein in the branch 1 of the two-branch modeling step, the similarity analysis adopts at least one selected from the Eucliled Distance, Maha The Mahalanobis Distance, the Manhattan Distance, the Minkowski distance, the Cosine Similarity, and combinations thereof are used as a quantification method for the similarity analysis. 如申請專利範圍第1項所述之建模方法,其中在該雙分支建模步驟的該分支1中,當該相似度分析的結果未超過該指定門檻時,先以一由該分支2所確認的該關鍵參數(CP)以及該些相關參數(AP)所組成的特徵矩陣作為該分支1預測假說模型建模的基礎,並於模型自適性優化步驟中取得一維修紀錄標籤後,依一監督式學習方法重建該分支1預測假說模型。The modeling method of claim 1, wherein in the branch 1 of the two-branch modeling step, when the result of the similarity analysis does not exceed the specified threshold, the branch 2 is first The identified critical parameter (CP) and the characteristic matrix composed of the relevant parameters (AP) are used as the basis for modeling the branch 1 prediction hypothesis model, and after obtaining a maintenance record label in the model adaptive optimization step, The supervised learning method reconstructs the branch 1 prediction hypothesis model. 如申請專利範圍第7項所述之建模方法,其中該監督式學習方法係包括至少一選自由支援向量機(support Vector Machine;SVM)、迴歸分析(Regression)、隨機森林(Random Forest)、及其組合所組成的群組。The modeling method of claim 7, wherein the supervised learning method comprises at least one selected from the group consisting of a support vector machine (SVM), a regression analysis (Regression), a random forest (Random Forest), A group consisting of its combination. 如申請專利範圍第1項所述之建模方法,其中在該模型自適性優化步驟中,當該分支1預測假說模型連續m次優於該分支2預測假說模型時,即設定該分支1預測假說模型為該最佳方案;當該分支1預測假說模型連續m次未優於該分支2預測假說模型時,則指定該分支2預測假說模型為該最佳方案。The modeling method according to claim 1, wherein in the model adaptive optimization step, when the branch 1 prediction hypothesis model is superior to the branch 2 prediction hypothesis model for m consecutive times, the branch 1 prediction is set. The hypothesis model is the best solution; when the branch 1 prediction hypothesis model is not better than the branch 2 prediction hypothesis model for m consecutive times, the branch 2 prediction hypothesis model is designated as the optimal solution. 如申請專利範圍第9項所述之建模方法,其中在該模型自適性優化步驟中,m值為一大於2的正整數。The modeling method of claim 9, wherein in the model adaptive optimization step, the m value is a positive integer greater than two. 一種智慧型預診斷與健康管理系統的電腦程式產品,令執行該電腦程式產品時完成如申請專利範圍第1項至第10項任一項所述的智慧型預診斷與健康管理系統建模方法。A computer program product for a smart pre-diagnosis and health management system, which enables the intelligent pre-diagnosis and health management system modeling method as described in any one of claims 1 to 10 when the computer program product is executed .
TW107141248A 2018-11-20 2018-11-20 Intelligent pre-diagnosis and health management system modeling method and computer program product TWI667660B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107141248A TWI667660B (en) 2018-11-20 2018-11-20 Intelligent pre-diagnosis and health management system modeling method and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107141248A TWI667660B (en) 2018-11-20 2018-11-20 Intelligent pre-diagnosis and health management system modeling method and computer program product

Publications (2)

Publication Number Publication Date
TWI667660B true TWI667660B (en) 2019-08-01
TW202020887A TW202020887A (en) 2020-06-01

Family

ID=68316397

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141248A TWI667660B (en) 2018-11-20 2018-11-20 Intelligent pre-diagnosis and health management system modeling method and computer program product

Country Status (1)

Country Link
TW (1) TWI667660B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724743B (en) * 2020-01-10 2021-04-11 台達電子工業股份有限公司 Machine and operation method thereof
TWI730674B (en) * 2020-03-16 2021-06-11 臺北醫學大學 Method and system for predicting pregnancy rate of assisted reproduction technology using artificial intelligence
CN113124414A (en) * 2019-12-30 2021-07-16 财团法人工业技术研究院 Data processing system and method
TWI819436B (en) * 2021-12-15 2023-10-21 緯創資通股份有限公司 Prediction-model-constructing method, state prediction method and devices thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794907B (en) * 2021-07-26 2023-03-01 友達光電股份有限公司 Prognostic and health management system for system management and method thereof
TWI806425B (en) * 2022-02-14 2023-06-21 宏碁股份有限公司 Feature selection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126929A (en) * 2007-09-05 2008-02-20 东北大学 Continuous miner remote real-time failure forecast and diagnosis method and device
CN1926489B (en) * 2004-03-03 2012-02-15 费舍-柔斯芒特系统股份有限公司 Data presentation system for abnormal situation prevention in a process plant
US20140378810A1 (en) * 2013-04-18 2014-12-25 Digimarc Corporation Physiologic data acquisition and analysis
US20160350671A1 (en) * 2015-05-28 2016-12-01 Predikto, Inc Dynamically updated predictive modeling of systems and processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926489B (en) * 2004-03-03 2012-02-15 费舍-柔斯芒特系统股份有限公司 Data presentation system for abnormal situation prevention in a process plant
CN101126929A (en) * 2007-09-05 2008-02-20 东北大学 Continuous miner remote real-time failure forecast and diagnosis method and device
US20140378810A1 (en) * 2013-04-18 2014-12-25 Digimarc Corporation Physiologic data acquisition and analysis
US20160350671A1 (en) * 2015-05-28 2016-12-01 Predikto, Inc Dynamically updated predictive modeling of systems and processes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113124414A (en) * 2019-12-30 2021-07-16 财团法人工业技术研究院 Data processing system and method
TWI724743B (en) * 2020-01-10 2021-04-11 台達電子工業股份有限公司 Machine and operation method thereof
TWI730674B (en) * 2020-03-16 2021-06-11 臺北醫學大學 Method and system for predicting pregnancy rate of assisted reproduction technology using artificial intelligence
TWI819436B (en) * 2021-12-15 2023-10-21 緯創資通股份有限公司 Prediction-model-constructing method, state prediction method and devices thereof

Also Published As

Publication number Publication date
TW202020887A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI667660B (en) Intelligent pre-diagnosis and health management system modeling method and computer program product
US20200250584A1 (en) Modeling method for smart prognostics and health management system and computer program product thereof
CN101408769B (en) On-line energy forecasting system and method based on product ARIMA model
US20100030521A1 (en) Method for analyzing and classifying process data
US20200250897A1 (en) Intelligent prognostics and health management system and method
CN117474357B (en) Power distribution room operation and maintenance management method and system based on deep learning
CN115225463B (en) Hardware fault monitoring method and system based on IT operation and maintenance
CN116992346A (en) Enterprise production data processing system based on artificial intelligence big data analysis
CN110757510A (en) Method and system for predicting remaining life of robot
TW201928713A (en) Method for selecting leading auxiliary parameter and method for combining critical parameter and leading auxiliary parameter for equipment maintenance pre-diagnosis capable of establishing an equipment maintenance pre-diagnosis model for effectively enhancing an early warning capability
Martínez-Plumed et al. CASP-DM: context aware standard process for data mining
WO2021197782A1 (en) Data processing for industrial machine learning
CN117390529A (en) Multi-factor traceable data center information management method
KR101960755B1 (en) Method and apparatus of generating unacquired power data
CN116611813B (en) Intelligent operation and maintenance management method and system based on knowledge graph
JP7062505B2 (en) Equipment management support system
Bey-Temsamani et al. A practical approach to combine data mining and prognostics for improved predictive maintenance
CN111539546A (en) Modeling method of intelligent pre-diagnosis and health management system and computer program product thereof
Thakare et al. Data Mining for Casting Defects Analysis
KR100604074B1 (en) Failure data management system and method of controlling the same
Thaduri et al. Evolution of Maintenance Processes in Industry 4.0
CN117272844B (en) Method and system for predicting service life of distribution board
CN118035694B (en) Power distribution network fault prediction method and prediction system thereof
CN118469405B (en) Processing method, device, equipment and storage medium for household supply chain data
KR102311857B1 (en) Prediction System for preheating time of gas turbine