TWI672897B - Voltage converter - Google Patents

Voltage converter Download PDF

Info

Publication number
TWI672897B
TWI672897B TW108101909A TW108101909A TWI672897B TW I672897 B TWI672897 B TW I672897B TW 108101909 A TW108101909 A TW 108101909A TW 108101909 A TW108101909 A TW 108101909A TW I672897 B TWI672897 B TW I672897B
Authority
TW
Taiwan
Prior art keywords
resistor
voltage
coupled
control signal
auxiliary
Prior art date
Application number
TW108101909A
Other languages
Chinese (zh)
Other versions
TW202029625A (en
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW108101909A priority Critical patent/TWI672897B/en
Application granted granted Critical
Publication of TWI672897B publication Critical patent/TWI672897B/en
Publication of TW202029625A publication Critical patent/TW202029625A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本發明提供一種電壓轉換器,其包含有變壓器、功率開關、第一控制電路以及電流偵測電路。變壓器包含有一次側繞組、二次側繞組以及輔助繞組。變壓器用來將輸入電壓轉換成輸出電壓。功率開關之第一端耦接於一次側繞組,且功率開關之第二端耦接於第一控制電路。第一控制電路用來根據電流偵測電壓產生第一控制訊號以控制功率開關之運作以及產生第二控制訊號。電流偵測電路耦接於功率開關之第三端、第一控制電路以及輔助繞組,用來根據第二控制訊號感測電流偵測電壓以提供至第一控制電路。The invention provides a voltage converter comprising a transformer, a power switch, a first control circuit and a current detecting circuit. The transformer includes a primary side winding, a secondary side winding, and an auxiliary winding. The transformer is used to convert the input voltage to an output voltage. The first end of the power switch is coupled to the primary side winding, and the second end of the power switch is coupled to the first control circuit. The first control circuit is configured to generate a first control signal according to the current detection voltage to control the operation of the power switch and generate the second control signal. The current detecting circuit is coupled to the third end of the power switch, the first control circuit and the auxiliary winding, and is configured to sense the current detecting voltage according to the second control signal to provide to the first control circuit.

Description

電壓轉換器Voltage converter

本發明係指一種電壓轉換器,尤指一種可提供不同輸出電壓之電壓轉換器。The present invention is directed to a voltage converter, and more particularly to a voltage converter that provides different output voltages.

隨著科技的發展,電子產品種類日益增多,如筆記型電腦、行動通訊裝置、個人隨身助理、多媒體播放器等,這些電子產品皆需使用電壓轉換器來將高電壓之交流電源或直流電源轉換成符合需求的穩定直流電源,以作為進行充電或運作時的電力來源。再者,隨著電子產品的硬體規格不斷提升,電子產品對於電源供應的需求量也越來越大。舉例來說,專為電子遊戲所開發設計的電競筆記型電腦對於電源供應的需求就非常大。因此,如何因應各種電源供應需求之電壓轉換器也就成為業界所努力的目標之一。With the development of technology, there are more and more types of electronic products, such as notebook computers, mobile communication devices, personal portable assistants, multimedia players, etc. These electronic products need to use a voltage converter to convert high-voltage AC power or DC power. A stable DC power source that meets the requirements as a source of power for charging or operation. Furthermore, as the hardware specifications of electronic products continue to increase, the demand for power supplies for electronic products is also increasing. For example, an e-sport notebook computer designed for video games has a very high demand for power supply. Therefore, how to adapt to various power supply requirements of voltage converters has become one of the goals of the industry.

因此,本發明之主要目的即在於提供一種不同輸出電壓之電壓轉換器。Accordingly, it is a primary object of the present invention to provide a voltage converter of different output voltages.

本發明揭露一種電壓轉換器,包含有:一變壓器,包含有一一次側繞組、一二次側繞組以及一輔助繞組,用來將一輸入電壓轉換成一輸出電壓;一功率開關,該功率開關之一第一端耦接於該一次側繞組;一第一控制電路,耦接於該功率開關之一第二端,用來根據一電流偵測電壓產生一第一控制訊號以控制該功率開關之運作以及產生一第二控制訊號;以及一電流偵測電路,耦接於該功率開關之一第三端、該第一控制電路以及該輔助繞組,用來根據該第二控制訊號感測該電流偵測電壓以提供至該第一控制電路。The invention discloses a voltage converter, comprising: a transformer comprising a primary side winding, a secondary side winding and an auxiliary winding for converting an input voltage into an output voltage; a power switch, one of the power switches The first end is coupled to the primary side winding; a first control circuit is coupled to the second end of the power switch for generating a first control signal according to a current detection voltage to control the operation of the power switch And generating a second control signal; and a current detecting circuit coupled to the third end of the power switch, the first control circuit and the auxiliary winding, for sensing the current detection according to the second control signal A voltage is measured to provide to the first control circuit.

在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及後續的申請專利範圍並不以名稱的差異來做為區分元件的方式,而是以元件在功能上的差異來做為區分的準則。在通篇說明書及後續的申請專利範圍當中所提及的「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。以外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。Certain terms are used throughout the description and following claims to refer to particular elements. Those of ordinary skill in the art should understand that a hardware manufacturer may refer to the same component by a different noun. The scope of this specification and the subsequent patent application do not use the difference in name as the way to distinguish the components, but the difference in function of the components as the criterion for distinguishing. The term "including" as used throughout the scope of the specification and subsequent patent applications is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" is used herein to include any direct and indirect electrical connection. Therefore, if a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device or indirectly electrically connected to the second device through other devices or connection means.

請參考第1圖,第1圖為本發明實施例之一電壓轉換器1之示意圖。電壓轉換器1用以提供一輸出電壓VO至一負載。其中所述負載可為任何需要電力之電子產品,輸出電壓VO可做為電子產品進行充電或是正常運作時的電力來源。輸出電壓VO為一第一輸出電壓值V1或一第二輸出電壓值V2。例如,第一輸出電壓值V1小於第二輸出電壓值V2。電源供應裝置1包含有一變壓器10、一第一控制電路20、一電流偵測電路30、一第二控制電路40、一輸出電壓切換電路50、一回授電路60、一功率開關SW1、一電阻RA、電容Co與CA以及二極體DA與DO。變壓器10可將一輸入電壓VI轉換成輸出電壓VO。變壓器10包含有一一次側繞組NP、一二次側繞組NS以及一輔助繞組NA。一次側繞組NP之第一端耦接於一輸入端IN,用以接收一輸入電壓VI,以及一次側繞組NP之第二端耦接於功率開關SW1。二次側繞組NS之第一端耦接於二極體DO,以及二次側繞組NS之第二端耦接於一第二接地GND2。輔助繞組NA之第一端耦接於二極體DA,以及輔助繞組NA之第二端耦接於第一接地GND1。二極體DA之陽極耦接於輔助繞組NA之第一端,以及二極體DA之陰極耦接於電阻RA。電阻RA之第一端耦接於二極體DA之陰極,以及電阻RA之第二端耦接於功率開關SW1以及電流偵測電路30。二極體DO之陽極耦接於二次側繞組NS之第一端,以及二極體DO之陰極耦接於一輸出端OUT。電容CO之第一端耦接於輸出端OUT,以及電容CO之第二端耦接於一第二接地GND2。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a voltage converter 1 according to an embodiment of the present invention. The voltage converter 1 is used to provide an output voltage VO to a load. The load can be any electronic product that requires power, and the output voltage VO can be used as a power source for charging or normal operation of the electronic product. The output voltage VO is a first output voltage value V1 or a second output voltage value V2. For example, the first output voltage value V1 is smaller than the second output voltage value V2. The power supply device 1 includes a transformer 10, a first control circuit 20, a current detecting circuit 30, a second control circuit 40, an output voltage switching circuit 50, a feedback circuit 60, a power switch SW1, and a resistor. RA, capacitance Co and CA, and diodes DA and DO. Transformer 10 converts an input voltage VI to an output voltage VO. The transformer 10 includes a primary side winding NP, a secondary side winding NS, and an auxiliary winding NA. The first end of the primary winding NP is coupled to an input terminal IN for receiving an input voltage VI, and the second end of the primary winding NP is coupled to the power switch SW1. The first end of the secondary winding NS is coupled to the diode DO, and the second end of the secondary winding NS is coupled to a second ground GND2. The first end of the auxiliary winding NA is coupled to the diode DA, and the second end of the auxiliary winding NA is coupled to the first ground GND1. The anode of the diode DA is coupled to the first end of the auxiliary winding NA, and the cathode of the diode DA is coupled to the resistor RA. The first end of the resistor RA is coupled to the cathode of the diode DA, and the second end of the resistor RA is coupled to the power switch SW1 and the current detecting circuit 30. The anode of the diode DO is coupled to the first end of the secondary winding NS, and the cathode of the diode DO is coupled to an output terminal OUT. The first end of the capacitor CO is coupled to the output terminal OUT, and the second end of the capacitor CO is coupled to a second ground GND2.

功率開關SW1之第一端耦接於一次側繞組NP之第二端。功率開關SW1之第二端耦接於第一控制電路20用以接收一控制訊號S1。功率開關SW1之第三端耦接於電流偵測電路30。功率開關SW1可依據控制訊號S1之電位來控制第一端和第三端之間的訊號傳送路徑,以呈現導通狀態(短路)或不導通狀態(開路)。功率開關SW1可為功率電晶體。例如功率開關SW1可為金氧半場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、雙載子接面電晶體(bipolar Junction Transistor,BJT)或其它具備類似功能的元件,但不以此為限。當功率開關SW1導通時,一次側繞組電流ICS流過一次側繞組NP及功率開關SW1,且一次側繞組NP會儲存能量。此時,由電容CO產生輸出電壓VO以對負載供電。當功率開關SW1不導通時,一次側繞組NP所儲存能量會傳遞至二次側繞組NS,以對電容CO進行供電。The first end of the power switch SW1 is coupled to the second end of the primary winding NP. The second end of the power switch SW1 is coupled to the first control circuit 20 for receiving a control signal S1. The third end of the power switch SW1 is coupled to the current detecting circuit 30. The power switch SW1 can control the signal transmission path between the first end and the third end according to the potential of the control signal S1 to present an on state (short circuit) or a non-conduction state (open circuit). The power switch SW1 can be a power transistor. For example, the power switch SW1 may be a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), a bipolar Junction Transistor (BJT), or other components having similar functions, but not This is limited to this. When the power switch SW1 is turned on, the primary side winding current ICS flows through the primary side winding NP and the power switch SW1, and the primary side winding NP stores energy. At this time, the output voltage VO is generated by the capacitor CO to supply power to the load. When the power switch SW1 is not turned on, the energy stored in the primary winding NP is transmitted to the secondary winding NS to supply power to the capacitor CO.

第一控制電路20可為一積體電路裝置。第一控制電路20耦接於功率開關SW1、電流偵測電路30、回授電路60以及輔助繞組NA。第一控制電路20包含有引腳CS、FB、GD1、GD2、SGND、Vcc及。第一控制電路20可經由引腳Vcc接收一電源電壓VCC並據以進行相關運作。第一控制電路20可經由引腳CS接收一電流偵測電壓VCS,並根據電流偵測電壓VCS產生控制訊號S1、S2。第一控制電路20可經由引腳GD1輸出控制訊號S1,以控制功率開關SW1之運作。第一控制電路20可經由引腳GD2輸出控制訊號S2,以控制電流偵測電路30之運作。第一控制電路20之引腳FB經由回授電路60耦接至輸出電壓切換電路50,以偵測電壓轉換器1之輸出電壓VO,第一控制電路20經由引腳FB接收一回授訊號。The first control circuit 20 can be an integrated circuit device. The first control circuit 20 is coupled to the power switch SW1, the current detecting circuit 30, the feedback circuit 60, and the auxiliary winding NA. The first control circuit 20 includes pins CS, FB, GD1, GD2, SGND, Vcc, and the like. The first control circuit 20 can receive a power supply voltage VCC via the pin Vcc and perform related operations accordingly. The first control circuit 20 can receive a current detection voltage VCS via the pin CS and generate control signals S1 and S2 according to the current detection voltage VCS. The first control circuit 20 can output the control signal S1 via the pin GD1 to control the operation of the power switch SW1. The first control circuit 20 can output the control signal S2 via the pin GD2 to control the operation of the current detecting circuit 30. The pin FB of the first control circuit 20 is coupled to the output voltage switching circuit 50 via the feedback circuit 60 to detect the output voltage VO of the voltage converter 1. The first control circuit 20 receives a feedback signal via the pin FB.

第一控制電路20包含有比較器202、204、206、一計時器208以及一驅動器210。比較器202之第一輸入端用來接收電流偵測電壓VCS,比較器202之第二輸入端用來接收一參考電壓VR1,且比較器202之一輸出端用來輸出一比較訊號。比較器202用來比較第一輸入端與第二輸入端所接收之訊號以產生比較訊號。其中所述比較訊號可以是電壓訊號或電流訊號,但不以此為限。計時器208用來計數時間。例如,計時器208可計數一預定時間。例如,計時器208可每隔一預定時間產生一時間計數訊號至比較器202。計時器208可依據比較器202之指示開始計數,並於計數至預定時間期滿後產生一時間計數訊號至比較器202。The first control circuit 20 includes comparators 202, 204, 206, a timer 208, and a driver 210. The first input of the comparator 202 is for receiving the current detection voltage VCS, the second input of the comparator 202 is for receiving a reference voltage VR1, and one of the outputs of the comparator 202 is for outputting a comparison signal. The comparator 202 is configured to compare the signals received by the first input terminal and the second input terminal to generate a comparison signal. The comparison signal may be a voltage signal or a current signal, but is not limited thereto. Timer 208 is used to count the time. For example, timer 208 can count for a predetermined time. For example, the timer 208 can generate a time count signal to the comparator 202 every predetermined time. The timer 208 can start counting according to the indication of the comparator 202, and generate a time counting signal to the comparator 202 after the counting reaches a predetermined time period.

在一實施例中,比較器202可根據計時器208所產生時間計數訊號比較第一輸入端與第二輸入端所接收之訊號以產生比較訊號。例如,比較器202根據計時器208之時間計數操作判斷電流偵測電壓VCS是否大於參考電壓VR1以及判斷電流偵測電壓VCS是否大於參考電壓VR1之情況持續了一預定時間,進而據以產生比較訊號。驅動器210耦接於比較器202之輸出端,用來接收比較訊號並據以產生一驅動訊號S2至電流偵測電路30,以控制電流偵測電路30之運作。當比較器202依據計時器208之時間計數判斷出電流偵測電壓VCS大於參考電壓VR1且電流偵測電壓VCS大於參考電壓VR1之情況持續一預定時間時,比較器202產生並輸出比較訊號至驅動器210,驅動器210據以產生控制訊號S2至電流偵測電路30之輔助開關SW2,使得輔助開關SW2因應控制訊號S2而切換至導通狀態。當比較器202判斷出電流偵測電壓VCS小於參考電壓VR1時,比較器202產生並輸出比較訊號至驅動器210,驅動器210據以產生控制訊號S2至電流偵測電路30之輔助開關SW2,使得輔助開關SW2因應控制訊號S2而切換至不導通狀態。In one embodiment, the comparator 202 compares the signals received by the first input and the second input according to the time counting signal generated by the timer 208 to generate a comparison signal. For example, the comparator 202 determines whether the current detection voltage VCS is greater than the reference voltage VR1 according to the time counting operation of the timer 208 and determines whether the current detection voltage VCS is greater than the reference voltage VR1 for a predetermined time, and accordingly generates a comparison signal. . The driver 210 is coupled to the output of the comparator 202 for receiving the comparison signal and generating a driving signal S2 to the current detecting circuit 30 for controlling the operation of the current detecting circuit 30. When the comparator 202 determines that the current detection voltage VCS is greater than the reference voltage VR1 and the current detection voltage VCS is greater than the reference voltage VR1 for a predetermined time according to the time count of the timer 208, the comparator 202 generates and outputs a comparison signal to the driver. 210. The driver 210 generates the control signal S2 to the auxiliary switch SW2 of the current detecting circuit 30, so that the auxiliary switch SW2 is switched to the conductive state according to the control signal S2. When the comparator 202 determines that the current detection voltage VCS is less than the reference voltage VR1, the comparator 202 generates and outputs a comparison signal to the driver 210, and the driver 210 generates the control signal S2 to the auxiliary switch SW2 of the current detecting circuit 30, so as to assist The switch SW2 is switched to the non-conducting state in response to the control signal S2.

比較器204之第一輸入端用來接收電流偵測電壓VCS,且比較器204之第二輸入端用來接收一參考電壓VR2。在一實施例中,當電流偵測電壓VCS大於參考電壓VR2時,比較器204產生過電壓控制訊號以啟動過電壓保護功能,進而控制第一控制電路20切換至關機狀態。比較器206之第一輸入端用來接收電流偵測電壓VCS,且比較器206之第二輸入端用來接收一參考電壓VR3。在一實施例中,當電流偵測電壓VCS大於參考電壓VR3時,比較器206產生控制訊號S1至引腳GD1,以控制功率開關SW1切換至不導通狀態。簡言之,比較器204與比較器206分別依據參考電壓VR2與VR3執行過電壓保護功能以限制第一控制電路20與功率開關SW1的運作,進而達到保護電壓轉換器本身與其所供應電源之電子產品。The first input of the comparator 204 is for receiving the current detection voltage VCS, and the second input of the comparator 204 is for receiving a reference voltage VR2. In one embodiment, when the current detection voltage VCS is greater than the reference voltage VR2, the comparator 204 generates an overvoltage control signal to activate the overvoltage protection function, thereby controlling the first control circuit 20 to switch to the shutdown state. The first input of the comparator 206 is for receiving the current detection voltage VCS, and the second input of the comparator 206 is for receiving a reference voltage VR3. In one embodiment, when the current detection voltage VCS is greater than the reference voltage VR3, the comparator 206 generates the control signal S1 to the pin GD1 to control the power switch SW1 to switch to the non-conduction state. In short, the comparator 204 and the comparator 206 perform an overvoltage protection function according to the reference voltages VR2 and VR3, respectively, to limit the operation of the first control circuit 20 and the power switch SW1, thereby achieving protection of the voltage converter itself and the power supply thereof. product.

電流偵測電路30包含有一輔助開關SW2以及電阻RC1、RC2。電阻RC1之第一端耦接於功率開關SW1之第三端、電阻RA之第二端、輔助開關SW2之第一端以及第一控制電路20之引腳CS。電阻RC1之第二端耦接於第一接地GND1。如第1圖所示,輔助繞組NA之第一端經由二極體DA以及電阻RA耦接至功率開關SW1之第三端。電流偵測電壓VCS經由電阻RC1之第一端輸出至第一控制電路20之引腳CS。輔助開關SW2之第一端耦接於功率開關SW1之第三端、電阻RA之第二端以及第一控制電路20之引腳CS,輔助開關SW2之第二端耦接於第一控制電路20之引腳GD2,用以接收控制訊號S2。輔助開關SW2之第三端耦接於電阻RC2。輔助開關SW2可依據控制訊號S2之電位來控制第一端和第三端之間的訊號傳送路徑,以呈現導通狀態(短路)或不導通狀態(開路)。電阻RC2之第一端耦接於輔助開關SW2之第三端,電阻RC2之第二端耦接於第一接地GND1。The current detecting circuit 30 includes an auxiliary switch SW2 and resistors RC1, RC2. The first end of the resistor RC1 is coupled to the third end of the power switch SW1, the second end of the resistor RA, the first end of the auxiliary switch SW2, and the pin CS of the first control circuit 20. The second end of the resistor RC1 is coupled to the first ground GND1. As shown in FIG. 1, the first end of the auxiliary winding NA is coupled to the third end of the power switch SW1 via the diode DA and the resistor RA. The current detecting voltage VCS is output to the pin CS of the first control circuit 20 via the first end of the resistor RC1. The first end of the auxiliary switch SW2 is coupled to the third end of the power switch SW1, the second end of the resistor RA, and the pin CS of the first control circuit 20, and the second end of the auxiliary switch SW2 is coupled to the first control circuit 20 The pin GD2 is used to receive the control signal S2. The third end of the auxiliary switch SW2 is coupled to the resistor RC2. The auxiliary switch SW2 can control the signal transmission path between the first end and the third end according to the potential of the control signal S2 to present an on state (short circuit) or a non-conduction state (open circuit). The first end of the resistor RC2 is coupled to the third end of the auxiliary switch SW2, and the second end of the resistor RC2 is coupled to the first ground GND1.

第二控制電路40可為一積體電路裝置。第二控制電路40包含有引腳GD3、Vdd及SYSTEM。第二控制電路40可經由引腳Vdd接收一電源電壓VDD並據以進行相關運作。第二控制電路40可經由引腳SYSTEM接收系統訊號SS。系統訊號SS用以指示電壓轉換器1提供輸出電壓VO為第一輸出電壓值V1或第二輸出電壓值V2。第二控制電路40根據系統訊號SS產生一控制訊號S3。第二控制電路40可經由引腳GD3輸出控制訊號S3至輸出電壓切換電路50。The second control circuit 40 can be an integrated circuit device. The second control circuit 40 includes pins GD3, Vdd, and SYSTEM. The second control circuit 40 can receive a power supply voltage VDD via the pin Vdd and perform related operations accordingly. The second control circuit 40 can receive the system signal SS via the pin SYSTEM. The system signal SS is used to instruct the voltage converter 1 to provide the output voltage VO as the first output voltage value V1 or the second output voltage value V2. The second control circuit 40 generates a control signal S3 based on the system signal SS. The second control circuit 40 can output the control signal S3 to the output voltage switching circuit 50 via the pin GD3.

輸出電壓切換電路50包含有一穩壓器502、輔助開關SW3、電阻RS1~RS3。電阻RS1之第一端耦接於輸出端OUT,以及電阻RS1之第二端耦接於電阻RS3。輔助開關SW3之第一端耦接於輸出端OUT,輔助開關SW3之第二端耦接於第二控制電路40之引腳GD3,用以接收控制訊號S3。輔助開關SW3之第三端耦接於電阻RS2。輔助開關SW3可依據控制訊號S3之電位來控制第一端和第三端之間的訊號傳送路徑,以呈現導通狀態(短路)或不導通狀態(開路)。電阻RS2之第一端耦接於輔助開關SW3之第三端,以及電阻RS2之第二端耦接於電阻RS3。電阻RS3之第一端耦接於電阻RS1之第二端、電阻RS2之第二端、穩壓器502以及回授電路60,以及電阻RS3之第二端耦接於第二接地GND2。穩壓器502耦接於電阻RS3之第一端以及第二接地GND2,用來控制電阻RS3之一跨壓VRS3,使得電阻RS3之跨壓VRS3具有一固定電壓差值。穩壓器502可為一TL431穩壓晶片,但並不以此限。在一實施例中,當該系統訊號SS指示輸出電壓VO為第一輸出電壓值V1時,第二控制電路40據以產生控制訊號S3,使得輔助開關SW3因應控制訊號S3而處於不導通狀態。當系統訊號SS指示輸出電壓VO為第二輸出電壓值V2時,第二控制電路40據以產生控制訊號S3,使得輔助開關SW3因應控制訊號S3切換至導通狀態。此外,回授電路60包含有一光電耦合器602、電阻R1~R2、電容C1~C3。光電耦合器602可為一PC817光電耦合器,但並不以此限。The output voltage switching circuit 50 includes a voltage regulator 502, an auxiliary switch SW3, and resistors RS1 to RS3. The first end of the resistor RS1 is coupled to the output terminal OUT, and the second end of the resistor RS1 is coupled to the resistor RS3. The first end of the auxiliary switch SW3 is coupled to the output terminal OUT, and the second end of the auxiliary switch SW3 is coupled to the pin GD3 of the second control circuit 40 for receiving the control signal S3. The third end of the auxiliary switch SW3 is coupled to the resistor RS2. The auxiliary switch SW3 can control the signal transmission path between the first end and the third end according to the potential of the control signal S3 to present an on state (short circuit) or a non-conduction state (open circuit). The first end of the resistor RS2 is coupled to the third end of the auxiliary switch SW3, and the second end of the resistor RS2 is coupled to the resistor RS3. The first end of the resistor RS3 is coupled to the second end of the resistor RS1, the second end of the resistor RS2, the voltage regulator 502 and the feedback circuit 60, and the second end of the resistor RS3 is coupled to the second ground GND2. The voltage regulator 502 is coupled to the first end of the resistor RS3 and the second ground GND2 for controlling one of the resistors RS3 across the voltage VRS3 such that the voltage across the voltage VRS3 of the resistor RS3 has a fixed voltage difference. The voltage regulator 502 can be a TL431 voltage regulator chip, but is not limited thereto. In one embodiment, when the system signal SS indicates that the output voltage VO is the first output voltage value V1, the second control circuit 40 generates the control signal S3 such that the auxiliary switch SW3 is in a non-conducting state in response to the control signal S3. When the system signal SS indicates that the output voltage VO is the second output voltage value V2, the second control circuit 40 generates the control signal S3, so that the auxiliary switch SW3 is switched to the on state according to the control signal S3. In addition, the feedback circuit 60 includes a photocoupler 602, resistors R1 R R2, and capacitors C1 C C3. The photocoupler 602 can be a PC817 optocoupler, but is not limited thereto.

請參考第2圖,第2圖為第1圖之電壓轉換器1之相關訊號波形圖。其中電壓VGS_Q1為功率開關SW1之閘源極電壓,電壓VGS_Q2為輔助開關SW2之閘源極電壓,電壓VGS_Q3為輔助開關SW3之閘源極電壓。在本實施例中,電壓轉換器1可提供輸出電壓VO為一第一輸出電壓值V1(例如19伏特)或一第二輸出電壓值V2(例如25伏特)。首先,於時間T0~T1期間,電壓轉換器1尚未上電,功率開關SW1、輔助開關SW2及輔助開關SW3皆為不導通狀態(截止狀態),輸出電壓VO為0。Please refer to FIG. 2, which is a related signal waveform diagram of the voltage converter 1 of FIG. The voltage VGS_Q1 is the gate voltage of the power switch SW1, the voltage VGS_Q2 is the gate voltage of the auxiliary switch SW2, and the voltage VGS_Q3 is the gate voltage of the auxiliary switch SW3. In the present embodiment, the voltage converter 1 can provide the output voltage VO as a first output voltage value V1 (eg, 19 volts) or a second output voltage value V2 (eg, 25 volts). First, during the period T0 to T1, the voltage converter 1 is not yet powered up, and the power switch SW1, the auxiliary switch SW2, and the auxiliary switch SW3 are all in a non-conducting state (off state), and the output voltage VO is zero.

於時間T1時,電壓轉換器1上電。此時,功率開關SW1、輔助開關SW2及輔助開關SW3仍為不導通狀態,而一次側繞組NP之繞組電壓VNP、二次側繞組NS之繞組電壓VNS以及輸出電壓VO逐漸上升。如第2圖所示,於時間T1~T2期間,輸出電壓VO逐漸上升。如第3圖所示,於時間T1~T2期間,由於輔助開關SW2為不導通狀態,電阻RC2為開路狀態。如此一來,耦接於功率開關SW1與第一接地GND1之間的負載電阻的總電阻值為電阻RC1之電阻值。再者,由於第二控制電路40尚未開始運作,輔助開關SW3為不導通狀態且電阻RS2為開路狀態。在此情況下,輸出電壓切換電路50之輸出分壓電阻為電阻RS1與電阻RS3。輸出電壓切換電路50中之總分壓電阻值(即由輸出端OUT至第二接地GND2之間的總電阻值)為電阻RS1與電阻RS3之串聯電阻值。接著,於時間T2時,第一控制電路20開始運作且第一控制電路20輸出控制訊號S1以控制功率開關SW1切換至導通狀態。如第2圖所示,於時間T2~T3期間,輸出電壓VO持續上升。At time T1, voltage converter 1 is powered up. At this time, the power switch SW1, the auxiliary switch SW2, and the auxiliary switch SW3 are still in a non-conducting state, and the winding voltage VNP of the primary winding NP, the winding voltage VNS of the secondary winding NS, and the output voltage VO gradually rise. As shown in Fig. 2, the output voltage VO gradually rises during the period from time T1 to time T2. As shown in FIG. 3, during the period from time T1 to time T2, since the auxiliary switch SW2 is in a non-conduction state, the resistor RC2 is in an open state. In this way, the total resistance of the load resistor coupled between the power switch SW1 and the first ground GND1 is the resistance value of the resistor RC1. Furthermore, since the second control circuit 40 has not yet started to operate, the auxiliary switch SW3 is in a non-conducting state and the resistor RS2 is in an open state. In this case, the output voltage dividing resistor of the output voltage switching circuit 50 is the resistor RS1 and the resistor RS3. The total voltage dividing resistance value (ie, the total resistance value between the output terminal OUT and the second ground GND2) in the output voltage switching circuit 50 is a series resistance value of the resistor RS1 and the resistor RS3. Next, at time T2, the first control circuit 20 starts operating and the first control circuit 20 outputs a control signal S1 to control the power switch SW1 to switch to the on state. As shown in Fig. 2, during the period from T2 to T3, the output voltage VO continues to rise.

於時間T3時,功率開關SW1仍處於導通狀態。第二控制電路40開始運作並輸出控制訊號S3以控制功率開關SW3切換至導通狀態。如第4圖所示,由於功率開關SW3依據控制訊號S3而切換至導通狀態,此時輸出電壓切換電路50之輸出分壓電阻為電阻RS1、電阻RS2與電阻RS3。輸出電壓切換電路50中之總分壓電阻值(即由輸出端OUT至第二接地GND2之間的總電阻值)為電阻RS1與電阻RS2並聯後再與電阻RS3串聯之等效電阻值。由於電阻RS1與電阻RS2並聯後的並聯電阻值會小於單一電阻RS1之電阻值。如第2圖所示,於時間T3~T4期間,輸出電壓VO持續上升,功率開關SW1持續維持在導通狀態。例如,經由穩壓器502之控制電阻RS3之跨壓VRS3為2.5伏特。輸出電壓VO=(2.5伏特∕電阻RS3)*(電阻RS1‖電阻RS2)+2.5伏特。At time T3, the power switch SW1 is still in an on state. The second control circuit 40 starts operating and outputs a control signal S3 to control the power switch SW3 to switch to the on state. As shown in FIG. 4, since the power switch SW3 is switched to the on state according to the control signal S3, the output voltage dividing resistor of the output voltage switching circuit 50 is the resistor RS1, the resistor RS2, and the resistor RS3. The total voltage dividing resistance value (ie, the total resistance value between the output terminal OUT and the second ground GND2) in the output voltage switching circuit 50 is an equivalent resistance value in which the resistor RS1 is connected in parallel with the resistor RS2 and then connected in series with the resistor RS3. The parallel resistance value after the resistor RS1 is connected in parallel with the resistor RS2 is smaller than the resistance value of the single resistor RS1. As shown in FIG. 2, during the period from time T3 to time T4, the output voltage VO continues to rise, and the power switch SW1 is continuously maintained in the on state. For example, the voltage across the control resistor RS3 of the regulator 502, VRS3, is 2.5 volts. Output voltage VO = (2.5 volts ∕ resistance RS3) * (resistance RS1 ‖ resistance RS2) + 2.5 volts.

於時間T4時,輸出電壓VO到達第一輸出電壓值V1,第一控制電路20產生相應控制訊號S1來控制功率開關SW1開始進行切換運作,例如脈波寬度調變(Pulse Width Modulation,PWM)切換。如此一來,於時間T4~T5期間,如第2圖所示,輸出電壓VO維持在第一輸出電壓值V1,功率開關SW3持續維持於導通狀態,電流偵測電壓VCS維持低於參考電壓VR3。At time T4, the output voltage VO reaches the first output voltage value V1, and the first control circuit 20 generates a corresponding control signal S1 to control the power switch SW1 to start switching operation, such as Pulse Width Modulation (PWM) switching. . In this way, during the period from time T4 to T5, as shown in FIG. 2, the output voltage VO is maintained at the first output voltage value V1, the power switch SW3 is maintained in the on state, and the current detection voltage VCS is maintained below the reference voltage VR3. .

於時間T5時,第二控制電路40經由引腳SYSTEM接收系統訊號SS以指示將輸出電壓VO切換至第二輸出電壓值V2。第二控制電路40依據系統訊號SS輸出相應控制訊號S3以控制功率開關SW3切換至不導通狀態。此時電阻RC2變為開路狀態。如第3圖所示,輸出電壓切換電路50之輸出分壓電阻為電阻RS1與電阻RS3。輸出電壓切換電路50之總分壓電阻值變為電阻RS1與電阻RS3之串聯電阻值。由於各別電阻之電阻值會大於各別電阻與其他電阻並聯後的等效電阻值,電阻RS1之電阻值將會大於時間T3~T5期間電阻RS1與電阻RS2並聯後之等效電阻。也就是說,輸出電壓切換電路50中之電阻RS1與電阻RS3之串聯電阻值將會大於時間T3~T5期間電阻RS1與電阻RS2並聯後再與電阻RS3串聯之串聯電阻值。同時,由於穩壓器502會將電阻RS3之跨壓VRS3維持在一固定值(例如2.5伏特),而流過電阻RS3之電流不變(例如流過電阻RS3之電流=2.5伏特/RS3)。在此情況下,針對輸出電壓切換電路50而言,在總分壓電阻值變大而電流不變的情況下,輸出端OUT至電阻RS3之間的跨壓(即電阻RS1之跨壓)會增加,如此一來,輸出電壓VO亦會增加。如第2圖所示,於時間T5~T6期間,輸出電壓VO持續增加,電流偵測電壓VCS亦持續增加。換言之,經由第二控制電路40之控制,輸出電壓切換電路50由一第一輸出電壓模式切換至一第二輸出電壓模式,輸出電壓VO可由第一輸出電壓值V1繼續往上增加,進而提供第二輸出電壓值V2之輸出。At time T5, the second control circuit 40 receives the system signal SS via the pin SYSTEM to instruct switching the output voltage VO to the second output voltage value V2. The second control circuit 40 outputs a corresponding control signal S3 according to the system signal SS to control the power switch SW3 to switch to the non-conduction state. At this time, the resistor RC2 becomes an open state. As shown in FIG. 3, the output voltage dividing resistor of the output voltage switching circuit 50 is a resistor RS1 and a resistor RS3. The total voltage dividing resistance value of the output voltage switching circuit 50 becomes the series resistance value of the resistor RS1 and the resistor RS3. Since the resistance value of each resistor is greater than the equivalent resistance value of each resistor in parallel with other resistors, the resistance value of the resistor RS1 will be greater than the equivalent resistance of the resistor RS1 and the resistor RS2 in parallel during the time T3 to T5. That is to say, the series resistance value of the resistor RS1 and the resistor RS3 in the output voltage switching circuit 50 will be greater than the series resistance value of the resistor RS1 in parallel with the resistor RS2 and then in series with the resistor RS3 during the time T3 to T5. At the same time, since the voltage regulator 502 maintains the voltage across the voltage VRS3 of the resistor RS3 at a fixed value (for example, 2.5 volts), the current flowing through the resistor RS3 does not change (for example, the current flowing through the resistor RS3 = 2.5 volts/RS3). In this case, for the output voltage switching circuit 50, when the total voltage dividing resistance value becomes large and the current does not change, the voltage across the output terminal OUT to the resistor RS3 (ie, the voltage across the resistor RS1) Will increase, as a result, the output voltage VO will also increase. As shown in Fig. 2, during the period from time T5 to time T6, the output voltage VO continues to increase, and the current detection voltage VCS also continues to increase. In other words, the output voltage switching circuit 50 is switched from a first output voltage mode to a second output voltage mode by the control of the second control circuit 40, and the output voltage VO can be continuously increased by the first output voltage value V1, thereby providing the first The output of the second output voltage value V2.

於時間T6時,比較器202判斷出電流偵測電壓VCS大於參考電壓VR1。如第2圖所示,假設時間T6~T7期間的時間長度為D(例如時間長度D可為200微秒(μs))。於時間T6~T7期間,比較器202依據計時器208之時間計數判斷出電流偵測電壓VCS皆大於參考電壓VR1之情況持續了預定時間D。由於發生非預期或不想要的系統過電壓問題通常電壓瞬間急升而且持續時間極短。例如當回授電路60之光電耦合器602發生短路時,輸出電壓 VO會急速上升,二次側繞組NS之繞組電壓VNS也會急速上升,感應至輔助繞組NA之繞組電壓VNA也會跟著急速上升而且持續時間極短。也就是說,當電流偵測電壓VCS皆大於參考電壓VR1之情況持續了預定時間D,這表示電流偵測電壓VCS的提昇是切換輸出電壓所產生,並不是非預期或不想要的系統過電壓問題。At time T6, the comparator 202 determines that the current detection voltage VCS is greater than the reference voltage VR1. As shown in Fig. 2, it is assumed that the length of time during the period from time T6 to time T7 is D (e.g., the length of time D can be 200 microseconds (μs)). During the period from time T6 to time T7, the comparator 202 determines that the current detection voltage VCS is greater than the reference voltage VR1 according to the time count of the timer 208 for a predetermined time D. Due to unexpected or unwanted system overvoltage problems, the voltage typically rises sharply and the duration is extremely short. For example, when the photocoupler 602 of the feedback circuit 60 is short-circuited, the output voltage VO will rise rapidly, and the winding voltage VNS of the secondary winding NS will rise rapidly, and the winding voltage VNA induced to the auxiliary winding NA will also rise rapidly. And the duration is extremely short. That is to say, when the current detection voltage VCS is greater than the reference voltage VR1 for a predetermined time D, this means that the rise of the current detection voltage VCS is generated by switching the output voltage, and is not an unexpected or unwanted system overvoltage. problem.

因此,於時間T7,當比較器202判斷出T6~T7期間電流偵測電壓VCS皆大於參考電壓VR1,比較器202產生並輸出比較訊號至驅動器210以通知驅動器210開啟輔助開關SW2。驅動器210據以產生控制訊號S2至輔助開關SW2,使得輔助開關SW2因應控制訊號S2而切換至導通狀態。因此,如第5圖所示,耦接於開關SW1與第一接地GND1之間的負載電阻的總電阻值為電阻RC1與電阻RC2並聯後的並聯電阻值。由於電阻並聯後的等效電阻將小於各別電阻之電阻值,如此一來,相較於電阻RC1之電阻值,耦接於開關SW1與第一接地GND1之間的負載電阻的總電阻值變小(電阻RC1與電阻RC2之並聯電阻值<電阻RC1之電阻值),如此一來,電流偵測電壓VCS將會下降,而可容許有較高的輸出電壓VO才會使電流偵測電壓VCS達到過電壓保護的觸發電壓。於時間T7之後,輸出電壓VO持續上升直到達第二輸出電壓值V2。換言之,本發明實施例之電壓轉換器1依據系統需求而於時間T4~T5期間提供第一輸出電壓值V1之輸出電壓VO。於時間T5之後,第二控制電路40依據系統需求而控制輸出電壓切換電路50進行切換,使得電壓轉換器1可於時間T7之後提供第二輸出電壓值V1之輸出電壓VO。Therefore, at time T7, when the comparator 202 determines that the current detection voltage VCS is greater than the reference voltage VR1 during T6 to T7, the comparator 202 generates and outputs a comparison signal to the driver 210 to notify the driver 210 to turn on the auxiliary switch SW2. The driver 210 generates the control signal S2 to the auxiliary switch SW2 so that the auxiliary switch SW2 switches to the on state in response to the control signal S2. Therefore, as shown in FIG. 5, the total resistance of the load resistor coupled between the switch SW1 and the first ground GND1 is the parallel resistance value of the resistor RC1 and the resistor RC2 in parallel. Since the equivalent resistance of the resistors in parallel is smaller than the resistance value of the respective resistors, the total resistance value of the load resistor coupled between the switch SW1 and the first ground GND1 is changed compared to the resistance value of the resistor RC1. Small (resistance value of resistor RC1 and resistor RC2 < resistance value of resistor RC1), so that the current detection voltage VCS will drop, and a higher output voltage VO can be allowed to make the current detection voltage The VCS reaches the trigger voltage for overvoltage protection. After time T7, the output voltage VO continues to rise until the second output voltage value V2 is reached. In other words, the voltage converter 1 of the embodiment of the present invention provides the output voltage VO of the first output voltage value V1 during the time T4 to T5 according to the system requirements. After time T5, the second control circuit 40 controls the output voltage switching circuit 50 to switch according to system requirements, so that the voltage converter 1 can provide the output voltage VO of the second output voltage value V1 after time T7.

綜上所述,本發明實施例之電壓轉換器1可依據系統需求而切換輸出不同輸出電壓。並且,經由第一控制電路20與電流偵測電路30之協同運作,於低輸出電壓切換至高輸出電壓之時電流偵測電壓VCS得以適時調整而不需針對不同輸出電壓另行調整用來執行過電壓保護功能之比較器204與比較器206所應用之參考電壓VR2與VR3的設定。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, the voltage converter 1 of the embodiment of the present invention can switch and output different output voltages according to system requirements. Moreover, through the cooperation of the first control circuit 20 and the current detecting circuit 30, the current detecting voltage VCS can be timely adjusted when the low output voltage is switched to the high output voltage without separately adjusting the output voltage for performing the overvoltage. The setting of the protection function comparator 204 and the reference voltages VR2 and VR3 applied by the comparator 206.  The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.  

1‧‧‧電壓轉換器1‧‧‧Voltage Converter

10‧‧‧變壓器 10‧‧‧Transformers

20‧‧‧第一控制電路 20‧‧‧First control circuit

202、204、206‧‧‧比較器 202, 204, 206‧‧‧ comparator

208‧‧‧計時器 208‧‧‧Timer

210‧‧‧驅動器 210‧‧‧ drive

30‧‧‧電流偵測電路 30‧‧‧ Current detection circuit

40‧‧‧第二控制電路 40‧‧‧Second control circuit

50‧‧‧輸出電壓切換電路 50‧‧‧Output voltage switching circuit

502‧‧‧穩壓器 502‧‧‧ Voltage Regulator

60‧‧‧回授電路 60‧‧‧Return circuit

602‧‧‧光電耦合器 602‧‧‧Photocoupler

C1~C3、CA、CO‧‧‧電容 C1~C3, CA, CO‧‧‧ capacitor

CS、FB、GD1~GD3、SGND、SYSTEM、Vcc、Vdd‧‧‧引腳 CS, FB, GD1~GD3, SGND, SYSTEM, Vcc, Vdd‧‧‧ pins

DA、DO‧‧‧二極體 DA, DO‧‧‧ diode

GND1‧‧‧第一接地 GND1‧‧‧First ground

GND2‧‧‧第二接地 GND2‧‧‧Second ground

ICS‧‧‧一次側繞組電流 ICS‧‧‧ primary side winding current

IN‧‧‧輸入端 IN‧‧‧ input

NA‧‧‧輔助繞組 NA‧‧‧Auxiliary winding

NP‧‧‧一次側繞組 NP‧‧‧ primary winding

NS‧‧‧二次側繞組 NS‧‧‧ secondary winding

OUT‧‧‧輸出端 OUT‧‧‧ output

R1~R2、RA、RC1~RC2、RS1~RS3‧‧‧電阻 R1~R2, RA, RC1~RC2, RS1~RS3‧‧‧ resistance

S1~S3‧‧‧控制訊號 S1~S3‧‧‧ control signal

SS‧‧‧系統訊號 SS‧‧‧ system signal

SW1‧‧‧功率開關 SW1‧‧‧ power switch

SW2~SW3‧‧‧輔助開關 SW2~SW3‧‧‧Auxiliary switch

VCC、VDD‧‧‧電源電壓 VCC, VDD‧‧‧ power supply voltage

VCS‧‧‧電流偵測電壓 VCS‧‧‧ current detection voltage

VGS_Q1、VGS_Q2、VGS_Q3‧‧‧電壓 VGS_Q1, VGS_Q2, VGS_Q3‧‧‧ voltage

VI‧‧‧輸入電壓 VI‧‧‧Input voltage

VNA‧‧‧輔助繞組電壓 VNA‧‧‧Auxiliary winding voltage

VNP、VNS‧‧‧繞組電壓 VNP, VNS‧‧‧ winding voltage

VO‧‧‧輸出電壓 VO‧‧‧ output voltage

VR1~VR3‧‧‧參考電壓 VR1 ~ VR3‧‧‧ reference voltage

VRS3‧‧‧跨壓 VRS3‧‧‧ cross pressure

第1圖為本發明實施例之一電壓轉換器之示意圖。 第2圖為第1圖之電壓轉換器之相關訊號波形圖。 第3圖至第5圖為本發明實施例之電壓轉換器於運作時之等效電路示意圖。 FIG. 1 is a schematic diagram of a voltage converter according to an embodiment of the present invention.  Figure 2 is a waveform diagram of the associated signal of the voltage converter of Figure 1.  3 to 5 are schematic diagrams showing an equivalent circuit of the voltage converter in operation of the embodiment of the present invention.  

Claims (9)

一種電壓轉換器,包含有:
一變壓器,包含有一一次側繞組、一二次側繞組以及一輔助繞組,用來將一輸入電壓轉換成一輸出電壓;
一功率開關,該功率開關之一第一端耦接於該一次側繞組;
一第一控制電路,耦接於該功率開關之一第二端,用來根據一電流偵測電壓產生一第一控制訊號以控制該功率開關之運作以及產生一第二控制訊號;以及
一電流偵測電路,耦接於該功率開關之一第三端、該第一控制電路以及該輔助繞組,用來根據該第二控制訊號感測該電流偵測電壓以提供至該第一控制電路。
A voltage converter comprising:
a transformer comprising a primary side winding, a secondary side winding and an auxiliary winding for converting an input voltage into an output voltage;
a power switch, a first end of the power switch is coupled to the primary side winding;
a first control circuit coupled to the second end of the power switch for generating a first control signal according to a current detection voltage to control operation of the power switch and generating a second control signal; and a current The detecting circuit is coupled to the third end of the power switch, the first control circuit and the auxiliary winding for sensing the current detecting voltage according to the second control signal to be provided to the first control circuit.
如申請專利範圍第1項所述之電壓轉換器,其中該電流偵測電路包含有:
一第一電阻,該第一電阻之一第一端耦接於該功率開關之該第三端、該第一控制電路以及該輔助繞組,該電流偵測電壓經由該第一電阻之該第一端輸出至該第一控制電路,且該第一電阻之一第二端耦接於一第一接地,其中該輔助繞組之一第一端經由一二極體以及一電阻耦接至於該功率開關之該第三端;
一第一輔助開關,該第一輔助開關之一第一端耦接於該功率開關之該第三端、該第一控制電路以及該輔助繞組,該第一輔助開關之一第二端接於該第一控制電路,用來接收該第二控制訊號;以及
一第二電阻,該第二電阻之一第一端耦接於該第一輔助開關之一第三端,該第二電阻之一第二端耦接於該第一接地。
The voltage converter of claim 1, wherein the current detecting circuit comprises:
a first resistor, a first end of the first resistor is coupled to the third end of the power switch, the first control circuit and the auxiliary winding, and the current detecting voltage is first through the first resistor The first end of the first resistor is coupled to a first ground, wherein the first end of the auxiliary winding is coupled to the power switch via a diode and a resistor The third end;
a first auxiliary switch, a first end of the first auxiliary switch is coupled to the third end of the power switch, the first control circuit and the auxiliary winding, and one of the first auxiliary switches is second terminated The first control circuit is configured to receive the second control signal; and a second resistor, the first end of the second resistor is coupled to the third end of the first auxiliary switch, and the second resistor is The second end is coupled to the first ground.
如申請專利範圍第2項所述之電壓轉換器,其中該第一控制電路包含有:
一計時器,用來計數一預定時間;
一比較器,包含有一第一輸入端、一第二輸入端以及一輸出端,該比較器用來根據該計時器之計數運作比較該第一輸入端與該第二輸入端所接收之訊號以產生一比較訊號,其中該第一輸入端用來接收該電流偵測電壓,該第二輸入端用來接收一參考電壓,以及該輸出端用來輸出該比較訊號;以及
一驅動器,耦接於該比較器之該輸出端,用來根據該比較訊號產生該第二控制訊號。
The voltage converter of claim 2, wherein the first control circuit comprises:
a timer for counting a predetermined time;
a comparator includes a first input terminal, a second input terminal, and an output terminal, wherein the comparator is configured to compare the signals received by the first input terminal and the second input terminal according to the counting of the timer to generate a comparison signal, wherein the first input terminal is configured to receive the current detection voltage, the second input terminal is configured to receive a reference voltage, and the output terminal is configured to output the comparison signal; and a driver coupled to the The output of the comparator is configured to generate the second control signal according to the comparison signal.
如申請專利範圍第3項所述之電壓轉換器,其中當該電流偵測電壓大於該參考電壓且該電流偵測電壓大於該參考電壓之情況持續該預定時間時,該比較器產生並輸出該比較訊號至該驅動器,該驅動器據以產生該第二控制訊號至該第一輔助開關,以及該第一輔助開關因應該第二控制訊號而處於導通狀態。The voltage converter of claim 3, wherein the comparator generates and outputs the current detection voltage when the current detection voltage is greater than the reference voltage and the current detection voltage is greater than the reference voltage for the predetermined time. Comparing the signal to the driver, the driver generates the second control signal to the first auxiliary switch, and the first auxiliary switch is in an on state according to the second control signal. 如申請專利範圍第3項所述之電壓轉換器,其中當該電流偵測電壓小於該參考電壓時該比較器產生並輸出該比較訊號至該驅動器,該驅動器據以產生該第二控制訊號至該第一輔助開關,以及該第一輔助開關因應該第二控制訊號而處於不導通狀態。The voltage converter of claim 3, wherein the comparator generates and outputs the comparison signal to the driver when the current detection voltage is less than the reference voltage, and the driver generates the second control signal accordingly. The first auxiliary switch and the first auxiliary switch are in a non-conducting state according to the second control signal. 如申請專利範圍第1項所述之電壓轉換器,其另包含︰
一第二控制電路,用來根據一系統訊號產生一第三控制訊號;以及
一輸出電壓切換電路,包含有︰
一第三電阻,該第三電阻之一第一端耦接於該二次側繞組之一第一端;
一第四電阻,該第四電阻之一第一端耦接於該第三電阻之一第二端,該第四電阻之一第二端耦接於一第二接地;
一穩壓器,耦接於第四電阻之該第一端以及該第二接地,用來控制該第四電阻之一跨壓,使得該第四電阻之該跨壓具有一固定電壓差值;
一第二輔助開關,該第二輔助開關之一第一端耦接於該二次側繞組之一第一端以及該第三電阻之該第一端,該第二輔助開關之一第二端接於該第二控制電路,用來接收該第三控制訊號;以及
一第五電阻,該第五電阻之一第一端耦接於該第二輔助開關之一第三端,該第五電阻之一第二端耦接於該第三電阻之該第二端、該第四電阻之該第一端以及該穩壓器。
The voltage converter described in claim 1 of the patent scope, further comprising:
a second control circuit for generating a third control signal according to a system signal; and an output voltage switching circuit comprising:
a third resistor, a first end of the third resistor is coupled to one of the first ends of the secondary winding;
a fourth resistor, the first end of the fourth resistor is coupled to the second end of the third resistor, and the second end of the fourth resistor is coupled to a second ground;
a voltage regulator coupled to the first end of the fourth resistor and the second ground for controlling a voltage across the fourth resistor such that the voltage across the fourth resistor has a fixed voltage difference;
a second auxiliary switch, a first end of the second auxiliary switch is coupled to the first end of the second side winding and the first end of the third resistor, and the second end of the second auxiliary switch Connected to the second control circuit for receiving the third control signal; and a fifth resistor, the first end of the fifth resistor is coupled to the third end of the second auxiliary switch, the fifth resistor One second end is coupled to the second end of the third resistor, the first end of the fourth resistor, and the voltage regulator.
如申請專利範圍第6項所述之電壓轉換器,其中於該系統訊號指示該輸出電壓為一第一輸出電壓值時,該第二控制電路據以產生該第三控制訊號以及該第二輔助開關因應該第三控制訊號而處於不導通狀態。The voltage converter of claim 6, wherein the second control circuit generates the third control signal and the second auxiliary when the system signal indicates that the output voltage is a first output voltage value The switch is in a non-conducting state due to the third control signal. 如申請專利範圍第7項所述之電壓轉換器,其中於該系統訊號指示該輸出電壓為一第二輸出電壓值時,該第二控制電路據以產生該第三控制訊號以及該第二輔助開關因應該第三控制訊號而處於導通狀態,其中該第一輸出電壓值小於該第二輸出電壓值。The voltage converter of claim 7, wherein the second control circuit generates the third control signal and the second auxiliary when the system signal indicates that the output voltage is a second output voltage value The switch is in an on state due to the third control signal, wherein the first output voltage value is less than the second output voltage value. 如申請專利範圍第6項所述之電壓轉換器,其另包含有:
一第一二極體,該第一二極體之一陽極耦接於該二次側繞組之該第一端,該第一二極體之一陰極耦接於該第三電阻之該第一端以及該第二輔助開關之該第一端;以及
一第一電容,該第一電容之一第一端耦接於該第一二極體之該陰極、該第三電阻之該第一端以及該第二輔助開關之該第一端,該第一電容之一第二端耦接於該第二接地。
The voltage converter of claim 6, wherein the voltage converter further comprises:
a first diode, an anode of the first diode is coupled to the first end of the secondary winding, and a cathode of the first diode is coupled to the first of the third resistor And the first end of the second auxiliary switch; and a first capacitor, the first end of the first capacitor is coupled to the cathode of the first diode, the first end of the third resistor And the first end of the second auxiliary switch, the second end of the first capacitor is coupled to the second ground.
TW108101909A 2019-01-18 2019-01-18 Voltage converter TWI672897B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108101909A TWI672897B (en) 2019-01-18 2019-01-18 Voltage converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108101909A TWI672897B (en) 2019-01-18 2019-01-18 Voltage converter

Publications (2)

Publication Number Publication Date
TWI672897B true TWI672897B (en) 2019-09-21
TW202029625A TW202029625A (en) 2020-08-01

Family

ID=68618758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108101909A TWI672897B (en) 2019-01-18 2019-01-18 Voltage converter

Country Status (1)

Country Link
TW (1) TWI672897B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764495A (en) * 1996-05-01 1998-06-09 Compaq Computer Corporation Variable-frequency variable-input-voltage converter with minimum frequency limit
US6281606B1 (en) * 1998-04-07 2001-08-28 Mike's Train House Plural output electric train control station
US6359795B1 (en) * 1999-03-26 2002-03-19 Sarnoff Corporation Soft-switching power supply with auxiliary resonator
CN1260876C (en) * 2001-01-31 2006-06-21 松下电器产业株式会社 Switching mains
TW200743926A (en) * 2006-05-16 2007-12-01 System General Corp Switching power converter with transformer arrangement
TW201543797A (en) * 2014-05-09 2015-11-16 Richtek Technology Corp Flyback power converter and control circuit thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764495A (en) * 1996-05-01 1998-06-09 Compaq Computer Corporation Variable-frequency variable-input-voltage converter with minimum frequency limit
US6281606B1 (en) * 1998-04-07 2001-08-28 Mike's Train House Plural output electric train control station
US6359795B1 (en) * 1999-03-26 2002-03-19 Sarnoff Corporation Soft-switching power supply with auxiliary resonator
CN1260876C (en) * 2001-01-31 2006-06-21 松下电器产业株式会社 Switching mains
TW200743926A (en) * 2006-05-16 2007-12-01 System General Corp Switching power converter with transformer arrangement
TW201543797A (en) * 2014-05-09 2015-11-16 Richtek Technology Corp Flyback power converter and control circuit thereof

Also Published As

Publication number Publication date
TW202029625A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
US9083246B2 (en) Control circuit for primary side control of switching power supply
US9391525B2 (en) Power system switch protection using output driver regulation
US8559200B2 (en) Method and apparatus of low current startup circuit for switching mode power supplies
US8194425B2 (en) Frequency modulation device and switching mode power supply using the same
US20070139095A1 (en) System and method for driving bipolar transistors in switching power conversion
EP2993773A1 (en) Bidirectional current-sense circuit
JP6410554B2 (en) Switching converter and its control circuit, AC / DC converter, power adapter and electronic device
US20080055796A1 (en) Voltage converter for preventing switch device from being damaged by voltage spike by utilizing protection circuit
CN109217675B (en) Power conversion device and synchronous rectification circuit thereof
US10715027B2 (en) Driver circuit
TWI678605B (en) Power adaptor
US9484801B2 (en) Start-up regulator for high-input-voltage power converters
CN108736748B (en) Power conversion device and synchronous rectification controller thereof
CN111509979B (en) Voltage converter
TWI672897B (en) Voltage converter
TWI427301B (en) Dc-to-dc converter having test circuit
TWI795258B (en) Gate driver circuit for a power supply voltage converter
KR20080054132A (en) Power factor correction circuit
US10749444B1 (en) Power supply circuit capable of setting turn-off point
TWM597013U (en) Auxiliary power supply circuit with wide input voltage range
TWI527347B (en) Power apparatus
JP6230378B2 (en) Switching converter and its control circuit, AC / DC converter, power adapter and electronic device
US20230179084A1 (en) Controllers configured to detect demagnetization with external bipolar transistors and internal mos transistors and methods thereof
TWI837744B (en) Power supply circuit with sufficient hold time in high-frequency varying load condition
CN113839566B (en) Power supply device for eliminating overcurrent protection misoperation