TWI664538B - Big data security fusion method without leaking privacy - Google Patents

Big data security fusion method without leaking privacy Download PDF

Info

Publication number
TWI664538B
TWI664538B TW105139708A TW105139708A TWI664538B TW I664538 B TWI664538 B TW I664538B TW 105139708 A TW105139708 A TW 105139708A TW 105139708 A TW105139708 A TW 105139708A TW I664538 B TWI664538 B TW I664538B
Authority
TW
Taiwan
Prior art keywords
data set
party
fused
data
information
Prior art date
Application number
TW105139708A
Other languages
Chinese (zh)
Other versions
TW201727516A (en
Inventor
周雍愷
柴洪峰
何朔
何東傑
劉國寶
才華
Original Assignee
大陸商中國銀聯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商中國銀聯股份有限公司 filed Critical 大陸商中國銀聯股份有限公司
Publication of TW201727516A publication Critical patent/TW201727516A/en
Application granted granted Critical
Publication of TWI664538B publication Critical patent/TWI664538B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6272Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database by registering files or documents with a third party

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Storage Device Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本發明涉及一種大數據安全融合方法,包括:第一方與第二方就關聯欄位、各自所需的資料項目以及排序規則進行協商;基於各自所需的資料項目分別從第一資料集、第二資料集中篩選出第一待融合資料集、第二待融合資料集;依據排序規則分別對第一待融合資料集、第二待融合資料集進行排序,並將關聯欄位對應的資料分別從第一待融合資料集、第二待融合資料集中剔除;將第一待融合資料集、第二待融合資料集提交到協力廠商計算平臺,以形成已融合資料集;協力廠商計算平臺對已融合資料集進行分析計算,生成結果資料集。其在實現大數據融合的同時,有效防止隱私資料的泄露,在確保資料安全的前提下促進了資訊的共用。 The invention relates to a big data security fusion method, which includes: a first party and a second party negotiating an associated field, respective data items and ordering rules; and based on the respective data items required from the first data set, The first data set to be fused and the second data set to be fused are selected in the second data set; the first data set to be fused and the second data set to be fused are sorted according to the sorting rule, and the data corresponding to the associated fields are respectively Remove from the first to-be-fused data set and the second to-be-fused data set; submit the first to-be-fused data set and the second to-be-fused data set to the third-party computing platform to form a fused data set; Fusion data sets are analyzed and calculated to generate result data sets. While realizing big data fusion, it effectively prevents the leakage of private data and promotes the sharing of information on the premise of ensuring data security.

Description

不泄露隱私的大數據安全融合方法 Big data security fusion method without leaking privacy

本發明涉及一種大數據安全融合方法。 The invention relates to a big data security fusion method.

隨著國家“互聯網+”戰略的出臺,各產業之間的大數據融合需求愈發迫切。然而,一方面,不同的機構對於大數據共用持歡迎的態度,引入不同類型資料的融合可以產生新的分析結果,資料價值將因此產生乘數效應;另一方面,雙方對於在資料融合的過程中隱私資料的泄露存在擔憂,因為最終的分析結果往往只是一個統計性結論,而在大數據融合計算的過程中卻不得不將資料所有的條目細節都暴露于對方。該問題已經成為產業間大數據協作與共用的一大障礙。 With the introduction of the national "Internet +" strategy, the need for big data fusion between industries is becoming more urgent. However, on the one hand, different organizations welcome the sharing of big data. The introduction of the fusion of different types of data can generate new analysis results, and the value of the data will therefore have a multiplier effect. On the other hand, the two parties are concerned about the process of data fusion. There are concerns about the leakage of private data in China, because the final analysis result is often only a statistical conclusion, but in the process of big data fusion calculation, all the details of the data have to be exposed to each other. This problem has become a major obstacle to the collaboration and sharing of big data among industries.

因此,本領域技術人員期望獲得一種有效遮罩隱私資料的、可靠的大數據安全融合方法。 Therefore, those skilled in the art expect to obtain a reliable big data security fusion method that effectively masks private data.

本發明的一個目的在於提供一種有效遮罩隱私資料的大數據安全融合方法。 An object of the present invention is to provide a big data security fusion method for effectively masking private data.

為實現上述目的,本發明提供一種技術方案如下:一種大數據安全融合方法,用於將第一方存儲的第一資料集與第二方存儲的第二資料集進行融合,該方法包括如下步驟:a)、第一方與第二方就關聯欄位、各自所需的資料項目以及排序規則進行協商;b)、基於各自所需的資料項目分別從第一資料集、第二資料集中篩選出第一待融合資料集、第二待融合資料集;c)、依據排序規則分別對第一待融合資料集、第二待融合資料集進行排序,並將關聯欄位對應的資料分別從第一待融合資料集、第二待融合資料集中剔除;d)、第一方、第二方分別將第一待融合資料集、第二待融合資料集提交到協力廠商計算平臺,以形成已融合資料集;e)、協力廠商計算平臺對已融合資料集進行分析計算,生成結果資料集。 To achieve the above object, the present invention provides a technical solution as follows: A method for securely merging big data, for merging a first data set stored by a first party and a second data set stored by a second party, the method includes the following steps : A), the first party and the second party negotiate the relevant fields, their respective data items, and the sorting rules; b), based on their respective data items, they are filtered from the first data set and the second data set, respectively The first to-be-fused data set and the second to-be-fused data set are generated; c), the first to-be-fused data set and the second to-be-fused data set are sorted according to sorting rules, and the data corresponding to the associated fields are respectively ranked from the first The first to-be-fused data set and the second to-be-fused data set are eliminated; d), the first party and the second party respectively submit the first to-be-fused data set and the second to-be-fused data set to the third-party computing platform to form a fused Data set; e) The third-party computing platform analyzes and calculates the fused data set to generate a result data set.

優選地,協力廠商計算平臺分別獨立于第一方以及第二方。 Preferably, the third-party computing platform is independent of the first party and the second party, respectively.

優選地,在分析計算完成後,將第一待融合資料集、第二待融合資料集從計算系統中刪除。 Preferably, after the analysis and calculation are completed, the first data set to be fused and the second data set to be fused are deleted from the computing system.

本發明實施例提供的大數據安全融合方法,在實現大數據融合的同時,有效防止隱私資料的泄露,在確保資料安全的前提下促進了資訊的共用,拓寬了大數據融合技術的應用廣度和深度。此外,上述大數據安全融合方法實施簡單、實現成本低,利於在業內推廣應用。 The big data security fusion method provided by the embodiment of the present invention effectively prevents the leakage of private data while realizing big data fusion, promotes information sharing under the premise of ensuring data security, and broadens the application breadth and depth. In addition, the above-mentioned big data security fusion method is simple to implement and low in implementation cost, which is conducive to promotion and application in the industry.

S10~S50‧‧‧步驟 S10 ~ S50‧‧‧step

圖1示出本發明第一實施例提供的大數據安全融合方法的流程示意圖。 FIG. 1 is a schematic flowchart of a big data security fusion method provided by a first embodiment of the present invention.

需要說明的是,依照本發明所公開的各實施例,第一方在第一資料庫中存儲第一資料集,第二方在第二資料庫中存儲第二資料集。 It should be noted that according to the embodiments disclosed in the present invention, the first party stores the first data set in the first database, and the second party stores the second data set in the second database.

第一、第二資料集分別記錄不同的資訊,例如多個使用者分別在不同場合的活動資訊。第一、第二資料集具有資訊的交集,例如,使用者的身份資訊,其可以提取出來作為關聯欄位。 The first and second data sets record different information, for example, information on the activities of multiple users on different occasions. The first and second data sets have the intersection of information, for example, the user's identity information, which can be extracted as related fields.

本發明提供對第一、第二資料集進行大數據融合的各種實施方式。 The present invention provides various embodiments for performing big data fusion on the first and second data sets.

如圖1所示,本發明第一實施例提供一種大數據安全融合方法,其包括如下步驟:步驟S10、第一方與第二方就關聯欄位、各自所需的資料項目以及排序規則進行協商。 As shown in FIG. 1, a first embodiment of the present invention provides a method for securely integrating big data, which includes the following steps: Step S10, the first party and the second party perform an association field, each required data item, and a sorting rule. Negotiation.

具體地,第一方與第二方進行協商會話,並就關聯欄位、各自所需的資料項目以及排序規則達成一致。 Specifically, the first party and the second party have a negotiation session, and reach agreement on the associated fields, their respective data items, and the ordering rules.

各自所需的資料項目包括第一方期望在資料融合中從第二方間接獲得的資料項目,以及第二方期望在資料融合中從第一方間接獲得的資料項目。通過各自所需 的資料項目,在協商會話中可以確定第一方、第二方分別關心哪些使用者的相關資訊,並進一步就這些使用者的身份資訊達成一致。 The data items required by each of them include data items that the first party expects to obtain indirectly from the second party in the data fusion, and data items that the second party expects to obtain indirectly from the first party in the data fusion. Through their respective needs In the negotiation session, you can determine the information about which users the first party and the second party care about, and further agree on the identity information of these users.

關聯欄位能夠表示第一、第二資料集中的資訊交集部分,其可直接取自下列資訊中的任一個或多個:使用者的身份資訊;使用者的所持卡資訊;和/或,唯一地確定使用者的其他標識資訊。 The associated field can represent the intersection of information in the first and second data sets, which can be directly taken from any one or more of the following information: the user's identity information; the user's card information; and / or, the only To identify the user ’s other identifying information.

排序規則確定在後續的融合過程中,按照何種順序來對具體的待融合資料集進行排序。一旦確定,這種排序規則不能被隨意改變,除非通過再次的協商會話進行變更。依照所確定的排序規則進行排序,第一、第二待融合資料集中各資料項目之間的對應關係也能夠被確定。 The sorting rules determine the order in which the specific data sets to be fused are sorted in the subsequent fusion process. Once determined, this sorting rule cannot be changed arbitrarily unless it is changed through a renegotiation session. According to the determined sorting rules, the correspondence between the data items in the first and second data sets to be fused can also be determined.

協商會話可以由第一方或第二方發起,另一方進行回應。或者,協商會話可以由不同于第一方和第二方的一個獨立的實體模組來發起,第一方、第二方收到指令後,直接進行協商會話,協商會話完成後,通知該實體模組。 The negotiation session can be initiated by the first or second party and the other party responds. Alternatively, the negotiation session may be initiated by an independent entity module different from the first party and the second party. After receiving the instruction, the first party and the second party directly conduct the negotiation session, and notify the entity after the negotiation session is completed. Module.

步驟S20、基於各自所需的資料項目分別從第一資料集、第二資料集中篩選出第一待融合資料集、第二待融合資料集。 In step S20, a first data set to be fused and a second data set to be fused are respectively selected from the first data set and the second data set based on the required data items.

具體地,基於協商會話所確定的各自所需的資料項目,可以從第一資料集中篩選出第一待融合資料集,以及從第二資料集中篩選出第二待融合資料集。可以理解,第一待融合資料集與第二待融合資料集具有數量相 同的資料項目,且第一待融合資料集中的每個資料項目都能夠在第二待融合資料集中找到與之對應的資料項目,反之亦然。 Specifically, based on the respective required data items determined by the negotiation session, the first data set to be fused can be selected from the first data set, and the second data set to be fused is selected from the second data set. It can be understood that the first data set to be fused and the second data set to be fused have a quantity phase The same data item, and each data item in the first to-be-fused data set can find a corresponding data item in the second to-be-fused data set, and vice versa.

步驟S30、依據排序規則分別對第一待融合資料集、第二待融合資料集進行排序,並將關聯欄位對應的資料分別從第一待融合資料集、第二待融合資料集中剔除。 Step S30: Sort the first to-be-fused data set and the second to-be-fused data set according to the sorting rule, and remove the data corresponding to the associated fields from the first to-be-fused data set and the second to-be-fused data set, respectively.

該步驟S30具體包括排序步驟和剔除步驟。 This step S30 specifically includes a sorting step and a culling step.

依照一種具體實現,排序步驟可以包括:第一方、第二方分別依據排序規則對第一待融合資料集、第二待融合資料集進行排序。 According to a specific implementation, the sorting step may include: the first party and the second party sort the first to-be-fused data set and the second to-be-fused data set according to the sorting rule, respectively.

剔除步驟可以包括:第一方、第二方分別將關聯欄位對應的資料分別從第一待融合資料集、第二待融合資料集中剔除。 The removing step may include: the first party and the second party respectively delete the data corresponding to the associated fields from the first to-be-fused data set and the second to-be-fused data set.

通過執行剔除步驟,第一、第二待融合資料集不再包括使用者身份資訊,從而有效地遮罩了隱私資訊;而通過執行排序步驟,第一、第二待融合資料集中的資料項目之間已具有明確的一一對應關係。 By performing the culling step, the first and second to-be-fused data sets no longer include user identity information, which effectively masks the privacy information; and by performing the sorting step, one of the data items in the first and second to-be-fused data sets There is a clear one-to-one correspondence between them.

步驟S40、第一方、第二方分別將第一待融合資料集、第二待融合資料集提交到協力廠商架設的計算平臺,以形成已融合資料集。 Step S40: The first party and the second party respectively submit the first to-be-fused data set and the second to-be-fused data set to a computing platform set up by a third party to form a fused data set.

具體地,第一方將執行排序步驟和剔除步驟之後得到的第一待融合資料集通過專用通信線路提交到協力廠商架設的計算平臺,同時,第二方執行類似操作。其 中,協力廠商計算平臺分別獨立于第一方以及第二方。 Specifically, the first party submits the first to-be-fused data set obtained after performing the sorting step and the rejection step to a computing platform erected by a third party through a dedicated communication line, and at the same time, the second party performs a similar operation. its In China, third-party computing platforms are independent of the first and second parties.

隨後,依照執行上述排序步驟所得到的先後順序,將第一待融合資料集中的資料項目與第二待融合資料集中的資料項目一一對應地進行結合來生成新的資料項目,進而形成已融合資料集。 Subsequently, according to the sequence obtained by executing the above sorting steps, the data items in the first to-be-fused data set are combined with the data items in the second to-be-fused data set in a one-to-one correspondence to generate new data items, and then form a fused Data set.

所形成的已融合資料集同時包括來自第一方的使用者活動資訊以及來自第二方的使用者活動資訊,但不包括使用者身份資訊,因此,對協力廠商來說,其無法獲知是哪個用戶進行了這些活動。 The resulting fused data set includes both user activity information from the first party and user activity information from the second party, but does not include user identity information, so for third-party vendors, they cannot know which Users performed these activities.

步驟S50、協力廠商計算平臺對已融合資料集進行分析計算,生成結果資料集。 Step S50: The third-party computing platform analyzes and calculates the fused data set to generate a result data set.

通過該步驟S50,協力廠商計算平臺可以對已融合資料集進行分析計算,生成結果資料集,結果資料集可以是分析統計的結果,其完全不同於第一、第二待融合資料集。結果資料集可以回饋給第一方、第二方,而第一方、第二方從結果資料集無法還原出原始資料。 Through this step S50, the third-party computing platform can analyze and calculate the fused data set to generate a result data set. The result data set can be the result of analysis and statistics, which is completely different from the first and second data sets to be fused. The result data set can be fed back to the first and second parties, and the first and second parties cannot restore the original data from the result data set.

進一步地,在上述分析計算完成後,協力廠商計算平臺可以刪除第一待融合資料集、第二待融合資料集,從而更有利於保護資料的安全性與隱私性。 Further, after the above analysis and calculation are completed, the third-party computing platform can delete the first data set to be fused and the second data set to be fused, which is more conducive to protecting the security and privacy of the data.

該實施例所提供的大數據安全融合方法,在實現大數據融合的同時,遮罩了使用者的身份資訊,從而有效防止隱私資料的泄露。這種大數據融合方法安全可靠,實現簡單。 The big data security fusion method provided by this embodiment masks the user's identity information while realizing big data fusion, thereby effectively preventing the leakage of private data. This big data fusion method is safe, reliable, and easy to implement.

根據上述實施例進一步改進的實現方式,在 步驟S10中還可以包括:第一方向第二方提出第一資料集中涉及使用者隱私資訊的欄位或需要保護的欄位。與此相應地,步驟S30還包括:將該涉及使用者隱私資訊的欄位或需要保護的欄位所對應的資料從第一待融合資料集中剔除。 According to a further improved implementation manner of the foregoing embodiment, in Step S10 may further include: the first party submits to the second party a field related to the user's privacy information in the first data set or a field that needs to be protected. Correspondingly, step S30 further includes: excluding the data corresponding to the field related to the user's private information or the field that needs to be protected from the first to-be-fused data set.

類似地,第二方也可以向第一方提出第二資料集中涉及使用者隱私資訊的欄位或需要保護的欄位。 Similarly, the second party may also propose to the first party fields in the second data set that relate to the user's private information or fields that need to be protected.

這種改進實現方式,提供對使用者隱私資訊的強化保護,特別適合在對資料保護要求較高的場合中使用。 This improved implementation method provides enhanced protection of user privacy information, and is particularly suitable for use in places with high requirements for data protection.

上述說明僅針對于本發明的優選實施例,並不在於限制本發明的保護範圍。本領域技術人員可作出各種變形設計,而不脫離本發明的思想及附隨的權利要求。 The above description is only directed to the preferred embodiments of the present invention, and is not intended to limit the protection scope of the present invention. Those skilled in the art can make various modified designs without departing from the idea of the present invention and the accompanying claims.

Claims (5)

一種大數據安全融合方法,用於將第一方存儲的第一資料集與第二方存儲的第二資料集進行融合,該方法包括如下步驟:a)、該第一方與該第二方就關聯欄位、各自所需的資料項目以及排序規則進行協商;b)、基於該各自所需的資料項目分別從該第一資料集、第二資料集中篩選出第一待融合資料集、第二待融合資料集;c)、依據該排序規則分別對該第一待融合資料集、第二待融合資料集進行排序,並將該關聯欄位對應的資料分別從該第一待融合資料集、第二待融合資料集中剔除;d)、該第一方、第二方分別將該第一待融合資料集、第二待融合資料集提交到協力廠商計算平臺,以形成已融合資料集;e)、該協力廠商計算平臺對該已融合資料集進行分析計算,生成結果資料集;其中,該已融合資料集包括來自該第一方的使用者活動資訊和來自該第二方的使用者活動資訊,並且不包括使用者身份資訊。A big data security fusion method for fusing a first data set stored by a first party and a second data set stored by a second party, the method includes the following steps: a), the first party and the second party Negotiate the associated fields, their respective data items, and sorting rules; b), based on the respective required data items, filter out the first data set to be fused, the first data set, the first Two to-be-fused data sets; c) sort the first to-be-fused data set and the second to-be-fused data set respectively according to the sorting rule, and separate the data corresponding to the associated field from the first to-be-fused data set And the second to-be-fused data set is eliminated; d) the first party and the second party respectively submit the first to-be-fused data set and the second to-be-fused data set to a third-party computing platform to form a fused data set; e) The third-party computing platform analyzes and calculates the fused data set to generate a result data set, wherein the fused data set includes user activity information from the first party and information from the second party. User activity information and does not include user identity information. 如申請專利範圍第1項所述的方法,其中,該協力廠商計算平臺分別獨立於該第一方以及該第二方。The method according to item 1 of the scope of patent application, wherein the third-party computing platform is independent of the first party and the second party, respectively. 如申請專利範圍第1項所述的方法,其中,該步驟e)還包括:在該分析計算完成後,將該第一待融合資料集、第二待融合資料集從該協力廠商計算平臺中刪除。The method according to item 1 of the scope of patent application, wherein step e) further comprises: after the analysis and calculation is completed, removing the first to-be-fused data set and the second to-be-fused data set from the third-party computing platform delete. 如申請專利範圍第1所述的方法,其中,該第一資料集、第二資料集分別記錄多個使用者的不同活動資訊,該關聯欄位包括:使用者的身份資訊;使用者的所持卡資訊;和/或唯一地確定使用者的標識資訊。The method according to claim 1 in the patent application scope, wherein the first data set and the second data set respectively record different activity information of a plurality of users, and the associated fields include: the identity information of the user; Card information; and / or uniquely identifying user information. 如申請專利範圍第4所述的方法,其中,該步驟a)還包括:該第一方向該第二方提出該第一資料集中涉及使用者隱私資訊的欄位;該步驟c)還包括:將該涉及使用者隱私資訊的欄位所對應的資料從該第一待融合資料集中剔除。The method according to claim 4 in the patent application scope, wherein the step a) further comprises: the first submitting to the second party a field in the first data set related to the user's private information; the step c) further comprises: The data corresponding to the field related to the user's private information is removed from the first to-be-fused data set.
TW105139708A 2015-12-02 2016-12-01 Big data security fusion method without leaking privacy TWI664538B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201510868103.4 2015-12-02
CN201510868103.4A CN105590066B (en) 2015-12-02 2015-12-02 The safe fusion method of big data of privacy is not revealed

Publications (2)

Publication Number Publication Date
TW201727516A TW201727516A (en) 2017-08-01
TWI664538B true TWI664538B (en) 2019-07-01

Family

ID=55929639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105139708A TWI664538B (en) 2015-12-02 2016-12-01 Big data security fusion method without leaking privacy

Country Status (3)

Country Link
CN (1) CN105590066B (en)
TW (1) TWI664538B (en)
WO (1) WO2017092696A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105590066B (en) * 2015-12-02 2018-08-10 中国银联股份有限公司 The safe fusion method of big data of privacy is not revealed
CN109726580B (en) * 2017-10-31 2020-04-14 阿里巴巴集团控股有限公司 Data statistical method and device
CN108683657B (en) * 2018-05-11 2021-03-02 试金石信用服务有限公司 Data security access method and device, terminal equipment and readable storage medium
US11138327B2 (en) 2018-12-27 2021-10-05 Industrial Technology Research Institute Privacy data integration method and server
CN109492435B (en) * 2019-01-10 2022-03-08 贵州财经大学 Privacy disclosure risk assessment method, device and system based on data open sharing
CN110674125B (en) * 2019-09-24 2022-05-17 北京明略软件系统有限公司 Filtering method and filtering device for data to be fused and readable storage medium
CN111506921B (en) * 2020-04-17 2024-06-14 浙江同花顺智能科技有限公司 Data processing method, system, device, terminal and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140059017A1 (en) * 2012-08-22 2014-02-27 Bitvore Corp. Data relationships storage platform

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091138A1 (en) * 2004-03-16 2005-09-29 Grid Analytics Llc System and method for aggregation and analysis of information from multiple disparate sources while assuring source and record anonymity using an exchange hub
CN101834858B (en) * 2010-04-16 2013-04-03 北京工业大学 Trust and replacement-based privacy information protection method in data sharing
US8607353B2 (en) * 2010-07-29 2013-12-10 Accenture Global Services Gmbh System and method for performing threat assessments using situational awareness
CN102638791B (en) * 2012-04-11 2014-09-10 南京邮电大学 Protection method for fusion integrity of sensor network data
CN102867022B (en) * 2012-08-10 2015-01-14 上海交通大学 System for anonymizing set type data by partially deleting certain items
CN103425780B (en) * 2013-08-19 2016-08-17 曙光信息产业股份有限公司 The querying method of a kind of data and device
CN104679827A (en) * 2015-01-14 2015-06-03 北京得大信息技术有限公司 Big data-based public information association method and mining engine
CN104866775A (en) * 2015-06-12 2015-08-26 四川友联信息技术有限公司 Bleaching method for financial data
CN105590066B (en) * 2015-12-02 2018-08-10 中国银联股份有限公司 The safe fusion method of big data of privacy is not revealed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140059017A1 (en) * 2012-08-22 2014-02-27 Bitvore Corp. Data relationships storage platform

Also Published As

Publication number Publication date
WO2017092696A1 (en) 2017-06-08
CN105590066B (en) 2018-08-10
CN105590066A (en) 2016-05-18
TW201727516A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
TWI664538B (en) Big data security fusion method without leaking privacy
Guo et al. Graph structure and statistical properties of Ethereum transaction relationships
AU2014101545A4 (en) Software behavior monitoring and verification system
CN103259788B (en) For Formal Modeling and the verification method of security protocol
CN106921504B (en) Method and equipment for determining associated paths of different users
Yu et al. Modeling and verification of online shopping business processes by considering malicious behavior patterns
CN104866781B (en) The community network data publication method for secret protection of Community-oriented detection application
TW201923618A (en) Data statistics method and apparatus
CN107680003A (en) The node tree generation method and device of project supervision task
CN109063969A (en) A kind of method and device of account risk assessment
CN103279472B (en) Method for extracting high-influence information of social network
CN104486306A (en) Method for identity authentication based on finger vein recognition and cloud service
CN106228453A (en) A kind of method and apparatus obtaining user's occupational information
Coppola et al. Enhancing Cloud Security Posture for Ubiquitous Data Access with a Cybersecurity Framework Based Management Tool
CN106649343B (en) Network data information processing method and equipment
Viñuela et al. From the periphery to the core: direct and indirect effects of the migration of labour
CN107203561B (en) Data processing method and equipment
Baars et al. Analysing the Security Risks of Cloud Adoption Using the SeCA Model: A Case Study.
CN105357169B (en) Identify the method and system of account
Adamakis et al. Darav: a tool for visualizing de-anonymization risks
CN106296203A (en) A kind of determination method and apparatus of the user that practises fraud
Agapie et al. Eventful: crowdsourcing local news reporting
CN106845253A (en) Historical operation recording of encrypted method and device
CN106327296A (en) Fan performance mode method based on big data of user demands
Paradise et al. Profilegen: Generation of automatic and realistic artificial profiles