TWI660974B - Radical polymerizable resin composition and injection for repairing structure - Google Patents

Radical polymerizable resin composition and injection for repairing structure Download PDF

Info

Publication number
TWI660974B
TWI660974B TW107102308A TW107102308A TWI660974B TW I660974 B TWI660974 B TW I660974B TW 107102308 A TW107102308 A TW 107102308A TW 107102308 A TW107102308 A TW 107102308A TW I660974 B TWI660974 B TW I660974B
Authority
TW
Taiwan
Prior art keywords
radical polymerizable
resin composition
polymerizable resin
component
meth
Prior art date
Application number
TW107102308A
Other languages
Chinese (zh)
Other versions
TW201829501A (en
Inventor
小林健一
畠山絵梨
黒木一博
Original Assignee
日商昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭和電工股份有限公司 filed Critical 日商昭和電工股份有限公司
Publication of TW201829501A publication Critical patent/TW201829501A/en
Application granted granted Critical
Publication of TWI660974B publication Critical patent/TWI660974B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

本發明為一種自由基聚合性樹脂組成物,其特徵為含有(A)自由基聚合性樹脂、(B)自由基聚合性不飽和單體,及(C)胺系硬化促進劑,其中(B)自由基聚合性不飽和單體含有:具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)及/或具有己內酯開環構造之自由基聚合性不飽和單體(b-2)。The present invention is a radical polymerizable resin composition characterized by containing (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based hardening accelerator, wherein (B ) The radical polymerizable unsaturated monomer contains: a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer having a caprolactone ring-opening structure (b-2).

Description

自由基聚合性樹脂組成物及構造物修復用注入劑Radical polymerizable resin composition and injection for repairing structure

[0001] 本發明關於滿足低彈性模數與高比重之兩物性之自由基聚合性樹脂組成物。以及,關於適合修復因混凝土構造物劣化等所產生之龜裂用的包含前述自由基聚合性樹脂組成物之低黏度構造物修復用注入劑。[0001] The present invention relates to a radical polymerizable resin composition that satisfies both physical properties of a low elastic modulus and a high specific gravity. In addition, the invention relates to an injection agent for repairing a low-viscosity structure containing the above-mentioned radical polymerizable resin composition, which is suitable for repairing cracks caused by deterioration of a concrete structure or the like.

[0002] 自過往對於因混凝土構造物之經年劣化等所致之龜裂產生,實施填充注入劑所成之修復作為龜裂部分之修復方法之一(專利文獻1)。   其中對於如快速道路或鐵路等之防撞護欄般之經常伴隨震動之混凝土構造物,則有必要藉由使用具有與過往之注入劑同等之附著強度,且兼具規定彈性物性之注入劑,而使注入材在固著・乾燥後不會產生斷裂(專利文獻2)。 [先前技術文獻] [專利文獻]   [0003]   [專利文獻1] 日本特開2005-002687號公報   [專利文獻2] 日本特開2009-019354號公報[0002] Conventionally, cracks caused by the deterioration of concrete structures, etc., have been implemented as a method of repairing cracked portions by filling with an injection agent (Patent Document 1). Among them, for concrete structures that often accompany vibrations, such as crash barriers for expressways or railways, it is necessary to use an injection agent that has the same adhesion strength as the previous injection agent and has the required elastic physical properties, and The injection material is prevented from cracking after being fixed and dried (Patent Document 2). [Prior Art Document] [Patent Document] [0003] [Patent Document 1] Japanese Patent Laid-Open No. 2005-002687 [Patent Document 2] Japanese Patent Laid-Open No. 2009-019354

[發明所欲解決之課題]   [0004] 在混凝土構造物之劣化部分體積遍及廣大範圍之情況,為了確保修復場所之強度,一般係使用調配有矽砂等之骨材之注入劑。然而,對於龜裂寬度狹窄之場所,難以使含有骨材之注入劑充分滲透,而有檢討關於未調配骨材而僅注入樹脂組成物進行修復之方法。如專利文獻2所示,對於經常伴隨震動之場所之龜裂修復,在以無骨材之注入劑試圖實現低彈性模數時,有注入劑成為低比重之傾向,且產生無法取得規定附著強度之問題。即,修復場所之混凝土在已含有水分之情況,若注入劑之比重為低,則因修復場所之水分而導致注入劑浮起,而無法取得良好之附著強度。   本發明係有鑑於上述過往之實情所完成者,其目的在於提供一種滿足低彈性模數且高比重之兩物性之自由基聚合性樹脂組成物、使用該自由基聚合性樹脂組成物之構造物修復用注入劑。 [用以解決課題之手段]   [0005] 即,本發明之要旨為如下述[1]~[10]。   [1]一種自由基聚合性樹脂組成物,其特徵為含有(A)自由基聚合性樹脂、(B)自由基聚合性不飽和單體,及(C)胺系硬化促進劑,其中(B)自由基聚合性不飽和單體為含有:具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)及/或具有己內酯開環構造之自由基聚合性不飽和單體(b-2)。   [2]如上述[1]之自由基聚合性樹脂組成物,其中前述(b-1)成分具有環氧烷加成莫耳數1~30之聚環氧烷(甲基)丙烯酸酯構造。   [3]如上述[1]或[2]之自由基聚合性樹脂組成物,其中前述(b-2)成分具有己內酯加成莫耳數1~5之聚己內酯(甲基)丙烯酸酯構造。   [4]如上述[1]~[3]中任一項之自由基聚合性樹脂組成物,其中前述(b-1)成分及(b-2)成分之合計量在前述(B)成分中為20~95質量%。   [5]如上述[1]~[4]中任一項之自由基聚合性樹脂組成物,其中前述(A)成分為包含選自聚酯聚醇、聚醚聚醇、聚氧伸烷基雙酚A醚之聚醇構造之胺基甲酸酯(甲基)丙烯酸酯樹脂。   [6]如上述[1]~[5]中任一項之自由基聚合性樹脂組成物,其中更含有(D)硬化劑。   [7]如上述[1]~[6]中任一項之自由基聚合性樹脂組成物,其中相對於前述(b-1)成分與前述(b-2)成分之總量,前述(b-1)成分之含量為40~100質量%。   [8]如上述[1]~[7]中任一項之自由基聚合性樹脂組成物,其中前述自由基聚合性樹脂(A)與前述自由基聚合性不飽和單體(B)之總量中之前述自由基聚合性樹脂(A)之含量為5~60質量%。   [9]如上述[1]~[8]中任一項之自由基聚合性樹脂組成物,其中自由基聚合性組成物之黏度為10~500mPa・s/25℃。   [10]一種構造物修復用注入劑,其係包含如上述[1]~[9]中任一項之自由基聚合性樹脂組成物,且液體比重為1.01~1.15。 [發明之效果]   [0006] 根據本發明,可提供一種低彈性模數,且高比重(23℃下之為比重大於1.00)之自由基聚合性樹脂組成物。包含具有此種特性之自由基聚合性組成物之構造物修復用注入劑由於為高比重,故容易滲透、附著於構造物上產生之龜裂部分,且由於為低彈性模數,故注入劑之凝著・乾燥後不易產生斷裂。若使用本發明之構造物修復用注入劑,對於經常伴隨震動之混凝土構造物,即可良好地進行修正寬度狹窄之龜裂部分。即,可提供在固著之際仍能維持與過往相同程度之附著強度,且不會產生固著後之斷裂等之構造物修復用注入劑。[Problems to be Solved by the Invention] [0004] In the case where the volume of the degraded part of the concrete structure spreads over a wide range, in order to ensure the strength of the repair site, an injection agent prepared with a bone material such as silica sand is generally used. However, in places where the crack width is narrow, it is difficult to sufficiently infiltrate the injection agent containing the aggregate material, and there is a review of a method of injecting only a resin composition to repair the aggregate material without preparing the aggregate material. As shown in Patent Document 2, in the case of crack repair in a place often accompanied by vibration, when a low-elastic modulus is attempted with an aggregate-free injection agent, the injection agent tends to have a low specific gravity, and a predetermined adhesion strength cannot be obtained. problem. That is, if the concrete in the repair site already contains water, if the proportion of the injection agent is low, the injection agent will float due to the moisture in the repair site, and good adhesion strength cannot be obtained. The present invention has been made in view of the foregoing facts, and an object thereof is to provide a radical polymerizable resin composition that satisfies both physical properties of a low elastic modulus and a high specific gravity, and a structure using the radical polymerizable resin composition. Repair injection. [Means for Solving the Problem] That is, the gist of the present invention is as follows [1] to [10]. [1] A radical polymerizable resin composition comprising (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based hardening accelerator, wherein (B ) The radical polymerizable unsaturated monomer is a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated monomer having a caprolactone ring-opening structure. Body (b-2). [2] The radically polymerizable resin composition according to the above [1], wherein the component (b-1) has a polyalkylene oxide (meth) acrylate structure having an alkylene oxide addition mole number of 1 to 30. [3] The radically polymerizable resin composition according to the above [1] or [2], wherein the component (b-2) has a polycaprolactone (methyl) having a caprolactone addition mole number of 1 to 5. Acrylic construction. [4] The radically polymerizable resin composition according to any one of the above [1] to [3], wherein the total amount of the component (b-1) and the component (b-2) is in the component (B) It is 20 to 95% by mass. [5] The radically polymerizable resin composition according to any one of the above [1] to [4], wherein the component (A) is selected from the group consisting of a polyester polyol, a polyether polyol, and a polyoxyalkylene group. Urethane (meth) acrylate resin of bisphenol A ether in a polyalcohol structure. [6] The radically polymerizable resin composition according to any one of the above [1] to [5], further containing (D) a hardener. [7] The radically polymerizable resin composition according to any one of the above [1] to [6], wherein the (b) component is equal to the total amount of the component (b-1) and the component (b-2), wherein (b -1) The content of the components is 40 to 100% by mass. [8] The radical polymerizable resin composition according to any one of the above [1] to [7], wherein a total of the radical polymerizable resin (A) and the radical polymerizable unsaturated monomer (B) The content of the aforementioned radical polymerizable resin (A) in the amount is 5 to 60% by mass. [9] The radically polymerizable resin composition according to any one of the above [1] to [8], wherein the viscosity of the radically polymerizable composition is 10 to 500 mPa · s / 25 ° C. [10] An injectant for repairing a structure, comprising the radical polymerizable resin composition according to any one of the above [1] to [9], and having a liquid specific gravity of 1.01 to 1.15. [Effects of the Invention] According to the present invention, it is possible to provide a radical polymerizable resin composition having a low elastic modulus and a high specific gravity (specific gravity greater than 1.00 at 23 ° C). Because of its high specific gravity, the structure-repairing injection agent containing a radically polymerizable composition having such characteristics is easy to penetrate and adhere to cracks generated on the structure, and the injection agent has a low elastic modulus. It is hard to crack after cohesion and drying. By using the injecting agent for repairing a structure of the present invention, it is possible to perform good correction of a cracked portion having a narrow width in a concrete structure that is often accompanied by vibration. In other words, it is possible to provide an injection agent for repairing a structure that can maintain the same level of adhesion strength as before without causing breakage or the like after fixing.

[0007] [自由基聚合性樹脂組成物]   本發明之自由基聚合性樹脂組成物為一種自由基聚合性樹脂組成物,其特徵為含有(A)自由基聚合性樹脂、(B)自由基聚合性不飽和單體,及(C)胺系硬化促進劑,其中(B)自由基聚合性不飽和單體含有:具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)及/或具有己內酯開環構造之自由基聚合性不飽和單體(b-2)。   尚且,有將(A)自由基聚合性樹脂稱為(A)成分之情況,有將(B)自由基聚合性不飽和單體稱為(B)成分之情況,有將(C)胺系硬化促進劑稱為(C)成分之情況,有將具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)稱為(b-1)成分之情況,有將具有己內酯開環構造之自由基聚合性不飽和單體(b-2)稱為(b-2)成分之情況。   [0008] <自由基聚合性樹脂(A)>   本發明中,自由基聚合性樹脂(A)係指於樹脂中具有乙烯性不飽和基,且藉由自由基而進行聚合反應之化合物。   作為自由基聚合性樹脂(A),可舉出如胺基甲酸酯(甲基)丙烯酸酯樹脂、乙烯基酯樹脂、不飽和聚酯樹脂、聚酯(甲基)丙烯酸酯樹脂、(甲基)丙烯酸酯樹脂等,其中從自由基聚合性樹脂組成物之硬化物之低彈性模數化之觀點,以胺基甲酸酯(甲基)丙烯酸酯樹脂為佳。尚且,本說明書中,「(甲基)丙烯酸酯」係意指「丙烯酸酯或甲基丙烯酸酯」。   [0009] [胺基甲酸酯(甲基)丙烯酸酯樹脂]   作為胺基甲酸酯(甲基)丙烯酸酯樹脂,可使用例如,對使多價異氰酸酯與多價醇反應而得之聚胺基甲酸酯之兩末端之羥基或異氰酸基(isocyanato)導入(甲基)丙烯醯基而得之樹脂。   作為多價醇,可無特別限制地使用如日本特開2009-292890號公報、WO2016/171151號公報揭示之記載作為「聚羥基化合物」或「多價醇類」之化合物。   多價醇並無特別限制,可舉出例如,聚酯聚醇、聚醚聚醇;   乙二醇、丙二醇、二乙二醇、二丙二醇、環己烷二甲醇等之2價醇;   以氫化雙酚A等所代表之2價酚與以環氧丙烷或環氧乙烷所代表之環氧烷之加成物等之2價醇;   1,2,3,4-四羥基丁烷、丙三醇、三羥甲基丙烷、季戊四醇等之3價以上之醇等。   作為上述2價酚與環氧烷之加成物,可舉出例如聚氧伸烷基雙酚A醚。   此等之中,作為胺基甲酸酯(甲基)丙烯酸酯樹脂,以包含選自聚酯聚醇、聚醚聚醇、聚氧伸烷基雙酚A醚之1種或2種以上之聚醇構造之胺基甲酸酯(甲基)丙烯酸酯樹脂為佳。   其中在從使自由基聚合性樹脂組成物硬化時之低彈性模數化之觀點,以包含聚醚聚醇之聚醇構造之胺基甲酸酯(甲基)丙烯酸酯樹脂為較佳。作為聚醚聚醇,從使自由基聚合性樹脂組成物硬化時之低彈性模數化之觀點,以聚乙二醇或聚丙二醇為佳。   聚醚聚醇之重量平均分子量係以500~4000為佳,以500~3000為較佳。重量平均分子量若在上述範圍內,則可取得具有作為構造物修復用注入劑之適合彈性模數與黏度者。重量平均分子量之測量方法係如實施例之記載所述。   [0010] 作為多價異氰酸酯,可舉出如日本特開2009-292890號公報中記載者或WO2016/171151號公報中記載者,從合成樹脂時之反應性之觀點,以二苯基甲烷二異氰酸酯為佳。   在導入(甲基)丙烯醯基之際,可舉出例如,使末端異氰酸基與日本特開2009-292890號公報中記載之含羥基之(甲基)丙烯醯基化合物反應之方法,或使末端羥基與2-(甲基)丙烯醯氧基乙基異氰酸酯、2-(甲基)丙烯醯氧基丙基異氰酸酯、1,1-雙(丙烯醯氧基甲基)乙基異氰酸酯等之含異氰酸基之(甲基)丙烯醯基化合物反應之方法。其中在從自由基聚合性樹脂組成物之高比重化之觀點,以使末端異氰酸基與含羥基之(甲基)丙烯醯基化合物反應之方法為佳。   從自由基聚合性樹脂組成物之高比重化之觀點,含羥基之(甲基)丙烯醯基化合物係以2-羥基乙基(甲基)丙烯酸酯、2-羥基丙基(甲基)丙烯酸酯、己內酯變性羥基烷基(甲基)丙烯酸酯、羥基乙基丙烯醯胺等為佳,其中亦以2-羥基乙基(甲基)丙烯酸酯、或2-羥基丙基(甲基)丙烯酸酯為較佳,以2-羥基乙基甲基丙烯酸酯或2-羥基丙基甲基丙烯酸酯為更佳。   胺基甲酸酯(甲基)丙烯酸酯樹脂之重量平均分子量係以3000~20000為佳,較佳為4000~11000。重量平均分子量若在上述範圍內,在作成對胺基甲酸酯(甲基)丙烯酸酯樹脂調配後述自由基聚合性不飽和單體等而成之自由基聚合性樹脂組成物時,則為低黏度且相溶性良好。   [0011] [乙烯基酯樹脂]   乙烯基酯樹脂係也稱為環氧基(甲基)丙烯酸酯樹脂之樹脂。   作為乙烯基酯樹脂,可使用使環氧樹脂與不飽和一元酸反應而得者。   作為前述環氧樹脂,可舉出如雙酚A二環氧丙基醚及其高分子量同系物(homologue)、酚醛型環氧丙基醚類等。   具體而言,可舉出WO2016/171151號公報中記載之環氧樹脂等。   前述不飽和一元酸係能使用公知者,可舉出例如(甲基)丙烯酸、巴豆酸、桂皮酸等。又,亦可使用具有1個羥基與1個以上(甲基)丙烯醯基之化合物與多元酸酐之反應物。尚且,本說明書中,「(甲基)丙烯酸」係意指「丙烯酸及甲基丙烯酸」之一方或雙方,又,「(甲基)丙烯醯基」係意指「丙烯醯基及甲基丙烯醯基」之一方或雙方。   前述多元酸係為了增加前述環氧樹脂之分子量所使用者,可使用如WO2016/171151號公報中記載者等公知者。   [0012] [不飽和聚酯樹脂]   作為不飽和聚酯樹脂,可使用使不飽和二元酸及因應必要之包含飽和二元酸之二元酸成分,與多價醇成分進行酯化反應而得者。   作為前述不飽和二元酸或前述飽和二元酸,可舉出例如,WO2016/171151號公報中記載者,該等係可單獨使用,亦可組合2種以上使用。   前述多價醇並無特別限制,例如,與胺基甲酸酯(甲基)丙烯酸酯樹脂之情況相同,可舉出如WO2016/171151號公報中記載者。   [0013] 不飽和聚酯在不損及本發明之效果範圍內,亦可使用藉由二環戊二烯系化合物所變性者。關於使用二環戊二烯系化合物之變性方法,可舉出例如,在取得二環戊二烯與馬來酸加成生成物(二環戊二烯醇單蘋果酸酯(cydecanol monomalate))後,將使用作為一元酸而導入二環戊二烯骨架之方法等之公知方法。   可對本發明所使用之乙烯基酯樹脂或不飽和聚酯樹脂導入烯丙基或苄基等之氧化聚合(空氣硬化)基。導入方法並無特別限制,可舉出例如,含氧化聚合基之聚合物之添加,或具有羥基與烯丙基醚基之化合物之縮合,對烯丙基環氧丙基醚、2,6-二環氧丙基苯基烯丙基醚加成具有羥基與烯丙基醚基之化合物與酸酐之反應物的方法等。   尚且,本發明中之氧化聚合(空氣硬化)係指例如可見於烯丙基醚基等之存在於醚鍵與雙鍵間之亞甲基鍵之氧化而成之過氧化物之生成與分解所伴隨之交聯。   [0014] [聚酯(甲基)丙烯酸酯樹脂]   作為本發明中之聚酯(甲基)丙烯酸酯樹脂,例如,使多價羧酸與多價醇反應而得之聚酯,具體而言,可使用使聚對酞酸乙二酯等之兩末端之羥基與(甲基)丙烯酸反應而得之樹脂。   [0015] [(甲基)丙烯酸酯樹脂]   作為(甲基)丙烯酸酯樹脂,可使用例如,具有選自羥基、異氰酸基、羧基及環氧基之1種以上官能基之聚(甲基)丙烯醯基樹脂,或使具有前述官能基之單體與(甲基)丙烯酸酯之共聚物之官能基與具有羥基之(甲基)丙烯酸酯類反應而得之樹脂。   [0016] <自由基聚合性不飽和單體(B)>   本發明使用之自由基聚合性不飽和單體(B)為具有降低自由基聚合性樹脂組成物之黏度,且使低彈性模數與高比重併存之重要作用。自由基聚合性不飽和單體(B)含有:具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)及/或具有己內酯開環構造之自由基聚合性不飽和單體(b-2)。藉由使用該等(b-1)成分及/或(b-2)成分,可使自由基聚合性組成物之低彈性模數與高比重併存。   [0017] 氧伸烷基構造為-(-O-R-)n -(R表示伸烷基,n為整數)所示之構造。伸烷基之碳數係以2~6為佳。n係以1~30之整數為佳。   作為(b-1)具有氧伸烷基構造之自由基聚合性不飽和單體,可舉出如具有氧伸烷基構造之(甲基)丙烯酸酯,伸烷基部分之碳數係以2~6為較佳。   又,前述(b-1)成分係以具有環氧烷加成莫耳數1~30之聚環氧烷(甲基)丙烯酸酯構造之單體為佳。環氧烷之加成莫耳數較佳為1~20。環氧烷之加成莫耳數若在上述範圍,在自由基聚合性樹脂組成物之黏度與比重之觀點上平衡良好。   具體地可舉出如苯氧基乙基(甲基)丙烯酸酯等之酚之環氧烷變性(甲基)丙烯酸酯、乙氧基雙酚A二甲基丙烯酸酯等之雙酚A之環氧烷變性二(甲基)丙烯酸酯、雙酚F之環氧烷變性二(甲基)丙烯酸酯、異三聚氰酸之環氧烷變性三(甲基)丙烯酸酯、甲氧基聚乙二醇(甲基)丙烯酸酯等之烷基末端聚伸烷二醇(甲基)丙烯酸酯、三羥甲基丙烷之環氧烷變性三(甲基)丙烯酸酯等。此等係可單獨使用1種亦可混合2種以上使用。其中從減低自由基聚合性樹脂組成物黏度之觀點,以雙酚A之環氧烷變性二(甲基)丙烯酸酯、酚之環氧烷變性(甲基)丙烯酸酯、及甲氧基聚乙二醇(甲基)丙烯酸酯等之烷基末端聚伸烷二醇(甲基)丙烯酸酯為佳,以雙酚A之環氧烷變性二(甲基)丙烯酸酯、酚之環氧烷變性(甲基)丙烯酸酯為較佳。   前述(b-1)成分在從本發明之自由基聚合性樹脂組成物之低黏度化、低彈性模數化、高比重之平衡之觀點,以包含雙酚A之環氧烷變性二(甲基)丙烯酸酯為佳,以包含雙酚A之環氧烷變性二(甲基)丙烯酸酯及酚之環氧烷變性(甲基)丙烯酸酯之2種為較佳。(b-1)成分中之該等2種含量之總量在從相同之觀點,以60質量%以上為佳,較佳為80質量%以上,更佳為90質量%以上,較更佳為100質量%。(b-1)成分中之雙酚A之環氧烷變性二(甲基)丙烯酸酯含量在從相同之觀點,以50~100質量%為佳,較佳為60~90質量%,更佳為65~80質量%。(b-1)成分中之酚之環氧烷變性(甲基)丙烯酸酯含量係以0~50質量%為佳,較佳為10~40質量%,更佳為20~35質量%。   雙酚A之環氧烷變性二(甲基)丙烯酸酯中之環氧烷之加成莫耳數,從本發明之自由基聚合性樹脂組成物之低黏度化、低彈性模數化、高比重之平衡之觀點,以1~30為佳,較佳為4~30,更佳為4~20,較更佳為8~20。   酚之環氧烷變性(甲基)丙烯酸酯中之環氧烷之加成莫耳數,從相同之觀點,以1~10為佳,較佳為1~4,更佳為1~2,較更佳為1。   [0018] (b-2)具有己內酯開環構造之自由基聚合性不飽和單體係指具有-(-C5 H10 COO-)m -所示之構造之不飽和單體。m係以1~10之整數為佳。具體地可舉出如具有己內酯開環構造之(甲基)丙烯酸酯。前述具有己內酯開環構造之自由基聚合性不飽和單體(b-2)係以具有己內酯加成莫耳數1~5(m=1~5)之聚己內酯(甲基)丙烯酸酯構造之單體為佳。以己內酯之加成莫耳數為1~3者為較佳。加成莫耳數在上述範圍內時,可良好地取得自由基聚合性樹脂組成物之低彈性模數化與高比重化之平衡,且可更加低黏度化。更具體地可舉出如己內酯變性羥基烷基(甲基)丙烯酸酯、己內酯變性參(丙烯醯氧基烷基)異三聚氰酸酯等。從減低黏度之觀點,以己內酯變性羥基乙基(甲基)丙烯酸酯為佳。   又,從使本發明之自由基聚合性樹脂組成物低彈性模數化,且高比重化之觀點,以併用(b-1)成分與(b-2)成分為佳。   相對於(b-1)成分與(b-2)成分之總量,(b-1)成分之含量係以40~100質量%為佳,較佳為55~90質量%,更佳為60~75質量%,較更佳為60~70質量%。   [0019] 作為其他自由基聚合性不飽和單體,具體地可舉出如日本特開2009-292890中記載者,從低彈性模數化之觀點,以月桂基(甲基)丙烯酸酯、2-乙基己基(甲基)丙烯酸酯、及甲基(甲基)丙烯酸酯為佳。   自由基聚合性不飽和單體(B)中之(b-1)成分及(b-2)成分之總量係以20~95質量%為佳,較佳為30~95質量%。含量在上述範圍內,可良好地取得低彈性模數化與高比重化之平衡,且可更加低黏度化。作為一種態樣,自由基聚合性不飽和單體(B)中之(b-1)成分及(b-2)成分之總量係以20~95質量%為佳,較佳40~90質量%,更佳為65~85質量%。又,作為一種態樣,可為75~95質量%或80~95質量%。   自由基聚合性樹脂(A)與自由基聚合性不飽和單體(B)之總量中之具有己內酯開環構造之自由基聚合性不飽和單體之含量係以5~50質量%為佳,以10~40質量%為較佳,以15~35質量%為特佳。若在此範圍內,可作成良好之低彈性模數化與高比重化之平衡。   [0020] (A)成分與(B)成分之總量中之(A)成分之含量係以5~60質量%為佳,較佳為10~50質量%,更佳為10~45質量%,較更佳為15~45質量%,較更佳為20~45質量%,較更佳為25~45質量%,較更佳為30~40質量%。該含量若在上述範圍內,可作成良好之自由基聚合性樹脂組成物之低彈性模數化與高比重化之平衡。   [0021] <胺系硬化促進劑(C)>   本發明使用之胺系硬化促進劑(C)係可無特別限制地使用公知之胺類,具體而言,可使用如苯胺、N,N-二甲基苯胺、N,N-二乙基苯胺、p-甲苯胺、N,N-二甲基-p-甲苯胺、N,N-雙(2-羥基乙基)-p-甲苯胺、4-(N,N-二甲基胺基)苯甲醛、4-[N,N-雙(2-羥基乙基)胺基]苯甲醛、4-(N-甲基-N-羥基乙基胺基)苯甲醛、N,N-雙(2-羥基丙基)-p-甲苯胺、N-乙基-m-甲苯胺、三乙醇胺、m-甲苯胺、二伸乙基三胺、吡啶、苯基嗎啉、哌啶、N,N-雙(羥基乙基)苯胺、二乙醇苯胺等之N,N-取代苯胺、N,N-取代-p-甲苯胺、4-(N,N-取代胺基)苯甲醛等之胺類等。其中從容易促進硬化之觀點,以N,N-雙(2-羥基乙基)-p-甲苯胺,或N,N-雙(2-羥基丙基)-p-甲苯胺為佳。   胺系硬化促進劑之含量在相對於(A)自由基聚合性樹脂及(B)自由基聚合性不飽和單體之合計100質量份而言,以0.01~3.0質量份為佳,較佳為0.1~1.0質量份。含量在上述範圍內,則可容易調整硬化性。   [0022] <硬化劑(D)>   本發明之自由基聚合性樹脂組成物亦可包含硬化劑(D)。作為本發明使用之(D)硬化劑並無特別限定,可使用公知之自由基聚合起始劑,以使用有機化過氧化物為佳。   作為有機過氧化物之例,可舉出如二苄醯基過氧化物(亦稱為過氧化苄醯基)、過氧化酮、過氧化苯甲酸酯、氫過氧化物、二醯基過氧化物、過氧基縮酮、氫過氧化物、二烯丙基過氧化物、過氧基酯及過氧基二碳酸酯等,也能使用偶氮化合物等。更具體而言,可使用的如甲基乙基酮過氧化物、氫過氧化異丙苯、t-丁基過氧化苯甲酸酯、二苄醯基過氧化物、過氧化二異丙苯、二異丙基過氧化物、二-t-丁基過氧化物、t-丁基過氧基苯甲酸酯、1,1-雙(t-丁基過氧基)-3,3,5-三甲基環己烷、2,5-二甲基-2,5-雙(t-丁基過氧基)己炔-3、3-異丙基氫過氧化物、t-丁基氫過氧化物、氫過氧化二異丙苯、乙醯基過氧化物、雙(4-t-丁基環己基)過氧基二碳酸酯、二異丙基過氧基二碳酸酯、異丁基過氧化物、3,3,5-三甲基己醯基過氧化物、月桂基過氧化物、偶氮二異丁腈及偶氮二碳醯胺醯胺等。此等有機過氧化物係能單獨使用或組合使用。又,此等之中,從成本、取得容易度、及安定性之觀點,以二苄醯基過氧化物為佳。   [0023] 相對於上述(A)成分與(B)成分之合計100質量份,硬化劑(D)之調配量係以0.1~8質量份為佳,以0.5~5質量份為較佳。硬化劑(D)之調配量若在0.1質量份以上,可容易取得所欲之硬化性。另一方面,硬化劑(D)之調配量在8質量份以下,則有利用於經濟性,且容易取得充分之作業時間。   [0024] <其他成分> [聚合禁止劑]   本發明之自由基聚合性樹脂組成物在抑制(A)自由基聚合性樹脂及(B)自由基聚合性不飽和單體之過度聚合之觀點,控制反應速度之觀點,亦可包含聚合禁止劑。   作為聚合禁止劑,可舉出如氫醌、甲基氫醌、酚噻嗪、兒茶酚、4-tert-丁基兒茶酚等之公知者。 [胺系以外之硬化促進劑]   本發明之自由基聚合性樹脂組成物中亦可含有上述胺系硬化促進劑以外之硬化促進劑。作為胺系以外之硬化促進劑,並無特別限定,可使用公知之有機金屬鹽。作為有機金屬鹽之例,可舉出如環烷酸銅、辛基酸鈷、環烷酸鈷、氫氧化鈷、己酸鋅、辛基酸錳等。此等之中以環烷酸鈷、辛基酸鈷為佳。此等有機金屬鹽係能單獨使用或組合使用。   [0025] 相對於上述(A)成分與(B)成分之合計100質量份,有機金屬鹽之調配量係以0.02~10質量份為佳,以0.1~3.0質量份為較佳。有機金屬鹽之調配量在0.02質量份以上時,容易取得所欲知硬化時間及硬化狀態,且乾燥性變得良好。另一方來看,有機金屬鹽之調配量在10質量份以下時,容易取得所欲之可使用時間(pot life)及儲藏安定性。 [光聚合起始劑]   本實施形態之樹脂組成物在提升硬化性之目的上,可為包含光聚合起始劑者。作為光聚合起始劑,可舉出例如,光自由基聚合起始劑等。   光自由基聚合起始劑係使用在提升具有雙鍵之丙烯酸樹脂或單體之硬化性。   具體而言,作為光自由基聚合起始劑,可舉出如如安息香烷基醚般之安息香醚系、二苯甲酮、苄基、甲基鄰苄醯基苯甲酸酯等之二苯甲酮系、苄基二甲基縮酮、2,2-二乙氧基苯乙酮、2-羥基-2-甲基苯丙酮、4-異丙基-2-羥基-2-甲基苯丙酮、1,1-二氯苯乙酮等之苯乙酮系、2-氯噻噸酮、2-甲基噻噸酮、2-異丙基噻噸酮等之噻噸酮系者。   相對於(A)自由基反應性樹脂與(B)自由基聚合性不飽和單體之合計100質量份,光聚合起始劑可在0.1~10質量份之範圍內添加。   [0026] [界面活性劑]   本發明之自由基聚合性樹脂組成物在從使樹脂與水之相性良好,容易使水被包含在樹脂之狀態下硬化之觀點,亦可包含界面活性劑。   作為界面活性劑,可舉出如陰離子性界面活性劑、非離子性界面活性劑、陽離子性界面活性劑、及兩性界面活性劑。此等界面活性劑係可單獨使用,亦可組合2種以上使用。   此等界面活性劑之中,以選自陰離子性界面活性劑、及非離子性界面活性劑之1種以上為佳。   [0027] 作為陰離子性界面活性劑,可舉出例如,月桂基硫酸鈉、月桂基硫酸三乙醇胺等之烷基硫酸酯鹽;聚氧乙烯月桂基醚硫酸鈉、聚氧乙烯烷基醚硫酸三乙醇胺等之聚氧乙烯烷基醚硫酸酯鹽;十二基苯磺酸、十二基苯磺酸鈉、烷基萘磺酸鈉、二烷基磺基琥珀酸鈉等之磺酸鹽;硬脂酸鈉皂、油酸鉀皂、蓖麻油鉀皂等之脂肪酸鹽;萘磺酸福馬林縮合物、特殊高分子系等。   此等之中係以磺酸鹽為佳,以二烷基磺基琥珀酸為較佳,以二辛基磺基琥珀酸鈉為更佳。   作為非離子性界面活性劑,可舉出例如,聚氧月桂基醚、聚氧乙烯十六基醚、聚氧乙烯硬脂醯基醚、聚氧乙烯油醯基醚等之聚氧乙烯烷基醚、聚氧乙烯二苯乙烯化苯基醚、聚氧乙烯三苄基苯基醚、聚氧乙烯聚氧丙烯二醇等之聚氧乙烯衍生物;聚氧伸烷基烷基醚、花楸丹單月桂酸酯、花楸丹單棕櫚酸酯、花楸丹單硬脂酸酯等之花楸丹脂肪酸酯;聚氧乙烯花楸丹單月桂酸酯、聚氧乙烯花楸丹單月桂酸酯、聚氧乙烯花楸丹單棕櫚酸酯等之聚氧乙烯花楸丹脂肪酸酯;四油酸聚氧乙烯山梨醇等之聚氧乙烯山梨醇脂肪酸酯;丙三醇單硬脂酸酯、丙三醇單油酸酯等之丙三醇脂肪酸酯。   此等之中係以聚氧乙烯月桂基醚、聚氧乙烯十六基醚、聚氧乙烯硬脂醯基醚、聚氧乙烯油醯基醚、及聚氧乙烯烷基醚為佳。又,非離子性界面活性劑之HLB(Hydrophile-Lipophile Balance(親水親油性平衡))係以5~15為佳,以6~12為較佳。   自由基聚合性樹脂組成物在界面活性劑時,其之量在相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份而言,以0.01~10質量份為佳,較佳為0.05~7質量份,更佳為0.1~5質量份。   [0028] [分散劑]   本發明之自由基聚合性樹脂組成物在例如為了提升濕潤或對已被水淹没之被修復場所之滲透性,亦可包含濕潤分散劑。   作為濕潤分散劑,可舉出如氟系濕潤分散劑及聚矽氧系濕潤分散劑,此等係可單獨使用,亦可組合2種以上。   作為氟系之濕潤分散劑之市售品,可舉出如Megafac(註冊商標)F176、Megafac(註冊商標)R08(大日本油墨化學工業股份有限公司製)、PF656、PF6320 (OMNOVA公司製)、Troisol S-366(特洛伊化學股份有限公司製)、Fluorad FC430(日本3M股份有限公司製)、聚矽氧烷聚合物KP-341(信越化學工業股份有限公司製)等。   作為聚矽氧系濕潤分散劑之市售品,可舉出如BYK(註冊商標)-322、BYK(註冊商標)-377、BYK(註冊商標)-UV3570、BYK(註冊商標)-330、BYK(註冊商標)-302、BYK(註冊商標)-UV3500,BYK-306(BYK Japan股份有限公司製)、聚矽氧烷聚合物KP-341(信越化學工業股份有限公司製)等。   本發明之自由基聚合性樹脂組成物在含有分散劑時,其之量在相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份而言,以0.01~10質量份為佳,較佳為0.1~5質量份。   [0029] [觸變劑]   本發明之自由基聚合性樹脂組成物以確保垂直面或天花板面之作業性用之黏度調整等為目的,亦可包含觸變劑。   作為觸變劑,可舉出如無機系觸變劑及有機系觸變劑,作為有機系觸變劑,可舉出如加氫蓖麻油系、醯胺系、氧化聚乙烯系、植物油聚合油系、界面活性劑系、及併用該等而成之複合系,具體地可舉出如DISPARLON(註冊商標)6900-20X(楠本化成股份有限公司)等。   又,作為無機系觸變劑,可舉出如二氧化矽或膨潤土系,作為疏水性者,可舉出如Reolosil(註冊商標)PM-20L(股份有限公司德山製之氣相法二氧化矽)、Aerosil(註冊商標)AEROSIL R-106(日本Aerosil股份有限公司)等,作為親水性者,可舉出如Aerosil(註冊商標)AEROSIL-200(日本Aerosil股份有限公司)等。從更加提升搖變性之觀點,可適宜使用對親水性之燒成二氧化矽添加搖變性改質劑之BYK(註冊商標)-R605或BYK(註冊商標)-R606(BiChemie Japan股份有限公司製)而成者。   本發明之自由基聚合性樹脂組成物在含有觸變劑時,其之量在相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份而言,以0.01~10質量份為佳,較佳為0.1~5質量份。   [0030] [硬化遅延劑]   本發明之自由基聚合性樹脂組成物以調整硬化時間為目的,亦可包含硬化遅延劑。作為硬化遅延劑,可舉出如自由基系硬化遅延劑,可舉出例如,2,2,6,6-四甲基哌啶1-氧 自由基(TEMPO)、4-羥基-2,2,6,6-四甲基哌啶1-氧 自由基(4H-TEMPO)、4-側氧基-2,2,6,6-四甲基哌啶1-氧 自由基(4-Oxo-TEMPO)等之TEMPO衍生物。從成本面、容易操作之觀點,此等之中係以4-羥基-2,2,6,6-四甲基哌啶1-氧 自由基(4H-TEMPO)為佳。   自由基聚合性樹脂組成物在聚合禁止劑、硬化遅延劑時,其之量在相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份,分別係以0.0001~10質量份為佳,較佳係分別為0.001~10質量份。   [0031] [消泡劑]   本發明之自由基聚合性樹脂組成物在以改善成形時之泡發生、成形品之殘留氣泡殘為目的,亦可含有消泡劑。作為消泡劑,可舉出如聚矽氧系消泡劑、聚合物系消泡劑等。   相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份,消泡劑之使用量係以0.01~5質量份之範圍為佳,較佳為0.1~1質量份。   [0032] [耦合劑]   本發明之自由基聚合性樹脂組成物以提升對修復對象物即基材之密著性等為目的,亦可包含耦合劑。作為耦合劑,可舉出如公知之矽烷系耦合劑、鈦酸酯系耦合劑、鋁系耦合劑等。   作為此種耦合劑,可舉出例如,R3 -Si(OR4 )3 所示之矽烷耦合劑。尚且,作為R3 ,可舉出例如,胺基丙基、環氧丙氧基、甲基丙烯醯氧基、N-苯基胺基丙基、巰基、乙烯基等,作為R4 ,可舉出例如,甲基、乙基等。   自由基聚合性樹脂組成物在含有耦合劑時,其之量在相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份而言,以0.001~10質量%為佳,較佳為0.01~5質量%。   [0033] [光安定劑]   本發明之自由基聚合性樹脂組成物在以提升成形品之長期耐久性為目的,亦可使用光安定劑。作為光安定劑,可舉出如紫外線吸收劑或受阻胺系光安定劑。此等係可單獨使用,亦可組合2種以上使用。具體而言,作為紫外線吸收劑,可舉出如苯並三唑系、三嗪系、二苯甲酮系、氰基丙烯酸酯系、水楊酸酯系等,作為受阻胺系光安定劑,可舉出如N-H型、N-CH3 型、N-O烷基型等。   相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份,光安定劑之使用量係以0.01~5質量份之範圍為佳,較佳為0.05~2質量份。   [0034] [蠟]   本發明之自由基聚合性樹脂組成物可為包含蠟者。作為蠟,可單獨使用或併用如石蠟類、極性蠟類等,且可使用各種融點之公知物。   作為極性蠟類,可舉出如構造中一併具有極性基及非極性基者。具體地可舉出如NPS-8070、NPS-9125(日本精蠟公司製)、Emanon 3199、3299(花王公司製)等。   相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份,以含有蠟0.05~4質量份為佳,以含有0.1~2.0質量份為佳。   [0035] [難燃劑]   本發明之自由基聚合性樹脂組成物可為包含難燃劑者。作為難燃劑,可單獨使用或併用如溴系難燃劑、氯系難燃劑、磷系難燃劑、無機系難燃劑、膨脹(Intumescent)系難燃劑、聚矽氧系難燃劑等,且可使用公知者。   又,溴系難燃劑等之鹵系難燃劑在以更加提升難燃性為目的,可與三氧化銻予以併用來使用。   難燃劑之添加量係根據系統而不同,相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份,以含有1~100質量份為佳。   [0036] [塑化劑]   本發明之樹脂組成物在以調整黏度、彈性模數為目的,可為包含塑化劑者。作為塑化劑,可單獨使用或併用如環氧基類、聚酯類系、酞酸酯類系、己二酸酯類系、偏苯三甲酸酯類系、磷酸酯類系、檸檬酸酯類系、癸二酸酯類系、壬二酸酯類系、馬來酸酯類系、安息香酸酯類系等,且可使用公知者。   塑化劑之添加量係根據系統而不同,相對於(A)自由基聚合性樹脂與(B)自由基聚合性不飽和單體之合計100質量份,以含有0.01~20質量份為佳。較佳為含有0.1~10質量份。   本發明之自由基聚合性組成物中之(A)成分、(B)成分、及(C)成分之含量之總量係以30~100質量%為佳,較佳為60~100質量%,更佳為90~100質量%。   又,本發明之自由基聚合性組成物在含有(D)硬化劑時,本發明之自由基聚合性組成物中之(A)成分、(B)成分、(C)成分及(D)硬化劑之含量總量係以30~100質量%為佳,較佳為60~100質量%,更佳為90~100質量%。   [0037] <自由基聚合性組成物之物性值>   自由基聚合性組成物之黏度在從對無機構造物之龜裂中之注入容易度之觀點,以10~500mPa・s/25℃為佳,較佳為10~350mPa・s/25℃,更佳為10~250mPa・s/25℃。黏度之測量方法係如實施例之記載內容所述。   自由基聚合性組成物之液體比重在從將附著性作成良好之觀點,以1.01~1.15為佳,以1.03~1.15為較佳,以1.05~1.15為特佳。液體比重之測量方法係如實施例之記載內容所述。   自由基聚合性組成物之體積收縮率在從對無機構造物之龜裂注入後之接著性之觀點,以3~12%為佳,較佳為4~11%,更佳為5~10%。體積收縮率之測量方法係如實施例之記載內容所述。   自由基聚合性組成物之彈性模數在從對震動之耐久性之觀點,以1~900N/mm2 為佳,較佳為3~600N/mm2 ,更佳為5~200N/mm2 。彈性模數之測量方法係如實施例之記載內容所述。   [0038] <自由基聚合性組成物之製造方法>   各成分之混合順序並無特別侷限,從為了效率良好地取得均勻混合物之作業性之觀點,此外,將組成物調整成在作為自由基聚合性組成物之液體比重等目標物性範圍內時之作業性之觀點,以在合成(A)成分後,添加(B)成分之一部分進行混合,使(A)成分低黏度化後,添加剩餘之(B)成分與其他成分進行混合為佳。亦或,以在(A)成分之合成時使用(B)成分之一部作為稀釋劑,取得(A)成分與一部(B)成分之混合物,添加剩餘之(B)成分與其他成分進行混合為佳。低黏度化之際之(A)成分與一部(B)成分之混合比例(質量比例)並無特別限定,以95:5~20:80為佳,較佳為85:15~30:70。   作為(A)成分與一部(B)成分之混合物之黏度,以100~2000mPa・s為佳,較佳為100~1500mPa・s,更佳為100~1000mPa・s。黏度之測量方法係如實施例之記載內容所述。若預先調整成上述範圍之黏度,在混合剩餘成分作成本發明之自由基聚合性樹脂組成物之際,即可在短時間內均勻混合。   作為(A)成分與一部分(B)成分之混合物之液體比重,以0.95~1.15為佳,較佳為1.00~1.10。藉由調整成上述範圍之液體比重,在混合剩餘成分作成本發明之自由基聚合性樹脂組成物之際,調節(B)成分之種類或調配量,而變得容易調整成當作目標之液體比重。   [0039] [構造物修復用注入劑]   本發明之自由基聚合性樹脂組成物係以使用當作包含該自由基聚合性樹脂組成物之構造物修復用注入劑為佳。   作為構造物,可舉出例如,混凝土、瀝青混凝土、灰泥、木材、金屬等之無機構造物。   構造物修復用注入劑係可僅由自由基聚合性樹脂組成物來製造,亦可使自由基聚合性組成物別外含有骨材等之任意之添加劑。   作為骨材,可舉出如矽砂、二氧化矽、滑石、氧化鋁、氫氧化鋁、碳酸鈣、鋁、鈦等,該等之中,從成本或取得材料之觀點,以矽砂、二氧化矽、碳酸鈣為佳。   尚且,在含有骨材時,由於有構造物修復用注入劑之滲透性降低之情況,故本發明之構造物修復用注入劑係以不含有骨材為佳。尤其,在使用構造物修復用注入劑進行修復龜裂寬度狹窄之混凝土時,由於含有骨材之注入劑缺乏滲透性,而變得難以附著於修復對象物,故能特別適宜使用即使不含有骨材仍為高比重之本發明之構造物修復用注入劑。   構造物修復用注入劑之液體比重在從將附著性作成良好之觀點,以1.01~1.15為佳,以1.03~1.15為較佳,以1.05~1.15為特佳。液體比重之測量方法係如實施例之記載內容所述。   [0040] 構造物之修復方法並無特別限定,例如,可藉由將本發明之構造物修復用注入劑塗佈於混凝土、瀝青混凝土、灰泥、木材、金屬等之修復場所,使其乾燥、硬化來實施。構造物修復用注入劑之塗佈方法並無特別限定,可適用例如,浸漬所成之塗佈方法、噴霧所成之塗佈方法、軋輥所成之塗佈方法、使用毛刷、刷毛或抹刀等之器具之塗佈方法等。   構造物修復用注入劑之塗佈量並無特別限定,在考慮到修復場所之大小、構造物修復用注入劑之密著性、該構造物修復用注入劑之硬化物之強度等後適宜調整。   塗佈構造物修復用注入劑後之乾燥方法並無特別限定,可使用自然乾燥之方法,或在構造物修復用注入劑之硬化物之特性不劣化之範圍內進行加熱之方法。 [實施例]   [0041] 以下,根據實施例說明本發明,但本發明並非係受到實施例所限制者。   [0042] <合成例>   如後述,使用以下之原料,合成出(A)自由基聚合性樹脂之胺基甲酸酯(甲基)丙烯酸酯樹脂(UM1)~(UM8),其次混合作為(B)自由基聚合性不飽和單體之1種之甲基丙烯酸甲酯(三菱麗陽(股)製),而取得(A)成分與(B)成分之混合物(U-1)~(U-8)。   [0043] 胺基甲酸酯(甲基)丙烯酸酯樹脂(UM1)~(UM8)之原料係如以下所示。 (多價醇)   (1)聚丙二醇1(重量平均分子量1000),三井化學(股)製,製品名:Actcall D-1000   (2)聚丙二醇2(重量平均分子量2000),三井化學(股)製,製品名:Actcall D-2000   (3)聚乙二醇1(重量平均分子量600),東邦化學工業(股)製,製品名:東邦聚乙二醇600   (4)聚乙二醇2(重量平均分子量1540),東邦化學工業(股)製,製品名:東邦聚乙二醇1540   (5)聚酯聚醇(重量平均分子量2000),DIC(股)製,製品名:Polylite OD-X-2420   (6)聚氧伸烷基雙酚A醚1(重量平均分子量800),ADEKA(股)製,製品名:BPX-55   (7)聚氧伸烷基雙酚A醚2(重量平均分子量2000),ADEKA(股)製,製品名:BPX-2000 (多價異氰酸酯)   二苯基甲烷二異氰酸酯 (含羥基之(甲基)丙烯酸酯)   2-羥基乙基甲基丙烯酸酯   2-羥基丙基甲基丙烯酸酯   其次,具體地說明關於各合成例。   [0044] (合成例1)   對具備攪拌器、迴流冷卻管、氣體導入管及溫度計之3L四頸燒瓶放入二苯基甲烷二異氰酸酯:500g(2.0mol)、Actcall D-1000(三井化學(股)製聚丙二醇1:重量平均分子量1000):500g(0.5mol)、東邦聚乙二醇1540(東邦化學工業(股)製聚乙二醇2:重量平均分子量1540):700g(0.5mol)、及二丁基錫二月桂酸酯:0.2g,以60℃攪拌4小時使其反應。其次,以費時2小時對該反應物滴入2-羥基乙基甲基丙烯酸酯:260g(2.0mol),並同時進行攪拌,滴下結束後攪拌5小時使其反應,而取得胺基甲酸酯甲基丙烯酸酯樹脂(UM1)。將使用於製造胺基甲酸酯甲基丙烯酸酯樹脂(UM1)之原料展示於表1。   其次,對此胺基甲酸酯甲基丙烯酸酯樹脂(UM1)添加甲基丙烯酸甲酯:850g,而取得(A)成分與(B)成分之混合物(U-1)。   胺基甲酸酯甲基丙烯酸酯樹脂(UM1)之重量平均分子量為7300。又,混合物(U-1)在25℃下之黏度為990mPa・s,液體比重為1.08。   重量平均分子量之測量係使用凝膠滲透層析(昭和電工(股)製Shodex GPC-101)。重量平均分子量係在下述條件下以常溫(23℃)進行測量並以聚苯乙烯換算來算出。 (測量條件)   管柱:昭和電工(股)製LF-804,2支   管柱溫度:40℃   試料:被測量物之0.4質量%四氫呋喃溶液   流量:1ml/分   溶析液:四氫呋喃   又,黏度與液體比重之測量條件係與後述之實施例之試料之測量條件相同。   [0045] (合成例2~8)   對於合成例2~8,除了將所使用之原料變更成如表1所示以外,其他係與合成例1同樣地操作進行合成,而取得胺基甲酸酯甲基丙烯酸酯樹脂(UM2)~(UM8)。又,如表2所示,以相對於各胺基甲酸酯甲基丙烯酸酯樹脂(UM2)~(UM8)70質量份而甲基丙烯酸甲酯成為30質量份之方式進行添加,而取得混合物(U-2)~(U-8)。將胺基甲酸酯甲基丙烯酸酯樹脂(UM2)~(UM8)之重量平均分子量展示於表1。又,將混合物(U-2)~(U-8)之液體比重及黏度之值展示於表2。   [0046][0047][0048] <實施例1~16>   原料係使用各合成例取得之混合物(U-1)~(U-8),與以下之(B)自由基聚合性不飽和單體、(C)胺系硬化促進劑及(D)硬化劑。 ((B)自由基聚合性不飽和單體) [(b-1)成分]   (1)乙氧基雙酚A二甲基丙烯酸酯(環氧乙烷加成莫耳數10),新中村化學工業(股)製,製品名:NK酯 BPE-500   (2)甲氧基聚乙二醇甲基丙烯酸酯,日油(股)製:Blenmer PME-400(環氧乙烷加成莫耳數9)   (3)苯氧基乙基甲基丙烯酸酯(環氧乙烷加成莫耳數1),共榮社化學(股)製,製品名:輕酯PO   (4)苯氧基乙基丙烯酸酯(環氧乙烷加成莫耳數1)、共榮社化學(股)製,製品名:輕丙烯酸酯PO-A [(b-2)成分]   (5)己內酯變性(加成莫耳數1)羥基乙基甲基丙烯酸酯,(股)大賽路製,製品名:Plaxel FM1   表3中,標示為己內酯變性(1mol)甲基丙烯酸酯。   (6)己內酯變性(加成莫耳數2)羥基乙基甲基丙烯酸酯,(股)大賽路製,製品名:Plaxel FM2D   表3中,標示為己內酯變性(2mol)甲基丙烯酸酯。   (7)己內酯變性(加成莫耳數2)羥基乙基丙烯酸酯,(股)大賽路製,製品名:Plaxel FA2D   表3中,標示為己內酯變性(2mol)丙烯酸酯。 [其他自由基聚合性不飽和單體]   (8)月桂基甲基丙烯酸酯,共榮社化學(股)製,製品名:輕酯L   (9)2-乙基己基甲基丙烯酸酯,共榮社化學(股)製,製品名:輕酯EH   (10)甲基丙烯酸甲酯,三菱麗陽(股)製,製品名:壓克力酯M   [0049] ((C)胺系硬化促進劑)   (1)N,N-雙(2-羥基乙基)-p-甲苯胺,和光純藥工業(股)製,製品名:促進劑A   (2)N,N-雙(2-羥基丙基)-p-甲苯胺,摩林化學工業(股)製,製品名:PT-2HE ((D)硬化劑)   二苄醯基過氧化物,化藥AKZO(股)製,製品名:Perkadox CH-50L   [0050] 對合成例取得之各混合物(U-1)~(U-8),因應必要添加表3所示之(B)自由基聚合性不飽和單體,而取得由(A)成分及(B)成分所構成之預備試料。其次,對此預備試料100質量份,即,相對於(A)成分及(B)成分之合計100質量份,依以下順序以表3所示之比例添加(C)胺系硬化促進劑及(D)硬化劑並進行攪拌,而取得自由基聚合性樹脂組成物。   在表3中之甲基丙烯酸甲酯之欄中,將上述之混合物(U-1)~(U-8)所預先包含之甲基丙烯酸甲酯含量,與因應必要添加之作為(B)自由基聚合性不飽和單體之甲基丙烯甲酸酯含量予以合計記載。   又,在表3中之(A)自由基聚合性樹脂之欄中,記載從製造混合物(U-1)~(U-8)所使用之原料之放入量所算出之僅(A)自由基聚合性樹脂之含量。(A)自由基聚合性樹脂之含量係將製造混合物(U-1)~(U-8)所使用之原料視為100%反應來算出者。   [0051] <比較例1~9>   除了不包含(b-1)成分及(b-2)成分以外,與實施例同樣地操作而取得自由基聚合性樹脂組成物。將自由基聚合性樹脂組成物之各成分之含量展示於表3。   關於藉此操作而得之自由基聚合性樹脂用組成物,藉由下述方法測量黏度、液體比重、體積收縮率、彈性模數並進行評價。其結果係如表3所示。   [0052] <黏度測量>   使用東機產業(股)製RE-85型黏度計、錐板型、錐形轉子1°34’×R24,以100rpm測量25℃環境下之黏度。 <液體比重測量>   根據JIS K 7112-1999 之附錄2「塑料-液狀樹脂-水中取代法」,使用AlfaMirage(股)製電子比重計MD-200S,測量23℃之液體比重。 <體積收縮率>   如以下所述內容製作出長度×寬度×厚度=40mm×40mm×3mm之試驗體。即,在常溫(23℃)環境下,將自由基聚合性樹脂組成物注入於長度×寬度×厚度=200mm×200mm×3mm之模型框,而製成試驗體(固體)。其後,在常溫(23℃)環境下,硬化12小時後,在80℃下進行3小時後硬化。從已作成之試驗體,切出長度×寬度×厚度=40mm×40mm×3mm之試驗體,並使用於測量。使用該試驗體,依據JIS K 7112-1999 之水中取代法,藉由液體比重測量之同試驗機,測量固體比重。固體比重測量係對各試驗體各進行2次。且,將2次之測量結果之平均值使用來算出體積收縮率。使用JIS K 6901-2008 記載之計算式算出體積收縮率。 <彈性模數>   藉由以下操作將自由基聚合性樹脂組成物作成固體。即,在常溫環境下,將自由基聚合性樹脂組成物注入於長度×寬度×厚度=200mm×200mm×3mm之模型框,而製作出試驗體(固體)。其後,在常溫環境下硬化12小時後,在80℃下進行3小時後硬化。   其次,依據JIS K 7113-1995 、2號試驗片製作出試驗體。對於經製作之試驗體,在溫度23℃、濕度50%之試驗環境下,根據上述規格,使用Instron製5900R,以夾具間長120mm、試驗速度50mm/分進行試驗。彈性模數之測量係對各試驗體各進行3次。且,將3次之測量結果之平均值使用於彈性模數之評價。   [0053][0054][0055][0056] 如表3所示,可得知含有具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)及/或具有己內酯開環構造之自由基聚合性不飽和單體(b-2)之本發明自由基聚合性樹脂組成物為高比重且低彈性模數。   尤其,可得知(b-1)成分與(b-2)成分之總量較多之實施例8及10之高比重與低彈性模數極為良好。   相對於此,在與實施例1~16之樹脂組成物相比,可得知皆不包含具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)及具有己內酯開環構造之自由基聚合性不飽和單體(b-2)之比較例1~9之自由基聚合性樹脂組成物並無法使高比重與低彈性模數化併存。 [產業上之可利用性]   [0057] 本發明之自由基聚合性樹脂組成物及構造物修復用注入劑由於為高比重且低彈性模數,故能適宜使用修復混凝土構造物等之龜裂。[Radical Polymerizable Resin Composition] The radical polymerizable resin composition of the present invention is a radical polymerizable resin composition, which is characterized by containing (A) a radical polymerizable resin and (B) a radical Polymerizable unsaturated monomer and (C) amine-based hardening accelerator, wherein (B) the radical polymerizable unsaturated monomer contains: a radical polymerizable unsaturated monomer having an oxyalkylene structure (b-1 ) And / or a radical polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure. In addition, (A) radical polymerizable resin may be referred to as (A) component, (B) radical polymerizable unsaturated monomer may be referred to as (B) component, and (C) amine-based When the hardening accelerator is referred to as (C) component, the radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure may be referred to as (b-1) component, and may When the radically polymerizable unsaturated monomer (b-2) of the ester ring-opening structure is called (b-2) component. [0008] <Radical Polymerizable Resin (A)> In the present invention, a radical polymerizable resin (A) refers to a compound having an ethylenically unsaturated group in a resin and undergoing a polymerization reaction by a radical. Examples of the radical polymerizable resin (A) include a urethane (meth) acrylate resin, a vinyl ester resin, an unsaturated polyester resin, a polyester (meth) acrylate resin, and (formaldehyde). (Meth) acrylate resins, etc. Among them, urethane (meth) acrylate resins are preferred from the viewpoint of lowering the elastic modulus of the cured product of the radical polymerizable resin composition. Moreover, in this specification, "(meth) acrylate" means "acrylate or methacrylate." [Urethane (meth) acrylate resin] As the urethane (meth) acrylate resin, for example, a polyamine obtained by reacting a polyvalent isocyanate with a polyvalent alcohol can be used. A resin obtained by introducing hydroxyl groups or isocyanato groups at both ends of a urethane into a (meth) acrylfluorenyl group. As the polyvalent alcohol, compounds described as "polyhydroxy compounds" or "polyvalent alcohols" as disclosed in Japanese Patent Application Laid-Open No. 2009-292890 and WO2016 / 171151 can be used without particular limitation. The polyvalent alcohol is not particularly limited, and examples thereof include polyester polyols and polyether polyols; divalent alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and cyclohexanedimethanol; and hydrogenation Bivalent alcohols such as bisphenol A and other bivalent phenols and adducts such as propylene oxide or alkylene oxide; 1,2,3,4-tetrahydroxybutane, propane Triols, trimethylolpropane, pentaerythritol, and the like having trivalent or higher valences. Examples of the adduct of the divalent phenol and alkylene oxide include polyoxyalkylene bisphenol A ether. Among these, as the urethane (meth) acrylate resin, one or two or more kinds selected from polyester polyol, polyether polyol, and polyoxyalkylene bisphenol A ether are contained. Polyurethane-structured urethane (meth) acrylate resins are preferred. Among them, a urethane (meth) acrylate resin having a polyol structure containing a polyether polyalcohol is preferred from the viewpoint of lowering the elastic modulus when the radical polymerizable resin composition is cured. As the polyether polyol, polyethylene glycol or polypropylene glycol is preferred from the viewpoint of lowering the elastic modulus when the radical polymerizable resin composition is cured. The weight average molecular weight of the polyether polyol is preferably 500 to 4000, and more preferably 500 to 3000. If the weight average molecular weight is within the above range, it is possible to obtain one having a suitable elastic modulus and viscosity as an injection agent for repairing a structure. The measurement method of weight average molecular weight is as described in the Example. [0010] Examples of the polyvalent isocyanate include those described in Japanese Patent Application Laid-Open No. 2009-292890 or WO2016 / 171151. From the viewpoint of reactivity at the time of synthetic resin, diphenylmethane diisocyanate is mentioned. Better. When the (meth) acrylfluorenyl group is introduced, for example, a method of reacting a terminal isocyanate group with a hydroxyl-containing (meth) acrylfluorenyl compound described in JP-A-2009-292890, Or make the terminal hydroxyl group with 2- (meth) acryloxyethyl isocyanate, 2- (meth) acryloxypropyl isocyanate, 1,1-bis (acryloxymethyl) ethyl isocyanate, etc. Method for reacting isocyanate-containing (meth) acrylfluorenyl compounds. Among them, a method of reacting a terminal isocyanate group with a hydroxyl group-containing (meth) acrylfluorenyl compound is preferred from the viewpoint of increasing the specific gravity of the radically polymerizable resin composition. From the viewpoint of increasing the specific gravity of the radically polymerizable resin composition, the hydroxyl-containing (meth) acrylfluorenyl compound is composed of 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylic acid. Esters, caprolactone-modified hydroxyalkyl (meth) acrylates, hydroxyethylpropenamide, etc. are preferred, of which 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (methyl ) Acrylate is preferred, and 2-hydroxyethyl methacrylate or 2-hydroxypropyl methacrylate is more preferred. The weight average molecular weight of the urethane (meth) acrylate resin is preferably from 3000 to 20,000, and more preferably from 4,000 to 11,000. If the weight average molecular weight is within the above range, it will be low when a radical polymerizable resin composition is prepared by blending a urethane (meth) acrylate resin with a radical polymerizable unsaturated monomer described later and the like. Good viscosity and compatibility. [Vinyl Ester Resin] A vinyl ester resin is a resin which is also referred to as an epoxy (meth) acrylate resin. As the vinyl ester resin, one obtained by reacting an epoxy resin with an unsaturated monoacid can be used. Examples of the epoxy resin include bisphenol A diglycidyl ether, a high molecular weight homologue thereof, and a phenol-type glycidyl ether. Specifically, the epoxy resin etc. which are described in WO2016 / 171151 are mentioned. As the unsaturated monobasic acid, a known one can be used, and examples thereof include (meth) acrylic acid, crotonic acid, and cinnamic acid. A reaction product of a compound having one hydroxyl group and one or more (meth) acrylfluorenyl groups and a polybasic acid anhydride may also be used. Moreover, in this specification, "(meth) acrylic acid" means one or both of "acrylic acid and methacrylic acid", and "(meth) acrylfluorenyl" means "acrylmethyl and methacryl" One or both parties. The polybasic acid is used by a user for increasing the molecular weight of the epoxy resin, and known ones such as those described in WO2016 / 171151 can be used. [Unsaturated polyester resin] As the unsaturated polyester resin, an unsaturated dibasic acid and a dibasic acid component containing a saturated dibasic acid, if necessary, can be used to perform an esterification reaction with a polyvalent alcohol component. Winner. Examples of the unsaturated dibasic acid or the saturated dibasic acid include those described in WO2016 / 171151. These systems may be used alone or in combination of two or more. The said polyvalent alcohol is not specifically limited, For example, it is the same as that of a urethane (meth) acrylate resin, For example, what is described in WO2016 / 171151 is mentioned. [0013] As long as the unsaturated polyester does not impair the effect of the present invention, those which are denatured with a dicyclopentadiene-based compound can also be used. Regarding the denaturation method using a dicyclopentadiene-based compound, for example, after obtaining a dicyclopentadiene and maleic acid addition product (cydecanol monomalate) A known method such as a method of introducing a dicyclopentadiene skeleton as a monobasic acid will be used. The vinyl ester resin or unsaturated polyester resin used in the present invention may be introduced with an oxidative polymerization (air-hardening) group such as an allyl group or a benzyl group. The introduction method is not particularly limited, and examples thereof include the addition of a polymer containing an oxidative polymerization group, or the condensation of a compound having a hydroxyl group and an allyl ether group. For allyl glycidyl ether, 2,6- A method of adding a diallyl phenyl allyl ether to a reactant of a compound having a hydroxyl group and an allyl ether group with an acid anhydride, and the like. Moreover, the oxidative polymerization (air hardening) in the present invention refers to the generation and decomposition sites of peroxides, such as those oxidized by methylene bonds existing between ether and double bonds, such as allyl ether groups. Accompanying cross-linking. [Polyester (meth) acrylate resin] As the polyester (meth) acrylate resin in the present invention, for example, a polyester obtained by reacting a polyvalent carboxylic acid with a polyvalent alcohol, specifically, A resin obtained by reacting hydroxyl groups at both ends of polyethylene terephthalate and the like with (meth) acrylic acid can be used. [(Meth) acrylate resin] As the (meth) acrylate resin, for example, a poly (methyl methacrylate) having one or more functional groups selected from a hydroxyl group, an isocyanate group, a carboxyl group, and an epoxy group can be used. Group) acryl fluorene-based resin, or a resin obtained by reacting a functional group of a monomer having the aforementioned functional group and a (meth) acrylate copolymer with a (meth) acrylate having a hydroxyl group. [0016] <Radical Polymerizable Unsaturated Monomer (B)> The radical polymerizable unsaturated monomer (B) used in the present invention has a lower elastic modulus and a lower elastic modulus, It plays an important role in coexisting with high specific gravity. The radical polymerizable unsaturated monomer (B) contains a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and / or a radical polymerizable unsaturated having a caprolactone ring-opening structure. Monomer (b-2). By using these (b-1) component and / or (b-2) component, the low elasticity modulus and high specific gravity of a radically polymerizable composition can coexist. [0017] The oxyalkylene structure is-(-OR-) n -(R represents an alkylene group, and n is an integer). The carbon number of the alkylene group is preferably 2 to 6. n is preferably an integer from 1 to 30. Examples of the (b-1) radical polymerizable unsaturated monomer having an oxyalkylene structure include a (meth) acrylate having an oxyalkylene structure, and the carbon number of the alkylene portion is 2 ~ 6 is better. The component (b-1) is preferably a monomer having a polyalkylene oxide (meth) acrylate structure having an alkylene oxide addition mole number of 1 to 30. The addition mole number of the alkylene oxide is preferably from 1 to 20. When the addition mole number of the alkylene oxide is within the above range, a good balance is obtained from the viewpoint of the viscosity and specific gravity of the radical polymerizable resin composition. Specific examples include phenolic alkylene oxide modified (meth) acrylates such as phenoxyethyl (meth) acrylate, and bisphenol A rings such as ethoxybisphenol A dimethacrylate. Oxane-modified di (meth) acrylate, alkylene oxide-modified di (meth) acrylate of bisphenol F, alkylene oxide-modified tri (meth) acrylate of isocyanuric acid, methoxypolyethylene Alkyl-terminated polyalkylene glycol (meth) acrylates such as diols (meth) acrylates, alkylene oxide-denatured tris (meth) acrylates of trimethylolpropane, and the like. These systems can be used alone or in combination of two or more. Among them, from the viewpoint of reducing the viscosity of the radical polymerizable resin composition, alkylene oxide-modified di (meth) acrylate of bisphenol A, alkylene oxide-modified (meth) acrylate of phenol, and methoxypolyethylene Alkyl-terminated polyalkylene glycol (meth) acrylates such as diols (meth) acrylates are preferred, and alkylene oxides modified with bisphenol A are modified with di (meth) acrylates and alkylene oxides with phenol (Meth) acrylate is preferred. The aforementioned (b-1) component is an alkylene oxide-denatured bis (formaldehyde) containing bisphenol A from the viewpoints of a balance between low viscosity, low elastic modulus, and high specific gravity of the radical polymerizable resin composition of the present invention. Preferably, two kinds of alkylene oxide-modified di (meth) acrylates containing bisphenol A and alkylene oxide-modified (meth) acrylates of phenol are used. (b-1) From the same point of view, the total amount of these two contents is preferably 60% by mass or more, more preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 100% by mass. (b-1) The content of the alkylene oxide-denatured di (meth) acrylate of bisphenol A in the component is preferably from 50 to 100% by mass, more preferably from 60 to 90% by mass, and more preferably from the same viewpoint. It is 65 to 80% by mass. The content of the alkylene oxide-denatured (meth) acrylate of the phenol in the component (b-1) is preferably 0 to 50% by mass, more preferably 10 to 40% by mass, and even more preferably 20 to 35% by mass. The addition mole number of the alkylene oxide in the alkylene oxide-modified di (meth) acrylate of bisphenol A is reduced from the viscosity of the radical polymerizable resin composition of the present invention, the modulus of elasticity is low, and the From the viewpoint of balance of specific gravity, 1 to 30 is preferable, 4 to 30 is preferable, 4 to 20 is more preferable, and 8 to 20 is more preferable. The addition mole number of the alkylene oxide in the alkylene oxide-denatured (meth) acrylate of phenol is preferably from 1 to 10, more preferably from 1 to 4, and even more preferably from 1 to 2, from the same viewpoint. Better is 1. (B-2) A radically polymerizable unsaturated single system having a caprolactone ring-opening structure means having-(-C 5 H 10 COO-) m -Structured unsaturated monomer shown. m is preferably an integer from 1 to 10. Specific examples include (meth) acrylates having a ring-opening structure of caprolactone. The aforementioned radically polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure is a polycaprolactone (a) having a caprolactone addition mole number of 1 to 5 (m = 1 to 5). A monomer having an acrylate) structure is preferred. The addition of caprolactone with a molar number of 1 to 3 is preferred. When the addition mole number is within the above range, the balance between low elastic modulus and high specific gravity of the radical polymerizable resin composition can be well achieved, and the viscosity can be further reduced. More specific examples include caprolactone-modified hydroxyalkyl (meth) acrylate, caprolactone-modified ginseng (propyleneoxyoxyalkyl) isotricyanate, and the like. From the viewpoint of reducing viscosity, it is preferable to use caprolactone-denatured hydroxyethyl (meth) acrylate. From the viewpoint of reducing the elastic modulus of the radical polymerizable resin composition of the present invention and increasing the specific gravity, it is preferable to use the component (b-1) and the component (b-2) together. Relative to the total amount of (b-1) and (b-2), the content of (b-1) is preferably 40 to 100% by mass, more preferably 55 to 90% by mass, and more preferably 60 ~ 75 mass%, more preferably 60 ~ 70 mass%. [0019] Specific examples of other radically polymerizable unsaturated monomers include those described in Japanese Patent Application Laid-Open No. 2009-292890. From the viewpoint of low modulus of elasticity, lauryl (meth) acrylate, 2 -Ethylhexyl (meth) acrylate and meth (meth) acrylate are preferred. The total amount of the components (b-1) and (b-2) in the radically polymerizable unsaturated monomer (B) is preferably 20 to 95% by mass, and more preferably 30 to 95% by mass. When the content is within the above range, a good balance between low elastic modulus and high specific gravity can be achieved, and the viscosity can be further reduced. As one aspect, the total amount of the components (b-1) and (b-2) in the radically polymerizable unsaturated monomer (B) is preferably 20 to 95% by mass, and more preferably 40 to 90% by mass. %, More preferably 65 to 85% by mass. In addition, as one aspect, it may be 75 to 95% by mass or 80 to 95% by mass. The content of the radically polymerizable unsaturated monomer having a caprolactone ring-opening structure in the total amount of the radically polymerizable resin (A) and the radically polymerizable unsaturated monomer (B) is 5 to 50% by mass Preferably, 10 to 40% by mass is more preferred, and 15 to 35% by mass is particularly preferred. Within this range, a good balance between low elastic modulus and high specific gravity can be achieved. [0020] The content of the component (A) in the total amount of the components (A) and (B) is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and even more preferably 10 to 45% by mass It is more preferably 15 to 45 mass%, more preferably 20 to 45 mass%, more preferably 25 to 45 mass%, and more preferably 30 to 40 mass%. If the content is within the above range, a good balance between low elastic modulus and high specific gravity of the radical polymerizable resin composition can be obtained. [0021] <Amine-based hardening accelerator (C)> The amine-based hardening accelerator (C) used in the present invention may be a known amine without any particular limitation. Specifically, for example, aniline, N, N- Dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethyl Amine) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine, m-toluidine, diethylethyltriamine, pyridine N, N-substituted aniline, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline, N, N-substituted-p-toluidine, 4- (N, N -Substituted amino) benzaldehyde and the like. Among them, N, N-bis (2-hydroxyethyl) -p-toluidine or N, N-bis (2-hydroxypropyl) -p-toluidine is preferred from the viewpoint of facilitating hardening. The content of the amine-based hardening accelerator is preferably 0.01 to 3.0 parts by mass relative to 100 parts by mass of the total of (A) the radically polymerizable resin and (B) the radically polymerizable unsaturated monomer, and more preferably 0.1 to 1.0 parts by mass. When the content is within the above range, the hardenability can be easily adjusted. [0022] <Hardener (D)> The radically polymerizable resin composition of the present invention may further include a hardener (D). The (D) curing agent used in the present invention is not particularly limited, and a known radical polymerization initiator can be used, and an organic peroxide is preferably used. Examples of the organic peroxide include dibenzylfluorenyl peroxide (also referred to as benzylperoxide), ketone peroxide, benzoyl peroxide, hydroperoxide, and difluorenyl peroxide. Oxides, peroxyketals, hydroperoxides, diallyl peroxides, peroxyesters, and peroxydicarbonates can also be used, and azo compounds can also be used. More specifically, usable are, for example, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl peroxybenzoate, dibenzylfluorenyl peroxide, and dicumyl peroxide. , Diisopropyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -3,3, 5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, 3-isopropylhydroperoxide, t-butyl Hydroperoxide, dicumyl hydroperoxide, acetamyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, isopropyl Butyl peroxide, 3,3,5-trimethylhexyl peroxide, lauryl peroxide, azobisisobutyronitrile, and azodicarbamide. These organic peroxides can be used alone or in combination. Among these, dibenzylfluorenyl peroxide is preferred from the viewpoints of cost, availability, and stability. [0023] The blending amount of the hardener (D) is preferably 0.1 to 8 parts by mass, and more preferably 0.5 to 5 parts by mass, with respect to 100 parts by mass of the total of the components (A) and (B). If the compounding quantity of a hardening | curing agent (D) is 0.1 mass part or more, the desired hardenability can be obtained easily. On the other hand, if the blending amount of the hardener (D) is 8 parts by mass or less, it is advantageous for economical use and it is easy to obtain a sufficient working time. [Other Ingredients] [Polymerization Prohibiting Agent] From the viewpoint of inhibiting excessive polymerization of (A) a radically polymerizable resin and (B) a radically polymerizable unsaturated monomer, the radically polymerizable resin composition of the present invention, From the viewpoint of controlling the reaction rate, a polymerization inhibitor may be included. Examples of the polymerization inhibitor include hydroquinone, methylhydroquinone, phenothiazine, catechol, 4-tert-butylcatechol, and the like. [Hardening accelerator other than amine-based] The radical polymerizable resin composition of the present invention may contain a hardening accelerator other than the above-mentioned amine-based hardening accelerator. The hardening accelerator other than the amine is not particularly limited, and a known organic metal salt can be used. Examples of the organic metal salt include copper naphthenate, cobalt octanoate, cobalt naphthenate, cobalt hydroxide, zinc hexanoate, manganese octanoate, and the like. Among these, cobalt naphthenate and cobalt octanoate are preferred. These organometallic salts can be used alone or in combination. [0025] The blending amount of the organic metal salt is preferably 0.02 to 10 parts by mass, and more preferably 0.1 to 3.0 parts by mass, with respect to 100 parts by mass of the total of the components (A) and (B). When the compounding amount of the organometallic salt is 0.02 parts by mass or more, it is easy to obtain a desired hardening time and hardening state, and the drying property is good. On the other hand, when the blending amount of the organometallic salt is 10 parts by mass or less, it is easy to obtain desired pot life and storage stability. [Photopolymerization Initiator] The resin composition of this embodiment may include a photopolymerization initiator for the purpose of improving the hardenability. Examples of the photopolymerization initiator include a photoradical polymerization initiator and the like. Photoradical polymerization initiators are used to improve the curability of acrylic resins or monomers having double bonds. Specifically, examples of the photo-radical polymerization initiator include diphenyls such as benzoin alkyl ethers, benzophenones, benzyl, methyl o-benzylfluorenyl benzoate, and the like. Methyl ketone system, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylphenylacetone, 4-isopropyl-2-hydroxy-2-methylbenzene Acetophenones such as acetone, 1,1-dichloroacetophenone, 2-chlorothioxanthone, 2-methylthioxanthone, and 2-isothioxanthone. The photopolymerization initiator may be added in a range of 0.1 to 10 parts by mass based on 100 parts by mass of the total of (A) the radically reactive resin and (B) the radically polymerizable unsaturated monomer. [Interfacial Surfactant] The radical polymerizable resin composition of the present invention may contain a surfactant from the viewpoint of making the resin and water have good compatibility and easily hardening water in the state of being contained in the resin. Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more. Among these surfactants, one or more kinds selected from anionic surfactants and nonionic surfactants are preferred. [0027] Examples of the anionic surfactant include alkyl sulfate salts such as sodium lauryl sulfate and triethanolamine lauryl sulfate; sodium polyoxyethylene lauryl ether sulfate and polyoxyethylene alkyl ether trisulfate. Polyoxyethylene alkyl ether sulfates of ethanolamine, etc .; sulfonates of dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, etc .; hard Sodium fatty acid soap, potassium oleate soap, castor oil potassium soap and other fatty acid salts; formalin naphthalenesulfonic acid condensates, special polymer systems, etc. Among these, sulfonate is preferable, dialkylsulfosuccinic acid is more preferable, and dioctylsulfosuccinic acid sodium is more preferable. Examples of the non-ionic surfactant include polyoxyethylene alkyl groups such as polyoxylauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether. Ethers, polyoxyethylene styrenated phenyl ethers, polyoxyethylene tribenzyl phenyl ethers, polyoxyethylene polyoxypropylene glycols, and other polyoxyethylene derivatives; polyoxyalkylene alkyl ethers, calyx Fatty acid fatty acid esters of dandan laurate, lantana monopalmitate, dandan monostearate, etc .; polyoxyethylene dandan laurate, polyoxyethylene dandan laurel Fatty acid esters of polyoxyethylene rambutan, such as esters, polyoxyethylene rambutan monopalmitate; polyoxyethylene sorbitan fatty acids, such as polyoxyethylene sorbitol tetraoleate; glycerol monostearate Glycerol fatty acid esters such as esters, glycerol monooleate, and the like. Of these, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene alkyl ether are preferred. In addition, the HLB (Hydrophile-Lipophile Balance) of the nonionic surfactant is preferably 5-15, and more preferably 6-12. In the case of a surfactant, the amount of the radical polymerizable resin composition is 0.01 to 100 parts by mass of the total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. 10 parts by mass is preferable, 0.05 to 7 parts by mass is preferable, and 0.1 to 5 parts by mass is more preferable. [Dispersant] The radical polymerizable resin composition of the present invention may contain a wetting and dispersing agent, for example, in order to improve wetting or permeability to a repaired place that has been flooded with water. Examples of the wetting and dispersing agent include a fluorine-based wetting and dispersing agent and a polysiloxane-based wetting and dispersing agent. These can be used alone or in combination of two or more. Examples of commercially available fluorine-based wetting and dispersing agents include Megafac (registered trademark) F176, Megafac (registered trademark) R08 (manufactured by Dainippon Ink Chemical Industry Co., Ltd.), PF656, PF6320 (manufactured by OMNOVA), Troisol S-366 (manufactured by Troy Chemical Co., Ltd.), Fluorad FC430 (manufactured by Japan 3M Co., Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.), and the like. Examples of commercially available products of the polysiloxane-based wetting and dispersing agent include BYK (registered trademark) -322, BYK (registered trademark) -377, BYK (registered trademark) -UV3570, BYK (registered trademark) -330, BYK (Registered trademark) -302, BYK (registered trademark) -UV3500, BYK-306 (made by BYK Japan Co., Ltd.), polysiloxane polymer KP-341 (made by Shin-Etsu Chemical Industry Co., Ltd.), and the like. When the radical polymerizable resin composition of the present invention contains a dispersant, its amount is 100 parts by mass with respect to the total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer, It is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass. [Thixotropic agent] The radically polymerizable resin composition of the present invention may contain a thixotropic agent for the purpose of viscosity adjustment and the like for ensuring workability of a vertical surface or a ceiling surface. Examples of the thixotropic agent include inorganic thixotropic agents and organic thixotropic agents. Examples of the organic thixotropic agent include hydrogenated castor oil-based, amidine-based, oxidized polyethylene-based, and vegetable oil polymerized oils. Specific examples include a system, a surfactant system, and a composite system using both of them, such as DISPARLON (registered trademark) 6900-20X (Nanben Chemical Co., Ltd.) and the like. In addition, examples of the inorganic thixotropic agent include silica and bentonite, and examples of the hydrophobic agent include Reolosil (registered trademark) PM-20L (gas phase method dioxide manufactured by Tokuyama Co., Ltd.). Silicone), Aerosil (registered trademark) AEROSIL R-106 (Japan Aerosil Co., Ltd.), and the like, examples of hydrophilic ones include Aerosil (registered trademark) Aerosil-200 (Japan Aerosil Co., Ltd.) and the like. From the viewpoint of further improving the shake property, BYK (registered trademark) -R605 or BYK (registered trademark) -R606 (manufactured by BiChemie Japan Co., Ltd.) can be suitably used by adding a shake modifier to a hydrophilic calcined silica. Become. When the radical polymerizable resin composition of the present invention contains a thixotropic agent, the amount thereof is 100 parts by mass relative to the total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. It is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass. [Hardening and Rolling Agent] The radical polymerizable resin composition of the present invention may contain a hardening and rolling agent for the purpose of adjusting the hardening time. Examples of the hardening rolling agent include, for example, a radical hardening rolling agent, and for example, 2,2,6,6-tetramethylpiperidine 1-oxy radical (TEMPO), 4-hydroxy-2,2 , 6,6-tetramethylpiperidine 1-oxy radical (4H-TEMPO), 4-lanthoxy-2,2,6,6-tetramethylpiperidine 1-oxy radical (4-Oxo- TEMPO) and other TEMPO derivatives. From the viewpoint of cost and ease of operation, among these, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxy radical (4H-TEMPO) is preferred. The amount of the radically polymerizable resin composition in the polymerization inhibiting agent and the hardening and rolling agent is 100 parts by mass with respect to the total of (A) the radically polymerizable resin and (B) the radically polymerizable unsaturated monomer, respectively. It is preferably 0.0001 to 10 parts by mass, and more preferably 0.001 to 10 parts by mass. [Defoaming Agent] The radically polymerizable resin composition of the present invention may contain a defoaming agent for the purpose of improving the generation of bubbles during molding and the residual bubbles and residues of the molded product. Examples of the defoaming agent include a polysiloxane-based defoamer and a polymer-based defoamer. The amount of the defoaming agent is preferably in the range of 0.01 to 5 parts by mass, and more preferably 0.1 to 100 parts by mass of the total of (A) the radically polymerizable resin and the (B) radically polymerizable unsaturated monomer. ~ 1 part by mass. [Coupling Agent] The radical polymerizable resin composition of the present invention may include a coupling agent for the purpose of improving the adhesion to the substrate to be repaired, that is, the substrate. Examples of the coupling agent include known silane-based coupling agents, titanate-based coupling agents, and aluminum-based coupling agents. Examples of such a coupling agent include R 3 -Si (OR 4 ) 3 Silane coupling agent shown. Also, as R 3 Examples include, for example, aminopropyl, glycidoxy, methacryloxy, N-phenylaminopropyl, mercapto, vinyl, and the like. 4 Examples include methyl and ethyl. When the radically polymerizable resin composition contains a coupling agent, the amount is 0.001 to 100 parts by mass of the total of (A) the radically polymerizable resin and (B) the radically polymerizable unsaturated monomer. 10 mass% is preferable, and 0.01 to 5 mass% is more preferable. [Light Stabilizer] The radical polymerizable resin composition of the present invention can also use a light stabilizer for the purpose of improving the long-term durability of a molded article. Examples of the light stabilizer include an ultraviolet absorber and a hindered amine-based light stabilizer. These systems can be used alone or in combination of two or more. Specific examples of the ultraviolet absorber include benzotriazole-based, triazine-based, benzophenone-based, cyanoacrylate-based, salicylate-based, and the like, as hindered amine-based light stabilizers, Examples include NH type, N-CH 3 Type, NO alkyl type, etc. Relative to 100 parts by mass of the total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer, the use amount of the light stabilizer is preferably in the range of 0.01 to 5 parts by mass, and more preferably 0.05. ~ 2 parts by mass. [Wax] The radically polymerizable resin composition of the present invention may be one containing wax. As the wax, a paraffin, a polar wax, or the like can be used alone or in combination, and various known melting points can be used. Examples of the polar waxes include those having both a polar group and a non-polar group in the structure. Specific examples include NPS-8070, NPS-9125 (manufactured by Nippon Seiki Co., Ltd.), Emanon 3199, and 3299 (manufactured by Kao Corporation). With respect to 100 parts by mass of the total of (A) the radically polymerizable resin and (B) the radically polymerizable unsaturated monomer, 0.05 to 4 parts by mass of the wax is preferable, and 0.1 to 2.0 parts by mass of the wax is preferable. [Flame Retardant] The radical polymerizable resin composition of the present invention may be one containing a flame retarder. As a flame retardant, it can be used alone or in combination such as bromine flame retardant, chlorine flame retardant, phosphorus flame retardant, inorganic flame retardant, Intumescent flame retardant, and polysiloxane flame retardant. Agents and the like, and known ones can be used. In addition, halogen-based flame retardants such as bromine-based flame retardants can be used in combination with antimony trioxide for the purpose of further improving flame resistance. The amount of the flame retardant to be added varies depending on the system, and it is preferably 1 to 100 parts by mass based on 100 parts by mass of the total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. [Plasticizer] The resin composition of the present invention may include a plasticizer for the purpose of adjusting viscosity and elastic modulus. As a plasticizer, it can be used alone or in combination such as epoxy-based, polyester-based, phthalate-based, adipate-based, trimellitate-based, phosphate-based, citrate-based As the system, a sebacate system, an azelate system, a maleate system, a benzoate system, etc., a known one can be used. The amount of the plasticizer to be added varies depending on the system, and is preferably 0.01 to 20 parts by mass based on 100 parts by mass of the total of (A) the radical polymerizable resin and (B) the radical polymerizable unsaturated monomer. It is preferably contained in an amount of 0.1 to 10 parts by mass. The total content of (A) component, (B) component, and (C) component in the radical polymerizable composition of the present invention is preferably 30 to 100% by mass, and more preferably 60 to 100% by mass. More preferably, it is 90 to 100% by mass. When the radical polymerizable composition of the present invention contains (D) a curing agent, the (A) component, (B) component, (C) component, and (D) are cured in the radical polymerizable composition of the present invention. The total content of the agent is preferably 30 to 100% by mass, more preferably 60 to 100% by mass, and even more preferably 90 to 100% by mass. [0037] <Physical property value of radical polymerizable composition> The viscosity of the radical polymerizable composition is preferably 10 to 500 mPa · s / 25 ° C from the viewpoint of ease of injection into the cracks of the inorganic structure. It is preferably 10 to 350 mPa · s / 25 ° C, and more preferably 10 to 250 mPa · s / 25 ° C. The method for measuring viscosity is as described in the examples. The liquid specific gravity of the radical polymerizable composition is preferably 1.01 to 1.15, more preferably 1.03 to 1.15, and particularly preferably 1.05 to 1.15 from the viewpoint of making the adhesion good. The method for measuring the specific gravity of the liquid is as described in the examples. From the viewpoint of the adhesiveness of the radical polymerizable composition after the injection of cracks into the inorganic structure, it is preferably 3-12%, more preferably 4-11%, and even more preferably 5-10%. . The method for measuring the volume shrinkage is as described in the examples. The elastic modulus of the radically polymerizable composition ranges from 1 to 900 N / mm from the viewpoint of durability against vibration. 2 Better, preferably 3 ~ 600N / mm 2 , More preferably 5 ~ 200N / mm 2 . The method of measuring the elastic modulus is as described in the examples. [Production Method of Free Radical Polymerizable Composition] There is no particular limitation on the mixing order of the components. From the viewpoint of workability for obtaining a homogeneous mixture efficiently, the composition is adjusted to perform radical polymerization. From the viewpoint of workability within the target physical properties such as the liquid specific gravity of the sexual composition, after the component (A) is synthesized, a part of the component (B) is added and mixed to reduce the viscosity of the component (A), and the remaining The component (B) is preferably mixed with other components. Or, use a part of the component (B) as a diluent during the synthesis of the component (A), obtain a mixture of the component (A) and a component (B), and add the remaining component (B) and other components. Mixing is better. In the case of low viscosity, the mixing ratio (mass ratio) of the component (A) and one component (B) is not particularly limited, and is preferably 95: 5 to 20:80, more preferably 85:15 to 30:70. . The viscosity of the mixture of the component (A) and one component (B) is preferably 100 to 2000 mPa · s, more preferably 100 to 1500 mPa · s, and even more preferably 100 to 1000 mPa · s. The method for measuring viscosity is as described in the examples. If the viscosity is adjusted in the above range in advance, when the remaining components are mixed to form the radical polymerizable resin composition of the present invention, it can be uniformly mixed in a short time. The liquid specific gravity of the mixture of the component (A) and a part of the component (B) is preferably 0.95 to 1.15, and more preferably 1.00 to 1.10. By adjusting the specific gravity of the liquid within the above range, when the remaining components are mixed to form the radical polymerizable resin composition of the present invention, the type or amount of the component (B) is adjusted, and it becomes easy to adjust the liquid to be the target. proportion. [Injector for Repairing Structures] The radical polymerizable resin composition of the present invention is preferably an injection agent for repairing structures that includes the radical polymerizable resin composition. Examples of the structure include inorganic structures such as concrete, asphalt concrete, plaster, wood, and metal. The structure-repairing injection agent may be produced only from the radical polymerizable resin composition, or the radical polymerizable composition may contain an arbitrary additive such as a bone material. Examples of the aggregate material include silica sand, silicon dioxide, talc, alumina, aluminum hydroxide, calcium carbonate, aluminum, titanium, and the like. Among these, from the viewpoint of cost or material acquisition, Silica and calcium carbonate are preferred. In addition, when the bone material is contained, the permeability of the structure-repairing injection agent may be reduced. Therefore, the structure-repairing injection agent of the present invention preferably does not contain the bone material. In particular, in the case of repairing concrete with a narrow crack width using an injecting agent for repairing a structure, the injecting agent containing the aggregate lacks permeability and hardly adheres to the object to be repaired. Therefore, it is particularly suitable for use even without bone The material is still a high specific gravity injection agent for repairing structures according to the present invention. The liquid specific gravity of the structure-repairing injection agent is preferably 1.01 to 1.15, more preferably 1.03 to 1.15, and particularly preferably 1.05 to 1.15 from the viewpoint of good adhesion. The method for measuring the specific gravity of the liquid is as described in the examples. [0040] The method of repairing the structure is not particularly limited. For example, the injection agent for repairing the structure of the present invention can be applied to a repair place such as concrete, asphalt concrete, stucco, wood, metal, etc., and allowed to dry. And hardening. The coating method of the structure-repairing injection agent is not particularly limited, and may be applied, for example, a coating method by dipping, a coating method by spraying, a coating method by rollers, using a brush, bristles, or wipe Application method of knife and other appliances. The coating amount of the structure-repairing injection agent is not particularly limited, and it is appropriately adjusted after taking into consideration the size of the restoration site, the adhesiveness of the structure-repairing injection agent, and the strength of the hardened material of the structure-repairing injection agent. . The method of drying after applying the structure-repairing injection agent is not particularly limited, and a natural drying method or a method in which the properties of the hardened material of the structure-repairing injection agent does not deteriorate can be used. [Examples] [0041] Hereinafter, the present invention will be described based on examples, but the present invention is not limited by the examples. [0042] <Synthesis Example> As will be described later, the following raw materials were used to synthesize (A) a urethane (meth) acrylate resin (UM1) to (UM8) of a radical polymerizable resin, followed by mixing as ( B) Methyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd.), which is one kind of radically polymerizable unsaturated monomer, and a mixture of (A) component and (B) component (U-1) ~ (U -8). [0043] The raw materials of the urethane (meth) acrylate resins (UM1) to (UM8) are as follows. (Polyvalent alcohol) (1) Polypropylene glycol 1 (weight average molecular weight 1000), made by Mitsui Chemicals, Inc., product name: Actcall D-1000 (2) Polypropylene glycol 2 (weight average molecular weight 2000), Mitsui Chemicals (stock) Product, product name: Actcall D-2000 (3) polyethylene glycol 1 (weight average molecular weight 600), manufactured by Toho Chemical Industry Co., Ltd. product name: Toho polyethylene 600 (4) polyethylene glycol 2 ( Weight average molecular weight 1540), manufactured by Toho Chemical Industry Co., Ltd., product name: Toho polyethylene glycol 1540 (5) polyester polyol (weight average molecular weight 2000), manufactured by DIC (Co.), product name: Polylite OD-X -2420 (6) Polyoxyalkylene bisphenol A ether 1 (weight average molecular weight 800), made by ADEKA (stock), product name: BPX-55 (7) Polyoxyalkylene bisphenol A ether 2 (weight average Molecular weight 2000), made by ADEKA (stock), product name: BPX-2000 (polyvalent isocyanate) diphenylmethane diisocyanate (hydroxy (meth) acrylate) 2-hydroxyethyl methacrylate 2-hydroxy The propyl methacrylate is specifically explained about each synthesis example. [Synthesis Example 1] A 3L four-necked flask equipped with a stirrer, a reflux cooling tube, a gas introduction tube, and a thermometer was charged with diphenylmethane diisocyanate: 500 g (2.0 mol), Actcall D-1000 (Mitsui Chemical ( (Polypropylene glycol 1: weight average molecular weight 1000): 500g (0.5mol), Toho polyethylene glycol 1540 (polyethylene glycol 2: Tobang Chemical Industry Co., Ltd. 2: weight average molecular weight 1540): 700g (0.5mol) And dibutyltin dilaurate: 0.2 g, and stirred at 60 ° C for 4 hours to react. Next, 2-hydroxyethyl methacrylate: 260 g (2.0 mol) was added dropwise to the reactant over a period of 2 hours, and the mixture was stirred at the same time. After completion of the dropwise stirring, the reaction was stirred for 5 hours to obtain a urethane Methacrylate resin (UM1). Table 1 shows the raw materials used to produce the urethane methacrylate resin (UM1). Next, 850 g of methyl methacrylate was added to this urethane methacrylate resin (UM1) to obtain a mixture (U-1) of the component (A) and the component (B). The weight average molecular weight of the urethane methacrylate resin (UM1) was 7,300. The viscosity of the mixture (U-1) at 25 ° C was 990 mPa · s, and the specific gravity of the liquid was 1.08. The weight-average molecular weight was measured by gel permeation chromatography (Shodex GPC-101 manufactured by Showa Denko Corporation). The weight average molecular weight is measured at normal temperature (23 ° C) under the following conditions and calculated in terms of polystyrene. (Measurement conditions) Column: LF-804 manufactured by Showa Denko Co., Ltd. Temperature of two branches: 40 ° C Sample: 0.4% by mass of tetrahydrofuran solution of the object to be measured Flow rate: 1ml / separation solution: tetrahydrofuran, viscosity and liquid The measurement conditions of the specific gravity are the same as those of the samples of the examples described later. [Synthesis Examples 2 to 8] Synthesis Examples 2 to 8 were synthesized in the same manner as in Synthesis Example 1 except that the raw materials used were changed to those shown in Table 1, to obtain amino formic acid. Ester methacrylate resin (UM2) ~ (UM8). Moreover, as shown in Table 2, it added so that it might become 30 mass parts with respect to 70 mass parts of each urethane methacrylate resin (UM2)-(UM8), and obtained the mixture. (U-2) ~ (U-8). Table 1 shows the weight average molecular weights of the urethane methacrylate resins (UM2) to (UM8). The liquid specific gravity and viscosity values of the mixtures (U-2) to (U-8) are shown in Table 2. [0046] [0047] [Examples 1 to 16] The raw materials were the mixtures (U-1) to (U-8) obtained in each synthesis example, and the following (B) radical polymerizable unsaturated monomer, (C) amine System hardening accelerator and (D) hardener. ((B) radical polymerizable unsaturated monomer) [(b-1) component] (1) ethoxybisphenol A dimethacrylate (ethylene oxide addition mole number 10), Shin Nakamura Made by Chemical Industry Co., Ltd. Product name: NK ester BPE-500 (2) methoxy polyethylene glycol methacrylate, made by Nippon Oil Co., Ltd .: Blenmer PME-400 (ethylene oxide addition mole (9) (3) phenoxyethyl methacrylate (ethylene oxide addition mole number 1), manufactured by Kyoeisha Chemical Co., Ltd., product name: light ester PO (4) phenoxyethyl Acrylate (ethylene oxide addition mole number 1), manufactured by Kyoeisha Chemical Co., Ltd., product name: light acrylate PO-A [(b-2) component] (5) caprolactone denaturation ( Addition mole number 1) Hydroxyethyl methacrylate, manufactured by Daisen Road, product name: Plaxel FM1 In Table 3, it is marked as caprolactone modified (1 mol) methacrylate. (6) Caprolactone denatured (additional mole number 2) hydroxyethyl methacrylate, manufactured by Daisen Road, product name: Plaxel FM2D In Table 3, labeled as caprolactone denatured (2mol) methyl Acrylate. (7) Caprolactone denatured (additional mole number 2) hydroxyethyl acrylate, manufactured by Daisen Road, product name: Plaxel FA2D In Table 3, it is indicated as caprolactone denatured (2mol) acrylate. [Other radical polymerizable unsaturated monomers] (8) Lauryl methacrylate, manufactured by Kyoeisha Chemical Co., Ltd., product name: Light ester L (9) 2-ethylhexyl methacrylate, total Made by Rongshe Chemical Co., Ltd., product name: Light EH (10) methyl methacrylate, Mitsubishi Rayon (Stock), product name: Acrylic ester M [0049] ((C) Amine-based hardening promotion Agent) (1) N, N-bis (2-hydroxyethyl) -p-toluidine, manufactured by Wako Pure Chemical Industries, Ltd., product name: accelerator A (2) N, N-bis (2-hydroxy (Propyl) -p-toluidine, manufactured by Morin Chemical Industry Co., Ltd., product name: PT-2HE ((D) hardener) dibenzylfluorenyl peroxide, manufactured by AKZO Chemical Co., Ltd., product name: Perkadox CH-50L [0050] For each of the mixtures (U-1) to (U-8) obtained in the synthesis example, (B) the radically polymerizable unsaturated monomer shown in Table 3 is added as necessary, and obtained from ( A) A component and a preliminary sample composed of a component (B). Next, 100 parts by mass of this preliminary sample, that is, 100 parts by mass of the total of the components (A) and (B), (C) an amine-based hardening accelerator and ( D) The hardening agent is stirred to obtain a radical polymerizable resin composition. In the column of methyl methacrylate in Table 3, the content of methyl methacrylate previously contained in the above-mentioned mixtures (U-1) to (U-8), and the content added as necessary (B) are free. The total content of the methacrylic acid ester of the polymerizable unsaturated monomer is described in total. In addition, in the column of (A) radical polymerizable resin in Table 3, only (A) is calculated from the amount of raw materials used in the production of the mixtures (U-1) to (U-8). Content of polymerizable resin. (A) The content of the radically polymerizable resin is calculated by considering the raw materials used in the production of the mixtures (U-1) to (U-8) as a 100% reaction. [Comparative Examples 1 to 9] A radical polymerizable resin composition was obtained in the same manner as in the example except that the component (b-1) and the component (b-2) were not included. Table 3 shows the content of each component of the radical polymerizable resin composition. With respect to the composition for a radically polymerizable resin obtained by this operation, the viscosity, liquid specific gravity, volume shrinkage ratio, and elastic modulus were measured and evaluated by the following methods. The results are shown in Table 3. [0052] <Viscosity measurement> The viscosity at 25 ° C. was measured at 100 rpm using a RE-85 viscometer made by Toki Sangyo Co., Ltd., cone plate type, cone rotor 1 ° 34 ′ × R24. <Liquid specific gravity measurement> According to JIS K 7112 -1999 Appendix 2 "Plastic-liquid resin-water substitution method" uses an electronic specific gravity meter MD-200S made by AlfaMirage to measure the specific gravity of the liquid at 23 ° C. <Volume shrinkage rate> A test body having a length × width × thickness = 40 mm × 40 mm × 3 mm was prepared as described below. That is, in a normal temperature (23 ° C.) environment, a radical polymerizable resin composition was injected into a model frame of length × width × thickness = 200 mm × 200 mm × 3 mm to prepare a test body (solid). After that, in a normal temperature (23 ° C) environment, after hardening for 12 hours, post-hardening was performed at 80 ° C for 3 hours. From the prepared test body, a test body of length × width × thickness = 40 mm × 40 mm × 3 mm was cut out and used for measurement. Use this test body in accordance with JIS K 7112 -1999 In the water substitution method, the specific gravity of the solid is measured by the same test machine as the specific gravity of the liquid. The solid specific gravity measurement was performed twice for each test body. Then, the average value of the two measurement results was used to calculate the volume shrinkage. Use JIS K 6901 -2008 The calculation formula described calculates the volume shrinkage. <Elastic Modulus> The radical polymerizable resin composition is made into a solid by the following operation. That is, in a normal temperature environment, a radical polymerizable resin composition is injected into a mold frame of length × width × thickness = 200 mm × 200 mm × 3 mm to produce a test body (solid). Then, after hardening for 12 hours in a normal temperature environment, post-hardening was performed at 80 ° C for 3 hours. Second, according to JIS K 7113 -1995 No. 2 test piece produced a test body. The produced test specimens were tested under a test environment at a temperature of 23 ° C. and a humidity of 50% according to the above specifications using a 5900R manufactured by Instron, with a fixture length of 120 mm and a test speed of 50 mm / min. The measurement of the elastic modulus was performed three times for each test body. The average value of the three measurement results is used for the evaluation of the elastic modulus. [0053] [0054] [0055] As shown in Table 3, it can be seen that the radical polymerizable unsaturated monomer (b-1) containing a radically polymerizable unsaturated monomer having an oxyalkylene structure and / or the radical polymerizable unsaturated having a caprolactone ring-opening structure is contained. The radical polymerizable resin composition of the present invention (b-2) has a high specific gravity and a low elastic modulus. In particular, it can be seen that the high specific gravity and low elastic modulus of Examples 8 and 10 in which the total amount of the components (b-1) and (b-2) are large are extremely good. On the other hand, compared with the resin compositions of Examples 1 to 16, it can be seen that neither of the radically polymerizable unsaturated monomers (b-1) having an oxyalkylene structure and the caprolactone compounds are included. The radically polymerizable resin composition of Comparative Examples 1 to 9 of the radically polymerizable unsaturated monomer (b-2) having a ring structure cannot coexist with a high specific gravity and a low elastic modulus. [Industrial Applicability] [0057] Since the radical polymerizable resin composition and the structure-repairing injection agent of the present invention have a high specific gravity and a low elastic modulus, it can be suitably used to repair cracks in concrete structures and the like. .

Claims (10)

一種自由基聚合性樹脂組成物,其特徵為含有(A)自由基聚合性樹脂、(B)自由基聚合性不飽和單體,及(C)胺系硬化促進劑;其中(B)自由基聚合性不飽和單體含有:具有氧伸烷基構造之自由基聚合性不飽和單體(b-1)及具有己內酯開環構造之自由基聚合性不飽和單體(b-2),前述自由基聚合性樹脂(A)與前述自由基聚合性不飽和單體(B)之總量中之前述自由基聚合性樹脂(A)之含量為5~60質量%,前述(b-1)成分及(b-2)成分之合計量在前述(B)成分中為20~95質量%。A radical polymerizable resin composition characterized by containing (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, and (C) an amine-based hardening accelerator; wherein (B) a radical The polymerizable unsaturated monomer contains a radical polymerizable unsaturated monomer (b-1) having an oxyalkylene structure and a radical polymerizable unsaturated monomer (b-2) having a caprolactone ring-opening structure. The content of the radical polymerizable resin (A) in the total amount of the radical polymerizable resin (A) and the radical polymerizable unsaturated monomer (B) is 5 to 60% by mass, and the (b- 1) The total amount of the component and the component (b-2) is 20 to 95% by mass in the component (B). 如請求項1之自由基聚合性樹脂組成物,其中前述自由基聚合性樹脂(A)與前述自由基聚合性不飽和單體(B)之總量中前述具有己內酯開環構造之自由基聚合性不飽和單體(b-2)之含量為5~50重量%。The radically polymerizable resin composition according to claim 1, wherein the total amount of the radically polymerizable resin (A) and the radically polymerizable unsaturated monomer (B) has the freedom of a ring-opening structure of caprolactone The content of the base polymerizable unsaturated monomer (b-2) is 5 to 50% by weight. 如請求項1之自由基聚合性樹脂組成物,其中前述(b-1)成分具有環氧烷加成莫耳數1~30之聚環氧烷(甲基)丙烯酸酯構造。The radical polymerizable resin composition according to claim 1, wherein the component (b-1) has a polyalkylene oxide (meth) acrylate structure having an alkylene oxide addition mole number of 1 to 30. 如請求項1之自由基聚合性樹脂組成物,其中前述(b-1)成分為包含選自雙酚A之環氧烷變性二(甲基)丙烯酸酯及酚之環氧烷變性(甲基)丙烯酸酯之1種或2種。The radically polymerizable resin composition according to claim 1, wherein the component (b-1) is an alkylene oxide-modified di (meth) acrylate selected from bisphenol A and an alkylene oxide-modified (meth) ) 1 or 2 types of acrylate. 如請求項1或2之自由基聚合性樹脂組成物,其中前述(b-2)成分具有己內酯加成莫耳數1~5之聚己內酯(甲基)丙烯酸酯構造。The radical polymerizable resin composition according to claim 1 or 2, wherein the component (b-2) has a polycaprolactone (meth) acrylate structure having a caprolactone addition mole number of 1 to 5. 如請求項1之自由基聚合性樹脂組成物,其中前述(A)成分為包含選自聚酯聚醇、聚醚聚醇、聚氧伸烷基雙酚A醚之聚醇構造之胺基甲酸酯(甲基)丙烯酸酯樹脂。The radically polymerizable resin composition according to claim 1, wherein the component (A) is an amino methyl group containing a polyol structure selected from the group consisting of polyester polyol, polyether polyol, and polyoxyalkylene bisphenol A ether. (Meth) acrylate resin. 如請求項1之自由基聚合性樹脂組成物,其中更含有(D)硬化劑。The radical polymerizable resin composition according to claim 1, further comprising (D) a curing agent. 如請求項1之自由基聚合性樹脂組成物,其中相對於前述(b-1)成分與前述(b-2)成分之總量,前述(b-1)成分之含量為55~90質量%。The radical polymerizable resin composition according to claim 1, wherein the content of the (b-1) component is 55 to 90% by mass based on the total amount of the (b-1) component and the (b-2) component. . 如請求項1之自由基聚合性樹脂組成物,其中自由基聚合性組成物之黏度為10~500mPa‧s/25℃。For example, the radical polymerizable resin composition of claim 1, wherein the viscosity of the radical polymerizable composition is 10 to 500 mPa‧s / 25 ° C. 一種構造物修復用注入劑,其係包含如請求項1~9中任一項之自由基聚合性樹脂組成物,且液體比重為1.01~1.15。A structural body repairing injection agent comprising the radical polymerizable resin composition according to any one of claims 1 to 9 and having a liquid specific gravity of 1.01 to 1.15.
TW107102308A 2017-01-23 2018-01-23 Radical polymerizable resin composition and injection for repairing structure TWI660974B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009733 2017-01-23
JP2017-009733 2017-01-23

Publications (2)

Publication Number Publication Date
TW201829501A TW201829501A (en) 2018-08-16
TWI660974B true TWI660974B (en) 2019-06-01

Family

ID=62908938

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107102308A TWI660974B (en) 2017-01-23 2018-01-23 Radical polymerizable resin composition and injection for repairing structure

Country Status (4)

Country Link
JP (1) JP7033084B2 (en)
CN (1) CN110114378B (en)
TW (1) TWI660974B (en)
WO (1) WO2018135654A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026482A (en) * 2018-08-10 2020-02-20 デンカ株式会社 Structure repair method using curable composition, and structure repaired therewith
CN109504051B (en) * 2018-11-30 2020-12-08 河南建筑材料研究设计院有限责任公司 Pad pasting for concrete and mortar curing and preparation method thereof
KR20240056852A (en) * 2022-10-21 2024-05-02 주식회사 실크로드시앤티 Additive for concrete comprising polycarboxylate ether-based copolymer compound prepared by reacting different macro monomers and chemical admixture for concrete comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418988A (en) * 2013-09-04 2015-03-18 Dic株式会社 Free radical polymerized resin composite and civil construction material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351833B2 (en) * 1992-12-09 2002-12-03 照雄 菅原 Repair materials and repair methods for asphalt structures
JPH09235888A (en) * 1995-12-27 1997-09-09 Sanyu Resin Kk Resin composition for injection, and injection method
JPH09302053A (en) * 1996-05-14 1997-11-25 Denki Kagaku Kogyo Kk Cold-setting acrylic repair material for civil engineering and construction
JP2000007405A (en) * 1998-06-23 2000-01-11 Takemoto Oil & Fat Co Ltd Hardenable polymer mortar or concrete composition and hardened body obtained by hardening same
JP2002234921A (en) * 2001-02-13 2002-08-23 Mitsubishi Rayon Co Ltd Odor-less acrylic syrup composition
WO2010064610A1 (en) * 2008-12-02 2010-06-10 株式会社日本触媒 Curable resin composition for optical disk, and optical disk
JP2010198719A (en) * 2008-12-02 2010-09-09 Nippon Shokubai Co Ltd Curable resin composition for optical disk
JP2011173981A (en) * 2010-02-24 2011-09-08 Nippon Shokubai Co Ltd Curable resin composition for optical recording medium, cured product and optical recording medium
JP5003854B2 (en) * 2010-11-19 2012-08-15 Dic株式会社 Radical curable resin composition, coating material using the same, civil engineering building structure, and construction method thereof
JP2017214441A (en) * 2016-05-30 2017-12-07 昭和電工株式会社 Resin composition, crack injection material, and crack repair method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418988A (en) * 2013-09-04 2015-03-18 Dic株式会社 Free radical polymerized resin composite and civil construction material

Also Published As

Publication number Publication date
WO2018135654A1 (en) 2018-07-26
CN110114378A (en) 2019-08-09
JPWO2018135654A1 (en) 2019-11-07
TW201829501A (en) 2018-08-16
JP7033084B2 (en) 2022-03-09
CN110114378B (en) 2022-08-02

Similar Documents

Publication Publication Date Title
RU2702687C2 (en) Repair material for profile recovery, capable of hardening at low temperatures, as well as method of reducing profile using such material
TWI660974B (en) Radical polymerizable resin composition and injection for repairing structure
EP0047120B1 (en) Monomer compositions, polymer concrete compositions containing them and their use
JP7164522B2 (en) Radically polymerizable resin composition and structural repair material
JP2016029125A (en) Two-pack curable resin composition, covering material, covering method and covering structure
JP2017214441A (en) Resin composition, crack injection material, and crack repair method
KR20210113601A (en) curable resin composition
EP3858880A1 (en) Radical polymerizable resin composition and structure repairing material
JP5319957B2 (en) Resin composition
JP2023520231A (en) Elastic material prepared from a curable liquid composition
JP4877885B2 (en) Low elastic adhesive composition
JPWO2020040052A1 (en) Curable resin composition and its cured product
CN113045714B (en) Low odor resin composition
WO2022224988A1 (en) Recess filling material kit, cured product of same, and recess filling method
WO2022224989A1 (en) Recess filling material kit, cured product thereof, and method for filling recess
TW202411286A (en) Resin composition, surface treatment method, and method for producing material including cured coating film
JP2022184179A (en) Mortar-like composition having self-fluidity, cured body thereof, and construction method using the same
CN118043290A (en) Brick powder as filler in multicomponent systems for chemical fastening
JP5484804B2 (en) Resin composition and method of use
KR20240102956A (en) Brick powder as filler in multicomponent systems for chemical fixation
JPH0463891B2 (en)
JP2024082896A (en) Radical polymerizable resin composition, adhesive, and adhesion method