TWI657643B - Power stage circuit with current charge reduction - Google Patents

Power stage circuit with current charge reduction Download PDF

Info

Publication number
TWI657643B
TWI657643B TW106140823A TW106140823A TWI657643B TW I657643 B TWI657643 B TW I657643B TW 106140823 A TW106140823 A TW 106140823A TW 106140823 A TW106140823 A TW 106140823A TW I657643 B TWI657643 B TW I657643B
Authority
TW
Taiwan
Prior art keywords
mos field
gate
effect transistor
side mos
power stage
Prior art date
Application number
TW106140823A
Other languages
Chinese (zh)
Other versions
TW201926844A (en
Inventor
楊曜瑋
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW106140823A priority Critical patent/TWI657643B/en
Application granted granted Critical
Publication of TWI657643B publication Critical patent/TWI657643B/en
Publication of TW201926844A publication Critical patent/TW201926844A/en

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

本發明提供一種功率級電路,包括複數個高側金氧半場效電晶體以及控制電路。每一個高側金氧半場效電晶體之第一端電性連接至電源,所述高側金氧半場效電晶體之第二端彼此電性連接用以產生輸出信號。控制電路電性連接至每一個高側金氧半場效電晶體的閘極端,控制電路以任意順序導通所述高側金氧半場效電晶體,以縮減高側金氧半場效電晶體導通時的充電電流,藉此減少電力消耗和延長高側金氧半場效電晶體的使用壽命。 The invention provides a power stage circuit comprising a plurality of high side MOS field effect transistors and a control circuit. The first end of each of the high-side MOS field-effect transistors is electrically connected to a power source, and the second ends of the high-side MOS field-effect transistors are electrically connected to each other to generate an output signal. The control circuit is electrically connected to the gate terminal of each of the high-side MOSFETs, and the control circuit turns on the high-side MOS field-effect transistor in any order to reduce the turn-on of the high-side gold-oxygen half-field transistor Charge current, thereby reducing power consumption and extending the life of the high-side MOS field effect transistor.

Description

具有充電電流縮減的功率級電路 Power stage circuit with reduced charging current

本發明有關於一種功率級電路,且特別是一種具有充電電流縮減的功率級電路。 The present invention relates to a power stage circuit, and more particularly to a power stage circuit having a reduced charging current.

請參照圖1A,圖1A是傳統的功率級電路的高側金氧半場效電晶體(high side MOSFET)的示意圖。高側金氧半場效電晶體MHS由於其閘極端(Gate)與源極端(Source)之間具有閘源極固有電容CGS,且閘極端與汲極端(Drain)之間具有閘汲極固有電容CGD。如圖1B所示,在高側金氧半場效電晶體MHS導通的過程中閘源極電壓VGS先突破臨界電壓VTH後,接著閘源極固有電容CGS與閘汲極固有電容CGD會同時被充電(充電區間A),接著在在電壓VSP附近的充電區間B時則對於閘汲極固有電容CGD充電,此時電壓變化趨近於平緩,然後閘源極電壓VGS才再次明顯上升(充電區間C)。一般而言,為了使功率級電路能提供大電流,會使用較大的高側金氧半場效電晶體MHS,使得閘汲極固有電容CGD會隨之增大。而在高側金氧半場效電晶體MHS的充電過程中,由於充電區間B的對於閘汲極固有電容CGD充電的時間會隨著閘汲極固有電容CGD的增加而增加,使得高側金氧半場效電晶體MHS在導通過程中會耗費較大的電流iGReferring to FIG. 1A, FIG. 1A is a schematic diagram of a high side MOSFET of a conventional power stage circuit. The high-side MOS field-effect transistor M HS has a gate-source inherent capacitance C GS between its gate and source, and has a gate-drain between the gate and the drain. Capacitor C GD . As shown in FIG. 1B, in the process in which the high-side MOS field-effect transistor M HS is turned on, the gate-source voltage V GS first breaks through the threshold voltage V TH , and then the gate-source inherent capacitance C GS and the gate-drain-intrinsic capacitance C GD will be charged at the same time (charging interval A), then charge the gate 固有 inherent capacitance C GD at the charging interval B near the voltage V SP , at which time the voltage change approaches a gentle, then the gate source voltage V GS Only then rises significantly (charge interval C). In general, in order for the power stage circuit to provide a large current, a large high-side gold-oxygen half-field transistor M HS is used , so that the gate-drain internal capacitance C GD increases. During the charging process of the high-side MOS field-effect transistor M HS , the charging time B of the charging gate B for the gate-thickness inherent capacitance C GD increases as the gate-thickness inherent capacitance C GD increases, making it high. The side MOS half-field effect transistor M HS consumes a large current i G during the conduction process.

因此,有圖2A的改良電路,其提供兩個高側金氧半場效電晶體MHS1、MHS2,藉由先導通其中一個高側金氧半場效電晶體MHS1,以使充電區間B只對高側金氧半場效電晶體MHS1的閘汲極固有電容CGD1充電,在高側金氧半場效電晶體MHS1導通後,接續導通高側金氧半場效電晶體MHS2,此時由於源極端的電壓SW已因為高側金氧半場效電晶體MHS1的導通而被拉至接近汲極端的電源HVin的電位,使得高側金氧半場效電晶體MHS2的導通過程不需對其閘汲極固有電容CGD2充電,也就是高側金氧半場效電晶體MHS2的導通過程不需經過充電區間B,如此在同樣的電流需求的情況下,可節省導通過程中所耗費的電流(圖2B的電流IG1、IG2的總和會比圖1B的電流IG小)。然而,每次導通過程中都先被導通的電晶體可能會有較大的損耗,如此可能對電路的使用壽命造成縮短。 Therefore, there is an improved circuit of FIG. 2A, which provides two high-side MOS field-effect transistors M HS1 , M HS2 , by first conducting one of the high-side MOS field-effect transistors M HS1 so that the charging interval B is only pole inherent capacitance C GD1 charging shutter drain the high side mosfets electrically M HS1 crystals, the metal-oxide-semiconductor field-effect transistor M HS1 turns on the high side, the splice conducting a high-side metal oxide semiconductor field effect transistor M HS2, at this time Since the voltage SW of the source terminal has been pulled to the potential of the power source HVin close to the 汲 terminal due to the conduction of the high side MOS field-effect transistor M HS1 , the conduction process of the high-side MOS field-effect transistor M HS2 does not need to be performed. The gate 汲 固有 inherent capacitance C GD2 is charged, that is, the conduction process of the high-side MOS field-effect transistor M HS2 does not need to pass through the charging interval B, so that in the case of the same current demand, the cost during the conduction process can be saved. The current (the sum of the currents I G1 and I G2 of Figure 2B will be smaller than the current I G of Figure 1B). However, the transistor that is turned on first during each turn-on may have a large loss, which may shorten the life of the circuit.

本發明實施例提供一種功率級電路,以縮減高側金氧半場效電晶體導通時的充電電流,藉此減少電力消耗和延長高側金氧半場效電晶體的使用壽命。 Embodiments of the present invention provide a power stage circuit for reducing a charging current when a high-side gold-oxygen half-field effect transistor is turned on, thereby reducing power consumption and prolonging the service life of a high-side gold-oxygen half-field effect transistor.

本發明實施例提供一種功率級電路,包括複數個高側金氧半場效電晶體以及控制電路。每一個高側金氧半場效電晶體具有一第一端以及一第二端。每一個高側金氧半場效電晶體之第一端電性連接至電源,所述高側金氧半場效電晶體之第二端彼此電性連接用以產生輸出信號。控制電路電性連接至每一個高側金氧半場效電晶體的閘極端,控制電路以任意順序導通所述高側金氧半場效電晶體。 Embodiments of the present invention provide a power stage circuit including a plurality of high-side MOSFETs and a control circuit. Each of the high side MOS half field effect transistors has a first end and a second end. The first end of each of the high-side MOS field-effect transistors is electrically connected to a power source, and the second ends of the high-side MOS field-effect transistors are electrically connected to each other to generate an output signal. The control circuit is electrically connected to the gate terminal of each of the high side MOSFETs, and the control circuit turns on the high side MOS field effect transistor in any order.

綜上所述,本發明實施例提供一種功率級電路,用於縮減高側金氧半場效電晶體的充電電流,透過先導通任意一個高側金氧半場效電晶體,可減少切換過程中總共所耗費的電流,同時每次先被導通的高側金氧半場效電晶體可以不是同一個,如此可使多個高側金氧半場效電晶體中的每一個被先導通的機率(或次數)可被設定(或控制)為趨近相同,藉此可延長功率級電路的使用壽命。 In summary, the embodiment of the present invention provides a power stage circuit for reducing the charging current of a high-side gold-oxygen half-field effect transistor, and reducing the total number of switching processes by first conducting any high-side gold-oxygen half-field effect transistor. The current consumed, while the high-side MOSFETs that are turned on each time may not be the same, so that each of the plurality of high-side MOSFETs can be turned on (or the number of times) ) can be set (or controlled) to approach the same, thereby extending the life of the power stage circuit.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

110‧‧‧控制電路 110‧‧‧Control circuit

BS、SW‧‧‧電壓 BS, SW‧‧‧ voltage

IG、IG0、IG1、IG2、IG3‧‧‧電流 I G , I G0 , I G1 , I G2 , I G3 ‧‧‧ Current

HVin‧‧‧電源 HVin‧‧‧ power supply

CGS、CGD、CGS0、CGD0、CGS1、CGD1、CGS2、CGD2、CGS3、CGD3‧‧‧電容 C GS , C GD , C GS0 , C GD0 , C GS1 , C GD1 , C GS2 , C GD2 , C GS3 , C GD3 ‧‧‧ Capacitance

MHS、MHS0、MHS1、MHS2、MHS3‧‧‧高側金氧半場效電晶體 M HS , M HS0 , M HS1 , M HS2 , M HS3 ‧‧‧ high-side MOS half-field effect transistor

VTH、VSP、VTH1、VSP1、VGS、VGS1、VGS2、VDS、VGS0、VGS3‧‧‧電壓 V TH , V SP , V TH1 , V SP1 , V GS , V GS1 , V GS2 , V DS , V GS0 , V GS3 ‧‧‧ voltage

A、B、C‧‧‧充電區間 A, B, C‧‧‧Charging interval

100、110、120、130‧‧‧驅動電路 100, 110, 120, 130‧‧‧ drive circuits

14‧‧‧選擇導通單元 14‧‧‧Selection of the conduction unit

145‧‧‧計數器 145‧‧‧ counter

140、141、142、143、154‧‧‧及閘 140, 141, 142, 143, 154‧‧ and gates

15‧‧‧邏輯運算單元 15‧‧‧Logical unit

151、152‧‧‧反或閘 151, 152‧‧ ‧ anti-gate

153‧‧‧反及閘 153‧‧‧Anti-gate

101、111、121、131‧‧‧驅動放大器 101, 111, 121, 131‧‧‧ drive amplifiers

102、112、122、132‧‧‧或閘 102, 112, 122, 132‧‧‧ or gate

VGH0、VGH1、VGH2、VGH3‧‧‧第一導通訊號 V GH0 , V GH1 , V GH2 , V GH3 ‧ ‧ first communication number

SecdC‧‧‧第二導通訊號 SecdC‧‧‧Secondary communication number

HSC‧‧‧高側導通訊號 HSC‧‧‧High Side Signal Communication Number

為了更清楚地說明本發明實施例或現有技術中的技術方案,下面將對實施例描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動性的前提下,還可以根據這些附圖獲得其他的附圖。 In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments will be briefly described below. Obviously, the drawings in the following description are only some of the present invention. For the embodiments, other drawings may be obtained from those skilled in the art without any inventive labor.

圖1A是傳統的功率級電路的高側金氧半場效電晶體的示意圖。 1A is a schematic illustration of a high side MOS field effect transistor of a conventional power stage circuit.

圖1B是圖1A的高側金氧半場效電晶體導通的電壓與電流的波形圖。 FIG. 1B is a waveform diagram of voltage and current conducted by the high side MOS field effect transistor of FIG. 1A.

圖2A是傳統的功率級電路的高側金氧半場效電晶體的示意圖。 2A is a schematic illustration of a high side MOS field effect transistor of a conventional power stage circuit.

圖2B是圖2A的高側金氧半場效電晶體導通的電壓與電流的波形圖。 2B is a waveform diagram of voltage and current conducted by the high side MOS half field effect transistor of FIG. 2A.

圖3是本發明實施例提供的功率級電路的高側金氧半場效電晶體及其相關控制電路的電路圖。 3 is a circuit diagram of a high-side MOSFET and its associated control circuit of a power stage circuit according to an embodiment of the present invention.

圖4是圖3的選擇導通單元的電路圖。 4 is a circuit diagram of the select-on unit of FIG. 3.

圖5是圖3的邏輯運算單元的電路圖。 Figure 5 is a circuit diagram of the logic operation unit of Figure 3.

圖6是本發明實例提供的功率級電路的高側金氧半場效電晶體導通時的電壓與電流的波形圖。 6 is a waveform diagram of voltage and current when a high-side MOS field-effect transistor of a power stage circuit according to an example of the present invention is turned on.

圖7是本發明實例提供的功率級電路的高側金氧半場效電晶體在逐次的高側導通程序時的電壓波形圖。 7 is a voltage waveform diagram of a high-side MOS field-effect transistor of a power stage circuit provided by an example of the present invention in a successive high-side turn-on procedure.

〔功率級電路之實施例〕 [Embodiment of Power Stage Circuit]

依據傳統的圖2A的電路,當具有多個高側金氧半場效電晶體(high side MOSFET)時,都只先導通其中一個高側金氧半場效電晶體,雖然可以減少導通電晶體的過程中所耗費的電流,但是每次導通過程中都先被導通的電晶體是同一個,如此對此先被導通的電晶體可能會有較大的損耗,而減少其壽命。針對此問題,本實施例提供一種功率級電路,透過電路設計的方式,以任意順序導通所述高側金氧半場效電晶體。本實施例所指的相關控制電路的部分並不是指一般功率級電路本身所具有的依據電力輸出需求而設計的電晶體切換控制電路,本實施例所指的控制電路部分並不影響功率級電路原本的操作模式,本實施例的電路可應用於所有具有高側金氧半場效電晶體的功率級電路。 According to the conventional circuit of FIG. 2A, when there are a plurality of high-side MOSFETs, only one of the high-side MOSFETs is turned on first, although the process of conducting the crystals can be reduced. The current consumed in the process, but the transistor that is turned on first during the conduction process is the same, so that the transistor that is turned on first may have a large loss and reduce its lifetime. In response to this problem, the present embodiment provides a power stage circuit that conducts the high side MOS field effect transistor in any order through a circuit design. The part of the relevant control circuit referred to in this embodiment does not refer to the transistor switching control circuit which is designed according to the power output requirement of the general power stage circuit itself. The control circuit part referred to in this embodiment does not affect the power stage circuit. In the original mode of operation, the circuit of this embodiment can be applied to all power stage circuits having high side MOS half field effect transistors.

請參照圖3,圖3是本發明實施例提供的功率級電路的高側金氧半場效電晶體及其相關控制電路的電路圖。在圖3的實施例中,高側金氧半場效電晶體的數量以四個為例子來說明,但本發明並不因此限定。依據同樣原理,高側金氧半場效電晶體的數量可以是兩個、三個、五個或更多。 Please refer to FIG. 3. FIG. 3 is a circuit diagram of a high-side MOSFET and its associated control circuit of a power stage circuit according to an embodiment of the present invention. In the embodiment of Fig. 3, the number of high side MOS field effect transistors is illustrated by four, but the invention is not limited thereto. According to the same principle, the number of high side MOS half field effect transistors can be two, three, five or more.

本實施例的功率級電路包括複數個高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3以及對應的控制電路。一般而言,功率級電路可更包括低側金氧半場效電晶體(low side MOSFET),其切換是與高側金氧半場效電晶體為互補的,所屬技術領域具有通常知識者應了解其工作方式,不再贅述。本實施例的每一個高側金氧半場效電晶體都有機會可以選擇性地被先導通,然後才導通其他的高側金氧半場效電晶體。同時,在本實施例的功率級電路運作時,每次先導通的高側金氧半場效電晶體可為不同。 The power stage circuit of this embodiment includes a plurality of high side MOS field-effect transistors M HS0 , M HS1 , M HS2 , M HS3 and corresponding control circuits. In general, the power stage circuit may further include a low side MOSFET, the switching of which is complementary to the high side MOS half field effect transistor, which should be known to those of ordinary skill in the art. The way of working is not repeated. Each of the high-side MOS field-effect transistors of this embodiment has the opportunity to be selectively turned on before conducting other high-side MOS field-effect transistors. Meanwhile, in the operation of the power stage circuit of the embodiment, the high-side MOSFET can be different each time.

每一個高側金氧半場效電晶體(MHS0或MHS1或MHS2或MHS3)之第一端電性連接至電源HVin,所述高側金氧半場效電晶體(MHS0、MHS1、MHS2、MHS3)之第二端彼此電性連接(電壓SW)用以產生輸出信號。控制電路電性連接至每一個高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的閘極端(Gate),控制電路以任意順序導通所述高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3。所述控制電路的詳細實施方式請參照後續的進一步說明。 The first end of each high side MOS field effect transistor (M HS0 or M HS1 or M HS2 or M HS3 ) is electrically connected to the power source HVin, the high side MOS half field effect transistor (M HS0 , M HS1 ) The second ends of the M HS2 , M HS3 ) are electrically connected to each other (voltage SW) for generating an output signal. The control circuit is electrically connected to the gate of each of the high-side MOSFETs M HS0 , M HS1 , M HS2 , M HS3 , and the control circuit turns on the high-side MOS field-effect transistor in any order M HS0 , M HS1 , M HS2 , M HS3 . For detailed implementation of the control circuit, please refer to the subsequent further description.

在說明本實施例的控制電路的細節之前,先簡要敘述功率級電路的工作方式。在功率級電路的運作程序中,高側金氧半場效電晶體全部被導通的過程在此可稱為高側導通程序,且在功率級電路的運作過程中會逐次執行高側導通程序(在具有低側金氧半場效電晶體時,每一次執行高側導通程序後會導通低側金氧半場效電晶體),例如依據脈衝寬度調變方式進行控制,但本發明並不因此限定。依據功率級電路的設計需求,所屬技術領域具有通常知識者可以依據習知技術設計所需的電路,不再贅述。 Before explaining the details of the control circuit of the present embodiment, the operation of the power stage circuit will be briefly described. In the operation of the power stage circuit, the process in which the high-side MOS field-effect transistors are all turned on may be referred to herein as a high-side conduction procedure, and the high-side conduction procedure is sequentially performed during the operation of the power stage circuit (in When the low-side gold-oxygen half-field effect transistor is used, the low-side MOS field effect transistor is turned on every time the high-side conduction process is performed, for example, according to the pulse width modulation method, but the present invention is not limited thereto. According to the design requirements of the power stage circuit, those skilled in the art can design the required circuit according to the conventional technology, and will not be described again.

所述高側金氧半場效電晶體之第一端是汲極端(Drain),高側金氧半場效電晶體之第二端是源極端(Source)。高側金氧半場效電晶體MHS0的閘極端與源極端之間具有閘源極固有電容CGS0,高側金氧半場效電晶體MHS0的閘極端與汲極端之間具有閘汲極固有電容CGD0。高側金氧半場效電晶體MHS1的閘極端與源極端之間具有閘源極固有電容CGS1,高側金氧半場效電晶體MHS1的閘極端與汲極端之間具有閘汲極固有電容CGD1。高側金氧半場效電晶體MHS2的閘極端與源極端之間具有閘源極固有電容CGS2,高側金氧半場效電晶體MHS2的閘極端與汲極端之間具有閘汲極固有電容CGD2。高側金氧半場效電晶體MHS3的閘極端與源極端之間具有閘源極固有電容CGS3,高側金氧半場效電晶體MHS3的閘極端與汲極端之間具有閘汲極固有電容CGD3The first end of the high-side MOS field-effect transistor is Drain, and the second end of the high-side MOS field-effect transistor is the source. The high-side MOS field-effect transistor M HS0 has a gate-source inherent capacitance C GS0 between the gate terminal and the source terminal, and the gate-drain pole between the gate terminal and the 汲 terminal of the high-side MOS field-effect transistor M HS0 Capacitor C GD0 . The high-side MOS field-effect transistor M HS1 has a gate-source inherent capacitance C GS1 between the gate terminal and the source terminal, and the high-side MOS half-field effect transistor M HS1 has a gate-drain between the gate terminal and the 汲 terminal. Capacitor C GD1 . Having a gate-source intrinsic capacitance C GS2 between gate terminal and the source terminal of the high side mosfets electrically M HS2 crystals, having an inherent gate drain and gate terminal and a drain terminal between the high side mosfets electrically M HS2 crystals Capacitor C GD2 . The high-side MOS field-effect transistor M HS3 has a gate-source intrinsic capacitance C GS3 between the gate terminal and the source terminal, and the high-side MOS field-effect transistor M HS3 has a gate-drain between the gate terminal and the 汲 terminal. Capacitor C GD3 .

請再參照圖3,所述控制電路例如包括複數個驅動電路(在圖3中以四個驅動電路100、110、120、130為例)、選擇導通單元14以及邏輯運算單元15。每一個驅動電路100、110、120或130電性連接至所對應的高側金氧半場效電晶體MHS0、MHS1、MHS2或MHS3的閘極端。 Referring to FIG. 3 again, the control circuit includes, for example, a plurality of driving circuits (four driving circuits 100, 110, 120, and 130 are exemplified in FIG. 3), a selection conducting unit 14, and a logic operation unit 15. Each of the driving circuits 100, 110, 120 or 130 is electrically connected to the gate terminals of the corresponding high-side MOS field-effect transistors M HS0 , M HS1 , M HS2 or M HS3 .

每一個驅動電路(100、110、120或130)包括驅動放大器(101、111、121或131)與或閘(OR)(102、112、122或132)。驅動放大器(101、111、121或131)電性連接對應的高側金氧半場效電晶體的閘極端,用以驅動對應的高側金氧半場效電晶體(MHS0、MHS1、MHS2或MHS3)。詳細的說,驅動放大器101、111、121、131連接到電壓BS、SW並提供驅動對應的高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的閘極端的電流IG0、IG1、IG2、IG3Each of the drive circuits (100, 110, 120 or 130) includes a drive amplifier (101, 111, 121 or 131) and an OR gate (OR) (102, 112, 122 or 132). The driving amplifier (101, 111, 121 or 131) is electrically connected to the gate terminal of the corresponding high-side gold-oxygen half field effect transistor for driving the corresponding high-side gold-oxygen half field effect transistor (M HS0 , M HS1 , M HS2 ) Or M HS3 ). In detail, the driver amplifiers 101, 111, 121, 131 are connected to the voltages BS, SW and provide current I G0 for driving the gate terminals of the corresponding high-side MOS field-effect transistors M HS0 , M HS1 , M HS2 , M HS3 . , I G1 , I G2 , I G3 .

或閘102的輸出端電性連接驅動放大器101。或閘102將第一導通訊號VGH0與第二導通訊號SecdC做邏輯或運算,並在邏輯或運算結果為真時使所對應的驅動放大器101導通所對應的高側金氧半場效電晶體MHS0。同理,或閘112將第一導通訊號VGH1與第二導通訊號SecdC做邏輯或運算,並在邏輯或運算結果為真時使所對應的驅動放大器111導通所對應的高側金氧半場效電晶體MHS1。同理,或閘122將第一導通訊號VGH2與第二導通訊號SecdC做邏輯或運算,並在邏輯或運算結果為真時使所對應的驅動放大器121導通所對應的高側金氧半場效電晶體MHS2。同理,或閘132將第一導通訊號VGH3與第二導通訊號SecdC做邏輯或運算,並在邏輯或運算結果為真時使所對應的驅動放大器131導通所對應的高側金氧半場效電晶體MHS3The output of the OR gate 102 is electrically connected to the drive amplifier 101. The gate 102 performs a logical OR operation on the first pilot communication number V GH0 and the second pilot communication number SecdC, and turns on the corresponding driver amplifier 101 to turn on the corresponding high-side metal oxide half field effect transistor M when the logical OR operation result is true. HS0 . Similarly, the gate 112 performs a logical OR operation on the first pilot communication number V GH1 and the second pilot communication number SecdC, and when the logical OR operation result is true, the corresponding driver amplifier 111 is turned on corresponding to the high side metal oxide half field effect. Transistor M HS1 . Similarly, the gate 122 performs a logical OR operation on the first pilot communication number V GH2 and the second pilot communication number SecdC, and when the logical OR operation result is true, the corresponding driver amplifier 121 is turned on to correspond to the high side metal oxide half field effect. Transistor M HS2 . Similarly, the gate 132 performs a logical OR operation on the first pilot communication number V GH3 and the second pilot communication number SecdC, and when the logical OR operation result is true, the corresponding driver amplifier 131 is turned on corresponding to the high side metal oxide half field effect. Transistor M HS3 .

選擇導通單元14具有四個輸出端以分別輸出四個對應於四個驅動電路100、110、120、130的第一導通訊號VGH0、VGH1、VGH2、VGH3。詳細的說,選擇導通單元14透過所述輸出端電性連接所述驅動電路100、110、120、130,產生第一導通訊號VGH0、VGH1、VGH2、VGH3,第一導通訊號VGH0對應驅動電路100以及高側金氧半場效電晶體MHS0,第一導通訊號VGH1對應驅動電路110以及高側金氧半場效電晶體MHS1,第一導通訊號VGH2對應驅動電路120以及高側金氧半場效電晶體MHS2,第一導通訊號VGH3對應驅動電路130以及高側金氧半場效電晶體MHS3。每一次所述的高側金氧半場效電晶體要被導通時,第一導通訊號可以不相同,可以是VGH0、VGH1、VGH2、VGH3其中之一。第一導通訊號VGH0或VGH1或VGH2或VGH3用以控制第一導通訊號VGH0或VGH1或VGH2或VGH3所對應的驅動電路100或110或120或130導通所對應的高側金氧半場效電晶體MHS0或MHS1或MHS2或MHS3。 也就是說,選擇導通單元14會利用第一導通訊號VGH0或VGH1或VGH2或VGH3先導通高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的其中一個。 The selection conducting unit 14 has four outputs for outputting four first communication numbers V GH0 , V GH1 , V GH2 , V GH3 corresponding to the four driving circuits 100, 110, 120 , 130 , respectively. In detail, the selective conducting unit 14 is electrically connected to the driving circuit 100, 110, 120 , 130 through the output terminal to generate first guiding communication numbers V GH0 , V GH1 , V GH2 , V GH3 , and the first communication number V . GH0 corresponds to the driving circuit 100 and the high-side MOS field-effect transistor M HS0 , the first conduction number V GH1 corresponds to the driving circuit 110 and the high-side MOS field-effect transistor M HS1 , and the first conduction number V GH2 corresponds to the driving circuit 120 and The high-side gold-oxygen half-field effect transistor M HS2 has a first pilot communication number V GH3 corresponding to the driving circuit 130 and a high-side gold-oxygen half field effect transistor M HS3 . Each time the high-side MOS field-effect transistor is to be turned on, the first communication number may be different, and may be one of V GH0 , V GH1 , V GH2 , and V GH3 . The first communication number V GH0 or V GH1 or V GH2 or V GH3 is used to control the corresponding height of the driving circuit 100 or 110 or 120 or 130 corresponding to the first communication number V GH0 or V GH1 or V GH2 or V GH3 . Side gold oxygen half field effect transistor M HS0 or M HS1 or M HS2 or M HS3 . That is, the selection conduction unit 14 first turns on one of the high side MOSFETs M HS0 , M HS1 , M HS2 , M HS3 by using the first communication number V GH0 or V GH1 or V GH2 or V GH3 .

值得一提的是,在圖3中,選擇導通單元14更具有一個輸入端以接收第二導通訊號SecdC,但本發明並不因此限定。圖3的選擇導通單元14接收的第二導通訊號SecdC是用以改變選擇導通單元14輸出的第一導通訊號是VGH0、VGH1、VGH2或是VGH3。也就是說,圖3的第二導通訊號SecdC是用來改變選擇導通單元14下一次所產生的第一導通訊號的狀態。然而,本發明並不限制選擇導通單元14要如何改變第一導通訊號的狀態,選擇導通單元14可以由其內部自動改變下一次所產生的第一導通訊號,或者選擇導通單元14可依據其他的訊號而改變下一次所產生的第一導通訊號。 It is worth mentioning that in FIG. 3, the selection conducting unit 14 further has an input terminal for receiving the second pilot communication number SecdC, but the invention is not limited thereto. The second pilot number SecdC received by the select-on unit 14 of FIG. 3 is used to change the first pilot number of the output of the select-on unit 14 to be V GH0 , V GH1 , V GH2 or V GH3 . That is to say, the second pilot number SecdC of FIG. 3 is used to change the state of the first pilot number generated by the selection of the conducting unit 14 for the next time. However, the present invention does not limit how the selection of the conduction unit 14 changes the state of the first communication number. The selection of the conduction unit 14 can automatically change the first communication number generated by the next time, or the selection of the conduction unit 14 can be based on other The signal changes the first communication number generated next time.

邏輯運算單元15電性連接高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的閘極端,並在高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3中的先被導通的高側金氧半場效電晶體MHS0或MHS1或MHS2或MHS3的閘極端的電壓VGS0或VGS1或VGS2或VGS3超過一設定值(將於後續進一步敘述)時,產生並傳送第二導通訊號SecdC至所述驅動電路100、110、120、130,以使其他的高側金氧半場效電晶體被導通。也就是說,在本實施例具有四個高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的情況下,當高側金氧半場效電晶體MHS0先被導通,其他高側金氧半場效電晶體MHS1、MHS2、MHS3後續被導通。當高側金氧半場效電晶體MHS1先被導通,其他高側金氧半場效電晶體MHS0、MHS2、MHS3後續被導通。當高側金氧半場效電晶體MHS2先被導通,其他高側金氧半場效電晶體MHS0、MHS1、 MHS3後續被導通。當高側金氧半場效電晶體MHS3先被導通,其他高側金氧半場效電晶體MHS0、MHS1、MHS2後續被導通。 The logic operation unit 15 is electrically connected to the gate terminals of the high side metal oxide half field effect transistors M HS0 , M HS1 , M HS2 , M HS3 , and in the high side metal oxide half field effect transistors M HS0 , M HS1 , M HS2 , M HS3 the first is more than the set value of the high-side metal oxide semiconductor field effect transistor M HS0 or M HS1 or M HS2 or M HS3 conducting gate terminal voltage V GS0 or V GS1 or V GS2 or V GS3 (will follow Further, when the second communication number SecdC is generated and transmitted to the driving circuits 100, 110, 120, 130, the other high-side MOS field-effect transistors are turned on. That is to say, in the case where the present embodiment has four high-side MOS field-effect transistors M HS0 , M HS1 , M HS2 , and M HS3 , when the high-side MOS field-effect transistor M HS0 is turned on first, the other The high-side gold-oxygen half-field effect transistors M HS1 , M HS2 , and M HS3 are subsequently turned on. When the high-side MOS field-effect transistor M HS1 is turned on first, the other high-side MOS field-effect transistors M HS0 , M HS2 , and M HS3 are subsequently turned on. When the high-side MOS field-effect transistor M HS2 is turned on first, the other high-side MOS field-effect transistors M HS0 , M HS1 , and M HS3 are subsequently turned on. When the high-side MOS field-effect transistor M HS3 is turned on first, the other high-side MOS field-effect transistors M HS0 , M HS1 , and M HS2 are subsequently turned on.

換句話說,本實施例的控制電路對所述高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的其中之一的閘極端充電,直到先被充電的高側金氧半場效電晶體的閘源極電壓大於設定值之後接著再對其他的金氧半場效電晶體的閘極端充電。在實際實施時,要使先被導通的高側金氧半場效電晶體在導通時通過如圖1B和圖2B所示的充電區間B,然後再後續導通其他的高側金氧半場效電晶體。依據所述充電區間B,關於觸發第二導通訊號SecdC以後續導通其他高側金氧半場效電晶體,前述的先被導通的高側金氧半場效電晶體MHS0或MHS1或MHS2或MHS3的閘極端的電壓的設定值可以例如是大於圖1B的電壓VSP(或圖2B的電壓VSP1),所述電壓VSP是大於對閘汲極固有電容CGD充電時的閘源極電壓VGS。也就是設定值可設為大於在充電區間B中的閘源極電壓VGS。例如,當先被導通的高側金氧半場效電晶體MHS0或MHS1或MHS2或MHS3的閘極端的電壓VGS0或VGS1或VGS2或VGS3超過電壓VSP時,產生並傳送第二導通訊號SecdC至所述驅動電路100、110、120、130,以使其他尚未被導通的高側金氧半場效電晶體被導通。 In other words, the control circuit of the present embodiment charges the gate terminal of one of the high side MOS transistors M HS0 , M HS1 , M HS2 , M HS3 until the first side is charged The gate-source voltage of the half-field effect transistor is greater than the set value and then the gate terminals of the other gold-oxygen half-effect transistors are charged. In actual implementation, the high-side MOS field-effect transistor that is turned on first passes through the charging interval B as shown in FIG. 1B and FIG. 2B when conducting, and then turns on other high-side MOS field-effect transistors. . According to the charging interval B, regarding the triggering of the second pilot communication number SecdC to subsequently turn on other high-side MOSFETs, the aforementioned first-side turned-on high-side MOS field-effect transistor M HS0 or M HS1 or M HS2 or extreme value of the voltage setting M HS3 brakes may be greater than, for example, in FIG. 1B voltage V SP (or FIG. 2B voltage V SP1), the gate voltage V SP is greater than the source at the gate drain GD charging the inherent capacitance C Extreme voltage V GS . That is, the set value can be set to be larger than the gate-source voltage V GS in the charging section B. For example, when the voltage V GS0 or V GS1 or V GS2 or V GS3 of the gate terminal of the high-side MOSFET half-effect transistor M HS0 or M HS1 or M HS2 or M HS3 that is turned on first is exceeded, the voltage V SP is generated and transmitted. The second conductive communication number SecdC is applied to the driving circuits 100, 110, 120, 130 to turn on other high-side metal oxide half field effect transistors that have not been turned on.

關於如何以任意順序導通所述高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3。在理想上,可使每一個高側金氧半場效電晶體平均分擔首先導通的工作。在本實施例中,利用選擇導通單元(例如包括一計數器)以循序產生分別對應於所述高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的其中之一的第一導通訊號VGH0、VGH1、VGH2、VGH3,以使得在逐次的高側導通程序中,控制電 路先導通的高側金氧半場效電晶體為不同,藉此在逐次的高側導通程序中所述高側金氧半場效電晶體被先導通的次數趨近相同。 How to conduct the high side MOS field effect transistors M HS0 , M HS1 , M HS2 , M HS3 in any order. Ideally, each of the high-side MOSFETs can be equally shared with the first turn-on work. In this embodiment, the first turn-on unit (for example, including a counter) is used to sequentially generate the first one corresponding to one of the high-side MOSFETs M HS0 , M HS1 , M HS2 , and M HS3 , respectively. The communication numbers V GH0 , V GH1 , V GH2 , V GH3 are used so that in the successive high-side conduction procedure, the high-side MOSFETs of the control circuit are turned on differently, thereby sequentially performing the high-side conduction procedure. The number of times the high side MOS field effect transistor is turned on is similar.

再來,本實施例中,控制電路所產生的第一導通訊號VGH0、VGH1、VGH2、VGH3不但用以先導通所述高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的任意其中之一,且先被導通的高側金氧半場效電晶體的閘極端的電壓(VGS0、VGS1、VGS2或VGS3)用以導通其他的高側金氧半場效電晶體。例如,當高側金氧半場效電晶體MHS0先被導通,先被導通的高側金氧半場效電晶體MHS0的閘極端的電壓VGS0用以導通其他的高側金氧半場效電晶體MHS1、MHS2、MHS3。當高側金氧半場效電晶體MHS1先被導通,先被導通的高側金氧半場效電晶體MHS1的閘極端的電壓VGS1用以導通其他的高側金氧半場效電晶體MHS0、MHS1、MHS3,依此類推。 In this embodiment, the first communication numbers V GH0 , V GH1 , V GH2 , and V GH3 generated by the control circuit are used to turn on the high-side MOSFETs M HS0 , M HS1 , M first. One of HS2 and M HS3 , and the voltage of the gate terminal of the high-side MOS field-effect transistor (V GS0 , V GS1 , V GS2 or V GS3 ) that is turned on first is used to conduct other high-side gold oxides. Half field effect transistor. For example, when the high-side MOS field-effect transistor M HS0 is first turned on, the voltage V GS0 of the gate terminal of the high-side MOS field-effect transistor M HS0 that is turned on first is used to conduct other high-side MOSFETs . Crystals M HS1 , M HS2 , M HS3 . When the high-side metal oxide semiconductor field effect transistor M HSl is first turned on, the first being a high-side metal oxide semiconductor field-effect M HSl crystal conducting gate terminal voltage V GS1 to turn on other high-side metal oxide semiconductor field effect transistor M HS0 , M HS1 , M HS3 , and so on.

請同時參照圖3與圖4。圖4是圖3的選擇導通單元的電路圖。選擇導通單元14包括計數器145以及複數個及閘(AND),在圖4中為四個及閘140、141、142、143。計數器145循序產生分別對應於所述高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的其中之一的計數訊號。計數器145在每次收到第二導通訊號SecdC時進行計數而改變計數訊號,藉此改變第一導通訊號所對應的該高側金氧半場效電晶體。及閘(AND)140、141、142、143電性連接計數器145,及閘140、141、142、143與驅動單元100、110、120、130一對一對應,每一及閘140、141、142或143用以對計數訊號以及高側導通訊號HSC作邏輯及運算而產生第一導通訊號VGH0或VGH1或VGH2或VGH3,並將第一導通訊號VGH0或VGH1或VGH2或VGH3輸出至對應的驅動電路100或110或120或130。值得一提的是,在此的高側導通訊號 HSC是一般的功率級電路的電晶體切換控制電路控制高側金氧半場效電晶體導通的訊號,所述高側導通訊號可以例如受控於普遍常用的脈衝寬度調變訊號,也就是說高側導通訊號HSC用以觸發高側導通程序,並通知本實施例的控制電路以讓所有的高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3全部被導通。 Please refer to FIG. 3 and FIG. 4 at the same time. 4 is a circuit diagram of the select-on unit of FIG. 3. The select-on unit 14 includes a counter 145 and a plurality of AND gates, four gates 140, 141, 142, 143 in FIG. The counter 145 sequentially generates counting signals corresponding to one of the high side MOS transistors M HS0 , M HS1 , M HS2 , M HS3 , respectively. The counter 145 counts each time the second communication number SecdC is received to change the counting signal, thereby changing the high-side MOS field-effect transistor corresponding to the first communication number. AND gates 140, 141, 142, and 143 are electrically connected to the counter 145, and the gates 140, 141, 142, and 143 are in one-to-one correspondence with the driving units 100, 110, 120, and 130, and each gate 140, 141, 142 or 143 is used to logically calculate the counting signal and the high side conduction communication number HSC to generate the first communication number V GH0 or V GH1 or V GH2 or V GH3 , and the first communication number V GH0 or V GH1 or V GH2 Or V GH3 is output to the corresponding drive circuit 100 or 110 or 120 or 130. It is worth mentioning that the high side conduction communication number HSC here is a signal of the transistor switching control circuit of the general power stage circuit controlling the conduction of the high side metal oxide half field effect transistor, and the high side conduction communication number can be controlled, for example, by A commonly used pulse width modulation signal, that is, a high side conduction communication number HSC is used to trigger the high side conduction procedure, and the control circuit of this embodiment is notified to allow all of the high side MOS field-effect transistors M HS0 , M HS1 . M HS2 and M HS3 are all turned on.

請同時參照圖3和圖5,圖5是圖3的邏輯運算單元的電路圖。圖3的邏輯運算單元15可以各種邏輯電路替代,本發明並不因此限定。邏輯運算單元15可讓任何一個高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的閘極端的電壓VGS0、VGS1、VGS2、VGS3為真(True)時且高側導通訊號HSC為真(True)時,產生第二導通訊號SecdC。在圖5中,當電壓VGS0、VGS1的任一個為真時,反或閘(NOR)151輸出否(False),當電壓VGS2、VGS3的任一個為真時,反或閘(NOR)152輸出否(False)。反或閘(NOR)151與反或閘(NOR)152的輸出端連接反及閘(NAND)153的輸入端。及閘154的一個輸入端接收高側導通訊號HSC,及閘154的另一個輸入端連接反及閘153的輸出端,及閘154的輸出端輸出第二導通訊號SecdC。 Please refer to FIG. 3 and FIG. 5 simultaneously. FIG. 5 is a circuit diagram of the logic operation unit of FIG. The logic operation unit 15 of FIG. 3 can be replaced by various logic circuits, and the present invention is not limited thereto. The logic operation unit 15 can make the voltages V GS0 , V GS1 , V GS2 , V GS3 of the gate terminals of any of the high-side MOSFETs M HS0 , M HS1 , M HS2 , and M HS3 true (True ) and When the high side conduction communication number HSC is true (True), the second communication number SecdC is generated. In FIG. 5, when either of the voltages V GS0 and V GS1 is true, the inverse OR gate (NOR) 151 outputs No (False), and when either of the voltages V GS2 and V GS3 is true, the inverse or gate ( NOR) 152 output No (False). The output of the inverse OR gate (NOR) 151 and the reverse OR gate (NOR) 152 is coupled to the input of the NAND gate 153. One input of the gate 154 receives the high side conduction communication number HSC, and the other input end of the gate 154 is connected to the output end of the gate 153, and the output end of the gate 154 outputs the second conduction number SecdC.

請同時參照圖3和圖6,圖6是本發明實例提供的功率級電路的高側金氧半場效電晶體導通時的電壓與電流的波形圖。依據圖3的電路,高側金氧半場效電晶體MHS0、MHS1、MHS2、MHS3的任意其中之一可以被先導通,例如當高側金氧半場效電晶體MHS0先被導通,如圖6所示是閘極端的電壓VGS0先上升,然後再導通其他的高側金氧半場效電晶體MHS1、MHS2、MHS3Please refer to FIG. 3 and FIG. 6 simultaneously. FIG. 6 is a waveform diagram of voltage and current when the high-side MOS field-effect transistor of the power stage circuit provided by the example of the present invention is turned on. According to the circuit of FIG. 3, any one of the high-side MOS field-effect transistors M HS0 , M HS1 , M HS2 , M HS3 can be turned on first, for example, when the high-side MOS field-effect transistor M HS0 is turned on first. As shown in FIG. 6, the voltage V GS0 of the gate terminal rises first, and then turns on other high-side gold-oxygen half field effect transistors M HS1 , M HS2 , and M HS3 .

請同時參照圖3和圖7是本發明實例提供的功率級電路的高側金氧半場效電晶體在逐次的高側導通程序時的電壓波形圖。在每一次的高側導通程序中,先被導通的高側金氧半場效電晶體可為不同,如圖7所示,在最左側顯 示的第一次導通時,先被導通的是高側金氧半場效電晶體MHS0。依據圖3和圖4的電路,選擇導通單元14的計數器145產生的計數訊號以對應地產生第一導通訊號VGH0,如此先被導通的是高側金氧半場效電晶體MHS0其閘極端的電壓VGS0先上升,接著邏輯運算單元15因為電壓VGS0的觸發(電壓超過設定值)而產生第二導通訊號SecdC以導通其他的高側金氧半場效電晶體MHS1、MHS2、MHS3。據此,圖4的計數器145收到第二導通訊號SecdC,使得計數器145進行計數以改變計數訊號,此新的計數訊號是對應於第一導通訊號VGH1。接著,在第二次導通時,先被導通的是高側金氧半場效電晶體MHS1,其閘極端的電壓VGS1先上升,電壓VGS1用以觸發導通其他的高側金氧半場效電晶體MHS0、MHS2、MHS3,然後第一導通訊號被改變為VGH2。接著,在第三次導通時,先被導通的高側金氧半場效電晶體MHS2閘極端的電壓VGS2先上升,電壓VGS2用以觸發導通其他的高側金氧半場效電晶體MHS0、MHS1、MHS3,然後第一導通訊號被改變為VGH3。接著,在第四次導通時,先被導通的高側金氧半場效電晶體MHS3閘極端的電壓VGS3上升,電壓VGS3用以觸發導通其他的高側金氧半場效電晶體MHS0、MHS1、MHS2。然而,上述的改變手先導通的高側金氧半場效電晶體的順序可以被改變,本發明並不因此限定。 3 and FIG. 7 are voltage waveform diagrams of the high-side MOS field-effect transistor of the power stage circuit provided by the example of the present invention in successive high-side conduction processes. In each high-side conduction procedure, the high-side MOSFETs that are turned on first can be different, as shown in Figure 7, when the first turn on the leftmost side is turned on, the high side is turned on first. Gold oxygen half field effect transistor M HS0 . According to the circuit of FIG. 3 and FIG. 4, the counter signal generated by the counter 145 of the turn-on unit 14 is selected to correspondingly generate the first pilot communication number V GH0 , so that the high-side MOS field-effect transistor M HS0 is turned on first. The voltage V GS0 rises first, and then the logic operation unit 15 generates the second conduction number SecdC due to the trigger of the voltage V GS0 (the voltage exceeds the set value) to turn on the other high-side MOS field-effect transistors M HS1 , M HS2 , M HS3 . Accordingly, the counter 145 of FIG. 4 receives the second pilot communication number SecdC, so that the counter 145 counts to change the count signal, and the new count signal corresponds to the first pilot communication number V GH1 . Subsequently, in the second conduction, is turned on first is a high-side metal oxide semiconductor field effect transistor M HS1, its gate terminal voltage V GS1 to rise, the voltage V GS1 for triggering conduction of other high side mosfets The transistors M HS0 , M HS2 , M HS3 , then the first pilot number is changed to V GH2 . Then, at the third turn-on, the voltage V GS2 of the gate terminal of the high-side MOSFET half-effect transistor M HS2 is first turned on, and the voltage V GS2 is used to trigger the conduction of other high-side MOS field-effect transistors M. HS0 , M HS1 , M HS3 , then the first communication number is changed to V GH3 . Then, at the fourth turn-on, the voltage V GS3 of the gate terminal of the high-side MOS field-effect transistor M HS3 that is turned on first rises, and the voltage V GS3 is used to trigger the conduction of other high-side MOS field-effect transistors M HS0 . , M HS1 , M HS2 . However, the above-described order of changing the high-side MOS field-effect transistor that is turned on first can be changed, and the present invention is not limited thereto.

〔實施例的可能功效〕 [Possible effects of the examples]

綜上所述,本發明實施例所提供的一種功率級電路,用於縮減高側金氧半場效電晶體的充電電流,透過先導通任意一個高側金氧半場效電晶體,可減少切換過程中總共所耗費的電流,同時每次先被導通的高側金氧半場效電晶體可以不是同一個,如此可利用如計數器而使多個高側金氧半場效電晶體中 的每一個被先導通的機率(或次數)可被設定(或控制)為趨近相同,藉此可延長功率級電路的使用壽命。 In summary, the power stage circuit provided by the embodiment of the present invention is used for reducing the charging current of the high-side gold-oxygen half-field effect transistor, and can reduce the switching process by first conducting any high-side gold-oxygen half-field effect transistor. The total current consumed, and the high-side MOSFETs that are turned on each time may not be the same, so that a plurality of high-side MOS half-field transistors can be used as a counter. The probability (or number) of each of the first being turned on can be set (or controlled) to be nearly the same, thereby extending the life of the power stage circuit.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

Claims (9)

一種功率級電路,包括:複數個高側金氧半場效電晶體,每一該高側金氧半電晶體具有一第一端以及一第二端,每一該高側金氧半場效電晶體之該第一端電性連接至一電源,該些高側金氧半場效電晶體之該些第二端彼此電性連接用以產生一輸出信號;以及一控制電路,該控制電路電性連接至每一該高側金氧半場效電晶體的一閘極端,該控制電路先導通該些高側金氧半場效電晶體的任意其中之一,直到先被導通的該高側金氧半場效電晶體的閘源極電壓大於一設定值之後再以任意順序導通該些高側金氧半場效電晶體中其他的該些高側金氧半場效電晶體。 A power stage circuit comprising: a plurality of high-side MOS field-effect transistors, each of the high-side MOS transistors having a first end and a second end, each of the high-side MOS field-effect transistors The first end is electrically connected to a power source, the second ends of the high-side MOS field-effect transistors are electrically connected to each other to generate an output signal, and a control circuit is electrically connected Up to a gate terminal of each of the high-side MOSFETs, the control circuit first conducts any one of the high-side MOS field-effect transistors until the high-side MOSFET is first turned on. After the gate voltage of the transistor is greater than a set value, the other high-side MOSFETs in the high-side MOS field-effect transistors are turned on in any order. 根據請求項第1項之功率級電路,其中該控制電路產生一第一導通訊號用以先導通該些高側金氧半場效電晶體的任意其中之一,且先被導通的該高側金氧半場效電晶體的該閘極端的電壓用以導通其他的該些高側金氧半場效電晶體。 The power stage circuit of claim 1, wherein the control circuit generates a first pilot number for first conducting any one of the high side MOSFETs, and the high side gold that is turned on first The voltage at the gate terminal of the oxygen half field effect transistor is used to conduct other high side MOS field effect transistors. 根據請求項第2項之功率級電路,其中該些高側金氧半場效電晶體全部被導通的過程為一高側導通程序,且在該功率級電路的運作過程中逐次執行該高側導通程序,其中該控制電路利用一計數器以循序產生分別對應於該些高側金氧半場效電晶體的其中之一的該第一導通訊號,以使得在逐次的該高側導通程序中,該控制電路先導通的該高側金氧半場效電晶體為不同,藉此在逐次的該高側導通程序中該些高側金氧半場效電晶體被先導通的次數趨近相同。 According to the power stage circuit of claim 2, wherein the high-side MOS field-effect transistors are all turned on is a high-side conduction process, and the high-side conduction is sequentially performed during the operation of the power stage circuit. a program, wherein the control circuit uses a counter to sequentially generate the first pilot communication numbers respectively corresponding to one of the high side MOSFETs, such that in the successive high side conduction procedure, the control The high side MOS field effect transistors that are first turned on are different, whereby the number of times the high side MOSFETs are turned on the same in the successive high side conduction process. 根據請求項第1項之功率級電路,其中該高側金氧半場效電晶體之該第一端是一汲極端,該高側金氧半場效電晶體之該第二端是一源極端,每一該高側金氧半場效電晶體的該閘極端與該源極端之間具有一閘源極固有電容,每一該高側金氧半場效電晶體的該閘極端與該汲極端之間具有一閘汲極固有電容。 The power stage circuit of claim 1, wherein the first end of the high side MOSFET is a 汲 extreme, and the second end of the high side MOS field is a source terminal. a gate-source inherent capacitance between the gate terminal and the source terminal of each of the high-side MOSFETs, between the gate terminal of the high-side MOS field-effect transistor and the 汲 terminal Has a gated buckling inherent capacitance. 根據請求項第4項之功率級電路,其中該控制電路對該些金氧半場效電晶體的其中之一的該閘極端充電,直到先被充電的該高側金氧半場效電晶體的閘源極電壓大於一設定值之後接著再對其他的該些金氧半場效電晶體的該些閘極端充電。 The power stage circuit of claim 4, wherein the control circuit charges the gate terminal of one of the metal oxide half field effect transistors until the gate of the high side metal oxide half field effect transistor that is first charged After the source voltage is greater than a set value, the other gate terminals of the other metal oxide half field effect transistors are then charged. 根據請求項第1項之功率級電路,其中該控制電路包括:複數個驅動電路,每一該驅動電路電性連接至所對應的該高側金氧半場效電晶體的該閘極端;一選擇導通單元,電性連接該些驅動電路,產生一第一導通訊號,以控制該第一導通訊號所對應的該驅動電路導通對應的該高側金氧半場效電晶體;以及一邏輯運算單元,電性連接該些高側金氧半場效電晶體的該些閘極端,並在該些高側金氧半場效電晶體中的先被導通的該高側金氧半場效電晶體的該閘極端的電壓超過一設定值時,產生並傳送一第二導通訊號至該些驅動電路,以使其他的該些高側金氧半場效電晶體被導通。 The power stage circuit of claim 1, wherein the control circuit comprises: a plurality of driving circuits, each of the driving circuits being electrically connected to the corresponding gate terminal of the high side MOS field effect transistor; The conducting unit is electrically connected to the driving circuits to generate a first communication number to control the high-side MOS field-effect transistor corresponding to the driving circuit corresponding to the first communication number; and a logic operation unit, Electrically connecting the gate terminals of the high-side MOS field-effect transistors, and the gate terminals of the high-side MOSFETs in the high-side MOS field-effect transistors When the voltage exceeds a set value, a second communication signal is generated and transmitted to the driving circuits, so that the other high-side MOSFETs are turned on. 根據請求項第6項之功率級電路,其中該選擇導通單元包括:計數器,循序產生分別對應於該些高側金氧半場效電晶體的其中之一的一計數訊號;以及 複數個及閘(AND),電性連接該計數器,該些及閘與該些驅動單元一對一對應,每一該及閘用以對該計數訊號以及一高側導通訊號作邏輯及運算而產生該第一導通訊號,並將該第一導通訊號輸出至對應的該驅動電路。 The power stage circuit of claim 6, wherein the selection conducting unit comprises: a counter sequentially generating a counting signal respectively corresponding to one of the high side MOS transistors; A plurality of AND gates are electrically connected to the counters, and the gates are in one-to-one correspondence with the driving units, and each of the gates is used for logically calculating the counting signal and a high side guiding communication number. The first communication number is generated, and the first communication number is output to the corresponding driving circuit. 根據請求項第7項之功率級電路,其中該計數器接收該第二導通訊號以進行計數,以改變該計數訊號,藉此改變該第一導通訊號所對應的該高側金氧半場效電晶體。 The power stage circuit of claim 7, wherein the counter receives the second communication number for counting to change the counting signal, thereby changing the high side metal oxide half field effect transistor corresponding to the first communication number . 根據請求項第6項之功率級電路,其中該驅動電路包括:一驅動放大器,電性連接對應的該高側金氧半場效電晶體的該閘極端,用以驅動對應的該高側金氧半場效電晶體;以及一或閘(OR),或閘的一輸出端電性連接該驅動放大器,該或閘將該第一導通訊號與該第二導通訊號做邏輯或運算,並在邏輯或運算結果為真時使所對應的該驅動放大器導通所對應的該高側金氧半場效電晶體。 The power stage circuit of claim 6, wherein the driving circuit comprises: a driving amplifier electrically connected to the corresponding gate terminal of the high side metal oxide half field effect transistor for driving the corresponding high side gold oxide a half field effect transistor; and an OR gate, or an output of the gate is electrically connected to the driver amplifier, and the OR gate logically ORs the first pilot signal number and the second pilot signal number, and is in a logical OR When the operation result is true, the corresponding high-side MOSFET is turned on by the corresponding driving amplifier.
TW106140823A 2017-11-23 2017-11-23 Power stage circuit with current charge reduction TWI657643B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106140823A TWI657643B (en) 2017-11-23 2017-11-23 Power stage circuit with current charge reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106140823A TWI657643B (en) 2017-11-23 2017-11-23 Power stage circuit with current charge reduction

Publications (2)

Publication Number Publication Date
TWI657643B true TWI657643B (en) 2019-04-21
TW201926844A TW201926844A (en) 2019-07-01

Family

ID=66996154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106140823A TWI657643B (en) 2017-11-23 2017-11-23 Power stage circuit with current charge reduction

Country Status (1)

Country Link
TW (1) TWI657643B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796276A (en) * 1994-12-30 1998-08-18 Sgs-Thomson Microelectronics, Inc. High-side-driver gate drive circuit
US20130009671A1 (en) * 2011-07-05 2013-01-10 Nippon Soken, Inc. Switching element driving device and method
US20140253186A1 (en) * 2013-03-09 2014-09-11 Microchip Technology Incorporated Inductive Load Driver Slew Rate Controlller
US9369046B2 (en) * 2012-12-07 2016-06-14 Samsung Electronics Co., Ltd. Power converters with adaptive slew rate and methods of operating same
TW201622347A (en) * 2014-07-24 2016-06-16 瑞薩電子歐洲公司 Circuit for controlling slew rate of a high-side switching element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796276A (en) * 1994-12-30 1998-08-18 Sgs-Thomson Microelectronics, Inc. High-side-driver gate drive circuit
US20130009671A1 (en) * 2011-07-05 2013-01-10 Nippon Soken, Inc. Switching element driving device and method
US9369046B2 (en) * 2012-12-07 2016-06-14 Samsung Electronics Co., Ltd. Power converters with adaptive slew rate and methods of operating same
US20140253186A1 (en) * 2013-03-09 2014-09-11 Microchip Technology Incorporated Inductive Load Driver Slew Rate Controlller
TW201448465A (en) * 2013-03-09 2014-12-16 Microchip Tech Inc Inductive load driver slew rate controller
TW201622347A (en) * 2014-07-24 2016-06-16 瑞薩電子歐洲公司 Circuit for controlling slew rate of a high-side switching element

Also Published As

Publication number Publication date
TW201926844A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
US8351235B2 (en) Level shift circuit
KR890004958B1 (en) Semiconductor integrated circuit
US10355685B2 (en) Output circuit
US20130093499A1 (en) Power switch and operation method thereof
CN110365324B (en) Grid driving circuit of power tube
CN101123427A (en) Grid drive circuit
CN209748522U (en) Voltage level shifter
TWI657643B (en) Power stage circuit with current charge reduction
US7405596B2 (en) Driver circuit
CN108233701B (en) Buck-boost voltage conversion circuit
CN110034592B (en) Power stage circuit with charge current reduction
CN216774327U (en) Battery protection chip and battery system
CN215870744U (en) Undervoltage protection circuit
CN115021736B (en) Switching circuit and electronic device
US11190178B1 (en) Gate induced drain leakage robust bootstrapped switch
CN210273824U (en) High-speed drive circuit of field control type power electronic device
CN112953487A (en) Driver control circuit and driver capable of forming dead time
CN109547009B (en) High-reliability level shift circuit
CN214675118U (en) Circuit for converting positive voltage level to negative voltage level
JP7091819B2 (en) Gate drive and switch device
JP2021082879A (en) Logic circuit and circuit chip
CN110737226A (en) MTP high-voltage burning pin circuit structure
CN116436450B (en) Gate driving circuit and power conversion device for MOS semiconductor device
CN112994669B (en) Drive protection circuit of high-side power MOSFET
CN113179097A (en) Circuit for converting positive voltage level to negative voltage level