TWI671706B - Biological status feedback system and operating method thereof - Google Patents

Biological status feedback system and operating method thereof Download PDF

Info

Publication number
TWI671706B
TWI671706B TW104109557A TW104109557A TWI671706B TW I671706 B TWI671706 B TW I671706B TW 104109557 A TW104109557 A TW 104109557A TW 104109557 A TW104109557 A TW 104109557A TW I671706 B TWI671706 B TW I671706B
Authority
TW
Taiwan
Prior art keywords
module
analysis
physiological
original signal
dynamic
Prior art date
Application number
TW104109557A
Other languages
Chinese (zh)
Other versions
TW201635233A (en
Inventor
徐建偉
林儷宸
Original Assignee
信立達科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信立達科技有限公司 filed Critical 信立達科技有限公司
Priority to TW104109557A priority Critical patent/TWI671706B/en
Priority to CN201510163610.8A priority patent/CN105997048A/en
Publication of TW201635233A publication Critical patent/TW201635233A/en
Application granted granted Critical
Publication of TWI671706B publication Critical patent/TWI671706B/en

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本發明提供了一種生物回饋系統及其運作方法,運用串流技術,即時解析生理訊號,即時回饋給操作設備或顯示裝置(以下簡稱裝置),讓裝置能依回饋的資訊,做出即時的反應或調整。藉由這樣連續回饋與調整的正向循環,幫助使用者逐步達成健康目標,提升生理檢測的健康價值。 The invention provides a biological feedback system and an operation method thereof, using streaming technology, real-time analysis of physiological signals, and instant feedback to an operating device or display device (hereinafter referred to as a device), so that the device can make a real-time response based on the feedback information. Or adjust. With such a positive loop of continuous feedback and adjustment, it helps users gradually achieve their health goals and enhances the health value of physiological testing.

Description

生物回饋系統及其運作方法 Biological feedback system and its operation method

一種生物回饋系統及其運作方法,尤指一種運用串流技術,即時分析生理訊號,轉化成控制指令,即時回饋給使用者或裝置之生物回饋系統及其運作方法。 A biological feedback system and its operation method, especially a biological feedback system and its operation method that use streaming technology to analyze physiological signals in real time, convert them into control instructions, and provide instant feedback to users or devices.

傳統的生理檢測,使用者得到的是靜態的結果圖表,然實際上,生理狀態可謂無時無刻在改變,例如人的心跳速率、血壓或神經活性等,皆會因各種外在環境、日間、夜間、飲食、作息,疾病或心理因素而變化。 In traditional physiological tests, users get static result charts, but in fact, physiological states can be changed all the time. For example, people's heart rate, blood pressure, or nerve activity will be affected by various external environments, day, night, Changes in diet, schedule, illness or psychological factors.

靜態的生理檢測方法,缺乏觀察,也忽略量測過程的資訊,過於簡化的靜態數據以及平面圖像,容易造成解讀上的盲點。 The static physiological detection method lacks observation and also ignores the information of the measurement process. The overly simplified static data and planar images can easily cause blind spots in interpretation.

在亞健康領域,這種忽略時間因子所得之健康或生理檢測報告,對於使用者,只有單向告知結果的作用,無法達到即時回饋、即時調整的健康管理目的。 In the field of sub-health, the health or physiological test report obtained by ignoring the time factor can only inform the user of the result in one direction, and cannot achieve the purpose of immediate feedback and immediate adjustment of the health management.

對於自動化健康器材,也無法應用檢測結果作為調整設備強度或模式的依據,使得健康輔助設備的功用無法有效發揮。 For automated health equipment, the test results cannot be used as the basis for adjusting the strength or mode of the equipment, making the functions of health auxiliary equipment unable to effectively play.

為解決先前技術所提及之問題,本發明提供了一種生物回饋系統及其運作方法。 In order to solve the problems mentioned in the prior art, the present invention provides a biological feedback system and an operation method thereof.

所述生物回饋系統包含一檢測模組、一資料庫、一解析模組、一分析控制模組以及至少一執行模組。 The biological feedback system includes a detection module, a database, an analysis module, an analysis control module, and at least one execution module.

其中,該資料庫與該檢測模組連接,該解析模組分別與該檢測模組及該資料庫連接,該解析模組即時解析來自該檢測模組或該資料庫之一原始訊號串流,並轉換為相對應於該原始訊號之一生理訊號。 The database is connected to the detection module, the analysis module is connected to the detection module and the database, and the analysis module analyzes the original signal stream from the detection module or one of the databases in real time, And converted into a physiological signal corresponding to one of the original signals.

該分析控制模組與該解析模組連接,該分析控制模組接收該生理訊號並轉換為一控制指令,該至少一執行模組則與該分析控制模組連接,且該至少一執行模組執行來自該分析控制模組的該控制指令串流。 The analysis control module is connected to the analysis module, the analysis control module receives the physiological signal and converts it into a control instruction, the at least one execution module is connected to the analysis control module, and the at least one execution module The control instruction stream from the analysis control module is executed.

而本發明之運作方法包含下列步驟,首先執行步驟(a)一檢測模組檢測一使用者產生之一原始訊號,接著執行步驟(b),該檢測模組將該原始訊號同時傳送給一資料庫及一解析模組,該資料庫儲存該原始訊號。 The operating method of the present invention includes the following steps. First, step (a) is performed by a detection module to detect an original signal generated by a user, and then step (b) is performed. The detection module transmits the original signal to a data at the same time. Database and a parsing module, the database stores the original signal.

執行步驟(c),該解析模組即時分析該原始訊號串流,並將該原始訊號轉換為一生理訊號傳送至一分析控制模組,再執行步驟(d),該分析控制模組分析該生理訊號串流並轉換為一控制指令,將該控制指令傳送給至少一執行模組。 Step (c) is executed, the analysis module analyzes the original signal stream in real time, converts the original signal into a physiological signal, and transmits it to an analysis control module, and then executes step (d), the analysis control module analyzes the The physiological signal is streamed and converted into a control instruction, and the control instruction is transmitted to at least one execution module.

最後執行步驟(e),該至少一執行模組執行該控制指令串流。 Finally, step (e) is executed, the at least one execution module executes the control instruction stream.

1‧‧‧檢測模組 1‧‧‧Detection Module

2‧‧‧資料庫 2‧‧‧Database

3‧‧‧解析模組 3‧‧‧ Resolution Module

4‧‧‧分析控制模組 4‧‧‧analysis control module

5‧‧‧執行模組 5‧‧‧Execution Module

C‧‧‧教練 C‧‧‧ coach

L1‧‧‧第一學習者 L1‧‧‧First Learner

L2‧‧‧第二學習者 L2‧‧‧Second Learner

D‧‧‧腦波圖 D‧‧‧ EEG

AS‧‧‧睡眠腦波圖 AS‧‧‧ Sleep EEG

S1‧‧‧尚未入眠 S1‧‧‧ has not fallen asleep

S2‧‧‧淺眠 S2‧‧‧ shallow sleep

S3‧‧‧深睡 S3‧‧‧ Deep Sleep

MD‧‧‧最大繪圖直徑 MD‧‧‧Maximum drawing diameter

SD‧‧‧同質性使用者直徑 SD‧‧‧Homogeneous user diameter

TD‧‧‧太極 TD‧‧‧ Tai Chi

PD‧‧‧太極陽 PD‧‧‧ Taijiyang

ND‧‧‧太極陰 ND‧‧‧Tai Chi Yin

F‧‧‧實驗組 F‧‧‧Experimental group

NF‧‧‧控制組 NF‧‧‧Control Group

T1‧‧‧第一影響手段 T1‧‧‧First means of influence

T2‧‧‧第二影響手段 T2‧‧‧Second influence means

A‧‧‧第一使用者 A‧‧‧First user

B‧‧‧第二使用者 B‧‧‧Second User

(a)~(f)‧‧‧步驟 (a) ~ (f) ‧‧‧step

圖1係本發明生物回饋系統之系統結構圖。 FIG. 1 is a system structure diagram of the biological feedback system of the present invention.

圖2(a)係靜態心跳間期散布圖之示意圖。 Figure 2 (a) is a schematic diagram of a static inter-heartbeat scatter diagram.

圖2(b)係本發明運用於心跳間期散布圖之示意圖。 FIG. 2 (b) is a schematic diagram of the inter-heartbeat scatter diagram of the present invention.

圖3係本發明運用於瑜珈教示之示意圖。 FIG. 3 is a schematic diagram of the present invention applied to yoga teaching.

圖4(a)係本發明運用於睡眠腦波檢測之示意圖。 FIG. 4 (a) is a schematic diagram of the present invention applied to sleep brain wave detection.

圖4(b)係本發明運用於睡眠腦波檢測之另一示意圖。 Fig. 4 (b) is another schematic diagram of the present invention applied to sleep brain wave detection.

圖5(a)係本發明動態太極圖之表現示意圖。 FIG. 5 (a) is a schematic representation of the dynamic Taiji diagram of the present invention.

圖5(b)係本發明運用於影響手段之示意圖。 Fig. 5 (b) is a schematic diagram of the application of the present invention to the influence means.

圖6(a)係本發明運用於心智訓練之表現示意圖。 Fig. 6 (a) is a schematic diagram showing the performance of the present invention applied to mental training.

圖6(b)係本發明運用於心智訓練之另一表現示意圖。 Fig. 6 (b) is another schematic diagram of the present invention applied to mental training.

圖7係本發明生物回饋系統之運作方法流程圖。 FIG. 7 is a flowchart of an operation method of the biological feedback system of the present invention.

為能瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,茲進一步以如圖式所示的較佳實施例,詳細說明如後: In order to understand the technical features and practical effects of the present invention, and can be implemented in accordance with the contents of the description, the preferred embodiment shown in the drawings is further described in detail as follows:

首先,請參照圖1,圖1係本發明生物回饋系統之系統結構圖。 First, please refer to FIG. 1. FIG. 1 is a system structure diagram of the biological feedback system of the present invention.

如圖1所示,本發明所述生物回饋系統,包含一檢測模組1、一資料庫2、一解析模組3、一分析控制模組4及至少一執行模組5。 As shown in FIG. 1, the biological feedback system according to the present invention includes a detection module 1, a database 2, an analysis module 3, an analysis control module 4, and at least one execution module 5.

其中資料庫2與該檢測模組1連接,解析模組3分別與檢測模組1及資料庫2連接,而該解析模組3解析(parse)來自檢測模組1或資料庫2之一原始訊號串流(stream),並轉換為相對應於該原始訊號之一生理訊號。 The database 2 is connected to the detection module 1, the analysis module 3 is connected to the detection module 1 and the database 2, respectively, and the analysis module 3 parses from the original of one of the detection module 1 or the database 2. The signal is streamed and converted into a physiological signal corresponding to one of the original signals.

分析控制模組4與解析模組3連接,而至少一執行模組5與分析控制模組4連接,該分析控制模組4可接收來自解析模組3的生理訊號串流,分析並轉換為一控制指令後串流發送予執行模組5。該執行模組5接收來自該分析控制模組4的控制指令並執行該控制指令。 The analysis control module 4 is connected to the analysis module 3, and at least one execution module 5 is connected to the analysis control module 4. The analysis control module 4 can receive the physiological signal stream from the analysis module 3, analyze and convert it into After a control instruction, the stream is sent to the execution module 5. The execution module 5 receives a control instruction from the analysis control module 4 and executes the control instruction.

該檢測模組1為具有心電圖(Electrocardiography,ECG)測量、肌電波測量、眼動波測量、腦波測量或脈搏測量(Photoplethysmography,PPG)功能之設備,例如心電圖機、脈搏儀、腦電波儀、肌電波或眼動波之生理量測儀等,本發明不以此為限;而分析控制模組4可以是包含微控制器(Microcontroller Unit,MCU)、微處理器(Microprocessor,MPU)、顯示卡或可程式邏輯控制器(Programmable Logic Controller,PLC)之任何裝置、儀器及其組合,用以對執行模組5發出控制指令,本發明不以此為限;該執行模組5則為任何可接受控制指令之軟硬體,例如電視、智慧型手機、智慧型手錶、手環、電腦、平板電腦或其他配備有顯示器之裝置,亦可為健康輔助設備如按摩床、按摩椅、跑步機或其他有調控功能之健康器材、醫療器材或運動器材,此外,上述該些執行模組5若包含APP、電子郵件、即時通訊軟體或其他軟體等功能者亦包含於本發明的範圍內,本發明不以此為限。 The detection module 1 is a device having the functions of electrocardiography (ECG) measurement, electromyography measurement, eye movement measurement, electroencephalogram measurement, or pulse measurement (Photoplethysmography, PPG), such as electrocardiograph, pulse meter, electroencephalograph, The present invention is not limited to the physiological measuring instrument of myoelectric wave or eye movement wave, and the analysis and control module 4 may include a microcontroller (MCU), a microprocessor (Microprocessor, MPU), and a display. Card, or any device, instrument, or combination of Programmable Logic Controller (PLC) used to issue control instructions to the execution module 5, the present invention is not limited to this; the execution module 5 is any Software and hardware that can accept control instructions, such as TVs, smartphones, smart watches, bracelets, computers, tablets, or other devices equipped with displays, and can also be used as health aids such as massage tables, massage chairs, and treadmills Or other health equipment, medical equipment or sports equipment with regulatory functions. In addition, if the above-mentioned execution modules 5 include APP, email, instant messaging software or other Function Zheyi the like included within the scope of the present invention, the present invention is not limited thereto.

而當執行模組5為任何配備有顯示器之裝置時,執行模組5可將其接收到之控制指令顯示為動畫,該動畫可以是動態統計圖、動態分析圖、動態生理波形圖、動態功率頻譜密度(Power Spectral Density,PSD)圖、動態心跳間距散布圖(RRI Scatter)、動態太極圖、動態人物圖或其組合,其中所述動態統計圖可為趨勢圖、長條圖或圓餅圖;動態分析圖可為五力分析圖、雷達分析圖,而動態生理波形圖則可為心電圖、腦波圖或其他表現生理狀態之波形圖,本發明不以此為限。 When the execution module 5 is any device equipped with a display, the execution module 5 can display the control instructions it receives as an animation. The animation can be a dynamic statistical graph, a dynamic analysis graph, a dynamic physiological waveform graph, and a dynamic power. Power Spectral Density (PSD) graph, dynamic heartbeat interval scatter graph (RRI Scatter), dynamic Tai Chi graph, dynamic character graph, or a combination thereof, wherein the dynamic statistical graph may be a trend graph, bar graph, or pie chart ; The dynamic analysis chart may be a five-force analysis chart, a radar analysis chart, and the dynamic physiological waveform chart may be an electrocardiogram, an electroencephalogram, or other waveform charts showing physiological states, and the present invention is not limited thereto.

本發明可用於多種生理檢測方法,令其檢測結果即時以顯示、調整、控制方式回饋給使用者或設備。使用者或設備依據回饋結果做出對應的調整,再經由檢測設備得到新的檢測結果,形成一即時回饋與調 整的循環過程,而在本實施方式中,所述設備即為執行模組5。 The present invention can be used in a variety of physiological detection methods, so that the detection results can be immediately returned to the user or the device in a display, adjustment, and control manner. The user or device makes corresponding adjustments based on the feedback results, and then obtains new detection results through the detection device to form an instant feedback and adjustment The entire cyclic process, and in this embodiment, the device is the execution module 5.

首先,使用者接受檢測模組1之檢測,如前所述,檢測模組1可為相當多種檢測儀器或設備,檢測模組1在檢測完使用者之生理狀態後,會獲得一原始訊號,該原始訊號可以為心電圖資料、肌電波資料、眼動波資料、腦波資料、脈搏資料或其組合。 First, the user accepts the detection of the detection module 1. As mentioned earlier, the detection module 1 can be quite a variety of detection instruments or equipment. After detecting the user's physiological state, the detection module 1 will obtain an original signal. The original signal may be electrocardiogram data, electromyogram data, eye movement data, brain wave data, pulse data, or a combination thereof.

該原始訊號之資料內容可為多種形式,通常以單位時間間隔之單位電訊號強度為主,例如心電波、肌電波、眼動波、腦波這類與神經活動相關的訊號,此外,亦可為具有間歇規律性運動特徵的原始訊號,例如脈搏。 The data content of the original signal can be in various forms, usually based on the unit signal strength per unit time interval, such as the signals related to nerve activity such as electrocardiogram, myoelectric wave, eye movement wave, brain wave, etc. Primitive signals with intermittent regular motion characteristics, such as pulse.

接著,檢測模組1會將該原始訊號同時送至資料庫2儲存與解析模組3進行解析(parse),而資料庫2可為單機方式儲存或採用雲端巨型儲存該原始訊號,本發明不以此為限。 Then, the detection module 1 sends the original signal to the database 2 storage and analysis module 3 for parsing at the same time, and the database 2 can be stored in a stand-alone manner or the cloud huge storage of the original signal. The present invention does not This is the limit.

如前所述,解析模組3即時解析來自檢測模組1或資料庫2之原始訊號串流,並將之轉換為相對應於該原始訊號之一生理訊號。 As described above, the analysis module 3 analyzes the original signal stream from the detection module 1 or the database 2 in real time, and converts it into a physiological signal corresponding to the original signal.

相對於原始訊號,解析後的生理訊號包含許多生理資訊,更便於分析使用。針對不同類型的生理訊號,本發明以不同的訊號格式來對應,本實施方式將舉出多種生理檢測之資料據以說明。 Compared with the original signal, the parsed physiological signal contains a lot of physiological information, which is more convenient for analysis and use. For different types of physiological signals, the present invention corresponds to different signal formats. This embodiment will provide a variety of physiological detection data for explanation.

首先請參考表1,表1是時間間隔生理訊號的訊號格式,例如心率變異(Heart rate variabilitv,HRV)分析中的心跳間期(RR-interval)訊號。 First, please refer to Table 1. Table 1 is the signal format of time interval physiological signals, such as the heart rate variabilitv (HRV) analysis of the heartbeat interval (RR-interval) signal.

表1中每一筆訊號傳送的是累積至該時點的心跳間距資料, 可用於表現心跳間距散布圖(RRI Scatter)變化的過程。 Each signal in Table 1 sends the heartbeat interval data accumulated to that point in time. It can be used to represent the process of RRI Scatter.

由於本實施方式涉及到訊號傳輸及串流處理之部分,因此採用標準JavaScript物件表示法(JavaScript Object Notation,JSON)格式進行資料的傳輸處理以及分析,若以上表1為例,表1之實施方式所採JSON格式如下:[{TimeSpan:float,Data:[{ms:float},…]},…] Since this embodiment involves signal transmission and stream processing, the standard JavaScript Object Notation (JSON) format is used for data transmission processing and analysis. If Table 1 above is taken as an example, the implementation of Table 1 The adopted JSON format is as follows: [{TimeSpan: float, Data: [{ms: float}, ...]}, ...]

表2是功率頻譜密度生理訊號的訊號格式,用以傳送時間間隔生理訊號以傅立葉轉換(Fourier transform)後所得之功率頻譜密度(Power Spectral Density,PSD),應用於類PSD的檢測數據。 Table 2 is the signal format of the power spectral density physiological signal. It is used to transmit the power spectral density (PSD) obtained by Fourier transform of the time interval physiological signal and applied to PSD-like detection data.

例如表2中的每一筆訊號,表示累積至該時間點為止時間間隔資料以傅立葉轉換後得到的功率頻譜密度;例如時間序100的訊號,為累積至時間點100為止的時間間隔資料,以傅立葉轉換後得到的功率頻譜密度結果。 For example, each signal in Table 2 represents the power spectrum density obtained by Fourier transformation of the time interval data accumulated up to that time point; for example, a signal of time sequence 100 is the time interval data accumulated up to time point 100, using Fourier Power spectral density results obtained after conversion.

同樣地,表3之實施方式所採JSON格式如下:[{TimeSpan:float,Data:[{{Hz:float},{PSD:float}},…]},…] Similarly, the JSON format adopted in the implementation of Table 3 is as follows: [{TimeSpan: float, Data: [{{Hz: float}, {PSD: float}}, ...]}, ...]

表3-1是以心率變異(Heart rate variability,HRV)分析為例的生理參數之生理訊號格式,用以傳送各項生理參數。 Table 3-1 is a physiological signal format of physiological parameters based on heart rate variability (HRV) analysis as an example, and is used to transmit various physiological parameters.

表3-1中每筆訊號表示累積至該時間點為止各項生理參數的數值,各生理參數之定義請參照下表3-2中之說明。 Each signal in Table 3-1 represents the value of various physiological parameters accumulated up to that time point. For the definition of each physiological parameter, please refer to the description in Table 3-2 below.

針對表3-1,其生理訊號所採JSON格式如下:[{TimeSpan:float,Data:[{{Lf:float},{Hf:float},{LfHf:float},{VLf:float},{Tp:float},{Sdnn:float}},…]},…] For Table 3-1, the JSON format of its physiological signals is as follows: [{TimeSpan: float, Data: [{{Lf: float}, {Hf: float}, {LfHf: float}, {VLf: float}, { Tp: float}, {Sdnn: float}}, ...]}, ...]

本發明雖可利用並呈現心率變異(Heart rate variability,HRV)分析之結果,但仍可用於其他生理檢測,僅需將其JSON格式中之參數依照生理檢測之數值調整即可,例如血壓量測時便將參數改為收縮壓及舒張壓之數值及單位(mm/Hg),凡屬於現有常用之生理檢測應皆屬於本發明之利用範圍,本發明不以此為限。而上述表1到表3-2之原始訊號及生理訊號係皆利用JSON之格式傳送,因此資料接收端的部分如資料庫2、解析模組3或分析控制模組4皆可透過提供API(Application Programming Interface)之方式獲得上述資料。 Although the present invention can utilize and present the results of heart rate variability (HRV) analysis, it can still be used for other physiological tests. It is only necessary to adjust the parameters in its JSON format according to the values of physiological tests, such as blood pressure measurement. When the parameter is changed to the value and unit (mm / Hg) of systolic and diastolic blood pressure, all the physiological tests that are commonly used should belong to the scope of the present invention, and the invention is not limited thereto. The original signals and physiological signals in Tables 1 to 3-2 above are all transmitted in JSON format. Therefore, the data receiving part such as database 2, analysis module 3, or analysis control module 4 can provide API (Application Programming Interface).

解析模組3成功將原始訊號解析為生理訊號後,會將該生理訊號串流傳送給該分析控制模組4,分析控制模組4接收生理訊號串流後便進行分析,依分析結果發送控制指令串流傳送給執行模組5。 After the analysis module 3 successfully parses the original signal into a physiological signal, it transmits the physiological signal stream to the analysis control module 4. After the analysis control module 4 receives the physiological signal stream, it analyzes it and sends control based on the analysis result. The instruction stream is transmitted to the execution module 5.

該分析控制模組4可根據分析結果發出控制指令,例如繪製即時動畫指令、調控設備指令、發送警示訊息指令或其組合,可依使用者 需求設計,本發明不以此為限,而執行模組5接收控制指令後,即執行該控制指令。 The analysis and control module 4 can issue control instructions based on the analysis results, such as drawing real-time animation instructions, regulating device instructions, sending warning message instructions, or a combination thereof, which can be based on the user. Demand design, the present invention is not limited to this, and the execution module 5 executes the control instruction after receiving the control instruction.

執行模組5執行控制指令後,使用者或執行模組5即可做出動作上的相應調整。例如使用者觀看即時動態心跳間距散布圖,適時調整動作姿勢,又例如健康設備增加強度。檢測模組1可檢測到調整後的生理訊號,再依前述實施步驟執行,形成一即時動態回饋的循環。 After the execution module 5 executes the control instruction, the user or the execution module 5 can make corresponding adjustments in motion. For example, the user views the scatter diagram of the real-time dynamic heartbeat interval, adjusts the action posture in time, and for example, increases the intensity of the health equipment. The detection module 1 can detect the adjusted physiological signal, and then execute it according to the foregoing implementation steps to form a loop of real-time dynamic feedback.

接著,將以實際之實施例,來說明本發明如何改善現有的生理檢測方式。 Next, practical examples will be used to explain how the present invention improves the existing physiological detection methods.

實施例1Example 1

本實施例1以心律變異分析為例,說明本發明如何運用過程資訊,解決傳統以靜態數據與2D圖像忽略時間序,所造成的錯誤。下表4係展示了第一使用者A與一第二使用者B的心跳間期(RRI)樣本。兩組樣本數值完全相同,僅順序不同。 This embodiment 1 uses the analysis of heart rhythm variation as an example to explain how the present invention uses process information to solve the errors caused by ignoring the time sequence in the traditional static data and 2D images. Table 4 below shows samples of the heartbeat interval (RRI) of a first user A and a second user B. The values of the two groups of samples are exactly the same, only the order is different.

請同時參照圖2(a)及圖2(b),圖2(a)係傳統心跳間期散布圖之示意圖;圖2(b)係運用本發明賦予時間因子後的心跳間期散布圖之示意圖,其中箭頭的方向表示各點的先後順序。 Please refer to FIG. 2 (a) and FIG. 2 (b) at the same time. FIG. 2 (a) is a schematic diagram of a traditional heartbeat interval scatter diagram; FIG. 2 (b) is a diagram of a heartbeat interval scatter diagram after applying the time factor given by the present invention Schematic diagram, where the direction of the arrows indicates the order of the points.

如圖2(a)所示,若以傳統的心跳間期散布圖(RRI Scatter)為例判讀,第一使用者A及第二使用者B雖然有差異,但並無間隔太短(心跳 太快)、或間隔太長(心跳太慢)的狀況,因此,對兩者判讀結果並無差異。 As shown in Figure 2 (a), if the traditional RRI Scatter diagram is used as an example, although the first user A and the second user B are different, the interval is not too short (heartbeat Too fast), or the interval is too long (the heartbeat is too slow), so there is no difference in the interpretation of the two.

若以心律分析常用來判斷自律神經活性的SDNN指標來看,第一使用者A及第二使用者B計算所得的SDNN值相同。也就是兩位使用者有相同的自律神經活性。 From the perspective of the SDNN index commonly used for judging the activity of the autonomic nerve by rhythm analysis, the SDNN values calculated by the first user A and the second user B are the same. That is, two users have the same autonomic nervous activity.

但若以圖2(b)來看,運用本發明繪製之即時動態心跳間期散布圖(RRI Scatter),即時觀察其個別之形成的過程,就能及時發現左圖第一使用者A的心率是穩定而逐漸趨緩,而右圖的第二使用者B則是不規則的變化,凸顯出第二使用者B心律不整的風險。 However, if we look at Figure 2 (b), using the real-time dynamic heartbeat scatter diagram (RRI Scatter) drawn by the present invention, and real-time observation of the individual formation process, we can find the heart rate of the first user A on the left in time. It is stable and gradually slowing down, while the second user B on the right is an irregular change, highlighting the risk of second user B's arrhythmia.

追根究柢,若採如圖2(a)的方式呈現靜態之心跳間期散布圖(RRI Scatter),會讓使用者無法得知其檢測到之數值隨時間變化的次序(也就是時間序),因此,本實施例在運用時會如圖2(b)所示,將上述表4中之原始訊號以動畫之形式顯示於執行模組5,而心跳間期散布圖(RRI Scatter)形成的過程便會如圖2(b)所示之箭頭順序依次呈現在執行模組5上。 In the final analysis, if the static RRI Scatter is presented in the manner shown in Figure 2 (a), the user will not be able to know the order of the detected values over time (that is, chronological order). Therefore, when this embodiment is used, as shown in FIG. 2 (b), the original signals in the above table 4 are displayed on the execution module 5 in the form of animation, and the inter-heartbeat scatter diagram (RRI Scatter) is formed. The process will be sequentially presented on the execution module 5 in the order of arrows shown in FIG. 2 (b).

實施例2Example 2

本實施例2以心律變異分析為例,說明本發明如何應用生物回饋,串流導向具有顯示裝置的執行模組5做為訓練輔助工具。 This embodiment 2 uses a rhythm variation analysis as an example to explain how the present invention applies biological feedback, and the stream guides the execution module 5 with a display device as a training auxiliary tool.

請參照圖3,圖3係本發明運用於瑜珈教示配合自律神經檢測之示意圖。如圖3所示,教練C、第一學習者L1及第二學習者L2全身皆穿帶有貼附式或穿戴式的感測裝置,也就是檢測模組1。 Please refer to FIG. 3, which is a schematic diagram of the present invention applied to yoga teaching and autonomic nerve detection. As shown in FIG. 3, the coach C, the first learner L1, and the second learner L2 all wear an attached or wearable sensing device, that is, the detection module 1.

檢測模組1能夠即時蒐集當下教練C、第一學習者L1及第二學習者L2因瑜珈運動,其自律神經活性變化所產生之原始訊號串流,在將 該原始訊號傳送至資料庫2儲存的同時,一併在解析模組3中進行解析。解析完成之原始訊號會轉換成生理訊號,並傳給分析控制模組4。分析控制模組4分析訊號後,即可對執行模組5發出控制指令。 The detection module 1 can instantly collect the original signal stream generated by the coach C, the first learner L1, and the second learner L2 due to changes in their autonomic nervous activity due to yoga exercises. When the original signal is transmitted to the database 2 for storage, it is analyzed in the analysis module 3 together. The analyzed original signal is converted into a physiological signal and transmitted to the analysis control module 4. After the analysis and control module 4 analyzes the signal, it can issue a control instruction to the execution module 5.

以控制指令繪製功率頻譜密度(Power Spectral Density,PSD)圖為例,此時執行模組5會顯示如圖3中的動畫,教練C、第一學習者L1及第二學習者L2可看見當下自我動作即時的動態功率頻譜密度(Power Spectral Density,PSD)圖。 Take the control instruction to draw a Power Spectral Density (PSD) chart as an example. At this time, the execution module 5 will display the animation shown in Figure 3. Coach C, the first learner L1 and the second learner L2 can see the current moment. Self-acting instant dynamic power spectral density (PSD) plot.

透過比對教練動態功率頻譜密度(Power Spectral Density,PSD)圖之教示,第一學習者L1可得知其姿勢屬於標準動作,係因第一學習者L1其動態功率頻譜密度(Power Spectral Density,PSD)圖與教練C相仿。 By comparing the coach's dynamic power spectral density (PSD) diagram with the teaching, the first learner L1 can know that his posture is a standard action, because the first learner L1's dynamic power spectral density (Power Spectral Density, PSD) is similar to coach C.

反之,第二學習者L2可透過執行模組5得知其動態功率頻譜密度(Power Spectral Density,PSD)圖與教練C不同,本實施例可協助第二學習者L2自主調整其瑜珈姿勢,直至其生理狀態之表現與教練C相近。 Conversely, the second learner L2 can learn that its dynamic power spectral density (PSD) map is different from the coach C by executing the module 5. This embodiment can assist the second learner L2 to independently adjust its yoga posture until Its physiological state performance is similar to that of coach C.

生理檢測之原始訊號會儲存於資料庫2,因此,當第二學習者L2離開瑜珈教示現場後,仍可透過本實施例,以網路雲端等技術在其他場所播放先前教練C之動畫及自我(既第二學習者L2)之即時動畫,讓第二學習者L2可隨時隨地進行自主瑜珈練習。 The original signal of the physiological test will be stored in the database 2. Therefore, after the second learner L2 leaves the yoga teaching site, he can still play the animation and self of the previous coach C in other places by using the technology of the Internet and cloud through this embodiment. (The second learner L2) real-time animation allows the second learner L2 to perform autonomous yoga practice anytime, anywhere.

實施例3Example 3

本實施例3以腦波檢測為例,說明本發明如何以長時間監測與原始訊號紀錄做為診斷工具。 This embodiment 3 uses brain wave detection as an example to illustrate how the present invention uses long-term monitoring and original signal records as diagnostic tools.

本實施例係用於長期性失眠的使用者。檢測模組1為一穿戴 設備,穿戴於使用者上可長期監測使用者的腦波訊號,資料庫2可將該腦波訊號記錄下來。執行模組5可同時顯示圖4(a)動態腦波D及圖4(b)動態功率頻譜密度圖AS,以即時監測使用者睡眠時之腦波變化。 This embodiment is intended for users with chronic insomnia. Detection module 1 is a wearable The device is worn on the user to monitor the user's brain wave signal for a long time, and the database 2 can record the brain wave signal. The execution module 5 can simultaneously display the dynamic brain wave D in FIG. 4 (a) and the dynamic power spectral density map AS in FIG. 4 (b), so as to monitor the changes of the brain wave when the user sleeps in real time.

人處於不同睡眠狀態時,腦波反應出的功率頻譜密度圖會呈現不同樣貌。如圖4(b)所示,當使用者處於未入眠狀態S1、淺眠狀態S2、深睡狀態S3時,其腦波中α、β、γ、θ和δ波所對應頻率之區域的面積有顯著不同。藉由即時觀察動態功率頻譜密度,可看出使用者睡眠時期腦部生理狀態變化結構,以判斷其失眠狀況是否為神經生理狀態造成,抑或是心理因素所引起。 When people are in different sleep states, the power spectrum density maps reflected by brain waves will appear differently. As shown in FIG. 4 (b), when the user is in the sleepless state S1, the light sleep state S2, and the deep sleep state S3, the area of the frequency corresponding to the α , β, γ, θ, and δ waves in the brain waves There are significant differences. By observing the dynamic power spectral density in real time, we can see the changing structure of the physiological state of the brain during the sleep period of the user to determine whether the insomnia is caused by a neurophysiological state or a psychological factor.

腦波圖之檢查可做為診斷腦部功能的一種參考資料,一次檢查結果正常並不代表腦部無病變產生,因此需透過長時間檢查較為準確,且必須透過多次檢查才得以做分析與比對。本發明的資料庫2能將檢測之原始訊號記錄下來,供相關人員重複運用,分析控制模組4可透過解析模組3即時將當前的腦波訊號與紀錄於資料庫2的腦波訊號作分析比對,或將記錄於資料庫2的多筆波形紀錄作分析比對,當出現風險時可對執行模組5發出警示控制指令,由執行模組5發出警示,例如發出聲響、以通訊軟體發出訊息,而上述之執行模組5可為智慧型手機、手環等可攜式或穿戴式裝置,本發明不以此為限。 An electroencephalogram test can be used as a reference for diagnosing brain function. A normal test result does not mean that there are no brain lesions. Therefore, it is more accurate through long-term tests, and multiple tests must be performed to analyze and analyze. Comparison. The database 2 of the present invention can record the detected original signals for repeated use by related personnel. The analysis and control module 4 can use the analysis module 3 to instantly analyze the current brainwave signals and the brainwave signals recorded in the database 2 as Analyze and compare, or compare multiple waveform records recorded in database 2 to analyze and compare, when there is a risk, you can issue a warning control instruction to the execution module 5, and the execution module 5 issues an alert, such as a sound, communication The software sends a message, and the above-mentioned execution module 5 may be a portable or wearable device such as a smart phone or a bracelet, which is not limited in the present invention.

實施例4Example 4

本實施例4以學界常探討的「肥胖對自律神經調控能力的影響」這項實驗為例,說明本發明如何運用生物回饋與串流導向具有顯示裝置的執行模組5,作為研發驗證工具。 This embodiment 4 uses the experiment of "the influence of obesity on the autonomic nervous regulation ability" often discussed in the academic field as an example to illustrate how the present invention uses biological feedback and streaming to guide the execution module 5 with a display device as a research and development verification tool.

本實例運用動態太極圖做為執行模組5之顯示工具,請參照圖5(a),圖5(a)係本發明動態太極圖之表現示意圖。在本實施例中,圖5(a)中所示之動態太極圖主要包含最大繪圖直徑MD、同質性使用者直徑SD、太極TD(太極直徑)、太極陽PD(太極陽直徑)、太極陰ND(太極陰直徑)、太極顏色、以及太極深淺。 This example uses the dynamic Tai Chi chart as the display tool of the execution module 5. Please refer to FIG. 5 (a), which is a schematic diagram of the performance of the dynamic Tai Chi chart of the present invention. In this embodiment, the dynamic Tai Chi diagram shown in FIG. 5 (a) mainly includes the maximum drawing diameter MD, the homogeneous user diameter SD, Tai Chi TD (Tai Chi diameter), Tai Chi Yang PD (Tai Chi Yang diameter), and Tai Chi Yin. ND (Tai Chi Yin Diameter), Tai Chi color, and Tai Chi shades.

其中,太極TD大小表示使用者之自律神經活性狀態,太極陽PD與太極陰ND代表自律神經平衡狀態,太極TD的顏色或深淺表示自律神經能量狀態。繪製動態太極圖所需之生理參數為檢測模組1檢測到該名使用者自律神經活性之原始訊號後,經過解析模組3轉換所得。參數內容可參考表3-1所示。 Among them, the size of Taiji TD represents the state of autonomic nerve activity of the user, Taiji Yang PD and Taiji Yin ND represent the state of autonomic nerve balance, and the color or shade of Taiji TD represents the state of autonomic nerve energy. The physiological parameters required for drawing the dynamic Tai Chi diagram are obtained after the detection module 1 detects the original signal of the user's autonomic nervous activity, and then converts it through the analysis module 3. For the parameter contents, refer to Table 3-1.

繪製方法是將影像訊號以下述公式1-1到公式1-7依序計算所得:Rb=P×0.95 (公式1-1) The drawing method is obtained by sequentially calculating the image signal according to the following formula 1-1 to formula 1-7: Rb = P × 0.95 (formula 1-1)

Rm=P×0.90 (公式1-2) Rm = P × 0.90 (Equation 1-2)

If Ru>Rb Then Ru=Rb (公式1-4) If Ru> Rb Then Ru = Rb (Equation 1-4)

(動態太極圖的α值表示透明度,可反映出其太極深淺) (The alpha value of the dynamic Tai Chi chart represents transparency, which can reflect the shade of Tai Chi)

上述公式1-1到公式1-7請同時參照圖5(a)、表3-1、表3-2、下表5以及下表6的說明。 For the above formulas 1-1 to 1-7, please refer to FIG. 5 (a), Table 3-1, Table 3-2, Table 5 and Table 6 at the same time.

因此,綜合表3-1、表3-2、表5及表6的資訊及其說明,本實施例中之動態太極圖即如圖5(a)中繪示之各部分,可依照原始訊號之即時變化改變其大小、比例、面積以及深淺(亦可為顏色,例如將α代換為色相指標來實施),原始訊號的即時改變意味著可同時改變生理訊號及控制指令的內容,相應調整執行模組5帶給使用者之資訊。 Therefore, based on the information in Table 3-1, Table 3-2, Table 5 and Table 6 and their descriptions, the dynamic Tai Chi diagram in this embodiment is the parts shown in Figure 5 (a), which can be based on the original signal. The real-time change changes its size, proportion, area, and depth (also color, such as replacing α with a hue indicator for implementation). The instant change of the original signal means that the content of the physiological signal and control instructions can be changed at the same time, and adjusted accordingly. The information brought to the user by the execution module 5.

運用上述的動態太極圖,可讓研發人員即時以圖像化、動畫化、直覺化之方式,觀看到檢測模組1即時偵測到實驗組與控制組有關自律神經活性之狀態變化。 Using the above-mentioned dynamic Taiji diagram, the R & D personnel can instantly visualize the state change of the autonomic nerve activity of the experimental group and the control group in the detection module 1 in the manner of image, animation, and intuition.

接著請參照圖5(b),圖5(b)係運用本發明研究肥胖對自律神經調控能力的影響示意圖。將受測者區分為實驗組F及控制組NF,假定實驗組F為肥胖之受測者,而控制組NF為非肥胖之受測者。同時觀測其動態太極圖,依時序對其兩組施以第一影響手段T1(例如:針灸與穴道按摩)後,可即時觀察動態太極圖的變化與差異,若再施以第二影響手段T2時,兩組之間的生理狀態會產生何種不同的變化,藉此,作為驗證第一影響手段T1與第二影響手段T2的方法。 Please refer to FIG. 5 (b). FIG. 5 (b) is a schematic diagram of using the present invention to study the effect of obesity on the ability of autonomic nerve regulation. The subjects were divided into experimental group F and control group NF. It was assumed that experimental group F was an obese subject, and control group NF was a non-obese subject. At the same time, observe the dynamic Tai Chi diagram, and apply the first influence means T1 (such as acupuncture and acupoint massage) to the two groups according to the time sequence. Then you can immediately observe the changes and differences of the dynamic Tai Chi diagram. If you apply the second influence means T2, At this time, what kind of changes will occur in the physiological state between the two groups is used as a method for verifying the first influence means T1 and the second influence means T2.

為方便研究,對照組原始訊號亦可儲存於資料庫2中,以供後續相同實驗時使用,節省實驗資源。 For the convenience of research, the original signal of the control group can also be stored in database 2 for subsequent use in the same experiment, saving experimental resources.

實施例5Example 5

本實施例5以心律變異分析為例,說明本發明如何應用生物回饋與串流導向具有顯示裝置的執行模組5,作為評核工具。 This embodiment 5 uses a rhythm variation analysis as an example to explain how the present invention uses biological feedback and streaming to guide the execution module 5 with a display device as an assessment tool.

學術上常用心律變異分析來觀察受測者的注意力集中的狀況,經過訓練的受測者專注時,其交感神經的活性會明顯提升,並抑制副交感神經的活性,該些反應係表現於功率頻譜密度上,也就是LF能量快速升高。 The analysis of rhythm variation is commonly used in academics to observe the concentration of the test subject. When the trainee is focused, the activity of the sympathetic nerve will be significantly increased, and the activity of the parasympathetic nerve will be inhibited. These reactions are expressed in power In terms of spectral density, the LF energy increases rapidly.

請參照圖6(a)與圖6(b),圖6(a)係本發明運用於心智訓練之表現示意圖;圖6(b)係本發明運用於心智訓練之另一表現示意圖。 Please refer to FIG. 6 (a) and FIG. 6 (b). FIG. 6 (a) is a schematic diagram of performance of the present invention applied to mental training; FIG. 6 (b) is another schematic diagram of performance of the present invention applied to mental training.

圖6(a)表示受測者功率頻譜密度,圖6(b)為注意力集中者的功率頻譜密度狀況,動態觀察受測者由圖6(a)變化成圖6(b)的過程,就可以了解受測者注意力集中的速度、強度,以作為評核該受測者的依據。 Figure 6 (a) shows the power spectrum density of the subject, and Figure 6 (b) shows the power spectrum density of the concentrator. Dynamically observe the process of the subject's change from Figure 6 (a) to Figure 6 (b). You can understand the speed and intensity of the subject's concentration, as a basis for evaluating the subject.

除心智訓練,集中力訓練或是如射擊等與生理條件相關之運動,皆可利用本發明作為評核工具,或自主訓練工具。 Except for mental training, concentration training, or sports related to physiological conditions such as shooting, the invention can be used as an assessment tool or an autonomous training tool.

實施例6Example 6

本實施例6以心律變異分析為例,說明本發明如何將生物回饋進一步應用於如調控健康器材的執行模組5。 This embodiment 6 uses a rhythm variation analysis as an example to explain how the present invention further applies biological feedback to, for example, an execution module 5 for regulating health equipment.

自主健康管理者常使用健康器材幫助進行健康管理,常見設備如舒壓椅、減壓床、按摩椅等紓壓設備,或是跑步機、飛輪等運動器材。這些設備通常具有調控功能,例如強弱度變化或模式更改。 Autonomous health managers often use health equipment to help with health management. Common equipment such as pressure-relief chairs, decompression beds, massage chairs, and other relief equipment, or treadmills, flywheels and other sports equipment. These devices often have regulatory functions, such as strength changes or mode changes.

將本發明與健康器材結合時,可將健康器材視為一執行模組5,此外,亦可將任一具有螢幕顯示功能的裝置做為另一執行模組5。當使用者使用檢測設備(相當於檢測模組1)且同時使用健康器材(相當於執行 模組5)時,檢測設備(檢測模組1)取得使用者即時之原始訊號,經由分析控制模組4自動分析使用者當前的生理訊號並產生相應的控制指令的同時,藉由前述實施例4中所運用的動態太極圖顯示於具有螢幕顯示功能裝置的一執行模組5,以便即時將自律神經狀態變化回饋給使用者,另外,分析控制模組4亦同時發送控制指令訊號予健康器材(另一執行模組5)進行調控。 When the present invention is combined with a health device, the health device can be regarded as an execution module 5. In addition, any device with a screen display function can be used as another execution module 5. When the user uses the detection equipment (equivalent to the detection module 1) and simultaneously uses the health equipment (equivalent to the implementation of Module 5), the detection device (detection module 1) obtains the real-time original signal of the user, and automatically analyzes the current physiological signal of the user through the analysis and control module 4 and generates corresponding control instructions. The dynamic Taiji chart used in 4 is displayed on an execution module 5 of the device with a screen display function in order to feed back changes in the state of the autonomic nerve to the user in real time. In addition, the analysis control module 4 also sends control command signals to the health equipment at the same time (Another execution module 5).

由本實施例可得知,本發明可運用之執行模組5不以一種為限制,分析控制模組4可同時連接多個執行模組5,並依照使用者需求控制其間的調配運用。 It can be known from this embodiment that the execution module 5 that can be used in the present invention is not limited to one type, and the analysis and control module 4 can be connected to multiple execution modules 5 at the same time, and control the deployment and use in accordance with user needs.

藉由上述檢測與調控的循環,可針對使用者將健康器材調整到最適合的狀態,幫助使用者達到健康目的。 Through the above-mentioned cycle of detection and regulation, the health equipment can be adjusted to the most suitable state for the user, helping the user to achieve health purposes.

最後,請參照圖7,圖7係本發明生物回饋系統之運作方法流程圖。首先執行步驟(a),檢測模組1檢測一使用者產生之原始訊號,之後執行步驟(b),該檢測模組1將該原始訊號同時傳送給資料庫2及解析模組3,而該資料庫2儲存該原始訊號。 Finally, please refer to FIG. 7, which is a flowchart of an operation method of the biological feedback system of the present invention. First execute step (a), the detection module 1 detects the original signal generated by a user, and then execute step (b). The detection module 1 transmits the original signal to the database 2 and the analysis module 3 at the same time. The database 2 stores the original signal.

在步驟(b)中,檢測模組1所檢測到原始訊號如需即時顯示給使用者觀看時才需將之傳送至解析模組3,否則可依照使用者需求將之儲存於資料庫2即可,以利使用者日後查詢調閱。 In step (b), the original signal detected by the detection module 1 needs to be transmitted to the analysis module 3 if it needs to be displayed to the user for viewing in real time, otherwise it can be stored in the database 2 according to the user's needs. Yes, to facilitate users to query and read in the future.

接著執行步驟(c),該解析模組3即時解析該原始訊號串流,並將該原始訊號轉換為一生理訊號後,以串流傳送該生理訊號至一分析控制模組4。 Then step (c) is performed. The analysis module 3 parses the original signal stream in real time, converts the original signal into a physiological signal, and transmits the physiological signal to an analysis control module 4 by streaming.

在步驟(c)中,解析模組3所指之原始訊號可來自檢測模組1 或資料庫2,即心電圖資料、肌電波資料、眼動波資料、腦波資料、脈搏資料、或其組合。 In step (c), the original signal pointed by the analysis module 3 can come from the detection module 1. Or database 2, namely electrocardiogram data, electromyogram data, eye movement data, brain wave data, pulse data, or a combination thereof.

接著執行步驟(d),該分析控制模組4分析該生理訊號串流,並對執行模組5發出控制指令串流。 Then, step (d) is executed. The analysis and control module 4 analyzes the physiological signal stream and sends a control instruction stream to the execution module 5.

最後執行步驟(e),該執行模組5執行該控制指令。當執行完步驟(e)後,本發明更可包含步驟(f),該使用者或該執行模組5調整動作。 Finally, step (e) is executed, and the execution module 5 executes the control instruction. After step (e) is performed, the present invention may further include step (f), the user or the execution module 5 adjusts the action.

在步驟(f)該使用者或該執行模組5調整動作時,會回到並執行步驟(a),檢測模組1會即時得到該使用者或該執行模組5調整動作後產生之全新的原始訊號,並接著以相同步驟(b)~(f)的順序執行,以達到生物回饋的功效,直到使用者找到最適合於其自身之生理狀態為止。 When the user or the execution module 5 adjusts the action in step (f), it will return to and execute step (a), and the detection module 1 will immediately obtain the brand new generated after the user or the execution module 5 adjusts the action. The original signal is then executed in the same steps (b) to (f) in order to achieve the effect of biological feedback until the user finds the most suitable physiological state for himself.

而前述之該使用者所調整之「動作」非限制於骨骼或肌肉之運動,實際上為至少一種的生理狀態改變,如呼吸、血壓、心搏、神經活性或精神狀態等;而該執行模組5調整之「動作」實質上則為至少一種的運作條件改變,例如按摩椅的按壓力道或跑步機的運轉速度等,本發明不以此為限。 The aforementioned "action" adjusted by the user is not limited to the movement of bones or muscles, but is actually a change in at least one physiological state, such as breathing, blood pressure, heartbeat, nerve activity, or mental state; The "action" adjusted by the group 5 is essentially a change in at least one operating condition, such as the pressing pressure path of a massage chair or the running speed of a treadmill, and the present invention is not limited thereto.

透過本發明之運用,可將生理檢測導入雙向溝通的層次,大幅提升生理檢測的健康價值,能呈現更完整的資訊,建立良性回饋的循環,足見本發明之進步性。 Through the application of the present invention, physiological testing can be introduced into the two-way communication level, which greatly improves the health value of physiological testing, can present more complete information, and establish a cycle of benign feedback, which shows the progress of the present invention.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及說明內容所作之簡單等效變化與修飾,皆仍屬本發明涵蓋之範圍內。 However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited in this way, that is, simple equivalent changes and modifications made in accordance with the scope of the patent application and description of the present invention are still Within the scope of the invention.

Claims (9)

一種生物回饋系統,包含:一檢測模組;一資料庫,與該檢測模組連接;一解析模組,分別與該檢測模組及該資料庫連接,其中該解析模組即時分析來自該檢測模組或該資料庫之一原始訊號串流,並轉換為相對應於該原始訊號之一生理訊號;一分析控制模組,與該解析模組連接,該分析控制模組接收該生理訊號並轉換為一控制指令;以及至少一執行模組,與該分析控制模組連接,該至少一執行模組執行來自該分析控制模組的該控制指令串流;其中,該原始訊號為心電圖資料、肌電波資料、眼動波資料、腦波資料、脈搏資料或其組合;該生理訊號包含一時間間隔資訊,具有該時間間隔資訊之該生理訊號以傅立葉轉換(Fourier transform)後,整合為一功率頻譜密度(Power Spectral Density,PSD)。A biological feedback system includes: a detection module; a database connected to the detection module; and an analysis module connected to the detection module and the database, respectively, wherein the analysis module analyzes in real time from the detection The module or one of the original signal streams in the database, and converted into a physiological signal corresponding to the original signal; an analysis control module connected to the analysis module, the analysis control module receives the physiological signal and Conversion into a control instruction; and at least one execution module connected to the analysis control module, the at least one execution module executes the control instruction stream from the analysis control module; wherein the original signal is electrocardiogram data, EMG data, eye movement data, brain wave data, pulse data, or a combination thereof; the physiological signal includes time interval information, and the physiological signal having the time interval information is integrated into a power after Fourier transform Spectral Density (PSD). 如請求項1所述之生物回饋系統,其中該資料庫儲存來自該檢測模組之該原始訊號,且該原始訊號得被該解析模組重複利用。The biological feedback system according to claim 1, wherein the database stores the original signal from the detection module, and the original signal can be reused by the analysis module. 如請求項1所述之生物回饋系統,其中該檢測模組為具有心電圖(Electrocardiography,ECG)測量、肌電波測量、眼動波測量、腦波測量或脈搏測量(Photoplethysmography,PPG)功能之設備。The biological feedback system according to claim 1, wherein the detection module is a device having functions of electrocardiography (ECG) measurement, electromyography measurement, eye movement measurement, brain wave measurement, or pulse measurement (Photoplethysmography, PPG). 如請求項1所述之生物回饋系統,其中該控制指令顯示為一動畫,該動畫為動態統計圖、動態分析圖、動態生理波形圖、動態功率頻譜密度(Power Spectral Density,PSD)圖、動態心跳間距散布圖(RRI Scatter)、動態太極圖、動態人物圖或其組合。The biological feedback system according to claim 1, wherein the control instruction is displayed as an animation, the animation is a dynamic statistical graph, a dynamic analysis graph, a dynamic physiological waveform graph, a dynamic power spectral density (PSD) graph, a dynamic Heartbeat interval scatter diagram (RRI Scatter), dynamic Tai Chi diagram, dynamic character diagram, or a combination thereof. 如請求項4所述之生物回饋系統,其中該動態太極圖包含一最大繪圖直徑、一同質性使用者直徑、一太極直徑、一太極陽直徑、一太極陰直徑、太極顏色以及一太極深淺。The biological feedback system according to claim 4, wherein the dynamic Tai Chi diagram includes a maximum drawing diameter, a homogeneous user diameter, a Tai Chi diameter, a Tai Chi Yang diameter, a Tai Chi Yin diameter, Tai Chi color, and a Tai Chi shade. 如請求項1所述之生物回饋系統,其中該執行模組為電視、智慧型手機、智慧型手錶、手環、電腦、平板電腦、健康輔助設備、運動器材、醫療器材、軟體或其組合。The biological feedback system according to claim 1, wherein the execution module is a television, a smart phone, a smart watch, a wristband, a computer, a tablet computer, a health auxiliary device, a sports device, a medical device, software, or a combination thereof. 一種生物回饋系統的運作方法,包含:(a)一檢測模組檢測一使用者產生之一原始訊號;(b)該檢測模組將該原始訊號同時傳送給一資料庫及一解析模組,該資料庫儲存該原始訊號;(c)該解析模組即時分析該原始訊號串流,並將該原始訊號轉換為一生理訊號傳送至一分析控制模組;(d)該分析控制模組分析該生理訊號串流並轉換為一控制指令,將該控制指令傳送給至少一執行模組;以及(e)該至少一執行模組執行該控制指令串流;其中,該原始訊號為心電圖資料、肌電波資料、眼動波資料、腦波資料、脈搏資料或其組合;該生理訊號包含一時間間隔資訊,具有該時間間隔資訊之該生理訊號以傅立葉轉換(Fourier transform)後,整合為一功率頻譜密度(Power Spectral Density,PSD)。A method for operating a biological feedback system includes: (a) a detection module detects an original signal generated by a user; (b) the detection module transmits the original signal to a database and an analysis module at the same time, The database stores the original signal; (c) the analysis module analyzes the original signal stream in real time, and converts the original signal into a physiological signal and transmits it to an analysis control module; (d) the analysis control module analyzes The physiological signal stream is converted into a control instruction, and the control instruction is transmitted to at least one execution module; and (e) the at least one execution module executes the control instruction stream; wherein the original signal is electrocardiogram data, EMG data, eye movement data, brain wave data, pulse data, or a combination thereof; the physiological signal includes time interval information, and the physiological signal having the time interval information is integrated into a power after Fourier transform Spectral Density (PSD). 如請求項7所述之生物回饋系統的運作方法,其中執行完步驟(e)後,更執行:(f)該使用者或該執行模組調整動作;執行完畢步驟(f)後重新執行步驟(a)。The operation method of the biological feedback system as described in claim 7, wherein after performing step (e), perform: (f) the user or the execution module to adjust the action; re-execute the step after performing step (f) (a). 如請求項8所述之生物回饋系統的運作方法,步驟(f)中該使用者調整之該動作為至少一生理狀態改變,該執行模組調整之該動作為至少一運作條件改變。According to the operating method of the biological feedback system described in claim 8, in step (f), the action adjusted by the user is at least one physiological state change, and the action adjusted by the execution module is at least one operating condition change.
TW104109557A 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof TWI671706B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104109557A TWI671706B (en) 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof
CN201510163610.8A CN105997048A (en) 2015-03-25 2015-04-09 Biofeedback system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104109557A TWI671706B (en) 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof

Publications (2)

Publication Number Publication Date
TW201635233A TW201635233A (en) 2016-10-01
TWI671706B true TWI671706B (en) 2019-09-11

Family

ID=57082376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104109557A TWI671706B (en) 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof

Country Status (2)

Country Link
CN (1) CN105997048A (en)
TW (1) TWI671706B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726442B (en) * 2019-10-08 2021-05-01 國立虎尾科技大學 How the massage system works

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896916A (en) * 2017-02-17 2017-06-27 武汉海鲸教育科技有限公司 A kind of E.E.G control device and method of attention-feedback
CN110400623B (en) * 2019-08-30 2021-10-15 董云鹏 Health preserving and health managing system and method based on internal energy balance
CN110772266B (en) * 2019-10-15 2021-10-26 西安电子科技大学 Method for regulating cognitive ability through real-time nerve feedback based on fNIRS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040059203A1 (en) * 1998-10-05 2004-03-25 Guerrero Juan R. Method and system for analysis of biological signals such as dynamic electrocardiograms and the like
TW200417355A (en) * 2003-03-10 2004-09-16 Zheng-Qi Dai Wireless medical apparatus and its real-time biological signal collecting monitor
TW200608938A (en) * 2004-09-10 2006-03-16 Jang-Min Yang Cloth system for automatic inspection and analysis feedback of body health condition to provide healthcare guidance and applying method thereof
TW201039265A (en) * 2009-04-16 2010-11-01 Univ Chung Yuan Christian Diagnose physiological signal real-time system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263419C (en) * 2003-04-03 2006-07-12 丽台科技股份有限公司 Detection method of vacuity and repletion of yin and yang and its equipment
JP6001068B2 (en) * 2011-07-05 2016-10-05 サウジ アラビアン オイル カンパニー System, computer medium, and computer-implemented method for teaching employees based on health status monitored using an avatar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040059203A1 (en) * 1998-10-05 2004-03-25 Guerrero Juan R. Method and system for analysis of biological signals such as dynamic electrocardiograms and the like
TW200417355A (en) * 2003-03-10 2004-09-16 Zheng-Qi Dai Wireless medical apparatus and its real-time biological signal collecting monitor
TW200608938A (en) * 2004-09-10 2006-03-16 Jang-Min Yang Cloth system for automatic inspection and analysis feedback of body health condition to provide healthcare guidance and applying method thereof
TW201039265A (en) * 2009-04-16 2010-11-01 Univ Chung Yuan Christian Diagnose physiological signal real-time system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726442B (en) * 2019-10-08 2021-05-01 國立虎尾科技大學 How the massage system works

Also Published As

Publication number Publication date
CN105997048A (en) 2016-10-12
TW201635233A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
US20230309885A1 (en) Identifying and Strengthening Physiological/Neurophysiological States Predictive of Superior Performance
EP2285270B1 (en) Method and system for determining a physiological condition
US8594787B2 (en) Synchronising a heart rate parameter of multiple users
US20150217082A1 (en) Sleep assistant system, method, and non-transitory computer-readable medium for assisting in easing hardship of falling asleep
US8298131B2 (en) System and method for relaxation
CN111712194B (en) System and method for determining sleep onset latency
Thomas et al. Implementing clinically feasible psychophysiological measures in evidence-based assessments of adolescent social anxiety.
Hercegfi Heart rate variability monitoring during Human-Computer Interaction
TWI671706B (en) Biological status feedback system and operating method thereof
JP2007319238A (en) Sleep monitoring device
Carroll et al. Psychophysiological changes accompanying different types of arousing and relaxing imagery
Rossi et al. Effect of pursed-lip breathing in patients with COPD: linear and nonlinear analysis of cardiac autonomic modulation
Park et al. Non-contact measurement of heart response reflected in human eye
Crockett et al. Breathing characteristics and symptoms of psychological distress: An exploratory study
Bu Stress evaluation index based on Poincaré plot for wearable health devices
van Dijk et al. Validation of photoplethysmography using a mobile phone application for the assessment of heart rate variability in the context of heart rate variability–biofeedback
Ribeiro et al. A New Intelligent Approach for Automatic Stress Levels Assessment based on Multiple Physiological Parameters Monitoring
Paniccia et al. Autonomic function following concussion in youth athletes: an exploration of heart rate variability using 24-hour recording methodology
TWI756793B (en) A channel information processing system
Koh et al. Electroencephalography Data-Driven Lighting System to Improve Sleep Quality in Intensive Care Unit Patients: A Case Study
Hair et al. Deep breaths: An internally-and externally-paced deep breathing guide
Wang et al. Classifying engagement in E-learning through GRU-TCN model using photoplethysmography signals
Gradl The Stroop Room: A Wearable Virtual Reality Stress Laboratory Based on the Electrocardiogram
CN108451496A (en) Detect the method and its system of the information of brain heart connectivity
EP3562383A1 (en) Device, system and method for generating biofeedback