TWI668088B - Reciprocating machine and robot arm pick and place integration system - Google Patents

Reciprocating machine and robot arm pick and place integration system Download PDF

Info

Publication number
TWI668088B
TWI668088B TW107119097A TW107119097A TWI668088B TW I668088 B TWI668088 B TW I668088B TW 107119097 A TW107119097 A TW 107119097A TW 107119097 A TW107119097 A TW 107119097A TW I668088 B TWI668088 B TW I668088B
Authority
TW
Taiwan
Prior art keywords
speed
reciprocating
robot arm
pick
controller
Prior art date
Application number
TW107119097A
Other languages
Chinese (zh)
Other versions
TW202003174A (en
Inventor
孫瑞鴻
沈彥廷
Original Assignee
新代科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新代科技股份有限公司 filed Critical 新代科技股份有限公司
Priority to TW107119097A priority Critical patent/TWI668088B/en
Application granted granted Critical
Publication of TWI668088B publication Critical patent/TWI668088B/en
Publication of TW202003174A publication Critical patent/TW202003174A/en

Links

Landscapes

  • Manipulator (AREA)

Abstract

一種往復式加工機與機械手臂取放整合系統,包含往復式加工機、 控制器與機械手臂。往復式加工機具有旋轉軸及量測裝置,其中量測裝置設置在旋轉軸上,可以量測往復式加工機的旋轉角度,同時往復式加工機可用於對機械手臂抓取待加工工件進行加工。控制器可根據旋轉角度得到往復式加工機的行程位置資訊,並且控制機械手臂取下或放置工件。 A reciprocating processing machine and a robotic arm pick-and-place integration system, including a reciprocating processing machine, Controller and robotic arm. The reciprocating processing machine has a rotating shaft and a measuring device, wherein the measuring device is arranged on the rotating shaft, and the rotating angle of the reciprocating processing machine can be measured, and the reciprocating processing machine can be used for processing the workpiece to be processed by the mechanical arm. . The controller can obtain the travel position information of the reciprocating machine according to the rotation angle, and control the robot to remove or place the workpiece.

Description

往復式加工機與機械手臂取放整合系統 Reciprocating machine and robot arm pick and place integration system

本發明提供一種往復式加工機與機械手臂取放整合系統加工整合系統,特別的是一種用於改善往復式加工機與機械手臂取放工件效率的系統。 The invention provides a processing and integration system for a reciprocating processing machine and a mechanical arm pick-and-place integrated system, in particular, a system for improving the efficiency of pick-and-place workpieces of a reciprocating processing machine and a mechanical arm.

加工機的取放料裝置在加工機進行加工作業時扮演一個非常重要的角色,取放料裝置的性能會直接影響加工機執行加工作業的精準性及效率,而傳統加工機在搭配取放料裝置時需要一個加工機控制器與一個取放料裝置控制器,且控制器與控制器之間是透過輸入與輸出(Input/Output,IO)或總線通訊來交換訊息,又或者是使用加工機控制器多餘的控制軸做機械手臂的控制,但由於加工機控制器與取放料裝置控制器不是專用設計,在工件加工時未能提供有效的取放應用功能。 The processing and discharging device of the processing machine plays a very important role in the processing of the processing machine. The performance of the feeding and discharging device will directly affect the accuracy and efficiency of the processing operation of the processing machine, while the traditional processing machine is matched with the feeding and discharging. The device requires a processing machine controller and a pick-and-place device controller, and the controller and the controller exchange information through input/output (IO) or bus communication, or use the processing machine. The controller's redundant control axis is used to control the robot arm. However, since the processor controller and the pick-and-place device controller are not designed to be dedicated, they do not provide an effective pick-and-place application function during workpiece machining.

另外,在另一傳統沖床的加工機與機械手臂取放料中,是以授權訊號之方式進行溝通,發送授權訊號必須要等待機械手臂到達固定之等待點才能繼續進行,不僅效率低落,即時的調整與行程優化也難以進行。 In addition, in another conventional punching machine processing machine and robot arm pick-and-place material, communication is carried out by way of authorization signal, and the sending of the authorization signal must wait for the robot arm to reach a fixed waiting point to continue, not only inefficient, instant Adjustments and itinerary optimization are also difficult.

因此,如何提出一種加工機取放料裝置與加工系統進行整合,能夠有效改善習知技術的缺點已成為一個重要的課題。 Therefore, how to propose a process of integrating the processing and discharging device of the processing machine with the processing system has become an important issue to effectively improve the shortcomings of the prior art.

本發明主要的目的是提供了一種往復式加工機與機械手臂取放整合系統,藉由專用的量測裝置量測旋轉角度,接著由控制器根據旋轉之角度及往復式加工機的線性軸的行程位置可藉以運算出即時行程規劃,達成加速取放料,加快生產速度,減少機器調適時間之效果。 The main object of the present invention is to provide a reciprocating processing machine and a robotic arm pick-and-place integration system, which measures the rotation angle by a dedicated measuring device, and then the controller according to the angle of rotation and the linear axis of the reciprocating processing machine The travel position can be used to calculate the immediate travel plan, achieve accelerated pick-and-place material, speed up production, and reduce the effect of machine adjustment time.

根據上述目的,本發明主要提出一種往復式加工機與機械手臂取放整合系統,包含至少一往復式加工機、控制器及機械手臂。其中,往復式加工機具有旋轉軸及量測裝置,其中量測裝置設置在旋轉軸上,旋轉軸用以帶動往復式加工機以及量測裝置用以量測往復式加工機的旋轉角度。控制器,藉由信號通訊方式與往復式加工機連接,並將往復式加工機的旋轉角度進行計算以獲得往復式加工機的加工速度。機械手臂,藉由信號通訊方式與控制器連接,控制器根據往復式加工機的安全範圍與加工速度以決定機械手臂的取放料區間,且控制器根據取放料區間與機械手臂的取放料路徑計算機械手臂的最小取放料速度,使得控制器將最小取放料速度與機械手臂的最大運作速度進行比對,藉此判斷是否調整加工速度。 In accordance with the above objects, the present invention primarily provides a reciprocating machine and robotic arm pick-and-place integration system comprising at least one reciprocating machine, controller and robotic arm. The reciprocating processing machine has a rotating shaft and a measuring device, wherein the measuring device is disposed on the rotating shaft, and the rotating shaft is used to drive the reciprocating processing machine and the measuring device for measuring the rotation angle of the reciprocating processing machine. The controller is connected to the reciprocating processing machine by means of signal communication, and calculates the rotation angle of the reciprocating processing machine to obtain the processing speed of the reciprocating processing machine. The mechanical arm is connected to the controller by means of signal communication. The controller determines the picking and discharging interval of the robot arm according to the safety range and processing speed of the reciprocating processing machine, and the controller picks up and discharges according to the picking and discharging interval and the mechanical arm. The material path calculates the minimum pick-and-place speed of the robot arm, so that the controller compares the minimum pick-and-drop speed with the maximum operating speed of the robot arm to determine whether to adjust the processing speed.

10、12、14‧‧‧往復式加工機 10,12,14‧‧‧Reciprocating processing machine

20、22‧‧‧機械手臂 20, 22‧‧ mechanical arm

30‧‧‧控制器 30‧‧‧ Controller

103、123、143‧‧‧量測裝置 103, 123, 143‧‧‧ measuring devices

105、125、145‧‧‧旋轉軸 105, 125, 145‧‧‧ rotating shaft

107、127、147‧‧‧線性軸 107, 127, 147‧‧‧ linear axis

101、104、106‧‧‧第一子控制器 101, 104, 106‧‧‧ first sub-controller

102、103‧‧‧第二子控制器 102, 103‧‧‧ second sub-controller

40‧‧‧取下已加工工件的機械手臂的取料區間 40‧‧‧Removal of the robotic arm of the machined workpiece

50‧‧‧放置待加工工件的機械手臂的放料區間 50‧‧‧Drawing interval of the robot arm on which the workpiece to be machined is placed

60‧‧‧最小放料速度 60‧‧‧Minimum discharge speed

62‧‧‧最小取料速度 62‧‧‧ Minimum reclaiming speed

64‧‧‧加工速度 64‧‧‧Processing speed

70‧‧‧工件 70‧‧‧Workpiece

80‧‧‧由機械手臂的移動距離以及取料時間點T2到取放料銜接點TS的時間計算出機械手臂所需要之最小取料速度 80‧‧‧ travel distance of the robot arm and the reclaiming time point T 2 to the pick and place feeding time point T S of the adapter calculate the minimum velocity required for reclaiming the robot arm

81‧‧‧由機械手臂的移動距離以及取放料銜接點TS到放料時間點T1的時間計算出機械手臂所需要之最小放料速度 81‧‧‧ Calculate the minimum discharge speed required by the robot arm from the moving distance of the robot arm and the time from the pick-and-place contact point T S to the discharge time point T 1

82‧‧‧機械手臂之最小取料與最小放料速度與機械手臂之最大速度進行大小判定 82‧‧‧The minimum retrieving and minimum discharge speed of the robot arm and the maximum speed of the robot arm are determined.

83‧‧‧觸發相撞警告停止運作 83‧‧‧ Trigger collision warning stops working

84‧‧‧判定往復式加工機是否還能加速 84‧‧‧Determine whether the reciprocating machine can accelerate

85‧‧‧判定為已經達到最佳化 85‧‧‧Determining that optimization has been achieved

86‧‧‧提高往復式加工機的加工速度 86‧‧‧Improving the processing speed of the reciprocating machine

A‧‧‧上點位置 A‧‧‧Upper position

B‧‧‧下點位置 B‧‧‧Next position

D‧‧‧加工距離 D‧‧‧Processing distance

G‧‧‧加工點 G‧‧‧Processing point

F‧‧‧安全範圍 F‧‧‧Safety range

T1‧‧‧放料時間點 T 1 ‧‧‧ Discharge time

T2‧‧‧取料時間點 T 2 ‧‧‧Retraction time

Ts‧‧‧取放料銜接點 Ts‧‧‧ picking and discharging joints

圖1為根據本發明所揭露的技術,表示往復式加工機與機械手臂取放整合系統第一實施例的示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of a first embodiment of a reciprocating machine and robotic arm pick and place integration system in accordance with the teachings of the present invention.

圖2為根據本發明所揭露的技術,表示往復式加工機與機械手臂取放整合系統第二實施例的示意圖。 2 is a schematic diagram showing a second embodiment of a reciprocating machine and robotic arm pick-and-place integration system in accordance with the disclosed technology.

圖3為根據本發明所揭露的技術,表示往復式加工機與機械手臂取放整合系統的往復式加工機的旋轉軸角度示意圖。 3 is a schematic view showing the angle of a rotating shaft of a reciprocating machine of a reciprocating machine and a robotic arm pick-and-place integration system in accordance with the disclosed technology.

圖4為根據本發明所揭露的技術,表示往復式加工機與機械手臂取放整合系統第三實施例的示意圖。 4 is a schematic diagram showing a third embodiment of a reciprocating machine and a robotic arm pick and place integration system in accordance with the disclosed technology.

圖5為根據本發明所揭露的技術,表示往復式加工機與機械手臂取放整合系統第四實施例的示意圖。 Figure 5 is a schematic illustration of a fourth embodiment of a reciprocating machine and robotic arm pick and place integration system in accordance with the teachings of the present invention.

圖6為根據本發明所揭露的技術,表示往復式加工機與機械手臂取放整合系統的效率優化流程圖。 6 is a flow chart showing the efficiency optimization of the reciprocating machine and the robotic arm pick and place integration system in accordance with the disclosed technology.

本發明之優點及特徵以及達到其方法將參照例示性實施例及附圖進行更詳細的描述而更容易理解。然而,本發明可以不同形式來實現且不應被理解僅限於此處所陳述的實施例。相反地,對所屬技術領域具有通常知識者而言,所提供的此些實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇。 The advantages and features of the present invention, as well as the methods thereof, will be more readily understood by reference to the exemplary embodiments and the accompanying drawings. However, the invention may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided to provide a thorough and complete and complete disclosure of the scope of the invention.

請參考圖1為本發明之往復式加工機與機械手臂取放整合系統第一實施例的示意圖。如圖1所示,本發明之往復式加工機與機械手臂取放整合系統包含往復式加工機10、機械手臂20與控制器30,其中三者藉由信號通訊方式互相連接,例如以有線或無線網路的信號通訊方式。往復式加工機10包含量測裝置103、旋轉軸105及線性軸107,其中量測裝置103設置在旋轉軸105上用以量測往復式加工機10的旋轉角度。具體來說,量測裝置103的一端設置於旋轉軸105上,另一端固 定在往復式加工機10的本體上,當往復式加工機10運作時,量測裝置103隨著旋轉軸105一同旋轉,同時量測裝置103透過偵測自身的角度,進而得知旋轉軸105旋轉的角度,並計算出線性軸107的行程位置。量測裝置103可以是編碼器(encoder)或是解角器(resolver)亦或其他可量測旋轉軸105旋轉角度的感測器。值得注意的是,在本發明的實施例中,控制器30可以外接(如一般電腦)或內建於往復式加工機10與機械手臂20中(如各自的軸控系統),將於後續實施例中分別說明。 Please refer to FIG. 1 for a schematic diagram of a first embodiment of a reciprocating processing machine and a robotic arm pick-and-place integration system according to the present invention. As shown in FIG. 1, the reciprocating machine and the robotic arm pick-and-place integration system of the present invention comprises a reciprocating machine 10, a robot arm 20 and a controller 30, wherein the three are connected to each other by means of signal communication, for example, by wire or Signal communication method for wireless networks. The reciprocating machine 10 includes a measuring device 103, a rotating shaft 105, and a linear shaft 107, wherein the measuring device 103 is disposed on the rotating shaft 105 for measuring the angle of rotation of the reciprocating machine 10. Specifically, one end of the measuring device 103 is disposed on the rotating shaft 105, and the other end is fixed. Positioned on the body of the reciprocating machine 10, when the reciprocating machine 10 is in operation, the measuring device 103 rotates together with the rotating shaft 105, and the measuring device 103 detects the rotating shaft 105 by detecting the angle of itself. The angle of rotation and the travel position of the linear axis 107 is calculated. The measuring device 103 can be an encoder or a resolver or other sensor that can measure the angle of rotation of the rotating shaft 105. It should be noted that in the embodiment of the present invention, the controller 30 can be externally connected (such as a general computer) or built in the reciprocating processing machine 10 and the robot arm 20 (such as the respective axis control system), which will be implemented later. Explain separately in the examples.

機械手臂20除了會由料盤(未在圖中表示)中抓取待加工的工件70放置於往復式加工機10上,用於執行取料的動作之外,另外也會將已加工完成的工件70從往復式加工機10中取出放置在料盤上,即執行放料的動作。換句話說,機械手臂20可執行取料與放料兩種工作。另外,往復式加工機10與機械手臂20皆可為一個或是多個,當機械手臂20為多個的時候,這些機械手臂20可以同時運作進而增加取料及放料的效率。 The robot arm 20 is placed on the reciprocating machine 10 by a workpiece (not shown in the drawing) to be placed on the reciprocating machine 10 for performing the retrieving action, and the processed arm is also processed. The workpiece 70 is taken out from the reciprocating machine 10 and placed on the tray, that is, the action of discharging is performed. In other words, the robot arm 20 can perform both the take-up and the discharge operations. In addition, the reciprocating machine 10 and the robot arm 20 can be one or more. When the robot arm 20 is plural, the robot arms 20 can operate simultaneously to increase the efficiency of reclaiming and discharging.

接下來將說明多台機械手臂同時運作時的情況,請參考圖2,並同時配合圖1。圖2為本發明之往復式加工機與機械手臂取放整合系統第二實施例的示意圖。如圖2所示,機械手臂20負責執行取料工作,而機械手臂22負責執行放料工作。當控制器30根據量測裝置103所測量的旋轉角度得知目前往復式加工機10處於加工狀態時,便將旋轉角度利用滑件曲柄機構(slider-crank mechanism)或類似的計算模型計算出往復式加工機10的線性軸107的行程位置,接著再將線性軸107行程位置經由差分計算出往復式加工機10的加工速度64。舉例來說,線性軸107可於加工距離D,即如圖2中上點位置A與下點位置B之間的範圍,中往返,控制器30可由旋轉軸105的旋轉角度計算出目前線性軸107 運作於加工距離D中的行程位置。另一方面,在加工過程中,線性軸107若壓下至下點位置B會損害工件70,因此操作人員必須事先設定線性軸107壓下的安全範圍F,在本發明中,線性軸107壓下的安全範圍F為圖2中,上點位置A與加工點G之間的範圍。 Next, we will explain the situation when multiple robot arms are working at the same time. Please refer to Figure 2 and cooperate with Figure 1. 2 is a schematic view showing a second embodiment of the reciprocating processing machine and the robotic arm pick-and-place integration system of the present invention. As shown in Figure 2, the robot arm 20 is responsible for performing the take-up work, while the robot arm 22 is responsible for performing the discharge work. When the controller 30 knows that the reciprocating machine 10 is in the machining state according to the rotation angle measured by the measuring device 103, the rotation angle is calculated by using a slider-crank mechanism or the like. The stroke position of the linear shaft 107 of the machining machine 10 is then calculated by the difference between the stroke position of the linear shaft 107 and the machining speed 64 of the reciprocating machine 10. For example, the linear axis 107 can be in the machining distance D, that is, the range between the upper point position A and the lower point position B in FIG. 2, and the controller 30 can calculate the current linear axis from the rotation angle of the rotating shaft 105. 107 Operates at the stroke position in the machining distance D. On the other hand, if the linear axis 107 is pressed to the lower point position B during the machining process, the workpiece 70 is damaged. Therefore, the operator must set the safety range F of the linear shaft 107 to be pressed in advance. In the present invention, the linear shaft 107 is pressed. The lower safety range F is the range between the upper point position A and the machining point G in Fig. 2 .

為了提升往復式加工機與機械手臂取放整合系統的取放料流程速度,機械手臂20與另一機械手臂22開始運作的取放料時間點及取放料速度必須與往復式加工機10的加工速度64互相配合。接著,將說明控制器30如何設定機械手臂20與另一機械手臂22的取放料時間點。請同時參考圖2與圖3,圖3為根據本發明之往復式加工機與機械手臂取放整合系統的往復式加工機的旋轉軸角度示意圖。控制器30會根據往復式加工機10的加工速度64與安全範圍F來分別設定機械手臂20的取料時間點T2與機械手臂22的放料時間點T1。一般說來,當機械手臂20取完料後,機械手臂22隨即要執行放料,因此控制器30將機械手臂20銜接到機械手臂22的時間點設定為取放料銜接點TS,在本發明的實施例中,取放料銜接點TS可以是取料時間點T2與放料時間點T1中間的任一點。值得注意的是,由於往復式加工機10的運作週期等同於旋轉軸105的運作週期,因此,旋轉軸105旋轉一整圈所需要的時間與加工速度64相關,換句話說,取料時間點T2、放料時間點T1與取放料銜接點TS也與加工速度64相關。 In order to improve the pick-and-place flow speed of the reciprocating machine and the robot arm pick-and-place integration system, the pick-and-place time and the pick-and-drop speed of the robot arm 20 and the other robot arm 22 must be synchronized with the reciprocating machine 10 The machining speeds 64 match each other. Next, it will be explained how the controller 30 sets the pick-and-place time point of the robot arm 20 and the other robot arm 22. Please refer to FIG. 2 and FIG. 3 at the same time. FIG. 3 is a schematic diagram showing the angle of the rotating shaft of the reciprocating processing machine of the reciprocating processing machine and the robot arm pick-and-place integration system according to the present invention. The controller 30 sets the take-up time point T 2 of the robot arm 20 and the discharge time point T 1 of the robot arm 22 according to the machining speed 64 and the safety range F of the reciprocating machine 10, respectively. Generally, when the robot arm 20 is finished, the robot arm 22 is then discharged, so the controller 30 sets the time of the robot arm 20 to the robot arm 22 to set the discharge point T S . In the embodiment of the invention, the take-off point T S may be any point between the take-up time point T 2 and the discharge time point T 1 . It is to be noted that since the operation cycle of the reciprocating machine 10 is equivalent to the operation cycle of the rotary shaft 105, the time required for the rotary shaft 105 to rotate one full turn is related to the machining speed 64, in other words, the take-up time point. T 2 , the discharge time point T 1 and the pick-and-place contact point T S are also related to the processing speed 64.

接下來將說明控制器30如何設定機械手臂20與另一機械手臂22的取放料速度。取料時間點T2到取放料銜接點TS的這段時間是機械手臂20的取料區間40,機械手臂20在取料區間40內行經的取料路徑如下:先從等待點移動至加工點G上方後,其距離如圖2中所表示的E1,接著機械手臂20再下降抓取已加工工件70(距離未繪示,假設為Y1),之後再離開往復式加工機10的範圍(距離未繪示,假設為E1),機械手臂20在取料路徑上的移動距離為 2(E1+Y1),可由人工預先設定。由取料路徑以及取料時間點T2到取放料銜接點TS的時間可以計算出,在時間內完成這段移動距離的機械手臂20所需要之最小取料速度62。以此類推,機械手臂22的放料區間50則是在取放料銜接點TS到放料時間點T1這段時間內,放置待加工工件70的機械手臂22行經的放料路徑如下:從等待點移動至加工點G上方後其距離如圖2中所表示的E2,再下降放置已加工工件70(距離未繪示,假設為Y2),之後,機械手臂22的再離開往復式加工機10的範圍E2,機械手臂22在放料路徑上的移動距離為2(E2+Y2),可由人工預先設定。由放料路徑以及取放料銜接點TS到放料時間點T1的時間可以計算出,在時間內完成這段移動距離的機械手臂22所需要的最小放料速度60。 Next, how the controller 30 sets the pick-and-place speed of the robot arm 20 and the other robot arm 22 will be explained. The time from the take-up time point T 2 to the take-off contact point T S is the take-up interval 40 of the robot arm 20, and the take-up path of the robot arm 20 in the take-up section 40 is as follows: first move from the waiting point to After the processing point G is above, the distance is E1 as shown in FIG. 2, and then the robot arm 20 is further lowered to grab the processed workpiece 70 (distance is not shown, assumed to be Y 1 ), and then leaves the reciprocating processing machine 10 The range (distance is not shown, assumed to be E 1 ), the moving distance of the robot arm 20 on the take-up path is 2 (E 1 +Y 1 ), which can be preset by hand. From the take-up path and the time from the take-up time T 2 to the take-off point T S , the minimum take-up speed 62 required for the robot 20 to complete the travel distance in time can be calculated. By analogy, the discharge section 50 of the robot arm 22 is within the time period from the pick-and-place contact point T S to the discharge time point T 1 , and the discharge path of the robot arm 22 on which the workpiece 70 to be processed is placed is as follows: After moving from the waiting point to the top of the processing point G, the distance is E2 as shown in FIG. 2, and then the processed workpiece 70 is lowered (the distance is not shown, assuming Y 2 ), and then the retracting of the robot arm 22 is repeated. The range E 2 of the processing machine 10 and the moving distance of the robot arm 22 on the discharge path are 2 (E 2 + Y 2 ), which can be preset by hand. From the discharge path and the time from the take-off point T S to the discharge time point T 1 , the minimum discharge speed 60 required for the robot arm 22 to complete the travel distance in time can be calculated.

當控制器30分別計算出最小取料速度62及最小放料速度60(以下陳述將最小取料速度62及最小放料速度60簡稱最小取放料速度)後,再將最小取放料速度與機械手臂20與另一機械手臂22的最大運作速度進行比對,藉此判斷是否需要調整加工速度64。一般來說,控制器30的比對結果會有三種情況,以下將分別說明。第一種情況;當最小取放料速度60等於最大運作速度時,此時代表整體取放流程已達最佳化。第二種情況:當最小取放料速度60小於最大運作速度時,控制器30會先判斷目前的加工速度64是否超過往復式加工機10所預設的最大加工速度,若加工速度64小於往復式加工機10所預設的最大加工速度,就代表整體取放流程還有加速的空間,控制器30會先提高目前的加工速度64,之後再重新計算最小取放料速度60,並確認重新計算後的最小取放料速度60是否小於或等於最大運作速度,經由反覆疊代計算直到最小取放料速度60等於最大運作速度或是加工速度64等於往復式加工機10所預設的最大加工速度64,此時可視為已達最佳化的狀態。第三種情況:當最小取放料速度60大於最大運作速度,此時代表機械手 臂20與另一機械手臂22將會撞機,此時控制器30會跳出警告,同時暫停機械手臂20與另一機械手臂22之運作。 When the controller 30 respectively calculates the minimum take-up speed 62 and the minimum discharge speed 60 (hereinafter, the minimum take-up speed 62 and the minimum discharge speed 60 are simply referred to as the minimum take-off speed), then the minimum take-off speed is The robot arm 20 is compared with the maximum operating speed of the other robot arm 22, thereby judging whether or not the machining speed 64 needs to be adjusted. In general, there are three cases of the comparison result of the controller 30, which will be separately described below. In the first case, when the minimum take-off speed 60 is equal to the maximum operating speed, the overall pick-and-place process is optimized at this time. The second case: when the minimum take-off speed 60 is less than the maximum operating speed, the controller 30 first determines whether the current machining speed 64 exceeds the maximum machining speed preset by the reciprocating machine 10, and if the machining speed 64 is less than the reciprocating speed The maximum processing speed preset by the processing machine 10 represents the overall pick-and-place flow and the space for acceleration. The controller 30 will first increase the current processing speed 64, and then recalculate the minimum pick-and-drop speed 60, and confirm the re Whether the calculated minimum pick-and-place speed 60 is less than or equal to the maximum operating speed, calculated by the overlay iteration until the minimum take-off speed 60 is equal to the maximum operating speed or the processing speed 64 is equal to the maximum processing preset by the reciprocating machine 10. Speed 64, which can be considered as an optimized state. The third case: when the minimum take-off speed 60 is greater than the maximum operating speed, this represents the robot When the arm 20 and the other robot arm 22 will collide, the controller 30 will jump out of the warning while suspending the operation of the robot arm 20 and the other robot arm 22.

接著請參考圖4,圖4為根據本發明之往復式加工機與機械手臂取放整合系統第三實施例的示意圖。在圖4中,當往復式加工機10為多台時,例如連續加工機串聯架構,機械手臂20與另一機械手臂22可在多台往復式加工機10之間執行取料及放料的操作。控制器30可同時收集往復式加工機10、12與14中的量測裝置103、123與143偵測到的旋轉軸105、125與145的旋轉角度,進而計算出線性軸107、127與147的行程位置,並根據行程位置計算出往復式加工機10、12與14的加工速度64。另一方面,控制器30會根據復式加工機10、12與14的加工速度64來調整機械手臂20與另一機械手臂22的取放料時間與取放速度,並判斷是否需調整往復式加工機10、12與14的加工速度64讓整體取放流程最佳化。 Next, please refer to FIG. 4. FIG. 4 is a schematic diagram of a third embodiment of a reciprocating machine and a robotic arm pick-and-place integration system according to the present invention. In FIG. 4, when the reciprocating machine 10 is in multiple stages, such as a continuous processing machine series configuration, the robot arm 20 and the other robot arm 22 can perform the reclaiming and discharging operations between the plurality of reciprocating processing machines 10. . The controller 30 can simultaneously collect the rotation angles of the rotating shafts 105, 125, and 145 detected by the measuring devices 103, 123, and 143 in the reciprocating processing machines 10, 12, and 14, thereby calculating the linear axes 107, 127, and 147. The stroke position is calculated, and the machining speed 64 of the reciprocating machines 10, 12 and 14 is calculated based on the stroke position. On the other hand, the controller 30 adjusts the pick-and-place time and the pick-and-place speed of the robot arm 20 and the other robot arm 22 according to the processing speed 64 of the duplexing machines 10, 12 and 14, and determines whether the reciprocating processing needs to be adjusted. The processing speeds 64 of machines 10, 12 and 14 optimize the overall pick and place flow.

另一方面,當機械手臂20取完料後,控制器30會根據線性軸127的行程位置計算機械手臂20需要以多少的放料速度60移動至往復式加工機12執行放料工作。以此類推,控制器30會根據線性軸147的行程位置計算機械手臂22需要以多少的放料速度60移動至往復式加工機14執行放料工作。如此一來,機械手臂20與另一機械手臂22在執行完往復式加工機10與往復式加工機12的取料工作後,可立即接續執行往復式加工機12與往復式加工機14的放料工作,無需在等待點等到線性軸127與線性軸147回到上點位置後才開始執行,以減少整體取放加工流程速度。 On the other hand, when the robot arm 20 is finished, the controller 30 calculates how much of the discharge speed 60 the robot arm 20 needs to move to the reciprocating machine 12 to perform the discharge operation based on the stroke position of the linear shaft 127. By analogy, the controller 30 calculates how much of the discharge speed 60 the robot arm 22 needs to move to the reciprocating machine 14 to perform the discharge operation based on the stroke position of the linear axis 147. In this way, after the robot arm 20 and the other robot arm 22 perform the reclaiming work of the reciprocating processing machine 10 and the reciprocating processing machine 12, the reciprocating processing machine 12 and the reciprocating processing machine 14 can be immediately executed. The material operation does not need to wait until the linear axis 127 and the linear axis 147 return to the upper position at the waiting point to reduce the overall picking and processing flow speed.

圖5為根據本發明之往復式加工機與機械手臂取放整合系統第四實施例的示意圖。在此實施例中,控制器30包含內建於往復式加工機 10、12與14中的第一子控制器101、104與106(如往復式加工機10、12與14的軸控系統),也包含內建於機械手臂20與22中的第二子控制器102與103(如機械手臂20與22的軸控系統)。其中,第一子控制器101、104與106與第二子控制器102與103藉由有線或無線網路互相連接,用以收集量測裝置103、123與143偵測到的旋轉軸105、125與145的旋轉角度,進而計算出線性軸107、127與147的行程位置,並根據行程位置計算出往復式加工機10、12與14的加工速度64。另一方面,第一子控制器101、104與106與第二子控制器102與103會根據復式加工機10、12與14的加工速度64調整機械手臂20與22的取放料時間與取放速度,並判斷是否需調整往復式加工機10、12與14的加工速度64讓整體取放流程最佳化,判斷流程與上述相同不在此贅述。 Figure 5 is a schematic illustration of a fourth embodiment of a reciprocating machine and robotic arm pick and place integration system in accordance with the present invention. In this embodiment, the controller 30 includes a built-in reciprocating machine The first sub-controllers 101, 104 and 106 of 10, 12 and 14 (such as the axis control system of reciprocating machines 10, 12 and 14) also include a second sub-control built into robot arms 20 and 22 The devices 102 and 103 (such as the axis control system of the robot arms 20 and 22). The first sub-controllers 101, 104, and 106 and the second sub-controllers 102 and 103 are connected to each other by a wired or wireless network, and are used to collect the rotating shafts 105 detected by the measuring devices 103, 123, and 143, The rotation angles of 125 and 145, in turn, calculate the stroke positions of the linear axes 107, 127, and 147, and calculate the machining speed 64 of the reciprocating machines 10, 12, and 14 based on the stroke positions. On the other hand, the first sub-controllers 101, 104 and 106 and the second sub-controllers 102 and 103 adjust the pick-and-place time and take-up of the robot arms 20 and 22 according to the processing speed 64 of the duplexing machines 10, 12 and 14. The speed is set, and it is judged whether or not the processing speed 64 of the reciprocating processing machines 10, 12, and 14 needs to be adjusted to optimize the overall pick-and-place process, and the judgment flow is the same as the above.

接下來,請參考圖6,並同時配合圖2及圖3。圖6為本發明之往復式加工機與機械手臂取放整合系統的效率優化流程圖。在本實施例中,以兩台機械手臂搭配一台往復式加工機為例,來說明本發明取放效率優化流程,首先,機械手臂20的取料時間點T2、機械手臂22的放料時間點T1與機械手臂20與機械手臂22的取放料銜接點TS設定完成後,進行本發明所揭露的往復式加工機與機械手臂取放整合系統的效率優化流程。於步驟80,由機械手臂20的移動距離以及取料時間點T2到取放料銜接點TS的時間計算出機械手臂20所需要之最小取料速度62;再接著,步驟81,由機械手臂22的移動距離以及取放料銜接點TS到放料時間點T1的時間計算出機械手臂22所需要之最小放料速度60。於另一實施例中,步驟80與步驟81的順序可以互換。接著,於步驟82,機械手臂之最小取料與最小放料速度與機械手臂之最大速度進行大小判定。在步驟82中是由前述步驟80與步驟81計算取得的最小取料速度62以及最小放料速度60與機械手臂20與另一機械手臂22的最大 速度進行大小判定,若最小取料速度62以及最小放料速度60小於機械手臂20與另一機械手臂22的最大速度,則進入步驟84,判定往復式加工機10是否還能加速。在步驟84中,是針對往復式加工機10是否還能提高速度進行判定,若往復式加工機10還能提高速度則進入步驟86,步驟86為提高往復式加工機10的加工速度64,而此往復式加工機與機械手臂取放整合系統的效率優化流程會再回到步驟80與步驟81重新計算最小取料速度62以及最小放料速度60,若往復式加工機10不能提高速度,則進入步驟85,判定為已經達到最佳化。 Next, please refer to FIG. 6 and cooperate with FIG. 2 and FIG. 3 at the same time. FIG. 6 is a flow chart showing the efficiency optimization of the reciprocating processing machine and the robot arm pick-and-place integration system of the present invention. In this embodiment, the two robot arms are combined with a reciprocating processing machine as an example to illustrate the optimization process of the pick-and-place efficiency of the present invention. First, the retracting time point T 2 of the robot arm 20 and the discharging of the robot arm 22 are taken. After the time point T 1 is set and the pick-and-place contact point T S of the robot arm 20 and the robot arm 22 is completed, the efficiency optimization process of the reciprocating machine and the robot arm pick-and-place integration system disclosed in the present invention is performed. In step 80, the minimum retraction speed 62 required by the robot arm 20 is calculated from the moving distance of the robot arm 20 and the time from the take-up time point T 2 to the take-off point T S ; and then, step 81, by the machine a moving distance of the arm 22 and the discharge taking the convergence point S T to calculate the minimum discharge rate required for the robot 22 60 times the discharge time point T 1. In another embodiment, the order of step 80 and step 81 can be interchanged. Next, in step 82, the minimum retraction of the robot arm and the minimum discharge speed are determined by the maximum speed of the robot arm. In step 82, the minimum reclaiming speed 62 and the minimum discharging speed 60 calculated by the foregoing steps 80 and 81 are determined by the magnitude of the maximum speed of the robot arm 20 and the other robot arm 22, if the minimum reclaiming speed 62 and The minimum discharge speed 60 is less than the maximum speed of the robot arm 20 and the other robot arm 22. Then, the routine proceeds to step 84 where it is determined whether the reciprocating machine 10 can be accelerated. In step 84, it is determined whether the reciprocating machine 10 can also increase the speed. If the reciprocating machine 10 can also increase the speed, the process proceeds to step 86, where the processing speed 64 of the reciprocating machine 10 is increased. The efficiency optimization process of the reciprocating machine and the robotic arm pick-and-place integration system will return to step 80 and step 81 to recalculate the minimum reclaiming speed 62 and the minimum discharging speed 60. If the reciprocating processing machine 10 cannot increase the speed, then Proceeding to step 85, it is determined that optimization has been achieved.

在步驟82中,由步驟80與步驟81計算取得的最小取料速度62以及最小放料速度60與機械手臂20與另一機械手臂22的最大速度進行大小判定,若最小取料速度62以及最小放料速度60大於機械手臂20與另一機械手臂22的最大速度,則進入步驟83,觸發相撞警告停止運作。在步驟83中,相撞警告是由控制器30跳出警告,且同時暫停機械手臂20與另一機械手臂22之運作,與此機械手臂20與另一機械手臂22信號方式連接的往復式加工機10以及其他的機械手臂20與另一機械手臂22也會收到暫停警告並停止運作。另一情況下,若最小取料速度62以及最小放料速度60等於機械手臂20的最大速度,則進入步驟85,判定為已經達到最佳化。 In step 82, the minimum take-up speed 62 and the minimum discharge speed 60 calculated by steps 80 and 81 are used to determine the magnitude of the maximum speed of the robot arm 20 and the other robot arm 22, if the minimum take-up speed 62 and the minimum When the discharge speed 60 is greater than the maximum speed of the robot arm 20 and the other robot arm 22, the process proceeds to step 83, and the collision warning is triggered to stop the operation. In step 83, the collision warning is a reciprocating machine that jumps out of the warning by the controller 30 and simultaneously suspends the operation of the robot arm 20 and the other robot arm 22, and the robot arm 20 is signally connected to the other robot arm 22. 10 and other robotic arms 20 and another robotic arm 22 will also receive a pause warning and stop functioning. In another case, if the minimum take-up speed 62 and the minimum discharge speed 60 are equal to the maximum speed of the robot arm 20, the routine proceeds to step 85 where it is determined that optimization has been achieved.

上述所述者僅為本發明之較佳實施例,舉凡依本發明精神所作之等效修飾或變化,依照相同概念所提出之往復式加工機與機械手臂取放整合系統的系統架構,皆應仍屬本創作涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the equivalent modification or variation according to the spirit of the present invention, the system architecture of the reciprocating processing machine and the mechanical arm pick-and-place integration system according to the same concept should be It is still within the scope of this creation.

Claims (10)

一種往復式加工機與機械手臂取放整合系統,包含:至少一往復式加工機,具有一旋轉軸及一量測裝置,其中該量測裝置設置在該旋轉軸上,該旋轉軸用以帶動該往復式加工機,及該量測裝置用以量測該往復式加工機的一旋轉角度;一控制器,藉由一信號通訊方式與該往復式加工機連接,並將該往復式加工機的該旋轉角度進行計算以獲得該往復式加工機的一加工速度;以及至少一機械手臂,藉由該信號通訊方式與該控制器連接,該控制器根據該往復式加工機的一安全範圍與該加工速度以決定該機械手臂的一取放料區間,且該控制器根據該取放料區間與該機械手臂的一取放料路徑計算該機械手臂的一最小取放料速度,使得該控制器將該最小取放料速度與該機械手臂的一最大運作速度進行比對,藉此判斷是否調整該加工速度。 A reciprocating processing machine and a robotic arm pick-and-place integration system, comprising: at least one reciprocating processing machine having a rotating shaft and a measuring device, wherein the measuring device is disposed on the rotating shaft, and the rotating shaft is used to drive The reciprocating processing machine and the measuring device are configured to measure a rotation angle of the reciprocating processing machine; a controller is connected to the reciprocating processing machine by a signal communication method, and the reciprocating processing machine is The rotation angle is calculated to obtain a processing speed of the reciprocating processing machine; and at least one robot arm is connected to the controller by the signal communication method, and the controller is based on a safety range of the reciprocating processing machine The processing speed determines a pick-and-drop section of the robot arm, and the controller calculates a minimum pick-and-drop speed of the robot arm according to the pick-and-drop section and a pick-and-drop path of the robot arm, so that the control The device compares the minimum take-off speed with a maximum operating speed of the robot arm to determine whether to adjust the machining speed. 如請求項1所述的往復式加工機與機械手臂取放整合系統,其中該控制器包括配置於該往復式加工機中的至少一第一子控制器與配置於該機械手臂中的至少一第二子控制器,該第一子控制器與該第二子控制器根據該往復式加工機的該旋轉角度計算該往復式加工機的該加工速度,並根據該安全範圍與該往復式加工機的該加工速度決定該取放料區間,且該第一子控制器與該第二子控制器根據該取放料區間與該取放料路徑計算該最小取放料速度,並藉由該第一子控制器與該第二子控制器將該最小取放料速度與該最大運作速度進行比對,藉此判斷是否調整該加工速度。 The reciprocating machine and the robotic arm pick and place integration system according to claim 1, wherein the controller comprises at least one first sub-controller disposed in the reciprocating processing machine and at least one disposed in the robot arm a second sub-controller, the first sub-controller and the second sub-controller calculate the processing speed of the reciprocating processing machine according to the rotation angle of the reciprocating processing machine, and according to the safety range and the reciprocating processing The processing speed of the machine determines the picking and discharging interval, and the first sub-controller and the second sub-controller calculate the minimum pick-and-drop speed according to the picking and discharging interval and the picking and discharging path, and by using the The first sub-controller and the second sub-controller compare the minimum pick-and-drop speed with the maximum operating speed, thereby determining whether to adjust the processing speed. 如請求項1或2所述的往復式加工機與機械手臂取放整合系統,其中當該最小取放料速度小於該最大運作速度時,該控制器會進一步判斷該加工速度與該往復式加工機一最大加工速度之間的關係,當該加工速度小於該最大加工速度時,該控制器經由反覆疊代重新計算該最小取放料速度直到該最小取放料速度等於該最大運作速度或是該加工速度等於該最大加工速度。 The reciprocating processing machine and the robot arm pick and place integration system according to claim 1 or 2, wherein when the minimum picking and discharging speed is less than the maximum operating speed, the controller further determines the processing speed and the reciprocating processing. a relationship between the maximum machining speed of the machine, when the machining speed is less than the maximum machining speed, the controller recalculates the minimum take-off speed via the overlay generation until the minimum take-off speed is equal to the maximum operating speed or This processing speed is equal to the maximum processing speed. 如請求項1或2所述的往復式加工機與機械手臂取放整合系統,其中當該取放料速度大於該最大運作速度時,該控制器會跳出警告訊息並暫停該往復式加工機的運作。 The reciprocating processing machine and the robotic arm pick and place integration system according to claim 1 or 2, wherein when the picking and discharging speed is greater than the maximum operating speed, the controller will jump out of the warning message and suspend the reciprocating processing machine. Operation. 如請求項1或2所述的往復式加工機與機械手臂取放整合系統,其中該量測裝置為一編碼器(encoder)或一解角器(resolver)。 The reciprocating machine and the robotic arm pick and place integration system of claim 1 or 2, wherein the measuring device is an encoder or a resolver. 如請求項2所述的往復式加工機與機械手臂取放整合系統,其中該第一子控制器與該第二子控制器分別為該往復式加工機與該機械手臂的一軸控系統。 The reciprocating processing machine and the robot arm pick-and-place integration system according to claim 2, wherein the first sub-controller and the second sub-controller are respectively a reciprocating processing machine and a shaft control system of the robot arm. 如請求項1或2所述的往復式加工機與機械手臂取放整合系統,其中該機械手臂由該往復式加工機的一加工點位置取下或放置一工件。 The reciprocating machine and the robotic arm pick and place integration system of claim 1 or 2, wherein the robot arm is removed or placed by a machining point of the reciprocating machine. 如請求項7所述的往復式加工機與機械手臂取放整合系統,其中該控制器根據該往復式加工機的一線性軸在加工中的一上點位置與該加工點位置計算出該安全範圍。 The reciprocating machine and the robot arm pick-and-place integration system according to claim 7, wherein the controller calculates the safety according to a linear position of the reciprocating processing machine at a position in the machining point and the machining point position. range. 如請求項1所述的往復式加工機與機械手臂取放整合系統,其中該取放料區間包含一取料時間點與一放料時間點,該取料時間點為允許 該機械手臂取下一已加工工件的一起始時間,而該機械手臂於該放料時間點前放置一待加工工件。 The reciprocating processing machine and the robot arm pick-and-place integration system according to claim 1, wherein the take-and-release section comprises a take-out time point and a discharge time point, and the take-off time point is allowed The robot arm takes a start time of the processed workpiece, and the robot arm places a workpiece to be processed before the discharge time point. 如請求項9所述的往復式加工機與機械手臂取放整合系統,其中該取放料區間更包含一取放料銜接點,該取放料銜接點可以是該取料時間點與該放料時間點之間的任一點,使得該機械手臂需在該取料時間點與該取放料銜接點的範圍內取下該已加工工件,並在該放料時間點與該取放料銜接點的範圍內放置該待加工工件。 The reciprocating processing machine and the robot arm pick-and-place integration system according to claim 9, wherein the picking and discharging section further comprises a picking and discharging joint point, and the picking and discharging joint point may be the picking time point and the placing Any point between the time points of the material, so that the robot arm needs to take off the processed workpiece within the range of the take-off time point and the pick-and-discharge connection point, and connect with the pick-and-place material at the discharge time point. Place the workpiece to be machined within the range of points.
TW107119097A 2018-06-04 2018-06-04 Reciprocating machine and robot arm pick and place integration system TWI668088B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107119097A TWI668088B (en) 2018-06-04 2018-06-04 Reciprocating machine and robot arm pick and place integration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107119097A TWI668088B (en) 2018-06-04 2018-06-04 Reciprocating machine and robot arm pick and place integration system

Publications (2)

Publication Number Publication Date
TWI668088B true TWI668088B (en) 2019-08-11
TW202003174A TW202003174A (en) 2020-01-16

Family

ID=68316229

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119097A TWI668088B (en) 2018-06-04 2018-06-04 Reciprocating machine and robot arm pick and place integration system

Country Status (1)

Country Link
TW (1) TWI668088B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104015090A (en) * 2014-05-30 2014-09-03 东莞市亮宇自动化科技有限公司 Material fetching and collecting method for numerical-control machining and robot for implementing material fetching and collecting method
CN204954818U (en) * 2015-09-17 2016-01-13 广州市泰立机电设备有限公司 Automatic get blowing and move system of carrying
TWM523539U (en) * 2015-09-03 2016-06-11 Precursor Tech Co Ltd Processor of charge and discharge on main shaft
CN106142081A (en) * 2015-05-14 2016-11-23 发那科株式会社 The system of processing that machining tool rotating speed and feed-speed are adjusted
TWM568770U (en) * 2018-06-04 2018-10-21 新代科技股份有限公司 Reciprocating machine and robot arm pick and place integration system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104015090A (en) * 2014-05-30 2014-09-03 东莞市亮宇自动化科技有限公司 Material fetching and collecting method for numerical-control machining and robot for implementing material fetching and collecting method
CN106142081A (en) * 2015-05-14 2016-11-23 发那科株式会社 The system of processing that machining tool rotating speed and feed-speed are adjusted
TWM523539U (en) * 2015-09-03 2016-06-11 Precursor Tech Co Ltd Processor of charge and discharge on main shaft
CN204954818U (en) * 2015-09-17 2016-01-13 广州市泰立机电设备有限公司 Automatic get blowing and move system of carrying
TWM568770U (en) * 2018-06-04 2018-10-21 新代科技股份有限公司 Reciprocating machine and robot arm pick and place integration system

Also Published As

Publication number Publication date
TW202003174A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US10625420B2 (en) Machining system
CN206068892U (en) Online curve board separator
JP2004164328A (en) One person cam system and one person cam program
US11230005B2 (en) Following robot and work robot system
CN103722428B (en) The tool magazine control method of Digit Control Machine Tool and system
US10493585B2 (en) Machining system including robot for transporting machined article and method
CN112318319A (en) Programming-free robot online constant-force grinding control system and method
CN107876613A (en) A kind of workpiece process for producing line and method for combining pipe end processing and bend pipe processing
CN108032290A (en) A kind of girder device with double servo synchronization movements
CN105500361A (en) Movement control method and system of connecting rod structure manipulator
CN108333968A (en) The method for planning track of robot single step campaign
TWM568770U (en) Reciprocating machine and robot arm pick and place integration system
JP2011028678A (en) Production apparatus and production method
TWI668088B (en) Reciprocating machine and robot arm pick and place integration system
CN105068485B (en) One kind automatically controls pressure casting method and die-casting system
JP2019188507A (en) Working robot system and working robot
JP5529920B2 (en) Robot target position detection device, semiconductor device, and target position detection method
WO2019207862A1 (en) Machine tool
WO2021065880A1 (en) Robot control system, robot control method, and program
JP6154509B2 (en) Work transfer device
JP6688045B2 (en) Work transfer system
JP7087840B2 (en) Grinding method
CN114104658A (en) Self-adaptive control method for plate feeding
CN208976113U (en) A kind of surface processing device
JP2018097814A (en) Numerical control unit