TWI672797B - Semiconductor structure and manufacturing method thereof - Google Patents

Semiconductor structure and manufacturing method thereof Download PDF

Info

Publication number
TWI672797B
TWI672797B TW104127893A TW104127893A TWI672797B TW I672797 B TWI672797 B TW I672797B TW 104127893 A TW104127893 A TW 104127893A TW 104127893 A TW104127893 A TW 104127893A TW I672797 B TWI672797 B TW I672797B
Authority
TW
Taiwan
Prior art keywords
layer
spacer
gap
gate
thickness
Prior art date
Application number
TW104127893A
Other languages
Chinese (zh)
Other versions
TW201709483A (en
Inventor
郭鎮銨
江品宏
黃善禧
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW104127893A priority Critical patent/TWI672797B/en
Publication of TW201709483A publication Critical patent/TW201709483A/en
Application granted granted Critical
Publication of TWI672797B publication Critical patent/TWI672797B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一種半導體結構及其製造方法。半導體結構包括基板、第一閘極、第二閘極、第一間隙物以及第二間隙物。第一閘極及第二閘極位於基板上。第一間隙物形成於第一閘極的複數個側壁上且包括一第一間隙內層、一第一蝕刻阻擋層及一第一間隙外層,第一蝕刻阻擋層具有一L形剖面,且第一蝕刻阻擋層形成於第一間隙內層和第一間隙外層之間。第二間隙物形成於第二閘極的複數個側壁上且包括一第二間隙內層、一第二蝕刻阻擋層及一第二間隙外層,第二蝕刻阻擋層具有一L形剖面,且第二蝕刻阻擋層形成於第二間隙內層和第二間隙外層之間。第二間隙物的一厚度大於第一間隙物的一厚度。 A semiconductor structure and a method of fabricating the same. The semiconductor structure includes a substrate, a first gate, a second gate, a first spacer, and a second spacer. The first gate and the second gate are on the substrate. The first spacer is formed on the plurality of sidewalls of the first gate and includes a first gap inner layer, a first etch barrier layer and a first gap outer layer, the first etch barrier layer has an L-shaped cross section, and An etch barrier layer is formed between the first gap inner layer and the first gap outer layer. The second spacer is formed on the plurality of sidewalls of the second gate and includes a second gap inner layer, a second etch barrier layer and a second gap outer layer, the second etch barrier layer has an L-shaped cross section, and A second etch barrier layer is formed between the second gap inner layer and the second gap outer layer. A thickness of the second spacer is greater than a thickness of the first spacer.

Description

半導體結構及其製造方法 Semiconductor structure and method of manufacturing same

本揭露內容是有關於一種半導體結構及其製造方法,且特別是有關於一種具有低壓元件及高壓元件之半導體結構及其製造方法。 The present disclosure relates to a semiconductor structure and a method of fabricating the same, and more particularly to a semiconductor structure having a low voltage component and a high voltage component and a method of fabricating the same.

隨著半導體裝置的微小化及複雜化,單一裝置中通常同時配置高壓元件以及低壓邏輯元件。然而,基於此兩種元件的操作原理的不同,其結構及製作的製程也具有相當的差異。為了使此兩種元件在單一裝置中都能夠發揮最佳的效能,業界均致力於開發改良此種裝置的製程方法及效能。 With the miniaturization and complication of semiconductor devices, high-voltage components and low-voltage logic components are usually disposed in a single device at the same time. However, based on the operating principle of the two components, the structure and manufacturing process are also quite different. In order to achieve the best performance of these two components in a single device, the industry is committed to developing process methods and performance to improve such devices.

本揭露內容係有關於一種半導體結構及其製造方法。實施例中,半導體結構之高壓區的第二間隙物的厚度大於低壓區的第一間隙物的厚度,如此一來,可以降低高壓區中位於閘極和汲極區之間區域的電場,改善負閘極偏壓時發生於閘極與汲極重疊之區域的穿隧電流(gate-induced drain leakage current (GIDL))之效應,進而可以達到保有低壓區的處理速度以及高壓區的崩潰電壓之效果。 The disclosure relates to a semiconductor structure and a method of fabricating the same. In an embodiment, the thickness of the second spacer in the high voltage region of the semiconductor structure is greater than the thickness of the first spacer in the low voltage region, so that the electric field in the region between the gate and the drain region in the high voltage region can be reduced, and the improvement is improved. The gate-induced drain leakage current occurs in the region where the gate and the drain overlap in the negative gate bias. The effect of (GIDL)), in turn, can achieve the effect of maintaining the processing speed of the low pressure region and the breakdown voltage of the high voltage region.

根據本揭露內容之一實施例,係提出一種半導體結構。半導體結構包括一基板、一第一閘極、一第二閘極、一第一間隙物以及一第二間隙物。第一閘極及第二閘極位於基板上。第一間隙物形成於第一閘極的複數個側壁上且包括一第一間隙內層、一第一蝕刻阻擋層及一第一間隙外層,第一蝕刻阻擋層具有一L形剖面,且第一蝕刻阻擋層形成於第一間隙內層和第一間隙外層之間。第二間隙物形成於第二閘極的複數個側壁上且包括一第二間隙內層、一第二蝕刻阻擋層及一第二間隙外層,第二蝕刻阻擋層具有一L形剖面,且第二蝕刻阻擋層形成於第二間隙內層和第二間隙外層之間。第二間隙物的一厚度大於第一間隙物的一厚度。 In accordance with an embodiment of the present disclosure, a semiconductor structure is proposed. The semiconductor structure includes a substrate, a first gate, a second gate, a first spacer, and a second spacer. The first gate and the second gate are on the substrate. The first spacer is formed on the plurality of sidewalls of the first gate and includes a first gap inner layer, a first etch barrier layer and a first gap outer layer, the first etch barrier layer has an L-shaped cross section, and An etch barrier layer is formed between the first gap inner layer and the first gap outer layer. The second spacer is formed on the plurality of sidewalls of the second gate and includes a second gap inner layer, a second etch barrier layer and a second gap outer layer, the second etch barrier layer has an L-shaped cross section, and A second etch barrier layer is formed between the second gap inner layer and the second gap outer layer. A thickness of the second spacer is greater than a thickness of the first spacer.

根據本揭露內容之另一實施例,係提出一種半導體結構之製造方法。半導體結構之製造方法包括以下步驟:提供一基板;形成一第一閘極及一第二閘極於基板上;以及形成一第一間隙物和一第二間隙物分別於第一閘極的複數個側壁上和第二閘極的複數個側壁上。第一間隙物包括一第一間隙內層、一第一蝕刻阻擋層及一第一間隙外層,其中第一蝕刻阻擋層具有一L形剖面,且第一蝕刻阻擋層形成於第一間隙內層和第一間隙外層之間。第二間隙物包括一第二間隙內層、一第二蝕刻阻擋層及一第二間隙外層,其中第二蝕刻阻擋層具有一L形剖面,且第二蝕刻阻擋層形成於第二間隙內層和第二間隙外層之間。第二間隙物的一厚度大於第一間隙物的一厚度。 In accordance with another embodiment of the present disclosure, a method of fabricating a semiconductor structure is presented. The manufacturing method of the semiconductor structure includes the steps of: providing a substrate; forming a first gate and a second gate on the substrate; and forming a first spacer and a second spacer respectively at the first gate On the sidewalls and on the plurality of sidewalls of the second gate. The first spacer includes a first gap inner layer, a first etch barrier layer and a first gap outer layer, wherein the first etch barrier layer has an L-shaped cross section, and the first etch barrier layer is formed in the first gap inner layer Between the outer layer of the first gap. The second spacer includes a second gap inner layer, a second etch barrier layer and a second gap outer layer, wherein the second etch barrier layer has an L-shaped cross section, and the second etch barrier layer is formed in the second gap inner layer Between the outer layer of the second gap. A thickness of the second spacer is greater than a thickness of the first spacer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

10、20‧‧‧半導體結構 10, 20‧‧‧ semiconductor structure

100‧‧‧基板 100‧‧‧Substrate

200‧‧‧第一閘極 200‧‧‧first gate

210、310‧‧‧側壁 210, 310‧‧‧ side walls

300‧‧‧第二閘極 300‧‧‧second gate

400‧‧‧第一間隙物 400‧‧‧First spacer

400t、410t、420t、430t、500t、510t、520t、530t、600t、700t、830t、840t‧‧‧厚度 400t, 410t, 420t, 430t, 500t, 510t, 520t, 530t, 600t, 700t, 830t, 840t‧ ‧ thickness

410‧‧‧第一間隙內層 410‧‧‧The first gap inner layer

420‧‧‧第一蝕刻阻擋層 420‧‧‧First etch barrier

430‧‧‧第一間隙外層 430‧‧‧ first gap outer layer

440、540‧‧‧氮化物層 440, 540‧‧‧ nitride layer

500‧‧‧第二間隙物 500‧‧‧Second spacer

510‧‧‧第二間隙內層 510‧‧‧Second gap inner layer

520‧‧‧第二蝕刻阻擋層 520‧‧‧second etch barrier

530‧‧‧第二間隙外層 530‧‧‧ second gap outer layer

600‧‧‧第一閘極介電層 600‧‧‧First gate dielectric layer

700‧‧‧第二閘極介電層 700‧‧‧Second gate dielectric layer

810‧‧‧內層間隙物材料 810‧‧‧Internal spacer material

820‧‧‧蝕刻阻擋材料 820‧‧‧etching barrier material

830‧‧‧第一外層間隙物材料 830‧‧‧First outer spacer material

840‧‧‧第二外層間隙物材料 840‧‧‧Second outer spacer material

I、II、III、IV‧‧‧曲線 I, II, III, IV‧‧‧ curves

M‧‧‧光罩 M‧‧‧Photo Mask

第1圖繪示本揭露內容之一實施例之半導體結構之示意圖。 FIG. 1 is a schematic diagram of a semiconductor structure of an embodiment of the present disclosure.

第2圖繪示本揭露內容之一實施例之半導體結構之示意圖。 FIG. 2 is a schematic diagram of a semiconductor structure of an embodiment of the present disclosure.

第3A圖~第3E圖繪示依照本發明之一實施例之一種半導體結構之製造方法示意圖。 3A-3E are schematic views showing a method of fabricating a semiconductor structure in accordance with an embodiment of the present invention.

第4圖繪示本揭露內容之一實施例和一比較例之半導體結構之基極電流-閘極電壓(Ib-Vg)之曲線圖。 FIG. 4 is a graph showing a base current-gate voltage (Ib-Vg) of a semiconductor structure according to an embodiment of the present disclosure and a comparative example.

第5圖繪示本揭露內容之一實施例和一比較例之半導體結構之汲極電流-汲極電壓(Id-Vd)之曲線圖。 FIG. 5 is a graph showing a drain current-drain voltage (Id-Vd) of a semiconductor structure according to an embodiment of the present disclosure and a comparative example.

在此揭露內容之實施例中,係提出一種半導體結構及其製造方法。實施例中,半導體結構之高壓區的第二間隙物的厚度大於低壓區的第一間隙物的厚度,如此一來,可以降低高壓區中位於閘極和汲極區之間區域的電場,改善GIDL效應,進而可以達到保有低壓區的處理速度以及高壓區的崩潰電壓之效果。然而,實施例及對應圖式僅用以作為範例說明,並不會限縮本發明欲保護之範圍。並且,圖式及發明說明中具有相同標號的元件係為相同。此外,需注意的是,圖式上的尺寸比例並非一定按照實際產品等比例繪製,因此並非作為限縮本發明保護範圍之 用。然而,實施例僅用以作為範例說明,並不會限縮本發明欲保護之範圍。此外,實施例中之圖式係省略部份要之元件,以清楚顯示本發明之技術特點。 In the embodiments disclosed herein, a semiconductor structure and a method of fabricating the same are presented. In an embodiment, the thickness of the second spacer in the high voltage region of the semiconductor structure is greater than the thickness of the first spacer in the low voltage region, so that the electric field in the region between the gate and the drain region in the high voltage region can be reduced, and the improvement is improved. The GIDL effect can further achieve the effect of maintaining the processing speed of the low voltage region and the breakdown voltage of the high voltage region. However, the embodiments and the corresponding drawings are only intended to be illustrative, and are not intended to limit the scope of the invention. Further, elements having the same reference numerals in the drawings and the description of the invention are the same. In addition, it should be noted that the dimensional ratios on the drawings are not necessarily drawn to the scale of the actual products, and therefore are not intended to limit the scope of the present invention. use. However, the examples are for illustrative purposes only and are not intended to limit the scope of the invention. In addition, the drawings in the embodiments are omitted in order to clearly show the technical features of the present invention.

第1圖繪示本揭露內容之一實施例之半導體結構10之示意圖。如第1圖所示,半導體結構10包括一基板100、一第一閘極200、一第二閘極300、一第一間隙物400以及一第二間隙物500。第一閘極200及第二閘極300位於基板100上。第一間隙物400形成於第一閘極200的複數個側壁210上,且第一間隙物400包括一第一間隙內層410、一第一蝕刻阻擋層420及一第一間隙外層430。第一蝕刻阻擋層420具有一L形剖面,且第一蝕刻阻擋層420形成於第一間隙內層410和第一間隙外層430之間。第二間隙物500形成於第二閘極300的複數個側壁310上,且第二間隙物500包括一第二間隙內層510、一第二蝕刻阻擋層520及一第二間隙外層530。第二蝕刻阻擋層520具有一L形剖面,且第二蝕刻阻擋層520形成於第二間隙內層510和第二間隙外層530之間。第二間隙物500的厚度500t大於第一間隙物400的厚度400t。 FIG. 1 is a schematic diagram of a semiconductor structure 10 in accordance with an embodiment of the present disclosure. As shown in FIG. 1 , the semiconductor structure 10 includes a substrate 100 , a first gate 200 , a second gate 300 , a first spacer 400 , and a second spacer 500 . The first gate 200 and the second gate 300 are located on the substrate 100. The first spacer 400 is formed on the plurality of sidewalls 210 of the first gate 200, and the first spacer 400 includes a first interlayer inner layer 410, a first etch barrier layer 420, and a first gap outer layer 430. The first etch stop layer 420 has an L-shaped cross section, and the first etch stop layer 420 is formed between the first gap inner layer 410 and the first gap outer layer 430. The second spacer 500 is formed on the plurality of sidewalls 310 of the second gate 300, and the second spacer 500 includes a second gap inner layer 510, a second etch barrier layer 520, and a second gap outer layer 530. The second etch stop layer 520 has an L-shaped cross section, and the second etch stop layer 520 is formed between the second gap inner layer 510 and the second gap outer layer 530. The thickness 500t of the second spacer 500 is greater than the thickness 400t of the first spacer 400.

實施例中,第二間隙物500的厚度500t例如大於第一間隙物400的厚度400t約80%。舉例而言,第二間隙物500的厚度500t例如是大約1400埃(Å),第一間隙物400的厚度400t例如是大約860埃。 In an embodiment, the thickness 500t of the second spacer 500 is, for example, greater than about 80% of the thickness 400t of the first spacer 400. For example, the thickness 500t of the second spacer 500 is, for example, about 1400 angstroms (Å), and the thickness 400t of the first spacer 400 is, for example, about 860 angstroms.

實施例中,半導體結構10例如是具有低壓元件及高壓元件的半導體裝置,低壓元件區可配置例如是邏輯元件。舉例而言,半導體結構10可以是顯示面板的驅動積體電路(driver IC)。實施例之半導體結構10中,第一閘極200位於低壓區,而第二閘極300位於高壓區。 In an embodiment, the semiconductor structure 10 is, for example, a semiconductor device having a low voltage component and a high voltage component, and the low voltage component region can be configured, for example, as a logic component. For example, the semiconductor structure 10 may be a driver integrated circuit of a display panel (driver) IC). In the semiconductor structure 10 of the embodiment, the first gate 200 is located in the low voltage region and the second gate 300 is located in the high voltage region.

根據本揭露內容之實施例,高壓區的第二間隙物500的厚度500t大於低壓區的第一間隙物400的厚度400t,如此一來,可以降低高壓區中位於閘極和汲極區之間區域的電場,減少漏電流的發生,改善負閘極偏壓時發生於閘極與汲極重疊之區域的穿隧電流(gate-induced drain leakage current(GIDL))之效應,而進一步改善高壓區之崩潰電壓。 According to an embodiment of the present disclosure, the thickness 500t of the second spacer 500 in the high voltage region is greater than the thickness 400t of the first spacer 400 in the low voltage region, so that the high voltage region can be lowered between the gate and the drain region. The electric field in the region reduces the occurrence of leakage current and improves the effect of gate-induced drain leakage current (GIDL) occurring in the region where the gate and the drain overlap when the negative gate bias is applied, thereby further improving the high voltage region. The breakdown voltage.

更進一步而言,實施例之半導體結構10中,高壓區的第二間隙物500具有相對大的厚度500t,而低壓區的第一間隙物400仍保持預定的較薄的厚度400t。由於低壓區主要處理邏輯訊號,若低壓區的第一間隙物400具有太大的厚度,則會造成此區域的阻值過高,特別是訊號量較大時,會嚴重影響低壓區元件的處理速度。因此,根據本揭露內容之實施例,經由不同區域的間隙物具有不同厚度之設計,而可以達到保有低壓區的速度以及高壓區的崩潰電壓之效果。 Still further, in the semiconductor structure 10 of the embodiment, the second spacer 500 of the high voltage region has a relatively large thickness of 500t, and the first spacer 400 of the low voltage region remains at a predetermined thinner thickness 400t. Since the low voltage region mainly processes the logic signal, if the first spacer 400 in the low voltage region has a too large thickness, the resistance of the region is too high, especially when the signal amount is large, the processing of the components in the low voltage region is seriously affected. speed. Therefore, according to an embodiment of the present disclosure, the effect of retaining the speed of the low pressure region and the breakdown voltage of the high voltage region can be achieved by designing the spacers of different regions through different thicknesses.

如第1圖所示,第二間隙外層530的厚度530t大於第一間隙外層430的厚度430t。一實施例中,第二間隙外層530的厚度530t與第一間隙外層430的厚度430t之差異例如是大於0埃至大約1800埃。一實施例中,第二間隙外層530的厚度530t相對於第一間隙外層430的厚度430t之比例例如是大於0至大約3.5。舉例而言,一實施例中,第二間隙外層530的厚度530t例如是大約1150埃,而第一間隙外層430的厚度430t例如是大約650埃。 As shown in FIG. 1, the thickness 530t of the second gap outer layer 530 is greater than the thickness 430t of the first gap outer layer 430. In one embodiment, the difference between the thickness 530t of the second gap outer layer 530 and the thickness 430t of the first gap outer layer 430 is, for example, greater than 0 angstroms to about 1800 angstroms. In one embodiment, the ratio of the thickness 530t of the second gap outer layer 530 to the thickness 430t of the first gap outer layer 430 is, for example, greater than 0 to about 3.5. For example, in one embodiment, the thickness 530t of the second gap outer layer 530 is, for example, about 1150 angstroms, and the thickness 430t of the first gap outer layer 430 is, for example, about 650 angstroms.

實施例中,如第1圖所示,第二間隙內層510的厚度510t與第一間隙內層410的厚度410t例如係相同。舉例而言,一實施例中,第二間隙內層510的厚度510t與第一間隙內層410的厚度410t例如是大約100埃。 In the embodiment, as shown in FIG. 1, the thickness 510t of the second interstitial inner layer 510 is the same as the thickness 410t of the first interstitial inner layer 410, for example. For example, in one embodiment, the thickness 510t of the second interstitial layer 510 and the thickness 410t of the first interstitial inner layer 410 are, for example, about 100 angstroms.

實施例中,如第1圖所示,第二蝕刻阻擋層520的厚度520t與第一蝕刻阻擋層420的厚度420t例如係相同。舉例而言,一實施例中,第二蝕刻阻擋層520的厚度520t與第一蝕刻阻擋層420的厚度420t例如是大約200埃。 In the embodiment, as shown in FIG. 1, the thickness 520t of the second etch barrier layer 520 is the same as the thickness 420t of the first etch barrier layer 420, for example. For example, in one embodiment, the thickness 520t of the second etch stop layer 520 and the thickness 420t of the first etch stop layer 420 are, for example, about 200 angstroms.

如第1圖所示,第一間隙內層410和第二間隙內層420例如皆具有L形剖面。 As shown in FIG. 1, the first gap inner layer 410 and the second gap inner layer 420 have, for example, an L-shaped cross section.

一實施例中,第一間隙外層430和第二間隙外層530包括一氧化物層,而第一蝕刻阻擋層420和第二蝕刻阻擋層520包括一氮化物層。舉例而言,第一間隙外層430和第二間隙外層530均為氧化矽層,而第一蝕刻阻擋層420和第二蝕刻阻擋層520均為氮化矽層。實施例中,第一間隙內層410和第二間隙內層420例如均係為氧化矽層。 In one embodiment, the first gap outer layer 430 and the second gap outer layer 530 comprise an oxide layer, and the first etch stop layer 420 and the second etch stop layer 520 comprise a nitride layer. For example, the first gap outer layer 430 and the second gap outer layer 530 are both ruthenium oxide layers, and the first etch barrier layer 420 and the second etch barrier layer 520 are both tantalum nitride layers. In the embodiment, the first interstitial inner layer 410 and the second interstitial inner layer 420 are both, for example, a ruthenium oxide layer.

如第1圖所示,半導體結構10更可包括一第一閘極介電層600及一第二閘極介電層700。第一閘極介電層600形成於第一閘極200和基板100之間,第二閘極介電層700形成於第二閘極300和基板100之間。實施例之半導體結構10中,第一閘極200位於低壓區,而第二閘極300位於高壓區,第二閘極介電層700的厚度700t大於第一閘極介電層600的厚度600t。 As shown in FIG. 1 , the semiconductor structure 10 further includes a first gate dielectric layer 600 and a second gate dielectric layer 700 . The first gate dielectric layer 600 is formed between the first gate 200 and the substrate 100, and the second gate dielectric layer 700 is formed between the second gate 300 and the substrate 100. In the semiconductor structure 10 of the embodiment, the first gate 200 is located in the low voltage region, and the second gate 300 is located in the high voltage region, and the thickness 700t of the second gate dielectric layer 700 is greater than the thickness of the first gate dielectric layer 600 by 600t. .

第2圖繪示本揭露內容之一實施例之半導體結構20之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同 樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。 FIG. 2 is a schematic diagram of a semiconductor structure 20 in accordance with an embodiment of the present disclosure. In the embodiment, the same or similar components as the foregoing embodiments are used together. For similar or similar components, please refer to the foregoing for related descriptions of the same or similar components, and details are not described herein again.

如第2圖所示,一實施例中,第一間隙外層430和第二間隙外層530包括一氮化物層,而第一蝕刻阻擋層420和第二蝕刻阻擋層520包括一氧化物層。一實施例中,第一間隙內層410和第二間隙內層510例如均係為氧化矽層。 As shown in FIG. 2, in one embodiment, the first gap outer layer 430 and the second gap outer layer 530 comprise a nitride layer, and the first etch stop layer 420 and the second etch stop layer 520 comprise an oxide layer. In one embodiment, the first interstitial inner layer 410 and the second interstitial inner layer 510 are each, for example, a ruthenium oxide layer.

舉例而言,一實施例中,第一間隙外層430和第二間隙外層530均為氮化矽層,而第一蝕刻阻擋層420和第二蝕刻阻擋層520均為氮化矽層。 For example, in an embodiment, the first gap outer layer 430 and the second gap outer layer 530 are both tantalum nitride layers, and the first etch stop layer 420 and the second etch stop layer 520 are both tantalum nitride layers.

如第2圖所示,一實施例中,第一間隙物400更可包括一氮化物層440,氮化物層440位於第一間隙內層410和第一蝕刻阻擋層420之間,氮化物層440例如是氮化矽層;第二間隙物500更可包括一氮化物層540,氮化物層540位於第二間隙內層510和第二蝕刻阻擋層520之間,氮化物層540例如是氮化矽層。 As shown in FIG. 2, in an embodiment, the first spacer 400 further includes a nitride layer 440, and the nitride layer 440 is located between the first gap inner layer 410 and the first etch barrier layer 420, and the nitride layer 440 is, for example, a tantalum nitride layer; the second spacer 500 further includes a nitride layer 540, the nitride layer 540 is between the second interstitial layer 510 and the second etch stop layer 520, and the nitride layer 540 is, for example, nitrogen.矽 layer.

第3A圖~第3E圖繪示依照本發明之一實施例之一種半導體結構10之製造方法示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。 3A-3E are schematic views showing a method of fabricating a semiconductor structure 10 in accordance with an embodiment of the present invention. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第3A圖所示,提供基板100,形成第一閘極200及第二閘極300於基板100上。 As shown in FIG. 3A, a substrate 100 is provided to form a first gate 200 and a second gate 300 on the substrate 100.

並且,如第3A圖所示,形成第一閘極介電層600於第一閘極200和基板100之間,以及形成第二閘極介電層700於第二閘極300和基板100之間,其中第二閘極介電層700的厚 度700t大於第一閘極介電層600的厚度600t。實施例中,先形成第一閘極介電層600和第二閘極介電層700於基板100上,接著形成第一閘極200及第二閘極300於第一閘極介電層600和第二閘極介電層700上。 Moreover, as shown in FIG. 3A, a first gate dielectric layer 600 is formed between the first gate 200 and the substrate 100, and a second gate dielectric layer 700 is formed on the second gate 300 and the substrate 100. Between the thickness of the second gate dielectric layer 700 The degree 700t is greater than the thickness 600t of the first gate dielectric layer 600. In the embodiment, the first gate dielectric layer 600 and the second gate dielectric layer 700 are formed on the substrate 100, and then the first gate electrode 200 and the second gate electrode 300 are formed on the first gate dielectric layer 600. And on the second gate dielectric layer 700.

接著,如第3A圖所示,形成一內層間隙物材料810、一蝕刻阻擋材料820以及一第一外層間隙物材料830。實施例中,內層間隙物材料810覆蓋第一閘極200和第二閘極300,蝕刻阻擋材料820形成於內層間隙物材料810上,第一外層間隙物材料830形成於蝕刻阻擋材料820上。如第3A圖所示,內層間隙物材料810亦覆蓋第一閘極介電層600和第二閘極介電層700以及基板100的表面,而蝕刻阻擋材料820覆蓋內層間隙物材料810,且第一外層間隙物材料830覆蓋蝕刻阻擋材料820。 Next, as shown in FIG. 3A, an inner spacer material 810, an etch stop material 820, and a first outer spacer material 830 are formed. In an embodiment, the inner spacer material 810 covers the first gate 200 and the second gate 300, the etch stop material 820 is formed on the inner spacer material 810, and the first outer spacer material 830 is formed on the etch barrier material 820. on. As shown in FIG. 3A, the inner spacer material 810 also covers the first gate dielectric layer 600 and the second gate dielectric layer 700 and the surface of the substrate 100, and the etch barrier material 820 covers the inner spacer material 810. And the first outer spacer material 830 covers the etch stop material 820.

實施例中,內層間隙物材料810和第一外層間隙物材料830例如是二氧化矽(SiO2)薄膜,可採用四乙氧基矽烷(TEOS)作為原料,以沈積製程製作出內層間隙物材料810和第一外層間隙物材料830。 In an embodiment, the inner spacer material 810 and the first outer spacer material 830 are, for example, a cerium oxide (SiO 2 ) film, and tetraethoxy decane (TEOS) can be used as a raw material to form an inner layer gap by a deposition process. Material 810 and first outer spacer material 830.

接著,如第3B~3C圖所示,以一濕式蝕刻製程移除位於第一閘極200上方的第一外層間隙物材料830之一部份。此濕式製程對於第一外層間隙物材料830和蝕刻阻擋材料820具有高選擇性,因此僅蝕刻第一外層間隙物材料830,而停止於蝕刻阻擋材料820的表面。 Next, as shown in FIGS. 3B-3C, a portion of the first outer spacer material 830 located above the first gate 200 is removed by a wet etching process. This wet process has high selectivity for the first outer spacer material 830 and the etch stop material 820, thus etching only the first outer spacer material 830 and stopping the surface of the etch barrier material 820.

詳細來說,如第3B圖所示,設置一光罩M於第二閘極300上方,接著如第3C圖所示,以濕式蝕刻製程移除暴露在光罩M之外、位於第一閘極200上方的部分第一外層間隙物材 料830,而留下位於第二閘極300上方的部分第一外層間隙物材料830。 In detail, as shown in FIG. 3B, a mask M is disposed above the second gate 300, and then removed as shown in FIG. 3C by the wet etching process and exposed to the mask M. Part of the first outer gap material above the gate 200 Material 830, leaving a portion of the first outer spacer material 830 above the second gate 300.

接著,如第3D圖所示,形成一第二外層間隙物材料840覆蓋第一閘極200和第二閘極300。詳細來說,第二外層間隙物材料840形成於第一閘極200上方的蝕刻阻擋材料820上以及第二閘極300上方的部分第一外層間隙物材料830上。 Next, as shown in FIG. 3D, a second outer spacer material 840 is formed to cover the first gate 200 and the second gate 300. In detail, a second outer spacer material 840 is formed on the etch stop material 820 over the first gate 200 and on a portion of the first outer spacer material 830 above the second gate 300.

實施例中,第二外層間隙物材料840例如是二氧化矽薄膜,可採用四乙氧基矽烷作為原料,以沈積製程製作出第二外層間隙物材料840。 In an embodiment, the second outer spacer material 840 is, for example, a ruthenium dioxide film, and the second outer spacer material 840 can be formed by a deposition process using tetraethoxy decane as a raw material.

實施例中,第二外層間隙物材料840的厚度840t相對於第一外層間隙物材料830的厚度830t之比例例如是0.5~2。舉例而言,一實施例中,第一外層間隙物材料830的厚度830t例如是大約500埃,而第二外層間隙物材料840的厚度840t例如是大約650埃。 In an embodiment, the ratio of the thickness 840t of the second outer spacer material 840 to the thickness 830t of the first outer spacer material 830 is, for example, 0.5 to 2. For example, in one embodiment, the thickness 830t of the first outer spacer material 830 is, for example, about 500 angstroms, and the thickness 840t of the second outer spacer material 840 is, for example, about 650 angstroms.

接著,如第3E圖所示,以一乾式蝕刻製程移除位於第一閘極200和第二閘極300之間的部分內層間隙物材料810、蝕刻阻擋材料820、第一外層間隙物材料830及第二外層間隙物材料840,以形成分別位於第一閘極200的側壁210上和第二閘極300的側壁上310的第一間隙物400和第二間隙物500。至此,形成如第3E圖(第1圖)所示的半導體結構10。 Next, as shown in FIG. 3E, a portion of the inner spacer material 810, the etch barrier material 820, and the first outer spacer material between the first gate 200 and the second gate 300 are removed by a dry etching process. 830 and a second outer spacer material 840 are formed to form a first spacer 400 and a second spacer 500 on the sidewall 210 of the first gate 200 and the sidewall 310 of the second gate 300, respectively. Thus far, the semiconductor structure 10 as shown in Fig. 3E (Fig. 1) is formed.

根據本揭露內容之實施例的製造方法,僅需要一次乾式蝕刻製程,便可定義出高壓區和低壓區的不同厚度之間隙物。再者,經由調整第一外層間隙物材料830的厚度830t和第二外層間隙物材料840的厚度840t,可以根據實際的半導體結構之 裝置的需求,而輕易調整出高壓區和低壓區的間隙物厚度,以達到效能的最佳化。 According to the manufacturing method of the embodiment of the present disclosure, only one dry etching process is required, and spacers of different thicknesses of the high pressure region and the low pressure region can be defined. Furthermore, by adjusting the thickness 830t of the first outer spacer material 830 and the thickness 840t of the second outer spacer material 840, according to the actual semiconductor structure The thickness of the gap between the high pressure zone and the low pressure zone is easily adjusted to meet the requirements of the device to optimize the performance.

以下敘述依照本發明之另一實施例之一種半導體結構20之製造方法。請同時參照第2圖和第3A圖~第3E圖。 A method of fabricating a semiconductor structure 20 in accordance with another embodiment of the present invention is described below. Please refer to Fig. 2 and Fig. 3A to Fig. 3E at the same time.

首先,請參照第2圖和第3A圖,於形成內層間隙物材料810後、以及形成蝕刻阻擋材料820之前,可先形成一氮化物材料層於內層間隙物材料810上,接著再形成蝕刻阻擋材料820於此氮化物材料層上。換言之,此氮化物材料層位於內層間隙物材料810和蝕刻阻擋材料820之間。 First, referring to FIG. 2 and FIG. 3A, after forming the inner spacer material 810 and before forming the etching stopper material 820, a nitride material layer may be formed on the inner spacer material 810, and then formed. The barrier material 820 is etched onto the layer of nitride material. In other words, this layer of nitride material is between the inner spacer material 810 and the etch stop material 820.

接著,請參照第3B~3D圖,以濕式蝕刻製程移除位於第一閘極200上方的第一外層間隙物材料830之一部份,以及形成第二外層間隙物材料840覆蓋第一閘極200和第二閘極300。 Next, referring to FIGS. 3B-3D, a portion of the first outer spacer material 830 located above the first gate 200 is removed by a wet etching process, and a second outer spacer material 840 is formed to cover the first gate. The pole 200 and the second gate 300.

接著,請參照第2圖和第3E圖,以乾式蝕刻製程移除位於第一閘極200和第二閘極300之間的部分內層間隙物材料810、蝕刻阻擋材料820、第一外層間隙物材料830及第二外層間隙物材料840時,亦移除位於第一閘極200和第二閘極300之間的部分前述氮化物材料層,以分別形成第一間隙物400的氮化物層440和第二間隙物500的氮化物層540。至此,則可形成如第2圖所示的半導體結構20。 Next, referring to FIGS. 2 and 3E, a portion of the inner spacer material 810, the etch barrier material 820, and the first outer gap between the first gate 200 and the second gate 300 are removed by a dry etching process. The material 830 and the second outer spacer material 840 also remove a portion of the nitride material layer between the first gate 200 and the second gate 300 to form a nitride layer of the first spacer 400, respectively. 440 and a nitride layer 540 of the second spacer 500. Thus far, the semiconductor structure 20 as shown in FIG. 2 can be formed.

第4圖繪示本揭露內容之一實施例和一比較例之半導體結構之基極電流-閘極電壓(Ib-Vg)之曲線圖,第5圖繪示本揭露內容之一實施例和一比較例之半導體結構之汲極電流-汲極電壓(Id-Vd)之曲線圖。於第4~5圖中,曲線I和曲線III表示自實施例之半導體結構10測得之結果,曲線II和曲線IV表示自比較 例之半導體結構測得之結果。實施例之半導體結構10和比較例之半導體結構均為具有高壓元件的半導體裝置。比較例之半導體結構中,分別位於高壓區和低壓區的兩個閘極的側壁上之間隙物具有相同的厚度。實施例之半導體結構10中,第一閘極200位於低壓區,而第二閘極300位於高壓區。實施例之半導體結構10和比較例之半導體結構兩者之汲極/源極區域的摻雜條件係相同。第4~5圖均繪示高壓區之測得的結果。 4 is a graph showing a base current-gate voltage (Ib-Vg) of a semiconductor structure according to an embodiment of the present disclosure and a comparative example, and FIG. 5 is a diagram showing an embodiment of the present disclosure and a A graph of the gate current-drain voltage (Id-Vd) of the semiconductor structure of the comparative example. In Figures 4 through 5, curves I and III represent the results measured from the semiconductor structure 10 of the embodiment, and curves II and IV represent self-comparisons. The results of the semiconductor structure measurements. The semiconductor structure 10 of the embodiment and the semiconductor structure of the comparative example are both semiconductor devices having high voltage elements. In the semiconductor structure of the comparative example, the spacers on the sidewalls of the two gates respectively located in the high voltage region and the low voltage region have the same thickness. In the semiconductor structure 10 of the embodiment, the first gate 200 is located in the low voltage region and the second gate 300 is located in the high voltage region. The doping conditions of the drain/source regions of both the semiconductor structure 10 of the embodiment and the semiconductor structure of the comparative example are the same. Figures 4 through 5 show the measured results in the high pressure zone.

如第4圖所示,由曲線I和II可看出,實施例之半導體結構10的基極電流明顯較比較例之半導體結構的基極電流低大約30%。由於實施例之半導體結構10和比較例之半導體結構之汲極/源極區域的摻雜條件係相同,因此接面(junction)的效應應接近。換言之,相較於比較例之半導體結構,實施例之半導體結構10的基極電流可以大幅下降,明顯來自於因為高壓區的間隙物具有較大的厚度,而較大厚度的間隙物降低了高壓區之汲極/源極區的電場效應。 As shown in Fig. 4, as can be seen from curves I and II, the base current of the semiconductor structure 10 of the embodiment is significantly lower than the base current of the semiconductor structure of the comparative example by about 30%. Since the doping conditions of the semiconductor structure 10 of the embodiment and the drain/source regions of the semiconductor structure of the comparative example are the same, the effect of the junction should be close. In other words, the base current of the semiconductor structure 10 of the embodiment can be greatly reduced compared to the semiconductor structure of the comparative example, apparently because the spacer of the high voltage region has a large thickness, and the spacer of a larger thickness reduces the high voltage. The electric field effect of the drain/source region of the region.

如第5圖所示,經由降低高壓區的電場,可以大幅降低GIDL效應。第5圖中,舉例而言,當汲極電流在10pA的條件下,相較於比較例之半導體結構可承受到-13V的汲極電壓,實施例之半導體結構10的汲極電壓可以大幅上升至-15.5V。如此一來,GIDL效應的減小以及汲極附近區域的電場下降,進而可以提高高壓區的元件之崩潰電壓。 As shown in Fig. 5, the GIDL effect can be greatly reduced by lowering the electric field in the high voltage region. In Fig. 5, for example, when the drain current is 10 pA, the drain voltage of the semiconductor structure 10 of the embodiment can be greatly increased compared to the semiconductor structure of the comparative example which can withstand a drain voltage of -13V. To -15.5V. As a result, the reduction of the GIDL effect and the electric field drop in the vicinity of the drain electrode can further increase the breakdown voltage of the components in the high voltage region.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤 飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. Those skilled in the art to which the invention pertains can make various changes and changes without departing from the spirit and scope of the invention. Decoration. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (18)

一種半導體結構,包括:一基板;一第一閘極及一第二閘極,位於該基板上;一第一閘極介電層,形成於該第一閘極和該基板之間;以及一第二閘極介電層,形成於該第二閘極和該基板之間,其中該第二閘極介電層的一厚度大於該第一閘極介電層的一厚度;一第一間隙物(spacer),形成於該第一閘極的複數個側壁上,該第一間隙物包括:一第一間隙內層;一第一蝕刻阻擋層;及一第一間隙外層,其中該第一蝕刻阻擋層具有一L形剖面,且該第一蝕刻阻擋層形成於該第一間隙內層和該第一間隙外層之間;以及一第二間隙物,形成於該第二閘極的複數個側壁上,該第二間隙物包括:一第二間隙內層;一第二蝕刻阻擋層;及一第二間隙外層,其中該第二蝕刻阻擋層具有一L形剖面,且該第二蝕刻阻擋層形成於該第二間隙內層和該第二間隙外層之間;其中該第二間隙物的一厚度大於該第一間隙物的一厚度。 A semiconductor structure includes: a substrate; a first gate and a second gate on the substrate; a first gate dielectric layer formed between the first gate and the substrate; and a a second gate dielectric layer is formed between the second gate and the substrate, wherein a thickness of the second gate dielectric layer is greater than a thickness of the first gate dielectric layer; a first gap a spacer formed on the plurality of sidewalls of the first gate, the first spacer comprising: a first gap inner layer; a first etch barrier layer; and a first gap outer layer, wherein the first spacer The etch stop layer has an L-shaped cross section, and the first etch stop layer is formed between the first gap inner layer and the first gap outer layer; and a second spacer is formed on the plurality of the second gate The second spacer includes: a second gap inner layer; a second etch barrier layer; and a second gap outer layer, wherein the second etch barrier layer has an L-shaped cross section, and the second etch barrier a layer formed between the second gap inner layer and the second gap outer layer; wherein the second A thickness of the spacer is greater than a thickness of the first spacer. 如申請專利範圍第1項所述之半導體結構,其中該第二 間隙外層的一厚度大於該第一間隙外層的一厚度。 The semiconductor structure of claim 1, wherein the second A thickness of the outer layer of the gap is greater than a thickness of the outer layer of the first gap. 如申請專利範圍第2項所述之半導體結構,其中該第二間隙外層的該厚度與該第一間隙外層的該厚度之差異係為大於0埃(Å)至1800埃。 The semiconductor structure of claim 2, wherein the difference between the thickness of the second gap outer layer and the thickness of the first gap outer layer is greater than 0 Å to 1800 Å. 如申請專利範圍第2項所述之半導體結構,其中該第二間隙外層的該厚度相對於該第一間隙外層的該厚度之一比例係為大於0至3.5。 The semiconductor structure of claim 2, wherein the ratio of the thickness of the second gap outer layer to the thickness of the first gap outer layer is greater than 0 to 3.5. 如申請專利範圍第1項所述之半導體結構,其中該第二間隙內層的一厚度與該第一間隙內層的一厚度係相同。 The semiconductor structure of claim 1, wherein a thickness of the second gap inner layer is the same as a thickness of the first gap inner layer. 如申請專利範圍第1項所述之半導體結構,其中該第二蝕刻阻擋層的一厚度與該第一蝕刻阻擋層的一厚度係相同。 The semiconductor structure of claim 1, wherein a thickness of the second etch barrier layer is the same as a thickness of the first etch barrier layer. 如申請專利範圍第1項所述之半導體結構,其中該第一間隙內層和該第二間隙內層皆具有L形剖面。 The semiconductor structure of claim 1, wherein the first gap inner layer and the second gap inner layer each have an L-shaped cross section. 如申請專利範圍第1項所述之半導體結構,其中該第一間隙外層和該第二間隙外層包括一氧化物層,該第一蝕刻阻擋層和該第二蝕刻阻擋層包括一氮化物層。 The semiconductor structure of claim 1, wherein the first gap outer layer and the second gap outer layer comprise an oxide layer, and the first etch barrier layer and the second etch barrier layer comprise a nitride layer. 如申請專利範圍第1項所述之半導體結構,其中該第一 間隙外層和該第二間隙外層包括一氮化物層,該第一蝕刻阻擋層和該第二蝕刻阻擋層包括一氧化物層。 The semiconductor structure of claim 1, wherein the first The outer layer of the gap and the outer layer of the second gap comprise a nitride layer, and the first etch stop layer and the second etch stop layer comprise an oxide layer. 一種半導體結構之製造方法,包括:提供一基板;形成一第一閘極及一第二閘極於該基板上;形成一第一閘極介電層於該第一閘極和該基板之間;形成一第二閘極介電層於該第二閘極和該基板之間,其中該第二閘極介電層的一厚度大於該第一閘極介電層的一厚度;以及形成一第一間隙物和一第二間隙物分別於該第一閘極的複數個側壁上和該第二閘極的複數個側壁上;其中該第一間隙物包括一第一間隙內層、一第一蝕刻阻擋層及一第一間隙外層,其中該第一蝕刻阻擋層具有一L形剖面,且該第一蝕刻阻擋層形成於該第一間隙內層和該第一間隙外層之間;其中該第二間隙物包括一第二間隙內層、一第二蝕刻阻擋層及一第二間隙外層,其中該第二蝕刻阻擋層具有一L形剖面,且該第二蝕刻阻擋層形成於該第二間隙內層和該第二間隙外層之間;以及其中該第二間隙物的一厚度大於該第一間隙物的一厚度。 A method of fabricating a semiconductor structure, comprising: providing a substrate; forming a first gate and a second gate on the substrate; forming a first gate dielectric layer between the first gate and the substrate Forming a second gate dielectric layer between the second gate and the substrate, wherein a thickness of the second gate dielectric layer is greater than a thickness of the first gate dielectric layer; and forming a The first spacer and the second spacer are respectively on the plurality of sidewalls of the first gate and the plurality of sidewalls of the second gate; wherein the first spacer comprises a first gap inner layer, a first spacer An etch barrier layer and a first gap outer layer, wherein the first etch barrier layer has an L-shaped cross section, and the first etch barrier layer is formed between the first gap inner layer and the first gap outer layer; The second spacer includes a second gap inner layer, a second etch stop layer and a second gap outer layer, wherein the second etch stop layer has an L-shaped cross section, and the second etch stop layer is formed on the second Between the inner layer of the gap and the outer layer of the second gap; and wherein the A spacer thickness greater than a thickness of the first spacer. 如申請專利範圍第10項所述之半導體結構之製造方法,其中形成該第一間隙物和該第二間隙物包括:形成一內層間隙物材料覆蓋該第一閘極和該第二閘極; 形成一蝕刻阻擋材料於該內層間隙物材料上;以及形成一第一外層間隙物材料於該蝕刻阻擋材料上。 The method of fabricating a semiconductor structure according to claim 10, wherein the forming the first spacer and the second spacer comprises: forming an inner spacer material covering the first gate and the second gate ; Forming an etch stop material on the inner spacer material; and forming a first outer spacer material on the etch stop material. 如申請專利範圍第11項所述之半導體結構之製造方法,其中形成該第一間隙物和該第二間隙物更包括:以一濕式蝕刻製程移除位於該第一閘極上方的該第一外層間隙物材料之一部份。 The method of manufacturing the semiconductor structure of claim 11, wherein the forming the first spacer and the second spacer further comprises: removing the first portion above the first gate by a wet etching process A portion of an outer spacer material. 如申請專利範圍第12項所述之半導體結構之製造方法,其中形成該第一間隙物和該第二間隙物更包括:形成一第二外層間隙物材料覆蓋該第一閘極和該第二閘極。 The method of fabricating a semiconductor structure according to claim 12, wherein the forming the first spacer and the second spacer further comprises: forming a second outer spacer material covering the first gate and the second Gate. 如申請專利範圍第13項所述之半導體結構之製造方法,其中該第二外層間隙物材料的一厚度相對於該第一外層間隙物材料的一厚度之一比例係為0.5~2。 The method of fabricating a semiconductor structure according to claim 13, wherein a ratio of a thickness of the second outer spacer material to a thickness of the first outer spacer material is 0.5 to 2. 如申請專利範圍第13項所述之半導體結構之製造方法,其中形成該第一間隙物和該第二間隙物更包括:以一乾式蝕刻製程移除位於該第一閘極和該第二閘極之間的部分該內層間隙物材料、該蝕刻阻擋材料、該第一外層間隙物材料及該第二外層間隙物材料,以形成分別位於該第一閘極的該些側壁上和該第二閘極的該些側壁上的該第一間隙物和該第二間隙物。 The method of manufacturing the semiconductor structure of claim 13, wherein the forming the first spacer and the second spacer further comprises: removing the first gate and the second gate by a dry etching process a portion of the inner spacer material, the etch stop material, the first outer spacer material, and the second outer spacer material between the poles to form the sidewalls of the first gate and the first The first spacer and the second spacer on the sidewalls of the two gates. 如申請專利範圍第10項所述之半導體結構之製造方法,其中該第二間隙外層的一厚度大於該第一間隙外層的一厚度。 The method of fabricating a semiconductor structure according to claim 10, wherein a thickness of the second gap outer layer is greater than a thickness of the first gap outer layer. 如申請專利範圍第10項所述之半導體結構之製造方法,其中該第一間隙內層和該第二間隙內層皆具有L形剖面。 The method of fabricating a semiconductor structure according to claim 10, wherein the first interstitial inner layer and the second interstitial inner layer each have an L-shaped cross section. 如申請專利範圍第10項所述之半導體結構之製造方法,其中該第一間隙外層和該第二間隙外層包括一氧化物層,該第一蝕刻阻擋層和該第二蝕刻阻擋層包括一氮化物層。 The method of fabricating a semiconductor structure according to claim 10, wherein the first gap outer layer and the second gap outer layer comprise an oxide layer, and the first etch barrier layer and the second etch barrier layer comprise a nitrogen Chemical layer.
TW104127893A 2015-08-26 2015-08-26 Semiconductor structure and manufacturing method thereof TWI672797B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104127893A TWI672797B (en) 2015-08-26 2015-08-26 Semiconductor structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104127893A TWI672797B (en) 2015-08-26 2015-08-26 Semiconductor structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201709483A TW201709483A (en) 2017-03-01
TWI672797B true TWI672797B (en) 2019-09-21

Family

ID=58774498

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127893A TWI672797B (en) 2015-08-26 2015-08-26 Semiconductor structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI672797B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200709342A (en) * 2005-06-30 2007-03-01 Advanced Micro Devices Inc Technique for forming contact insulation layers and silicide regions with different characteristics
US20110042749A1 (en) * 2009-08-19 2011-02-24 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device
US20110053367A1 (en) * 2009-08-28 2011-03-03 Renesas Electronics Corporation Method of manufacturing semiconductor device
TW201214531A (en) * 2010-09-16 2012-04-01 United Microelectronics Corp Removing method of a hard mask
US20150228742A1 (en) * 2014-02-07 2015-08-13 Magnachip Semiconductor, Ltd. Method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200709342A (en) * 2005-06-30 2007-03-01 Advanced Micro Devices Inc Technique for forming contact insulation layers and silicide regions with different characteristics
US20110042749A1 (en) * 2009-08-19 2011-02-24 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device
US20110053367A1 (en) * 2009-08-28 2011-03-03 Renesas Electronics Corporation Method of manufacturing semiconductor device
TW201214531A (en) * 2010-09-16 2012-04-01 United Microelectronics Corp Removing method of a hard mask
US20150228742A1 (en) * 2014-02-07 2015-08-13 Magnachip Semiconductor, Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201709483A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US10192828B2 (en) Metal gate transistor
US8809962B2 (en) Transistor with reduced parasitic capacitance
US20160111515A1 (en) Air gap spacer integration for improved fin device performance
US20210210597A1 (en) Semiconductor Device and Method for Manufacturing Same
JP2009514220A5 (en)
TW201338053A (en) Semiconductor structure and method for fabricating the same
US9384988B2 (en) Gate protection caps and method of forming the same
US20110298018A1 (en) Transistor and manufacturing method of the same
CN106960875B (en) Semiconductor device and method for manufacturing the same
US9627475B2 (en) Dummy gate structure for semiconductor devices
TWI689100B (en) Method for forming polysilicon in trench
JP6106024B2 (en) Thin film transistor manufacturing method and thin film transistor
US20140117379A1 (en) Semiconductor device and method of manufacturing the same
TWI672797B (en) Semiconductor structure and manufacturing method thereof
JP5683163B2 (en) Semiconductor device
TWI467666B (en) A manufacturing method of a semiconductor component with a nanowire channel
CN111384160B (en) Manufacturing method of field effect transistor, field effect transistor and grid structure
US20120220128A1 (en) Method for manufacturing a transistor
TWI414051B (en) Semiconductor structure and manufacturing method for the same
US20150037968A1 (en) Method for forming shielded gate of mosfet
CN108091570B (en) Semiconductor device and method for manufacturing the same
US20150311218A1 (en) Method of Shaping Densely Arranged PL Gates and Peripheral MOS Gates for ILD Oxide Fill-In
TWI605587B (en) Semiconductor device and manufacturing mehod thereof
CN104733387A (en) Semiconductor device forming method
TW201442120A (en) Semiconductor device and method for forming the same