TW201635233A - Biological status feedback system and operating method thereof - Google Patents

Biological status feedback system and operating method thereof Download PDF

Info

Publication number
TW201635233A
TW201635233A TW104109557A TW104109557A TW201635233A TW 201635233 A TW201635233 A TW 201635233A TW 104109557 A TW104109557 A TW 104109557A TW 104109557 A TW104109557 A TW 104109557A TW 201635233 A TW201635233 A TW 201635233A
Authority
TW
Taiwan
Prior art keywords
module
analysis
feedback system
dynamic
physiological
Prior art date
Application number
TW104109557A
Other languages
Chinese (zh)
Other versions
TWI671706B (en
Inventor
徐建偉
林儷宸
Original Assignee
信立達科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信立達科技有限公司 filed Critical 信立達科技有限公司
Priority to TW104109557A priority Critical patent/TWI671706B/en
Priority to CN201510163610.8A priority patent/CN105997048A/en
Publication of TW201635233A publication Critical patent/TW201635233A/en
Application granted granted Critical
Publication of TWI671706B publication Critical patent/TWI671706B/en

Links

Abstract

This invention provides a biological status feedback system and an operating method thereof. It is able to perform users' information via real-time streaming analysis and feedbacks to the devices or the displays. Therefore, devices are able to adjust responses simultaneously. It helps people being healthier step by step and increasing the value of physiological detection via the loop of feedback and adjustment.

Description

生物回饋系統及其運作方法 Biological feedback system and its operation method

一種生物回饋系統及其運作方法,尤指一種運用串流技術,即時分析生理訊號,轉化成控制指令,即時回饋給使用者或裝置之生物回饋系統及其運作方法。 The invention relates to a biological feedback system and a method for operating the same, in particular to a biological feedback system and a method for operating the same by using a streaming technology to instantly analyze physiological signals, convert them into control commands, and instantly feed back to users or devices.

傳統的生理檢測,使用者得到的是靜態的結果圖表,然實際上,生理狀態可謂無時無刻在改變,例如人的心跳速率、血壓或神經活性等,皆會因各種外在環境、日間、夜間、飲食、作息,疾病或心理因素而變化。 Traditional physiological testing, the user gets a static result chart, in fact, the physiological state can be changed all the time, such as the human heart rate, blood pressure or nerve activity, etc., due to various external environments, daytime, nighttime, Changes in diet, work, illness or psychological factors.

靜態的生理檢測方法,缺乏觀察,也忽略量測過程的資訊,過於簡化的靜態數據以及平面圖像,容易造成解讀上的盲點。 Static physiological detection methods, lack of observation, and neglect the information of the measurement process, too simplified static data and flat images, easily lead to blind spots in interpretation.

在亞健康領域,這種忽略時間因子所得之健康或生理檢測報告,對於使用者,只有單向告知結果的作用,無法達到即時回饋、即時調整的健康管理目的。 In the sub-health field, this kind of health or physiological test report that ignores the time factor has only one-way notification of the result to the user, and cannot achieve the purpose of immediate feedback and immediate adjustment of health management.

對於自動化健康器材,也無法應用檢測結果作為調整設備強度或模式的依據,使得健康輔助設備的功用無法有效發揮。 For automated health equipment, the test results cannot be applied as a basis for adjusting the strength or mode of the device, so that the function of the health aid cannot be effectively utilized.

為解決先前技術所提及之問題,本發明提供了一種生物回饋系統及其運作方法。 In order to solve the problems mentioned in the prior art, the present invention provides a biological feedback system and a method of operating the same.

所述生物回饋系統包含一檢測模組、一資料庫、一解析模組、一分析控制模組以及至少一執行模組。 The bio-feedback system includes a detection module, a database, an analysis module, an analysis control module, and at least one execution module.

其中,該資料庫與該檢測模組連接,該解析模組分別與該檢測模組及該資料庫連接,該解析模組即時解析來自該檢測模組或該資料庫之一原始訊號串流,並轉換為相對應於該原始訊號之一生理訊號。 The data library is connected to the detection module, and the analysis module is respectively connected to the detection module and the database, and the analysis module instantly parses the original signal stream from the detection module or the database. And converted to a physiological signal corresponding to one of the original signals.

該分析控制模組與該解析模組連接,該分析控制模組接收該生理訊號並轉換為一控制指令,該至少一執行模組則與該分析控制模組連接,且該至少一執行模組執行來自該分析控制模組的該控制指令串流。 The analysis control module is connected to the analysis module, and the analysis control module receives the physiological signal and converts it into a control command, the at least one execution module is connected to the analysis control module, and the at least one execution module The control command stream from the analysis control module is executed.

而本發明之運作方法包含下列步驟,首先執行步驟(a)一檢測模組檢測一使用者產生之一原始訊號,接著執行步驟(b),該檢測模組將該原始訊號同時傳送給一資料庫及一解析模組,該資料庫儲存該原始訊號。 The operation method of the present invention comprises the following steps: firstly, step (a): detecting module detects a raw signal generated by a user, and then performing step (b), the detecting module simultaneously transmitting the original signal to a data The library and a parsing module store the original signal.

執行步驟(c),該解析模組即時分析該原始訊號串流,並將該原始訊號轉換為一生理訊號傳送至一分析控制模組,再執行步驟(d),該分析控制模組分析該生理訊號串流並轉換為一控制指令,將該控制指令傳送給至少一執行模組。 Step (c), the parsing module analyzes the original signal stream in real time, converts the original signal into a physiological signal and transmits it to an analysis control module, and then performs step (d), the analysis control module analyzes the The physiological signal stream is converted and converted into a control command, and the control command is transmitted to at least one execution module.

最後執行步驟(e),該至少一執行模組執行該控制指令串流。 Finally, in step (e), the at least one execution module executes the control instruction stream.

1‧‧‧檢測模組 1‧‧‧Test module

2‧‧‧資料庫 2‧‧‧Database

3‧‧‧解析模組 3‧‧‧analysis module

4‧‧‧分析控制模組 4‧‧‧Analytical Control Module

5‧‧‧執行模組 5‧‧‧Execution module

C‧‧‧教練 C‧‧‧Coach

L1‧‧‧第一學習者 L1‧‧‧ first learner

L2‧‧‧第二學習者 L2‧‧‧ second learner

D‧‧‧腦波圖 D‧‧‧ brain wave map

AS‧‧‧睡眠腦波圖 AS‧‧‧ sleep brainwave map

S1‧‧‧尚未入眠 S1‧‧‧ has not yet fallen asleep

S2‧‧‧淺眠 S2‧‧‧Small sleep

S3‧‧‧深睡 S3‧‧‧ Deep sleep

MD‧‧‧最大繪圖直徑 MD‧‧‧Maximum drawing diameter

SD‧‧‧同質性使用者直徑 SD‧‧‧Homogeneous user diameter

TD‧‧‧太極 TD‧‧‧ Tai Chi

PD‧‧‧太極陽 PD‧‧‧ Tai Chi Yang

ND‧‧‧太極陰 ND‧‧‧ Tai Chi Yin

F‧‧‧實驗組 F‧‧‧Experimental Group

NF‧‧‧控制組 NF‧‧‧Control Group

T1‧‧‧第一影響手段 T1‧‧‧ first means of influence

T2‧‧‧第二影響手段 T2‧‧‧ second means of influence

A‧‧‧第一使用者 A‧‧‧ first user

B‧‧‧第二使用者 B‧‧‧Second user

(a)~(f)‧‧‧步驟 (a)~(f)‧‧‧ steps

圖1係本發明生物回饋系統之系統結構圖。 1 is a system structural diagram of a biological feedback system of the present invention.

圖2(a)係靜態心跳間期散布圖之示意圖。 Figure 2 (a) is a schematic diagram of a static heartbeat interval scatter plot.

圖2(b)係本發明運用於心跳間期散布圖之示意圖。 Fig. 2(b) is a schematic diagram of the present invention applied to a heartbeat interval scatter diagram.

圖3係本發明運用於瑜珈教示之示意圖。 Figure 3 is a schematic illustration of the teachings of the present invention for use in yoga teaching.

圖4(a)係本發明運用於睡眠腦波檢測之示意圖。 Figure 4 (a) is a schematic diagram of the present invention applied to sleep brain wave detection.

圖4(b)係本發明運用於睡眠腦波檢測之另一示意圖。 Fig. 4(b) is another schematic diagram of the present invention applied to sleep brain wave detection.

圖5(a)係本發明動態太極圖之表現示意圖。 Fig. 5(a) is a schematic diagram showing the performance of the dynamic Taiji diagram of the present invention.

圖5(b)係本發明運用於影響手段之示意圖。 Figure 5 (b) is a schematic diagram of the present invention applied to the means of influence.

圖6(a)係本發明運用於心智訓練之表現示意圖。 Fig. 6(a) is a schematic diagram showing the performance of the present invention applied to mental training.

圖6(b)係本發明運用於心智訓練之另一表現示意圖。 Fig. 6(b) is a schematic diagram showing another performance of the present invention applied to mental training.

圖7係本發明生物回饋系統之運作方法流程圖。 Figure 7 is a flow chart showing the operation method of the biological feedback system of the present invention.

為能瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,茲進一步以如圖式所示的較佳實施例,詳細說明如後: In order to understand the technical features and practical effects of the present invention, and can be implemented in accordance with the contents of the specification, the following further describes the preferred embodiment as shown in the following figure:

首先,請參照圖1,圖1係本發明生物回饋系統之系統結構圖。 First, please refer to FIG. 1. FIG. 1 is a system structural diagram of a biological feedback system of the present invention.

如圖1所示,本發明所述生物回饋系統,包含一檢測模組1、一資料庫2、一解析模組3、一分析控制模組4及至少一執行模組5。 As shown in FIG. 1 , the biological feedback system of the present invention comprises a detection module 1 , a database 2 , an analysis module 3 , an analysis control module 4 and at least one execution module 5 .

其中資料庫2與該檢測模組1連接,解析模組3分別與檢測模組1及資料庫2連接,而該解析模組3解析(parse)來自檢測模組1或資料庫2之一原始訊號串流(stream),並轉換為相對應於該原始訊號之一生理訊號。 The database 2 is connected to the detection module 1 , and the analysis module 3 is respectively connected to the detection module 1 and the database 2 , and the analysis module 3 parses the original from the detection module 1 or the database 2 The signal stream is converted to a physiological signal corresponding to one of the original signals.

分析控制模組4與解析模組3連接,而至少一執行模組5與分析控制模組4連接,該分析控制模組4可接收來自解析模組3的生理訊號串流,分析並轉換為一控制指令後串流發送予執行模組5。該執行模組5接收來自該分析控制模組4的控制指令並執行該控制指令。 The analysis control module 4 is connected to the analysis module 3, and at least one execution module 5 is connected to the analysis control module 4. The analysis control module 4 can receive the physiological signal stream from the analysis module 3, analyze and convert it into After a control command, the stream is sent to the execution module 5. The execution module 5 receives a control command from the analysis control module 4 and executes the control command.

該檢測模組1為具有心電圖(Electrocardiography,ECG)測量、肌電波測量、眼動波測量、腦波測量或脈搏測量(Photoplethysmography,PPG)功能之設備,例如心電圖機、脈搏儀、腦電波儀、肌電波或眼動波之生理量測儀等,本發明不以此為限;而分析控制模組4可以是包含微控制器(Microcontroller Unit,MCU)、微處理器(Microprocessor,MPU)、顯示卡或可程式邏輯控制器(Programmable Logic Controller,PLC)之任何裝置、儀器及其組合,用以對執行模組5發出控制指令,本發明不以此為限;該執行模組5則為任何可接受控制指令之軟硬體,例如電視、智慧型手機、智慧型手錶、手環、電腦、平板電腦或其他配備有顯示器之裝置,亦可為健康輔助設備如按摩床、按摩椅、跑步機或其他有調控功能之健康器材、醫療器材或運動器材,此外,上述該些執行模組5若包含APP、電子郵件、即時通訊軟體或其他軟體等功能者亦包含於本發明的範圍內,本發明不以此為限。 The detection module 1 is a device having electrocardiography (ECG) measurement, myoelectric wave measurement, eye movement measurement, brain wave measurement or photoplethysmography (PPG) function, such as an electrocardiograph, a pulse meter, a brain wave meter, The present invention is not limited to the physiological measurement instrument of the myoelectric wave or the eye movement wave, and the analysis control module 4 may include a microcontroller (Microcontroller Unit, MCU), a microprocessor (MPU), and a display. Any device, instrument, or combination thereof of a card or a programmable logic controller (PLC) for issuing a control command to the execution module 5, which is not limited thereto; the execution module 5 is any Software and hardware that can accept control commands, such as TVs, smart phones, smart watches, wristbands, computers, tablets or other devices equipped with displays, and health aids such as massage beds, massage chairs, treadmills Or other health equipment, medical equipment or sports equipment with control functions, in addition, the above execution modules 5 include APP, email, instant messaging software or other Function Zheyi the like included within the scope of the present invention, the present invention is not limited thereto.

而當執行模組5為任何配備有顯示器之裝置時,執行模組5可將其接收到之控制指令顯示為動畫,該動畫可以是動態統計圖、動態分析圖、動態生理波形圖、動態功率頻譜密度(Power Spectral Density,PSD)圖、動態心跳間距散布圖(RRI Scatter)、動態太極圖、動態人物圖或其組合,其中所述動態統計圖可為趨勢圖、長條圖或圓餅圖;動態分析圖可為五力分析圖、雷達分析圖,而動態生理波形圖則可為心電圖、腦波圖或其他表現生理狀態之波形圖,本發明不以此為限。 When the execution module 5 is any device equipped with a display, the execution module 5 can display the control command received by the execution module 5 as an animation, and the animation can be a dynamic chart, a dynamic analysis chart, a dynamic physiological waveform chart, and dynamic power. a Power Spectral Density (PSD) map, a dynamic heartbeat scatter plot (RRI Scatter), a dynamic tai chi map, a dynamic character map, or a combination thereof, wherein the dynamic graph can be a trend graph, a bar graph, or a pie chart The dynamic analysis chart may be a five-force analysis chart or a radar analysis chart, and the dynamic physiological waveform chart may be an electrocardiogram, an electroencephalogram or other waveforms showing physiological states, and the invention is not limited thereto.

本發明可用於多種生理檢測方法,令其檢測結果即時以顯示、調整、控制方式回饋給使用者或設備。使用者或設備依據回饋結果做出對應的調整,再經由檢測設備得到新的檢測結果,形成一即時回饋與調 整的循環過程,而在本實施方式中,所述設備即為執行模組5。 The invention can be applied to a plurality of physiological detection methods, so that the detection results are immediately fed back to the user or the device in a display, adjustment and control manner. The user or device makes corresponding adjustments according to the feedback result, and then obtains new detection results through the detection device to form an instant feedback and adjustment. The entire loop process, and in the present embodiment, the device is the execution module 5.

首先,使用者接受檢測模組1之檢測,如前所述,檢測模組1可為相當多種檢測儀器或設備,檢測模組1在檢測完使用者之生理狀態後,會獲得一原始訊號,該原始訊號可以為心電圖資料、肌電波資料、眼動波資料、腦波資料、脈搏資料或其組合。 First, the user receives the detection of the detection module 1. As described above, the detection module 1 can be a plurality of detection instruments or devices. After detecting the physiological state of the user, the detection module 1 obtains an original signal. The original signal may be electrocardiogram data, myoelectric wave data, eye movement data, brain wave data, pulse data or a combination thereof.

該原始訊號之資料內容可為多種形式,通常以單位時間間隔之單位電訊號強度為主,例如心電波、肌電波、眼動波、腦波這類與神經活動相關的訊號,此外,亦可為具有間歇規律性運動特徵的原始訊號,例如脈搏。 The content of the original signal may be in various forms, and is usually based on the unit electrical signal intensity at a unit time interval, such as signals related to neural activity such as electrocardiogram, myoelectric wave, eye movement wave, and brain wave, and may also be It is the original signal with intermittent regular motion characteristics, such as pulse.

接著,檢測模組1會將該原始訊號同時送至資料庫2儲存與解析模組3進行解析(parse),而資料庫2可為單機方式儲存或採用雲端巨型儲存該原始訊號,本發明不以此為限。 Then, the detection module 1 sends the original signal to the database 2 storage and analysis module 3 for parse, and the database 2 can store the original signal in a stand-alone manner or use the cloud to store the original signal. This is limited to this.

如前所述,解析模組3即時解析來自檢測模組1或資料庫2之原始訊號串流,並將之轉換為相對應於該原始訊號之一生理訊號。 As described above, the parsing module 3 immediately parses the original signal stream from the detection module 1 or the database 2 and converts it into a physiological signal corresponding to one of the original signals.

相對於原始訊號,解析後的生理訊號包含許多生理資訊,更便於分析使用。針對不同類型的生理訊號,本發明以不同的訊號格式來對應,本實施方式將舉出多種生理檢測之資料據以說明。 Compared with the original signal, the analyzed physiological signal contains a lot of physiological information, which is more convenient for analysis and use. For different types of physiological signals, the present invention corresponds to different signal formats, and the present embodiment will cite various physiological detection data.

首先請參考表1,表1是時間間隔生理訊號的訊號格式,例如心率變異(Heart rate variabilitv,HRV)分析中的心跳間期(RR-interval)訊號。 First, please refer to Table 1. Table 1 is the signal format of the time interval physiological signal, such as the heart rate variabilitv (HRV) analysis of the heart rate interval (RR-interval) signal.

表1中每一筆訊號傳送的是累積至該時點的心跳間距資料, 可用於表現心跳間距散布圖(RRI Scatter)變化的過程。 Each signal transmitted in Table 1 is the heartbeat spacing data accumulated to that point in time. Can be used to represent the process of heart rate scatter plot (RRI Scatter) changes.

由於本實施方式涉及到訊號傳輸及串流處理之部分,因此採用標準JavaScript物件表示法(JavaScript Object Notation,JSON)格式進行資料的傳輸處理以及分析,若以上表1為例,表1之實施方式所採JSON格式如下:[{TimeSpan:float,Data:[{ms:float},…]},…] Since the present embodiment relates to the part of signal transmission and stream processing, the data processing and analysis are performed by using a standard JavaScript object notation (JSON) format. If the above Table 1 is an example, the implementation of Table 1 The JSON format is as follows: [{TimeSpan:float,Data:[{ms:float},...]},...]

表2是功率頻譜密度生理訊號的訊號格式,用以傳送時間間隔生理訊號以傅立葉轉換(Fourier transform)後所得之功率頻譜密度(Power Spectral Density,PSD),應用於類PSD的檢測數據。 Table 2 shows the signal format of the power spectral density physiological signal for transmitting the Power Spectral Density (PSD) obtained after the Fourier transform of the time interval physiological signal, and is applied to the detection data of the PSD-like type.

例如表2中的每一筆訊號,表示累積至該時間點為止時間間隔資料以傅立葉轉換後得到的功率頻譜密度;例如時間序100的訊號,為累積至時間點100為止的時間間隔資料,以傅立葉轉換後得到的功率頻譜密度結果。 For example, each of the signals in Table 2 indicates the power spectral density obtained by the Fourier transform of the time interval data accumulated until the time point; for example, the signal of the time sequence 100 is the time interval data accumulated up to the time point 100, with Fourier Power spectral density results obtained after conversion.

同樣地,表3之實施方式所採JSON格式如下:[{TimeSpan:float,Data:[{{Hz:float},{PSD:float}},…]},…] Similarly, the JSON format of the implementation of Table 3 is as follows: [{TimeSpan:float,Data:[{{Hz:float},{PSD:float}},...]},...]

表3-1是以心率變異(Heart rate variability,HRV)分析為例的生理參數之生理訊號格式,用以傳送各項生理參數。 Table 3-1 is a physiological signal format of physiological parameters using heart rate variability (HRV) analysis as an example to transmit various physiological parameters.

表3-1中每筆訊號表示累積至該時間點為止各項生理參數的數值,各生理參數之定義請參照下表3-2中之說明。 Each signal in Table 3-1 indicates the value of each physiological parameter accumulated until the time point. For the definition of each physiological parameter, please refer to the description in Table 3-2 below.

針對表3-1,其生理訊號所採JSON格式如下:[{TimeSpan:float,Data:[{{Lf:float},{Hf:float},{LfHf:float},{VLf:float},{Tp:float},{Sdnn:float}},…]},…] For Table 3-1, the JSON format of the physiological signal is as follows: [{TimeSpan:float,Data:[{{Lf:float},{Hf:float},{LfHf:float},{VLf:float},{ Tp:float},{Sdnn:float}},...]},...]

本發明雖可利用並呈現心率變異(Heart rate variability,HRV)分析之結果,但仍可用於其他生理檢測,僅需將其JSON格式中之參數依照生理檢測之數值調整即可,例如血壓量測時便將參數改為收縮壓及舒張壓之數值及單位(mm/Hg),凡屬於現有常用之生理檢測應皆屬於本發明之利用範圍,本發明不以此為限。而上述表1到表3-2之原始訊號及生理訊號係皆利用JSON之格式傳送,因此資料接收端的部分如資料庫2、解析模組3或分析控制模組4皆可透過提供API(Application Programming Interface)之方式獲得上述資料。 Although the invention can utilize and present the results of heart rate variability (HRV) analysis, it can still be used for other physiological tests, and only needs to adjust the parameters in the JSON format according to the physiological detection value, for example, blood pressure measurement. When the parameter is changed to the value and unit of systolic blood pressure and diastolic blood pressure (mm/Hg), all the physiological tests which are commonly used should belong to the scope of application of the present invention, and the present invention is not limited thereto. The original signal and the physiological signal of Table 1 to Table 3-2 are transmitted in the format of JSON. Therefore, the data receiving end such as the database 2, the analysis module 3 or the analysis control module 4 can provide the API (Application). The above information is obtained by way of Programming Interface).

解析模組3成功將原始訊號解析為生理訊號後,會將該生理訊號串流傳送給該分析控制模組4,分析控制模組4接收生理訊號串流後便進行分析,依分析結果發送控制指令串流傳送給執行模組5。 After the parsing module 3 successfully parses the original signal into a physiological signal, the physiological signal stream is transmitted to the analysis control module 4, and the analysis control module 4 performs the analysis after receiving the physiological signal stream, and sends the control according to the analysis result. The instruction stream is transmitted to the execution module 5.

該分析控制模組4可根據分析結果發出控制指令,例如繪製即時動畫指令、調控設備指令、發送警示訊息指令或其組合,可依使用者 需求設計,本發明不以此為限,而執行模組5接收控制指令後,即執行該控制指令。 The analysis control module 4 can issue control commands according to the analysis result, such as drawing an instant animation instruction, regulating device instructions, sending a warning message instruction, or a combination thereof, according to the user. The present invention is not limited thereto, and the execution module 5 executes the control command after receiving the control command.

執行模組5執行控制指令後,使用者或執行模組5即可做出動作上的相應調整。例如使用者觀看即時動態心跳間距散布圖,適時調整動作姿勢,又例如健康設備增加強度。檢測模組1可檢測到調整後的生理訊號,再依前述實施步驟執行,形成一即時動態回饋的循環。 After the execution module 5 executes the control command, the user or the execution module 5 can make corresponding adjustments in the action. For example, the user views the instant dynamic heartbeat interval scatter map, adjusts the action posture in a timely manner, and, for example, the health device increases the intensity. The detection module 1 can detect the adjusted physiological signal, and then execute according to the foregoing implementation steps to form a loop of instant dynamic feedback.

接著,將以實際之實施例,來說明本發明如何改善現有的生理檢測方式。 Next, the actual embodiment will be used to explain how the present invention improves the existing physiological detection method.

實施例1Example 1

本實施例1以心律變異分析為例,說明本發明如何運用過程資訊,解決傳統以靜態數據與2D圖像忽略時間序,所造成的錯誤。下表4係展示了第一使用者A與一第二使用者B的心跳間期(RRI)樣本。兩組樣本數值完全相同,僅順序不同。 In the first embodiment, the heart rhythm variation analysis is taken as an example to illustrate how the present invention uses process information to solve the traditional error caused by ignoring the time sequence of static data and 2D images. Table 4 below shows the heartbeat interval (RRI) samples of the first user A and a second user B. The values of the two groups of samples are identical, only in different order.

請同時參照圖2(a)及圖2(b),圖2(a)係傳統心跳間期散布圖之示意圖;圖2(b)係運用本發明賦予時間因子後的心跳間期散布圖之示意圖,其中箭頭的方向表示各點的先後順序。 Please refer to FIG. 2(a) and FIG. 2(b) at the same time. FIG. 2(a) is a schematic diagram of a traditional heartbeat interval scatter diagram; FIG. 2(b) is a heartbeat interval scatter diagram after applying the time factor according to the present invention. A schematic diagram in which the direction of the arrows indicates the order of the points.

如圖2(a)所示,若以傳統的心跳間期散布圖(RRI Scatter)為例判讀,第一使用者A及第二使用者B雖然有差異,但並無間隔太短(心跳 太快)、或間隔太長(心跳太慢)的狀況,因此,對兩者判讀結果並無差異。 As shown in Fig. 2(a), if the traditional RRI Scatter is used as an example, the first user A and the second user B are different, but the interval is too short (heartbeat It is too fast, or the interval is too long (the heartbeat is too slow), so there is no difference in the interpretation of the two.

若以心律分析常用來判斷自律神經活性的SDNN指標來看,第一使用者A及第二使用者B計算所得的SDNN值相同。也就是兩位使用者有相同的自律神經活性。 If the cardimetric analysis commonly used to determine the autonomic activity of the SDNN indicator, the first user A and the second user B calculate the same SDNN value. That is, two users have the same autonomic nervous activity.

但若以圖2(b)來看,運用本發明繪製之即時動態心跳間期散布圖(RRI Scatter),即時觀察其個別之形成的過程,就能及時發現左圖第一使用者A的心率是穩定而逐漸趨緩,而右圖的第二使用者B則是不規則的變化,凸顯出第二使用者B心律不整的風險。 However, as shown in Fig. 2(b), using the RRI Scatter map drawn by the present invention, the individual formation process can be observed in time, and the heart rate of the first user A on the left image can be found in time. It is stable and gradually slows down, while the second user B on the right is an irregular change, highlighting the risk of a second user B's arrhythmia.

追根究柢,若採如圖2(a)的方式呈現靜態之心跳間期散布圖(RRI Scatter),會讓使用者無法得知其檢測到之數值隨時間變化的次序(也就是時間序),因此,本實施例在運用時會如圖2(b)所示,將上述表4中之原始訊號以動畫之形式顯示於執行模組5,而心跳間期散布圖(RRI Scatter)形成的過程便會如圖2(b)所示之箭頭順序依次呈現在執行模組5上。 If you look at the static heartbeat scatter plot (RRI Scatter) as shown in Figure 2(a), the user will not know the order in which the detected values change over time (that is, the time sequence). Therefore, in the embodiment, as shown in FIG. 2(b), the original signal in the above Table 4 is displayed in an animation form on the execution module 5, and the heartbeat interval pattern (RRI Scatter) is formed. The process is sequentially presented on the execution module 5 in the order of the arrows as shown in Fig. 2(b).

實施例2Example 2

本實施例2以心律變異分析為例,說明本發明如何應用生物回饋,串流導向具有顯示裝置的執行模組5做為訓練輔助工具。 In the second embodiment, the heart rhythm variation analysis is taken as an example to illustrate how the present invention applies bio-feedback, and the stream is guided to the execution module 5 having the display device as a training aid.

請參照圖3,圖3係本發明運用於瑜珈教示配合自律神經檢測之示意圖。如圖3所示,教練C、第一學習者L1及第二學習者L2全身皆穿帶有貼附式或穿戴式的感測裝置,也就是檢測模組1。 Please refer to FIG. 3. FIG. 3 is a schematic diagram of the present invention applied to yoga teaching and autonomic nerve detection. As shown in FIG. 3, the coach C, the first learner L1, and the second learner L2 all wear a sensing device with an attached or wearable type, that is, the detecting module 1.

檢測模組1能夠即時蒐集當下教練C、第一學習者L1及第二學習者L2因瑜珈運動,其自律神經活性變化所產生之原始訊號串流,在將 該原始訊號傳送至資料庫2儲存的同時,一併在解析模組3中進行解析。解析完成之原始訊號會轉換成生理訊號,並傳給分析控制模組4。分析控制模組4分析訊號後,即可對執行模組5發出控制指令。 The detection module 1 can instantly collect the original signal stream generated by the current coach C, the first learner L1 and the second learner L2 due to the yoga movement, and the autonomic nerve activity changes. The original signal is transmitted to the database 2 for storage, and is parsed in the parsing module 3. The original signal that is parsed is converted into a physiological signal and transmitted to the analysis control module 4. After the analysis control module 4 analyzes the signal, a control command can be issued to the execution module 5.

以控制指令繪製功率頻譜密度(Power Spectral Density,PSD)圖為例,此時執行模組5會顯示如圖3中的動畫,教練C、第一學習者L1及第二學習者L2可看見當下自我動作即時的動態功率頻譜密度(Power Spectral Density,PSD)圖。 Taking the Power Spectral Density (PSD) map as an example, the execution module 5 will display the animation as shown in Figure 3. The coach C, the first learner L1 and the second learner L2 can see the present. Self-action real-time Dynamic Spectral Density (PSD) map.

透過比對教練動態功率頻譜密度(Power Spectral Density,PSD)圖之教示,第一學習者L1可得知其姿勢屬於標準動作,係因第一學習者L1其動態功率頻譜密度(Power Spectral Density,PSD)圖與教練C相仿。 Through the comparison of the coach's Power Spectral Density (PSD) diagram, the first learner L1 can know that his posture is a standard action, because the first learner L1 has its dynamic power spectral density (Power Spectral Density, The PSD) map is similar to the coach C.

反之,第二學習者L2可透過執行模組5得知其動態功率頻譜密度(Power Spectral Density,PSD)圖與教練C不同,本實施例可協助第二學習者L2自主調整其瑜珈姿勢,直至其生理狀態之表現與教練C相近。 On the contrary, the second learner L2 can learn that the dynamic power spectral density (PSD) map is different from the coach C through the execution module 5, and the embodiment can assist the second learner L2 to adjust its yoga posture autonomously until The performance of his physiological state is similar to that of coach C.

生理檢測之原始訊號會儲存於資料庫2,因此,當第二學習者L2離開瑜珈教示現場後,仍可透過本實施例,以網路雲端等技術在其他場所播放先前教練C之動畫及自我(既第二學習者L2)之即時動畫,讓第二學習者L2可隨時隨地進行自主瑜珈練習。 The original signal of the physiological test will be stored in the database 2. Therefore, after the second learner L2 leaves the yoga teaching scene, the animation and self of the previous coach C can be played in other places through the network cloud and other technologies through the embodiment. The instant animation of the second learner L2 allows the second learner L2 to perform autonomous yoga practice anytime and anywhere.

實施例3Example 3

本實施例3以腦波檢測為例,說明本發明如何以長時間監測與原始訊號紀錄做為診斷工具。 In the third embodiment, brainwave detection is taken as an example to illustrate how the present invention uses long-term monitoring and original signal recording as a diagnostic tool.

本實施例係用於長期性失眠的使用者。檢測模組1為一穿戴 設備,穿戴於使用者上可長期監測使用者的腦波訊號,資料庫2可將該腦波訊號記錄下來。執行模組5可同時顯示圖4(a)動態腦波D及圖4(b)動態功率頻譜密度圖AS,以即時監測使用者睡眠時之腦波變化。 This embodiment is for users of long-term insomnia. Detection module 1 is a wearable The device is worn on the user to monitor the brain wave signal of the user for a long time, and the database 2 can record the brain wave signal. The execution module 5 can simultaneously display the dynamic brainwave D of FIG. 4(a) and the dynamic power spectral density map AS of FIG. 4(b) to instantly monitor the brainwave changes of the user during sleep.

人處於不同睡眠狀態時,腦波反應出的功率頻譜密度圖會呈現不同樣貌。如圖4(b)所示,當使用者處於未入眠狀態S1、淺眠狀態S2、深睡狀態S3時,其腦波中α、β、γ、θ和δ波所對應頻率之區域的面積有顯著不同。藉由即時觀察動態功率頻譜密度,可看出使用者睡眠時期腦部生理狀態變化結構,以判斷其失眠狀況是否為神經生理狀態造成,抑或是心理因素所引起。 When a person is in different sleep states, the power spectral density map reflected by the brain waves will be different. As shown in FIG. 4(b), when the user is in the unsleep state S1, the light sleep state S2, and the deep sleep state S3, the area of the region corresponding to the frequency corresponding to the α , β, γ, θ, and δ waves in the brain wave is shown. There are significant differences. By observing the dynamic power spectral density in real time, it can be seen that the physiological structure of the brain during the sleep period of the user is determined to determine whether the insomnia condition is caused by a neurophysiological state or a psychological factor.

腦波圖之檢查可做為診斷腦部功能的一種參考資料,一次檢查結果正常並不代表腦部無病變產生,因此需透過長時間檢查較為準確,且必須透過多次檢查才得以做分析與比對。本發明的資料庫2能將檢測之原始訊號記錄下來,供相關人員重複運用,分析控制模組4可透過解析模組3即時將當前的腦波訊號與紀錄於資料庫2的腦波訊號作分析比對,或將記錄於資料庫2的多筆波形紀錄作分析比對,當出現風險時可對執行模組5發出警示控制指令,由執行模組5發出警示,例如發出聲響、以通訊軟體發出訊息,而上述之執行模組5可為智慧型手機、手環等可攜式或穿戴式裝置,本發明不以此為限。 The examination of brain wave can be used as a reference for diagnosing brain function. The normal result of one examination does not mean that there is no lesion in the brain. Therefore, it is necessary to pass the long-term examination more accurately, and it must be analyzed through multiple examinations. Comparison. The database 2 of the present invention can record the original signal of the detection for repeated use by the relevant personnel, and the analysis control module 4 can immediately use the analysis module 3 to immediately record the current brain wave signal and the brain wave signal recorded in the database 2. Analyze the comparison, or compare the multiple waveform records recorded in the database 2, and issue an alarm control command to the execution module 5 when the risk occurs, and the execution module 5 issues a warning, such as making a sound, to communicate The software sends a message, and the above-mentioned execution module 5 can be a portable or wearable device such as a smart phone or a wristband, and the invention is not limited thereto.

實施例4Example 4

本實施例4以學界常探討的「肥胖對自律神經調控能力的影響」這項實驗為例,說明本發明如何運用生物回饋與串流導向具有顯示裝置的執行模組5,作為研發驗證工具。 In the fourth embodiment, an experiment of "the effect of obesity on the ability of autonomic regulation", which is often discussed in the academic field, is taken as an example to illustrate how the present invention uses biofeedback and stream to guide the execution module 5 having a display device as a development verification tool.

本實例運用動態太極圖做為執行模組5之顯示工具,請參照圖5(a),圖5(a)係本發明動態太極圖之表現示意圖。在本實施例中,圖5(a)中所示之動態太極圖主要包含最大繪圖直徑MD、同質性使用者直徑SD、太極TD(太極直徑)、太極陽PD(太極陽直徑)、太極陰ND(太極陰直徑)、太極顏色、以及太極深淺。 In this example, a dynamic taiji diagram is used as a display tool of the execution module 5. Referring to FIG. 5(a), FIG. 5(a) is a schematic diagram showing the performance of the dynamic taiji diagram of the present invention. In the present embodiment, the dynamic Taiji diagram shown in FIG. 5(a) mainly includes the maximum drawing diameter MD, the homogeneity user diameter SD, the Taiji TD (Tai Chi diameter), the Taiji Yang PD (Tai Chi Yang diameter), and the Tai Chi yin. ND (Tai Chi Yin diameter), Tai Chi color, and Tai Chi shade.

其中,太極TD大小表示使用者之自律神經活性狀態,太極陽PD與太極陰ND代表自律神經平衡狀態,太極TD的顏色或深淺表示自律神經能量狀態。繪製動態太極圖所需之生理參數為檢測模組1檢測到該名使用者自律神經活性之原始訊號後,經過解析模組3轉換所得。參數內容可參考表3-1所示。 Among them, the Taiji TD size represents the user's autonomic nervous activity state, the Taiji Yang PD and the Taiji Yin ND represent the autonomic nervous balance state, and the color or shade of the Tai Chi TD represents the autonomic nerve energy state. The physiological parameter required for drawing the dynamic Taiji diagram is obtained by the analysis module 3 after the detection module 1 detects the original signal of the user's autonomic nerve activity. For the parameter content, see Table 3-1.

繪製方法是將影像訊號以下述公式1-1到公式1-7依序計算所得:Rb=P×0.95 (公式1-1) The drawing method is to calculate the image signal sequentially by the following formula 1-1 to formula 1-7: Rb=P×0.95 (Equation 1-1)

Rm=P×0.90 (公式1-2) Rm=P×0.90 (Equation 1-2)

If Ru>Rb Then Ru=Rb (公式1-4) If Ru>Rb Then Ru=Rb (Equation 1-4)

(動態太極圖的α值表示透明度,可反映出其太極深淺) (The alpha value of the dynamic Taiji diagram indicates transparency, which reflects its Tai Chi depth)

上述公式1-1到公式1-7請同時參照圖5(a)、表3-1、表3-2、下表5以及下表6的說明。 For the above formula 1-1 to formula 1-7, please refer to the descriptions of Fig. 5 (a), Table 3-1, Table 3-2, Table 5 below and Table 6 below.

因此,綜合表3-1、表3-2、表5及表6的資訊及其說明,本實施例中之動態太極圖即如圖5(a)中繪示之各部分,可依照原始訊號之即時變化改變其大小、比例、面積以及深淺(亦可為顏色,例如將α代換為色相指標來實施),原始訊號的即時改變意味著可同時改變生理訊號及控制指令的內容,相應調整執行模組5帶給使用者之資訊。 Therefore, the information of the table 3-1, the table 3-2, the table 5 and the table 6 and the description thereof, the dynamic taiji diagram in this embodiment, that is, the parts shown in FIG. 5(a), can be based on the original signal. The instantaneous change changes its size, proportion, area and depth (also can be color, such as the conversion of α to hue indicators), the immediate change of the original signal means that the physiological signal and control instructions can be changed at the same time, corresponding adjustment Execution module 5 brings information to the user.

運用上述的動態太極圖,可讓研發人員即時以圖像化、動畫化、直覺化之方式,觀看到檢測模組1即時偵測到實驗組與控制組有關自律神經活性之狀態變化。 Using the above-mentioned dynamic taiji diagram, the research and development personnel can immediately visualize, animate, and intuitively observe the detection module 1 to instantly detect the state change of the autonomic nerve activity between the experimental group and the control group.

接著請參照圖5(b),圖5(b)係運用本發明研究肥胖對自律神經調控能力的影響示意圖。將受測者區分為實驗組F及控制組NF,假定實驗組F為肥胖之受測者,而控制組NF為非肥胖之受測者。同時觀測其動態太極圖,依時序對其兩組施以第一影響手段T1(例如:針灸與穴道按摩)後,可即時觀察動態太極圖的變化與差異,若再施以第二影響手段T2時,兩組之間的生理狀態會產生何種不同的變化,藉此,作為驗證第一影響手段T1與第二影響手段T2的方法。 Next, please refer to FIG. 5(b), and FIG. 5(b) is a schematic diagram of the effect of obesity on the ability of autonomic regulation by using the present invention. The subjects were divided into experimental group F and control group NF, assuming that experimental group F was a subject of obesity, and control group NF was a non-obese subject. At the same time, observe the dynamic taiji diagram, and apply the first influence means T1 (for example: acupuncture and acupoint massage) to the two groups according to the time series, and then observe the changes and differences of the dynamic taiji diagram immediately, and then apply the second influence means T2. At the time, the physiological state between the two groups will produce different changes, thereby serving as a method of verifying the first influencing means T1 and the second influencing means T2.

為方便研究,對照組原始訊號亦可儲存於資料庫2中,以供後續相同實驗時使用,節省實驗資源。 For the convenience of research, the original signal of the control group can also be stored in the database 2 for subsequent use in the same experiment, saving experimental resources.

實施例5Example 5

本實施例5以心律變異分析為例,說明本發明如何應用生物回饋與串流導向具有顯示裝置的執行模組5,作為評核工具。 In the fifth embodiment, the heart rhythm variation analysis is taken as an example to illustrate how the present invention applies the biological feedback and the stream to the execution module 5 having the display device as the evaluation tool.

學術上常用心律變異分析來觀察受測者的注意力集中的狀況,經過訓練的受測者專注時,其交感神經的活性會明顯提升,並抑制副交感神經的活性,該些反應係表現於功率頻譜密度上,也就是LF能量快速升高。 Academically, heart rhythm variation analysis is commonly used to observe the concentration of the subject's attention. When the trained subject concentrates, the sympathetic activity is significantly enhanced and the parasympathetic activity is inhibited. The responses are expressed in power. In terms of spectral density, that is, LF energy rises rapidly.

請參照圖6(a)與圖6(b),圖6(a)係本發明運用於心智訓練之表現示意圖;圖6(b)係本發明運用於心智訓練之另一表現示意圖。 Please refer to FIG. 6(a) and FIG. 6(b). FIG. 6(a) is a schematic diagram of the performance of the present invention applied to mental training; FIG. 6(b) is another schematic diagram of the present invention applied to mental training.

圖6(a)表示受測者功率頻譜密度,圖6(b)為注意力集中者的功率頻譜密度狀況,動態觀察受測者由圖6(a)變化成圖6(b)的過程,就可以了解受測者注意力集中的速度、強度,以作為評核該受測者的依據。 Fig. 6(a) shows the power spectral density of the subject, and Fig. 6(b) shows the power spectral density of the attention concentrator, and the dynamic observation subject changes from Fig. 6(a) to Fig. 6(b). It is possible to understand the speed and intensity of the subject's attention as a basis for evaluating the subject.

除心智訓練,集中力訓練或是如射擊等與生理條件相關之運動,皆可利用本發明作為評核工具,或自主訓練工具。 In addition to mental training, concentration training or movements related to physiological conditions such as shooting, the present invention can be utilized as an assessment tool or an autonomous training tool.

實施例6Example 6

本實施例6以心律變異分析為例,說明本發明如何將生物回饋進一步應用於如調控健康器材的執行模組5。 In the sixth embodiment, the heart rhythm variation analysis is taken as an example to illustrate how the present invention further applies biofeedback to the execution module 5 such as a health care device.

自主健康管理者常使用健康器材幫助進行健康管理,常見設備如舒壓椅、減壓床、按摩椅等紓壓設備,或是跑步機、飛輪等運動器材。這些設備通常具有調控功能,例如強弱度變化或模式更改。 Self-health managers often use health equipment to help with health management. Common equipment such as pressure-reducing chairs, decompression beds, massage chairs and other rolling equipment, or treadmills, flywheels and other sports equipment. These devices typically have regulatory functions such as strong or weak changes or mode changes.

將本發明與健康器材結合時,可將健康器材視為一執行模組5,此外,亦可將任一具有螢幕顯示功能的裝置做為另一執行模組5。當使用者使用檢測設備(相當於檢測模組1)且同時使用健康器材(相當於執行 模組5)時,檢測設備(檢測模組1)取得使用者即時之原始訊號,經由分析控制模組4自動分析使用者當前的生理訊號並產生相應的控制指令的同時,藉由前述實施例4中所運用的動態太極圖顯示於具有螢幕顯示功能裝置的一執行模組5,以便即時將自律神經狀態變化回饋給使用者,另外,分析控制模組4亦同時發送控制指令訊號予健康器材(另一執行模組5)進行調控。 When the present invention is combined with a health device, the health device can be regarded as an execution module 5, and any device having a screen display function can be used as another execution module 5. When the user uses the detection device (equivalent to the detection module 1) and uses the health equipment at the same time (equivalent to execution) In the module 5), the detecting device (the detecting module 1) obtains the original signal of the user, and automatically analyzes the current physiological signal of the user through the analysis control module 4 and generates a corresponding control command, by the foregoing embodiment. The dynamic taiji diagram used in 4 is displayed on an execution module 5 having a screen display function device for instantly returning the autonomic nerve state change to the user. In addition, the analysis control module 4 simultaneously sends a control command signal to the health equipment. (Another execution module 5) performs regulation.

由本實施例可得知,本發明可運用之執行模組5不以一種為限制,分析控制模組4可同時連接多個執行模組5,並依照使用者需求控制其間的調配運用。 It can be seen from the present embodiment that the execution module 5 that can be used in the present invention is not limited to one type, and the analysis control module 4 can simultaneously connect a plurality of execution modules 5 and control the deployment between them according to user requirements.

藉由上述檢測與調控的循環,可針對使用者將健康器材調整到最適合的狀態,幫助使用者達到健康目的。 Through the above-mentioned cycle of detection and regulation, the user can adjust the health equipment to the most suitable state to help the user achieve the health goal.

最後,請參照圖7,圖7係本發明生物回饋系統之運作方法流程圖。首先執行步驟(a),檢測模組1檢測一使用者產生之原始訊號,之後執行步驟(b),該檢測模組1將該原始訊號同時傳送給資料庫2及解析模組3,而該資料庫2儲存該原始訊號。 Finally, please refer to FIG. 7. FIG. 7 is a flow chart of the operation method of the biological feedback system of the present invention. First, step (a) is performed, and the detecting module 1 detects an original signal generated by a user, and then performs step (b), and the detecting module 1 simultaneously transmits the original signal to the data base 2 and the analyzing module 3, and the The database 2 stores the original signal.

在步驟(b)中,檢測模組1所檢測到原始訊號如需即時顯示給使用者觀看時才需將之傳送至解析模組3,否則可依照使用者需求將之儲存於資料庫2即可,以利使用者日後查詢調閱。 In step (b), the original signal detected by the detection module 1 needs to be displayed to the analysis module 3 if it needs to be displayed to the user for display, otherwise it can be stored in the database 2 according to the user's needs. Yes, in order to facilitate users to query in the future.

接著執行步驟(c),該解析模組3即時解析該原始訊號串流,並將該原始訊號轉換為一生理訊號後,以串流傳送該生理訊號至一分析控制模組4。 Then, in step (c), the parsing module 3 analyzes the original signal stream and converts the original signal into a physiological signal, and then streams the physiological signal to an analysis control module 4.

在步驟(c)中,解析模組3所指之原始訊號可來自檢測模組1 或資料庫2,即心電圖資料、肌電波資料、眼動波資料、腦波資料、脈搏資料、或其組合。 In step (c), the original signal pointed by the analysis module 3 can be from the detection module 1 Or the database 2, that is, electrocardiogram data, myoelectric wave data, eye movement data, brain wave data, pulse data, or a combination thereof.

接著執行步驟(d),該分析控制模組4分析該生理訊號串流,並對執行模組5發出控制指令串流。 Then, in step (d), the analysis control module 4 analyzes the physiological signal stream and issues a control command stream to the execution module 5.

最後執行步驟(e),該執行模組5執行該控制指令。當執行完步驟(e)後,本發明更可包含步驟(f),該使用者或該執行模組5調整動作。 Finally, step (e) is executed, and the execution module 5 executes the control instruction. After performing step (e), the present invention may further comprise step (f), the user or the execution module 5 adjusting the action.

在步驟(f)該使用者或該執行模組5調整動作時,會回到並執行步驟(a),檢測模組1會即時得到該使用者或該執行模組5調整動作後產生之全新的原始訊號,並接著以相同步驟(b)~(f)的順序執行,以達到生物回饋的功效,直到使用者找到最適合於其自身之生理狀態為止。 When the user or the execution module 5 adjusts the action in step (f), the step (a) is returned to and executed, and the detection module 1 immediately obtains a new result generated by the user or the adjustment function of the execution module 5. The original signal is then executed in the same order (b) to (f) to achieve the biofeedback effect until the user finds the physiological state that is most suitable for him.

而前述之該使用者所調整之「動作」非限制於骨骼或肌肉之運動,實際上為至少一種的生理狀態改變,如呼吸、血壓、心搏、神經活性或精神狀態等;而該執行模組5調整之「動作」實質上則為至少一種的運作條件改變,例如按摩椅的按壓力道或跑步機的運轉速度等,本發明不以此為限。 The "action" adjusted by the user is not limited to the movement of the bone or muscle, and is actually at least one physiological state change, such as breathing, blood pressure, heartbeat, nerve activity or mental state; and the execution mode The "action" of the group 5 adjustment is substantially a change of at least one of the operating conditions, such as the pressure rail of the massage chair or the running speed of the treadmill, etc., and the invention is not limited thereto.

透過本發明之運用,可將生理檢測導入雙向溝通的層次,大幅提升生理檢測的健康價值,能呈現更完整的資訊,建立良性回饋的循環,足見本發明之進步性。 Through the application of the invention, the physiological detection can be introduced into the level of two-way communication, the health value of the physiological detection can be greatly improved, the more complete information can be presented, and the cycle of benign feedback can be established, which shows the progress of the invention.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及說明內容所作之簡單等效變化與修飾,皆仍屬本發明涵蓋之範圍內。 However, the above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications according to the scope and the description of the present invention remain. It is within the scope of the invention.

1‧‧‧檢測模組 1‧‧‧Test module

2‧‧‧資料庫 2‧‧‧Database

3‧‧‧解析模組 3‧‧‧analysis module

4‧‧‧分析控制模組 4‧‧‧Analytical Control Module

5‧‧‧執行模組 5‧‧‧Execution module

Claims (10)

一種生物回饋系統,包含:一檢測模組;一資料庫,與該檢測模組連接;一解析模組,分別與該檢測模組及該資料庫連接,其中該解析模組即時分析來自該檢測模組或該資料庫之一原始訊號串流,並轉換為相對應於該原始訊號之一生理訊號;一分析控制模組,與該解析模組連接,該分析控制模組接收該生理訊號並轉換為一控制指令;以及至少一執行模組,與該分析控制模組連接,該至少一執行模組執行來自該分析控制模組的該控制指令串流。 A bio-feedback system includes: a detection module; a database connected to the detection module; an analysis module respectively connected to the detection module and the database, wherein the analysis module is immediately analyzed from the detection The original signal stream of the module or the database is converted into a physiological signal corresponding to one of the original signals; an analysis control module is connected to the analysis module, and the analysis control module receives the physiological signal and Converting to a control command; and at least one execution module coupled to the analysis control module, the at least one execution module executing the control command stream from the analysis control module. 如請求項1所述之生物回饋系統,其中該資料庫儲存來自該檢測模組之該原始訊號,且該原始訊號得被該解析模組重複利用。 The bio-feedback system of claim 1, wherein the database stores the original signal from the detection module, and the original signal is reused by the analysis module. 如請求項1所述之生物回饋系統,其中該檢測模組為具有心電圖(Electrocardiography,ECG)測量、肌電波測量、眼動波測量、腦波測量或脈搏測量(Photoplethysmography,PPG)功能之設備。 The biological feedback system of claim 1, wherein the detection module is a device having an electrocardiography (ECG) measurement, a myoelectric wave measurement, an eye movement measurement, an electroencephalogram measurement, or a photoplethysmography (PPG) function. 如請求項1所述之生物回饋系統,其中該原始訊號為心電圖資料、肌電波資料、眼動波資料、腦波資料、脈搏資料或其組合。 The biological feedback system of claim 1, wherein the original signal is electrocardiogram data, myoelectric wave data, eye movement data, brain wave data, pulse data, or a combination thereof. 如請求項1所述之生物回饋系統,其中該控制指令顯示為一動畫,該動畫為動態統計圖、動態分析圖、動態生理波形圖、動態功率頻譜密度(Power Spectral Density,PSD)圖、動態心跳間距散布圖(RRI Scatter)、動態太極圖、動態人物圖或其組合。 The biological feedback system of claim 1, wherein the control instruction is displayed as an animation, wherein the animation is a dynamic chart, a dynamic analysis chart, a dynamic physiological waveform chart, a Dynamic Power Spectral Density (PSD) map, and a dynamic Heart rate scatter plot (RRI Scatter), dynamic tai chi map, dynamic character map, or a combination thereof. 如請求項5所述之生物回饋系統,其中該動態太極圖包含一最大繪圖直徑、一同質性使用者直徑、一太極直徑、一太極陽直徑、一太極陰直徑、太極顏色以及一太極深淺。 The biological feedback system of claim 5, wherein the dynamic pylon diagram comprises a maximum drawing diameter, a homogenous user diameter, a tai chi diameter, a tai chi diameter, a tai chi diameter, a tai chi color, and a tai chi. 如請求項1所述之生物回饋系統,其中該執行模組為電視、智慧型手機、智慧型手錶、手環、電腦、平板電腦、健康輔助設備、運動器材、醫療器材、軟體或其組合。 The bio-feedback system of claim 1, wherein the execution module is a television, a smart phone, a smart watch, a wristband, a computer, a tablet, a health aid, a sports device, a medical device, a software, or a combination thereof. 一種生物回饋系統的運作方法,包含:(a)一檢測模組檢測一使用者產生之一原始訊號;(b)該檢測模組將該原始訊號同時傳送給一資料庫及一解析模組,該資料庫儲存該原始訊號;(c)該解析模組即時分析該原始訊號串流,並將該原始訊號轉換為一生理訊號傳送至一分析控制模組;(d)該分析控制模組分析該生理訊號串流並轉換為一控制指令,將該控制指令傳送給至少一執行模組;以及(e)該至少一執行模組執行該控制指令串流。 A method for operating a biological feedback system includes: (a) a detection module detecting a raw signal generated by a user; and (b) the detection module simultaneously transmitting the original signal to a database and an analysis module. The database stores the original signal; (c) the parsing module analyzes the original signal stream in real time, and converts the original signal into a physiological signal for transmission to an analysis control module; (d) analyzing the analysis control module The physiological signal stream is converted and converted into a control command, and the control command is transmitted to the at least one execution module; and (e) the at least one execution module executes the control command stream. 如請求項8所述之生物回饋系統的運作方法,其中執行完步驟(e)後,更執行:(f)該使用者或該執行模組調整動作;執行完畢步驟(f)後重新執行步驟(a)。 The method for operating a biological feedback system according to claim 8, wherein after performing step (e), performing: (f) the user or the execution module adjusting action; performing step (f) and then performing the step again (a). 如請求項9所述之生物回饋系統的運作方法,步驟(f)中該使用者調整之該動作為至少一生理狀態改變,該執行模組調整之該動作為至少一運作條件改變。 The operation method of the biological feedback system according to claim 9, wherein the action adjusted by the user in the step (f) is at least one physiological state change, and the action of the execution module adjustment is at least one operating condition change.
TW104109557A 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof TWI671706B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104109557A TWI671706B (en) 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof
CN201510163610.8A CN105997048A (en) 2015-03-25 2015-04-09 Biofeedback system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104109557A TWI671706B (en) 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof

Publications (2)

Publication Number Publication Date
TW201635233A true TW201635233A (en) 2016-10-01
TWI671706B TWI671706B (en) 2019-09-11

Family

ID=57082376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104109557A TWI671706B (en) 2015-03-25 2015-03-25 Biological status feedback system and operating method thereof

Country Status (2)

Country Link
CN (1) CN105997048A (en)
TW (1) TWI671706B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896916A (en) * 2017-02-17 2017-06-27 武汉海鲸教育科技有限公司 A kind of E.E.G control device and method of attention-feedback
CN110400623B (en) * 2019-08-30 2021-10-15 董云鹏 Health preserving and health managing system and method based on internal energy balance
TWI726442B (en) * 2019-10-08 2021-05-01 國立虎尾科技大學 How the massage system works
CN110772266B (en) * 2019-10-15 2021-10-26 西安电子科技大学 Method for regulating cognitive ability through real-time nerve feedback based on fNIRS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370423B1 (en) * 1998-10-05 2002-04-09 Juan R. Guerrero Method for analysis of biological voltage signals
TW200417355A (en) * 2003-03-10 2004-09-16 Zheng-Qi Dai Wireless medical apparatus and its real-time biological signal collecting monitor
CN1263419C (en) * 2003-04-03 2006-07-12 丽台科技股份有限公司 Detection method of vacuity and repletion of yin and yang and its equipment
TW200608938A (en) * 2004-09-10 2006-03-16 Jang-Min Yang Cloth system for automatic inspection and analysis feedback of body health condition to provide healthcare guidance and applying method thereof
TW201039265A (en) * 2009-04-16 2010-11-01 Univ Chung Yuan Christian Diagnose physiological signal real-time system
CA2840979C (en) * 2011-07-05 2018-07-10 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for coaching employees based upon monitored health conditions using an avatar

Also Published As

Publication number Publication date
TWI671706B (en) 2019-09-11
CN105997048A (en) 2016-10-12

Similar Documents

Publication Publication Date Title
Suksasilp et al. Towards a comprehensive assessment of interoception in a multi-dimensional framework
CN106264568B (en) Contactless mood detection method and device
JP7191159B2 (en) Computer program and method of providing subject's emotional state
EP2291114B1 (en) Synchronising a heart rate parameter of multiple users
EP2285270B1 (en) Method and system for determining a physiological condition
US10307100B2 (en) Methods and systems of controlling a subject's body feature having a periodic wave function
Thomas et al. Implementing clinically feasible psychophysiological measures in evidence-based assessments of adolescent social anxiety.
TWI671706B (en) Biological status feedback system and operating method thereof
Rossi et al. Effect of pursed-lip breathing in patients with COPD: linear and nonlinear analysis of cardiac autonomic modulation
Park et al. Non-contact measurement of heart response reflected in human eye
WO2016092159A1 (en) Device and method for determining a state of consciousness
Gandhi et al. Mental stress assessment-a comparison between HRV based and respiration based techniques
Bu Stress evaluation index based on Poincaré plot for wearable health devices
van Dijk et al. Validation of Photoplethysmography Using a Mobile Phone Application for the Assessment of Heart Rate Variability in the Context of Heart Rate Variability–Biofeedback
KR100705984B1 (en) Stress and tension measuring apparatus with mouse pad and brain therapy system thereby
CN108451494A (en) The method and system of time domain cardiac parameters are detected using pupillary reaction
Muñoz et al. Workload management through glanceable feedback: The role of heart rate variability
CN116098578A (en) Sleep monitoring method and sleep monitoring system
Hair et al. Deep breaths: An internally-and externally-paced deep breathing guide
CN108451496A (en) Detect the method and its system of the information of brain heart connectivity
CN108451526A (en) The method and system of frequency domain heart information are detected using pupillary reaction
JP2012011180A (en) Stability feedback kinetics detector for electrophysiologic signals and method thereof
WO2023097535A1 (en) Monitoring system based on ppg analysis technology for preventing poor exam performance
Yang et al. Robust and remote measurement of heart rate based on a surveillance camera
Wang et al. A Research on Relevance Between Photoplethysmography Signal and External Stimuli