TWI661844B - 仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法 - Google Patents

仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法 Download PDF

Info

Publication number
TWI661844B
TWI661844B TW107141097A TW107141097A TWI661844B TW I661844 B TWI661844 B TW I661844B TW 107141097 A TW107141097 A TW 107141097A TW 107141097 A TW107141097 A TW 107141097A TW I661844 B TWI661844 B TW I661844B
Authority
TW
Taiwan
Prior art keywords
liquid
lung
layer
human
simulating
Prior art date
Application number
TW107141097A
Other languages
English (en)
Other versions
TW202019499A (zh
Inventor
林雋凱
Chun Kai Lin
黃振煌
Jen Huang Huang
Original Assignee
國立清華大學
National Tsing Hua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學, National Tsing Hua University filed Critical 國立清華大學
Priority to TW107141097A priority Critical patent/TWI661844B/zh
Application granted granted Critical
Publication of TWI661844B publication Critical patent/TWI661844B/zh
Priority to US16/564,748 priority patent/US11062625B2/en
Publication of TW202019499A publication Critical patent/TW202019499A/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/303Anatomical models specially adapted to simulate circulation of bodily fluids
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/34Anatomical models with removable parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Medical Informatics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

一種仿肺部裝置包含第一液體容置層、第一彈性膜、氣體流道層、第二彈性膜以及第二液體容置層。第一液體容置層於外表面設置液體入口、液體出口及氣流口,並於內表面設置第一液腔。氣體流道層包含複數個通道與複數個仿肺泡區,仿肺泡區與通道連通,所述通道模擬人體肺部第15代至第19代的分枝結構,所述仿肺泡區模擬人體肺部第20代至第23代的分枝結構。第二液體容置層於內表面設置第二液腔。藉此,仿肺部裝置在結構上與人體肺部近似,可作為模擬肺部的體外試驗裝置,而可減少動物試驗,並可獲得與人體相關的對應資訊。

Description

仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法 與模擬物質在人體肺部沉積的系統及方法
本發明是有關於一種仿人體器官及其應用,且特別是有關於一種仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法。
隨著工業發展以及森林面積的減少,空氣污染日益嚴重,而患有肺部疾病的人口比例也日漸攀升。以PM2.5為例,PM2.5是指直徑小於或等於2.5(或10)微米的粒子,當這些小粒子被吸入人體,會在肺部沉積而引起部分區域的發炎,導致慢性肺部疾病。常見的慢性肺部疾病可區分為阻塞性肺部疾病(obstructive lung diseases)以及限制性肺部疾病(restrictive lung diseases)二大類。阻塞性肺部疾病由於氣流道受阻塞而具有吐氣量較低的特徵,並包含呼吸急促及咳嗽有痰的症狀,常見的阻塞性肺部疾病包含 慢性阻塞型肺病(Chronic Obstructive Pulmonary Disease,COPD)及氣喘(Asthma)。限制性肺部疾病具有呼吸困難的症狀,常見的限制性肺部疾病包含肺炎及肺纖維化。
為了治療肺部疾病,醫生及科學家致力發展有效的投藥方式,已知肺部投藥具有以下優點:首先,肺部投藥為有效率的藥物傳輸路徑,因為肺部面積大,且氣流道與微血管之間只有一層薄薄的上皮細胞而使藥物容易被吸收;其次,肺部投藥屬於非侵入式的用藥方式,可避免針頭感染的風險;再者,與口服藥物相比,藥物不需經過胃以及肝臟的代謝,可避免藥效下降,且可避免造成肝臟負擔。因而發展肺部投藥已成為現今的潮流。然而,肺部用藥最大的挑戰在於如何將藥物精準地傳送到肺部受損傷的區域以提高用藥效率。目前肺部投藥方式包含使用噴霧器、加壓劑量吸入器、乾粉吸入器,倘若可因應不同類型的肺部疾病選擇不同的投藥方式,則可有效地將藥物傳送至肺部受損傷的區域,可提高藥物吸收,並可避免藥物的浪費。
然而,現今藥物的發展主要依賴動物試驗,其成本較高,且會造成實驗動物的生命損失,此外,基於物種不同,動物試驗結果無法完全套用到人類身上。為解決動物試驗的缺失,另發展出於體外環境模擬特定器官的模型或裝置,以減少實驗動物的生命損失,並直接獲得人體相關的對應資訊。然而,現今用於觀測藥物於人體肺部吸收及分布情況的肺部模擬裝置,主要是依據藥物粒子的尺寸進行預測, 且大多針對顆粒狀的藥物,對於霧化氣溶膠(nebulized aerosol)甚少研究,此外,前述裝置的氣流道設計與人體肺部型態差異甚大,且未結合人體的呼吸模式進行預測,一方面無法全面提供不同投藥方式所需的資訊,另一方面難以有效反應藥物在人體肺部實際沉積的情況。
因此,如何發展出新的體外試驗裝置,以減少動物試驗,並可真實模擬人體肺部,以有效反應物質在人體肺部實際沉積的情況,遂成為相關業者及學者努力的目標。
本發明之一目的是提供一種仿肺部裝置及人體肺部模擬系統,仿肺部裝置在結構上與人體肺部近似,可作為模擬肺部的體外試驗裝置,而可減少動物試驗,並可獲得與人體相關的對應資訊。
本發明之另一目的是提供一種模擬人體肺部呼吸的方法,藉由結合與人體肺部近似的結構及人體呼吸模式,可有效模擬人體肺部,使其所獲得之與人體相關的對應資訊具有較高的可信度。
本發明之又一目的是提供一種模擬物質在人體肺部沉積的系統及方法,藉此,可觀測物質於人體肺部吸收及分布情況,有利於多元的應用,包括可應於吸入性藥物的研究、空氣污染的研究及香菸濾嘴的研究等。
依據本發明一實施方式,提供一種仿肺部裝置,包含第一液體容置層、第一彈性膜、氣體流道層、第二 彈性膜以及第二液體容置層。第一液體容置層於外表面設置液體入口、液體出口及氣流口,並於內表面設置第一液腔。第一彈性膜設置於第一液體容置層的內表面。氣體流道層設置於第一彈性膜遠離第一液體容置層的表面,氣體流道層包含複數個通道與複數個仿肺泡區,仿肺泡區與通道連通,通道用以模擬人體肺部第15代至第19代的分枝結構,仿肺泡區用以模擬人體肺部第20代至第23代的分枝結構。第二彈性膜設置於氣體流道層遠離第一彈性膜的表面。第二液體容置層設置於第二彈性膜遠離氣體流道層的表面,第二液體容置層於內表面設置第二液腔。第一彈性膜直接覆蓋第一液腔以及所述仿肺泡區的一側,第二彈性膜直接覆蓋第二液腔以及所述些仿肺泡區的另一側。第一彈性膜、所述仿肺泡區及第二彈性膜定義出複數個可形變腔,液體入口、液體出口、第一液腔及第二液腔彼此連通,氣流口、所述通道與所述可形變腔彼此連通。
依據前述的仿肺部裝置,其中仿肺部裝置可為一無螺鎖結構。
依據前述的仿肺部裝置,其中第一液體容置層、第一彈性膜、氣體流道層、第二彈性膜及第二液體容置層可分別包含至少一定位部,所述定位部彼此對應。
依據前述的仿肺部裝置,其中氣體流道層可為五層式結構,由一側至另一側依序為第二仿肺泡區層、第一仿肺泡區層、通道層、另一第一仿肺泡區層以及另一第二仿肺泡區層。其中各個第一仿肺泡區層與通道層間可為可拆式 連接。另外,第一液體容置層與第一彈性膜間可為可拆式連接,且第二液體容置層與第二彈性膜間可為可拆式連接。
依據前述的仿肺部裝置,其中第一液體容置層、第一彈性膜、氣體流道層、第二彈性膜及第二液體容置層可為透明材質。
依據本發明另一實施方式,提供一種人體肺部模擬系統,包含前述的仿肺部裝置、儲液槽以及幫浦,儲液槽與第一液體容置層的液體入口連接,幫浦分別與第一液體容置層的液體出口以及儲液槽連接。
依據本發明又一實施方式,提供一種模擬人體肺部呼吸的方法,包含下述步驟。提供前述的人體肺部模擬系統。進行液體一通入步驟,其是於第一液腔、第二液腔及儲液槽中填充液體,並使前述液體充滿第一液腔及第二液腔填,以及使儲液槽中的液體通過液體入口持續流入第一液腔及第二液腔。進行一模擬吸氣步驟,其是啟動幫浦,以將第一液腔及第二液腔中的液體抽取至儲液槽,使可形變腔因液壓減少而體積變大,而使外界氣體由氣流口進入可形變腔中。進行一模擬吐氣步驟,其是關閉幫浦,使可變形腔因液壓增加而體積變小,而使可變形腔內的氣體由氣流口排出。
依據前述的模擬人體肺部呼吸的方法,其中於模擬吸氣步驟中,幫浦的一啟動時間可為2秒,於模擬吐氣步驟中,幫浦的一關閉時間可為2秒。
依據前述的模擬人體肺部呼吸的方法,其中幫浦抽取液體的流速可為0.05-50mL/min,儲液槽與液體入 口間可存在一壓降,壓降可為大於0kPa且小於或等於25kPa。
依據前述的模擬人體肺部呼吸的方法,液體可為水。
依據本發明再一實施方式,提供一種模擬物質在人體肺部沉積的系統,包含物質源以及前述的人體肺部模擬系統,其中物質源用以提供待觀測物質,且物質源與仿肺部裝置的氣流口連通。
依據前述的模擬物質在人體肺部沉積的系統,更包含一曝露室,曝露室包含二開孔,二開孔分別設置於曝露室的相對二側,其中曝露室的一開孔與物質源連接,曝露室的另一開孔與人體肺部模擬系統的氣流口連接。
依據前述的模擬物質在人體肺部沉積的系統,其中仿肺部裝置可採垂直放置或者水平放置。
依據前述的模擬物質在人體肺部沉積的系統,其中物質源可為霧化器。
依據前述的模擬物質在人體肺部沉積的系統,其中待觀測物質可為螢光氣溶膠、藥物或污染空氣中的污染物質。
依據本發明再一實施方式,提供一種模擬物質在人體肺部沉積的方法,包含下述步驟。提供前述的模擬物質在人體肺部沉積的系統。操作人體肺部模擬系統,以模擬人體肺部呼吸。進行一沉積步驟,其是使物質源的待觀測物 質經由氣流口進入仿肺部裝置。進行一觀察步驟,其是觀察待觀測物質於通道及仿肺泡區的沉積情形。
依據前述的模擬物質在人體肺部沉積的方法,其中氣體流道層為五層式結構,由一側至另一側依序為第二仿肺泡區層、第一仿肺泡區層、通道層、另一第一仿肺泡區層以及另一第二仿肺泡區層,其中各個第一仿肺泡區層與通道層間為可拆式連接。模擬物質在人體肺部沉積的方法可更包含進行一拆卸步驟,其是使各個第一仿肺泡區層與通道層分離。
100‧‧‧仿肺部裝置
140‧‧‧第二彈性膜
110‧‧‧第一液體容置層
148‧‧‧定位部
110A‧‧‧外層
150‧‧‧第二液體容置層
110B‧‧‧內層
150A‧‧‧外層
111‧‧‧外表面
150B‧‧‧內層
112‧‧‧液體入口
151‧‧‧內表面
113‧‧‧液體出口
152‧‧‧第二液腔
114‧‧‧氣流口
157‧‧‧流道
115‧‧‧內表面
158A‧‧‧定位部
116‧‧‧第一液腔
158B‧‧‧定位部
117‧‧‧流道
159‧‧‧黏膠
118A‧‧‧定位部
200‧‧‧幫浦
118B‧‧‧定位部
210‧‧‧入水口
119‧‧‧黏膠
220‧‧‧排水口
120‧‧‧第一彈性膜
230‧‧‧氣流口
128‧‧‧定位部
240‧‧‧通道
130‧‧‧氣體流道層
250‧‧‧可形變腔
131‧‧‧通道
260‧‧‧彈性膜
132‧‧‧仿肺泡區
270‧‧‧液體
132A‧‧‧穿孔
290‧‧‧仿肺部裝置
132B‧‧‧穿孔
300‧‧‧儲液槽
133‧‧‧仿肺泡區層
400‧‧‧物質源
133A‧‧‧第一仿肺泡區層
500‧‧‧曝露室
133B‧‧‧第二仿肺泡區層
510‧‧‧開孔
135‧‧‧通道層
520‧‧‧開孔
138‧‧‧定位部
N‧‧‧法線
139‧‧‧黏膠
600‧‧‧模擬人體肺部呼吸的方法
610‧‧‧提供一人體肺部模擬系統
620‧‧‧進行一液體通入步驟
630‧‧‧進行一模擬吸氣步驟
640‧‧‧進行一模擬吐氣步驟
700‧‧‧模擬物質在人體肺部沉積的方法
710‧‧‧提供一模擬物質在人體肺部沉積的系統
720‧‧‧操作人體肺部模擬系統
730‧‧‧是進行一沉積步驟
740‧‧‧進行一觀察步驟
800‧‧‧模擬物質在人體肺部沉積的方法
810‧‧‧提供一模擬物質在人體肺部沉積的系統
820‧‧‧操作人體肺部模擬系統
830‧‧‧進行一沉積步驟
840‧‧‧進行一拆卸步驟
850‧‧‧進行一觀察步驟
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示依照本發明一實施方式的仿肺部裝置的爆炸示意圖;第2圖繪示第1圖中仿肺部裝置的立體組合圖;第3圖繪示第1圖中氣體流道層的爆炸示意圖;第4圖繪示依照本發明又一實施方式的人體肺部模擬系統的連接示意圖;第5圖繪示依照本發明再一實施方式的模擬人體肺部呼吸的方法的步驟流程圖;第6圖繪示第5圖中模擬吸氣步驟的作動示意圖;第7圖繪示第5圖中模擬吐氣步驟的作動示意圖;第8圖為第5圖之模擬人體肺部呼吸的方法的模擬結果 圖;第9圖為第5圖之模擬人體肺部呼吸的方法的另一模擬結果圖;第10圖為第5圖之模擬人體肺部呼吸的方法的又一模擬結果圖;第11圖繪示依照本發明更一實施方式的模擬物質在人體肺部沉積的系統的連接示意圖;第12圖繪示依照本發明另一實施方式的模擬物質在人體肺部沉積的系統的連接示意圖;第13圖繪示依照本發明又一實施方式的模擬物質在人體肺部沉積的方法的步驟流程圖;第14圖繪示依照本發明再一實施方式的模擬物質在人體肺部沉積的方法的步驟流程圖;第15圖為第13圖之模擬物質在人體肺部沉積的方法的模擬結果圖;第16圖為第15圖之整合結果圖;第17圖為第16圖之直條統計圖;第18圖為第13圖之模擬物質在人體肺部沉積的方法的另一模擬結果圖;第19圖為第18圖之直條統計圖;第20圖為第13圖之模擬物質在人體肺部沉積的方法的又一模擬結果圖;第21圖為第20圖之直條統計圖;第22圖為第13圖之模擬物質在人體肺部沉積的方法的 再一模擬結果圖;以及第23圖為第16圖與第22圖之直條統計圖。
本發明中,「第一」、「第二」係用於命名,並非用於表示品質優劣或其他意義。例如,「第一彈性膜」係表示設置於第一液體容置層以及氣體流道層之間的彈性膜,「第二彈性膜」係表示設置於第二液體容置層以及氣體流道層之間的彈性膜,避免僅使用彈性膜,無法分辨是指設置於何處的彈性膜。
<仿肺部裝置>
配合參照第1圖及第2圖,第1圖繪示依照本發明一實施方式的仿肺部裝置100的爆炸示意圖,第2圖繪示第1圖中仿肺部裝置100的立體組合圖。仿肺部裝置100由一側至另一側依序包含第一液體容置層110、第一彈性膜120、氣體流道層130、第二彈性膜140以及第二液體容置層150。
第一液體容置層110於其外表面111設置液體入口112、液體出口113及氣流口114,並於其內表面115設置第一液腔116。
第一彈性膜120設置於第一液體容置層110的內表面115。具體來說,第一彈性膜120設置於第一液體容置層110以及氣體流道層130之間。
氣體流道層130設置於第一彈性膜120遠離第一液體容置層110的表面(未另標號)。具體來說,氣體流道層130設置於第一彈性膜120以及第二彈性膜140之間。氣體流道層130包含複數個通道131與複數個仿肺泡區132,仿肺泡區132與通道131連通,通道131用以模擬人體肺部第15代至第19代的分枝結構,仿肺泡區132用以模擬人體肺部第20代至第23代的分枝結構。詳細而言,韋伯的肺部模型(Weibel’s lung model)為目前最被廣為使用的肺部模型,其提供了成人肺部分枝結構的平均長度及直徑等數據。而依據韋伯的肺部模型,人體肺部分枝結構可區分為24代(第0代至第23代),而本發明的通道131則是用以模擬其中第15代至第19代的分枝結構,仿肺泡區132則是用以模擬其中第20代至第23代的分枝結構。
第二彈性膜140設置於氣體流道層130遠離第一彈性膜120的表面(未另標號)。具體來說,第二彈性膜140設置於氣體流道層130以及第二液體容置層150之間。
第二液體容置層150設置於第二彈性膜140遠離氣體流道層130的表面(未另標號)。第二液體容置層150於內表面151設置第二液腔152。
當仿肺部裝置100組裝完成,第一彈性膜120直接覆蓋第一液腔116以及仿肺泡區132的一側,第二彈性膜140直接覆蓋第二液腔152以及仿肺泡區132的另一側,第一彈性膜120、仿肺泡區132及第二彈性膜140定義出複數個可形變腔(未另標號)。液體入口112、液體出口113、 第一液腔116及第二液腔152彼此連通。氣流口114、通道131與可形變腔彼此連通。
藉由上述結構,通道131可具有與人體肺部第15代至第19代近似的分枝結構。另外,藉由調控第一液腔116及第二液腔152的液壓,可賦予可形變腔呼吸功能(細節請參見下文),而可模擬人體呼吸模式。因此,本發明的仿肺部裝置100可作為模擬肺部的體外試驗裝置,可減少動物試驗,並可獲得與人體相關的對應資訊,且可提高前述資訊的可信度。
以下將針對仿肺部裝置100,進行更詳細的說明。
第1圖中,第一液體容置層110包含可分離的外層110A以及內層110B。然而,本發明並不以此為限,在其他實施方式中,第一液體容置層110的外層110A及內層110B可為一體成形。當外層110A以及內層110B組裝在一起時,第一液腔116可視為由內表面115向內凹陷所形成。外層110A的內部另開設二流道117,其中一流道117連通液體入口112與第一液腔116,另一流道117連通液體出口113與第一液腔116。
配合參照第3圖,其為第1圖中氣體流道層130的爆炸示意圖。第3圖中,氣體流道層130為五層式結構,由一側至另一側依序為第二仿肺泡區層133B、第一仿肺泡區層133A、通道層135、另第一仿肺泡區層133A以及另一第二仿肺泡區層133B,其中通道層135包含通道131,第一 仿肺泡區層133A包含穿孔132A,第二仿肺泡區層133B包含穿孔132B,第一仿肺泡區層133A及第二仿肺泡區層133B組合形成仿肺泡區層133,此時,穿孔132A及穿孔132B形成仿肺泡區132。在本實施方式中,氣體流道層130為五層式結構,然而,本發明不以此為限,氣體流道層130可採取不同的層數結構或其他方式來形成通道131以及仿肺泡區132。
請參照表一,其為本發明通道131的尺寸以及文獻資料中所記載人體肺部第15代至第19代的分枝結構的直徑。由於將通道131製作成圓柱形難度較高,因此,第1圖中的通道131是採用長方形的截面,長方形的邊長(表一中的寬及高)係使用液體直徑公式(hydraulic diameter formula)將歷史文獻的直徑轉換而得,因此,本發明的通道131具有與人體肺部第15代至第19代分枝結構近似的形貌,且通道131的體積與文獻記載的資料近似。然而,本發明不以此為限,可彈性調整通道131的尺寸及形狀以更貼切地模擬人體肺部第15代至第19代的分枝結構。第1圖的仿肺部裝置100中,將第20代至第23代的分枝結構簡化成仿肺泡區132,仿肺泡區132的直徑為4mm,仿肺泡區132著重在功能上模擬第20代至第23代的分枝結構,仿肺泡區132、第一彈性膜120及第二彈性膜140所形成的可形變腔,可模擬人體肺泡的呼吸功能(細節請參見下文)。
第1圖中,第二液體容置層150包含可分離的外層150A以及內層150B。然而,本發明並不以此為限,在其他實施方式中,第二液體容置層150的外層150A及內層150B可為一體成形。當外層150A以及內層150B組裝在一起時,第二液腔152可視為由內表面151向內凹陷所形成。外層150A的內部另開設二流道157,其中一流道157連通液體入口112與第二液腔152,另一流道157連通液體出口113與第二液腔152。
第1圖中,第一液體容置層110、第一彈性膜120、氣體流道層130、第二彈性膜140及第二液體容置層150可為透明材質,藉此,有利於在不拆開仿肺部裝置100,直接觀察物質在仿肺部裝置100中的沉積情形。第一液體容置層110、氣體流道層130及第二液體容置層150的材質可為但不限於聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)或聚碳酸酯(polycarbonate,PC)。第一液體容置層110、氣體流道層130及第二液體容置層150的材質可相同或不相同。第一彈性膜120及第二彈性膜140的材質可為但不限於聚二甲基矽氧烷(polydimethylsiloxane,PMDS),只要可提供可形變腔形變所需之彈性的材質,皆可作為第一彈性膜120及第二彈性膜140的材質,第一彈性膜120及第二彈性膜140 的材質可相同或不相同。較佳地,第一液體容置層110、第一彈性膜120、氣體流道層130、第二彈性膜140及第二液體容置層150可選用無毒材質,藉此有利於將肺部上皮細胞設置於通道131與仿肺泡區132中,以進行更深入的研究。再者,依據本發明一實施方式,第一彈性膜120及第二彈性膜140的厚度可為但不限於70μm至90μm。
第1圖中,第一液體容置層110的外層110A包含四個定位部118A(第1圖中僅標示一個定位部118A),設置於外層110A的四個角落,第一液體容置層110的內層110B包含四個定位部118B(第1圖中僅標示一個定位部118B),設置於內層110B的四個角落,第一彈性膜120包含四個定位部128(第1圖中僅標示一個定位部128),設置於第一彈性膜120的四個角落,氣體流道層130包含四個定位部138(第1圖中僅標示一個定位部138),設置於氣體流道層130的四個角落,第二彈性膜140包含四個定位部148(第1圖中僅標示一個定位部148),設置於第二彈性膜140的四個角落,第二液體容置層150包含四個定位部158A與四個定位部158B(第1圖中僅標示一個定位部158A與一個定位部158B),其中四個定位部158A設置於第二液體容置層150的外層150A的四個角落,四個定位部158B設置於第二液體容置層150的內層150B的四個角落,且定位部118A、118B、128、138、148及158彼此對應。藉此,有利於組裝仿肺部裝置100時的對準,而可提升組裝效率。例如,定位部118A、118B、128、138、148及158可分別設置為穿 孔結構,可將定位部118A、118B、128、138、148及158穿設於四根細棒上進行組裝,以達到定位對準的功效。或者,定位部118A、118B、128、138、148及158可分別設置為一側為凹部、另一側為凸部的結構,且凸部及凹部可互相配合,例如,定位部118A於外層110A外表面111那側為凹部、於外層110A內表面115那側為凸部,定位部118B於內層110B外表面111那側為凹部、於內層110B內表面115那側為凸部,則定位部118A的凸部可與定位部118B的凹部配合,其餘定位部128、138、148及158的配置依此類推,以達到定位對準的功效。關於如何使定位部118A、118B、128、138、148及158互相配合以幫助各層的定位對準,為本領域所熟知,在此不一一列舉。
第1圖中,仿肺部裝置100可為無螺鎖結構,第一液體容置層110、第一彈性膜120、氣體流道層130、第二彈性膜140及第二液體容置層150可藉由黏膠(即黏膠119、黏膠159)予以結合。藉此,可簡化零件及提升組裝效率。此外,可藉由控制黏膠的塗佈量,使仿肺部裝置100為可拆式結構。可使用的黏膠包含但不限於3M公司所販售、型號為9122的黏膠。
以下將以第1圖之第一液體容置層110之內表面115以及第二液體容置層150之內表面151,舉例說明如何控制黏膠的塗佈量,使仿肺部裝置100為可拆式結構,由於其他各層非舉例的內容,因此,並未繪示其餘各層黏膠塗佈情形。第1圖中,第一液體容置層110之內表面115塗佈有 黏膠119,第二液體容置層150之內表面151塗佈有黏膠159,黏膠119及黏膠159的寬度可為但不限於1.6mm至2.3mm,藉由黏膠119是局部塗佈於第一液體容置層110之內表面115,第一液體容置層110與第一彈性膜120間為可拆式連接,藉由黏膠159是局部塗佈於第二液體容置層150之內表面151,第二液體容置層150與第二彈性膜140間為可拆式連接。由於第一彈性膜120及第二彈性膜140在使用多次後可能產生彈性疲乏而需要更換,藉由黏膠119及黏膠159的局部塗佈,有利於更換第一彈性膜120及第二彈性膜140,而使第一液體容置層110及第二液體容置層150可重複使用。
以下另以第3圖之通道層135,舉例說明如何控制黏膠的塗佈量,使仿肺部裝置100為可拆式結構,由於其他各層非舉例的內容,因此,並未繪示其餘各層黏膠塗佈情形。第3圖中,通道層135的二表面塗佈有黏膠139(第3圖僅繪示一表面),藉由黏膠139是局部塗佈於通道層135,第一仿肺泡區層133A與通道層135間為可拆式連接,黏膠139的寬度可為但不限於1.6mm至2.3mm。藉由黏膠139的局部塗佈,於進行試驗後,可直接採集通道131以及仿肺泡區132內的物質進行分析或利用探針進行掃描,有利於直接觀察通道131以及仿肺泡區132內的物質的分布情況。
另外,可視實際需求,於黏膠119、黏膠139及黏膠159未塗佈的區域塗佈潤滑油(grease),以提升第一液體容置層110與第一彈性膜120間、第一仿肺泡區層133A 與通道層135間、第二液體容置層150與第二彈性膜140間的密合度,可避免因黏膠塗佈範圍較小而產生漏氣的情況。然而,前述黏膠塗佈方式僅為例示,本發明不以此為限,若無拆解仿肺部裝置100的需求,可增大黏膠的塗佈範圍,或者,可依照黏膠的黏性調整塗佈的範圍。
<人體肺部模擬系統>
第4圖繪示依照本發明又一實施方式的人體肺部模擬系統(未另標號)的連接示意圖。第4圖中,人體肺部模擬系統包含仿肺部裝置100、幫浦200以及儲液槽300。關於仿肺部裝置100請參照上文,儲液槽300與第一液體容置層110的液體入口112連接,幫浦200分別與第一液體容置層110的液體出口113以及儲液槽300連接。藉此,可形成液體的循環通路,液體(圖未繪示)可由儲液槽300經由液體入口112流入仿肺部裝置100中的第一液腔116及第二液腔152,再被幫浦200從液體出口113抽取出來並傳送回儲液槽300。幫浦200可為但不限於蠕動式幫浦,藉此,有利於連續使用。
<模擬人體肺部呼吸的方法>
第5圖繪示依照本發明再一實施方式的模擬人體肺部呼吸的方法600的步驟流程圖。以下係配合第4圖的人體肺部模擬系統進行說明。模擬人體肺部呼吸的方法600包含步驟610、步驟620、步驟630以及步驟640。
步驟610是提供一人體肺部模擬系統,關於人體肺部模擬系統可參照第4圖。
步驟620是進行一液體通入步驟,其是於第一液腔116、第二液腔152及儲液槽300中填充液體,並使液體充滿第一液腔116及第二液腔152(亦即,第一液腔116及第二液腔152中沒有空氣),以及使儲液槽300中的液體通過液體入口112持續流入第一液腔116及第二液腔152,前述「持續」是指在進行步驟630及步驟640時,儲液槽300中的液體維持流入第一液腔116及第二液腔152的狀態。
步驟630是進行一模擬吸氣步驟,其是啟動幫浦200,將第一液腔116及第二液腔152中的液體抽取至儲液槽300,使可形變腔因液壓減少而體積變大,而使外界氣體由氣流口114進入可形變腔中。前述液壓是指第一液腔116及第二液腔152中的液體給予可形變腔的壓力。換句話說,在步驟630中,幫浦200抽取液體的速度要大於液體由儲液槽300流入的速度,方可造成液壓減少,而可達到模擬入體肺部吸氣。
步驟640是進行一模擬吐氣步驟,其是關閉幫浦200,使可變形腔因液壓增加而體積變小,而使可變形腔內的氣體由氣流口114排出。具體來說,由於幫浦200停止運作,無法將第一液腔116及第二液腔152中的液體抽取至儲液槽300,而儲液槽300中的液體維持流入第一液腔116及第二液腔152,因而會造成液壓增加,而可達到模擬人體肺部吐氣。
步驟630及步驟640可重複進行,藉此,可建立循環呼吸模式。
模擬人體肺部呼吸的方法600中,仿肺部裝置100中的通道131具有人體肺部近似的結構,透過幫浦200與儲液槽300的運作可調控第一液腔116及第二液腔152的液壓,可賦予可形變腔呼吸功能,而可模擬人體呼吸模式。因此,模擬人體肺部呼吸的方法600可有效模擬人體肺部,使所獲得之與人體相關的對應資訊具有較高的可信度。
以下以第6圖及第7圖對於第5圖中的模擬吸氣步驟及模擬吐氣步驟進行更詳細說明,其中,第6圖繪示第5圖中模擬吸氣步驟的作動示意圖,第7圖繪示第5圖中模擬吐氣步驟的作動示意圖。由於第6圖及第7圖係為說明如何透過調控液壓賦予可形變腔250呼吸功能,因此第6圖及第7圖中各元件的排列方式並未依照第1圖中仿肺部裝置100的位置,而是以能清楚觀察出模擬吸氣步驟及模擬吐氣步驟的作動為主,並將第6圖及第7圖的仿肺部裝置290中的元件重新編號,換句話說,只要可達到相同的作動,第1圖中仿肺部裝置100中各元件的排列位置亦可彈性調整。第6圖中,進行模擬吸氣步驟時,啟動幫浦(圖未繪示)將第一液腔(未另標號)及第二液腔(未另標號)中的液體270由排水口220抽出,其中排水口220上方箭頭表示液體270流動方向,同時,儲液槽(圖未繪示)持續使液體270由入水口210流入第一液腔及第二液腔中,其中入水口210上方箭頭表示液體270流動方向,由於幫浦抽取液體270的速度大於液體270 由儲液槽流入的速度,而使可形變腔250的液壓減少,彈性膜260(如第1圖之第一彈性膜120及第二彈性膜140)產生形變而使體積變大,可形變腔250周邊的箭頭表示彈性膜260的形變方向,藉此,可形變腔250內的氣壓產生變化,使外界氣體由氣流口230經通道240進入可形變腔250中,而產生模擬人體肺部吸氣的效果,而氣流口230上方的箭頭則表示氣體流動方向。
第7圖中,進行模擬吐氣步驟時,幫浦(圖未繪示)停止運作,液體270將停止由排水口220抽出(排水口220上方的符號表示未有液體270流出),儲液槽(圖未繪示)中的液體維持流入第一液腔(未另標號)及第二液腔(未另標號)中,導致可形變腔250的液壓變大,彈性膜260(即第一彈性膜及第二彈性膜)產生形變而使可形變腔250的體積壓縮,藉此,可形變腔250內的氣壓產生變化,使可形變腔250內的氣體經通道240由氣流口230排到外界,而可產生膜擬人體肺部吐氣的效果。
配合參照第4圖及第5圖,在模擬吸氣步驟中,幫浦200的啟動時間可為2秒,而在模擬吐氣步驟中,幫浦200的關閉時間可為2秒。正常人每分鐘的呼吸次數為12次至18次,藉此可建立1分鐘15次的循環呼吸膜式,為正常人每分鐘呼吸次數的平均值。
配合參照第4圖及第5圖,液體可為水。其中幫浦200抽取液體的流速可為0.05-50mL/min,儲液槽300與液體入口112間可存在一壓降,壓降為大於0kPa且小於 或等於25kPa。藉此,有利於調控液壓以有效模擬人體肺部呼吸。壓降可藉由於儲液槽300與液體入口112間安裝一限制管(PEEK tubing,圖未繪示)產生,且可藉由選用不同長度以及內徑的限制管調控壓降大小。
<模擬人體肺部呼吸的方法的試驗結果>
使用第4圖的人體肺部模擬系統,幫浦200抽取液體的流速為80rpm,分別搭配0.35kPa(使用長度(L)=2cm、內徑(ID)=1mm的PEEK tubing)、11.18kPa(使用L=20cm、ID=0.75mm的PEEK tubing)以及22.63kPa(使用L=0.5cm、ID=0.25mm的PEEK tubing)的壓降,量測仿肺部裝置100於不同條件下的最大潮汐呼吸體積(maximum tidal breathing volume),最大潮汐呼吸體積指最大吐氣體積及最大吸入體積的差值。前述三種條件分別為模擬患有限制性肺部疾病的肺部(以下簡稱限制型肺部)、正常肺部以及患有阻塞性肺部疾病的肺部(以下簡稱阻塞型肺部)。量測仿肺部裝置100於不同條件下的流速,並將其換算為雷諾數(Reynolds number)。表二為前述三種條件雷諾數(Re)的量測結果。
表二中的雷諾數與文獻記載的結果相符,顯示本發明的模擬人體肺部呼吸的方法可有效模擬人體肺部呼吸。
之後,同樣使用第4圖的人體肺部模擬系統,以及同樣的條件,量測仿肺部裝置100於不同條件下,氣流口114的壓降與時間的關係圖。氣流口114的壓降可於氣流口114安裝一壓力傳感器(SDP610,Sensirion),並將結果傳輸至電腦記錄。配合參照第8圖至第10圖,第8圖為第5圖之模擬人體肺部呼吸的方法的模擬結果圖,第9圖為第5圖之模擬人體肺部呼吸的方法的另一模擬結果圖,第10圖為第5圖之模擬人體肺部呼吸的方法的又一模擬結果圖。具體來說,第8圖至第10圖分別為限制型肺部、正常肺部與阻塞型肺部之氣流口114的壓降與時間的關係圖,其中,波峰代表最大吐氣量,波谷代表最大吸氣量。比較第8圖與第9圖,第8圖具有較低的潮汐體積變化,即其波峰及波谷的振幅都小於第9圖,顯示氣流的吸吐是受到限制的,其於限制性肺部疾病的症狀吻合。比較第9圖及第10圖,第10圖具有較低的吐氣量,其與阻塞型肺部疾病吻合。由第8圖至第10圖的結果可知,本發明可成功模擬不同類型的肺部,當應用於吸入性藥物的研究,可因應不同類型的肺部疾病選擇不同的投藥方式,可有效地將藥物傳送至肺部受損傷的區域,可提高藥物吸收,並可避免藥物的浪費。
<模擬物質在人體肺部沉積的系統>
本發明提供一種模擬物質在人體肺部沉積的系統,包含一物質源以及人體肺部模擬系統,關於人體肺部模擬系統可參照第4圖,其中物質源用以提供一待觀測物質,且物質源與仿肺部裝置100的氣流口114連通。藉此,可觀測待觀測物質於人體肺部吸收及分布情況,有利於多元的應用。舉例來說,物質源可為污染空氣,待觀測物質可為污染空氣中的污染物質。實務上,可將人體肺部模擬系統放置在存在污染空氣的環境中,並操作人體肺部模擬系統使其模擬人體肺部呼吸,隨著人體肺部模擬系統模擬吸氣及模擬吐氣,污染空氣中的污染物質會進入仿肺部裝置100,藉此。可觀察污染物質於通道131及仿肺泡區132的沉積情形,而有利於污染空氣中汙染物質的研究與分析。或者,物質源可為燃燒的香菸,待觀測物質可為通過濾嘴的煙霧,藉此,有利於研究通過濾嘴之煙霧成分,而有利於濾嘴的改良。
第11圖繪示依照本發明更一實施方式的模擬物質在人體肺部沉積的系統(未另標號)的連接示意圖。第11圖中,模擬物質在人體肺部沉積的系統包含物質源400、曝露室500以及人體肺部模擬系統(未另標號),人體肺部模擬系統包含仿肺部裝置100、幫浦200以及儲液槽300。物質源400用以提供待觀測物質(圖未繪示),曝露室500包含二開孔,分別為開孔510及開孔520,開孔510及開孔520分別設置於曝露室500相對二側(未另標號),其中曝露室500的開孔510與物質源400連接,曝露室500的另一開孔520與仿肺部裝置100的氣流口114連接,藉此,物質源400提供的 待觀測物質可進入曝露室500、再通過氣流口114進入仿肺部裝置100。物質源400可為一霧化器,待觀測物質可為霧化的氣溶膠,藉此,相較於習用肺部模擬裝置以研究乾粉型態的藥物為主,本發明可應用於氣溶膠型態之藥物的研究。換句話說,物質源400提供的待觀測物質可為藥物,藥物可為乾粉型態或者經過霧化器霧化而為氣溶膠型態。當本發明的模擬物質在人體肺部沉積的系統應用於吸入性藥物,可配合調整實驗參數,使人體肺部模擬系統模擬不同類型的肺部(限制性肺部、正常肺部及阻塞型肺部),而可了解不同類型的肺部疾病中藥物傳送的機制,而有利於針對不同類型的肺部疾病選擇不同的投藥方式,以有效地將藥物傳送至肺部受損傷的區域。另外,本發明的待觀測物質可為螢光氣溶膠,藉由於氣溶膠添加螢光成分,可便利觀察。第11圖中,仿肺部裝置100採垂直放置。所述垂直放置是指仿肺部裝置100的法線N與水平面(圖未繪示)平行。藉此,當應用於吸入性藥物研究時,仿肺部裝置100的擺設方向可模擬病人以坐姿吸入藥物。
第12圖繪示依照本發明另一實施方式的模擬物質在人體肺部沉積的系統(未另標號)的連接示意圖。第12圖中,模擬物質在人體肺部沉積的系統包含物質源400、曝露室500以及人體肺部模擬系統,人體肺部模擬系統包含仿肺部裝置100、幫浦200以及儲液槽300。第12圖中,仿肺部裝置100採水平放置。所述水平放置是指仿肺部裝置100的法線N與水平面(圖未繪示)垂直。藉此,當應用於吸入性 藥物研究時,仿肺部裝置100的擺設方向可模擬病人以躺姿吸入藥物。關於第12圖的其他細節可參照第11圖的說明,在此不另贅述。
<模擬物質在人體肺部沉積的方法>
第13圖繪示依照本發明又一實施方式的模擬物質在人體肺部沉積的方法700的步驟流程圖。第13圖中,模擬物質在人體肺部沉積的方法700包含步驟710、步驟720、步驟730以及步驟740。
步驟710是提供一模擬物質在人體肺部沉積的系統,關於模擬物質在人體肺部沉積的系統可參照第11圖及第12圖。
步驟720是操作人體肺部模擬系統,以模擬人體肺部呼吸。關於操作人體肺部模擬系統可採用第5圖之模擬人體肺部呼吸的方法600。
步驟730是進行一沉積步驟,是使物質源400的待觀測物質經由氣流口114進入仿肺部裝置100。
步驟740是進行一觀察步驟,是觀察待觀測物質於通道131及仿肺泡區132的沉積情形。
當調整模擬人體肺部呼吸的方法600的實驗參數,可使人體肺部模擬系統分別模擬正常肺部、限制型肺部以及阻塞性肺部,而可研究待觀測物質於不同類型肺部中的沉積情形。
第14圖繪示依照本發明再一實施方式的模擬物質在人體肺部沉積的方法800的步驟流程圖。第14圖中,模擬物質在人體肺部沉積的方法800包含步驟810、步驟820、步驟830、步驟840以及步驟850。
步驟810是提供一模擬物質在人體肺部沉積的系統,關於模擬物質在人體肺部沉積的系統可參照第11圖及第12圖。在本實施方式中,仿肺部裝置100的氣體流道層130為五層式結構,如第3圖所示,由一側至另一側依序為一第二仿肺泡區層133B、第一仿肺泡區層133A、通道層135、另一第一仿肺泡區層133A以及另一第二仿肺泡區層133B,其中各個第一仿肺泡區層133A與通道層135間為可拆式連接。
步驟820是操作人體肺部模擬系統,細節可參照第13圖的步驟720。
步驟830是進行一沉積步驟,細節可參照第13圖的步驟730。
步驟840是進行一拆卸步驟,是使各個第一仿肺泡區層133A與通道層135分離,再進行觀察步驟。
步驟850是進行一觀察步驟,是觀察待觀測物質於通道131及仿肺泡區132的沉積情形。由於,第一仿肺泡區層133A與通道層135間為可拆式連接,可直接採集沉積物質或使用探針等儀器直接觀察。
<模擬物質在人體肺部沉積的方法的試驗結果>
在第11圖的模擬物質在人體肺部沉積的系統中,物質源400為振動篩孔霧化器(vibrating mesh nebulizer(MBPN002,Pocket Air)),篩孔直徑約3.4μm,螢光溶液經由振動篩孔霧化器形成螢光氣溶膠作為被觀測物質,本試驗中,螢光氣溶膠的分子重為332.31g/mol、質量中等空氣動力學直徑(mass medium aerodynamic diamete)約為4.21μm,藉此,螢光氣溶膠的分子重與一般噴霧式之吸入性藥物的分子量相當,且其尺寸有利於在第15代至第19代分支結構沉積,有利提升量測結果的可信度。幫浦200抽取液體的流速為80rpm,搭配11.18kPa的壓降,以模擬正常肺部的呼吸並持續30分鐘,螢光氣溶膠會經由曝露室500被吸入仿肺部裝置100而沉積於通道131及仿肺泡區132。試驗結束後,利用螢光顯微鏡(Nikon Eclipse TS100 microscope with Nikon C-SHG fluorescent light source)觀察,並配合數位相機系統(LeadView 2800AM-FL)以及影像軟體(ImageJ software(NIH)),計算出螢光氣溶膠的氣溶膠密度。
配合參照第15圖,其為第13圖之模擬物質在人體肺部沉積的方法700的模擬結果圖。第15圖中,由上而下是在相同條件下進行三次實驗的結果。每個圓圈代表使用螢光顯微鏡觀察的範圍,換句話說,共選擇40處進行觀察,並計算出每個圓圈之氣溶膠密度,沉積結果分為四種等級:高是代表氣溶膠密度大於或等於20%,中是代表氣溶膠密度大於或等於10%且小於20%,低是代表氣溶膠密度大於或等 於1%且小於10%,極低是代表氣溶膠密度小於1%。由第15圖可知,在同樣的實驗條件下,三次的實驗結果相似,顯示依照本發明之模擬物質在人體肺部沉積的方法700具有再現性。
配合參照第16圖,其為第15圖之整合結果圖,亦即將第15圖中同一位置之圓圈,將三次實驗求得的氣溶膠密度取平均值,再表示於第17圖中,其中Z=0表示第15代的分枝結構、Z=1表示第16代的分枝結構、Z=2表示第17代的分枝結構、Z=3表示第18代的分枝結構、Z=4表示第19代的分枝結構。由第16圖可知,隨著代數增加,氣溶膠密度會遞減。
配合參照第17圖,其為第16圖之直條統計圖,其中直線處是指取第16圖中通道131上位於直線處(即非分叉處)圓圈之氣溶膠密度,計算平均氣溶膠密度,分叉處是指取通道131上位於分叉處圓圈之氣溶膠密度,計算平均氣溶膠密度,說明如下。第16圖中,Z=0時,位於直線處的圓圈只有一個(即最上面的圓圈),位於分叉處的圓圈只有一個(即由上而下第2個圓圈),因此第17圖中Z=0直線處的數值為第16圖最上面圓圈的氣溶膠密度,第17圖中Z=0分叉處的數值為第16圖由上而下第2個圓圈的氣溶膠密度。第16圖中,Z=1時,位於直線處的圓圈有二個,位於分叉處的圓圈也有二個,因此,第17圖中Z=1直線處的數值為第16圖位於Z=1之直線處之二個圓圈的氣溶膠密度的平均值,第17圖中Z=1分叉處的數值為第16圖位於Z=1 之分叉處之二個圓圈的氣溶膠密度的平均值,關於Z=2~4直線處及分叉處之平均氣溶膠密度的計算方法依此類推。由第17圖可知,當代數相同時,直線處之平均氣溶膠密度皆大於分叉處之平均氣溶膠密度,隨著代數增加,直線處之平均氣溶膠密度與分叉處之平均氣溶膠密度皆有漸減的趨勢。在研究物質沉積時,可依實際需求,彈性選擇觀測的位置,例如可選擇直線處或分叉處的位置。
將前述實驗的壓降改為22.63kPa,其餘步驟皆相同,以模擬阻塞型肺部的呼吸並持續30分鐘。配合參照第第18圖及第19圖,第18圖為第13圖之模擬物質在人體肺部沉積的方法700的另一模擬結果圖,第19圖為第18圖之直條統計圖。具體來說,第18圖是模擬物質在阻塞型肺部的沉積情形。相較於第16圖及第17圖,第18圖及第19圖中,螢光氣溶膠在第18代及第19代具有較高的氣溶膠密度,顯示氣溶膠的分布區域較廣,其可歸因於阻塞型的肺部具有氣體不易排出的特性,而增加螢光氣溶膠撞擊及附著在通道131側壁的機率。
將前述實驗的壓降改為0.35kPa,其餘步驟皆相同,以模擬限制肺部的呼吸並持續30分鐘。配合參照第20圖及第21圖,第20圖為第13圖之模擬物質在人體肺部沉積的方法700的又一模擬結果圖,第21圖為第20圖之直條統計圖。具體來說,第20圖是模擬物質在限制型肺部的沉積情形。相較於第16圖及第17圖,第20圖及第21圖中,螢光氣溶膠在第15代至第19代皆具有較低的氣溶膠密度,顯示 沉積效率較差,其可歸因於限制型的肺部因失去彈性,而具有較低的吸氣量及吐氣量。
由上述實驗可知,第15圖至第21圖的沉積結果與不同類型的肺部症狀對應,顯示本發明可有效模擬物質在人體肺部沉積的情形,且可依照實際需求,例如患者的肺部狀況調整幫浦及壓降的數值,模擬患者的肺部運作模式,來模擬物質在該患者中肺部的沉積狀況。
配合參照第22圖及第23圖,第22圖為第13圖之模擬物質在人體肺部沉積的方法700的再一模擬結果圖,第23圖為第16圖與的22圖之直條統計圖,其中第22圖是採用第12圖的模擬物質在人體肺部沉積的系統,並以第13圖之模擬物質在人體肺部沉積的方法700進行操作,亦即,仿肺部裝置100採水平放置,其餘步驟皆與第16圖相同。由第22圖及第23圖可知,當仿肺部裝置100採水平放置時,第15代的平均氣溶膠密度高達69%,第17代的平均氣溶膠密度非常的低,顯示當仿肺部裝置100採水平放置,螢光氣溶膠不易達到肺部的深處。因此,可依據患者肺部受損傷處,採取不同的吸入姿勢。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (20)

  1. 一種仿肺部裝置,包含:一第一液體容置層,於一外表面設置一液體入口、一液體出口及一氣流口,並於一內表面設置一第一液腔;一第一彈性膜,設置於該第一液體容置層的該內表面;一氣體流道層,設置於該第一彈性膜遠離該第一液體容置層的一表面,該氣體流道層包含複數個通道與複數個仿肺泡區,該些仿肺泡區與該些通道連通,該些通道用以模擬人體肺部第15代至第19代的分枝結構,該些仿肺泡區用以模擬人體肺部第20代至第23代的分枝結構;一第二彈性膜,設置於該氣體流道層遠離該第一彈性膜的一表面;以及一第二液體容置層,設置於該第二彈性膜遠離該氣體流道層的一表面,該第二液體容置層於一內表面設置一第二液腔;其中,該第一彈性膜直接覆蓋該第一液腔以及該些仿肺泡區的一側,該第二彈性膜直接覆蓋該第二液腔以及該些仿肺泡區的另一側,該第一彈性膜、該些仿肺泡區及該第二彈性膜定義出複數個可形變腔,該液體入口、該液體出口、該第一液腔及該第二液腔彼此連通,該氣流口、該些通道與該些可形變腔彼此連通。
  2. 如申請專利範圍第1項所述的仿肺部裝置,其中該仿肺部裝置為一無螺鎖結構。
  3. 如申請專利範圍第1項所述的仿肺部裝置,其中該第一液體容置層、該第一彈性膜、該氣體流道層、該第二彈性膜及該第二液體容置層分別包含至少一定位部,該些定位部彼此對應。
  4. 如申請專利範圍第1項所述的仿肺部裝置,其中該氣體流道層為五層式結構,由一側至另一側依序為一第二仿肺泡區層、一第一仿肺泡區層、一通道層、另一第一仿肺泡區層以及另一第二仿肺泡區層,其中各該第一仿肺泡區層與該通道層間為可拆式連接。
  5. 如申請專利範圍第4項所述的仿肺部裝置,其中該第一液體容置層與該第一彈性膜間為可拆式連接,且該第二液體容置層與該第二彈性膜間為可拆式連接。
  6. 如申請專利範圍第1項所述的仿肺部裝置,其中該第一液體容置層、該第一彈性膜、該氣體流道層、該第二彈性膜及該第二液體容置層為透明材質。
  7. 一種人體肺部模擬系統,包含:如申請專利範圍第1項所述的仿肺部裝置;一儲液槽,與該第一液體容置層的該液體入口連接;以及一幫浦,分別與該第一液體容置層的該液體出口以及該儲液槽連接。
  8. 一種模擬人體肺部呼吸的方法,包含:提供如請專利範圍第7項所述的人體肺部模擬系統;進行一液體通入步驟,其係於該第一液腔、該第二液腔及該儲液槽中填充一液體,並使該液體充滿該第一液腔及該第二液腔體,以及使該儲液槽中的該液體通過該液體入口持續流入該第一液腔及該第二液腔;進行一模擬吸氣步驟,其係啟動該幫浦,以將該第一液腔及該第二液腔中的該液體抽取至該儲液槽,使該些可形變腔因液壓減少而體積變大,而使一外界氣體由該氣流口進入該些可形變腔中;以及進行一模擬吐氣步驟,其係關閉該幫浦,使該些可變形腔因液壓增加而體積變小,而使該可變形腔內的氣體由該氣流口排出。
  9. 如申請專利範圍第8項所述的模擬人體肺部呼吸的方法,其中於該模擬吸氣步驟中,該幫浦的一啟動時間為2秒,於該模擬吐氣步驟中,該幫浦的一關閉時間為2秒。
  10. 如申請專利範圍第8項所述的模擬人體肺部呼吸的方法,其中該幫浦抽取該液體的流速為0.05-50mL/min,該儲液槽與該液體入口間存在一壓降,該壓降為大於0kPa且小於或等於25kPa。
  11. 如申請專利範圍第8項所述的模擬人體肺部呼吸的方法,其中該液體為水。
  12. 一種模擬物質在人體肺部沉積的系統,包含:一物質源,用以提供一待觀測物質;以及如申請專利範圍第7項所述的人體肺部模擬系統;其中該物質源與該仿肺部裝置的該氣流口連通。
  13. 如申請專利範圍第12項所述的模擬物質在人體肺部沉積的系統,更包含:一曝露室,包含二開孔,分別設置於該曝露室的相對二側,其中該曝露室的一該開孔與該物質源連接,該曝露室的另一該開孔與該仿肺部裝置的該氣流口連接。
  14. 如申請專利範圍第12項所述的模擬物質在人體肺部沉積的系統,其中該仿肺部裝置採垂直放置或水平放置。
  15. 如申請專利範圍第12項所述的模擬物質在人體肺部沉積的系統,其中該物質源為一霧化器。
  16. 如申請專利範圍第12項所述的模擬物質在人體肺部沉積的系統,其中該待觀測物質為一螢光氣溶膠。
  17. 如申請專利範圍第12項所述的模擬物質在人體肺部沉積的系統,其中該待觀測物質為一藥物。
  18. 如申請專利範圍第12項所述的模擬物質在人體肺部沉積的系統,其中該待觀測物質為一污染空氣中的污染物質。
  19. 一種模擬物質在人體肺部沉積的方法,包含:提供如申請專利範圍第12項所述的模擬物質在人體肺部沉積的系統;操作該人體肺部模擬系統,以模擬人體肺部呼吸;進行一沉積步驟,其係使該物質源的該待觀測物質經由該氣流口進入該仿肺部裝置;以及進行一觀察步驟,其係觀察該待觀測物質於該些通道及該些仿肺泡區的沉積情形。
  20. 如申請專利範圍第19項所述的模擬物質在人體肺部沉積的方法,其中該氣體流道層為五層式結構,由一側至另一側依序為一第二仿肺泡區層、一第一仿肺泡區層、一通道層、另一第一仿肺泡區層以及另一第二仿肺泡區層,其中各該第一仿肺泡區層與該通道層間為可拆式連接,且該模擬物質在人體肺部沉積的方法更包含:進行一拆卸步驟,其係使各該第一仿肺泡區層與該通道層分離。
TW107141097A 2018-11-19 2018-11-19 仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法 TWI661844B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107141097A TWI661844B (zh) 2018-11-19 2018-11-19 仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法
US16/564,748 US11062625B2 (en) 2018-11-19 2019-09-09 Imitating lung device, system for simulating human lung, method for simulating human breathing, system for simulating deposition of substance in human lung and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107141097A TWI661844B (zh) 2018-11-19 2018-11-19 仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法

Publications (2)

Publication Number Publication Date
TWI661844B true TWI661844B (zh) 2019-06-11
TW202019499A TW202019499A (zh) 2020-06-01

Family

ID=67764098

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141097A TWI661844B (zh) 2018-11-19 2018-11-19 仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法

Country Status (2)

Country Link
US (1) US11062625B2 (zh)
TW (1) TWI661844B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217259A1 (en) * 2019-04-24 2020-10-29 Cipla Limited Methods and systems for simulating deposition of inhaled drug on lungs
US11107371B2 (en) * 2019-05-24 2021-08-31 Sharp Medical Products—Chest Tube, LLC. Rib training assembly
EP4356365A1 (en) * 2021-06-18 2024-04-24 The Governors of the University of Alberta Integrated neutralizer and annular filter housing for a regional lung deposition filter
CN114317267B (zh) * 2022-01-05 2023-12-05 浙江大学 具有多级肺泡管结构的多层微流控器官芯片及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020143397A1 (en) * 2001-04-02 2002-10-03 Von Segesser Ludwig K. Compliant artificial lung for extrapulmonary gas transfer
US6706020B1 (en) * 1998-08-28 2004-03-16 Schering Aktiengesellschaft Syringes and injectors incorporating magnetic fluid agitation devices
TWM411947U (en) * 2011-03-04 2011-09-21 An-Ji Wang Electrically-operated model of heart structure and blood circulation system
JP2016002438A (ja) * 2014-06-19 2016-01-12 国立大学法人東北大学 模擬心房を備える血液循環模擬装置、血液循環模擬装置を用いた人工臓器の試験方法
US10124126B2 (en) * 2013-04-18 2018-11-13 The Regents Of The University Of Colorado, A Body Corporate System and methods for ventilation through a body cavity

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167070A (en) * 1978-10-06 1979-09-11 Burt B Educational lung simulator
FR2687492A1 (fr) * 1992-02-18 1993-08-20 Fmc Prod Sarl Appareillage de simulation d'etats, notamment de pathologies respiratoires.
US5597310A (en) * 1995-05-15 1997-01-28 Edde; Pierre Teaching model of the bronchial and lungs useful for teaching the biology of those organs
US5975748A (en) * 1996-09-30 1999-11-02 Ihc Health Services, Inc. Servo lung simulator and related control method
US6910896B1 (en) * 2000-12-15 2005-06-28 Ram Consulting, Inc. Mechanical lungs
US7128578B2 (en) * 2002-05-29 2006-10-31 University Of Florida Research Foundation, Inc. Interactive simulation of a pneumatic system
US6874501B1 (en) * 2002-12-06 2005-04-05 Robert H. Estetter Lung simulator
US6921267B2 (en) * 2002-12-06 2005-07-26 University Of Florida Research Foundation, Inc. Lung simulator for an integrated human patient simulator
JP2005234388A (ja) * 2004-02-20 2005-09-02 Fuji Photo Film Co Ltd 科学現象の評価装置、理科実験教材、及びその製造方法
US7402819B2 (en) * 2005-12-01 2008-07-22 Accuray Incorporated Respiration phantom for quality assurance
SG10201602102PA (en) * 2016-03-17 2017-10-30 Changi General Hospital Pte Ltd Lung simulation model
GB201806123D0 (en) * 2018-04-13 2018-05-30 Astech Projects Ltd Simulated breathing apparatus and method
US20200150110A1 (en) * 2018-11-13 2020-05-14 Government of the United States (Air Force) Respiratory simulation system including an anatomical model of the human nasal cavity configured for in vitro inhalation studies and associated methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706020B1 (en) * 1998-08-28 2004-03-16 Schering Aktiengesellschaft Syringes and injectors incorporating magnetic fluid agitation devices
US20020143397A1 (en) * 2001-04-02 2002-10-03 Von Segesser Ludwig K. Compliant artificial lung for extrapulmonary gas transfer
TWM411947U (en) * 2011-03-04 2011-09-21 An-Ji Wang Electrically-operated model of heart structure and blood circulation system
US10124126B2 (en) * 2013-04-18 2018-11-13 The Regents Of The University Of Colorado, A Body Corporate System and methods for ventilation through a body cavity
JP2016002438A (ja) * 2014-06-19 2016-01-12 国立大学法人東北大学 模擬心房を備える血液循環模擬装置、血液循環模擬装置を用いた人工臓器の試験方法

Also Published As

Publication number Publication date
TW202019499A (zh) 2020-06-01
US20200160752A1 (en) 2020-05-21
US11062625B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
TWI661844B (zh) 仿肺部裝置、人體肺部模擬系統、模擬人體肺部呼吸的方法與模擬物質在人體肺部沉積的系統及方法
CA2808836C (en) Systems and methods of aerosol delivery with airflow regulation
Xi et al. Breathing resistance and ultrafine particle deposition in nasal–laryngeal airways of a newborn, an infant, a child, and an adult
Storey-Bishoff et al. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas
WO2009005546A1 (en) High efficiency mouthpiece/adaptor for inhalers
Skaria et al. Omron NE U22: comparison between vibrating mesh and jet nebulizer
Carrigy et al. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation
Bass et al. High-efficiency dry powder aerosol delivery to children: Review and application of new technologies
US20150027441A1 (en) Nebulizer device for medical aerosols
Farkas et al. Development of an inline dry powder inhaler that requires low air volume
Fonceca et al. Drug administration by inhalation in children
US11475798B2 (en) Simulation device for characterizing aerodynamics of dry power inhalants in respiratory system
Yang et al. The effects of temperature and humidity on the deposition of nebulized droplet in an idealized mouth-throat model
Steiner et al. Development and testing of a new-generation aerosol exposure system: the independent holistic air-liquid exposure system (InHALES)
Lin et al. Aerosol delivery into small anatomical airway model through spontaneous engineered breathing
Bass et al. Characterizing the effects of nasal prong interfaces on aerosol deposition in a preterm infant nasal model
Collins Nebulizer therapy in cystic fibrosis: an overview
Golshahi et al. Use of airway replicas in lung delivery applications
US20090285763A1 (en) Infant aerosol drug delivery systems and methods
Ehtezazi et al. Suitability of the upper airway models obtained from MRI studies in simulating drug lung deposition from inhalers
Scheinherr Glottal motion and its impact on airflow and aerosol deposition in upper airways during human breathing
Mehri et al. In vitro measurements of spiriva respimat dose delivery in mechanically ventilated tracheostomy patients
CN113168785B (zh) 用于模拟吸入药物在肺部上的沉积的方法和系统
Vahaji et al. Optimising aerosol delivery for maxillary sinus deposition in a post-FESS sinonasal cavities
Mitchell et al. Improved laboratory test methods for orally inhaled products