TWI652843B - Organic electronic device manufacturing method, method for tuning color cavity of color OLED display, and inkjet printer - Google Patents

Organic electronic device manufacturing method, method for tuning color cavity of color OLED display, and inkjet printer Download PDF

Info

Publication number
TWI652843B
TWI652843B TW102147806A TW102147806A TWI652843B TW I652843 B TWI652843 B TW I652843B TW 102147806 A TW102147806 A TW 102147806A TW 102147806 A TW102147806 A TW 102147806A TW I652843 B TWI652843 B TW I652843B
Authority
TW
Taiwan
Prior art keywords
nozzles
subset
thickness
material deposition
regions
Prior art date
Application number
TW102147806A
Other languages
Chinese (zh)
Other versions
TW201431151A (en
Inventor
強納森 埃塞克
艾德華 柏頓
Original Assignee
英商劍橋顯示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商劍橋顯示科技有限公司 filed Critical 英商劍橋顯示科技有限公司
Publication of TW201431151A publication Critical patent/TW201431151A/en
Application granted granted Critical
Publication of TWI652843B publication Critical patent/TWI652843B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Coating Apparatus (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本發明揭示一種製造一有機電子裝置之方法,其包括:提供具有至少兩組材料沈積區域之一基板,一第一組區域用於該裝置之一第一組元件且一第二組區域用於該裝置之一第二組元件,其中該第一組區域及該第二組區域具有待沈積之材料之不同的各別第一目標厚度及第二目標厚度;提供待沈積於該第一組區域及該第二組區域上之材料的至少一種溶液;及將材料之該等溶液噴墨印刷至該第一組材料沈積區域及該第二組材料沈積區域上;其中該噴墨印刷包括:使用包括複數個噴嘴之一印刷頭來沈積材料之該至少一種溶液,該等噴嘴之一第一子集用於至該第一組區域上之沈積,且該等噴嘴之一第二子集用於至該第二組區域上之沈積;及藉助一第一驅動波形來驅動該第一組噴嘴且藉助一第二不同驅動波形來驅動該第二組噴嘴,以沈積不同之各別第一目標厚度及第二目標厚度的材料。 The invention discloses a method for manufacturing an organic electronic device, which comprises: providing a substrate having at least two sets of material deposition areas, a first set of areas for a first set of elements of the device and a second set of areas for A second set of elements of the device, wherein the first set of regions and the second set of regions have different first target thicknesses and second target thicknesses of different materials to be deposited; providing the first set of regions to be deposited And at least one solution of the material on the second group of regions; and inkjet printing the solutions of the material onto the first group of material deposition regions and the second group of material deposition regions; wherein the inkjet printing includes: using A printing head including one of a plurality of nozzles to deposit the at least one solution of material, a first subset of the nozzles is used for deposition onto the first group of regions, and a second subset of the nozzles is used for Deposition onto the second group of regions; and driving the first group of nozzles with a first driving waveform and driving the second group of nozzles with a second different driving waveform to deposit different first target thicknesses And the material of the second target thickness.

Description

有機電子裝置製造方法、用於調諧彩色OLED顯示器之彩色腔之方法、及噴墨印表機 Organic electronic device manufacturing method, method for tuning color cavity of color OLED display, and inkjet printer

本發明係關於製造有機電子裝置,特定言之諸如聚合物OLED(有機發光二極體)顯示器之OLED裝置之技術。 The present invention relates to technology for manufacturing organic electronic devices, specifically OLED devices such as polymer OLED (organic light emitting diode) displays.

圖1a展示穿過一典型OLED裝置10之一剖面。此典型OLED裝置10包括承載一透明導電氧化物層14(通常為ITO(氧化銦錫))之一基板12,該基板可被圖案化,通常約40nm厚。沈積於此基板上方的係通常包括諸如PSS:PEDOT(摻雜聚苯乙烯磺酸酯之聚乙烯基二氧噻吩)之一導電聚合物之一電洞注入層(HIL)16。此電洞注入層有助於匹配ITO陽極及發光聚合物之電洞能量位準(且亦可協助平坦化ITO),且通常係約30nm厚,但可能高達約150nm。一類似層通常存在於一有機光伏打裝置中以促進電洞之提取。商業電洞注入材料可尤其自Plextronics公司購得。 FIG. 1a shows a section through a typical OLED device 10. This typical OLED device 10 includes a substrate 12 carrying a transparent conductive oxide layer 14 (usually ITO (Indium Tin Oxide)), which can be patterned, usually about 40 nm thick. The system deposited above this substrate typically includes a hole injection layer (HIL) 16 which is a conductive polymer such as PSS: PEDOT (polyethylenestyrenesulfonate doped polystyrenesulfonate). This hole injection layer helps match the hole energy level of the ITO anode and the light emitting polymer (and can also help to planarize ITO), and is usually about 30 nm thick, but may be as high as about 150 nm. A similar layer is usually present in an organic photovoltaic device to facilitate the extraction of holes. Commercial hole injection materials are commercially available from Plextronics in particular.

在此實例中,電洞注入層之後接著亦被稱為一電洞傳輸層(HTL)之一中間聚合物層(間層(IL))18。此中間聚合物層由允許電洞之有效傳輸之一電洞傳輸材料製成;其通常具有在20nm至60nm之範圍內之一厚度且沈積於電洞注入層上方且一般為交聯。可製造間層之一種實例性材料為聚芴三芳基胺之一共聚合物或類似物(由Bradley等人在Adv.Mater.第11卷,第241至246頁(1999年)及Li及Meng在第2章中闡述其他適合材料之實例-參閱下文)。 In this example, the hole injection layer is then followed by an intermediate polymer layer (interlayer (IL)) 18, also known as a hole transport layer (HTL). This intermediate polymer layer is made of a hole-transporting material that allows efficient transmission of holes; it usually has a thickness in the range of 20 nm to 60 nm and is deposited over the hole injection layer and is generally cross-linked. An exemplary material that can be used to make the interlayer is one of the polyfluorene triarylamine copolymers or the like (by Bradley et al. In Adv. Mater. Vol. 11, pages 241 to 246 (1999) and Chapter 2 describes other examples of suitable materials-see below).

一或多個發光聚合物(LEP)層20沈積於此間層上方以形成一LEP層或堆疊;一發光聚合物之一典型實例為PPV(聚(對-亞苯基亞乙烯))。一陰極22沈積於LEP堆疊上方,(例如)包括一層氟化鈉(NaF)接著一層鋁。一額外電子傳輸層可視情況沈積於LEP堆疊20與陰極22之間。 One or more light-emitting polymer (LEP) layers 20 are deposited over this interlayer to form a LEP layer or stack; one typical example of a light-emitting polymer is PPV (poly (p-phenylene vinylene)). A cathode 22 is deposited over the LEP stack, for example, including a layer of sodium fluoride (NaF) followed by a layer of aluminum. An additional electron transport layer is optionally deposited between the LEP stack 20 and the cathode 22.

圖1a中所圖解說明之裝置為一底部發射裝置,即產生於LEP堆疊中之光經由透明ITO陽極層穿過基板耦合至裝置外部。亦可能使用一薄陰極層(例如小於約100nm厚度)製造頂部發射裝置。雖然圖1a之結構展示一LEP堆疊,但對於小分子(及樹枝狀聚合物)裝置亦可採用相同基本結構。 The device illustrated in FIG. 1a is a bottom-emitting device, that is, the light generated in the LEP stack is coupled to the outside of the device through the substrate through the transparent ITO anode layer. It is also possible to use a thin cathode layer (eg, less than about 100 nm thick) to manufacture the top-emitting device. Although the structure of FIG. 1a shows a LEP stack, the same basic structure can also be used for small molecule (and dendrimer) devices.

熟習此項技術者應瞭解,存在一有機電子裝置製造程序之諸多變體,在該製造程序之上下文中可採用吾人已闡述之技術。例如,可省略ITO層及代之將電洞注入層16用作陽極層。另外或替代地,可由一下伏金屬柵格(其視情況可藉由使用精細柵格線及/或薄金屬而為透明的)支援電洞注入層16之導電性。此一方法可用於(例如)具有一大覆蓋區及在邊緣處之連接之一OLED照明方塊中。視情況,可採用諸如PET(聚對酞酸乙二脂)或聚碳酸酯之一撓性基板。 Those skilled in the art should understand that there are many variations of the manufacturing process of an organic electronic device, and the technology that I have described can be used in the context of the manufacturing process. For example, the ITO layer can be omitted and the hole injection layer 16 can be used as the anode layer instead. Additionally or alternatively, the conductivity of the hole injection layer 16 may be supported by an underlying metal grid (which may be transparent by using fine grid lines and / or thin metal as appropriate). This method can be used, for example, in an OLED lighting block with a large coverage area and connections at the edges. As appropriate, a flexible substrate such as PET (polyethylene terephthalate) or polycarbonate may be used.

一類似基本結構可用於其他分子有機二極體,例如用於一有機光伏打裝置。 A similar basic structure can be used for other molecular organic diodes, for example for an organic photovoltaic device.

圖1b展示在沈積主動彩色層中之一者之後一實例性三色主動矩陣像素化OLED顯示器200之一部分之一俯視圖。該圖展示界定顯示器之像素之一堤岸112及井114陣列。在一彩色顯示器中,不同彩色(子)像素可分別包括綠色、紅色及藍色發光聚合物層。 FIG. 1b shows a top view of a portion of an exemplary three-color active matrix pixelated OLED display 200 after one of the active color layers is deposited. The figure shows an array of banks 112 and wells 114 that define the pixels of the display. In a color display, different color (sub) pixels may include green, red, and blue light emitting polymer layers, respectively.

有機電子裝置提供包含關於各種基板(包含玻璃及塑膠)之便宜、低溫、大規模製造之諸多潛在優點。有機發光二極體顯示器與其他顯示器技術相比提供額外優點,特定言之,其等係明亮的、多彩的、快 速轉換且提供一寬廣視角。取決於所使用材料,可在各種色彩中且在多色彩顯示器中使用聚合物或小分子製造OLED裝置(此處其包含有機金屬裝置及具有一或多個磷光體之裝置)。對於一般背景資訊,可參考(例如)WO90/13148、WO95/06400、WO99/48160及US4,539,570以及由Zhigang Li及Hong Meng(CRC出版社(2007年),ISBN 10:1-57444-574X)編輯之「Organic Light Emitting Materials and Devices」,其闡述若干種材料及裝置(小分子及聚合物兩者)。(此處「小分子」係指非聚合小分子-諸如樹枝狀聚合物端之某些所謂的小分子可相對較大,但具有其等不包括藉由聚合作用組裝之多個重複單元之表徵特徵)。 Organic electronic devices offer many potential advantages including cheap, low temperature, and large-scale manufacturing of various substrates, including glass and plastic. Organic light-emitting diode displays offer additional advantages over other display technologies. In particular, they are bright, colorful, and fast Quick conversion and provide a wide viewing angle. Depending on the materials used, OLED devices (here including organometallic devices and devices with one or more phosphors) can be manufactured using polymers or small molecules in various colors and in multi-color displays. For general background information, refer to (for example) WO90 / 13148, WO95 / 06400, WO99 / 48160 and US4,539,570 and by Zhigang Li and Hong Meng (CRC Press (2007), ISBN 10: 1-57444-574X) Edited "Organic Light Emitting Materials and Devices", which describes several materials and devices (both small molecules and polymers). ("Small molecule" here refers to a non-polymeric small molecule-some so-called small molecules such as dendritic polymer ends can be relatively large, but have the characteristic that they do not include multiple repeating units assembled by polymerization feature).

可藉由噴墨印刷而沈積用以製造一OLED或其他有機電子裝置之材料。圖2a及圖2b取自EP 1,219,980且展示用於沈積一電致發光顯示器之紅色、綠色及藍色彩色濾光器之噴墨印刷設備,但圖解說明一般原理。圖2a及圖2b展示「橫向」印刷;圖2c展示一替代印刷頭定向之一實例。 The materials used to make an OLED or other organic electronic device can be deposited by inkjet printing. Figures 2a and 2b are taken from EP 1,219,980 and show an inkjet printing apparatus for depositing red, green and blue color filters of an electroluminescent display, but illustrate the general principles. Figures 2a and 2b show "landscape" printing; Figure 2c shows an example of an alternative print head orientation.

因此,圖2a展示包括一基座209之一噴墨印表機200,該基底支撐用於使一基板212及噴墨印刷頭222相對於彼此沿兩個正交軸Y及X移動之第一線性定位器206及第二線性定位器208。定位器206包括安裝具備支撐一桌或床249之一轉盤251之一滑件256之一對軌道254,基板212支撐於該桌或床上。基板212藉助於基板之兩個邊緣鄰接抵靠其之止檔250在桌或床249上對準。轉盤251出於對準目的而允許桌249及基板212相對於印刷頭222之某些有限旋轉(但若需要,則可提供全程旋轉之能力)。 Thus, FIG. 2a shows an inkjet printer 200 including a base 209 which supports a first for moving a substrate 212 and an inkjet print head 222 relative to each other along two orthogonal axes Y and X The linear positioner 206 and the second linear positioner 208. The positioner 206 includes a pair of rails 254 equipped with a slide 256 supporting a turntable 251 of a table or bed 249, and the base plate 212 is supported on the table or bed. The base plate 212 is aligned on the table or bed 249 by means of the two edges of the base plate abutting against the stopper 250 thereof. The turntable 251 allows some limited rotation of the table 249 and substrate 212 relative to the print head 222 for alignment purposes (but can provide full rotation capability if needed).

定位器208包括安裝一滑件253之一對軌道252,該滑件攜載允許攜載印刷頭之一印刷頭單元226繞3個正交軸獨立地旋轉之旋轉定位器244、246、247。印刷頭具有約90度之可用旋轉且少量螺絲控制之移 動在另外兩個軸上係可用的(例如以允許噴嘴板經對準為與基板平行)。又一線性定位器248亦安裝於滑件253上以允許印刷頭單元及印刷頭沿Z方向(即朝向且遠離基板212)平移。 The positioner 208 includes a pair of rails 252 mounted with a slider 253 that carries a rotation positioner 244, 246, 247 that allows one print head unit 226, which is one of the print heads, to independently rotate about three orthogonal axes. The print head has a rotation of about 90 degrees and the movement controlled by a small number of screws Motion is available on the other two axes (eg, to allow the nozzle plate to be aligned parallel to the substrate). Another linear positioner 248 is also mounted on the slider 253 to allow the print head unit and the print head to translate in the Z direction (ie, toward and away from the substrate 212).

由一電腦終端機202經由一臍帶204控制噴墨印表機系統200。終端機202可包括具有介接至上述線性及旋轉定位器從而以一習知方式運行作業系統、使用者介面及其他噴墨印表機驅動及控制軟體之介面硬體之一通用電腦。因此,終端機202通常包含一資料輸入裝置(諸如用於接收定義待印刷之一圖案之資料的軟碟機之一網路介面)及用以控制印表機軟體根據所儲存或輸入資料印刷一圖案之印表機控制軟體。一般亦藉由運行於終端機202上之軟體提供其他習用功能,諸如測試功能、頭清潔功能等。 A computer terminal 202 controls the inkjet printer system 200 via an umbilical 204. Terminal 202 may include a general-purpose computer with interface hardware that interfaces to the linear and rotary positioners to operate the operating system, user interface, and other inkjet printer drive and control software in a conventional manner. Therefore, the terminal 202 usually includes a data input device (such as a network interface of a floppy disk drive for receiving data defining a pattern to be printed) and a software for controlling the printer to print a data according to the stored or input data Graphic printer control software. Generally, other conventional functions such as test functions and head cleaning functions are also provided by software running on the terminal 202.

圖2b更詳細地展示一實例性印刷頭222。印刷頭具有複數個噴嘴227,通常一噴嘴板中之孔口用於將來自印刷頭之流體液滴噴射至基板上。可由印刷頭或印刷頭單元內之一儲存器提供用於印刷之一流體供應(圖2b中未展示)或可自一外源供應流體。在所圖解說明之實例中,印刷頭222具有一單一列228之噴嘴227,但在印刷頭之其他實例中,可提供超過一列之噴嘴(其中噴嘴沿一個維度或兩個維度偏移)。噴嘴227之孔口之直徑通常在10μm與100μm之間,且液滴大小類似。毗鄰噴嘴孔口之間之間隔或間距通常在50μm與1000μm之間。 Figure 2b shows an example print head 222 in more detail. The print head has a plurality of nozzles 227, usually an orifice in a nozzle plate for ejecting fluid droplets from the print head onto the substrate. A fluid supply for printing (not shown in FIG. 2b) may be provided by the print head or a reservoir in the print head unit or may be supplied from an external source. In the illustrated example, the print head 222 has a single row 228 of nozzles 227, but in other examples of the print head, more than one row of nozzles may be provided (where the nozzles are offset along one or two dimensions). The diameter of the orifice of the nozzle 227 is usually between 10 μm and 100 μm , and the droplet size is similar. The spacing or spacing between adjacent nozzle orifices is usually between 50 μm and 1000 μm .

一般而言,液滴之體積分佈係非均勻的(在印刷頭之邊緣處之噴嘴處(即靠近一列噴嘴之一端)增加或減少)且進一步非均勻性由印刷頭內之元件之間之驅動效率之變動而產生。然而,當沈積用於諸如OLED之分子電子裝置之材料時,需要高解析度(通常更佳於最佳之高解析度圖形所需要之解析度)及意味對墨滴體積之精確控制的對所沈積之材料之體積之精確控制(例如以控制亮度/驅動電流/壽命)兩者。 In general, the volume distribution of droplets is non-uniform (increasing or decreasing at the nozzles at the edge of the print head (ie, near the end of a row of nozzles)) and further non-uniformity is driven by the elements within the print head Resulting from changes in efficiency. However, when depositing materials for molecular electronic devices such as OLEDs, high resolution (usually better than the resolution required for the best high-resolution graphics) and accurate control of ink droplet volume are required Both the precise control of the volume of the deposited material (for example to control brightness / driving current / life).

更精確地控制所沈積之材料之體積之一已知策略為使用複數個 連續沈積液滴而非一單一液滴覆蓋一像素或填充一井。然而,此策略具有缺點且因此吾人先前已闡述替代技術以達成一均勻液滴體積至1%內(吾人之WO2004/049466)。然而,此等技術沒有解決製造(例如)一彩色OLED顯示器(其中LEP及HIL界定一腔且其中該腔厚度需要經調諧以最佳化來自一OLED像素之光學輸出)之問題。 One known strategy to more precisely control the volume of deposited material is to use multiple The continuous deposition of droplets instead of a single droplet covers a pixel or fills a well. However, this strategy has shortcomings and therefore we have previously described alternative techniques to achieve a uniform droplet volume to within 1% (My WO2004 / 049466). However, these techniques do not solve the problem of manufacturing, for example, a color OLED display (where LEP and HIL define a cavity and where the cavity thickness needs to be tuned to optimize the optical output from an OLED pixel).

原則上,可使用同一面板上之三個不同印刷來製造一彩色顯示器。然而,此使處理時間增加三倍且亦開始引入均勻性問題,此乃因在完成第三次印刷及最後印刷之前,第一次印刷在印表機櫃中以一相對不受控制的方式開始乾燥。此三個印刷中之每一者可獨立地乾燥,但此會進一步增加處理時間。 In principle, three different printings on the same panel can be used to make a color display. However, this tripled the processing time and also started to introduce uniformity issues, because the first printing began to dry in a relatively uncontrolled manner in the printer cabinet before the third printing and the final printing were completed . Each of these three prints can be dried independently, but this will further increase the processing time.

因此,吾人將闡述解決此等問題且亦更廣泛地應用於製造分子電子裝置(諸如OLED顯示器及有機光伏打裝置)的技術。 Therefore, we will describe techniques that solve these problems and are also more widely applied to the manufacture of molecular electronic devices, such as OLED displays and organic photovoltaic devices.

根據本發明,因此提供一種製造一有機電子裝置之方法,該方法包括:提供具有至少兩組材料沈積區域之一基板,一第一組區域用於該裝置之一第一組元件且一第二組區域用於該裝置之一第二組元件,其中該第一組材料沈積區域及該第二組材料沈積區域具有待沈積至該等區域中之材料之不同的各別第一目標厚度及第二目標厚度;提供待沈積於該第一組區域及該第二組區域上之材料的至少一種溶液;及將材料之該等溶液噴墨印刷至該第一組材料沈積區域及該第二組材料沈積區域上;其中該噴墨印刷包括:使用包括複數個噴嘴之一印刷頭來沈積材料之該至少一種溶液,該等噴嘴之一第一子集用於至該第一組區域上之沈積,且該等噴嘴之一第二子集用於至該第二組區域上之沈積;及藉助一第一驅動波形來驅動該第一組噴嘴,且藉助一第二不同驅動波形來驅動該第二組噴嘴,以用於沈積該等不同之各別第一目標厚度及第二目標厚度的材料。 According to the present invention, there is therefore provided a method of manufacturing an organic electronic device, the method comprising: providing a substrate having at least two sets of material deposition areas, a first set of areas for a first set of elements of the device and a second The group area is used for a second group element of the device, wherein the first group material deposition area and the second group material deposition area have different respective first target thicknesses and Two target thicknesses; providing at least one solution of materials to be deposited on the first group of regions and the second group of regions; and inkjet printing the solutions of materials to the first group of material deposition regions and the second group On the material deposition area; wherein the inkjet printing includes: using a print head including a plurality of nozzles to deposit the at least one solution of the material, a first subset of the nozzles is used for deposition onto the first group of areas , And a second subset of the nozzles is used for deposition onto the second group of regions; and a first driving waveform is used to drive the first group of nozzles, and a second different driving waveform is used to Moving the second set of nozzles, for respective materials different from those deposited thickness of the first target and the second target thickness.

此等技術之實施例促進精確調諧一單一印刷頭中之獨立噴嘴的體積,以允許(例如)以一固定液滴數目按不同目標厚度來單通印刷一電洞注入層或間層。如稍後所闡述,在一尤其有用之情況下,該方法之實施例促進橫跨整個印刷頭以一重複圖案單通印刷三個不同體積,以製造一彩色OLED顯示器。因此,吾人闡述之方法的實施例促進LEP彩色層相鄰處(下方)之HIL及/或間層的腔調諧。此可完全實質上改良處理時間,此乃因在實施例中基板僅須在HIL/IL(間層)印刷頭下方通過一單一次以達成所要HIL厚度。允許使用每印刷位置或井之一固定液滴數目同時(即在一單通道內)有效印刷不同液滴體積,避免噴墨印刷工具以其他方式可能遇到的諸多處理問題。 Embodiments of these techniques facilitate accurate tuning of the volume of individual nozzles in a single print head to allow, for example, a single pass printing of a hole injection layer or interlayer with a fixed number of droplets and different target thicknesses. As explained later, in a particularly useful case, an embodiment of the method facilitates single-pass printing of three different volumes in a repeating pattern across the entire print head to manufacture a color OLED display. Therefore, embodiments of the method I have described facilitate cavity tuning of the HIL and / or interlayer adjacent (below) the LEP color layer. This can substantially substantially improve the processing time, because in the embodiment, the substrate only needs to pass under the HIL / IL (interlayer) print head once to achieve the desired HIL thickness. It is allowed to use one fixed number of droplets per printing position or one well to print different droplet volumes simultaneously (ie within a single channel), avoiding many processing problems that inkjet printing tools may encounter in other ways.

在實施例中,印刷來自全部噴嘴之相同材料,例如用於一OLED之一HIL及/或IL之材料,但原則上可採用技術以印刷來自不同群組或子集之噴嘴之不同材料,例如其中不同噴嘴與不同「油墨」儲存器(即待沈積之材料之不同溶液)流體連通。(熟習此項技術者應理解,此一配置出於電驅動或其他目的而可或可不匹配噴嘴之一分組)。 In an embodiment, the same material from all the nozzles is printed, such as the material used for one HIL and / or IL of an OLED, but in principle technology can be used to print different materials from different groups or subsets of nozzles, for example Different nozzles are in fluid communication with different "ink" reservoirs (ie different solutions of materials to be deposited). (Those skilled in the art should understand that this configuration may or may not match a group of nozzles for electrical driving or other purposes).

如先前所提及,在較佳實施例中,噴墨印刷在條區中印刷且在一單一條區中沈積目標厚度之材料。較佳地,將來自噴嘴之每一子集中之噴嘴之相同數目個溶液液滴沈積至各別沈積區域上。此避免在每一區域中印刷不同液滴數目(其由於將須迅速印刷液滴(且甚至接著將由液滴尺寸「量子化」所沈積材料之體積)及由於此將需要在頭移動速度係固定之情況下(此係常有之事)變動液滴沈積頻率而係困難的)之需要。例如,一低體積像素可僅需要3個液滴而一較高體積像素可需要10個液滴,但該3液滴像素一般與該10液滴像素處於相同間距(間隔)上,使得難以均勻填充3液滴像素。因此,在某些較佳實施例中,来自噴嘴之一子集中之每一噴嘴之一單一液滴沈積於每一印刷位置處。(此處一印刷位置可被界定為一「垂直」印刷位置,其中「垂 直」垂直於條區/頭移動之一方向)。如熟習此項技術者所應理解,即使其中僅一單一液滴沈積於每一印刷位置中,但沿一區域或井(在製造一OLED像素時將材料沈積至其中)之長度可存在一個以上液滴。 As previously mentioned, in the preferred embodiment, inkjet printing is printed in the strip area and the target thickness of material is deposited in a single strip area. Preferably, the same number of solution droplets from the nozzles in each subset of nozzles are deposited onto the respective deposition areas. This avoids printing a different number of droplets in each area (which would have to print droplets quickly (and then even the volume of material deposited by the droplet size "quantization") and because this would require a fixed head movement speed Under the circumstances (this is often the case), it is difficult to change the frequency of droplet deposition. For example, a low volume pixel may only require 3 droplets and a higher volume pixel may require 10 droplets, but the 3 droplet pixel is generally at the same pitch (space) as the 10 droplet pixel, making it difficult to uniform Fill 3 droplet pixels. Thus, in certain preferred embodiments, a single droplet from each nozzle in a subset of nozzles is deposited at each printing location. (Here a printing position can be defined as a "vertical" printing position, where "vertical "Straight" is perpendicular to one direction of strip area / head movement). As those skilled in the art should understand, even if only a single droplet is deposited in each printing position, there may be more than one length along the length of a region or well into which the material is deposited when manufacturing an OLED pixel Droplets.

在該方法之實施例中,驅動波形包括不同各別持續時間之脈衝,一較長持續時間用於所沈積材料之一較大目標厚度。特定言之,在採用一壓電驅動頭之情況下,脈衝持續時間在某種意義上對應於噴嘴之「閘」打開之持續時間,且脈衝內之一電壓步階(向上或向下)對應於給予壓電材料之「反衝」度。吾人已發現,將一脈衝之持續時間用於所沈積材料之體積/厚度之粗略控制且接著變動一或多個電壓步階用於精細調整係較佳的。因此,未必係用於所沈積材料之一較大目標厚度之波形將採用一較大電壓步階之情況。在該方法之某些較佳實施方案中,為達成對所沈積材料之精確控制,針對印刷頭之個別噴嘴界定個別波形。 In an embodiment of the method, the driving waveform includes pulses of different respective durations, and a longer duration is used for a larger target thickness of the deposited material. In particular, in the case of using a piezoelectric drive head, the pulse duration corresponds in a sense to the duration of the nozzle's "gate" opening, and one of the voltage steps (up or down) in the pulse corresponds It is used to give the "kickback" degree of piezoelectric materials. We have found that it is better to use the duration of a pulse for coarse control of the volume / thickness of the deposited material and then change one or more voltage steps for fine adjustment. Therefore, it is not necessarily the case that a larger target thickness of the deposited material will use a larger voltage step. In some preferred embodiments of the method, to achieve precise control of the deposited material, individual waveforms are defined for individual nozzles of the print head.

因此,該方法之較佳實施例包含一準直階段,隨(一脈衝類型驅動波形之)持續時間及電壓步階之尺寸或參數準直印刷頭之個別噴嘴以判定待針對每一特定噴嘴採用之脈衝持續時間與電壓步階之一組合。 Therefore, the preferred embodiment of the method includes a collimation stage, collimating the individual nozzles of the print head with the duration (of a pulse-type driving waveform) and the size or parameters of the voltage step to determine whether to adopt for each specific nozzle The pulse duration is combined with one of the voltage steps.

在一方法中,藉由判定在有機電子裝置之製造期間待沈積之來自彼特定噴嘴之材料之目標厚度而執行此準直,且接著變動脈衝持續時間/電壓(例如反覆地)以達成此目標厚度。例如,可沈積材料且接著(例如)使用一白光干涉儀(諸如Zygo New View 5000系列儀器)藉由干涉法量測所沈積厚度。在另一方法中,可較佳地系統地變動脈衝持續時間及/或電壓步階且識別對照此等參數中之一者或兩者界定所沈積材料之所量測厚度之一最佳擬合曲線或表面。接著,可自此曲線/表面內插或外插所要脈衝持續期間/電壓。 In one method, this collimation is performed by determining the target thickness of the material from that particular nozzle to be deposited during the manufacture of the organic electronic device, and then varying the pulse duration / voltage (eg, repeatedly) to achieve this goal thickness. For example, the material can be deposited and then, for example, a white light interferometer (such as a Zygo New View 5000 series instrument) is used to measure the deposited thickness by interferometry. In another method, it may be better to systematically vary the pulse duration and / or voltage step and identify one of the best parameters of the measured thickness of the deposited material against one or both of these parameters. Curve or surface. Then, the desired pulse duration / voltage can be interpolated or extrapolated from this curve / surface.

較佳地,準直一噴嘴同時以在製造實際裝置時將驅動印刷頭之 其他噴嘴之實質上相同方式驅動該等其他噴嘴,例如其中頭旋轉至相同間距且驅動脈衝以與在製造一裝置時所採用之實質上相同之定時經施加。此乃因一噴嘴內之壓電材料內之串擾可導致一個噴嘴之起動影響另一噴嘴之行為。 Preferably, collimating a nozzle at the same time will drive the print head when manufacturing the actual device The other nozzles drive the other nozzles in substantially the same manner, for example, where the head rotates to the same pitch and the driving pulse is applied at substantially the same timing as that used when manufacturing a device. This is because crosstalk in the piezoelectric material in one nozzle can cause the activation of one nozzle to affect the behavior of the other nozzle.

該方法之實施例亦包含將界定用於噴嘴之驅動波形之資料儲存於一非揮發性儲存媒體上以用於控制一噴墨印表機之印刷頭。 Embodiments of the method also include storing data defining drive waveforms for nozzles on a non-volatile storage medium for controlling the print head of an inkjet printer.

上述技術可用於製造任何類型之分子(特定言之,有機)電子裝置。然而,其等對於製造有機光電子裝置(諸如一有機發光二極體或一有機光伏打二極體)尤其有用。因此,在實施例中,每一組區域界定一各別組彩色OLED子像素(此處一子像素為一彩色OLED顯示器之一像素之多個不同彩色像素中之一者),每一子像素具有對應於一不同各別彩色之一不同目標光學腔長度。依據目標腔長度判定材料之目標厚度,且藉由每一OLED之發光層之厚度與電洞注入層之厚度之一組合界定目標光學腔長度。因此,該方法可用於沈積此等層中之一者或兩者。 The above technology can be used to manufacture any type of molecular (specifically, organic) electronic device. However, they are particularly useful for manufacturing organic optoelectronic devices, such as an organic light-emitting diode or an organic photovoltaic diode. Therefore, in an embodiment, each group of regions defines a separate group of color OLED sub-pixels (where a sub-pixel is one of a plurality of different color pixels of a pixel of a color OLED display), each sub-pixel It has a different target optical cavity length corresponding to a different respective color. The target thickness of the material is determined according to the length of the target cavity, and the target optical cavity length is defined by a combination of the thickness of the light emitting layer of each OLED and the thickness of the hole injection layer. Therefore, the method can be used to deposit one or both of these layers.

熟習此項技術者應理解,在一個三色顯示器之情況下,上述技術可經延伸以採用具有不同各別驅動波形之噴嘴之三個子集以用於沈積三個不同目標厚度之材料。類似地,若需要,則該技術可延伸至四個或更多色彩。 Those skilled in the art should understand that in the case of a three-color display, the above technique can be extended to use three subsets of nozzles with different respective drive waveforms for depositing materials of three different target thicknesses. Similarly, if desired, the technology can be extended to four or more colors.

在一相關態樣中,本發明亦提供上述非揮發性儲存媒體及經程式化以實施上述方法(特定言之,包括用於執行該方法之所儲存資料)之一噴墨印表機。 In a related aspect, the present invention also provides the aforementioned non-volatile storage medium and an inkjet printer programmed to implement the aforementioned method (specifically, including stored data for performing the method).

10‧‧‧典型有機發光二極體裝置 10‧‧‧Typical organic light-emitting diode device

12‧‧‧基板 12‧‧‧ substrate

14‧‧‧透明導電氧化物層/陽極金屬 14‧‧‧Transparent conductive oxide layer / Anode metal

16‧‧‧電洞注入層 16‧‧‧hole injection layer

18‧‧‧中間聚合物層/間層 18‧‧‧Intermediate polymer layer / interlayer

20‧‧‧發光聚合物層 20‧‧‧luminescent polymer layer

22‧‧‧陰極 22‧‧‧Cathode

112‧‧‧堤岸/環形堤岸 112‧‧‧Embankment / Round Embankment

114‧‧‧井 114‧‧‧well

116‧‧‧絕緣材料層 116‧‧‧Insulating material layer

118‧‧‧陰極金屬 118‧‧‧Cathode metal

200‧‧‧實例性三色主動矩陣像素化有機發光二極體顯示器/噴墨印表機/噴墨印表機系統 200‧‧‧Exemplary three-color active matrix pixelated organic light-emitting diode display / inkjet printer / inkjet printer system

202‧‧‧電腦終端機/終端機 202‧‧‧Computer terminal / terminal

204‧‧‧臍帶 204‧‧‧Umbilical cord

206‧‧‧第一線性定位器/定位器 206‧‧‧First linear positioner / positioner

208‧‧‧第二線性定位器/定位器 208‧‧‧Second linear positioner / positioner

209‧‧‧基座 209‧‧‧Dock

212‧‧‧基板 212‧‧‧ substrate

222‧‧‧噴墨印刷頭/印刷頭/掃掠頭 222‧‧‧Inkjet print head / print head / sweep head

226‧‧‧印刷頭單元 226‧‧‧Print head unit

227‧‧‧噴嘴 227‧‧‧ nozzle

228‧‧‧單一列 228‧‧‧Single row

244‧‧‧旋轉定位器 244‧‧‧Rotary positioner

246‧‧‧旋轉定位器 246‧‧‧Rotary positioner

247‧‧‧旋轉定位器 247‧‧‧Rotary positioner

248‧‧‧線性定位器 248‧‧‧Linear positioner

249‧‧‧桌或床 249‧‧‧ table or bed

250‧‧‧止檔 250‧‧‧stop

251‧‧‧轉盤 251‧‧‧Turntable

252‧‧‧軌道 252‧‧‧ Orbit

253‧‧‧滑件 253‧‧‧slide

254‧‧‧軌道 254‧‧‧ Orbit

256‧‧‧滑件 256‧‧‧slide

510‧‧‧短脈衝寬度 510‧‧‧Short pulse width

520‧‧‧長脈衝寬度 520‧‧‧Long pulse width

710‧‧‧液滴分裂脈衝 710‧‧‧ droplet splitting pulse

720‧‧‧過渡上衝 720‧‧‧Overshoot

B‧‧‧藍 B‧‧‧Blue

G‧‧‧綠 G‧‧‧green

R‧‧‧紅 R‧‧‧Red

V1‧‧‧初始電壓位準/第一值/起始電壓 V1‧‧‧Initial voltage level / first value / starting voltage

V2‧‧‧電壓 V2‧‧‧Voltage

V3‧‧‧第三值 V3‧‧‧ third value

X‧‧‧軸/方向 X‧‧‧axis / direction

Y‧‧‧軸/方向 Y‧‧‧axis / direction

Z‧‧‧方向 Z‧‧‧ direction

現將參考附圖、僅藉由實例之方式進一步闡述本發明之此等及其他態樣,其中:圖1a及圖1b分別展示穿過一OLED結構之一剖面之一第一實例及 一個三色像素化OLED顯示器之一部分之一俯視圖;圖2a至圖2c分別展示根據先前技術之一噴墨印表機之一實例及一噴墨印表機頭之一實例,及一替代印刷頭定向之一實例;圖3a至圖3d分別展示一彩色OLED顯示器之環形堤岸結構及經溶解分子電子材料至藉由該等結構形成之井中之基於液滴之沈積的實例,及呈垂直剖面形式之一被動矩形OLED顯示器之一井之一側視圖及透視圖;圖4圖解說明在根據本發明之實施例之方法中針對紅色、綠色及藍色所採用之不同液滴大小的實例;圖5展示一典型印刷頭驅動波形;圖6示意性地展示短脈衝寬度及長脈衝寬度及由印刷頭噴嘴產生之對應液滴體積;及圖7a及圖7b分別展示所量測之液滴體積對照一印刷頭之一組噴嘴之驅動電壓(脈衝步階)之一實例性映射,及可在根據本發明之一方法之實施例中採用之進一步實例性驅動波形。 These and other aspects of the present invention will now be further explained by way of examples only with reference to the drawings, in which: FIGS. 1a and 1b show a first example and a section through a cross section of an OLED structure, respectively. A top view of one part of a three-color pixelated OLED display; Figures 2a to 2c show an example of an inkjet printer and an example of an inkjet printer head according to the prior art, and an alternative printhead, respectively An example of orientation; Figures 3a to 3d show an example of a ring-shaped bank structure of a color OLED display and droplet-based deposition of dissolved molecular electronic materials into a well formed by these structures, and a vertical section A side view and perspective view of a well of a passive rectangular OLED display; FIG. 4 illustrates examples of different droplet sizes employed for red, green, and blue in the method according to an embodiment of the present invention; FIG. 5 shows A typical print head drive waveform; Figure 6 schematically shows the short pulse width and long pulse width and the corresponding droplet volume generated by the nozzle of the print head; and Figures 7a and 7b respectively show the measured droplet volume versus a print An exemplary mapping of the driving voltage (pulse step) of the first set of nozzles, and further exemplary driving waveforms that can be employed in an embodiment of a method according to the invention.

吾人用於OLED製造之印表機的實例為具有一Dimatix SX3噴墨印刷頭(來自Fujifilm Dimatix公司)的Litrex 1408、Litrex 142及Litrex 140P印表機。通常,印刷頭印刷連續條區(譬如沿Y方向),該等連續條區在每一條區之間沿X方向步進。印刷頭可視情況以與X方向之一角度Φ經定位,以使點間距減少cosΦ倍。 Examples of printers we use for OLED manufacturing are Litrex 1408, Litrex 142, and Litrex 140P printers with a Dimatix SX3 inkjet print head (from Fujifilm Dimatix Corporation). Generally, the print head prints continuous strip areas (for example, along the Y direction), and the continuous strip areas are stepped in the X direction between each strip area. The printing head can be positioned at an angle Φ to the X direction according to the actual situation, so as to reduce the dot pitch by cosΦ times.

圖3a繪示一掃掠頭222在一彩色OLED顯示器之一部分的若干個像素上方通過。該圖用圖解法展示在一「水球」類型環形堤岸112內之所沈積液滴。在圖中,紅色(R)、綠色(G)及藍色(B)子像素各自具有一單獨井(其中陽極金屬14在基座處)。僅藉由實例之方式,在一小平板顯示器中,一像素可具有50μm之一寬度及150μm至250μm之一長 度,其中堤岸寬(譬如)10μm或20μm;在更適合於諸如一彩色電視機之應用的較大顯示器中,一像素寬度可為約200μm。在本發明之實施例中,所沈積之油墨體積可完全實質上增加,而像素間距(堤岸尺寸)無一顯著改變。 Figure 3a shows a sweep head 222 passing over a number of pixels in a part of a color OLED display. The figure graphically shows the deposited droplets within a "water polo" type annular bank 112. In the figure, the red (R), green (G) and blue (B) sub-pixels each have a separate well (where the anode metal 14 is at the pedestal). By way of example only, in a small flat panel display, a pixel may have a width of 50 μm and a length of 150 μm to 250 μm Degree, where the bank width is (for example) 10 μm or 20 μm; in a larger display that is more suitable for applications such as a color TV, the width of one pixel can be about 200 μm. In the embodiments of the present invention, the volume of the deposited ink can be substantially substantially increased without any significant change in pixel pitch (bank size).

圖3b圖解說明其中環形堤岸112界定各自固持用於複數個彩色子像素之材料之縱向通道的一配置,該等子像素自身由陽極金屬14界定。在實施例中,可由一下伏鈍化層(諸如矽氧化物或氮化物或SOG(旋塗玻璃))分離陽極島狀物。在圖3a及圖3b之實施例中,一個像素不與另一像素共用環形堤岸之任何部分。 FIG. 3 b illustrates a configuration in which annular banks 112 define longitudinal channels each holding material for a plurality of color sub-pixels, which are themselves defined by anode metal 14. In an embodiment, the anode island may be separated by an underlying passivation layer such as silicon oxide or nitride or SOG (spin on glass). In the embodiments of FIGS. 3a and 3b, one pixel does not share any part of the ring-shaped bank with another pixel.

圖3c展示穿過諸如一被動矩陣OLED顯示器之一顯示器(其中一絕緣材料層116提供於陽極金屬之部分上方以便使此陽極金屬與稍後沈積之陰極材料絕緣)之一部分之一剖面。此在圖3d中看得更清楚,其中絕緣材料層使陰極金屬118(用以提供與陽極金屬電極成直角之電極)絕緣。絕緣體可包括氧化物、氮化物或SOG或一抗蝕劑材料。 Figure 3c shows a section through a portion of a display such as a passive matrix OLED display (where an insulating material layer 116 is provided over a portion of the anode metal to insulate the anode metal from the cathode material deposited later). This is more clearly seen in FIG. 3d, where the insulating material layer insulates the cathode metal 118 (to provide an electrode at right angles to the anode metal electrode). The insulator may include oxide, nitride or SOG or a resist material.

圖3c亦圖解說明當第一次沈積一液滴時,液滴之體積比井之體積大得多,但其乾燥以橫跨井之底部留下先前所溶解材料之一薄層。例如,一井之深度可為約1μm,乾燥之所沈積材料之厚度可為約0.1μm,且液滴之初始高度可為約10μm。 Figure 3c also illustrates that when a droplet is deposited for the first time, the volume of the droplet is much larger than the volume of the well, but it dries to leave a thin layer of previously dissolved material across the bottom of the well. For example, the depth of a well may be about 1 μm, the thickness of the dried deposited material may be about 0.1 μm, and the initial height of the droplets may be about 10 μm.

在一P-OLED裝置內,期望針對每一不同LEP色彩具有離散HIL厚度。通常,一相對較薄之HIL係較佳用於最佳藍色效能,而一尤其厚之層係較佳用於紅色。概括而言,LEP及HIL之組合界定一腔,且來自OLED之光學輸出隨腔厚度(深度)正弦地變動,約在厚度在輸出波長處界定整數個半波長時達到峰值。因此存在光學輸出在其處達到峰值之若干個厚度,且較佳地,總LEP+HIL厚度匹配此等厚度中之一者。例如,在一個結構中,R、G及B色(子)像素具有以下層厚度: Within a P-OLED device, it is desirable to have discrete HIL thickness for each different LEP color. Generally, a relatively thin HIL is preferred for best blue performance, and a particularly thick layer is preferred for red. In summary, the combination of LEP and HIL defines a cavity, and the optical output from the OLED varies sinusoidally with the cavity thickness (depth), peaking when the thickness defines an integer number of half wavelengths at the output wavelength. Therefore there are several thicknesses at which the optical output peaks, and preferably, the total LEP + HIL thickness matches one of these thicknesses. For example, in one structure, R, G, and B color (sub) pixels have the following layer thickness:

通常,裝置中之其他層針對R、G及B色(子)像素具有實質上相同厚度。 Generally, the other layers in the device have substantially the same thickness for R, G, and B color (sub) pixels.

當印刷HIL層時,每一噴嘴印刷HIL,但存在一不同目標層厚度。HIL之層厚度亦可能取決於一條區中之位置而系統地變動-例如以補償原本在一條區之一邊緣處或在一條區之一端或另一端處降低之輸出強度。 When printing the HIL layer, each nozzle prints the HIL, but there is a different target layer thickness. The layer thickness of the HIL may also vary systematically depending on the position in a zone-for example to compensate for the reduced output intensity originally at one edge of a zone or at one end or the other end of a zone.

吾人先前阐述之將一印刷頭之噴嘴之體積輸出匹配至1%之一容差內之技術具有一本質假定:全部噴嘴以相同方式起作用,但實驗已表明不應為此情況。一典型SX3印刷頭具有20μm之一噴嘴直徑及508μm之一噴嘴離距。該噴嘴通向一平坦噴嘴板且經由一壓電換能器定位於其處之一限制件經由充當一篩網之一岩阻過濾器與一儲存器連接。所沈積材料具有8至10厘泊黏度之一似糖漿稠度;一經噴射液滴可具有8pL階之一體積。全部噴嘴出於若干種原因而略微不同地起作用:噴嘴本身由於製造容差而具有一略微變動之大小、頭被分成偶數噴嘴及奇數噴嘴(此由未精確匹配之單獨組之頭電子器件驅動);且存在要考量之其他因素。 The technique previously described by me to match the volume output of the nozzles of a printing head to within a tolerance of 1% has an essential assumption: all nozzles function in the same way, but experiments have shown that this should not be the case. A typical SX3 print head has a nozzle diameter of 20 μm and a nozzle distance of 508 μm. The nozzle leads to a flat nozzle plate and is connected to a reservoir via a rocker filter acting as a screen through a restriction member positioned there by a piezoelectric transducer. The deposited material has a syrup-like consistency of 8 to 10 centipoise viscosity; once sprayed, the droplet may have a volume of 8 pL order. All nozzles function slightly differently for several reasons: the nozzle itself has a slightly varying size due to manufacturing tolerances, the head is divided into even nozzles and odd nozzles (this is driven by a separate group of head electronics that are not precisely matched ); And there are other factors to consider.

吾人將闡述採用調諧一單一印刷頭中之輸出液滴體積從而允許在一單印刷條區內之R、G及B位置中印刷三個不同液滴體積之技術。將印刷頭上之噴嘴分成三個群組且此等群組中之每一者經調諧以把期望用於每一色彩之最佳腔厚度之相關液滴體積定為目標。圖4圖解說明在根據本發明之實施例之方法中針對紅色、綠色及藍色所採用之不 同液滴大小之實例。吾人闡述之技術適合於在製作噴墨印刷之OLED顯示器中所使用之一類型之單印刷頭系統及多頭印刷桿兩者。 We will describe the technique of tuning the output droplet volume in a single print head to allow three different droplet volumes to be printed in the R, G, and B positions within a single print strip area. The nozzles on the print head are divided into three groups and each of these groups is tuned to target the relevant droplet volume for the optimal cavity thickness desired for each color. Figure 4 illustrates the different methods used for red, green and blue in a method according to an embodiment of the invention Examples of the same droplet size. The technique I have described is suitable for both the single print head system and the multi-head print bar used in the production of inkjet printed OLED displays.

圖5展示圖解說明施加至壓電換能器之電壓之一典型印刷頭驅動波形。此開始於可有效地視為一零或參考電壓位準之一初始電壓位準V1(例如135V)處。接著,電壓降低至在此實例中可為(例如)約85V之V2,從而給出50伏特之一電壓差異。接著,電壓返回至可相同於或不同於第一值V1之一第三值V3,且該循環接著繼續。 FIG. 5 shows a typical print head driving waveform illustrating a voltage applied to a piezoelectric transducer. This starts at an initial voltage level V1 (eg 135V) that can effectively be regarded as a zero or reference voltage level. Next, the voltage is reduced to V2, which can be, for example, about 85V in this example, giving a voltage difference of 50 volts. Then, the voltage returns to a third value V3, which may be the same as or different from the first value V1, and the cycle then continues.

通常,為起動一液滴,橫跨一特定噴嘴本端處之PZT形成一電壓差異。用於噴嘴之PZT處之一個電極處之電壓係一固定電壓且對於全部噴嘴係共同的(通常稱為共軌)。全部波形參數僅對另一可變電極起作用。靜止不動時,V1(起始電壓)等於或類似於共軌。一般而言,最終電壓槽(圖中之V3)亦等於或類似於共軌(但理論上,在可變電極與共軌(其不起動一液滴而是將PZT保持於起動事件之間之一應力狀態中)之間可能具有一電壓差異)。 Generally, to initiate a droplet, a voltage difference is formed across the PZT at the local end of a particular nozzle. The voltage at one electrode at the PZT of the nozzle is a fixed voltage and is common to all nozzles (commonly referred to as common rail). All waveform parameters only affect the other variable electrode. When stationary, V1 (starting voltage) is equal to or similar to the common rail. In general, the final voltage tank (V3 in the figure) is also equal to or similar to the common rail (but in theory, between the variable electrode and the common rail (which does not start a droplet but keeps PZT between start events There may be a voltage difference between a stress state).

在一典型重複脈衝串流中,第一相位可具有(譬如)3μs之一持續時間,第二相位具有5μs之一持續時間且第三相位具有3μs之一持續時間。液滴噴射發生於相位二與相位三之間之轉變中;在此之前,噴嘴「填滿」。若降低電壓V2之值從而增加V1與V2之間之電壓步階,則液滴之體積增加。 In a typical repetitive burst stream, the first phase may have, for example, a duration of 3 μs, the second phase has a duration of 5 μs and the third phase has a duration of 3 μs. Droplet ejection occurs during the transition between phase two and phase three; before that, the nozzle "filled up." If the value of the voltage V2 is reduced to increase the voltage step between V1 and V2, the volume of the droplet increases.

然而,此為噴嘴行為之一簡化且判定一印刷頭之噴嘴之體積與電壓V2之間之一線性比例因數之一嘗試未良好運行,此乃因速度-電壓-體積關係為非線性且印刷頭之總體行為係複雜的。 However, this is a simplification of nozzle behavior and an attempt to determine a linear scaling factor between the volume of the nozzle of a print head and the voltage V2 has not performed well because the speed-voltage-volume relationship is non-linear and the print head The overall behavior is complex.

最初,判定波形脈衝寬度與所得體積之間之關係(調整一波形上之脈衝寬度對輸出液滴體積具有最大影響-脈衝寬度越長,液滴體積越大)。因此,在一種方法中,在一固定驅動電壓下將全部噴嘴設定至一第一脈衝寬度(例如諸如3μs之一短脈衝寬度),且接著,印刷其 中全部噴嘴個別地印刷至一平面基板上之一準直樣本。在具有相同固定電壓之情況下將噴嘴接著全部設定至一第二脈衝寬度,較佳地(例如)約7μs之一長得多之脈衝寬度。接著印刷一第二準直樣本。接著,(例如)使用一Zygo白光干擾儀量測來自準直樣本中之每一者之每一個別所印刷液滴之厚度。此提供乾燥材料之一沈積厚度,且依據初始溶液之按體積濃度可判定每一液滴之體積。接著,可使此体积與用於每一所印刷液滴之脈衝寬度相互關聯從而允許(在此特定實例中)在一4μs範圍內判定用於每一個別噴嘴之脈衝寬度與體積關係。圖6示意性地展示短脈衝寬度510及長脈衝寬度520及由印表機頭噴嘴產生之對應液滴體積。 Initially, the relationship between the pulse width of the waveform and the resulting volume is determined (adjusting the pulse width on a waveform has the greatest effect on the output droplet volume-the longer the pulse width, the larger the droplet volume). Therefore, in one method, all nozzles are set to a first pulse width (for example, a short pulse width such as 3 μs) under a fixed driving voltage, and then, they are printed All the nozzles in the machine are individually printed onto a collimated sample on a flat substrate. With the same fixed voltage, the nozzles are then all set to a second pulse width, preferably a much longer pulse width of, for example, about 7 μs. Then print a second collimated sample. Next, for example, a Zygo white light jammer is used to measure the thickness of each individually printed droplet from each of the collimated samples. This provides one of the deposition thicknesses of the dry material, and the volume of each droplet can be determined based on the volume concentration of the initial solution. Then, this volume can be correlated with the pulse width for each printed droplet to allow (in this particular example) a pulse width and volume relationship for each individual nozzle to be determined within a range of 4 μs. FIG. 6 schematically shows the short pulse width 510 and the long pulse width 520 and the corresponding droplet volume produced by the printer head nozzle.

較佳地,範圍之每一端處之脈衝寬度值經判定以允許內插,而非超過所量測範圍之外插。較佳地,亦採用一或多個中間脈衝寬度以允許脈衝寬度與體積關係之一更準確映射。較佳地,多次(譬如10次)量測每一厚度值且較佳地在每一脈衝寬度處存在一液滴之多個(譬如10個)重複沈積因此給出一實質上資料量(例如可存在128個噴嘴,每一噴嘴具有100次重複)。較佳地,將具有一疏水塗層之一基板用於準直樣本。 Preferably, the pulse width value at each end of the range is determined to allow interpolation, rather than extrapolation beyond the measured range. Preferably, one or more intermediate pulse widths are also used to allow one of the pulse width and volume relationships to be more accurately mapped. Preferably, each thickness value is measured multiple times (e.g. 10 times) and preferably there are multiple (e.g. 10) repeated depositions of a droplet at each pulse width thus giving a substantial amount of data ( For example, there may be 128 nozzles, each with 100 repetitions). Preferably, a substrate with a hydrophobic coating is used to collimate the sample.

基於此準直,選擇近似于OLED顯示器之每一彩色子像素之HIL及/或IL厚度之目標厚度要求之三個離散脈衝寬度。 Based on this collimation, the three discrete pulse widths required to approximate the target thickness of the HIL and / or IL thickness of each color sub-pixel of the OLED display are selected.

接著,為更精確地選擇離散體積目標/厚度,亦準直每一像素之驅動電壓與體積關係。 Then, to more accurately select the discrete volume target / thickness, the relationship between the driving voltage and volume of each pixel is also collimated.

因此,使用與上文所闡述相同之量測程序設置具有針對目標體積/厚度判定之脈衝寬度(在其重複RGB圖案中)之一波形。橫跨全部噴嘴將驅動電壓設定至相同值且接著印刷準直樣本。接著將橫跨全部噴嘴之驅動電壓設定至一不同值,例如高於第一值之5伏特,且接著印刷一第二準直樣本。接著,使用如先前所闡述之Zygo干擾儀量測此等 準直樣本,且接著使輸出體積資料與噴嘴位置相關聯以判定在每一噴嘴之相對脈衝寬度處之驅動電壓與液滴體積/沈積材料厚度之間的一關係。如先前所闡述,由於供電一噴嘴可影響另一噴嘴,因此較佳地在類似於製造實際裝置時所使用之彼等條件之條件下印刷一準直樣本。例如,當印刷如在裝置製造期間所使用之一(垂直)列準直點時,可使頭旋轉至相同間距(該列噴嘴相對於頭之移動方向之角度)-使得噴嘴起動具有類似定時。 Therefore, a waveform having a pulse width (in its repeated RGB pattern) determined for the target volume / thickness is set using the same measurement procedure as explained above. The drive voltage is set to the same value across all nozzles and then a collimated sample is printed. The driving voltage across all nozzles is then set to a different value, for example 5 volts higher than the first value, and then a second collimated sample is printed. Then, use the Zygo jammer as previously explained to measure these The samples are collimated, and the output volume data is then correlated with the nozzle position to determine a relationship between the drive voltage at each nozzle's relative pulse width and the droplet volume / deposited material thickness. As explained previously, since powering one nozzle can affect the other nozzle, it is preferable to print a collimated sample under conditions similar to those used in manufacturing the actual device. For example, when printing a (vertical) column of collimated dots as used during device manufacturing, the head can be rotated to the same pitch (angle of nozzles in the column relative to the direction of movement of the head)-so that nozzle firing has similar timing.

較佳地,接著反覆該程序以藉由反覆地調整驅動電壓且量測厚度/體積而精細調諧至目標體積/厚度以更緊密地靠近目標沈積厚度/體積。圖7a展示量測液滴體積對照一印表機頭之一組噴嘴之驅動電壓(脈衝步階)之一實例性映射。 Preferably, the procedure is then repeated to fine tune to the target volume / thickness by adjusting the driving voltage repeatedly and measuring the thickness / volume to get closer to the target deposition thickness / volume. Figure 7a shows an exemplary mapping of measured droplet volume against the drive voltage (pulse step) of a set of nozzles of a printer head.

雖然原則上脈衝寬度或驅動電壓可自身變動以達成一所要目標沈積厚度/液滴體積,但較佳地變動兩者以達成一更精確結果。 Although in principle the pulse width or driving voltage can be varied on its own to achieve a desired target deposition thickness / droplet volume, it is preferred to vary both to achieve a more accurate result.

雖然所圖解說明之實例性波形係簡單的,但熟習此項技術者應瞭解,可替代地採用更複雜之驅動波形。例如,圖7b展示在主脈衝之後具有一液滴分裂脈衝710之一驅動波形之一實例以提供一所噴射液滴之一更乾淨俐落之切斷。第一脈衝起動液滴但其亦起始在起動事件完成后繼續之小壓力波(有點像一回波),且一第二脈衝用於取消第一脈衝之後效。第一脈衝與第二脈衝之間之週期、第二脈衝之強度或驅動經調整,使得其本身未能起動一液滴而是給予一更乾淨俐落之斷開,從而減少附屬液滴且減少對其他噴嘴之串擾。 Although the illustrated example waveforms are simple, those skilled in the art should understand that more complex drive waveforms can be used instead. For example, FIG. 7b shows an example of a driving waveform with a droplet splitting pulse 710 after the main pulse to provide a cleaner cut of one of the ejected droplets. The first pulse starts the droplet but it also starts a small pressure wave (a bit like an echo) that continues after the start event is completed, and a second pulse is used to cancel the after-effect of the first pulse. The period between the first pulse and the second pulse, the intensity of the second pulse, or the drive is adjusted so that it fails to initiate a droplet itself but gives a cleaner and clearer disconnect, thereby reducing the number of satellite droplets and reducing Crosstalk to other nozzles.

圖7b中之一第二替代波形展示展現720處之某些過度上衝及至初始電壓值之一逐漸返回之一波形。在印表機具有用於調整相關下降時間或負斜率之一設施時,此可有助於平穩噴射液滴之一序列從而給出經改良之重複性。 A second alternative waveform in FIG. 7b shows a waveform that exhibits some excessive overshoot at 720 and gradually returns to one of the initial voltage values. When the printer has a facility for adjusting the associated fall time or negative slope, this can help to smoothly eject a sequence of droplets to give improved repeatability.

熟習此項技術者應瞭解,驅動脈衝波形之形狀之此等及其他變 動係可能的,且如上文所闡述之一準直程序可用於準直此等形狀改變。 Those skilled in the art should understand that these and other changes in the shape of the drive pulse waveform Dynamic systems are possible, and one of the collimation procedures as explained above can be used to collimate these shape changes.

一旦已判定用於每一個別噴嘴之波形,即可將波形資料提供至噴墨印表機作為在一儲存媒體上或經由一電腦網路儲存之一波形檔案。用於一Litrex印表機之此一波形檔案之一項實例包括界定一電壓位準及持續時間之用於每一噴嘴之資料,(例如)使用9個位元來界定0V與一軌道電壓(諸如135V)之間之一電壓。因此,為界定印刷波形,僅有必要將界定此波形資料之一文本檔案載入至印表機中。 Once the waveform for each individual nozzle has been determined, the waveform data can be provided to the inkjet printer as a waveform file stored on a storage medium or via a computer network. An example of such a waveform file for a Litrex printer includes data for each nozzle that defines a voltage level and duration, for example, 9 bits are used to define 0V and a track voltage ( Such as 135V). Therefore, in order to define the printed waveform, it is only necessary to load a text file that defines this waveform data into the printer.

吾人已闡述針對一印刷頭內之個別噴嘴採用離散體積目標之技術。例如,自噴嘴0之每第三個噴嘴可調諧至一特定液滴體積(譬如紅色),自噴嘴1之每第三個噴嘴可調諧至另一目標液滴體積(譬如綠色)及自噴嘴2之每第三個噴嘴可調諧至一第三目標液滴體積(譬如藍色)。此允許一OLED或有機PV(光伏打)基板達成一所要HIL/IL厚度以在HIL/IL沈積之一單通中提供最佳LEP效能。此在製作此一裝置期間節省完全實質上量之製造時間。對於更大體積差異/經改良之精確度,可調整脈衝寬度及乾電壓兩者。 We have described techniques for using discrete volume targets for individual nozzles within a print head. For example, every third nozzle from nozzle 0 can be tuned to a specific droplet volume (eg red), every third nozzle from nozzle 1 can be tuned to another target droplet volume (eg green) and from nozzle 2 Every third nozzle can be tuned to a third target droplet volume (such as blue). This allows an OLED or organic PV (photovoltaic) substrate to achieve a desired HIL / IL thickness to provide the best LEP performance in a single pass of HIL / IL deposition. This saves a completely substantial amount of manufacturing time during the manufacture of this device. For larger volume differences / improved accuracy, both pulse width and dry voltage can be adjusted.

熟習此項技術者應認識到,上述技術不限於有機發光二極體(小分子或聚合物)之製造中之使用,但可用於其中材料溶解於一溶劑中且由一液滴沈積技術沈積之任何類型之分子電子裝置之製造中。毫無疑問,熟習此項技術者將想到諸多有效替代方案且應瞭解,本發明不限於所闡述之實施例,而是囊括屬於所附申請專利範圍之範疇內之熟習此項技術者明白之修改。 Those skilled in the art should realize that the above technology is not limited to the use in the manufacture of organic light-emitting diodes (small molecules or polymers), but can be used in materials where the material is dissolved in a solvent and deposited by a droplet deposition technique In the manufacture of any type of molecular electronic device. There is no doubt that those skilled in the art will think of many effective alternatives and it should be understood that the present invention is not limited to the illustrated embodiments, but includes modifications that are understood by those skilled in the art within the scope of the appended patent applications .

Claims (20)

一種製造一有機電子裝置之方法,該方法包括:提供具有至少兩組材料沈積區域(material deposition regions)之一基板,一第一組材料沈積區域用於該裝置之一第一組元件且一第二組材料沈積區域用於該裝置之一第二組元件,其中該第一組材料沈積區域及該第二組材料沈積區域具有待沈積至該等區域中之材料之不同的各別第一目標厚度及第二目標厚度;提供待沈積於該第一組材料沈積區域及該第二組材料沈積區域上之材料的至少一種溶液;及藉由使用一壓電換能器(piezoelectric transducer)以將材料之該等溶液噴墨印刷至該第一組材料沈積區域及該第二組材料沈積區域上;其中該噴墨印刷包括:使用包括複數個噴嘴之一印刷頭來沈積材料之該至少一種溶液,該等噴嘴之各者具有相同直徑之孔口,該等噴嘴之一第一子集用於至該第一組材料沈積區域上之沈積,且該等噴嘴之一第二子集用於至該第二組材料沈積區域上之沈積;及藉助一第一驅動波形來驅動該第一子集噴嘴且藉助一不同之第二驅動波形來驅動該第二子集噴嘴,以用於沈積該等不同各別第一目標厚度及第二目標厚度之材料,其中該沈積包括將來自噴嘴之該第一子集及該第二子集中之噴嘴之該溶液的相同數目個液滴沈積至各別該第一組材料沈積區域及該第二組材料沈積區域上。A method of manufacturing an organic electronic device, the method comprising: providing a substrate having at least two sets of material deposition regions, a first set of material deposition regions for a first set of components of the device and a first Two sets of material deposition areas are used for a second set of elements of the device, wherein the first set of material deposition areas and the second set of material deposition areas have different first targets of different materials to be deposited into the areas Thickness and second target thickness; providing at least one solution of materials to be deposited on the first set of material deposition areas and the second set of material deposition areas; and by using a piezoelectric transducer to convert The solutions of the material are inkjet printed onto the first set of material deposition areas and the second set of material deposition areas; wherein the inkjet printing includes: depositing the at least one solution of the material using a print head including a plurality of nozzles , Each of the nozzles has an orifice of the same diameter, a first subset of the nozzles is used for deposition onto the first set of material deposition areas, and the A second subset of equal nozzles for deposition onto the second set of material deposition areas; and a first driving waveform to drive the first subset of nozzles and a different second driving waveform to drive the first Two subset nozzles for depositing the materials of different respective first target thickness and second target thickness, wherein the deposition includes the solution from the nozzles of the first subset and the second subset of nozzles The same number of droplets are deposited onto the first group of material deposition regions and the second group of material deposition regions. 如請求項1之方法,其包括將材料之相同的該溶液沈積至該第一組材料沈積區域及該第二組材料沈積區域兩者上。The method of claim 1, which includes depositing the same solution of material onto both the first set of material deposition regions and the second set of material deposition regions. 如請求項2之方法,其中該材料包括用於該裝置之一電洞注入層及/或間層之材料。The method of claim 2, wherein the material includes a material for a hole injection layer and / or interlayer of the device. 如請求項1之方法,其包括提供待沈積於各別該第一組材料沈積區域及該第二組材料沈積區域上之材料之第一溶液及第二溶液;且其中該沈積包括沈積來自該等噴嘴之各別該第一子集及該第二子集之材料之該第一溶液及該第二溶液。The method of claim 1, comprising providing a first solution and a second solution of materials to be deposited on the respective first group of material deposition regions and the second group of material deposition regions; and wherein the deposition includes depositing from the The first solution and the second solution of the materials of the first subset and the second subset are separated by equal nozzles. 如請求項1至4中任一項之方法,其中該噴墨印刷包括在條區中印刷,且其中該沈積包括在一單一該條區中沈積該等目標厚度之材料。The method of any one of claims 1 to 4, wherein the inkjet printing includes printing in a strip area, and wherein the deposition includes depositing the target thickness of material in a single strip area. 如請求項1之方法,其中該數目個液滴為一單一液滴。The method of claim 1, wherein the number of droplets is a single droplet. 如請求項1之方法,其中該沈積包括將來自噴嘴之該第一子集及該第二子集中之一單一該噴嘴之該溶液之一單一液滴沈積至每一印刷位置上。The method of claim 1, wherein the depositing includes depositing a single droplet of the solution from a single nozzle of the first subset and the second subset of nozzles onto each printing position. 如請求項1之方法,其中該第一驅動波形及該第二驅動波形包括不同之各別持續時間之第一脈衝及第二脈衝,一較長持續時間用於所沈積材料之一較大目標厚度。The method of claim 1, wherein the first driving waveform and the second driving waveform include first and second pulses of different respective durations, a longer duration is used for a larger target of the deposited material thickness. 如請求項8之方法,其中該第一驅動波形及該第二驅動波形包括第一電壓步階及第二電壓步階,該方法包括將該等持續時間用於對所沈積材料之該厚度的粗略控制,且將該等電壓步階用於對所沈積材料之該厚度的精細控制。The method of claim 8, wherein the first driving waveform and the second driving waveform include a first voltage step and a second voltage step, the method includes applying the same duration to the thickness of the deposited material Coarse control and use these equal voltage steps for fine control of the thickness of the deposited material. 如請求項1之方法,進一步包括判定用於噴嘴之該各別第一子集及該各別第二子集中之個別噴嘴之一各別該第一驅動波形及該第二驅動波形。The method of claim 1, further comprising determining that the first driving waveform and the second driving waveform are respectively one of the respective first subset of nozzles and the respective second nozzle in the respective second subset. 如請求項1之方法,進一步包括隨著一脈衝類型驅動波形之持續時間及電壓步階之變動而校準該印刷頭的個別噴嘴以判定待用於一噴嘴之脈衝持續時間及脈衝電壓步階之一組合,以沈積一經判定厚度的材料。The method of claim 1, further comprising calibrating individual nozzles of the print head as the duration and voltage steps of a pulse-type driving waveform change to determine the pulse duration and pulse voltage steps to be used for a nozzle A combination to deposit a material with a determined thickness. 如請求項1之方法,進一步包括將界定第一組該第一驅動波形及第二組該第二驅動波形的資料儲存於一非揮發性儲存媒體上,一個驅動波形用於噴嘴之該第一子集及該第二子集中之每一噴嘴;及將該所儲存資料提供至一噴墨印表機用於控制該印表機之該印刷頭。The method of claim 1, further comprising storing data defining a first group of the first driving waveform and a second group of the second driving waveform on a non-volatile storage medium, and a driving waveform is used for the first of the nozzle Each nozzle in the subset and the second subset; and providing the stored data to an inkjet printer for controlling the print head of the printer. 如請求項1之方法,其與具有至少三組該等材料沈積區域之該基板一起使用,該方法包括使用具有不同各別驅動波形之噴嘴的三個該等子集將材料之該溶液噴墨印刷至三組該等材料沈積區域上,以用於沈積三個不同各別該目標厚度的材料。The method of claim 1, which is used with the substrate having at least three sets of the material deposition areas, the method comprising using three such subsets of nozzles with different respective drive waveforms to inject the solution of material It is printed on three sets of these material deposition areas for depositing three different materials of the target thickness. 如請求項1之方法,其中一該區域包括該基板上之一井區域。The method of claim 1, wherein one of the regions includes a well region on the substrate. 如請求項1之方法,進一步包括乾燥該基板以將該材料留在該等材料沈積區域中;及使用經乾燥之該基板來製造該有機電子裝置。The method of claim 1, further comprising drying the substrate to leave the material in the material deposition areas; and using the dried substrate to manufacture the organic electronic device. 如請求項1之方法,其中一該區域界定一有機二極體。The method of claim 1, wherein one of the regions defines an organic diode. 如請求項16之方法,其中每一該區域界定一有機發光二極體OLED,且其中該有機電子裝置係一OLED顯示器。The method of claim 16, wherein each of the regions defines an organic light emitting diode OLED, and wherein the organic electronic device is an OLED display. 一種使用請求項17之方法來調諧(tuning)一彩色OLED顯示器之彩色腔之方法,其中每一該組區域界定一各別組彩色OLED子像素(sub-pixels),每一子像素具有對應於一不同各別色彩之一不同目標光學腔長度,且其中依據該等目標光學腔長度來判定材料之該等目標厚度。A method of tuning the color cavity of a color OLED display using the method of claim 17, wherein each group of areas defines a respective group of color OLED sub-pixels (sub-pixels), each sub-pixel having a corresponding A different target optical cavity length of a different different color, and wherein the target thickness of the material is determined according to the target optical cavity length. 如請求項18之方法,其中由每一OLED之一發光層之一厚度與一電洞注入層之一厚度之一組合界定該目標光學腔長度,且其中該方法用於沈積該發光層及該電洞注入層中之一者或兩者。The method of claim 18, wherein the target optical cavity length is defined by a combination of a thickness of a light emitting layer of each OLED and a thickness of a hole injection layer, and wherein the method is used to deposit the light emitting layer and the The hole is injected into one or both of the layers. 一種噴墨印表機(ink jet printer),其包括儲存指令之一電腦及儲存構件,當被載入至該電腦中且經執行時,該等指令執行如請求項1-19中任一項之一方法。An ink jet printer includes an computer that stores instructions and a storage component. When loaded into the computer and executed, the instructions are executed as described in any of items 1-19 One way.
TW102147806A 2013-01-02 2013-12-23 Organic electronic device manufacturing method, method for tuning color cavity of color OLED display, and inkjet printer TWI652843B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??1300032.8 2013-01-02
GB1300032.8A GB2509497B (en) 2013-01-02 2013-01-02 Organic electronic device fabrication methods

Publications (2)

Publication Number Publication Date
TW201431151A TW201431151A (en) 2014-08-01
TWI652843B true TWI652843B (en) 2019-03-01

Family

ID=47716351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147806A TWI652843B (en) 2013-01-02 2013-12-23 Organic electronic device manufacturing method, method for tuning color cavity of color OLED display, and inkjet printer

Country Status (5)

Country Link
JP (1) JP6550209B2 (en)
KR (1) KR102086171B1 (en)
CN (1) CN103915578B (en)
GB (1) GB2509497B (en)
TW (1) TWI652843B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105459601B (en) * 2016-01-15 2017-08-01 京东方科技集团股份有限公司 Calibration method and its calibration system, the printing device of droplet volume
KR102487276B1 (en) * 2016-03-21 2023-01-12 삼성디스플레이 주식회사 Inkjet printing method and display device manufacturing method using the inkjet printing method
TWI763772B (en) * 2017-01-30 2022-05-11 德商麥克專利有限公司 Method for forming an organic element of an electronic device
CN110534657A (en) * 2019-07-30 2019-12-03 华南理工大学 A kind of top emitting device and preparation method thereof and full color display
CN110450543B (en) * 2019-08-23 2020-09-01 深圳市汉森软件有限公司 Method and device for controlling ink discharge of nozzle and computer readable storage medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4311050B2 (en) * 2003-03-18 2009-08-12 セイコーエプソン株式会社 Functional droplet ejection head drive control method and functional droplet ejection apparatus
JP2005040653A (en) * 2003-07-22 2005-02-17 Seiko Epson Corp Method for applying liquid material, apparatus for applying liquid material, and liquid crystal apparatus
JP4830328B2 (en) * 2005-03-25 2011-12-07 セイコーエプソン株式会社 Light emitting device
JP4251330B2 (en) * 2005-12-22 2009-04-08 カシオ計算機株式会社 Display device manufacturing apparatus and display device manufacturing method
JP4542527B2 (en) * 2006-06-30 2010-09-15 株式会社フューチャービジョン Display device with reduced white chromaticity difference and manufacturing method thereof
JP5266671B2 (en) * 2007-06-21 2013-08-21 セイコーエプソン株式会社 Liquid material discharge method, organic EL element manufacturing method, color filter manufacturing method
JP5211649B2 (en) * 2007-11-06 2013-06-12 セイコーエプソン株式会社 Discharge head drive method, liquid material discharge method, and organic EL element manufacturing method
US8057003B2 (en) * 2008-05-23 2011-11-15 Fujifilm Dimatix, Inc. Method and apparatus to provide variable drop size ejection with a low power waveform
JP2012048933A (en) * 2010-08-26 2012-03-08 Seiko Epson Corp Method of manufacturing organic el device
JP5545997B2 (en) * 2010-09-13 2014-07-09 富士フイルム株式会社 Image recording apparatus and method
JP2012126092A (en) * 2010-12-17 2012-07-05 Canon Inc Inkjet recording apparatus and inkjet recording method

Also Published As

Publication number Publication date
JP6550209B2 (en) 2019-07-24
CN103915578A (en) 2014-07-09
GB201300032D0 (en) 2013-02-13
GB2509497A (en) 2014-07-09
TW201431151A (en) 2014-08-01
GB2509497B (en) 2017-09-13
JP2014160649A (en) 2014-09-04
KR102086171B1 (en) 2020-03-06
CN103915578B (en) 2019-01-29
KR20140088495A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
TWI652843B (en) Organic electronic device manufacturing method, method for tuning color cavity of color OLED display, and inkjet printer
US8119186B2 (en) Liquid coating method and method for manufacturing organic EL device
US7850267B2 (en) Method of controlling drive of function liquid droplet ejection head; function liquid droplet ejection apparatus; electro-optic device; method of manufacturing LCD device, organic EL device, electron emission device, PDP device, electrophoretic display device, color filter, organic EL; method of forming spacer, metallic wiring, lens, resist, and light diffusion body
JP5115281B2 (en) Droplet discharge device, liquid discharge method, color filter manufacturing method, organic EL device manufacturing method
US8124190B2 (en) Method for discharging liquid material, method for manufacturing color filter, and method for manufacturing organic EL element
US7066583B2 (en) Film forming apparatus and method of driving same, device manufacturing method, device manufacturing apparatus, and device
US8864261B2 (en) Nozzle discharge quantity correction method, droplet discharging method, and organic EL device manufacturing method
US8173223B2 (en) Method for discharging liquid material, method for manufacturing color filter, and method for manufacturing organic EL element
JP2017056402A (en) Droplet discharge method, droplet discharge program, and droplet discharge device
JP5706325B2 (en) Method for inkjet printing organic electronic devices
US11744118B2 (en) Array substrate, method of fabricating array substrate, display panel, and method of fabricating display panel
US6974198B2 (en) Drive device of liquid droplet discharge head, film manufacturing apparatus, drive method of liquid droplet discharge head, film manufacturing method, and electronic equipment and device production method
JP5444682B2 (en) Liquid material discharge method, organic EL element manufacturing method, color filter manufacturing method
JP2012238479A (en) Ink jet device
GB2545432A (en) Organic electronic device fabrication method
JP2006313657A (en) Electro-optical device, electronic apparatus, and manufacturing method of electro-optical device
JP2010281862A (en) Method for manufacturing electrooptical device, and apparatus for manufacturing the electrooptical device
WO2011101630A1 (en) Printing an array of channels on a substrate
JP4918470B2 (en) Organic device and manufacturing method thereof
JP2011008936A (en) Method of discharging droplet, and method of manufacturing organic el element
JP2006051449A (en) Liquid drop delivery apparatus and production method for electro-optical apparatus
JP2003255123A (en) Apparatus and method for film manufacture, apparatus and method for device manufacture, and device
JP2011005352A (en) Method of discharging droplet and method of manufacturing organic el element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees