TWI662696B - Semiconductor structure and manufacturing method thereof - Google Patents

Semiconductor structure and manufacturing method thereof Download PDF

Info

Publication number
TWI662696B
TWI662696B TW107112038A TW107112038A TWI662696B TW I662696 B TWI662696 B TW I662696B TW 107112038 A TW107112038 A TW 107112038A TW 107112038 A TW107112038 A TW 107112038A TW I662696 B TWI662696 B TW I662696B
Authority
TW
Taiwan
Prior art keywords
layer
metal
resistance change
insulating layer
disposed
Prior art date
Application number
TW107112038A
Other languages
Chinese (zh)
Other versions
TW201944591A (en
Inventor
黃志仁
Original Assignee
塞席爾商塔普思科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 塞席爾商塔普思科技股份有限公司 filed Critical 塞席爾商塔普思科技股份有限公司
Priority to TW107112038A priority Critical patent/TWI662696B/en
Application granted granted Critical
Publication of TWI662696B publication Critical patent/TWI662696B/en
Publication of TW201944591A publication Critical patent/TW201944591A/en

Links

Abstract

本發明提供一種半導體結構,其包括基底、第一絕緣層、導電連接元件、電阻變化元件、第二絕緣層以及第一金屬層。基底表面具有摻雜區,第一絕緣層設置在基底上。導電連接元件貫穿設置在第一絕緣層中並接觸摻雜區表面。電阻變化元件設置在導電連接元件上,並與導電連接元件接觸。第二絕緣層設置在第一絕緣層上。第一金屬層設置在導電連接元件與電阻變化元件上,第一金屬層包括第一金屬圖案,第一金屬圖案與電阻變化元件電連接。The invention provides a semiconductor structure including a substrate, a first insulation layer, a conductive connection element, a resistance change element, a second insulation layer, and a first metal layer. The surface of the substrate has a doped region, and the first insulating layer is disposed on the substrate. The conductive connection element is disposed through the first insulating layer and contacts the surface of the doped region. The resistance change element is disposed on the conductive connection element and is in contact with the conductive connection element. The second insulating layer is disposed on the first insulating layer. The first metal layer is disposed on the conductive connection element and the resistance change element. The first metal layer includes a first metal pattern, and the first metal pattern is electrically connected to the resistance change element.

Description

半導體結構與其製造方法Semiconductor structure and manufacturing method thereof

本發明係關於一種半導體結構與其製造方法,尤指一種具有電阻變化元件的半導體結構與其製造方法。 The present invention relates to a semiconductor structure and a method for manufacturing the same, and more particularly, to a semiconductor structure having a variable resistance element and a method for manufacturing the same.

在現今的電子產品中,具有半導體結構的電子晶片已廣泛地應用於各式電子產品,例如電腦、行動電話、電子手錶等電子產品,而在半導體結構中,可設置有可變電阻以提供特定功能,例如電阻式隨機存取記憶體(RRAM),使所製造的電子產品具有記憶與儲存資料的功能,其中電阻式隨機存取記憶體是藉由施加電流或電壓來改變其可變電阻的電阻值,以根據不同的電阻值於記憶狀態“0”(set state)與記憶狀態“1”(reset state)之間切換,藉此達到儲存資料的效果。 In today's electronic products, electronic chips with a semiconductor structure have been widely used in various electronic products, such as computers, mobile phones, electronic watches and other electronic products. In the semiconductor structure, variable resistors can be provided to provide specific Functions, such as resistive random access memory (RRAM), make manufactured electronic products have the function of storing and storing data. Among them, resistive random access memory changes its variable resistance by applying current or voltage. The resistance value is used to switch between the memory state “0” (set state) and the memory state “1” (reset state) according to different resistance values, thereby achieving the effect of storing data.

本發明之目的之一在於提供一種半導體結構及其製造方法,其透過改變傳統電阻變化元件的設置位置而提升半導體結構的可靠度、提升電阻變化元件密度以及降低製造成本。 An object of the present invention is to provide a semiconductor structure and a manufacturing method thereof, which improve the reliability of the semiconductor structure, increase the density of the resistance change element, and reduce the manufacturing cost by changing the setting position of the conventional resistance change element.

本發明之一實施例提供一種半導體結構,其包括基底、第一絕緣層、 導電連接元件(contact plug)、電阻變化元件、第二絕緣層以及第一金屬層。基底表面具有摻雜區,第一絕緣層設置在基底上。導電連接元件貫穿設置在第一絕緣層中並接觸摻雜區表面。電阻變化元件設置在導電連接元件上,並與導電連接元件接觸。第二絕緣層設置在第一絕緣層上。第一金屬層設置在導電連接元件與電阻變化元件上,第一金屬層包括第一金屬圖案,第一金屬圖案與電阻變化元件電連接。 An embodiment of the present invention provides a semiconductor structure including a substrate, a first insulating layer, A conductive plug, a variable resistance element, a second insulating layer, and a first metal layer. The surface of the substrate has a doped region, and the first insulating layer is disposed on the substrate. The conductive connection element is disposed through the first insulating layer and contacts the surface of the doped region. The resistance change element is disposed on the conductive connection element and is in contact with the conductive connection element. The second insulating layer is disposed on the first insulating layer. The first metal layer is disposed on the conductive connection element and the resistance change element. The first metal layer includes a first metal pattern, and the first metal pattern is electrically connected to the resistance change element.

本發明之另一實施例提供一種半導體結構的製造方法,其包括以下步驟。於基底上形成第一絕緣層。於第一絕緣層中形成第一連接孔,第一連接孔暴露基底表面的摻雜區。於第一連接孔中形成導電連接元件(contact plug),且導電連接元件接觸摻雜區表面。於導電連接元件上形成電阻變化元件,電阻變化元件與導電連接元件接觸。於第一絕緣層上形成第二絕緣層。於第二絕緣層中形成第二連接孔,第二連接孔暴露導電連接元件或電阻變化元件。形成第一金屬層於導電連接元件與電阻變化元件上,第一金屬層包括第一金屬圖案,第一金屬圖案的至少一部分位於第二連接孔中,並與電阻變化元件電連接。 Another embodiment of the present invention provides a method for manufacturing a semiconductor structure, which includes the following steps. A first insulating layer is formed on the substrate. A first connection hole is formed in the first insulation layer, and the first connection hole exposes a doped region on the surface of the substrate. A conductive plug is formed in the first connection hole, and the conductive plug contacts the surface of the doped region. A resistance change element is formed on the conductive connection element, and the resistance change element is in contact with the conductive connection element. A second insulating layer is formed on the first insulating layer. A second connection hole is formed in the second insulation layer, and the second connection hole exposes the conductive connection element or the resistance change element. A first metal layer is formed on the conductive connection element and the variable resistance element. The first metal layer includes a first metal pattern. At least a portion of the first metal pattern is located in the second connection hole and is electrically connected to the variable resistance element.

本發明的半導體結構的電阻變化元件設置在導電連接元件與第一金屬層之間,並直接接觸導電連接元件,因此,可不須額外設置其他與電阻變化元件接觸並用以電連接其他導電層的導電件,藉此降低製造成本,並同時達到提高電阻變化元件的密度以及降低阻值的效果。另一方面,由於電阻變化元件的下方為介電常數較高且不具孔洞的第一絕緣層,因此,在電阻變化元件的製程中可提供較好的蝕刻阻擋效果。 The resistance change element of the semiconductor structure of the present invention is disposed between the conductive connection element and the first metal layer, and directly contacts the conductive connection element. Therefore, it is not necessary to additionally provide other conductive parts which are in contact with the resistance change element and are used to electrically connect other conductive layers. Components, thereby reducing the manufacturing cost, and simultaneously achieving the effects of increasing the density of the variable resistance element and reducing the resistance value. On the other hand, since the first insulating layer with a higher dielectric constant and no holes is located under the variable resistance element, it can provide a better etch blocking effect in the process of manufacturing the variable resistance element.

100‧‧‧半導體結構 100‧‧‧Semiconductor Structure

110‧‧‧基底 110‧‧‧ substrate

112‧‧‧摻雜區 112‧‧‧ doped region

120‧‧‧第一絕緣層 120‧‧‧The first insulation layer

122‧‧‧閘極絕緣層 122‧‧‧Gate insulation

130‧‧‧電阻變化元件 130‧‧‧resistance change element

130’‧‧‧電阻變化元件層 130’‧‧‧ resistance variable element layer

132‧‧‧電阻變化層 132‧‧‧resistance change layer

134‧‧‧第一電極層 134‧‧‧first electrode layer

136‧‧‧離子收集層 136‧‧‧ ion collection layer

138‧‧‧第二電極層 138‧‧‧Second electrode layer

140‧‧‧第二絕緣層 140‧‧‧Second insulation layer

150‧‧‧第三絕緣層 150‧‧‧third insulating layer

160‧‧‧第四絕緣層 160‧‧‧Fourth insulation layer

CP‧‧‧導電連接元件 CP‧‧‧ conductive connection element

G‧‧‧閘極 G‧‧‧Gate

H1‧‧‧第一連接孔 H1‧‧‧First connection hole

H2‧‧‧第二連接孔 H2‧‧‧Second connection hole

H3‧‧‧第三連接孔 H3‧‧‧Third connection hole

H4‧‧‧第四連接孔 H4‧‧‧Fourth connection hole

M1‧‧‧第一金屬層 M1‧‧‧First metal layer

M1p‧‧‧第一金屬圖案 M1p‧‧‧First metal pattern

M2‧‧‧第二金屬層 M2‧‧‧Second metal layer

M2p‧‧‧第二金屬圖案 M2p‧‧‧Second metal pattern

SP‧‧‧間隔物 SP‧‧‧ spacer

ST1~ST7‧‧‧步驟 ST1 ~ ST7‧‧‧‧steps

V‧‧‧金屬層連接元件 V‧‧‧ metal layer connection element

第1圖至第7圖繪示本發明一實施例之半導體結構的製造方法之剖面示意圖。 1 to 7 are schematic cross-sectional views illustrating a method for manufacturing a semiconductor structure according to an embodiment of the present invention.

第8圖繪示本發明另一實施例之電阻變化元件之剖面示意圖。 FIG. 8 is a schematic cross-sectional view of a resistance change element according to another embodiment of the present invention.

第9圖繪示本發明一實施例之半導體結構的製造方法之流程圖。 FIG. 9 is a flowchart of a method for manufacturing a semiconductor structure according to an embodiment of the present invention.

為使本領域的通常知識者能更進一步瞭解本發明,以下特列舉本發明的實施例,並配合圖式詳細說明本發明的構成內容及所欲達成的功效。須注意的是,圖式均為簡化的示意圖,因此,僅顯示與本發明有關之元件與組合關係,以對本發明的基本架構或實施方法提供更清楚的描述,而實際的元件與佈局可能更為複雜。另外,為了方便說明,本發明的各圖式中所示之元件並非以實際實施的數目、形狀、尺寸做等比例繪製,其詳細的比例可依照設計的需求進行調整。 In order to enable those of ordinary skill in the art to further understand the present invention, the embodiments of the present invention are enumerated below, and the contents of the present invention and the effects to be achieved are described in detail in conjunction with the drawings. It should be noted that the drawings are simplified schematic diagrams. Therefore, only the elements and combinations related to the present invention are shown to provide a clearer description of the basic architecture or implementation method of the present invention, and the actual elements and layout may be more As complicated. In addition, for convenience of explanation, the elements shown in the drawings of the present invention are not drawn in proportion to the actual number, shape, and size, and the detailed proportions can be adjusted according to design requirements.

請參考第1圖至第7圖,第1圖至第7圖繪示本發明一實施例之半導體結構的製造方法之剖面示意圖,其中第7圖同時繪示了本發明一實施例之半導體結構100之剖面示意圖。如第1圖所示,在本實施例的半導體結構的製造方法中,首先,提供一基底110,其中基底110可為包括含有半導體材料的基板,例如為矽基底、含矽基底或矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底,但不以此為限,本實施例的基底110以矽基底為例,且基底110可具有N型半導體材料與P型半導體材料的其中一種,本文的基底110以具有P型半導體材料為例。在本實施例中,基底110表面可選擇性地具有閘極絕緣層122以及用來作為電晶體(transistor)的閘極的圖案化導電層,如第1圖中的閘極G所示,設置在閘極絕緣層122上。閘極絕緣層122舉例可包括氧化矽,但不以此為限。另外,還可 選擇性地於閘極絕緣層122以及閘極G的周圍形成間隔物(spacer)SP,其中間隔物SP的材料可包括氧化矽、氮化矽、或其疊層、或其他適合的材料。 Please refer to FIG. 1 to FIG. 7, which are schematic cross-sectional views illustrating a method for manufacturing a semiconductor structure according to an embodiment of the present invention, and FIG. 7 also illustrates a semiconductor structure according to an embodiment of the present invention Schematic cross-section of 100. As shown in FIG. 1, in the method for manufacturing a semiconductor structure in this embodiment, first, a substrate 110 is provided. The substrate 110 may be a substrate including a semiconductor material, such as a silicon substrate, a silicon-containing substrate, or a silicon-clad insulation. (silicon-on-insulator, SOI) substrate and other semiconductor substrates, but not limited to this. The substrate 110 in this embodiment is a silicon substrate, and the substrate 110 may have one of an N-type semiconductor material and a P-type semiconductor material. As an example, the substrate 110 herein has a P-type semiconductor material. In this embodiment, the surface of the substrate 110 may optionally have a gate insulating layer 122 and a patterned conductive layer used as a gate of a transistor, as shown by the gate G in FIG. 1. On the gate insulation layer 122. The gate insulating layer 122 may include silicon oxide, for example, but is not limited thereto. In addition, A spacer SP is selectively formed around the gate insulating layer 122 and the gate G. The material of the spacer SP may include silicon oxide, silicon nitride, or a stack thereof, or other suitable materials.

接著,於基底110上形成第一絕緣層120,覆蓋於閘極絕緣層122與閘極G上,其中第一絕緣層120在本發明半導體結構中可作為層間介電層(interlayer dielectric layer,ILD),但不以此為限。第一絕緣層120的材料舉例可包括氧化矽或氟矽玻璃(fluorosilicate glass,FSG),但不以此為限。在本實施例中,完成第一絕緣層120的形成後,可於第一絕緣層120中鉛直地形成第一連接孔H1,例如本實施例可透過蝕刻製程而形成鉛直貫穿第一絕緣層120的第一連接孔H1,以暴露出基底110表面的摻雜區112,其中鉛直係表示實質上垂直於基底110表面的方向。其中,摻雜區112可於形成第一絕緣層120之前或是於形成第一連接孔H1之後透過離子佈植(ion implantation)的方式形成,但製程不以此為限。在本實施例中,摻雜區112舉例可做為電晶體的源極摻雜區或汲極摻雜區,並以兩摻雜區112之間的基底110表面形成通道區,使得通道區、摻雜區112、閘極G、閘極絕緣層122形成電晶體,但不以此為限。另外,摻雜區112可具有N型半導體材料與P型半導體材料的其中一種,在本實施例中,摻雜區112所包括的半導體材料的類型可不同於基底110所包括的半導體材料的類型,也就是說,本實施例的摻雜區112以具有N型半導體材料為例,但不以此為限。 Next, a first insulating layer 120 is formed on the substrate 110 and covers the gate insulating layer 122 and the gate G. The first insulating layer 120 can be used as an interlayer dielectric layer (ILD) in the semiconductor structure of the present invention. ), But not limited to this. Examples of the material of the first insulating layer 120 may include silicon oxide or fluorosilicate glass (FSG), but it is not limited thereto. In this embodiment, after the formation of the first insulating layer 120 is completed, a first connection hole H1 may be formed vertically in the first insulating layer 120. For example, in this embodiment, a vertical penetration through the first insulating layer 120 may be formed through an etching process. The first connection hole H1 is exposed to expose the doped region 112 on the surface of the substrate 110, where vertical means a direction substantially perpendicular to the surface of the substrate 110. The doped region 112 may be formed by ion implantation before the first insulating layer 120 is formed or after the first connection hole H1 is formed, but the manufacturing process is not limited thereto. In this embodiment, the doped region 112 may be used as a source doped region or a drain doped region of a transistor, and a channel region is formed on the surface of the substrate 110 between the two doped regions 112, so that the channel region, The doped region 112, the gate G, and the gate insulating layer 122 form a transistor, but are not limited thereto. In addition, the doped region 112 may have one of an N-type semiconductor material and a P-type semiconductor material. In this embodiment, the type of the semiconductor material included in the doped region 112 may be different from the type of the semiconductor material included in the substrate 110. That is, the doped region 112 of this embodiment is exemplified by an N-type semiconductor material, but is not limited thereto.

如第2圖所示,完成第一連接孔H1與摻雜區112的形成後,於第一連接孔H1中形成導電連接元件(contact plug)CP,且導電連接元件CP接觸摻雜區112表面,以電連接摻雜區112,也就是說,導電連接元件CP會鉛直貫穿第一絕緣層120與閘極絕緣層122,且接觸摻雜區112表面的導電連接元件CP可作為源極電極或是汲極電極,其中導電連接元件CP的鉛直貫穿係表示導電連接元件CP沒有沿 水平方向延伸的部分。在本實施例中,舉例可利用沉積製程製作導電連接元件CP,而導電連接元件CP舉例可包括鎢(W),但不以此為限。 As shown in FIG. 2, after the formation of the first connection hole H1 and the doped region 112 is completed, a conductive plug CP is formed in the first connection hole H1, and the conductive connection element CP contacts the surface of the doped region 112. The doped region 112 is electrically connected, that is, the conductive connection element CP passes through the first insulating layer 120 and the gate insulation layer 122 vertically, and the conductive connection element CP contacting the surface of the doped region 112 can be used as a source electrode or Is the drain electrode, where the vertical penetration of the conductive connection element CP indicates that the conductive connection element CP does not have The horizontally extending part. In this embodiment, for example, the conductive connection element CP can be made by a deposition process, and the conductive connection element CP can include tungsten (W), but is not limited thereto.

接著,於導電連接元件CP上形成電阻變化元件130,使電阻變化元件130與導電連接元件CP接觸,舉例來說,如第3圖所示,在本實施例中可先全面性地形成電阻變化元件層130’於第一絕緣層120以及導電連接元件CP上,並使電阻變化元件層130’與導電連接元件CP接觸,然後如第4圖所示,進行一蝕刻製程,將部分的電阻變化元件層130’移除以形成與導電連接元件CP接觸的電阻變化元件130,其中本實施例的電阻變化元件130並不會與所有的導電連接元件CP接觸,但製作方式不以此為限,可以其他適合的方式製作。須說明的是,電阻變化元件130可為單層結構或是多層結構,本實施例的電阻變化元件130以單層結構為例。此外,本實施例的電阻變化元件130可作為電阻式記憶體細胞元(RRAM cell),也就是說,電阻變化元件130可包括電阻變化層132,而當電阻變化層132被施加電流或電壓時,其電阻值會改變,藉此改變電阻式記憶體細胞元的記憶狀態。詳細而言,可將高電阻狀態及低電阻狀態的一者作為數位資料「0」,而另一者作為數位資料「1」,例如高電阻狀態作為數位資料「0」,低電阻狀態作為數位資料「1」,亦即經由設定(set)操作使電阻變化層132於低電阻狀態作為記憶狀態”1”,經由重設(reset)操作使電阻變化層132於高電阻狀態作為記憶狀態”0”,而設定操作舉例為提供電阻變化層132一設定電壓(set voltage),重設操作舉例為提供電阻變化層132一重設電壓(reset voltage),因此,當對電阻變化元件130施加一讀取電壓時,可讀出電阻變化層132的電阻值,進而得知電阻變化元件130所儲存的資料。另外,電阻變化層132舉例可包括氧化鉿(HfOx)、氧化鉭(TaOx)、氧化鈦(TiOx)、氧化鎳(NiOx)、氧化鈮(NbOx)、氧化鋁(AlOx)、氧化鎢(WOx)、氧化鋅(ZnOx)、氧化鈷(CoOx)、氧化鑭(LaOx)、氧化鋯(ZrOx)的其中至少 一種或其組合物,其中氧化鉿可為二氧化鉿(HfO2),氧化鉭可為五氧化二鉭(Ta2O5),但材料不以此為限。 Next, a variable resistance element 130 is formed on the conductive connection element CP, and the variable resistance element 130 is brought into contact with the conductive connection element CP. For example, as shown in FIG. 3, in this embodiment, the resistance change can be comprehensively formed first. The element layer 130 'is on the first insulating layer 120 and the conductive connection element CP, and the resistance change element layer 130' is brought into contact with the conductive connection element CP. Then, as shown in FIG. 4, an etching process is performed to change part of the resistance. The element layer 130 'is removed to form a resistance change element 130 in contact with the conductive connection element CP. The resistance change element 130 in this embodiment does not contact all the conductive connection elements CP, but the manufacturing method is not limited thereto. It can be made in other suitable ways. It should be noted that the resistance change element 130 may have a single-layer structure or a multilayer structure. The resistance change element 130 in this embodiment uses a single-layer structure as an example. In addition, the resistance change element 130 in this embodiment may be used as a resistive memory cell (RRAM cell), that is, the resistance change element 130 may include a resistance change layer 132, and when a current or voltage is applied to the resistance change layer 132 , Its resistance value will change, thereby changing the memory state of resistive memory cells. In detail, one of the high-resistance state and the low-resistance state can be regarded as digital data “0” and the other as the digital data “1”, for example, the high-resistance state can be regarded as digital data “0” and the low-resistance state can be regarded as digital. The data "1", that is, the resistance change layer 132 is set to a low resistance state as a memory state through a set operation, and the resistance change layer 132 is set to a high resistance state as a memory state through a reset operation. "0"", And the setting operation example is to provide the resistance change layer 132 with a set voltage, and the reset operation example is to provide the resistance change layer 132 with a reset voltage. Therefore, when a reading is applied to the resistance change element 130 When the voltage is applied, the resistance value of the variable resistance layer 132 can be read, and the data stored in the variable resistance element 130 can be obtained. In addition, the variable resistance layer 132 may include hafnium oxide (HfO x ), tantalum oxide (TaO x ), titanium oxide (TiO x ), nickel oxide (NiO x ), niobium oxide (NbO x ), and aluminum oxide (AlO x ). At least one of tungsten oxide (WO x ), zinc oxide (ZnO x ), cobalt oxide (CoO x ), lanthanum oxide (LaO x ), zirconium oxide (ZrO x ), or a combination thereof, wherein hafnium oxide may be two HfO 2 and tantalum oxide may be tantalum pentoxide (Ta 2 O 5 ), but the material is not limited thereto.

接著如第5圖所示,於第一絕緣層120與電阻變化元件130上形成第二絕緣層140,然後如第6圖所示,圖案化第二絕緣層140,例如進行微影暨蝕刻製程,於第二絕緣層140中形成第二連接孔H2,且第二連接孔H2暴露導電連接元件CP或電阻變化元件130,然後,再於導電連接元件CP與電阻變化元件130上形成第一金屬層M1,其中第一金屬層M1包括第一金屬圖案M1p,第一金屬圖案M1p的至少一部分位於第二連接孔H2中,並與電阻變化元件130與導電連接元件CP的其中至少一者電連接,而在本實施例中,電阻變化元件130會與第一金屬圖案M1p接觸,但不以此為限。另外,可依實際需求而再設置更多的金屬層、導電層或是絕緣層,舉例而言,如第7圖所示,可於第一金屬層M1上形成第三絕緣層150,再於第三絕緣層150中形成第三連接孔H3,且第三連接孔H3暴露第一金屬層M1的第一金屬圖案M1p的一部分,然後,於第三連接孔H3中形成金屬層連接元件(via)V,也就是金屬層連接元件V貫穿設置在第三絕緣層150中,並與第一金屬圖案M1p電連接,之後,於第三絕緣層150與金屬層連接元件V上形成第四絕緣層160以及位於第四絕緣層160中的第四連接孔H4,接著,形成第二金屬層M2於第三絕緣層150與金屬層連接元件V上,其中,第二金屬層M2包括第二金屬圖案M2p,第二金屬圖案M2p的至少一部分位於第四連接孔H4中,並與金屬層連接元件V電連接,但設置的膜層種類、膜層的設置數量以及膜層形成順序不以此為限。在上述製造流程中,形成第二連接孔H2、第三連接孔H3、第四連接孔H4或是更多的連接孔的方式舉例可透過蝕刻製程,但不以此為限。在本實施例中,第一金屬層M1的第一金屬圖案M1p以及第二金屬層M2的第二金屬圖案M2p可作為半導體結構100中用以傳遞訊號的金屬走線,而為了降低金屬走線間的寄生 電容,可以將第二絕緣層140、第三絕緣層150、第四絕緣層160或是其他堆疊在上的絕緣層設計為具有較低介電常數的膜層,例如透過在絕緣層中製造孔洞的方式以降低介電常數,因此,本實施例的第一絕緣層120與閘極絕緣層122的介電常數大於第二絕緣層140、第三絕緣層150、第四絕緣層160與其他堆疊在第四絕緣層160上的絕緣層的介電常數,且第一絕緣層120與閘極絕緣層122在結構上相對較結實。另外,在本實施例中,第二絕緣層140、第三絕緣層150與第四絕緣層160舉例可包含黑鑽石(Black Diamond,BD)材料,並作為半導體結構100的金屬間介電質層(inter-metal dielectric,IMD),但不以此為限,亦可為其他具有孔洞的絕緣材料,而第一金屬層M1與第二金屬層M2舉例可包括銅(Cu)或其他適合的金屬材料。 Next, as shown in FIG. 5, a second insulating layer 140 is formed on the first insulating layer 120 and the resistance change element 130. Then, as shown in FIG. 6, the second insulating layer 140 is patterned, for example, by a photolithography and etching process. A second connection hole H2 is formed in the second insulating layer 140, and the second connection hole H2 exposes the conductive connection element CP or the resistance change element 130, and then a first metal is formed on the conductive connection element CP and the resistance change element 130. Layer M1, where the first metal layer M1 includes a first metal pattern M1p, at least a portion of the first metal pattern M1p is located in the second connection hole H2, and is electrically connected to at least one of the resistance change element 130 and the conductive connection element CP In this embodiment, the resistance change element 130 is in contact with the first metal pattern M1p, but is not limited thereto. In addition, more metal layers, conductive layers, or insulating layers may be provided according to actual needs. For example, as shown in FIG. 7, a third insulating layer 150 may be formed on the first metal layer M1, and then A third connection hole H3 is formed in the third insulation layer 150, and the third connection hole H3 exposes a part of the first metal pattern M1p of the first metal layer M1. Then, a metal layer connection element (via) is formed in the third connection hole H3. ) V, that is, the metal layer connection element V is disposed in the third insulation layer 150 and is electrically connected to the first metal pattern M1p. Then, a fourth insulation layer is formed on the third insulation layer 150 and the metal layer connection element V. 160 and a fourth connection hole H4 located in the fourth insulation layer 160. Next, a second metal layer M2 is formed on the third insulation layer 150 and the metal layer connection element V, wherein the second metal layer M2 includes a second metal pattern M2p, at least a part of the second metal pattern M2p is located in the fourth connection hole H4 and is electrically connected to the metal layer connection element V, but the type of the film layer provided, the number of the film layers provided, and the sequence of the film layers are not limited to this . In the above manufacturing process, an example of a method of forming the second connection hole H2, the third connection hole H3, the fourth connection hole H4, or more connection holes can be through an etching process, but is not limited thereto. In this embodiment, the first metal pattern M1p of the first metal layer M1 and the second metal pattern M2p of the second metal layer M2 can be used as metal traces for transmitting signals in the semiconductor structure 100, and in order to reduce the metal traces Parasitic For the capacitor, the second insulating layer 140, the third insulating layer 150, the fourth insulating layer 160, or other stacked insulating layers can be designed as a film with a lower dielectric constant, for example, by making holes in the insulating layer. In order to reduce the dielectric constant, the dielectric constants of the first insulating layer 120 and the gate insulating layer 122 in this embodiment are larger than those of the second insulating layer 140, the third insulating layer 150, the fourth insulating layer 160, and other stacks. The dielectric constant of the insulating layer on the fourth insulating layer 160, and the first insulating layer 120 and the gate insulating layer 122 are relatively strong in structure. In addition, in this embodiment, the second insulating layer 140, the third insulating layer 150, and the fourth insulating layer 160 may include, for example, a black diamond (BD) material and serve as an intermetal dielectric layer of the semiconductor structure 100. (inter-metal dielectric, IMD), but not limited to this, other insulating materials with holes can also be used, and examples of the first metal layer M1 and the second metal layer M2 may include copper (Cu) or other suitable metal material.

此外,第二絕緣層140、第三絕緣層150、第四絕緣層160或其他堆疊在第四絕緣層160上的絕緣層也可為多層的絕緣結構,舉例而言,以作為金屬間介電質層的第二絕緣層140為例,第二絕緣層140可包括一蝕刻停止層(etch stop layer)以及一孔洞層,孔洞層設置於蝕刻停止層上,其中孔洞層具有複數個用以降低介電常數的孔洞,例如可包括黑鑽石材料,蝕刻停止層則為相對於孔洞層較為緻密的膜層,例如可包括氮化矽(Si3N4),用以阻擋蝕刻製程中的蝕刻物質,藉此避免第二絕緣層140下方的結構遭破壞,但其膜層材料與數量不以此為限。除此之外,由於第二絕緣層140中相對緻密的蝕刻停止層位於電阻變化元件130上,因此,可減少電阻變化元件130受到其他絕緣層的游離離子影響或是可減少電阻變化元件130於操作過程中所產生的帶電物質(例如離子、電子)的逃離。 In addition, the second insulating layer 140, the third insulating layer 150, the fourth insulating layer 160, or other insulating layers stacked on the fourth insulating layer 160 may also be a multi-layered insulating structure, for example, as an inter-metal dielectric. As an example, the second insulating layer 140 of the solid layer may include an etch stop layer and a hole layer. The hole layer is disposed on the etch stop layer, and the hole layer has a plurality of holes for reducing Holes with a dielectric constant may include, for example, a black diamond material, and the etch stop layer is a denser film layer than the hole layer. For example, it may include silicon nitride (Si 3 N 4 ) to block etching substances in the etching process. Therefore, the structure under the second insulating layer 140 is prevented from being damaged, but the material and quantity of the film layer are not limited thereto. In addition, since the relatively dense etch-stop layer in the second insulating layer 140 is located on the resistance change element 130, the resistance change element 130 can be reduced from being affected by free ions of other insulation layers or the resistance change element 130 can be reduced. Escape of charged substances (eg ions, electrons) generated during operation.

請再參考第7圖,本實施例的半導體結構100包括基底110、第一絕緣層120、導電連接元件CP、電阻變化元件130、第二絕緣層140以及第一金屬層 M1。基底110表面具有摻雜區112,第一絕緣層120設置在基底110上,並具有暴露基底110表面的摻雜區112的第一連接孔H1,導電連接元件CP設置在第一連接孔H1中,也就是貫穿設置在第一絕緣層120中,且導電連接元件CP接觸摻雜區112表面,電阻變化元件130設置在導電連接元件CP上並與導電連接元件CP接觸,第二絕緣層140設置在第一絕緣層120與電阻變化元件130上,並具有暴露導電連接元件CP或電阻變化元件130的第二連接孔H2,第一金屬層M1設置在導電連接元件CP、電阻變化元件130與第二絕緣層140上,第一金屬層M1可包括第一金屬圖案M1p,第一金屬圖案M1p的至少一部分位於第二連接孔H2中,並與電阻變化元件130與導電連接元件CP其中至少一者電連接。另外,半導體結構100另可選擇性的包括更多的金屬層、導電層或是絕緣層,第7圖的半導體結構100舉例可包括第三絕緣層150、第四絕緣層160、金屬層連接元件V與第二金屬層M2,第三絕緣層150設置在第一金屬層M1上,並具有暴露第一金屬層M1的第一金屬圖案M1p的一部分的第三連接孔H3,金屬層連接元件V設置在第三連接孔H3中,也就是貫穿設置在第三絕緣層150中,並與第一金屬圖案M1p電連接,具有第四連接孔H4的第四絕緣層160設置在第三絕緣層150與金屬層連接元件V上,第二金屬層M2設置在金屬層連接元件V與第四絕緣層160上,第二金屬層M2包括第二金屬圖案M2p,第二金屬圖案M2p的至少一部分位於第四連接孔H4中,並與金屬層連接元件V電連接。 Please refer to FIG. 7 again. The semiconductor structure 100 of this embodiment includes a substrate 110, a first insulating layer 120, a conductive connection element CP, a resistance change element 130, a second insulating layer 140, and a first metal layer. M1. The surface of the substrate 110 has a doped region 112. The first insulating layer 120 is disposed on the substrate 110 and has a first connection hole H1 exposing the doped region 112 on the surface of the substrate 110. The conductive connection element CP is disposed in the first connection hole H1. That is, the first insulation layer 120 is penetrated and the conductive connection element CP is in contact with the surface of the doped region 112. The resistance change element 130 is disposed on and in contact with the conductive connection element CP. The second insulation layer 140 is provided. The first insulating layer 120 and the variable resistance element 130 have second connection holes H2 exposing the conductive connection element CP or the variable resistance element 130. The first metal layer M1 is disposed on the conductive connection element CP, the variable resistance element 130, and the first On the two insulating layers 140, the first metal layer M1 may include a first metal pattern M1p. At least a part of the first metal pattern M1p is located in the second connection hole H2, and is connected to at least one of the resistance change element 130 and the conductive connection element CP. Electrical connection. In addition, the semiconductor structure 100 may optionally include more metal layers, conductive layers, or insulation layers. The semiconductor structure 100 of FIG. 7 may include a third insulation layer 150, a fourth insulation layer 160, and a metal layer connection element. V and the second metal layer M2, the third insulating layer 150 is disposed on the first metal layer M1, and has a third connection hole H3 exposing a part of the first metal pattern M1p of the first metal layer M1, and the metal layer connection element V The third connection hole H3 is disposed in the third insulation layer 150 and is electrically connected to the first metal pattern M1p. The fourth insulation layer 160 having the fourth connection hole H4 is disposed in the third insulation layer 150. On the connecting element V with the metal layer, a second metal layer M2 is disposed on the connecting element V and the fourth insulating layer 160. The second metal layer M2 includes a second metal pattern M2p, and at least a part of the second metal pattern M2p is located in the first The four connection holes H4 are electrically connected to the metal layer connection element V.

在傳統的半導體結構中,一般用以作為電阻式記憶體細胞元的電阻變化元件會設置在兩個金屬層之間,例如設置在第一金屬層M1以及第二金屬層M2之間,或是設置在第二金屬層M2以及第二金屬層M2上方的金屬層之間。當電阻變化元件舉例設置在第一金屬層M1以及第二金屬層M2之間時,由於電阻變化元件的厚度會小於兩金屬層之間的金屬層連接元件V的厚度,因此會需在電阻 變化元件130的上方或下方額外設置導電件(plug),並使導電件與第一金屬層M1或第二金屬層M2接觸,使得電阻變化元件130可透過導電件電連接第一金屬層M1或第二金屬層M2,也就是說,在傳統的設計下,會需要額外製作導電件,必須額外增加半導體結構的製造成本(例如材料成本、光罩成本與製程成本)。相反的,在本實施例中,由於電阻變化元件130設置在導電連接元件CP與第一金屬層M1之間,並直接接觸導電連接元件CP,甚至直接接觸第一金屬層M1,因此,不須額外設置其他與電阻變化元件130接觸的導電件,藉此降低製造成本。 In a conventional semiconductor structure, a resistance change element generally used as a resistive memory cell is disposed between two metal layers, for example, between the first metal layer M1 and the second metal layer M2, or It is disposed between the second metal layer M2 and the metal layer above the second metal layer M2. When the resistance change element is disposed between the first metal layer M1 and the second metal layer M2 by way of example, since the thickness of the resistance change element will be smaller than the thickness of the metal layer connection element V between the two metal layers, the resistance will be required. A conductive plug is additionally provided above or below the change element 130, and the conductive element is in contact with the first metal layer M1 or the second metal layer M2, so that the resistance change element 130 can be electrically connected to the first metal layer M1 or The second metal layer M2, that is, under the traditional design, additional conductive parts need to be manufactured, and the manufacturing cost of the semiconductor structure (such as material cost, mask cost, and process cost) must be additionally added. In contrast, in this embodiment, since the resistance change element 130 is disposed between the conductive connection element CP and the first metal layer M1, and directly contacts the conductive connection element CP, or even directly contacts the first metal layer M1, it is not necessary Other conductive members in contact with the variable resistance element 130 are additionally provided, thereby reducing manufacturing costs.

另一方面,由於在進行電阻變化元件層130’的蝕刻時,會以設置在電阻變化元件層130’下方的絕緣層作為蝕刻停止層,而在傳統的半導體結構100中,由於電阻變化元件層130’的下方為介電常數較低且具有孔洞的第三絕緣層150,因此,其阻擋蝕刻的效果會因為孔洞的存在而受到影響,相反的,在本發明的實施例中,電阻變化元件層130’的下方為介電常數較高且不具孔洞的第一絕緣層120,因此,可提供較好的蝕刻阻擋效果。另外,由於本實施例的電阻變化元件130位於較接近基底110的位置,因此相較於傳統的半導體結構100,可減少用以防止誤差而預留的空間,使兩元件之間的距離縮小,藉此提高電阻變化元件130的密度,並且,可同時因為縮短電阻變化元件130與基底110之間的距離而減短導電路徑的長度,以降低阻值。 On the other hand, when the variable resistance element layer 130 'is etched, the insulating layer provided below the variable resistance element layer 130' is used as an etching stop layer. In the conventional semiconductor structure 100, due to the variable resistance element layer Below 130 'is a third insulating layer 150 having a lower dielectric constant and having holes, so its effect of blocking etching will be affected by the presence of holes. On the contrary, in the embodiment of the present invention, the resistance change element Below the layer 130 'is a first dielectric layer 120 having a high dielectric constant and having no holes, and therefore, can provide a better etch blocking effect. In addition, since the resistance change element 130 in this embodiment is located closer to the substrate 110, compared with the conventional semiconductor structure 100, the space reserved for preventing errors can be reduced, and the distance between the two elements can be reduced. Thereby, the density of the variable resistance element 130 is increased, and at the same time, the length of the conductive path can be shortened because the distance between the variable resistance element 130 and the substrate 110 is shortened to reduce the resistance value.

在另一實施例中,電阻變化元件130可為多層結構,如第8圖所示,電阻變化元件130另可包括第一電極層134、離子收集層136以及第二電極層138,電阻變化層132設置在第一電極層134上,離子收集層136設置於電阻變化層132上,第二電極層138設置於離子收集層136上,但電阻變化元件130所包括的膜層不以此為限。離子收集層136用以在電阻變化元件130被提供電壓的情況 下接收由電阻變化層132所擴散出的離子或是將其內部離子轉移至電阻變化層132中,以使電阻變化層132改變其電阻,其中離子收集層136可包括金屬及金屬氧化材料的其中至少一種,金屬舉例可包括鉭(Ta)、鈦(Ti)或鉿(Hf),金屬氧化材料舉例可包括鉿(Hf)、鎂(Mg)、鋁(Al)、鈮(Nb)、鑭(La)、鋯(Zr)、鉭(Ta)及鈦(Ti)或其組合的金屬氧化物,例如氧化鉭(TaOx)、氧化鈦(TiOx)、氮氧化鈦(TiOxNy)、氧化鉿(HfOx)。第一電極層134與第二電極層138可用以分別作為電阻變化元件130的下電極與上電極,以避免半導體結構100中的導電連接元件CP與第一金屬層M1所使用的材料不適於作為電阻變化元件130的下電極與上電極,本實施例的第一電極層134與第二電極層138舉例可包括鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)、氮化鎢(TaW)、鎢(W)、鋁(Al)、鉑(Pt)或其組合,例如氮化鋁鈦(TiAlN),但其材料不以此為限。另外,在製造過程中,仍可先全面性地形成具有多層結構的電阻變化元件層130’,之後再進行蝕刻製程將具有多層結構的電阻變化元件層130’蝕刻而形成具有多層結構的電阻變化元件130,但製程不以此為限,在變化實施例中,亦可逐層形成與蝕刻。 In another embodiment, the variable resistance element 130 may have a multilayer structure. As shown in FIG. 8, the variable resistance element 130 may further include a first electrode layer 134, an ion collection layer 136, and a second electrode layer 138, which is a variable resistance layer. 132 is disposed on the first electrode layer 134, the ion collection layer 136 is disposed on the resistance change layer 132, and the second electrode layer 138 is disposed on the ion collection layer 136, but the film layer included in the resistance change element 130 is not limited thereto . The ion collection layer 136 is used to receive ions diffused from the variable resistance layer 132 or transfer internal ions to the variable resistance layer 132 so that the variable resistance layer 132 changes the voltage when the variable resistance element 130 is supplied with voltage. The resistor, wherein the ion collection layer 136 may include at least one of a metal and a metal oxide material. Examples of the metal may include tantalum (Ta), titanium (Ti), or hafnium (Hf). Examples of the metal oxide material may include hafnium (Hf), magnesium. (Mg), aluminum (Al), niobium (Nb), lanthanum (La), zirconium (Zr), tantalum (Ta), and titanium (Ti) or a combination of metal oxides such as tantalum oxide (TaO x ), oxide Titanium (TiO x ), titanium oxynitride (TiO x N y ), hafnium oxide (HfO x ). The first electrode layer 134 and the second electrode layer 138 can be used as the lower electrode and the upper electrode of the resistance change element 130, respectively, to avoid the materials used in the conductive connection element CP and the first metal layer M1 in the semiconductor structure 100 being unsuitable as The lower electrode and the upper electrode of the resistance change element 130. Examples of the first electrode layer 134 and the second electrode layer 138 in this embodiment may include titanium (Ti), titanium nitride (TiN), tantalum (Ta), and tantalum nitride ( TaN), tungsten nitride (TaW), tungsten (W), aluminum (Al), platinum (Pt), or a combination thereof, such as titanium aluminum nitride (TiAlN), but the material is not limited thereto. In addition, in the manufacturing process, the resistance change element layer 130 'having a multilayer structure can still be formed comprehensively, and then the etching process is performed to etch the resistance change element layer 130' having a multilayer structure to form a resistance change having a multilayer structure. Element 130, but the manufacturing process is not limited to this. In a modified embodiment, layer 130 may be formed and etched layer by layer.

請參考第9圖,第9圖繪示本發明一實施例之半導體結構的製造方法之流程圖。如第9圖所示,本發明的一實施例之半導體結構的製造方法包括以下步驟。 Please refer to FIG. 9, which illustrates a flowchart of a method for manufacturing a semiconductor structure according to an embodiment of the present invention. As shown in FIG. 9, a method for manufacturing a semiconductor structure according to an embodiment of the present invention includes the following steps.

步驟ST1:於一基底上形成第一絕緣層。 Step ST1: forming a first insulating layer on a substrate.

步驟ST2:於第一絕緣層中形成第一連接孔,第一連接孔暴露基底表面的摻雜區。 Step ST2: A first connection hole is formed in the first insulating layer, and the first connection hole exposes a doped region on the surface of the substrate.

步驟ST3:於第一連接孔中形成導電連接元件,且導電連接元件接觸摻雜區表面。 Step ST3: A conductive connection element is formed in the first connection hole, and the conductive connection element contacts the surface of the doped region.

步驟ST4:於導電連接元件上形成電阻變化元件,電阻變化元件與導 電連接元件接觸。 Step ST4: forming a variable resistance element on the conductive connection element, and the variable resistance element and the conductive element Electrical connection elements are in contact.

步驟ST5:於第一絕緣層上形成第二絕緣層。 Step ST5: forming a second insulating layer on the first insulating layer.

步驟ST6:於第二絕緣層中形成第二連接孔,第二連接孔暴露導電連接元件或電阻變化元件。 Step ST6: A second connection hole is formed in the second insulation layer, and the second connection hole exposes the conductive connection element or the resistance change element.

步驟ST7:形成第一金屬層於導電連接元件與電阻變化元件上,第一金屬層包括第一金屬圖案,第一金屬圖案的至少一部分位於第二連接孔中,並與電阻變化元件電連接。 Step ST7: forming a first metal layer on the conductive connection element and the variable resistance element. The first metal layer includes a first metal pattern, at least a part of the first metal pattern is located in the second connection hole, and is electrically connected to the variable resistance element.

另外,亦可依實際需求而再設置更多的金屬層、導電層或是絕緣層於半導體結構100中,例如上述的第三絕緣層150、第四絕緣層160、金屬層連接元件V與第二金屬層M2,而第9圖中的流程圖的步驟並不一定要依照以上順序,且其他步驟也可以介於上述步驟之間。 In addition, more metal layers, conductive layers, or insulating layers may be provided in the semiconductor structure 100 according to actual needs, such as the third insulating layer 150, the fourth insulating layer 160, the metal layer connecting element V, and the first insulating layer. The second metal layer M2, and the steps of the flowchart in FIG. 9 do not necessarily follow the above sequence, and other steps may also be between the above steps.

綜上所述,本發明的半導體結構的電阻變化元件設置在導電連接元件與第一金屬層之間,並直接接觸導電連接元件,因此,可不須額外設置其他與電阻變化元件接觸並用以電連接其他導電層的導電件,藉此降低製造成本,並同時達到提高電阻變化元件的密度以及降低阻值的效果。另一方面,由於電阻變化元件的下方為介電常數較高且不具孔洞的第一絕緣層,因此,在電阻變化元件的製程中可提供較好的蝕刻阻擋效果。 In summary, the resistance change element of the semiconductor structure of the present invention is disposed between the conductive connection element and the first metal layer, and directly contacts the conductive connection element. Therefore, it is not necessary to additionally provide another contact with the resistance change element and use it for electrical connection. The conductive members of other conductive layers can reduce the manufacturing cost, and simultaneously achieve the effects of increasing the density of the resistance change element and reducing the resistance value. On the other hand, since the first insulating layer with a higher dielectric constant and no holes is located under the variable resistance element, it can provide a better etch blocking effect in the process of manufacturing the variable resistance element.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of patent application of the present invention shall fall within the scope of the present invention.

Claims (9)

一種半導體結構,包括: 一基底,該基底表面具有一摻雜區; 一第一絕緣層,設置在該基底上; 一導電連接元件(contact plug),貫穿設置在該第一絕緣層中且接觸該摻雜區表面; 一電阻變化元件,設置在該導電連接元件上,並與該導電連接元件接觸; 一第二絕緣層,設置在該第一絕緣層上;以及 一第一金屬層,設置在該導電連接元件與該電阻變化元件上,該第一金屬層包括一第一金屬圖案,該第一金屬圖案與該電阻變化元件電連接。A semiconductor structure includes: a substrate having a doped region on a surface of the substrate; a first insulating layer disposed on the substrate; a contact plug disposed through the first insulating layer and contacting A surface of the doped region; a resistance change element disposed on the conductive connection element and in contact with the conductive connection element; a second insulating layer disposed on the first insulating layer; and a first metal layer disposed On the conductive connection element and the resistance change element, the first metal layer includes a first metal pattern, and the first metal pattern is electrically connected to the resistance change element. 如請求項1所述之半導體結構,其另包括一電晶體的一閘極,該閘極設置在該基底上,該摻雜區為該電晶體的一源極摻雜區或一汲極摻雜區,且該第一絕緣層覆蓋該電晶體的該閘極。The semiconductor structure according to claim 1, further comprising a gate of a transistor, the gate is disposed on the substrate, and the doped region is a source-doped region or a drain-doped region of the transistor. A miscellaneous region, and the first insulating layer covers the gate of the transistor. 如請求項1所述之半導體結構,其另包括: 一第三絕緣層,設置在該第一金屬層上; 一金屬層連接元件(via),貫穿設置在該第三絕緣層中,並與該第一金屬圖案電連接;以及 一第二金屬層,設置在該第三絕緣層與該金屬層連接元件上,該第二金屬層包括一第二金屬圖案,該第二金屬圖案與該金屬層連接元件電連接。The semiconductor structure according to claim 1, further comprising: a third insulating layer disposed on the first metal layer; a metal layer connecting element (via) disposed through the third insulating layer and communicating with the third insulating layer; The first metal pattern is electrically connected; and a second metal layer is disposed on the third insulating layer and the metal layer connecting element, the second metal layer includes a second metal pattern, the second metal pattern and the metal The layer connection elements are electrically connected. 如請求項1所述之半導體結構,其中該電阻變化元件包括一電阻變化層。The semiconductor structure according to claim 1, wherein the resistance change element includes a resistance change layer. 如請求項4所述之半導體結構,其中該電阻變化元件另包括: 一第一電極層,該電阻變化層設置在該第一電極層上; 一離子收集層,設置於該電阻變化層上;以及 一第二電極層,設置於該離子收集層上。The semiconductor structure according to claim 4, wherein the resistance change element further comprises: a first electrode layer, the resistance change layer is disposed on the first electrode layer; an ion collection layer is provided on the resistance change layer; And a second electrode layer disposed on the ion collection layer. 如請求項5所述之半導體結構,其中該離子收集層包括金屬及金屬氧化材料的其中至少一種。The semiconductor structure according to claim 5, wherein the ion collection layer includes at least one of a metal and a metal oxide material. 如請求項4所述之半導體結構,其中該電阻變化層包括氧化鉿(HfO x)、氧化鉭(TaO x)、氧化鈦(TiO x)、氧化鎳(NiO x)、氧化鈮(NbO x)、氧化鋁(AlO x)、氧化鎢(WO x)、氧化鋅(ZnO x)、氧化鈷(CoO x)、氧化鑭(LaO x)、氧化鋯(ZrO x)的其中至少一種或其組合物。 The semiconductor structure according to claim 4, wherein the resistance change layer includes hafnium oxide (HfO x ), tantalum oxide (TaO x ), titanium oxide (TiO x ), nickel oxide (NiO x ), and niobium oxide (NbO x ) , aluminum oxide (AlO x), tungsten oxide (WO x), zinc oxide (ZnO x), cobalt oxide (CoO x), lanthanum oxide (LaO x), zirconium oxide (ZrO x), wherein at least one or a combination thereof . 一種半導體結構的製造方法,包括: 於一基底上形成一第一絕緣層; 於該第一絕緣層中形成一第一連接孔,該第一連接孔暴露該基底表面的一摻雜區; 於該第一連接孔中形成一導電連接元件(contact plug),且該導電連接元件接觸該摻雜區表面; 於該導電連接元件上形成一電阻變化元件,該電阻變化元件與該導電連接元件接觸; 於該第一絕緣層上形成一第二絕緣層; 於該第二絕緣層中形成一第二連接孔,該第二連接孔暴露該導電連接元件或該電阻變化元件;以及 形成一第一金屬層於該導電連接元件與該電阻變化元件上,該第一金屬層包括一第一金屬圖案,該第一金屬圖案的至少一部分位於該第二連接孔中,並與該電阻變化元件電連接。A method for manufacturing a semiconductor structure includes: forming a first insulating layer on a substrate; forming a first connection hole in the first insulating layer, the first connection hole exposing a doped region on a surface of the substrate; A contact plug is formed in the first connection hole, and the conductive connection element contacts the surface of the doped region; a resistance change element is formed on the conductive connection element, and the resistance change element is in contact with the conductive connection element Forming a second insulating layer on the first insulating layer; forming a second connection hole in the second insulating layer, the second connection hole exposing the conductive connection element or the resistance change element; and forming a first A metal layer is formed on the conductive connection element and the resistance change element. The first metal layer includes a first metal pattern. At least a part of the first metal pattern is located in the second connection hole and is electrically connected to the resistance change element. . 如請求項8所述之半導體結構的製造方法,另包括: 於該第一金屬層上形成一第三絕緣層; 於該第三絕緣層中形成一第三連接孔,該第三連接孔暴露該第一金屬層的該第一金屬圖案的一部分; 於該第三連接孔中形成一金屬層連接元件(via),且該金屬層連接元件電連接該第一金屬圖案;以及 形成一第二金屬層於該第三絕緣層與該金屬層連接元件上,該第二金屬層包括一第二金屬圖案,該第二金屬圖案與該金屬層連接元件電連接。The method for manufacturing a semiconductor structure according to claim 8, further comprising: forming a third insulation layer on the first metal layer; forming a third connection hole in the third insulation layer, and the third connection hole is exposed A part of the first metal pattern of the first metal layer; forming a metal layer connection element (via) in the third connection hole, and the metal layer connection element is electrically connected to the first metal pattern; and forming a second A metal layer is on the third insulating layer and the metal layer connection element, and the second metal layer includes a second metal pattern, and the second metal pattern is electrically connected to the metal layer connection element.
TW107112038A 2018-04-09 2018-04-09 Semiconductor structure and manufacturing method thereof TWI662696B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107112038A TWI662696B (en) 2018-04-09 2018-04-09 Semiconductor structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107112038A TWI662696B (en) 2018-04-09 2018-04-09 Semiconductor structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI662696B true TWI662696B (en) 2019-06-11
TW201944591A TW201944591A (en) 2019-11-16

Family

ID=67764187

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107112038A TWI662696B (en) 2018-04-09 2018-04-09 Semiconductor structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI662696B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197876A (en) * 2001-12-26 2003-07-11 Hynix Semiconductor Inc Magnetic ram
TW201717317A (en) * 2015-11-13 2017-05-16 台灣積體電路製造股份有限公司 Integrated chip and method of forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197876A (en) * 2001-12-26 2003-07-11 Hynix Semiconductor Inc Magnetic ram
TW201717317A (en) * 2015-11-13 2017-05-16 台灣積體電路製造股份有限公司 Integrated chip and method of forming the same

Also Published As

Publication number Publication date
TW201944591A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
US10903274B2 (en) Interconnect landing method for RRAM technology
US10510953B2 (en) Top electrode for device structures in interconnect
TWI594405B (en) Integrated circuit and method for forming the same
TWI713242B (en) Resistive random access memory and method of forming the same
US7968967B2 (en) One-time-programmable anti-fuse formed using damascene process
CN109841733B (en) Memory device and method of forming the same
CN104377302B (en) Memory cell and its manufacture method with resistance-variable film
US11737381B2 (en) Resistive random access memory and method of forming the same
US11107983B2 (en) Resistive random access memory array and manufacturing method thereof
US9859336B1 (en) Semiconductor device including a memory cell structure
TWI662696B (en) Semiconductor structure and manufacturing method thereof
US11522129B2 (en) Semiconductor structure and manufacturing method thereof
JP2013168454A (en) Semiconductor memory device and method for manufacturing the same
US11189660B2 (en) Non-volatile memory and method of fabricating the same
US11770987B2 (en) Resistive random-access memory and method for fabricating the same
CN112635660B (en) Nonvolatile memory and method of manufacturing the same
US11706933B2 (en) Semiconductor memory device and fabrication method thereof
TW201445701A (en) Semiconductor device and method of fabricating the same
TWI837185B (en) Embeded non-volatile memory device and method for fabricating the same
US11258011B2 (en) Resistive random access memory structure and manufacturing method thereof
TW202113857A (en) Embeded non-volatile memory device and method for fabricating the same
CN114256289A (en) Memristor and preparation method thereof