TWI664513B - Tool machine servo control simulation device and establishing method of structure model - Google Patents

Tool machine servo control simulation device and establishing method of structure model Download PDF

Info

Publication number
TWI664513B
TWI664513B TW106145206A TW106145206A TWI664513B TW I664513 B TWI664513 B TW I664513B TW 106145206 A TW106145206 A TW 106145206A TW 106145206 A TW106145206 A TW 106145206A TW I664513 B TWI664513 B TW I664513B
Authority
TW
Taiwan
Prior art keywords
domain
frequency
information
speed
time
Prior art date
Application number
TW106145206A
Other languages
Chinese (zh)
Other versions
TW201928556A (en
Inventor
林政傑
王仁傑
周國華
廖建智
何筱晨
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW106145206A priority Critical patent/TWI664513B/en
Application granted granted Critical
Publication of TWI664513B publication Critical patent/TWI664513B/en
Publication of TW201928556A publication Critical patent/TW201928556A/en

Links

Landscapes

  • Numerical Control (AREA)

Abstract

一種工具機伺服控制模擬裝置及受控體模型的建立方法。工具機伺服控制模擬裝置包括受控體模型及處理器。受控體模型包括位置函數、速度函數及驅動器特性參數。處理器包括控制訊號接收器及模擬器。控制訊號接收器用以接收伺服命令。模擬器回應伺服命令,依據位置函數、速度函數及驅動器特性參數,產生模擬路徑。 A machine tool servo control simulation device and a method for establishing a controlled body model. The machine tool servo control simulation device includes a controlled body model and a processor. The controlled body model includes position function, speed function, and drive characteristic parameters. The processor includes a control signal receiver and a simulator. The control signal receiver is used for receiving servo commands. The simulator responds to the servo command and generates a simulated path based on the position function, speed function, and drive characteristic parameters.

Description

工具機伺服控制模擬裝置及受控體模型的建立方 法 Machine tool servo control simulation device and establishment method of controlled body model law

本案是有關於一種伺服控制模擬裝置及受控體模型的建立方法,且特別是有關於一種工具機伺服控制模擬裝置及受控體模型的建立方法。 This case relates to a method for establishing a servo control simulation device and a controlled body model, and more particularly to a method for establishing a machine tool servo control simulation device and a controlled body model.

工具機係由上百個或上千個元件所組成。此些元件組裝後難免會有組裝誤差,且即使是同一批生產的元件,元件品質(如實際公差)也不完全一致。如此,導致每台組裝後的工具機的性能多少會有性能上的差異。因此,在工具機出貨前,必須對工具機進行實測及調校。然而,實測方式必須讓工具機的工作平台實際運動,是一種耗時且效率低的測試方式。 Machine tools are made up of hundreds or thousands of components. After assembly of these components, there will inevitably be assembly errors, and even if the components are produced in the same batch, the component quality (such as actual tolerances) is not completely consistent. In this way, the performance of each machine tool after assembly will be somewhat different. Therefore, before the machine tool is shipped, the machine tool must be measured and adjusted. However, the actual measurement method must make the working platform of the machine tool actually move, which is a time-consuming and inefficient test method.

因此,本案提出一種工具機伺服控制模擬裝置及受控體模型的建立方法,可改善前述習知問題。 Therefore, this case proposes a method for establishing a machine tool servo control simulation device and a controlled body model, which can improve the aforementioned conventional problems.

根據本案之一實施例,提出一種受控體模型的建立方法。受控體模型的建立方法包括以下步驟。接收一工具機的一受控體在數個驅動頻率下的數個時域位置資訊、數個時域速度資訊及數個時域扭力資訊;將此些時域位置資訊、此些時域速度資訊及此些時域扭力資訊分別轉換成數個頻域位置資訊、數個頻域速度資訊及數個頻域扭力資訊;依據此些頻域位置資訊、此些頻域速度資訊及此些頻域扭力資訊,得到數個頻域位置轉移響應點及數個頻域速度轉移響應點;計算此些頻域位置轉移響應點,以得到一位置函數;計算此些頻域速度轉移響應點,以得到一速度函數;以及,將位置函數及速度函數與一驅動器特性參數結合。 According to one embodiment of the present case, a method for establishing a controlled volume model is proposed. The method for establishing the controlled body model includes the following steps. Receives time-domain position information, time-domain speed information, and time-domain torque information of a controlled body of a machine tool at several drive frequencies; the time-domain position information, the time-domain speed The information and the time-domain torque information are respectively converted into several frequency-domain position information, several frequency-domain speed information, and frequency-domain torque information; according to the frequency-domain position information, the frequency-domain speed information, and the frequency domain Torque information to obtain a number of frequency domain position shift response points and a number of frequency domain speed shift response points; calculate these frequency domain position shift response points to obtain a position function; calculate these frequency domain speed shift response points to obtain A speed function; and combining a position function and a speed function with a drive characteristic parameter.

根據本案之另一實施例,提出一種工具機伺服控制模擬裝置。工具機伺服控制模擬裝置包括一受控體模型及一處理器。受控體模型包含一驅動器特性參數。處理器包括一訊號接收器及一函數計算器。訊號接收器用以接收一工具機之一受控體在數個驅動頻率下的數個時域位置資訊、數個時域速度資訊及數個時域扭力資訊。函數計算器用以:將此些時域位置資訊、此些時域速度資訊及此些時域扭力資訊分別轉換成數個頻域位置資訊、數個頻域速度資訊及數個頻域扭力資訊;依據此些頻域位置資訊、此些頻域速度資訊及此些頻域扭力資訊,得到數個頻域位置轉移響應點及數個頻域速度轉移響應點;計算此些頻域位置轉移 響應點,以得到一位置函數;計算此些頻域速度轉移響應點,以得到一速度函數;以及,將位置函數及速度函數結合至受控體模型內的驅動器特性參數。 According to another embodiment of the present invention, a machine tool servo control simulation device is proposed. The machine tool servo control simulation device includes a controlled body model and a processor. The controlled volume model includes a driver characteristic parameter. The processor includes a signal receiver and a function calculator. The signal receiver is used for receiving time-domain position information, time-domain speed information, and time-domain torque information of a controlled body of a machine tool under a plurality of driving frequencies. The function calculator is used to convert the time-domain position information, the time-domain speed information, and the time-domain torque information into frequency-domain position information, frequency-domain speed information, and frequency-domain torque information, respectively; The frequency-domain position information, the frequency-domain speed information, and the frequency-domain torque information are used to obtain a number of frequency-domain position shift response points and a number of frequency-domain speed shift response points; calculate the frequency-domain position shift Response points to obtain a position function; calculate these frequency-domain velocity transfer response points to obtain a speed function; and combine the position function and the speed function with the drive characteristic parameters in the controlled body model.

根據本案之另一實施例,提出一種工具機伺服控制模擬裝置。工具機伺服控制模擬裝置包括一受控體模型及一處理器。受控體模型,包括一位置函數、一速度函數及一驅動器特性參數。處理器包括一控制訊號接收器及一模擬器。控制訊號接收器用以接收一伺服命令。模擬器回應伺服命令,依據位置函數、速度函數及驅動器特性參數,產生一模擬路徑。 According to another embodiment of the present invention, a machine tool servo control simulation device is proposed. The machine tool servo control simulation device includes a controlled body model and a processor. The controlled body model includes a position function, a speed function, and a driver characteristic parameter. The processor includes a control signal receiver and an emulator. The control signal receiver is used for receiving a servo command. The simulator responds to the servo command and generates an analog path based on the position function, speed function, and drive characteristic parameters.

為了對本案之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of this case, the following specific examples are described in detail below in conjunction with the drawings:

100、100’‧‧‧工具機伺服控制模擬裝置 100, 100’‧‧‧ Machine tool servo control simulation device

110‧‧‧受控體模型 110‧‧‧Controlled body model

111‧‧‧驅動器特性參數 111‧‧‧Driver characteristic parameters

120、120’‧‧‧處理器 120, 120’‧‧‧ processor

130‧‧‧控制訊號接收器 130‧‧‧Control signal receiver

140‧‧‧模擬器 140‧‧‧ Simulator

121‧‧‧訊號接收器 121‧‧‧Signal Receiver

122‧‧‧函數計算器 122‧‧‧Function Calculator

200‧‧‧工具機 200‧‧‧tool machine

210‧‧‧受控體 210‧‧‧Controlled body

220‧‧‧控制器 220‧‧‧Controller

230‧‧‧第一驅動器 230‧‧‧First Drive

240‧‧‧第二驅動器 240‧‧‧Second driver

C1‧‧‧控制訊號 C1‧‧‧Control signal

C2‧‧‧伺服命令 C2‧‧‧Servo command

Cv‧‧‧速度比值 C v ‧‧‧speed ratio

Cp‧‧‧位置比值 C p ‧‧‧position ratio

Fp‧‧‧頻域位置資訊 F p ‧‧‧ Frequency domain location information

Fv‧‧‧頻域速度資訊 F v ‧‧‧ Frequency domain speed information

Ft‧‧‧頻域扭力資訊 F t ‧‧‧Frequency domain torque information

R1‧‧‧局部區域 R1‧‧‧Partial area

Rp‧‧‧頻域位置轉移響應點 R p ‧‧‧ Frequency domain position shift response point

Rv‧‧‧頻域速度轉移響應點 R v ‧‧‧Frequency domain speed shift response point

S110~S160‧‧‧步驟 S110 ~ S160‧‧‧step

S1‧‧‧局部曲線 S1‧‧‧ local curve

Sp‧‧‧位置函數 S p ‧‧‧ position function

Sv‧‧‧速度函數 S v ‧‧‧speed function

Tp‧‧‧時域位置資訊 T p ‧‧‧ Time domain location information

Tv‧‧‧時域速度資訊 T v ‧‧‧ Time domain speed information

Tt‧‧‧時域扭力資訊 T t ‧‧‧ Time domain torque information

P1‧‧‧模擬路徑 P1‧‧‧Simulation path

P11‧‧‧路徑變化處 P11‧‧‧ Path Change

P2‧‧‧實測路徑 P2‧‧‧Measured path

Pm‧‧‧移動路徑 P m ‧‧‧moving path

第1圖繪示依照本案一實施例之工具機伺服控制模擬系統的俯視圖。 FIG. 1 shows a top view of a machine tool servo control simulation system according to an embodiment of the present invention.

第2圖繪示第1圖之受控體模型的建立流程圖。 FIG. 2 shows a flowchart of establishing the controlled body model of FIG. 1.

第3圖繪示依照本案一實施例之數個頻域位置轉移響應點的示意圖。 FIG. 3 is a schematic diagram of frequency-domain position shift response points according to an embodiment of the present invention.

第4圖繪示依照本案一實施例之位置函數的示意圖。 FIG. 4 is a schematic diagram of a position function according to an embodiment of the present invention.

第5圖繪示依照本案另一實施例之工具機伺服控制模擬裝置的示意圖。 FIG. 5 is a schematic diagram of a machine tool servo control simulation device according to another embodiment of the present invention.

第6圖繪示第5圖之工具機伺服控制模擬裝置所模擬出的模擬路徑圖。 FIG. 6 shows a simulation path diagram simulated by the machine tool servo control simulation device of FIG. 5.

請參照第1圖,其繪示依照本案一實施例之工具機伺服控制模擬系統100的俯視圖。工具機伺服控制模擬裝置100包括受控體模型110及處理器120。受控體模型110包含驅動器特性參數111。處理器120包括訊號接收器121及函數計算器122。訊號接收器121用以接收工具機200之受控體210在數個驅動頻率驅動下所產生的數個時域位置資訊Tp、數個時域速度資訊Tv及數個時域扭力資訊Tt。函數計算器122用以:(1)將此些時域位置資訊Tp轉換成數個頻域位置資訊Fp,將此些時域速度資訊Tv轉換成數個頻域速度資訊Fv,以及將此些時域扭力資訊Tt轉換成數個頻域扭力資訊Ft;(2)依據此些頻域位置資訊Fp、此些頻域速度資訊Fv及此些頻域扭力資訊Ft,得到數個頻域位置轉移響應點Rp及數個頻域速度轉移響應點Rv:(3)計算此些頻域位置轉移響應點Rp,以得到位置函數Sp:(4)計算此些頻域速度轉移響應點Rv,以得到速度函數Sv:以及(5)將位置函數Sp及速度函數Sv結合至受控體模型110內的驅動器特性參數111。 Please refer to FIG. 1, which illustrates a top view of a machine tool servo control simulation system 100 according to an embodiment of the present invention. The machine tool servo control simulation device 100 includes a controlled body model 110 and a processor 120. The controlled volume model 110 includes driver characteristic parameters 111. The processor 120 includes a signal receiver 121 and a function calculator 122. The signal receiver 121 is configured to receive a plurality of time-domain position information T p , a plurality of time-domain speed information T v, and a plurality of time-domain torque information T generated by the controlled body 210 of the machine tool 200 under a plurality of driving frequencies. t . The function calculator 122 is used to: (1) convert this time-domain position information T p into several frequency-domain position information F p , convert this time-domain speed information T v into several frequency-domain speed information F v , and The time-domain torque information T t is converted into frequency-domain torque information F t ; (2) According to the frequency-domain position information F p , the frequency-domain speed information F v, and the frequency-domain torque information F t , Several frequency domain position shift response points R p and several frequency domain speed shift response points R v : (3) Calculate these frequency domain position shift response points R p to obtain the position function S p : (4) Calculate these The frequency domain speed transfers the response point R v to obtain the speed function S v : and (5) combines the position function S p and the speed function S v into the driver characteristic parameter 111 in the controlled body model 110.

前述的受控體210例如是工具機200之工作平台,其用以放置工件。訊號接收器121及函數計算器122可以是採用半導體製程所形成的電路。此外,訊號接收器121與函數計算器 122可以是分開的二元件,亦可整合成單一元件。 The aforementioned controlled body 210 is, for example, a work platform of the machine tool 200 for placing a workpiece. The signal receiver 121 and the function calculator 122 may be circuits formed by a semiconductor process. In addition, the signal receiver 121 and the function calculator 122 may be two separate components or integrated into a single component.

如此,透過結合後的驅動器特性參數111、位置函數Sp與速度函數Sv,即能透過電腦模擬方式獲得工具機200之受控體210回應一預設加工路徑的動態軌跡。換言之,在不需實測下,透過電腦模擬方式能快速獲得受控體210的動態軌跡。此外,此動態軌跡的趨勢符合受控體210的實測動態軌跡,因此具有高度參考價值,此容後描述。 Thus, the drive transmission characteristic parameter 111 after binding, function of position and velocity function S p S v, i.e., to obtain a controlled machine tool response 210 of the body 200 a predetermined manner through a computer simulation of dynamic trajectory of the machining path. In other words, the dynamic trajectory of the controlled body 210 can be quickly obtained through computer simulation without actual measurement. In addition, the trend of this dynamic trajectory is consistent with the measured dynamic trajectory of the controlled body 210, and therefore has a high reference value, which will be described later.

以下詳細舉例說明受控體模型110的建立過程。 The detailed process of establishing the controlled volume model 110 is illustrated below.

請參照第2圖,其繪示第1圖之受控體模型110的建立流程圖。 Please refer to FIG. 2, which illustrates a flowchart of establishing the controlled volume model 110 of FIG. 1.

在步驟S110中,請同時參照第1圖,工具機200的控制器220接收受控體210在數個驅動頻率下所產生的數個時域位置資訊Tp、數個時域速度資訊Tv及數個時域扭力資訊Tt。例如,工具機200更包括第一驅動器230及第二驅動器240,例如是馬達。此些驅動頻率用以驅動第一驅動器230及第二驅動器240,以驅動受控體210沿X-Y平面移動。X-Y平面例如是工件(未繪示)的放置面,而圖式的Z軸向例如是刀具(未繪示)的轉動軸向。在一實施例中,工具機200例如是鑽床、銑床或電腦數值控制(CNC)加工機。在另一實施例中,工具機200可以是三軸工具機。例如,工具機200更包括第三驅動器(未繪示),其連接於刀具軸(未繪示)並受控於控制器220。在控制器220控制下,第三驅動器控制刀具軸沿著Z軸方向移動。 In step S110, referring to FIG. 1 at the same time, the controller 220 of the machine tool 200 receives a plurality of time-domain position information T p and a plurality of time-domain speed information T v generated by the controlled body 210 under a plurality of driving frequencies. And several time domain torque information T t . For example, the machine tool 200 further includes a first driver 230 and a second driver 240, such as a motor. These driving frequencies are used to drive the first driver 230 and the second driver 240 to drive the controlled body 210 to move along the XY plane. The XY plane is, for example, a placement surface of a workpiece (not shown), and the Z axis of the drawing is, for example, a rotation axis of a cutter (not shown). In one embodiment, the machine tool 200 is, for example, a drilling machine, a milling machine, or a computer numerical control (CNC) processing machine. In another embodiment, the machine tool 200 may be a three-axis machine tool. For example, the machine tool 200 further includes a third driver (not shown), which is connected to the tool shaft (not shown) and controlled by the controller 220. Under the control of the controller 220, the third driver controls the tool axis to move in the Z-axis direction.

第一驅動器230可驅動受控體210沿一軸向移動,如X軸向,而第二驅動器240可驅動受控體210沿另一軸向移動,如Y軸向。 The first driver 230 can drive the controlled body 210 to move along one axis, such as the X axis, and the second driver 240 can drive the controlled body 210 to move along the other axis, such as the Y axis.

當受控體210受控移動時,控制器220接收到受控體210的動態資訊,如各時點的時域位置資訊Tp、時域速度資訊Tv及時域扭力資訊Tt。此外,時域位置資訊Tp、時域速度資訊Tv及時域扭力資訊Tt也可以由控制器220分析及/或計算針對驅動器的控制訊號所得。此些時點下的數個資訊(即時域位置資訊Tp、時域速度資訊Tv及時域扭力資訊Tt)為離散值。然後,控制器220可將各時點的時域位置資訊Tp、時域速度資訊Tv及時域扭力資訊Tt傳送給工具機伺服控制模擬裝置100。工具機伺服控制模擬裝置100的處理器120的訊號接收器121接收各時點的時域位置資訊Tp、時域速度資訊Tv及時域扭力資訊Tt。時域位置資訊Tp、時域速度資訊Tv及時域扭力資訊Tt為受控體210運動時的回授訊號。 When the controlled body 210 moves in a controlled manner, the controller 220 receives dynamic information of the controlled body 210, such as time domain position information T p , time domain speed information T v and time domain torque information T t at each time point. In addition, the time domain position information T p , time domain speed information T v and time domain torque information T t can also be obtained by the controller 220 analyzing and / or calculating the control signals for the driver. Several pieces of information at these time points (real-time position information T p , time-domain speed information T v, and time-domain torque information T t ) are discrete values. Then, the controller 220 may transmit the time domain position information T p , the time domain speed information T v and the time domain torque information T t at each time point to the machine tool servo control simulation device 100. The signal receiver 121 of the processor 120 of the machine tool servo control simulation device 100 receives time domain position information T p , time domain speed information T v and time domain torque information T t at each time point. The time domain position information T p , time domain speed information T v and time domain torque information T t are feedback signals when the controlled body 210 moves.

在一種獲得時域位置資訊Tp、時域速度資訊Tv及時域扭力資訊Tt的方式中,在步驟S110前,工具機200的控制器220輸出數個控制訊號C1給工具機200的第一驅動器230及第二驅動器240,其中數個控制訊號C1為頻率相異的正弦波激振訊號,其中,數個正弦波激振訊號例如是以驅動頻率由小至大的方式輸入給第一驅動器230及第二驅動器240。第一驅動器230及第二驅動器240依據各正弦波激振訊號驅動受控體210振動。 此外,控制第一驅動器230的控制訊號C1與控制第二驅動器240的控制訊號C1可相同或相異。第一驅動器230及第二驅動器240依據控制訊號C1去控制受控體210進行運動。當受控體210運動時,控制器220可透過受控體210上的光學尺(未繪示)獲得受控體210的時域位置資訊Tp;或者,控制器220也可透過第一驅動器230及第二驅動器240獲得受控體210的時域位置資訊Tp。當受控體210運動時,控制器220可透過第一驅動器230及第二驅動器240獲得受控體210的時域速度資訊Tv及時域扭力資訊TtIn a method for obtaining time domain position information T p , time domain speed information T v and time domain torque information T t , before step S110, the controller 220 of the machine tool 200 outputs several control signals C1 to the first time of the machine tool 200. A driver 230 and a second driver 240. Among them, several control signals C1 are sine wave excitation signals with different frequencies. Among them, several sine wave excitation signals are input to the first in a manner from small to large, for example The driver 230 and the second driver 240. The first driver 230 and the second driver 240 drive the controlled body 210 according to each sine wave excitation signal. In addition, the control signal C1 that controls the first driver 230 and the control signal C1 that controls the second driver 240 may be the same or different. The first driver 230 and the second driver 240 control the controlled body 210 to move according to the control signal C1. When the controlled body 210 moves, the controller 220 may obtain the time-domain position information T p of the controlled body 210 through an optical ruler (not shown) on the controlled body 210; or, the controller 220 may also use the first driver 230 and the second driver 240 obtain the time-domain position information T p of the controlled body 210. When the controlled body 210 moves, the controller 220 can obtain the time domain speed information T v and the time domain torque information T t of the controlled body 210 through the first driver 230 and the second driver 240.

然後,在步驟S120中,處理器120的函數計算器122採用傅立葉頻率分析技術,將此些時域位置資訊Tp轉換成數個頻域位置資訊Fp,將此些時域速度資訊Tv轉換成數個頻域速度資訊Fv,以及將此些時域扭力資訊Tt轉換成數個頻域扭力資訊FtThen, in step S120, the function calculator 122 of the processor 120 uses Fourier frequency analysis technology to convert this time-domain position information T p into several frequency-domain position information F p , and convert these time-domain speed information T v Into a number of frequency domain speed information F v , and transform this time domain torque information T t into a number of frequency domain torque information F t .

然後,在步驟S130中,函數計算器122依據此些頻域位置資訊Fp、此些頻域速度資訊Fv及此些頻域扭力資訊Ft,得到數個頻域位置轉移響應點Rp及數個頻域速度轉移響應點RvThen, in step S130, the function calculator 122 obtains several frequency-domain position shift response points R p according to the frequency-domain position information F p , the frequency-domain velocity information F v, and the frequency-domain torque information F t . And several frequency-domain speed shift response points R v .

例如,請參照第3圖,其繪示依照本案一實施例之數個頻域速度轉移響應點Rv的示意圖。函數計算器122計算同一頻率下頻域速度資訊Fv與頻域扭力資訊Ft的位置比值Cv(即,Cv=Fv/Ft),速度比值Cv為該同一頻率下的頻域速度轉移響應點 Rv。如圖所示,此些頻域速度轉移響應點Rv為離散數據點。 For example, please refer to FIG. 3, which illustrates a schematic diagram of frequency-domain speed-shift response points Rv according to an embodiment of the present invention. The function calculator 122 calculates the position ratio C v (ie, C v = F v / F t ) of the frequency domain frequency information F v and the frequency domain torque information F t at the same frequency, and the speed ratio C v is the frequency at the same frequency. Domain speed shift response point R v . As shown in the figure, these frequency domain speed transfer response points R v are discrete data points.

相似地,雖然圖未繪示,但函數計算器122採用類似方法,計算同一頻率下,頻域位置資訊Fp與頻域扭力資訊Ft的位置比值Cp(即,Cp=Fp/Ft),位置比值Cp為該同一頻率下的頻域位置轉移響應點Rp。此些頻域位置轉移響應點Rp也是離散數據點。 Similarly, although not shown in the figure, the function calculator 122 uses a similar method to calculate the position ratio C p of frequency-domain position information F p and frequency-domain torque information F t at the same frequency (that is, C p = F p / F t ), and the position ratio C p is the frequency-domain position shift response point R p at the same frequency. These frequency domain position shift response points R p are also discrete data points.

在步驟S140中,請參照第4圖,其繪示依照本案一實施例之速度函數Sv的示意圖。函數計算器122可採用例如是曲線擬合方式,計算第3圖所示的此些頻域速度轉移響應點Rv,以得到速度函數Sv。相較於離散型態的頻域速度轉移響應點Rv,速度函數Sv為連續分布型態。當頻域速度轉移響應點Rv的數量愈多時,處理器120對於頻域速度轉移響應點Rv的處理速度愈慢。由於大量的頻域速度轉移響應點Rv已轉換成曲線方程式,因此可減輕處理器120的處理負擔(相較於處理大量點訊號,處理曲線方程式的負擔較輕)。 In step S140, refer to FIG. 4, which depicts a schematic diagram of the velocity function S v Example a case is illustrated in accordance with the embodiment. The function calculator 122 may adopt, for example, a curve fitting method to calculate the frequency-domain speed-shift response points R v shown in FIG. 3 to obtain the speed function S v . Compared with the discrete-type frequency-domain velocity transfer response point R v , the velocity function S v is a continuous distribution pattern. When the number of frequency-domain transfer response speed of the more points R v, the speed of the frequency domain processor 120 for processing in response to the transfer speed of the slower the point R v. Since a large number of frequency-domain speed shift response points R v have been converted into curve equations, the processing load of the processor 120 can be reduced (compared to processing a large number of point signals, the burden of processing curve equations is lighter).

下式(1)表示速度函數Sv的方程式。透過下式(1),可擬合出第3圖所示之振幅變化相對較大的數個頻域速度轉移響應點Rv的近似曲線。以第3圖之局部區域R1來說,分布在局部區域R1內的數個頻域速度轉移響應點Rv相較於鄰近的頻域速度轉移響應點Rv的振幅變化較大。然,透過下式(1)的分段擬合,可將此局部區域R1內的數個頻域速度轉移響應點Rv擬合成第4圖之近似的局部曲線S1。式中的s為複頻率,其包含實部及虛部。 The following equation (1) represents the equation of the speed function S v . Through the following formula (1), the approximate curves of several frequency-domain velocity shift response points R v with relatively large amplitude changes shown in FIG. 3 can be fitted. Partial region R1 of FIG. 3, the distribution in the local region R1 plurality of frequency-domain transfer response speed compared to the point R v adjacent frequency domain amplitude of the response speed of said transfer point R v varies widely. However, through the piecewise fitting of the following formula (1), several frequency-domain velocity shift response points R v in this local area R1 can be fitted to the approximated local curve S1 in FIG. 4. S in the formula is a complex frequency, which includes a real part and an imaginary part.

在步驟S150中,函數計算器122可採用例如是曲線擬合方式,計算此些頻域位置轉移響應點Rp,以得到位置函數Sp。相較於離散型態的頻域位置轉移響應點Rp,位置函數Sp為連續分布型態。當頻域位置轉移響應點Rp的數量愈多時,處理器120對於頻域位置轉移響應點Rp的處理速度愈慢。由於大量的頻域位置轉移響應點Rp已轉換成曲線方程式,因此可降低處理器120的處理負擔。 In step S150, the function calculator 122 may use, for example, a curve fitting method to calculate these frequency-domain position shift response points R p to obtain a position function S p . Compared to the discrete frequency domain position transfer response patterns point R p, S p is a function of the position of a continuous distribution type. When the number of frequency-domain position shift response points R p is larger, the processing speed of the processor 120 for the frequency-domain position shift response points R p is slower. Since a large number of frequency-domain position shift response points R p have been converted into curve equations, the processing load of the processor 120 can be reduced.

下式(2)表示位置函數Sp的方程式。透過下式(2),可擬合出振幅變化相對較大的數個頻域位置轉移響應點Rp的近似曲線。式(2)的擬合方式類似式(1),於此不再贅述。 It represents a function of the position S p of the equation of the formula (2). Through the following formula (2), several approximate curves of frequency-domain position shift response points R p with relatively large amplitude changes can be fitted. The fitting manner of the formula (2) is similar to the formula (1), and is not repeated here.

在步驟S160中,函數計算器122將位置函數Sp、速度函數Sv與驅動器特性參數111進行結合,驅動器特性參數111係已知的驅動器(如馬達)參數及規格,例如:所選用驅動器的功率、轉速、頻率或其它任何與驅動器性能有關的參數。驅動器特性參數111表示工具機200的驅動器(第一驅動器230及第二驅動器240)的特性,而位置函數Sp及速度函數Sv(位置函數Sp及速度函數Sv亦可稱為受控體頻率響應函數)可代表工具機200之受控體210的動態特性。驅動器特性與工具機動態特性結合在一起的模型可代表整台工具機200的整體特性,換言之,每台工 具機200可能選用各種廠牌的驅動器(第一驅動器230及第二驅動器240)以及不同種類的受控體210,而將所採用驅動器的驅動器特性參數111與個別工具機200的位置函數Sp及速度函數Sv(每台工具機有不同的位置函數Sp及速度函數Sv)結合,則可以快速鑑別個別工具機200的動態特性,便於後續的對個別工具機200調整。 In step S160, the function calculator 122 combines the position function S p and the speed function S v with the drive characteristic parameter 111. The drive characteristic parameter 111 is a known drive (such as a motor) parameter and specification, for example: the selected drive Power, speed, frequency or any other parameter related to drive performance. The driver characteristic parameter 111 represents the characteristics of the driver (the first driver 230 and the second driver 240) of the machine tool 200, and the position function S p and the speed function S v (the position function S p and the speed function S v may also be referred to as controlled The volume frequency response function) may represent the dynamic characteristics of the controlled body 210 of the machine tool 200. The model combining the driver characteristics with the dynamic characteristics of the machine tool can represent the overall characteristics of the entire machine tool 200. In other words, each machine tool 200 may use various manufacturers' drivers (first driver 230 and second driver 240) and different The type of the controlled body 210, and the drive characteristic parameter 111 of the adopted drive and the position function S p and speed function S v of each machine tool 200 (each machine tool has a different position function S p and speed function S v ) In combination, the dynamic characteristics of individual machine tools 200 can be quickly identified, which facilitates subsequent adjustments to individual machine tools 200.

請參照第5及6圖,第5圖繪示依照本案另一實施例之工具機伺服控制模擬裝置100’的示意圖,而第6圖繪示第5圖之工具機伺服控制模擬裝置100’所模擬出的模擬路徑圖。 Please refer to FIGS. 5 and 6, which is a schematic diagram of a machine tool servo control simulation device 100 ′ according to another embodiment of the present case, and FIG. 6 is a diagram of the machine tool servo control simulation device 100 ′ shown in FIG. 5. The simulated simulation path map.

工具機伺服控制模擬裝置100’包括受控體模型110及處理器120’。受控體模型110包括位置函數Sp、速度函數Sv及驅動器特性參數111。處理器120’具有類似或相同於前述處理器120的特徵,不同處在於,處理器120’更包括控制訊號接收器130及模擬器140。訊號接收器121、函數計算器122、控制訊號接收器130及模擬器140可以是採用半導體製程所形成的電路。此外,訊號接收器121、函數計算器122、控制訊號接收器130與模擬器140可以是分開的數個元件,或訊號接收器121、函數計算器122、控制訊號接收器130與模擬器140至少二者可整合成單一元件。在另一實施例中,第5圖之處理器120’可省略訊號接收器121及/或函數計算器122。 The machine tool servo control simulation device 100 'includes a controlled body model 110 and a processor 120'. The controlled body model 110 includes a position function S p , a speed function S v, and a driver characteristic parameter 111. The processor 120 ′ has similar or identical features to the aforementioned processor 120, except that the processor 120 ′ further includes a control signal receiver 130 and a simulator 140. The signal receiver 121, the function calculator 122, the control signal receiver 130, and the simulator 140 may be circuits formed by a semiconductor process. In addition, the signal receiver 121, the function calculator 122, the control signal receiver 130, and the simulator 140 may be separate components, or the signal receiver 121, the function calculator 122, the control signal receiver 130, and the simulator 140 at least Both can be integrated into a single component. In another embodiment, the processor 120 ′ of FIG. 5 may omit the signal receiver 121 and / or the function calculator 122.

控制訊號接收器130用以接收一伺服命令C1。模擬器140回應伺服命令C1,依據位置函數Sp、速度函數Sv及驅動 器特性參數111,產生一模擬路徑P1。前述伺服命令C1為驅動受控體210沿移動路徑Pm移動的命令。如第5圖所示,相同的伺服命令C1同樣輸入給工具機200。工具機200的控制器220輸出一實測路徑P2(繪製成虛線)。 The control signal receiver 130 is used for receiving a servo command C1. Servo command response simulator 140 C1, depending on the position function S p, S v velocity function parameters and driver 111, generates an analog path P1. The aforementioned servo command C1 is a command to drive the controlled body 210 to move along the moving path P m . As shown in FIG. 5, the same servo command C1 is also input to the machine tool 200. The controller 220 of the machine tool 200 outputs a measured path P2 (drawn as a dotted line).

如第6圖所示,移動路徑Pm(理想路徑)、模擬路徑P1與實測路徑P2一起顯示在第6圖。由圖可知,移動路徑Pm,模擬路徑P1與實測路徑P2皆具有誤差。如圖所示,模擬路徑P1的趨勢符合實測路徑P2的趨勢,例如,模擬路徑P1與實測路徑P2在移動路徑Pm的路徑變化處P11(如轉折處或反曲點)都發生動態變化(如圖示偏離移動路徑Pm的抖動)。足見,模擬路徑P1具有一定程度的參考價值。此外,模擬路徑P1在路徑轉折處P11的敏感度更大。例如,相較於實測路徑P2,模擬路徑P1在路徑變化處P11的變化程度較大(抖動幅度更大),更能突顯路徑變化處P11的動態變化程度。 As shown in FIG. 6, the moving path P m (over the path), showing a sixth analog together with the measured path path P1 P2. It can be seen from the figure that the movement path P m , the simulation path P1 and the measured path P2 all have errors. As shown in the figure, the trend of the simulated path P1 is in line with the trend of the measured path P2. For example, the simulated path P1 and the measured path P2 undergo dynamic changes at the path change point P11 (such as a turning point or an inflection point) of the moving path P m ( (Jitter from the moving path P m as shown). It is clear that the simulation path P1 has a certain reference value. In addition, the sensitivity of the simulated path P1 at the turning point P11 is greater. For example, compared to the measured path P2, the simulated path P1 has a greater degree of change (larger jitter) at the path change point P11, and can better highlight the dynamic change degree of the path change point P11.

綜上,本案實施例之工具機伺服控制模擬裝置及受控體模型的建立方法係以電腦模擬技術分析工具機的機台特性,並產出位置函數及速度函數。位置函數及速度函數在與驅動器特性參數結合,結合後的模型可代表整台工具機的機台特性。如此,可在不變更(如軟、硬體的設計變更)工具機之控制器的情況下,利用結合後的模型以電腦分析技術快速了解工具機對於加工路徑的誤差,可快速了解工具機的加工性能。換言之,本案實施例提供了一種能取代或模擬工具機的控制器的工具機伺服控制模擬裝 置及受控體模型的建立方法,在獲得位置函數及速度函數後,可在不對工具機實測下,以電腦對工具機進行性能測試。 In summary, the machine tool servo control simulation device and the method of establishing the controlled body model in the embodiment of the present case use computer simulation technology to analyze the machine characteristics of the machine tool, and generate a position function and a speed function. The position function and speed function are combined with the drive's characteristic parameters. The combined model can represent the machine characteristics of the entire machine tool. In this way, without changing the controller of the machine tool (such as the design of the hardware and software), the combined model can be used to quickly understand the error of the machine tool on the machining path by using the combined model and computer analysis technology. Processability. In other words, the embodiment of the present invention provides a machine tool servo control simulation device which can replace or simulate the controller of the machine tool. The method of establishing the positioning and controlled body model, after obtaining the position function and the speed function, can perform the performance test of the machine tool with a computer without actually measuring the machine tool.

在一種獲得工具機的機台特性的方式中,係採用軟體(如有限元素分析軟體)建立工具機的數位模型。建模過程中須反覆對數位模型進行調整,此須耗費大量作業時間才能獲得工具機的機台特性。反觀本案實施例係以控制訊號對工具機實際進行激振而隨即獲得工具機的回授訊號,然後再處理此些回授訊號而獲得位置函數及速度函數。相較於前述軟體建模方式,本案實施例可不需反覆調整數位模型參數,因此可更快速鑑別工具機的機台特性。 In one way to obtain the machine characteristics of a machine tool, software (such as finite element analysis software) is used to create a digital model of the machine tool. During the modeling process, the digital model must be adjusted repeatedly, which requires a lot of work time to obtain the machine characteristics of the machine. In contrast, the embodiment of the present case uses the control signals to actually excite the machine tool and then obtain the feedback signals of the machine tool, and then processes these feedback signals to obtain the position function and speed function. Compared with the aforementioned software modeling method, the embodiment of the present case does not need to repeatedly adjust the digital model parameters, so the machine characteristics of the machine tool can be identified more quickly.

基於本案實施例之工具機伺服控制模擬裝置及受控體模型的建立方法,即使在維持工具機的原設計(如已生產完成、準備出貨的工具機)下,透過對電腦軟/硬體的改良,還能模擬出工具機特性,足見本案實施例之工具機伺服控制模擬裝置及受控體模型的建立方法能獲得超越程式執行時電腦內部電流電壓改變等物理效果的技術功效。 Based on the machine tool servo control simulation device and the method of establishing the controlled body model in the embodiment of the present case, the software / hardware of the computer is maintained through maintaining the original design of the machine tool (such as a machine tool that has been completed and ready to be shipped). The improvement of the machine tool can also simulate the characteristics of the machine tool, which shows that the machine tool servo control simulation device and the method of establishing the controlled body model in the embodiment of the present invention can obtain technical effects beyond physical effects such as changes in the internal current and voltage of the computer when the program is executed.

綜上所述,雖然本案已以實施例揭露如上,然其並非用以限定本案。本案所屬技術領域中具有通常知識者,在不脫離本案之精神和範圍內,當可作各種之更動與潤飾。因此,本案之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although this case has been disclosed as above with examples, it is not intended to limit this case. Those with ordinary knowledge in the technical field to which this case belongs can make various modifications and retouching without departing from the spirit and scope of this case. Therefore, the scope of protection in this case shall be determined by the scope of the attached patent application.

Claims (11)

一種受控體模型的建立方法,包括:接收一工具機的一受控體在複數個驅動頻率下的複數個時域位置資訊、複數個時域速度資訊及複數個時域扭力資訊;將該些時域位置資訊、該些時域速度資訊及該些時域扭力資訊分別轉換成複數個頻域位置資訊、複數個頻域速度資訊及複數個頻域扭力資訊;依據該些頻域位置資訊、該些頻域速度資訊及該些頻域扭力資訊,得到複數個頻域位置轉移響應點及複數個頻域速度轉移響應點;計算該些頻域位置轉移響應點,以得到一位置函數;計算該些頻域速度轉移響應點,以得到一速度函數;以及結合該位置函數、該速度函數與一驅動器特性參數。A method for establishing a controlled body model includes: receiving a plurality of time-domain position information, a plurality of time-domain speed information, and a plurality of time-domain torque information of a controlled body of a machine tool at a plurality of driving frequencies; The time domain position information, the time domain speed information, and the time domain torque information are respectively converted into a plurality of frequency domain position information, a plurality of frequency domain speed information, and a plurality of frequency domain torque information; according to the frequency domain position information And the frequency domain speed information and the frequency domain torque information to obtain a plurality of frequency domain position shift response points and a plurality of frequency domain speed shift response points; calculate the frequency domain position shift response points to obtain a position function; Calculate the frequency-domain speed transfer response points to obtain a speed function; and combine the position function, the speed function, and a drive characteristic parameter. 如申請專利範圍第1項所述之建立方法,其中該工具機更包括一控制器及一驅動器;該方法更包括:該控制器輸出一控制訊號給該驅動器;以及該控制器從該驅動器獲得該些時域位置資訊、該些時域速度資訊及該些時域扭力資訊;其中,在接收該工具機的該受控體在該些驅動頻率下的該些時域位置資訊、該些時域速度資訊及該些時域扭力資訊之步驟中,該些時域位置資訊、該些時域速度資訊及該些時域扭力資訊係從該控制器接收。The establishment method according to item 1 of the patent application scope, wherein the machine tool further comprises a controller and a driver; the method further comprises: the controller outputs a control signal to the driver; and the controller obtains from the driver The time-domain position information, the time-domain speed information, and the time-domain torque information; among them, the time-domain position information at the driving frequency of the controlled body receiving the machine tool, the time In the step of the domain speed information and the time domain torque information, the time domain position information, the time domain speed information and the time domain torque information are received from the controller. 如申請專利範圍第1項所述之建立方法,其中在依據該些頻域位置資訊、該些頻域速度資訊及該些頻域扭力資訊得到該些頻域位置轉移響應點及該些頻域速度轉移響應點之步驟包括:計算一頻率下的該頻域位置資訊與該頻域扭力資訊的一位置比值,該位置比值為該頻率下的該頻域位置轉移響應點。The establishment method described in item 1 of the scope of patent application, wherein the frequency domain position shift response points and the frequency domains are obtained based on the frequency domain position information, the frequency domain speed information, and the frequency domain torque information. The step of speed shifting the response point includes: calculating a position ratio of the frequency-domain position information at a frequency to the frequency-domain torque information, and the position ratio is the frequency-domain position shift response point at the frequency. 如申請專利範圍第1項所述之建立方法,其中在依據該些頻域位置資訊、該些頻域速度資訊及該些頻域扭力資訊得到該些頻域位置轉移響應點及該些頻域速度轉移響應點之步驟包括:計算一頻率下,該頻域速度資訊與該頻域扭力資訊的一速度比值,該速度比值為該頻率下的該頻域速度轉移響應點。The establishment method described in item 1 of the scope of patent application, wherein the frequency domain position shift response points and the frequency domains are obtained based on the frequency domain position information, the frequency domain speed information, and the frequency domain torque information. The step of the speed shift response point includes: calculating a speed ratio of the frequency domain speed information to the frequency domain torque information at a frequency, and the speed ratio value is the frequency domain speed transfer response point at the frequency. 如申請專利範圍第1項所述之建立方法,其中在計算該些頻域位置轉移響應點以得到該位置函數之步驟及計算該些頻域速度轉移響應點以得到該速度函數之步驟係以曲線擬合方式實現。The establishment method described in item 1 of the scope of patent application, wherein the steps of calculating the frequency-domain position shift response points to obtain the position function and calculating the frequency-domain speed shift response points to obtain the speed function are Curve fitting is implemented. 一種工具機伺服控制模擬裝置,包括:一受控體模型,包含一驅動器特性參數;以及一處理器,包括:一訊號接收器,用以接收一工具機之一受控體在複數個驅動頻率下的複數個時域位置資訊、複數個時域速度資訊及複數個時域扭力資訊;一函數計算器,用以:將該些時域位置資訊、該些時域速度資訊及該些時域扭力資訊分別轉換成複數個頻域位置資訊、複數個頻域速度資訊及複數個頻域扭力資訊;依據該些頻域位置資訊、該些頻域速度資訊及該些頻域扭力資訊,得到複數個頻域位置轉移響應點及複數個頻域速度轉移響應點;計算該些頻域位置轉移響應點,以得到一位置函數;計算該些頻域速度轉移響應點,以得到一速度函數;及結合該位置函數、該速度函數與該受控體模型內的該驅動器特性參數。A machine tool servo control simulation device includes: a controlled body model including a characteristic parameter of a driver; and a processor including: a signal receiver for receiving a controlled body of a machine tool at a plurality of driving frequencies A plurality of time-domain position information, a plurality of time-domain speed information, and a plurality of time-domain torque information; a function calculator for: the time-domain position information, the time-domain speed information, and the time-domain information The torque information is converted into a plurality of frequency domain position information, a plurality of frequency domain speed information, and a plurality of frequency domain torque information; according to the frequency domain position information, the frequency domain speed information, and the frequency domain torque information, a complex number is obtained. A number of frequency domain position transfer response points and a plurality of frequency domain speed transfer response points; calculating the frequency domain position transfer response points to obtain a position function; calculating the frequency domain speed transfer response points to obtain a speed function; and Combining the position function, the speed function, and the drive characteristic parameters in the controlled body model. 如申請專利範圍第6項所述之工具機伺服控制模擬裝置,其中該工具機更包括一控制器及一驅動器;該控制器用以輸出一控制訊號給該驅動器;該控制器用以從該驅動器獲得該些時域位置資訊、該些時域速度資訊及該些時域扭力資訊;其中,該訊號接收器更用以接收來自於該控制器的該些時域位置資訊、該些時域速度資訊及該些時域扭力資訊。The machine tool servo control simulation device according to item 6 of the patent application scope, wherein the machine tool further includes a controller and a driver; the controller is used to output a control signal to the driver; the controller is used to obtain from the driver The time domain position information, the time domain speed information, and the time domain torque information; wherein the signal receiver is further configured to receive the time domain position information and the time domain speed information from the controller; And the time-domain torque information. 如申請專利範圍第6項所述之工具機伺服控制模擬裝置,其中該函數計算器更用以:在依據該些頻域位置資訊、該些頻域速度資訊及該些頻域扭力資訊得到該些頻域位置轉移響應點及該些頻域速度轉移響應點之步驟中,計算一頻率下,該頻域位置資訊與該頻域扭力資訊的一位置比值,該位置比值為該頻率下的該頻域位置轉移響應點。The servo control simulation device for a machine tool according to item 6 of the scope of patent application, wherein the function calculator is further configured to obtain the frequency domain position information, the frequency domain speed information, and the frequency domain torque information according to In the steps of the frequency-domain position shift response points and the frequency-domain speed shift response points, a position ratio between the frequency-domain position information and the frequency-domain torque information at a frequency is calculated, and the position ratio is the Frequency domain position shift response point. 如申請專利範圍第6項所述之工具機伺服控制模擬裝置,其中該函數計算器更用以:在依據該些頻域位置資訊、該些頻域速度資訊及該些頻域扭力資訊得到該些頻域位置轉移響應點及該些頻域速度轉移響應點之步驟中,計算一頻率下,該頻域速度資訊與該頻域扭力資訊的一速度比值,該速度比值為該頻率下的該頻域速度轉移響應點。The servo control simulation device for a machine tool according to item 6 of the scope of patent application, wherein the function calculator is further configured to obtain the frequency domain position information, the frequency domain speed information, and the frequency domain torque information according to In the steps of the frequency-domain position shift response points and the frequency-domain speed shift response points, at a frequency, a speed ratio between the frequency-domain speed information and the frequency-domain torque information is calculated, and the speed ratio is the Frequency domain speed shift response point. 如申請專利範圍第6項所述之工具機伺服控制模擬裝置,其中該函數計算器更用以:在計算該些頻域位置轉移響應點以得到該位置函數之步驟及計算該些頻域速度轉移響應點以得到該速度函數之步驟係以曲線擬合方式實現。The machine tool servo control simulation device according to item 6 of the scope of the patent application, wherein the function calculator is further used to: calculate the steps of shifting the response points in the frequency domain positions to obtain the position functions and calculate the frequency domain speeds The step of shifting the response points to obtain the speed function is achieved by curve fitting. 一種工具機伺服控制模擬裝置,包括:一受控體模型,包括一位置函數、一速度函數及一驅動器特性參數;以及一處理器,包括:一控制訊號接收器,用以接收一伺服命令;及一模擬器,回應該伺服命令,依據該位置函數、該速度函數及該驅動器特性參數,產生一受控體的一模擬路徑;其中該伺服命令為驅動該受控體沿一移動路徑移動的命令。A machine tool servo control simulation device includes: a controlled body model including a position function, a speed function, and a driver characteristic parameter; and a processor, including: a control signal receiver for receiving a servo command; And a simulator, in response to a servo command, according to the position function, the speed function, and the characteristic parameters of the driver, an analog path of a controlled body is generated; wherein the servo command is to drive the controlled body to move along a moving path command.
TW106145206A 2017-12-22 2017-12-22 Tool machine servo control simulation device and establishing method of structure model TWI664513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106145206A TWI664513B (en) 2017-12-22 2017-12-22 Tool machine servo control simulation device and establishing method of structure model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106145206A TWI664513B (en) 2017-12-22 2017-12-22 Tool machine servo control simulation device and establishing method of structure model

Publications (2)

Publication Number Publication Date
TWI664513B true TWI664513B (en) 2019-07-01
TW201928556A TW201928556A (en) 2019-07-16

Family

ID=68049136

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106145206A TWI664513B (en) 2017-12-22 2017-12-22 Tool machine servo control simulation device and establishing method of structure model

Country Status (1)

Country Link
TW (1) TWI664513B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM266889U (en) * 2004-05-21 2005-06-11 Chau-Tzung Lin Improved urn structure
CN101639667A (en) * 2008-07-29 2010-02-03 深圳市大族激光科技股份有限公司 Method for designing servo system
CN102023576A (en) * 2010-12-21 2011-04-20 东风康明斯发动机有限公司 Method and system for simulating run environment simulation model of engine fuel oil system
CN105446166A (en) * 2015-12-30 2016-03-30 郑州科技学院 Machine tool simulation instrument for numerical control system
CN107015524A (en) * 2016-01-27 2017-08-04 发那科株式会社 Numerical control device and its analogue means
CN107272661A (en) * 2017-07-26 2017-10-20 华中科技大学 A kind of numerical control device motion control Performance Test System based on Machine simulation model

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM266889U (en) * 2004-05-21 2005-06-11 Chau-Tzung Lin Improved urn structure
CN101639667A (en) * 2008-07-29 2010-02-03 深圳市大族激光科技股份有限公司 Method for designing servo system
CN102023576A (en) * 2010-12-21 2011-04-20 东风康明斯发动机有限公司 Method and system for simulating run environment simulation model of engine fuel oil system
CN105446166A (en) * 2015-12-30 2016-03-30 郑州科技学院 Machine tool simulation instrument for numerical control system
CN107015524A (en) * 2016-01-27 2017-08-04 发那科株式会社 Numerical control device and its analogue means
CN107272661A (en) * 2017-07-26 2017-10-20 华中科技大学 A kind of numerical control device motion control Performance Test System based on Machine simulation model

Also Published As

Publication number Publication date
TW201928556A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
EP3220219B1 (en) Setting support device, setting support method, information processing porgram and recording medium
JP6316323B2 (en) Motor control device
CN110007645B (en) Feeding system hybrid modeling method based on dynamics and deep neural network
CN107505835A (en) A kind of method, apparatus and system of control machinery hands movement
JP2009277226A (en) Method for real time calculation of process model and simulator therefor
CN112601863A (en) Construction machine and evaluation device
WO2022044191A1 (en) Adjustment system, adjustment method, and adjustment program
CN106154838A (en) The residual oscillation suppressing method of a kind of positioner and system
CN110234473A (en) System and method for determining the dynamic motion data in robot trajectory
TWI664513B (en) Tool machine servo control simulation device and establishing method of structure model
CN114936428A (en) ADAMS-based steering mechanism multi-body dynamics modeling and parameter confirmation method
CN117206716A (en) Fitting method, terminal and medium for XY axis moving path of PCB laser drilling machine
WO2020037747A1 (en) Method for evaluating movement instruction generated by interpolation of dynamic-accuracy-oriented numerical control system
US9947361B2 (en) Active vibration control device and design method therefor
CN111046510B (en) Vibration suppression method of flexible mechanical arm based on track segmentation optimization
JP7302994B2 (en) METHOD FOR LIMITING VIBRATION PHENOMENA AT WORKPIECE/TOOL BODY
CN108776746B (en) Dynamic stiffness optimization method for improving dynamic characteristics of machine tool
CN108333935B (en) Precise debugging method and system based on second-order notch filter
JP2021105818A (en) Controller setting method for two-freedom-degree control system
JP4761152B2 (en) Transmission line characteristic modeling method and modeling apparatus therefor
CN109960217B (en) Machine tool service control simulation device and method for establishing controlled body model
CN111367170B (en) Input shaper design method
CN109101718B (en) Machine tool large part quality optimization method for improving dynamic characteristics of whole machine
CN113688474A (en) Electric steering engine simulation modeling method based on parameter identification
US10613511B2 (en) Tool machine servo control simulation device and establishing method of structure model