TWI652869B - Automatically balanced micropulse ionization blower - Google Patents
Automatically balanced micropulse ionization blower Download PDFInfo
- Publication number
- TWI652869B TWI652869B TW104100100A TW104100100A TWI652869B TW I652869 B TWI652869 B TW I652869B TW 104100100 A TW104100100 A TW 104100100A TW 104100100 A TW104100100 A TW 104100100A TW I652869 B TWI652869 B TW I652869B
- Authority
- TW
- Taiwan
- Prior art keywords
- positive
- negative
- ion
- micropulses
- balance
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 24
- 150000002500 ions Chemical class 0.000 description 121
- 238000004422 calculation algorithm Methods 0.000 description 34
- 238000005259 measurement Methods 0.000 description 29
- 239000012530 fluid Substances 0.000 description 19
- 238000005070 sampling Methods 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T23/00—Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T19/00—Devices providing for corona discharge
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05F—STATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
- H05F3/00—Carrying-off electrostatic charges
- H05F3/06—Carrying-off electrostatic charges by means of ionising radiation
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Elimination Of Static Electricity (AREA)
- Cleaning And Drying Hair (AREA)
Abstract
本發明的一個實施例中,提供了自動平衡離子化氣流的方法,該離子化氣流產生於雙極電暈放電中。該方法包括:提供空氣移動裝置,該空氣移動裝置具有連接至微脈衝AC電源的至少一個離子發射器及參考電極,及具有至少一個離子平衡監視器及電暈放電調整控制器的控制系統;產生短持續時間離子化微脈衝的可變極性群組;其中該等微脈衝在兩個極性電壓的波幅及持續時間中主要為非對稱的,且具有至少一個極性離子化脈衝的強度超過該電暈閾值。 In one embodiment of the present invention, a method for automatically balancing an ionized gas stream is provided, and the ionized gas stream is generated in a bipolar corona discharge. The method includes: providing an air moving device having at least one ion emitter and reference electrode connected to a micro-pulse AC power source, and a control system having at least one ion balance monitor and a corona discharge adjustment controller; generating Variable-polarity group of short-duration ionized micropulses; wherein the micropulses are mainly asymmetric in the amplitude and duration of two polar voltages, and the intensity of at least one polarized ionization pulse exceeds the corona Threshold.
Description
此申請案為於2012年2月6日提出申請的美國申請案第13/367,369號的部分延續案。美國申請案第13/367,369號在此透過引用完整地納入本說明書中。 This application is a partial continuation of US Application No. 13 / 367,369, filed on February 6, 2012. US Application No. 13 / 367,369 is hereby incorporated by reference in its entirety.
本發明的實施例一般有關於離子化吹風器。 Embodiments of the present invention relate generally to ionizing hair dryers.
靜電荷中和器經設計以將靜電荷累積移除或最小化。靜電荷中和器藉由產生空氣離子及將該等離子傳遞至帶電目標而移除靜電荷。 The electrostatic charge neutralizer is designed to remove or minimize electrostatic charge accumulation. The electrostatic charge neutralizer removes the electrostatic charge by generating air ions and transferring the ions to a charged target.
靜電荷中和器的一種特定類別為離子化吹風器。離子化吹風器一般以電暈電極產生空氣離子,且使用風扇(或多個風扇)以導引空氣離子朝向感興趣的目標。 A specific category of electrostatic charge neutralizers are ionized hair dryers. Ionizing hair dryers generally generate air ions with a corona electrode, and use a fan (or multiple fans) to direct the air ions towards the target of interest.
監視或控制吹風器的效能係利用兩個量測。 Monitoring or controlling the effectiveness of the hair dryer uses two measurements.
第一個量測為平衡。理想的平衡發生於正空氣離子數量等於負空氣離子數量的時候。在電荷板材監視器上,理想的讀數為零。實作上,該靜電中和器係控制於零附近的小 範圍內。舉例而言,靜電中和器的平衡可能指定為大約±0.2伏特。 The first measurement is balance. The ideal equilibrium occurs when the number of positive air ions is equal to the number of negative air ions. On a charge plate monitor, the ideal reading is zero. In practice, the electrostatic neutralizer is controlled in the vicinity of zero. Within range. For example, the balance of an electrostatic neutralizer may be specified as approximately ± 0.2 volts.
第二個量測為空氣離子電流。較高的空氣離子電流係有用的,因為靜電荷可在較短的時間期間內放電。較高的空氣離子電流與低的放電時間相關,該放電時間以電荷板材監視器量測。 The second measurement is air ion current. Higher air ion currents are useful because the electrostatic charge can be discharged in a shorter period of time. Higher air ion currents are associated with lower discharge times, which are measured with a charge plate monitor.
本發明的一個實施例中,提供了自動平衡離子化氣流的方法,該離子化氣流產生於雙極電暈放電中。該方法包括:提供空氣移動裝置,該空氣移動裝置具有連接至微脈衝AC電源的至少一個離子發射器及參考電極,及具有至少一個離子平衡監視器及電暈放電調整控制器的控制系統;產生短持續時間離子化微脈衝的可變極性群組:其中該等微脈衝在兩個極性電壓的波幅及持續時間中主要為非對稱的,且具有至少一個極性離子化脈衝的強度超過該電暈閾值。 In one embodiment of the present invention, a method for automatically balancing an ionized gas stream is provided, and the ionized gas stream is generated in a bipolar corona discharge. The method includes: providing an air moving device having at least one ion emitter and reference electrode connected to a micro-pulse AC power source, and a control system having at least one ion balance monitor and a corona discharge adjustment controller; generating Variable-polarity group of short-duration ionized micropulses: where the micropulses are mainly asymmetric in the amplitude and duration of the two polar voltages, and the intensity of the ionized pulses with at least one polarity exceeds the corona Threshold.
本發明的另一個實施例中,提供了用於自動平衡離子化吹風器的設備。該設備包括:空氣移動裝置及至少一個離子發射器及參考電極,該離子發射器與參考電極兩者連接至高電壓源;及離子平衡監視器;其中該高電壓源的變壓器、該離子發射器與參考電極安排在AC電流電路的封閉迴路中,且該迴路藉由高數值的觀察電阻而接地。 In another embodiment of the present invention, an apparatus for automatically balancing an ionizing hair dryer is provided. The device includes: an air moving device and at least one ion emitter and a reference electrode, the ion emitter and the reference electrode are both connected to a high voltage source; and an ion balance monitor; wherein the transformer of the high voltage source, the ion emitter and The reference electrode is arranged in a closed loop of the AC current circuit, and the loop is grounded by a high-value observation resistance.
100‧‧‧離子化吹風器 100‧‧‧ ionized hair dryer
101‧‧‧感測器 101‧‧‧Sensor
102‧‧‧發射器點陣列 102‧‧‧ transmitter point array
103‧‧‧風扇 103‧‧‧fan
104‧‧‧上參考電極 104‧‧‧on the reference electrode
105‧‧‧下參考電極 105‧‧‧ lower reference electrode
106‧‧‧空氣導管 106‧‧‧air duct
107‧‧‧控制系統 107‧‧‧Control System
108‧‧‧電極 108‧‧‧ electrode
109‧‧‧介電質板材 109‧‧‧Dielectric material
110‧‧‧電極 110‧‧‧ electrode
125‧‧‧空氣 125‧‧‧ air
125a‧‧‧離子化空氣流體的部分 125a‧‧‧ part of ionized air fluid
125b‧‧‧離子化空氣流體 125b‧‧‧ ionized air fluid
127‧‧‧方塊 127‧‧‧box
130‧‧‧空間 130‧‧‧ space
131‧‧‧出口 131‧‧‧Export
132‧‧‧頂側 132‧‧‧Top side
133‧‧‧底側 133‧‧‧ bottom side
135‧‧‧電壓/信號 135‧‧‧Voltage / Signal
200‧‧‧系統 200‧‧‧ system
201‧‧‧控制系統 201‧‧‧Control System
202‧‧‧脈衝驅動器 202‧‧‧Pulse driver
203‧‧‧變壓器 203‧‧‧Transformer
204‧‧‧感測器 204‧‧‧Sensor
205‧‧‧取樣與保持電路 205‧‧‧Sampling and holding circuit
206‧‧‧低通濾波器 206‧‧‧Low-pass filter
207‧‧‧放大器 207‧‧‧amplifier
208‧‧‧電位計 208‧‧‧ Potentiometer
209‧‧‧電能轉換器 209‧‧‧Power Converter
210‧‧‧返回電流 210‧‧‧Return current
214‧‧‧電流 214‧‧‧Current
215‧‧‧取樣信號 215‧‧‧Sampling signal
216‧‧‧開關 216‧‧‧Switch
218‧‧‧放大器 218‧‧‧amplifier
220‧‧‧離子電流 220‧‧‧ ion current
230‧‧‧變壓器 230‧‧‧Transformer
250‧‧‧信號 250‧‧‧ signal
251‧‧‧低電壓終端 251‧‧‧Low-voltage terminal
252‧‧‧平衡信號 252‧‧‧ balanced signal
253‧‧‧定點信號 253‧‧‧ fixed-point signal
254‧‧‧電流 254‧‧‧Current
256‧‧‧電壓偏壓 256‧‧‧voltage bias
257‧‧‧接線 257‧‧‧Wiring
258‧‧‧電壓源數值 258‧‧‧Voltage source value
815‧‧‧正脈衝輸出 815‧‧‧positive pulse output
816‧‧‧負脈衝輸出 816‧‧‧Negative pulse output
以範例提議的此揭示之各種實施例將參考以下圖式而詳細描述,其中相同符號參考相同元件,且其中: 第1A圖為依據本發明之實施例的離子化吹風器的概視圖之方塊圖。 Various embodiments of this disclosure proposed by way of example will be described in detail with reference to the following drawings, in which like symbols refer to like elements, and wherein: FIG. 1A is a block diagram of an overview of an ionized hair dryer according to an embodiment of the present invention.
第1B圖為第1A圖之該吹風器的剖面視圖。 Fig. 1B is a sectional view of the hair dryer of Fig. 1A.
第1C圖依據本發明之實施例,為包含於離子化吹風器中的感測器的方塊圖。 FIG. 1C is a block diagram of a sensor included in an ionized hair dryer according to an embodiment of the present invention.
第2A圖依據本發明之實施例,為第1A圖之離子化吹風器與來自該吹風器之離子化氣流的方塊圖。 Figure 2A is a block diagram of the ionized hair dryer of Figure 1A and the ionized air flow from the hair dryer according to an embodiment of the present invention.
第2B圖依據本發明之實施例,為該離子化吹風器中之系統的電子方塊圖。 FIG. 2B is an electronic block diagram of a system in the ionizing hair dryer according to an embodiment of the present invention.
第3圖依據本發明之實施例,為反饋演算法300的流程圖。 FIG. 3 is a flowchart of a feedback algorithm 300 according to an embodiment of the present invention.
第4圖依據本發明之實施例,為微脈衝產生器控制器的微脈衝產生器演算法之流程圖。 FIG. 4 is a flowchart of a micro-pulse generator algorithm of a micro-pulse generator controller according to an embodiment of the present invention.
第5A圖依據本發明之實施例,為於負脈衝列形成時的系統運作之流程圖。 FIG. 5A is a flowchart of system operation when a negative pulse train is formed according to an embodiment of the present invention.
第5B圖依據本發明之實施例,為於正脈衝列形成時的系統運作之流程圖。 FIG. 5B is a flowchart of system operation when a positive pulse train is formed according to an embodiment of the present invention.
第6圖依據本發明之實施例,為於目前脈衝相位時的系統運作之流程圖。 FIG. 6 is a flowchart of the system operation at the current pulse phase according to an embodiment of the present invention.
第7圖依據本發明之實施例,為於該感測器輸入量測時的系統運作之流程圖。 FIG. 7 is a flowchart of system operation when the sensor is input for measurement according to an embodiment of the present invention.
第8圖依據本發明之實施例,為微脈衝的波形圖表。 FIG. 8 is a waveform chart of micropulses according to an embodiment of the present invention.
第9圖依據本發明之實施例,為於平衡警示時的系統運作之流程圖。 FIG. 9 is a flowchart of system operation during a balance alert according to an embodiment of the present invention.
在以下詳細描述中,為了解釋之目的,數個詳細細節被闡述以提供本發明各種實施例的完整理解。本領域具有通常知識者將意識到本發明的這些各種實施例僅為例示性的,且並非意於以任何方式限制。本發明的其他實施例將自己輕易地暗示於具有茲揭示之益處的這樣之技藝人士。 In the following detailed description, for the purposes of explanation, several detailed details are set forth in order to provide a thorough understanding of various embodiments of the invention. Those having ordinary skill in the art will recognize that these various embodiments of the present invention are illustrative only and are not intended to be limiting in any way. Other embodiments of the invention will easily suggest themselves to such a skilled person having the benefits disclosed herein.
本發明的實施例可應用至許多種類的空氣氣體離子器,該等離子器配置為,舉例而言,離子化棒、吹風器,或直列(in-line)離子化裝置。 Embodiments of the present invention can be applied to many types of air gas ionizers configured as, for example, an ionization rod, a hair dryer, or an in-line ionization device.
覆蓋大面積的離子化吹風器需要具有短放電時間的高效率空氣離子化及嚴格的離子平衡控制的組合。第1A圖為依據本發明實施例的離子化吹風器100之概視圖的方塊圖,而第1B圖為第1A圖延著線A-A的吹風器100之剖面視圖。該有效率的空氣離子化藉由雙極電暈放電而達成,該雙極電暈放電產生於發射器點102之陣列(亦即,發射器點陣列102)與兩個參考電極104、105(顯示為上參考電極104及下參考電極105)之間。安裝於保護網架106(亦即空氣導管106)上的發射器點102亦等效地幫助加速離子化的空氣流體。 The ionization blower covering a large area requires a combination of high-efficiency air ionization with short discharge time and strict ion balance control. FIG. 1A is a block diagram of a general view of an ionized hair dryer 100 according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view of the hair dryer 100 along line A-A in FIG. The efficient air ionization is achieved by a bipolar corona discharge, which is generated from an array of emitter points 102 (ie, the emitter point array 102) and two reference electrodes 104, 105 ( Shown between the upper reference electrode 104 and the lower reference electrode 105). The emitter points 102 mounted on the protective grid 106 (ie, the air duct 106) also equivalently help accelerate the ionized air fluid.
風扇103(第1A圖)為空氣移動裝置,該空氣移動裝置在發射器點陣列102(離子發射器102)與兩個參考電極104、105之間的空間130中提供高變化空氣流體125。空氣導管106集中並分佈電暈放電之空間130中的空氣流體125。電暈放電產生的正與負離子移動於電極102、104與105之間。空氣流體125能夠取得並承載僅相對小部分的電暈放電 產生之正與負離子。 The fan 103 (FIG. 1A) is an air moving device that provides a highly variable air fluid 125 in a space 130 between the emitter point array 102 (ion emitter 102) and the two reference electrodes 104, 105. The air duct 106 concentrates and distributes the air fluid 125 in the space 130 of the corona discharge. The positive and negative ions generated by the corona discharge move between the electrodes 102, 104, and 105. Air fluid 125 is capable of capturing and carrying only a relatively small portion of corona discharge Generated positive and negative ions.
依據本發明的一個實施例,空氣125被迫離開空氣導管(106)出口131且空氣125通過空氣離子化感測器101。感測器101的設計之一個實施例的細節顯示於第1C圖。風扇(在第1B圖中顯示為方塊126)提供空氣流體125。空氣離子化電壓感測器101具有百葉種類的薄介電質板材109,該介電質板材延伸於導管106的完整寬度。百葉板材109導引來自導管106與上電極104的離子化空氣流體125b(離子化氣流125b)的部分125a(或取樣125a)(亦見第2A圖),使得感測器101可感測並收集某些離子化空氣流體125b的部分125a中之離子電荷。所收集的離子電荷接著產生控制信號250(第2圖)以被演算法300所使用(第3圖),以用於平衡離子化吹風器100中的離子。板材109的頂側132具有狹窄金屬條,該狹窄金屬條作為敏感電極108的功能,且底側133具有較寬的接地普通電極110。此電極110通常係屏蔽的,使得空氣離子化感測器101屏蔽於發射器點陣列102的高電場。電極108收集離子的某些電荷以造成電壓/信號135(第2A圖),該電壓/信號與離子化空氣流體125b中的離子平衡成比例。來自感測器101的電壓/信號135被控制系統107(第2圖中顯示為系統200)使用,以監視並調整離子化空氣流體125b中的該離子平衡。此信號135亦由信號250代表,信號250輸入至取樣與保持電路205中,如將在以下進一步探討。離子平衡感測器的其他配置,舉例而言,沉浸於該離子流體中的導電格柵或金屬網格形式亦可用於本發明的其他實施例中。 According to one embodiment of the invention, the air 125 is forced to leave the air duct (106) outlet 131 and the air 125 passes through the air ionization sensor 101. Details of one embodiment of the design of the sensor 101 are shown in FIG. 1C. A fan (shown as block 126 in Figure 1B) provides air fluid 125. The air ionization voltage sensor 101 has a louver-type thin dielectric plate 109 that extends over the entire width of the duct 106. The louver plate 109 guides the portion 125a (or sampling 125a) of the ionized air fluid 125b (ionized gas flow 125b) from the duct 106 and the upper electrode 104 (see also FIG. 2A), so that the sensor 101 can sense and collect The ionic charge in a portion 125a of some ionized air fluid 125b. The collected ionic charge then generates a control signal 250 (Figure 2) for use by the algorithm 300 (Figure 3) for balancing the ions in the ionizing hair dryer 100. The top side 132 of the plate 109 has a narrow metal strip, which functions as the sensitive electrode 108, and the bottom side 133 has a wide grounded ordinary electrode 110. The electrode 110 is usually shielded, so that the air ionization sensor 101 is shielded from the high electric field of the emitter point array 102. The electrode 108 collects some of the charge of the ions to create a voltage / signal 135 (Figure 2A), which is proportional to the ion balance in the ionized air fluid 125b. The voltage / signal 135 from the sensor 101 is used by the control system 107 (shown as system 200 in Figure 2) to monitor and adjust the ion balance in the ionized air fluid 125b. This signal 135 is also represented by the signal 250, which is input into the sample and hold circuit 205, as will be discussed further below. Other configurations of the ion balance sensor, for example, a conductive grid or a metal grid form immersed in the ionic fluid may also be used in other embodiments of the present invention.
依據本發明的另一個實施例,離子電流感測器204被用以監視離子化流體平衡。因此,本發明的一個實施例提供了系統200(第2圖),該系統包括離子化返回電流感測器204以用於監視離子化空氣流體平衡。本發明的另一個實施例中,系統200包括空氣離子化電壓感測器101以用於監視離子化空氣流體平衡。 According to another embodiment of the present invention, the ion current sensor 204 is used to monitor the ionized fluid balance. Accordingly, one embodiment of the present invention provides a system 200 (FIG. 2) that includes an ionized return current sensor 204 for monitoring the ionized air-fluid balance. In another embodiment of the present invention, the system 200 includes an air ionization voltage sensor 101 for monitoring the ionized air fluid balance.
在本發明的又另一個實施例中,系統200包括雙感測器,該雙感測器包括空氣離子化電壓感測器101與離子化電流返回感測器204,其中兩個感測器101與204經配置以用於監視離子化空氣流體平衡。 In yet another embodiment of the present invention, the system 200 includes dual sensors including an air ionization voltage sensor 101 and an ionization current return sensor 204, of which two sensors 101 And 204 are configured for monitoring ionized air fluid balance.
離子化返回電流感測器204包含電容C2與電容C1,及電阻R1與電阻R2。電容C2提供AC電流路徑至大地,對該電流偵測電路產生旁路。電阻R2將該離子電流轉換成電壓(Ii*R2),且電阻R1與R2及電容C2形成低通濾波器以過濾掉該微脈衝產生的感應電流。來自感測器204流動的返回電流210顯示為I2。 The ionization return current sensor 204 includes a capacitor C2 and a capacitor C1, and a resistor R1 and a resistor R2. Capacitor C2 provides an AC current path to the ground, bypassing the current detection circuit. The resistor R2 converts the ion current into a voltage (Ii * R2), and the resistors R1 and R2 and the capacitor C2 form a low-pass filter to filter out the induced current generated by the micropulse. The return current 210 flowing from the sensor 204 is shown as I2.
流至發射器點102的電流254為電流總合Σ(Ii(+),Ii(-),I2,Ic1,Ic2),其中電流Ic1與Ic2為分別流過電容C1與C2的電流。 The current 254 flowing to the transmitter point 102 is the total current Σ (Ii (+), Ii (-), I2, Ic1, Ic2), where the currents Ic1 and Ic2 are the currents flowing through the capacitors C1 and C2, respectively.
第2A圖繪示離子電流220,該離子電流流動於發射器102與參考電極104、105之間。來自導管106的空氣流體125轉換離子化空氣流體125b中的該兩個離子電流220之一部分,該離子化空氣流體移動至吹風器100外側的電荷中和目標。該目標在第1B圖中大致顯示為方塊127,方塊127可 擺設在相對於離子化吹風器100的其他位置中。 FIG. 2A illustrates an ion current 220 that flows between the emitter 102 and the reference electrodes 104 and 105. The air fluid 125 from the duct 106 converts a part of the two ionic currents 220 in the ionized air fluid 125b, which moves to the charge neutralization target outside the hair dryer 100. The target is roughly shown as block 127 in Figure 1B. Block 127 may be It is placed in other positions relative to the ionized hair dryer 100.
第2B圖依據本發明的實施例顯示在離子化吹風器100中的系統200之電子方塊圖。系統200包含離子電流感測器204、微脈衝高電壓電源230(微脈衝AC電源230)(該微脈衝高電壓電源由脈衝驅動器202與高電壓(HV)變壓器203形成),與該離子化吹風器的控制系統201。一個實施例中,控制系統201係微控制器201。微控制器201從電壓偏壓256接收電能,該電壓偏壓可為,舉例而言,大約3.3DC伏特且在接線257接地。 FIG. 2B is an electronic block diagram of a system 200 shown in an ionizing hair dryer 100 according to an embodiment of the present invention. The system 200 includes an ion current sensor 204, a micropulse high voltage power source 230 (micropulse AC power source 230) (the micropulse high voltage power source is formed by a pulse driver 202 and a high voltage (HV) transformer 203), and the ionization blower器 的 控制 系统 201。 Control system 201. In one embodiment, the control system 201 is a microcontroller 201. The microcontroller 201 receives power from a voltage bias 256, which may be, for example, approximately 3.3 DC volts and is grounded at wiring 257.
電能轉換器209可為選擇性地使用於系統200中以提供系統200所使用的各種電壓(例如,-12VDC、12VDC或3.3VDC)。電能轉換器209可將電壓源數值258(例如,24VDC)轉換成用於偏壓微控制器201的各種電壓256。 The power converter 209 may be selectively used in the system 200 to provide various voltages (for example, -12VDC, 12VDC, or 3.3VDC) used by the system 200. The power converter 209 may convert a voltage source value 258 (eg, 24 VDC) into various voltages 256 for biasing the microcontroller 201.
微脈衝高電壓電源230具有由微控制器201控制的脈衝驅動器202。脈衝驅動器202連接至步進脈衝變壓器203。變壓器203產生短持續時間的脈衝(微秒範圍),正與負極性具有足以產生電暈放電的波幅。變壓器203的次級線圈相對於大地浮動。變壓器203的高電壓終端250連接至發射器點陣列102且變壓器203的低電壓終端251連接至參考電極104、105。 The micro-pulse high-voltage power supply 230 has a pulse driver 202 controlled by a microcontroller 201. The pulse driver 202 is connected to a step pulse transformer 203. The transformer 203 generates a short duration pulse (in the range of microseconds), with positive and negative polarities having amplitudes sufficient to generate a corona discharge. The secondary coil of the transformer 203 floats with respect to the ground. The high-voltage terminal 250 of the transformer 203 is connected to the transmitter point array 102 and the low-voltage terminal 251 of the transformer 203 is connected to the reference electrodes 104, 105.
短持續時間的高電壓AC脈衝(由高電壓電源230產生)造成了流動於電極102與104、105之間的顯著電容電流或位移電流Ic1與Ic2。舉例而言,電流Ic1流動於電極(發射器點)102與上位參考電極104之間,且電流Ic2流動於電極102 與下位參考電極105之間。相對小的正與負離子電暈電流(標記為Ii(+)與Ii(-))離開此離子產生系統200,進入到吹風器100外側的環境並移動至該目標。 The short-duration high-voltage AC pulses (generated by the high-voltage power supply 230) cause significant capacitive or displacement currents Ic1 and Ic2 to flow between the electrodes 102, 104, 105. For example, the current Ic1 flows between the electrode (emitter point) 102 and the upper reference electrode 104, and the current Ic2 flows between the electrode 102 and the lower reference electrode 105. The relatively small positive and negative ion corona currents (labeled Ii (+) and Ii (-) ) leave the ion generating system 200, enter the environment outside the hair dryer 100, and move to the target.
為了分離電容電流及離子電流,離子產生系統200安排在用於標記為Ic1與Ic2的高頻率AC電容電流之封閉迴路電路中,因為變壓器203的次級線圈與電暈電極102、104與105相對於大地為虛擬浮動的,且離子電流Ii(+)與Ii(-)具有返回路徑(且傳遞)至大地。AC電流具有明顯的較低阻抗以循環於此迴路中,相對於傳遞至大地的該等AC電流而言。 In order to separate the capacitor current and the ion current, the ion generating system 200 is arranged in a closed loop circuit for high-frequency AC capacitor currents labeled Ic1 and Ic2 , because the secondary coil of the transformer 203 is opposite the corona electrodes 102, 104, and 105 The ground is virtually floating, and the ionic currents Ii (+) and Ii (-) have a return path (and transfer) to the ground. The AC current has a significantly lower impedance to circulate in this loop, relative to those AC currents that are passed to the ground.
系統200包含離子平衡監視器,該離子平衡監視器藉由將封閉迴路電流路徑安排於脈衝AC電壓源230、該離子發射器102與參考電極104或105之間,提供了來自脈衝AC電流的分離離子對流電流。 System 200 includes an ion balance monitor that provides separation from pulsed AC current by arranging a closed loop current path between a pulsed AC voltage source 230, the ion emitter 102 and a reference electrode 104 or 105 Ion convection current.
此外,於該等微脈衝之間的時間期間,離子平衡監視行使於系統200中。此外,離子平衡監視係藉由積分正與負對流電流的差動信號而行使。 In addition, during the time between these micropulses, ion balance monitoring is exercised in the system 200. In addition, ion balance monitoring is performed by integrating differential signals of positive and negative convection currents.
高電壓源230的變壓器203、離子發射器102與參考電極104或105安排於用於AC電流電路的封閉迴路中,且該封閉迴路藉由高數值觀察電阻R2連接至大地。 The transformer 203, the ion emitter 102, and the reference electrode 104 or 105 of the high-voltage source 230 are arranged in a closed circuit for an AC current circuit, and the closed circuit is connected to the ground through a high-value observation resistor R2 .
電荷守恆定律規定由於AC電壓源230(透過變壓器203)的輸出係浮動的,該離子電流等於正Ii(+)與負Ii(-)離子電流的和。該等電流Ii(+)與Ii(-)必須透過系統200中的返回電流感測器204之電路返回。每個極性離子電流的量為:Ii(+)=Q(+)*N(+)*U及Ii(-)=Q(-)*N(-).*U The law of conservation of charge states that since the output of the AC voltage source 230 (through the transformer 203) is floating, the ion current is equal to the sum of the positive Ii (+) and negative Ii (-) ion currents. The currents Ii (+) and Ii (-) must be returned through the circuit of the return current sensor 204 in the system 200. The amount of current for each polarity ion is: Ii (+) = Q (+) * N (+) * U and Ii (-) = Q (-) * N (-). * U
其中Q為正或負離子的電荷,N為離子濃度,且U為空氣流體。若正Ii(+)與負Ii(-)電流的絕對值相同,則離子平衡將被達成。本技藝中已知空氣離子的兩個極性承載大約相同的電荷(等於一個電子)量。因此,另一個離子平衡的條件為兩個極性離子的相同濃度。空氣離子化電壓感測器101(離子平衡監視器101)對於離子濃度中的變化更為敏感,相較於對離子電流改變敏感的返回電流感測器204(離子平衡監視器204)而言。因此,空氣離子化電壓感測器(電容感測器)101的反應速度通常比離子化返回電流感測器204的反應更快。 Where Q is the charge of positive or negative ions, N is the ion concentration, and U is the air fluid. If the absolute value of the positive Ii (+) and negative Ii (-) currents are the same, the ion balance will be achieved. It is known in the art that the two polarities of air ions carry approximately the same amount of charge (equal to one electron). Therefore, another condition for ion equilibrium is the same concentration of two polar ions. The air ionization voltage sensor 101 (ion balance monitor 101) is more sensitive to changes in ion concentration than the return current sensor 204 (ion balance monitor 204), which is sensitive to changes in ion current. Therefore, the reaction speed of the air ionization voltage sensor (capacitive sensor) 101 is generally faster than that of the ionization return current sensor 204.
由感測器101偵測到較多數量之正離子造成了感測器101產生正輸出電壓,該正輸出電壓輸入至取樣與保持電路205中(且由該取樣與保持電路處理)。由感測器101偵測到較多數量之負離子造成了感測器101產生負輸出電壓,該負輸出電壓輸入至取樣與保持電路205中(且由該取樣與保持電路處理)。相較下,類似於以上所描述,正Ii(+)與負Ii(-)的絕對值係由感測器204利用以輸出信號250以用於輸入至取樣與保持電路205中,以判定並達成離子化吹風器100中的離子平衡。 The large number of positive ions detected by the sensor 101 causes the sensor 101 to generate a positive output voltage, which is input to the sample and hold circuit 205 (and processed by the sample and hold circuit). The large number of negative ions detected by the sensor 101 causes the sensor 101 to generate a negative output voltage, which is input into the sample and hold circuit 205 (and processed by the sample and hold circuit). In comparison, similar to that described above, the absolute values of positive Ii (+) and negative Ii (-) are used by the sensor 204 to output a signal 250 for input to the sample and hold circuit 205 to determine and The ion balance in the ionized hair dryer 100 is achieved.
在微脈衝列之間的時間,取樣信號215將關閉開關216使得放大器218連接至電容C3,該電容接著基於對輸入信號250的回應而充電至一值。 At the time between the micropulse trains, the sampling signal 215 will turn off the switch 216 so that the amplifier 218 is connected to the capacitor C3, which is then charged to a value based on the response to the input signal 250.
以氣流浮動的該等離子電荷的特性為非常低的頻率,且可藉由通過高的百萬歐姆阻抗電路R1與R2至大地而監視。為了將電容性與寄生高頻電流的影響最小化,感測器 204具有與C1及C2的兩個旁路電容性路徑。 The characteristics of the plasma charge floating in the air stream are very low frequencies and can be monitored by passing through the high megaohm impedance circuits R1 and R2 to the ground. To minimize the effects of capacitive and parasitic high-frequency currents, the sensor 204 has two bypass capacitive paths to C1 and C2.
電流Ii(+)與Ii(-)的差異持續地由感測器204量測。通過電阻電路R1、R2之所造成的電流產生了電壓/信號,該電壓/信號與離開該吹風器之該氣流的時間積分/平均之離子平衡成比例。此造成的電流顯示為電流214,該電流以總和Σ(Ii(+),Ii(-))表示。 The difference between the currents Ii (+) and Ii (-) is continuously measured by the sensor 204. The current caused by the resistor circuits R1, R2 generates a voltage / signal that is proportional to the time integral / average ion balance of the airflow leaving the hair dryer. The resulting current is shown as current 214, which is represented by the sum Σ (Ii (+), Ii (-)).
離子平衡監視藉由量測電流感測器204的電壓輸出而達成,或藉由量測電壓感測器101的輸出,或藉由量測來自空氣離子化感測器101與204的電壓。為了清晰之目的,電流感測器204的該等電壓輸出與電壓感測器101的電壓輸出在第2圖中各自同樣地顯示為信號250。此信號250施加至取樣與保持電路205(取樣電路205)的該輸入,該取樣與保持電路由微控制器201透過取樣信號215控制,該取樣信號開啟開關216以在信號250上觸發取樣與保持運作。 Ion balance monitoring is achieved by measuring the voltage output of the current sensor 204, or by measuring the output of the voltage sensor 101, or by measuring the voltage from the air ionization sensors 101 and 204. For the purpose of clarity, the voltage output of the current sensor 204 and the voltage output of the voltage sensor 101 are each shown in the same manner as the signal 250 in FIG. 2. This signal 250 is applied to the input of the sample and hold circuit 205 (sampling circuit 205), which is controlled by the microcontroller 201 through a sampling signal 215, which turns on the switch 216 to trigger the sample and hold on the signal 250 Operation.
某些對於電暈系統的情況或實施例中,來自感測器101與204兩者的診斷信號可被比較。該等診斷信號以信號250輸入至取樣與保持電路205。 In some cases or embodiments of the corona system, diagnostic signals from both sensors 101 and 204 may be compared. The diagnostic signals are input to the sample and hold circuit 205 with a signal 250.
信號250接著在施加至常駐於微控制器201內的類比至數位轉換器(ADC)的輸入之前,先由低通濾波器206調節並以放大器207放大。取樣與保持電路205將脈衝時間之間的信號250取樣,以將恢復信號250中的雜訊最小化。電容C3保持取樣時間之間的最後信號值。放大器207將信號250放大至微控制201更可用的等級,且來自放大器207的此放大信號顯示為平衡信號252。 The signal 250 is then adjusted by a low-pass filter 206 and amplified by an amplifier 207 before being applied to the input of an analog-to-digital converter (ADC) resident in the microcontroller 201. The sample and hold circuit 205 samples the signal 250 between the pulse times to minimize noise in the recovered signal 250. Capacitor C3 holds the last signal value between sampling times. The amplifier 207 amplifies the signal 250 to a more usable level of the micro-control 201, and this amplified signal from the amplifier 207 is displayed as a balanced signal 252.
微控制器201將平衡信號252與定點信號253作比較,該定點信號係由平衡調整電位計208產生的參考信號。定點信號253係可由電位計208調整的可變信號。 The microcontroller 201 compares the balance signal 252 with a fixed-point signal 253, which is a reference signal generated by the balance adjustment potentiometer 208. The fixed-point signal 253 is a variable signal that can be adjusted by the potentiometer 208.
定點信號253可被調整以補償離子化吹風器100的不同環境。舉例而言,接近離子化吹風器100之輸出131(第1B圖)的參考位準(大地)可大約為零,而接近離子化目標的參考位準可不為零。舉例而言,更多的負離子可能在該離子化目標的位置上失去,若該位置具有強的大地位能值的話。因此,定點信號253可被調整以補償在該離子化目標位置處的參考位準之該非零值。在此狀況中,定點信號253可被減少,使得微控制器201可驅動脈衝驅動器202以控制HV變壓器230,以產生HV輸出254,該HV輸出在發射器點102處產生更多的正離子(因為下位定點值253用來作為比較以觸發更多的正離子產生),以補償在該離子化目標位置處的負離子之損失。 The pointing signal 253 can be adjusted to compensate for different environments of the ionizing hair dryer 100. For example, the reference level (earth) near the output 131 (Figure 1B) of the ionization blower 100 may be approximately zero, and the reference level near the ionization target may not be zero. For example, more negative ions may be lost at the position of the ionization target, if the position has a strong large potential energy value. Therefore, the fixed-point signal 253 can be adjusted to compensate for the non-zero value of the reference level at the ionization target position. In this situation, the fixed-point signal 253 can be reduced so that the microcontroller 201 can drive the pulse driver 202 to control the HV transformer 230 to generate an HV output 254, which generates more positive ions at the transmitter point 102 ( Because the lower fixed-point value 253 is used as a comparison to trigger the generation of more positive ions) to compensate for the loss of negative ions at the ionization target position.
現在參考第2圖及第8圖。本發明的實施例中,離子化吹風器100可達成在離子化吹風器100中的離子平衡,基於以下的至少一或更多者:(1)藉由增加及/或減少正脈衝寬度值及/或負脈衝寬度值,(2)藉由增加及/或減少正脈衝之間的時間及/或負脈衝之間的時間,及/或(3)藉由增加及/或減少正脈衝及/或負脈衝的數量,如以下所述。微控制器201輸出正脈衝輸出815與負脈衝輸出816(第2及8圖),該等輸出受驅使至脈衝驅動器202中並控制該脈衝驅動器。回應於輸出815及816,變壓器230產生離子化波形814(HV輸出814), 該離子化波形施加至發射器點102以基於離子化波形814而產生正離子的量與負離子的量。 Reference is now made to Figures 2 and 8. In the embodiment of the present invention, the ionized hair dryer 100 can achieve the ion balance in the ionized hair dryer 100 based on at least one or more of the following: (1) by increasing and / or decreasing the positive pulse width value and / Or a negative pulse width value, (2) by increasing and / or decreasing the time between positive pulses and / or the time between negative pulses, and / or (3) by increasing and / or decreasing positive pulses and / Or the number of negative pulses, as described below. The microcontroller 201 outputs a positive pulse output 815 and a negative pulse output 816 (FIGS. 2 and 8). These outputs are driven into the pulse driver 202 and control the pulse driver. In response to the outputs 815 and 816, the transformer 230 generates an ionized waveform 814 (HV output 814), This ionization waveform is applied to the emitter point 102 to generate an amount of positive ions and an amount of negative ions based on the ionization waveform 814.
作為範例,若感測器101及/或感測器204偵測到離子化吹風器101中的離子不平衡,其中吹風器101中的正離子量超出負離子量,則進入微控制器201的平衡信號252將指出此離子不平衡。微控制器201會將負脈衝804的負脈衝寬度(持續時間)811伸長。由於寬度811被伸長,負微脈衝802的波幅增加。正微脈衝801與負微脈衝802係高電壓輸出,該高電壓輸出受驅動至發射器點102。負微脈衝802的增加之波幅將增加從發射器點102產生的負離子。離子化波形814產生了短持續時間離子化微脈衝801及802的可變極性群組。微脈衝801與802在兩個極性電壓的波幅與持續時間中主要為非對稱的,且具有至少一個極性離子化脈衝的大小超出該電暈閾值。 As an example, if the sensor 101 and / or the sensor 204 detects an imbalance in the ionized hair dryer 101, and the amount of positive ions in the hair dryer 101 exceeds the amount of negative ions, it enters the balance of the microcontroller 201 Signal 252 will indicate that this ion is unbalanced. The microcontroller 201 stretches the negative pulse width (duration) 811 of the negative pulse 804. As the width 811 is extended, the amplitude of the negative micropulse 802 increases. The positive micropulse 801 and the negative micropulse 802 are high voltage outputs, which are driven to the transmitter point 102. The increased amplitude of the negative micropulses 802 will increase the negative ions generated from the emitter point 102. The ionization waveform 814 generates a variable-polarity group of short-duration ionization micropulses 801 and 802. The micropulses 801 and 802 are mainly asymmetric in the amplitude and duration of the two polar voltages, and the magnitude of the ionization pulses having at least one polarity exceeds the corona threshold.
一旦對於負脈衝寬度811的最大脈衝寬度被達到,若在吹風器100中的正離子量仍超出負離子量,則微控制器201將縮短正脈衝803的正脈衝寬度(持續時間)810。由於寬度810被縮短,正微脈衝801的波幅被減少。正微脈衝801的減少之波幅將減少從發射器點102產生的正離子。 Once the maximum pulse width for the negative pulse width 811 is reached, if the amount of positive ions in the hair dryer 100 still exceeds the amount of negative ions, the microcontroller 201 will shorten the positive pulse width (duration) 810 of the positive pulse 803. Since the width 810 is shortened, the amplitude of the positive micropulse 801 is reduced. The reduced amplitude of the positive micropulses 801 will reduce the positive ions generated from the emitter point 102.
替代地或額外地,若在吹風器100中的正離子量超出負離子量,則微控制器201將藉由伸長負重複率813(負脈衝804之間的時距)而伸長負脈衝804之間的時間。由於負重複率813被伸長,負微脈衝802之間的時間亦增加。作為結果,伸長的或較長的負重複率813將增加負微脈衝802之間 的時間,此舉將順次增加從發射器點102產生負離子的時間量。 Alternatively or additionally, if the amount of positive ions in the hair dryer 100 exceeds the amount of negative ions, the microcontroller 201 will stretch between the negative pulses 804 by stretching the negative repetition rate 813 (time interval between negative pulses 804). time. As the negative repetition rate 813 is extended, the time between the negative micropulses 802 also increases. As a result, an elongated or longer negative repetition rate 813 will increase between negative micropulses 802 This will sequentially increase the amount of time that negative ions are generated from the emitter point 102.
一旦對於負重複率的最小負重複率被達到,若在吹風器100中的正離子量仍超出負離子量,則微控制器201將藉由縮短正重複率812(正脈衝803之間的時距)而縮短正脈衝803之間的時間。由於正重複率812被縮短,正微脈衝801之間的時間亦被減少。作為結果,縮短的或較短的正重複率811將減少正微脈衝803之間的時間,此舉將順次減少從發射器點102產生正離子的時間量。 Once the minimum negative repetition rate for the negative repetition rate is reached, if the amount of positive ions in the hair dryer 100 still exceeds the amount of negative ions, the microcontroller 201 will shorten the positive repetition rate 812 (the time interval between positive pulses 803) ) And shorten the time between the positive pulses 803. Since the positive repetition rate 812 is shortened, the time between the positive micropulses 801 is also reduced. As a result, a shortened or shorter positive repetition rate 811 will reduce the time between the positive micropulses 803, which will sequentially reduce the amount of time that positive ions are generated from the emitter point 102.
替代地或額外地,若在吹風器100中的正離子量超出負離子量,則微控制器201將增加負脈衝輸出816中的負脈衝804之數量。微控制器201具有負脈衝計數器,該負脈衝計數器可被增加以增加負脈衝輸出816中的負脈衝804之數量。由於負脈衝804的數量增加,負脈衝列在負脈衝輸出816中增加,且此舉增加了HV輸出中的負微脈衝802之數量,該HV輸出為施加至發射器點102的離子化波形814。 Alternatively or additionally, if the amount of positive ions in the hair dryer 100 exceeds the amount of negative ions, the microcontroller 201 will increase the number of negative pulses 804 in the negative pulse output 816. The microcontroller 201 has a negative pulse counter that can be increased to increase the number of negative pulses 804 in the negative pulse output 816. As the number of negative pulses 804 increases, the negative pulse train increases in the negative pulse output 816, and this increases the number of negative micropulses 802 in the HV output, which is an ionized waveform 814 applied to the emitter point 102 .
一旦最大量的負脈衝被加至負脈衝輸出816,若在吹風器100中的正離子量仍超出負離子量,則微控制器201將減少正脈衝輸出815中的正脈衝803的數量。微控制器201具有正脈衝計數器,該正脈衝計數器可被減少以減少正脈衝輸出815中的正脈衝803之數量。由於正脈衝803的數量減少,正脈衝列在正脈衝輸出815中減少,且此舉減少了HV輸出中的正微脈衝801之數量,該HV輸出為施加至發射器點102的離子化波形814。 Once the maximum amount of negative pulses is added to the negative pulse output 816, if the amount of positive ions in the hair dryer 100 still exceeds the amount of negative ions, the microcontroller 201 will reduce the number of positive pulses 803 in the positive pulse output 815. The microcontroller 201 has a positive pulse counter which can be reduced to reduce the number of positive pulses 803 in the positive pulse output 815. As the number of positive pulses 803 decreases, the positive pulse train decreases in the positive pulse output 815, and this reduces the number of positive micropulses 801 in the HV output, which is an ionized waveform 814 applied to the emitter point 102 .
以下係針對當該吹風器中的負離子量超出正離子量時,達成吹風器100中離子平衡的範例。 The following is an example of achieving the ion balance in the hair dryer 100 when the amount of negative ions in the hair dryer exceeds the amount of positive ions.
感測器101及/或感測器204偵測離子化吹風器101中的離子不平衡,其中吹風器101中的負離子量超出正離子量,則進入微控制器201的平衡信號252將指示此離子不平衡。微控制器201將伸長正脈衝803的正脈衝寬度812。由於寬度810被伸長,正微脈衝801的波幅增加。所增加的正微脈衝801之波幅將增加從發射器點102產生的正離子。 The sensor 101 and / or the sensor 204 detects an ion imbalance in the ionized hair dryer 101, where the amount of negative ions in the hair dryer 101 exceeds the amount of positive ions, and the balance signal 252 entering the microcontroller 201 will indicate this Ions are not balanced. The microcontroller 201 will stretch the positive pulse width 812 of the positive pulse 803. As the width 810 is stretched, the amplitude of the positive micropulse 801 increases. The increased amplitude of the positive micropulses 801 will increase the positive ions generated from the emitter point 102.
一旦對於正脈衝寬度812的最大脈衝寬度被達到,若在吹風器100中的負離子量仍超出正離子量,則微控制器201將縮短負脈衝804的負脈衝寬度811。由於寬度811被縮短,負微脈衝802的波幅被減少。負微脈衝802的減少之波幅將減少從發射器點102產生的負離子。 Once the maximum pulse width for the positive pulse width 812 is reached, if the amount of negative ions in the hair dryer 100 still exceeds the amount of positive ions, the microcontroller 201 will shorten the negative pulse width 811 of the negative pulse 804. As the width 811 is shortened, the amplitude of the negative micropulse 802 is reduced. The reduced amplitude of the negative micropulses 802 will reduce the negative ions generated from the emitter point 102.
替代地或額外地,若在吹風器100中的負離子量超出正離子量,則微控制器201將藉由伸長正重複率812而伸長正脈衝803之間的時間。由於正重複率812被伸長,正微脈衝801之間的時間亦增加。作為結果,伸長的或較長的正重複率812將增加正微脈衝801之間的時間,此舉將順次增加從發射器點102產生正離子的時間量。 Alternatively or additionally, if the amount of negative ions in the hair dryer 100 exceeds the amount of positive ions, the microcontroller 201 will stretch the time between the positive pulses 803 by stretching the positive repetition rate 812. As the positive repetition rate 812 is extended, the time between the positive micropulses 801 also increases. As a result, an elongated or longer positive repetition rate 812 will increase the time between positive micropulses 801, which will sequentially increase the amount of time that positive ions are generated from the emitter point 102.
一旦對於正重複率812的最小正重複率被達到,若在吹風器100中的負離子量仍超出正離子量,則微控制器201將藉由伸長負重複率813而伸長負脈衝804之間的時間。由於負重複率813被伸長,負微脈衝802之間的時間亦被增加。作為結果,伸長的或較長的負重複率813將增加負微脈衝802 之間的時間,此舉將順次減少從發射器點102產生負離子的時間量。 Once the minimum positive repetition rate for the positive repetition rate 812 is reached, if the amount of negative ions in the hair dryer 100 still exceeds the amount of positive ions, the microcontroller 201 will extend the time between the negative pulses 804 by extending the negative repetition rate 813. time. As the negative repetition rate 813 is extended, the time between the negative micropulses 802 is also increased. As a result, an elongated or longer negative repetition rate 813 will increase the negative micropulse 802 In between, this will sequentially reduce the amount of time that negative ions are generated from the emitter point 102.
替代地或額外地,若在吹風器100中的負離子量超出正離子量,則微控制器201將增加正脈衝輸出815中的正脈衝803之數量。微控制器201具有正脈衝計數器,該正脈衝計數器可被增加以增加正脈衝輸出815中的正脈衝803之數量。由於正脈衝803的數量增加,正脈衝列在正脈衝輸出815中伸長,且增加了該HV輸出中的正微脈衝801之數量,該HV輸出為施加至發射器點102的離子化波形814。 Alternatively or additionally, if the amount of negative ions in the hair dryer 100 exceeds the amount of positive ions, the microcontroller 201 will increase the number of positive pulses 803 in the positive pulse output 815. The microcontroller 201 has a positive pulse counter which can be increased to increase the number of positive pulses 803 in the positive pulse output 815. As the number of positive pulses 803 increases, the positive pulse train elongates in the positive pulse output 815, and the number of positive micropulses 801 in the HV output is increased, the HV output being an ionized waveform 814 applied to the emitter point 102.
一旦最大量的正脈衝被加至正脈衝輸出815,若在吹風器100中的負離子量仍超出正離子量,則微控制器201將減少負脈衝輸出816中的負脈衝804的數量。微控制器201具有負脈衝計數器,該負脈衝計數器可被減少以減少負脈衝輸出816中的負脈衝804之數量。由於負脈衝804的數量減少,負脈衝列在負脈衝輸出816中減少,且減少了該HV輸出中的負微脈衝802之數量,該HV輸出為施加至發射器點102的離子化波形814。 Once the maximum amount of positive pulses is added to the positive pulse output 815, if the amount of negative ions in the hair dryer 100 still exceeds the amount of positive ions, the microcontroller 201 will reduce the number of negative pulses 804 in the negative pulse output 816. The microcontroller 201 has a negative pulse counter which can be reduced to reduce the number of negative pulses 804 in the negative pulse output 816. As the number of negative pulses 804 decreases, the negative pulse train decreases in the negative pulse output 816, and the number of negative micropulses 802 in the HV output is reduced, the HV output being an ionized waveform 814 applied to the emitter point 102.
若(反應於平衡電流值252的)離子不平衡無顯著地不同於定點253,則離子不平衡中的小調整可能係足夠的,且微控制器201可調整脈衝寬度811及/或810以達成離子平衡。 If the ion imbalance (responding to the equilibrium current value 252) is not significantly different from the fixed point 253, small adjustments in the ion imbalance may be sufficient, and the microcontroller 201 may adjust the pulse width 811 and / or 810 to achieve Ion balance.
若(反應於平衡電流值252的)離子不平衡中度地不同於定點253,則離子不平衡中的中度調整可能係足夠的,且微控制器201可調整重複率813與812以達成離子平衡。 If the ion imbalance (responding to the equilibrium current value 252) is moderately different from the fixed point 253, the moderate adjustment in the ion imbalance may be sufficient, and the microcontroller 201 may adjust the repetition rates 813 and 812 to achieve the ion balance.
若(反應於平衡電流值252的)離子不平衡明顯地不 同於定點253,則離子不平衡中的大幅調整可能係足夠的,且微控制器201可將正及/或負脈衝分別加至輸出815及816。 If the ion imbalance (responding to the equilibrium current value of 252) is obviously not As with the fixed point 253, a large adjustment in the ion imbalance may be sufficient, and the microcontroller 201 may add positive and / or negative pulses to the outputs 815 and 816, respectively.
在本發明又另一個實施例中,第8圖中的該等微脈衝之至少一個極性的持續時間(脈衝寬度)係至少大約100倍短於微脈衝之間的時距。 In yet another embodiment of the present invention, the duration (pulse width) of at least one polarity of the micropulses in FIG. 8 is at least about 100 times shorter than the time interval between the micropulses.
在本發明又另一個實施例中,第8圖中的該等微脈衝係安排於跟隨著一另一個群組/脈衝列中,且其中一個極性脈衝列包括大約2與16個之間的正離子化脈衝,且負脈衝列包括大約2與16個之間的正離子化脈衝,其中正與負脈衝列之間的時距係等於大約2倍的連續脈衝之週期。 In yet another embodiment of the present invention, the micropulses in FIG. 8 are arranged in a group / pulse sequence following one another, and one of the polar pulse trains includes about 2 to 16 positive pulses. Ionization pulses, and the negative pulse train includes approximately two to sixteen positive ionization pulses, where the time interval between the positive and negative pulse trains is equal to approximately two times the period of consecutive pulses.
第3圖中的流程圖依據本發明的實施例顯示系統200的反饋演算法300。利用反饋演算法300而提供離子平衡控制的函數在離子化循環的末端執行。舉例而言,此演算法由第2圖中的系統200行使。方塊301中,開始了平衡控制反饋演算法。 The flowchart in FIG. 3 shows a feedback algorithm 300 of the display system 200 according to an embodiment of the present invention. Functions that provide ion balance control using the feedback algorithm 300 are performed at the end of the ionization cycle. For example, this algorithm is performed by the system 200 in FIG. 2. In block 301, a balance control feedback algorithm is started.
方塊302、303、304與305中,行使了負脈衝寬度的控制值之計算。方塊302中,誤差值(誤差)藉由從量測的離子平衡(平衡量測)減去所需離子平衡(定點)而計算。方塊303中,誤差值乘以迴圈增益。方塊304中,該控制值得計算限制至最小或最大值,使得該控制值受限制且不會超出範圍。方塊305中,該控制值加至最後的負脈衝寬度值。 In blocks 302, 303, 304, and 305, the calculation of the control value of the negative pulse width is performed. In block 302, the error value (error) is calculated by subtracting the required ion balance (fixed point) from the measured ion balance (balance measurement). In block 303, the error value is multiplied by the loop gain. In block 304, the control is worth calculating to be limited to a minimum or maximum value such that the control value is limited and does not exceed the range. In block 305, the control value is added to the final negative pulse width value.
方塊306、307、308與309中,該脈衝寬度被增量或減量。方塊306中,該負脈衝寬度與最大值(MAX)作比較。若該負脈衝寬度等於MAX,則方塊307中,該正脈衝寬度被 減量,且演算法300前往方塊310。若負脈衝寬度不等於MAX,則演算法300前往方塊308。 In blocks 306, 307, 308, and 309, the pulse width is increased or decreased. In block 306, the negative pulse width is compared to a maximum value (MAX). If the negative pulse width is equal to MAX, then in block 307, the positive pulse width is The amount is decremented, and the algorithm 300 proceeds to block 310. If the negative pulse width is not equal to MAX, the algorithm 300 proceeds to block 308.
方塊308中,該負脈衝寬度與最小值(MIN)作比較。若該負脈衝寬度等於MIN,則方塊309中,該正脈衝寬度被減量,且演算法300前往方塊310。若負脈衝寬度不等於MIN,則演算法300前往方塊310。當該負脈衝寬度達到其控制限制時,該正脈衝寬度的改變將以超越平衡定點的方式而偏移該平衡,將該負脈衝強迫至其限制。 In block 308, the negative pulse width is compared to a minimum value (MIN). If the negative pulse width is equal to MIN, then in block 309, the positive pulse width is decremented, and the algorithm 300 proceeds to block 310. If the negative pulse width is not equal to MIN, the algorithm 300 proceeds to block 310. When the negative pulse width reaches its control limit, the change in the positive pulse width will shift the balance in a way beyond the fixed point of the balance, forcing the negative pulse to its limit.
方塊310、311、312與313中,當脈衝寬度的限制滿足時,該等脈衝重複率(重複率)增量或減量。方塊310中,該正脈衝寬度與MAX作比較,且該負脈衝寬度與MIN作比較。若該正脈衝寬度等於MAX且該負脈衝寬度等於MIN,則方塊311中,交替地,該正脈衝重複率(重複率)被增量或該負脈衝重複率被減量。演算法300前往方塊314。若正脈衝寬度不等於MAX且負脈衝寬度不等於MIN,則演算法300前往方塊312。 In blocks 310, 311, 312, and 313, when the pulse width limit is satisfied, the pulse repetition rate (repetition rate) is increased or decreased. In block 310, the positive pulse width is compared with MAX, and the negative pulse width is compared with MIN. If the positive pulse width is equal to MAX and the negative pulse width is equal to MIN, in block 311, the positive pulse repetition rate (repetition rate) is alternately increased or the negative pulse repetition rate is decremented. Algorithm 300 proceeds to block 314. If the positive pulse width is not equal to MAX and the negative pulse width is not equal to MIN, the algorithm 300 proceeds to block 312.
方塊312中,該正脈衝寬度與MIN作比較,且該負脈衝寬度與MAX作比較。若該正脈衝寬度等於MIN且該負脈衝寬度等於MAX,則方塊313中,交替地,該正脈衝重複率(重複率)被減量或該負脈衝重複率被增量。演算法300前往方塊314。若正脈衝寬度不等於MIN且負脈衝寬度不等於MAX,則演算法300前往方塊314。 In block 312, the positive pulse width is compared with MIN, and the negative pulse width is compared with MAX. If the positive pulse width is equal to MIN and the negative pulse width is equal to MAX, then in block 313, the positive pulse repetition rate (repetition rate) is alternately decremented or the negative pulse repetition rate is incremented. Algorithm 300 proceeds to block 314. If the positive pulse width is not equal to MIN and the negative pulse width is not equal to MAX, the algorithm 300 proceeds to block 314.
正與負脈衝寬度控制使用於該平衡接近該定點的時候。隨著發射器點老化或隨著環境支配,該正與負脈衝寬度 控制將不具有該範圍且將「觸及」其控制限制(在其最大值處為正,且在其最小值處為負(或反之亦然))。當此情況發生時,該演算法改變該正或負重複率,有效率地增加或減少正或負離子產生的開啟時間量,且將該平衡朝向該定點偏移。 Positive and negative pulse width control is used when the balance is close to the fixed point. As the transmitter point ages or as the environment dictates, the positive and negative pulse widths The control will not have that range and will "touch" its control limits (positive at its maximum and negative at its minimum (or vice versa)). When this happens, the algorithm changes the positive or negative repetition rate, effectively increases or decreases the amount of on-time generated by positive or negative ions, and shifts the equilibrium towards the fixed point.
方塊314、315、316與317中,當脈衝寬度的限制滿足時,該等脈衝重複率(重複率)增量或減量。方塊314中,該正脈衝重複率與最小脈衝重複率值(最小重複率)作比較,且該負脈衝重複率與最大脈衝重複率值(最大重複率)作比較。若該正脈衝重複率等於最小重複率,且該負脈衝重複率等於最大重複率,則方塊315中,一個負脈衝透過關閉時間計數而偏移至正脈衝,且演算法300接著前往方塊318,在方塊318中平衡控制反饋演算法300結束。關閉時間計數係當該離子化波形為關閉的時候。該關閉時間為脈衝的負與正群組及正與負群組(或脈衝列)之間的時間,且在此定義為計數,等於具有正或負重複率的脈衝持續時間。 In blocks 314, 315, 316, and 317, when the pulse width limit is satisfied, the pulse repetition rate (repetition rate) is increased or decreased. In block 314, the positive pulse repetition rate is compared with a minimum pulse repetition rate value (minimum repetition rate), and the negative pulse repetition rate is compared with a maximum pulse repetition rate value (maximum repetition rate). If the positive pulse repetition rate is equal to the minimum repetition rate and the negative pulse repetition rate is equal to the maximum repetition rate, in block 315, a negative pulse is shifted to a positive pulse by counting off time, and the algorithm 300 then proceeds to block 318 At block 318, the balance control feedback algorithm 300 ends. The off time count is when the ionization waveform is off. The off time is the time between the negative and positive groups of pulses and the positive and negative groups (or pulse trains), and is defined herein as a count, which is equal to the duration of the pulses with a positive or negative repetition rate.
若該正脈衝重複率不等於最小重複率且該負脈衝重複率不等於最大重複率,則演算法300前往方塊316。 If the positive pulse repetition rate is not equal to the minimum repetition rate and the negative pulse repetition rate is not equal to the maximum repetition rate, the algorithm 300 proceeds to block 316.
方塊316中,該正脈衝重複率與最大重複率作比較,且該負脈衝重複率與最小重複率作比較。若該正脈衝重複率等於最大重複率,且該負脈衝重複率等於最小重複率,則方塊317中,一個正脈衝透過關閉時間計數而偏移至負脈衝,且演算法300接著前往方塊318,在方塊318時平衡控制反饋演算法300結束。若該正脈衝重複率不等於最大重複率且該負脈衝重複率不等於最小重複率,則演算法300前往方 塊318,於方塊318時演算法300結束。 In block 316, the positive pulse repetition rate is compared to the maximum repetition rate, and the negative pulse repetition rate is compared to the minimum repetition rate. If the positive pulse repetition rate is equal to the maximum repetition rate and the negative pulse repetition rate is equal to the minimum repetition rate, then in block 317, a positive pulse is shifted to a negative pulse by counting off time, and the algorithm 300 then proceeds to block 318, At block 318, the balance control feedback algorithm 300 ends. If the positive pulse repetition rate is not equal to the maximum repetition rate and the negative pulse repetition rate is not equal to the minimum repetition rate, the algorithm 300 goes to At block 318, the algorithm 300 ends at block 318.
當該重複率控制觸及該限制時,該演算法觸發下一個調整控制等級。 When the repetition rate control reaches the limit, the algorithm triggers the next adjustment control level.
將微脈衝從正脈衝群組偏移至關閉時間脈衝群組至負脈衝群組,會將該平衡往負方向偏移。反之,將微脈衝從負脈衝群組偏移至關閉時間脈衝群組至正脈衝群組,會將該平衡往正方向偏移。使用該關閉時間群組將減少效果,且因此提供更精確的控制。 Shifting the micropulses from the positive pulse group to the off-time pulse group to the negative pulse group will shift the balance in the negative direction. Conversely, shifting the micropulses from the negative pulse group to the off-time pulse group to the positive pulse group will shift the balance in the positive direction. Using this off-time group will reduce the effect and therefore provide more precise control.
第4圖中的流程圖顯示微脈衝產生器控制的演算法400。驅動脈衝的波形與高電壓輸出繪示於第8圖中的圖表。舉例而言,此演算法400由第2圖中的系統200所行使。方塊401中,開始了計時器1的中斷服務常式。舉例而言,用於該微脈衝產生器的演算法400每0.1毫秒執行一次。 The flowchart in Fig. 4 shows an algorithm 400 for micropulse generator control. The waveform of the drive pulse and the high-voltage output are shown in the graph in Figure 8. For example, the algorithm 400 is performed by the system 200 in FIG. 2. In block 401, the interrupt service routine of timer 1 is started. For example, the algorithm 400 for the micro-pulse generator is executed every 0.1 milliseconds.
方塊402中,微脈衝重複率計數器被減量。此計數器為計時器1的重複率分割器。計時器1係執行於0.1ms的主迴圈計時器與脈衝控制計時器。計時器1開啟HVPS輸出,因此該微脈衝的開始,其中計時器0關閉該HVPS,結束該微脈衝。因此,計時器1設定重複率且觸發類比至數位轉換,計時器0設定該微脈衝寬度。 In block 402, the micropulse repetition rate counter is decremented. This counter is a repetition rate divider for timer 1. Timer 1 is a main lap timer and a pulse control timer executed at 0.1 ms. Timer 1 turns on the HVPS output, so the micropulse starts, where timer 0 turns off the HVPS and ends the micropulse. Therefore, Timer 1 sets the repetition rate and triggers the analog-to-digital conversion, and Timer 0 sets the micro-pulse width.
方塊403中,若該微脈衝重複率計數器等於2的話,則行使比較。換言之,測試被行使以判定該重複率分割器計數是否從下一個微脈衝的起始算起為2個計數。方塊403的步驟將使(在微控制器201中的)該ADC同步化至即將在下一個微脈衝傳送之前的時間。若微脈衝重複率計數器等於2,則 取樣與保持電路205設定至取樣模式,如方塊404中所顯示。方塊405中,微控制器201中的該ADC從取樣與保持電路205讀取感測器輸入信號。 In block 403, if the micropulse repetition rate counter is equal to 2, a comparison is performed. In other words, a test is performed to determine whether the repetition rate divider count is 2 counts from the start of the next micropulse. The steps of block 403 will synchronize the ADC (in the microcontroller 201) to a time just before the next micropulse transmission. If the micropulse repetition rate counter is equal to 2, then The sample and hold circuit 205 is set to a sampling mode, as shown in block 404. In block 405, the ADC in the microcontroller 201 reads the sensor input signal from the sample and hold circuit 205.
若該微脈衝重複率計數器不等於2,則演算法400前往方塊406。 If the micropulse repetition rate counter is not equal to 2, the algorithm 400 proceeds to block 406.
方塊404與405開始並行使類比至數位轉換,以允許微控制器201量測從取樣與保持電路205接收的類比輸入。 Blocks 404 and 405 start and perform an analog-to-digital conversion to allow the microcontroller 201 to measure the analog input received from the sample-and-hold circuit 205.
當取樣與保持電路205致能(enabled)時,通常在下一個微脈衝發生於方塊403處的前大約0.2毫秒(其中微脈衝803與804分別具有脈衝寬度810與811),信號250(第2圖)在施加至常駐於微控制器201內的類比至數位轉換器(ADC)的輸入之前,接著由低通濾波器206調節且由放大器207放大。在取樣與保持電路205致能(方塊404)取樣與保持運作的即刻之後,該ADC經受開始轉換的信號(方塊405)。平衡信號的結果取樣率通常大約為1.0毫秒,且與微脈衝重複率(重複率)同步。然而,實際的取樣率隨著重複率812、813(第8圖)的變化而變化(如方塊310、311、312、313中所顯示),但將永遠維持與微脈衝重複率812、813的同步。 When the sample-and-hold circuit 205 is enabled, it is usually about 0.2 milliseconds before the next micropulse occurs at block 403 (where the micropulses 803 and 804 have pulse widths 810 and 811, respectively), and the signal 250 (Figure 2 ) Before being applied to the input of an analog-to-digital converter (ADC) resident in the microcontroller 201, it is then adjusted by a low-pass filter 206 and amplified by an amplifier 207. Immediately after the sample and hold circuit 205 enables (block 404) the sample and hold operation, the ADC is subjected to a signal to begin conversion (block 405). The resulting sample rate of the balanced signal is typically about 1.0 milliseconds and is synchronized with the micropulse repetition rate (repetition rate). However, the actual sampling rate changes with the repetition rates 812, 813 (Figure 8) (as shown in blocks 310, 311, 312, 313), but will always remain the same as the micropulse repetition rates 812, 813. Synchronize.
根據此實施例,在下一個微脈衝之前的信號取樣方法允許系統200忽略雜訊與(電容耦合的)電流突波,且有利地避免敗壞離子平衡量測。 According to this embodiment, the signal sampling method before the next micropulse allows the system 200 to ignore noise and (capacitively coupled) current surges and advantageously avoid corrupting the ion balance measurement.
方塊406中,測試被行使以判定計時器1的該重複率分割器計數器是否準備好開始下一個微脈衝。若該微脈衝重複率計數計等於零,則比較被行使。若該微脈衝重複率計 數器不等於零,則演算法400前往方塊412。若該微脈衝重複率計數器等於零,則演算法400前往方塊417。 In block 406, a test is exercised to determine if the repetition rate divider counter of timer 1 is ready to start the next micropulse. If the micropulse repetition rate counter is equal to zero, the comparison is exercised. If the micropulse repetition rate meter If the counter is not equal to zero, the algorithm 400 proceeds to block 412. If the micropulse repetition rate counter is equal to zero, the algorithm 400 proceeds to block 417.
方塊417中,該微脈衝重複率計數器從資料暫存器重讀(reload)。此舉將重讀對下一個脈衝(微脈衝)之開始的時距。演算法400接著前往方塊408。 In block 417, the micropulse repetition rate counter is reloaded from the data register. This will reread the time interval to the beginning of the next pulse (micropulse). Algorithm 400 then proceeds to block 408.
方塊408、409與410提供判定新的脈衝相位是否開始或繼續目前的脈衝相位之步驟。 Blocks 408, 409, and 410 provide steps to determine whether a new pulse phase begins or continues the current pulse phase.
方塊408中,若微脈衝計數器等於零(0),則比較被行使。 In block 408, if the micropulse counter is equal to zero (0), the comparison is performed.
如果是這樣,則演算法400前往方塊410,方塊410呼叫下一個脈衝相位,且演算法400前往方塊411。 If so, algorithm 400 proceeds to block 410, block 410 calls the next pulse phase, and algorithm 400 proceeds to block 411.
若否,則演算法400前往方塊409,方塊409呼叫繼續目前的脈衝相位。 If not, the algorithm 400 proceeds to block 409, where the call to block 409 continues the current pulse phase.
方塊411中,開始了計時器0(微脈衝寬度計數器)。計時器0控制微脈衝寬度,如以下參考方塊414-417探討。 In block 411, timer 0 (micropulse width counter) is started. Timer 0 controls the micropulse width, as discussed below with reference to blocks 414-417.
方塊412中,所有的系統中斷被致能。方塊413中,計時器1的中斷服務常式被結束。 In block 412, all system interrupts are enabled. In block 413, the interrupt service routine of timer 1 is terminated.
當計時器0時間過期時,實際的微脈衝寬度基於方塊414-417被控制。方塊414中,開始了計時器0的中斷服務常式。方塊415中,正微脈衝驅動被設定至關閉(亦即,正微脈衝被關閉)。方塊416中,負微脈衝驅動被設定至關閉(亦即,負微脈衝被關閉)。方塊417中,結束計時器0的中斷服務常式。 When Timer 0 expires, the actual micropulse width is controlled based on blocks 414-417. In block 414, an interrupt service routine for timer 0 is started. In block 415, the positive micropulse drive is set to off (ie, the positive micropulse is turned off). In block 416, the negative micropulse drive is set to off (ie, the negative micropulse is turned off). At block 417, the interrupt service routine of timer 0 is ended.
亦如顯示於第4圖中的部分450,對於微脈衝驅動 信號452,計時器0的持續時間等於微脈衝驅動信號452的微脈衝寬度454。微脈衝寬度454起始於脈衝上升邊緣456(該上升邊緣在計時器0的開始被觸發)且結束於脈衝下降邊緣458(該下降邊緣在計時器0的結束被觸發)。 As shown in part 450 in Figure 4, for micropulse drive The duration of signal 452, timer 0 is equal to the micro-pulse width 454 of the micro-pulse drive signal 452. The micropulse width 454 starts at a pulse rising edge 456 (the rising edge is triggered at the start of timer 0) and ends at a pulse falling edge 458 (the falling edge is triggered at the end of timer 0).
將離子平衡感測器輸入作平均的方法700之細節顯示於第7圖中的流程圖。方塊701-706描述取樣與保持電路205的運作及從取樣與保持電路205作資料的ADC轉換。在ADC轉換701的結束處,大約0.1毫秒之後,取樣與保持電路205被去能(disable),防止雜訊與電流突波敗壞該平衡量測。結果量測703及取樣計數器705加至先前的原始量測總和704值並存取,等待進一步處理。方塊707-716為對於感測器101及/或204之量測作平均的平均常式,且取得離子平衡量測平均,該離子平衡量測平均接著利用有限脈衝回應(Finite Impulse Response)計算被結合,以將平衡量測平均與先前量測714結合,產出在平衡控制迴圈中使用的最終平衡量測。方塊714中的該計算從先前的感測器輸入量測序列計算加權平均。方塊715中,事件常式被呼叫以基於方塊714的該計算而調整該離子產生。 Details of the method 700 of averaging an ion balance sensor input are shown in the flowchart in FIG. Blocks 701-706 describe the operation of the sample and hold circuit 205 and the ADC conversion of data from the sample and hold circuit 205. At the end of the ADC conversion 701, after about 0.1 milliseconds, the sample and hold circuit 205 is disabled to prevent noise and current surges from corrupting the balanced measurement. The result measurement 703 and the sampling counter 705 are added to the previous original measurement sum 704 and stored, and are waiting for further processing. Blocks 707-716 are averaging routines for averaging the measurements of sensors 101 and / or 204, and obtain an ionic balance measurement average. The ionic balance measurement average is then calculated using Finite Impulse Response. Combine to average the balance measurement with the previous measurement 714 to produce the final balance measurement used in the balance control loop. The calculation in block 714 calculates a weighted average from the previous sensor input measurement sequence. In block 715, the event routine is called to adjust the ion generation based on the calculation in block 714.
第5A圖、第5B圖及第6圖中的流程圖繪示於負與正極性脈衝列形成時的系統運作。離子化循環531包括正脈衝序列502、602,接著關閉時距503、603,接著負脈衝序列517、604,接著關閉時距518、605。當離子化循環的特定數量發生時708,離子平衡量測平均被計算709,且原始量測總和710及取樣計數器值被清空710、711。 The flowcharts in FIGS. 5A, 5B, and 6 show the system operation when negative and positive pulse trains are formed. The ionization cycle 531 includes a positive pulse sequence 502, 602, then turns off the time interval 503, 603, then a negative pulse sequence 517, 604, and then turns off the time interval 518, 605. When a certain number of ionization cycles occur 708, the average ion balance measurement is calculated 709, and the original measurement sum 710 and the sampling counter value are cleared 710, 711.
現在參考第5A、5B及6圖。該等圖式為負脈衝列與正脈衝列形成時的系統運作之流程圖,分別依據本發明的實施例。方塊501中,開始了對負脈衝列的下一個脈衝相位之常式。方塊502-515描述用於產生脈衝的負序列及該脈衝持續時間之關閉時間的步驟。方塊517-532描述用於產生脈衝的正序列及該脈衝持續時間之關閉時間的步驟。方塊601-613描述用於產生下一個脈衝相位或若目前的脈衝相位持續的步驟。 Reference is now made to Figures 5A, 5B and 6. These figures are flowcharts of the system operation when the negative pulse train and the positive pulse train are formed, respectively, according to the embodiments of the present invention. In block 501, the routine for the next pulse phase of a negative pulse train is started. Blocks 502-515 describe the steps used to generate a negative sequence of pulses and the off time of the pulse duration. Blocks 517-532 describe the steps used to generate a positive sequence of pulses and the off time for the duration of the pulse. Blocks 601-613 describe steps for generating the next pulse phase or if the current pulse phase continues.
該平衡量測平均接著利用有限脈衝回應計算結合,以將該平衡量測平均與先前量測714結合,產出用於該平衡控制迴圈中的有限平衡量測。 The balance measurement average is then combined with a finite impulse response calculation to combine the balance measurement average with the previous measurement 714 to produce a finite balance measurement in the balance control loop.
平衡控制迴圈301將平衡量測比較於定點值302,產出誤差值。該誤差信號乘以迴圈增益303,檢查超出/不足範圍304且加至目前的負脈衝寬度值。 The balance control loop 301 compares the balance measurement with the fixed-point value 302 and produces an error value. This error signal is multiplied by the loop gain 303, and the over / under range 304 is checked and added to the current negative pulse width value.
為脈衝HV供應系統202、203中,驅動微脈衝的脈衝寬度改變了所造成之高電壓(HV)波814、801、802的尖峰波幅。此狀況中該負脈衝波幅被改變以影響離子平衡中的改變。若該誤差信號值大於零,則負脈衝寬度向上調整,因此增加該負HV脈衝波幅,作為結果,改變負方向中的平衡。反之,若該平衡為負,則負脈衝寬度向下調整,因此改變正方向中的平衡。 In the pulsed HV supply system 202, 203, the pulse width of the driving micropulse changes the peak amplitude of the resulting high voltage (HV) waves 814, 801, 802. In this case the amplitude of the negative pulse is changed to affect changes in the ion balance. If the value of the error signal is greater than zero, the negative pulse width is adjusted upwards, so the negative HV pulse amplitude is increased, and as a result, the balance in the negative direction is changed. Conversely, if the balance is negative, the negative pulse width is adjusted downward, thus changing the balance in the positive direction.
於負脈衝寬度的連續調整時及隨著條件允許,負脈衝寬度可能觸及其控制限制。此狀況中正脈衝寬度向下調整307以用於正的不平衡,或向上調整309以用於負的不平衡, 直到負脈衝寬度可再次恢復控制。此利用負與正脈衝寬度的控制方法產出平均平衡控制調整的範圍大約為10V,其中穩定性小於3V。 During continuous adjustment of the negative pulse width and as conditions permit, the negative pulse width may hit its control limits. In this case, the positive pulse width is adjusted downward 307 for positive imbalance, or upward 309 for negative imbalance, Until the negative pulse width can resume control. This control method using negative and positive pulse widths produces an average balance control adjustment range of approximately 10V, with stability less than 3V.
依據另一個在大的不平衡狀況下之實施例,舉例而言離子化吹風器起始處,顯著的汙染積聚或隨著該發射器老化而腐蝕,負脈衝寬度與正脈衝寬度將達到其控制限制310、312。此狀況中,正脈衝重複率與負脈衝重複率被調整311、313以將該平衡帶到正脈衝寬度與負脈衝寬度再次處於其分別控制範圍中的點。因此,對於大的正不平衡狀況,該負脈衝重複率被增加313,造成平衡中的負偏移。若此狀況仍存在,該正脈衝重複率被減少313,亦造成平衡中的負偏移。此改變正/負重複率313的交替方法持續直到負脈衝寬度與正脈衝寬度再次處於其控制範圍中。類似地,對於大的負不平衡狀況,該正脈衝重複率被增加311,替代地,該負脈衝重複率被減少311,造成平衡中的正偏移。如同前述地,此舉繼續直到負脈衝寬度與正脈衝寬度再次處於其控制範圍中。 According to another embodiment under large imbalance conditions, for example, at the beginning of the ionized hair dryer, significant pollution builds up or corrodes as the emitter ages, and the negative and positive pulse widths will reach their control Limits 310, 312. In this case, the positive pulse repetition rate and the negative pulse repetition rate are adjusted 311, 313 to bring the balance to a point where the positive pulse width and the negative pulse width are again in their respective control ranges. Therefore, for large positive imbalance conditions, the negative pulse repetition rate is increased by 313, causing a negative shift in balance. If this condition persists, the positive pulse repetition rate is reduced by 313, which also causes a negative offset in the balance. This alternating method of changing the positive / negative repetition rate 313 continues until the negative pulse width and the positive pulse width are again in their control range. Similarly, for large negative imbalance conditions, the positive pulse repetition rate is increased by 311, and instead, the negative pulse repetition rate is decreased by 311, resulting in a positive shift in balance. As before, this continues until the negative and positive pulse widths are again under their control.
在極端不平衡狀況存在的案例中,負/正脈衝寬度與正/負重複率調整兩者可能觸及其分別的控制限制310、312、314、316,該正脈衝計數與負脈衝計數則將被改變以將該平衡帶到正/負重複率再次處於其分別控制範圍中的點。因此,對於極端正不平衡狀況,該正脈衝計數將減少317且關閉時間脈衝計數317將增加一個脈衝計數,造成平衡中的負改變。 In cases where extreme imbalance conditions exist, both negative / positive pulse width and positive / negative repetition rate adjustments may reach their respective control limits 310, 312, 314, and 316. The positive and negative pulse counts will be Change to bring the balance to a point where the positive / negative repetition rate is again in its respective control range. Therefore, for extreme positive imbalance conditions, the positive pulse count will decrease by 317 and the off-time pulse count 317 will increase by one pulse count, causing a negative change in balance.
若此狀況仍存在,則關閉時間脈衝計數將被減少317且該負脈衝計數將增加317一個脈衝計數,造成平衡中的進 一步負改變。一個脈衝的此從負至正的封包/列偏移持續直到正/負重複率再次處於其控制範圍內。類似地,對於極端負不平衡狀況,一次一個脈衝將從正脈衝315封包/列透過該關閉時間脈衝計數偏移至負脈衝封包315,造成平衡中的正改變直到正/負重複率再次處於其控制範圍內。 If this condition persists, the off-time pulse count will be reduced by 317 and the negative pulse count will be increased by 317 by one pulse count, resulting in an increase in balance. One step negative change. This negative / positive packet / column shift of a pulse continues until the positive / negative repetition rate is again within its control range. Similarly, for extreme negative imbalance conditions, one pulse at a time will shift from the positive pulse 315 packet / column through the off-time pulse count to the negative pulse packet 315, causing a positive change in balance until the positive / negative repetition rate is at its level again Within control.
在平行處理中,平衡量測與該定點作比較。若該平衡量測被判定為處於其特定範圍之外,則對應至平均CPM(電荷板監視器)讀取的+/-15V,該離子器的控制系統將觸發平衡警訊,該讀取於離該離子器1英尺處量測。 In parallel processing, the balance measurement is compared with this fixed point. If the balance measurement is determined to be outside its specific range, corresponding to +/- 15V read by the average CPM (Charge Panel Monitor), the control system of the ionizer will trigger a balance alert, which is read in Measure 1 ft from the ionizer.
第9圖為用於提供反饋常式的方法,若離子不平衡存在,則該反饋常式致動離子平衡警訊。方塊901-909行使量測,該等量測與閾值作比較,以判定平衡警訊是否致動。方塊910-916判定平衡警訊是否致動。 FIG. 9 is a method for providing a feedback routine. If an ion imbalance exists, the feedback routine activates an ion balance alert. Blocks 901-909 exercise measurements, which are compared to thresholds to determine whether a balance alert is activated. Blocks 910-916 determine if the balance alert is activated.
每5秒一次的時距中,平衡量測被評估903,當超出此範圍時,「1」向左偏移至警訊暫存器904中,否則「0」向左偏移至警訊暫存器902中。當該警訊暫存器包括255的值時(全部為「1」),該平衡量測被宣告為警訊中。類似地,若該警訊暫存器包括0的值時(全部為「0」),該平衡量測被宣告為非警訊中。警訊暫存器的任何不為255或0的值被忽略,且該警訊的狀態不改變。此舉過濾了警訊通知且防止散亂的通知。作為副產物,該通知延遲允許足夠的時間給該平衡控制系統從外在刺激恢復。 During the time interval of every 5 seconds, the balance measurement is evaluated 903. When it exceeds this range, "1" shifts to the left of the alarm register 904, otherwise "0" shifts to the left of the alarm register Register 902. When the alert register contains a value of 255 (all "1"), the balance measurement is declared as an alert. Similarly, if the alert register includes a value of 0 (all "0"), the balance measurement is declared as non-alert. Any value other than 255 or 0 in the alert register is ignored, and the status of the alert does not change. This filtered out warning notices and prevented scattered notices. As a by-product, the notification delay allows enough time for the balance control system to recover from external stimuli.
另一個執行於每個ADC轉換循環的末端之平行處理中,大約每1毫秒(第9B圖),該平衡控制系統被監視。此 常式910對限制狀況911、912檢查正與負脈衝計數。如以上所述,當不平衡狀況存在且正/負脈衝寬度與正/負重複率在其分別限制時,該正與負脈衝計數被調整。然而在該平衡無法帶回至規格中且該正/負脈衝計數達到其調整限制911、912的事件中,警訊狀態被強制執行,此舉係藉由將警訊暫存器設定至全部為「1」的值913,設定警訊旗標914,且設定兩個警訊狀態位元915。 Another parallel process is performed at the end of each ADC conversion cycle. Approximately every millisecond (Figure 9B), the balance control system is monitored. this The routine 910 checks the positive and negative pulse counts for the restriction conditions 911 and 912. As described above, when an imbalance condition exists and the positive / negative pulse width and the positive / negative repetition rate are respectively limited, the positive and negative pulse counts are adjusted. However, in the event that the balance cannot be brought back into the specifications and the positive / negative pulse count reaches its adjustment limits 911, 912, the alert status is enforced. This is done by setting the alert register to all The value of "1" is 913, the alert flag 914 is set, and two alert status bits 915 are set.
以上探討的此自動平衡控制系統之方法與技術不受限於一種離子化吹風器。該等方法與技術可用於具有各種發射器電極的不同離子化吹風器模型。自動化系統的其他應用包含具有微脈衝高電壓源的離子化棒之模型。 The method and technology of the automatic balance control system discussed above are not limited to an ionized hair dryer. These methods and techniques can be used for different ionized hair dryer models with various emitter electrodes. Other applications for automation systems include models of ionizing rods with micropulsed high-voltage sources.
本發明的繪示實施例之以上描述,包含發明摘要之所述,並非意於為窮舉的或將本發明限制至揭示的明確形式。雖然本發明的特定實施例以及範例在此為了例示性目的而描述,本發明範疇內的各種等同修改係可能的,如相關技藝人士所將意識到。 The foregoing description of the illustrated embodiments of the present invention, including the summary of the invention, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although specific embodiments and examples of the invention are described herein for illustrative purposes, various equivalent modifications within the scope of the invention are possible, as those skilled in the relevant art will recognize.
鑑於以上詳細描述,可對本發明作該等修改。以下請求項所使用的術語不應被建構以將本發明限制至說明書與請求項中所揭示的特定實施例。反而,本發明的範疇應完全取決於以下的請求項,該等請求項依據請求項詮釋的既定之學說而建構。 In view of the above detailed description, such modifications can be made to the present invention. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the description and the claims. Instead, the scope of the present invention should depend entirely on the following claims, which are constructed in accordance with the established doctrine of the interpretation of the claims.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/220,130 US9125284B2 (en) | 2012-02-06 | 2014-03-19 | Automatically balanced micro-pulsed ionizing blower |
US14/220,130 | 2014-03-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201537851A TW201537851A (en) | 2015-10-01 |
TWI652869B true TWI652869B (en) | 2019-03-01 |
Family
ID=52424118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104100100A TWI652869B (en) | 2014-03-19 | 2015-01-05 | Automatically balanced micropulse ionization blower |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3120429B1 (en) |
JP (1) | JP6717750B2 (en) |
KR (1) | KR102322725B1 (en) |
CN (1) | CN106463915B (en) |
SG (1) | SG11201607255RA (en) |
TW (1) | TWI652869B (en) |
WO (1) | WO2015142408A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9380689B2 (en) | 2008-06-18 | 2016-06-28 | Illinois Tool Works Inc. | Silicon based charge neutralization systems |
CN109983642B (en) * | 2016-11-28 | 2021-11-26 | 伊利诺斯工具制品有限公司 | Control system for balancing micro-pulse ionization fan |
WO2019097737A1 (en) * | 2017-11-17 | 2019-05-23 | シャープ株式会社 | Ion generation device and air conditioner |
KR102346822B1 (en) * | 2019-09-17 | 2022-01-04 | (주)선재하이테크 | Ionizer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3407475B2 (en) * | 1995-04-26 | 2003-05-19 | ヒューグルエレクトロニクス株式会社 | AC ionizer |
US6850403B1 (en) * | 2001-11-30 | 2005-02-01 | Ion Systems, Inc. | Air ionizer and method |
TWI362682B (en) * | 2003-12-02 | 2012-04-21 | Keyence Co Ltd | Ionizer and discharge electrode assembly mounted therein |
US8773837B2 (en) * | 2007-03-17 | 2014-07-08 | Illinois Tool Works Inc. | Multi pulse linear ionizer |
US8009405B2 (en) * | 2007-03-17 | 2011-08-30 | Ion Systems, Inc. | Low maintenance AC gas flow driven static neutralizer and method |
US7813102B2 (en) * | 2007-03-17 | 2010-10-12 | Illinois Tool Works Inc. | Prevention of emitter contamination with electronic waveforms |
US8885317B2 (en) * | 2011-02-08 | 2014-11-11 | Illinois Tool Works Inc. | Micropulse bipolar corona ionizer and method |
JP2011238575A (en) * | 2010-05-07 | 2011-11-24 | Okabe Mica Co Ltd | Power supply device of surface creepage discharge type ion generating device |
WO2013119283A1 (en) * | 2012-02-06 | 2013-08-15 | Illinois Tool Works Inc. | Multi pulse linear ionizer |
-
2015
- 2015-01-05 TW TW104100100A patent/TWI652869B/en active
- 2015-01-06 CN CN201580025125.2A patent/CN106463915B/en active Active
- 2015-01-06 JP JP2016558145A patent/JP6717750B2/en active Active
- 2015-01-06 KR KR1020167026399A patent/KR102322725B1/en active Active
- 2015-01-06 EP EP15701435.8A patent/EP3120429B1/en active Active
- 2015-01-06 WO PCT/US2015/010246 patent/WO2015142408A1/en active Application Filing
- 2015-01-06 SG SG11201607255RA patent/SG11201607255RA/en unknown
Also Published As
Publication number | Publication date |
---|---|
KR20160134699A (en) | 2016-11-23 |
CN106463915B (en) | 2019-09-06 |
JP6717750B2 (en) | 2020-07-01 |
WO2015142408A1 (en) | 2015-09-24 |
CN106463915A (en) | 2017-02-22 |
EP3120429B1 (en) | 2022-09-28 |
SG11201607255RA (en) | 2016-10-28 |
JP2017509124A (en) | 2017-03-30 |
KR102322725B1 (en) | 2021-11-04 |
TW201537851A (en) | 2015-10-01 |
EP3120429A1 (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9125284B2 (en) | Automatically balanced micro-pulsed ionizing blower | |
TWI652869B (en) | Automatically balanced micropulse ionization blower | |
JP6018088B2 (en) | Corona discharge type micro pulse bipolar ionizer and method | |
CA2491416C (en) | Method and apparatus for bipolar ion generation | |
JP2015507208A (en) | Apparatus and method for generating an approved air stream and use of such apparatus in measuring particle concentration in an approved air stream | |
US9404945B2 (en) | Ionization monitoring device | |
JP5914015B2 (en) | Static eliminator and method | |
TWI737860B (en) | Apparatus, control system, and method for a balanced micro-pulsed ionizer blower | |
TW201412197A (en) | Active ionization control with interleaved sampling and neutralization | |
US20080130191A1 (en) | Method and apparatus for monitoring and controlling ionizing blowers | |
JP2013257952A (en) | Static eliminator | |
Gouri et al. | Collection of submicron particles using DBD electrostatic precipitator in wire-to-square tube configuration | |
DE102009033827B3 (en) | Unloading device for contactless dismantling of electrostatic loads on isolating materials, comprises electrode, which is attached on positive and negative high voltage source | |
KR20080046668A (en) | Static eliminator | |
CN102523671B (en) | Discharging balance adjustment device | |
KR102425984B1 (en) | Active ionization control with closed loop feedback and interleaved sampling |