TWI652799B - Magnetic memory device and method of manufacturing same - Google Patents

Magnetic memory device and method of manufacturing same Download PDF

Info

Publication number
TWI652799B
TWI652799B TW106107098A TW106107098A TWI652799B TW I652799 B TWI652799 B TW I652799B TW 106107098 A TW106107098 A TW 106107098A TW 106107098 A TW106107098 A TW 106107098A TW I652799 B TWI652799 B TW I652799B
Authority
TW
Taiwan
Prior art keywords
magnetic layer
magnetic
layer
metal
along
Prior art date
Application number
TW106107098A
Other languages
Chinese (zh)
Other versions
TW201816987A (en
Inventor
清水真理子
大沢裕一
與田博明
杉山英行
白鳥聡志
百合 山
Original Assignee
日商東芝股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東芝股份有限公司 filed Critical 日商東芝股份有限公司
Publication of TW201816987A publication Critical patent/TW201816987A/en
Application granted granted Critical
Publication of TWI652799B publication Critical patent/TWI652799B/en

Links

Classifications

    • G11B5/7006
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Abstract

本發明提供一種可提高記憶密度之磁性記憶裝置及其製造方法。根據實施形態,磁性記憶裝置包含金屬含有層、第1~第4磁性層、第1、第2中間層、及控制部。金屬含有層包含第1~第5部分。第1磁性層在與自第1部分向第2部分之第2方向交叉之第1方向上與第3部分隔開。第2磁性層設於第3部分之一部分與第1磁性層之間。第1中間層設於第1、第2磁性層之間。第3磁性層於第1方向上與第4部分隔開。第4磁性層設於第4部分之一部分與第3磁性層之間。第2中間層設於第3、第4磁性層之間。控制部與第1、第2部分連接。第3部分之與第1方向及第2方向交叉之第3方向之長度較第2磁性層之第3方向之長度長。第3部分之長度較第5部分之第3方向之長度長。The invention provides a magnetic memory device capable of improving memory density and a manufacturing method thereof. According to an embodiment, the magnetic memory device includes a metal-containing layer, first to fourth magnetic layers, first and second intermediate layers, and a control unit. The metal-containing layer includes the first to fifth parts. The first magnetic layer is separated from the third portion in a first direction crossing the second direction from the first portion to the second portion. The second magnetic layer is provided between one of the third portions and the first magnetic layer. The first intermediate layer is provided between the first and second magnetic layers. The third magnetic layer is separated from the fourth portion in the first direction. The fourth magnetic layer is provided between a portion of the fourth portion and the third magnetic layer. The second intermediate layer is provided between the third and fourth magnetic layers. The control unit is connected to the first and second parts. The length of the third direction intersecting the first direction and the second direction of the third portion is longer than the length of the third direction of the second magnetic layer. The length of the third part is longer than the length of the third direction of the fifth part.

Description

磁性記憶裝置及其製造方法Magnetic memory device and manufacturing method thereof

本發明之實施形態一般而言係關於磁性記憶裝置及其製造方法。Embodiments of the present invention generally relate to a magnetic memory device and a method of manufacturing the same.

於磁性記憶裝置中,期望提高記憶密度。In a magnetic memory device, it is desired to increase the memory density.

本發明之實施形態提供一種可提高記憶密度之磁性記憶裝置及其製造方法。 根據本發明之實施形態,磁性記憶裝置包含金屬含有層、第1~第4磁性層、第1、第2中間層、及控制部。上述金屬含有層包含第1部分、第2部分、上述第1部分與上述第2部分之間之第3部分、上述第3部分與上述第2部分之間之第4部分、及上述第3部分與上述第4部分之間之第5部分。上述第1磁性層在與自上述第1部分朝向上述第2部分之第2方向交叉之第1方向上與上述第3部分隔開。上述第2磁性層設於上述第3部分之一部分與上述第1磁性層之間。上述第1中間層包含設於上述第1磁性層與上述第2磁性層之間之部分,且為非磁性。上述第3磁性層於上述第1方向上與上述第4部分隔開。上述第4磁性層設於上述第4部分之一部分與上述第3磁性層之間。上述第2中間中包含設於上述第3磁性層與上述第4磁性層之間之部分,且為非磁性。上述控制部與上述第1部分及第2部分電性連接。上述第3部分之沿著與上述第1方向及上述第2方向交叉之第3方向之長度,較上述第2磁性層之沿著上述第3方向之長度更長。上述第3部分之長度較上述第5部分之沿著上述第3方向之長度更長。上述控制部實施供給自上述第1部分朝向上述第2部分之第1寫入電流之第1寫入動作,及供給自上述第2部分朝向上述第1部分之第2寫入電流之第2寫入動作。上述第1寫入動作後之上述第1磁性層與上述第1部分之間之第1電阻,與上述第2寫入動作後之上述第1磁性層與上述第1部分之間之第2電阻不同。 根據上述構成之磁性記憶裝置,可提供一種可提高記憶密度之磁性記憶裝置。An embodiment of the present invention provides a magnetic memory device capable of improving the memory density and a manufacturing method thereof. According to an embodiment of the present invention, the magnetic memory device includes a metal-containing layer, first to fourth magnetic layers, first and second intermediate layers, and a control unit. The metal-containing layer includes a first part, a second part, a third part between the first part and the second part, a fourth part between the third part and the second part, and the third part Part 5 between part 4 above. The first magnetic layer is separated from the third portion in a first direction that intersects a second direction from the first portion toward the second portion. The second magnetic layer is provided between a portion of the third portion and the first magnetic layer. The first intermediate layer includes a portion provided between the first magnetic layer and the second magnetic layer, and is non-magnetic. The third magnetic layer is separated from the fourth portion in the first direction. The fourth magnetic layer is provided between a portion of the fourth portion and the third magnetic layer. The second intermediate includes a portion provided between the third magnetic layer and the fourth magnetic layer, and is non-magnetic. The control unit is electrically connected to the first part and the second part. The length of the third portion along the third direction crossing the first direction and the second direction is longer than the length of the second magnetic layer along the third direction. The length of the third section is longer than the length of the fifth section along the third direction. The control unit performs a first write operation that supplies a first write current from the first part to the second part, and a second write that supplies a second write current from the second part to the first part Into action. The first resistance between the first magnetic layer and the first portion after the first writing operation, and the second resistance between the first magnetic layer and the first portion after the second writing operation different. According to the magnetic memory device configured as described above, a magnetic memory device capable of improving the memory density can be provided.

以下,參照圖式並針對本發明之各實施形態進行說明。 圖式係示意性或概念性者,各部分之厚度與寬度之關係、部分間之大小比率等未必一定與實際相同。表示相同部分之情形時,亦有因圖式不同而相互之尺寸或比率不同地表述之情形。 於本說明書與各圖中,對於就已出現之圖與上述者相同之要件,標註相同符號,且適當省略詳細說明。 (第1實施形態) 圖1(a)~圖1(d)係例示第1實施形態之磁性記憶裝置之模式圖。 圖1(a)係立體圖。圖1(b)係圖1(a)之A1-A2線剖面圖。圖1(c)係圖1(a)之B1-B2線剖面圖。圖1(d)係圖1(a)之C1-C2線剖面圖。 如圖1(a)~圖1(d)所示,本實施形態之磁性記憶裝置110包含金屬含有層21、第1磁性層11、第2磁性層12、第1中間層11i及控制部70。於該例中,進而設有基底構件20s、第3磁性層13、第4磁性層14及第2中間層12i。 第1磁性層11、第2磁性層12及第1中間層11i包含於第1積層體SB1中。第3磁性層13、第4磁性層14及第2中間層12i包含於第2積層體SB2中。該等積層體各自與1個記憶體部(記憶胞)對應。如此,於磁性記憶裝置110中,設置複數個積層體。積層體之數量為任意。 於基底構件20s之上設置金屬含有層21。於金屬含有層21之上設置上述積層體。基底構件20s亦可為基板之至少一部分,基底構件20s例如為絕緣性。基底構件20s亦可包含含有氧化矽及氧化鋁之至少任一者之基板等。該氧化矽例如為熱氧化矽。 金屬含有層21包含例如鉭(Ta)等。金屬含有層21之材料之例於後敘述。 金屬含有層21包含第1部分21a~第5部分21e。第3部分21c位於第1部分21a與第2部分21b之間。第4部分21d位於第3部分21c與第2部分21b之間。第5部分21e位於第3部分21c與第4部分21d之間。 於第3部分21c之上設置第1積層體SB1。於第4部分21d之上設置第2積層體SB2。於第5部分21e上不設置積層體。於第5部分21e上設置後述之絕緣部。 第1磁性層11沿著第1方向與第3部分21c隔開。 設第1方向為Z軸方向。設相對於Z軸方向垂直之1個軸為X軸方向。設相對於Z軸方向及X軸方向垂直之方向為Y軸方向。 於金屬含有層21中,設自第1部分21a朝向第2部分21b之方向為第2方向。第2方向例如為X軸方向。第1方向與第2方向交叉。金屬含有層21沿著X軸方向延伸。 第2磁性層12設於第3部分21c之一部分與第1磁性層11之間。 第1中間層11i包含設於第1磁性層11與第2磁性層12之間之部分。第1中間層11i為非磁性。 於第2積層體SB2中,第3磁性層13於第1方向(Z軸方向)上與第4部分21d隔開。第4磁性層14設於第4部分21d之一部分與第3磁性層13之間。第2中間層12i包含設於第3磁性層13與第4磁性層14之間之部分。第2中間層12i為非磁性。 第1磁性層11及第3磁性層13例如為磁化固定層。第2磁性層12及第4磁性層14例如為磁化自由層。第1磁性層11之第1磁化11M與第2磁性層12之第2磁化12M相比較不易變化。第3磁性層13之第3磁化13M與第4磁性層14之第4磁化14M相比較不易變化。第1中間層11i及第2中間層12i例如作為通道層發揮功能。 積層體(第1積層體SB1及第2積層體SB2等)例如作為磁阻變化元件發揮功能。於積層體中,產生例如TMR(Tunnel Magneto Resistance Effect:穿隧磁阻效應)。例如,包含第1磁性層11、第1中間層11i及第2磁性層12之路徑上之電阻係因應第1磁化11M之朝向與第2磁化12M之朝向之間之差異而變化。例如,包含第3磁性層13、第2中間層12i及第4磁性層14之路徑上之電阻係因應第3磁化13M之朝向與第4磁化14M之朝向之間之差異而變化。積層體具有例如磁穿隧接面(Magnetic Tunnel Junction:MTJ)。 於該例中,第1磁化11M及第3磁化13M係沿著Y軸方向。第2磁化12M及第4磁化14M係沿著Y軸方向。第1磁性層11及第3磁性層13例如作為參照層發揮功能。第2磁性層12及第4磁性層14例如作為記憶層發揮功能。 第2磁性層12及第4磁性層14例如作為記憶資訊之層發揮功能。例如,第2磁化12M朝向1個方向之第1狀態與所記憶之第1資訊對應。第2磁化12M朝向另一方向之第2狀態與所記憶之第2資訊對應。第1資訊例如與“0”及“1”之一者對應。第2資訊與“0”及“1”之另一者對應。同樣地,第4磁化14M之朝向與該等資訊對應。 第2磁化12M及第4磁化14M例如可藉由流動於金屬含有層21之電流(寫入電流)進行控制。例如可根據金屬含有層21之電流(寫入電流)之朝向,控制第2磁化12M及第4磁化14M之朝向。例如,金屬含有層21作為例如自旋軌道層(Spin Orbit Layer, SOL)發揮功能。例如,可藉由金屬含有層21與第2磁性層12之間產生之自旋軌道矩,改變第2磁化12M之朝向。例如,可藉由金屬含有層21與第4磁性層14之間產生之自旋軌道矩,改變第4磁化14M之朝向。自旋軌道矩係源於流動於金屬含有層21之電流(寫入電流)。 藉由控制部70供給該電流(寫入電流)。控制部包含例如驅動電路75。 控制部70與第1部分21a、第2部分21b及第1磁性層11電性連接。於該例中,控制部70進而與第3磁性層13電性連接。於該例中,於驅動電路75與第1磁性層11之間之電流路徑上,設置第1開關元件Sw1(例如電晶體)。於驅動電路75與第3磁性層13之間之電流路徑上,設置第2開關元件Sw2(例如電晶體)。該等開關元件包含於控制部70中。 控制部70於第1寫入動作中,將第1寫入電流Iw1供給至金屬含有層21。藉此形成第1狀態。第1寫入電流Iw1係自第1部分21a朝向第2部分21b之電流。控制部70於第2寫入動作中,將第2寫入電流Iw2供給至金屬含有層21。藉此形成第2狀態。第2寫入電流Iw2係自第2部分21b朝向第1部分21a之電流。 第1寫入動作後(第1狀態)之第1磁性層11與第1部分21a之間之第1電阻,與第2寫入動作後(第2狀態)之第1磁性層11與第1部分21a之間之第2電阻不同。 該電阻之差例如係源於第1狀態與第2狀態之間之第2磁化12M之狀態之差。 同樣地,控制部70實施將第1寫入電流Iw1供給至金屬含有層21之第3寫入動作。藉此形成第3狀態。控制部70實施將第2寫入電流Iw2供給至金屬含有層21之第4寫入動作。藉此形成第4狀態。第3寫入動作後(第3狀態)之第3磁性層13與第1部分21a之間之第3電阻,與第4寫入動作後(第4狀態)之第3磁性層13與第1部分21a之間之第4電阻不同。 該電阻之差例如係基於第3狀態與第4狀態之間之第4磁化14M之狀態之差。 控制部70亦可於讀取動作中,檢測對應於第1磁性層11與第1部分21a之間之電信電阻之特性(亦可為電壓或電流等)。控制部70亦可於讀取動作中,檢測對應於第3磁性層13與第1部分21a之間之電阻之特性(亦可為電壓或電流等)。 根據上述之第1開關元件Sw1及第2開關元件Sw2之動作,選擇第1積層體SB1(第1記憶胞)及第2積層體SB2(第2記憶胞)之任一者。進行對於所需之記憶胞之寫入動作及讀取動作。 如已說明,控制部70與第1積層體(第1磁性層11)及第2積層體SB2(第3磁性層13)電性連接。將資訊寫入第1積層體SB1時,對第1磁性層11施加特定之選擇電壓。此時,對第2積層體SB2施加非選擇電壓。另一方面,將資訊寫入第2積層體SB2時,對第3磁性層13施加特定之選擇電壓。此時,對第1積層體SB1施加非選擇電壓。「施加電壓」亦包含施加0伏特之電壓。選擇電壓之電位與非選擇電壓之電位不同。 例如,控制部70於第1寫入動作中,將第1磁性層11設定為與第3磁性層13之電位(例如非選擇電位)不同之電位(例如選擇電位)。控制部70於第2寫入動作中,將第1磁性層11設定為與第3磁性層13之電位(例如非選擇電位)不同之電位(例如選擇電位)。 例如,控制部70於第3寫入動作中,將第3磁性層13設定為與第1磁性層11之電位(例如非選擇電位)不同之電位(例如選擇電位)。控制部70於第4寫入動作中,將第3磁性層13設定為與第1磁性層11之電位(例如非選擇電位)不同之電位(例如選擇電位)。 此種電位之選擇係藉由例如第1開關元件Sw1及第2開關元件Sw2之動作進行。 複數個積層體分別與複數個記憶胞對應。於複數個記憶胞中可記憶互不相同之資訊。將資訊記憶於複數個記憶胞時,例如可於複數個記憶胞中記憶“1”及“0”之一者後,於複數個記憶胞中之所需之若干個中記憶“1”及“0”之另一者。例如亦可於複數個記憶胞之一者中記憶“1”及“0”之一者後,於複數個記憶胞之另一者中記憶“1”及“0”之一者。 於上述中,第1部分21a及第2部分21b可相互替換。例如,上述電阻可為第1磁性層11與第2部分21b之間之電阻。上述電阻亦可為第3磁性層13與第2部分21b之間之電阻。 於實施形態中,金屬含有層21中之一部分以積層體之位置為基準,於Y軸方向突出。該突出之部分之厚度局部變薄。以下針對該構成進行說明。 如圖1(c)所示,第3部分21c包含第1重疊區域21cc、第1非重疊區域21ca及第2非重疊區域21cb。第1重疊區域21cc於第1方向(Z軸方向)上與第2磁性層12重疊。第1非重疊區域21ca於第1方向上不與第2磁性層12重疊。第2非重疊區域21cb於第1方向不與第2磁性層12重疊。自第1非重疊區域21ca朝向第2非重疊區域21cb之方向係沿著第3方向。第3方向與第1方向及第2方向交叉。第3方向例如為Y軸方向。第1重疊區域21cc於第3方向上位於第1非重疊區域21ca與第2非重疊區域21cb之間。 第1非重疊區域21ca之至少一部分之沿著第1方向(Z軸方向)之厚度,薄於第1重疊區域21cc之沿著第1方向之第1重疊區域厚度21cct。第2非重疊區域21cb之至少一部分之沿著第1方向之厚度,薄於第1重疊區域厚度21cct。 如此,於實施形態中,設置突出部(第1非重疊區域21ca及第2非重疊區域21cb),該突出部之厚度薄於其他部分(第1重疊區域21cc)之厚度(第1重疊區域厚度21cct)。藉此可降低寫入電流。 以下,針對磁性記憶裝置之特性之例進行說明。 圖2(a)及圖2(b)係例示磁性記憶裝置之動作之示意性剖面圖。 圖2(a)與實施形態之磁性記憶裝置110對應。圖2(b)與第1參考例之磁性記憶裝置119對應。於該第1參考例中,於金屬含有層21之第3部分21c,設有第1重疊區域21cc,未設有突出部(第1非重疊區域21ca及第2非重疊區域21cb)。 如圖2(b)所示,若電流於金屬含有層21流動,則於金屬含有層21中,電子之軌道因應自旋21sp之方向而彎曲。認為於金屬含有層21之上側部分,會累積朝相對於第2磁性層12之第2磁化12M反平行之朝向極化之自旋21sp。另一方面,認為於金屬含有層21之下側部分,會累積朝相對於第2磁化12M平行的方向之朝向極化之自旋21sp。認為於金屬含有層21之Y軸方向之端部,會累積朝上方向或下方向極化之自旋21sp。 於第1參考例之磁性記憶裝置119中,於金屬含有層21未設置如上之非重疊區域。於第1參考例中,極化自旋經由於上下方向(Z軸方向)極化之區域(Y軸方向之端部),自金屬含有層21向積層體(MTJ元件)傳遞自旋力矩。因此,磁化反轉之同調性易劣化。 與此相對,如圖2(a)所示,於實施形態之磁性記憶裝置110中,於金屬含有層21中,除第1重疊區域21cc外,並設置第1非重疊區域21ca及第2非重疊區域21cb。且,使該等非重疊區域之厚度薄於第1重疊區域21cc之厚度。該情形時,易維持自旋極化之同調性。可提高自旋力矩之傳遞效率。 藉此,寫入效率提高。由此可降低寫入電流。 另一方面,考慮如下之第2參考例:設置第1非重疊區域21ca及第2非重疊區域21cb,且該等非重疊區域之厚度與第1重疊區域21cc之厚度相同。於該第2參考例中,第1非重疊區域21ca及第2非重疊區域21cb無助於自旋力矩之傳遞。其結果,寫入電流上升。 與此相對,於實施形態之磁性記憶裝置110中,使非重疊區域之厚度薄於第1重疊區域21cc之厚度。藉此,例如,可使具有降低自旋極化之同調性之極化之電子偏靠於金屬含有層21之邊緣,並降低流動於記錄功能上無效之第1非重疊區域21ca及第2非重疊區域21cb之分流電流。藉此,例如可降低寫入電流,容易維持自旋極化之同調性。由於可提高自旋力矩之傳遞效率,因此寫入之效率提升,可降低寫入電流。 由於可降低寫入電流,因此可降低例如驅動記憶部之驅動器之能力。藉此,例如,由於可縮小驅動器之尺寸,因此可提高記憶密度。寫入電流之降低有益於節能化。 例如金屬含有層21之上述非重疊區域之Y軸方向之寬度(突出量)大於因加工誤差所致之突出量。 如圖1(c)所示,例如金屬含有層21具有第1非重疊區域21ca之沿著第3方向(Y軸方向)之長度21cay,及第2非重疊區域21cb之沿著第3方向之長度21cby。此時,設長度21cay及長度21cby之合計相對於第1重疊區域厚度21cct之比為第1比。第1比係金屬含有層21之突出量之相對於厚度之比。第1比較高時突出量較大。 另一方面,如圖1(b)所示,有第2磁性層12為錐狀之情形。例如,第2磁性層12具有沿著第1方向(Z軸方向)之厚度t12。第2磁性層12具有與金屬含有層21對向之面12L(下表面),及與第1中間層11i對向之面12U(上表面)。設面12L之沿著第2方向(X軸方向)之長度為長度12xL。設面12U之沿著第2方向(X軸方向)之長度為長度12xU。 此時,第1比高於長度12xL與長度12xU之差之絕對值相對於厚度t12之比。即,第1比高於因設於第2磁性層12之錐度所致之上述比。 如此,藉由設置較大的突出部(第1非重疊區域21ca及第2非重疊區域21cb),而可維持自旋極化之同調性,提高自旋力矩之傳遞效率。可提高寫入效率,且可降低寫入電流。藉此可提高記憶密度。 若突出部之突出量過大,則金屬含有層21之Y軸方向之寬度變大。設置複數個金屬含有層21之情形時,複數個金屬含有層21之間距變大,而未能充分提高記憶密度。 於實施形態中,例如,第1非重疊區域21ca之沿著第3方向(Y軸方向)之長度21cay,以及第2非重疊區域21cb之沿著第3方向之長度21cby各者,較佳為未達第2磁性層12之沿著第3方向之寬度(後述之長度21yL)之0.25倍。藉此可維持較高之記憶密度。 於實施形態中,設於金屬含有層21之突出部之突出量(例如,長度21cay或長度21cby),例如為金屬含有層21之自旋擴散長之0.5倍以上10倍以下。 如圖1(c)所示,將與第2磁性層12之金屬含有層21對向之面12L之沿著第3方向(Y軸方向)之長度設為長度12yL。將與第2磁性層12之第1中間層11i對向之面12U之沿著第3方向(Y軸方向)之長度設為長度12yU。於實施形態中,上述之第1比係高於長度12yL與長度12yU之差之絕對值相對於第2磁性層12之沿著第1方向之厚度t12之比。 如下,第2積層體SB2亦具有與第1積層體SB1相同之構成。 如圖1(d)所示,第4部分21d包含第2重疊區域21dc、第3非重疊區域21da及第4非重疊區域區域21db。第2重疊區域21dc於第1方向(Z軸方向)上與第4磁性層14重疊。第3非重疊區域21da於第1方向上不與第4磁性層14重疊。第4非重疊區域21db於第1方向上不與第4磁性層14重疊。自第3非重疊區域21da向第4非重疊區域21db之方向,係沿著第3方向(Y軸方向)。第2重疊區域21dc於第3方向上位於第3非重疊區域21da與第4非重疊區域21db之間。 第3非重疊區域21da之至少一部分之沿著第1方向(Z軸方向)之厚度,薄於第2重疊區域21dc之沿著第1方向之第2重疊區域厚度21dct。第4非重疊區域21db之至少一部分之沿著第1方向之厚度,薄於第2重疊區域厚度21dct。 如圖1(d)所示,金屬含有層21具有第3非重疊區域21da之沿著第3方向(Y軸方向)之長度21day、及第4非重疊區域21db之沿著第3方向之長度21dby。此時,將長度21day及長度21dby之合計相對於第2重疊區域厚度21dct之比設為第2比。 另一方面,如圖1(b)所示,第4磁性層14具有沿著第1方向(Z軸方向)之厚度t14。第4磁性層14具有與金屬含有層21對向之面14L(下表面)、及與第2中間層12i對向之面14U(上表面)。將面14L之沿著第2方向(X軸方向)之長度設為長度14xL。將面14U之沿著第2方向(X軸方向)之長度設為長度14xU。 此時,第2比高於長度14xL與長度14xU之差之絕對值相對於厚度t14之比。即,第2比高於因設於第4磁性層14之錐度所致之比。 如圖1(d)所示,將與第4磁性層14之金屬含有層21對向之面14L之沿著第3方向(Y軸方向)之長度設為長度14yL。將與第4磁性層14之第2中間層12i對向之面14U之沿著第3方向(Y軸方向)之長度設為長度14yU。於實施形態中,上述第2比高於長度14yL與長度14yU之差之絕對值相對於第4磁性層14之沿著第1方向之厚度t14之比。 與上述長度、厚度及寬度等相關之資訊,例如可藉由透過型電子顯微鏡等獲得。 圖3(a)及圖3(b)係例示第1實施形態之磁性記憶裝置之模式圖。 圖3(a)係立體圖。圖3(b)係俯視圖。 如圖3(b)所示,於磁性記憶裝置110中,設置例如複數個電極22X及複數個金屬含有層21X。複數個電極22X例如於Y軸方向延伸。複數個電極22X排列於X軸方向。複數個電極22X之1個為電極22。複數個電極22X之另一個為電極22A。複數個金屬含有層21X例如於X軸方向延伸。複數個金屬含有層21X排列於Y軸方向。複數個金屬含有層21X之1個為金屬含有層21。複數個金屬含有層21X之另一個為金屬含有層21A。 例如,於複數個電極22X與複數個金屬含有層21X之間設置積層體SB0。 如圖3(a)所示,例如於金屬含有層21與電極22之間,設置第1積層體SB1。於金屬含有層21與電極22A之間,設置第2積層體SB2。 如圖3(b)所示,例如複數個電極22X之間距為“2F”。複數個金屬含有層21X之間距為例如“3F”。“F”例如係最小加工尺寸。 如圖3(b)所示,控制部70包含第1~第3電路71~73。第1電路71與金屬含有層21之第1部分21a電性連接。第2電路72與金屬含有層21之第2部分21b電性連接。第3電路73經由電極22與積層體SB1(第1磁性層11)電性連接。第1電路71與複數個金屬含有層21X之一端之各者電性連接。第2電路72與複數個金屬含有層21X之另一端之各者電性連接。第3電路73與複數個電極22X之各者電性連接。於圖3(b)中,省略開關元件(參照圖1(a))。 圖4(a)~圖4(c)係例示第1實施形態之另一磁性記憶裝置之示意性剖面圖。 如圖4(a)所示,於本實施形態之另一磁性記憶裝置110A中,設置金屬含有層21、第1積層體SB1及第2積層體SB2。於該例中,於2個積層體之間之區域,金屬含有層21之厚度局部變薄。於複數個積層體周圍設有絕緣部40。此外與磁性記憶裝置110相同。 於磁性記憶裝置110A中,金屬含有層21之第5部分21e之沿著第1方向(Z軸方向)之厚度21et較第1重疊區域厚度21cct更薄。厚度21et較第2重疊區域厚度21dct更薄。藉由設置此種厚度差,例如自旋同調性提升。例如,尤其金屬含有層21之寬度(沿著Y軸方向之長度)大於積層體SB0之寬度(沿著Y軸方向之長度)之構造之情形時,自旋同調性進而提升。 例如,由於金屬含有層21之第5部分21e之厚度21et較薄,因此電子通過第5部分21e時,每單位移動距離之消耗能量變高。電子之移動方向係沿著X軸方向,例如自第5部分21e流入第3部分21c或第4部分21d之電流之流動方向之分散(不均)變小。其結果,流入積層體SB0之電子之方向之分散(不均)受到抑制,自旋同調性提升。 例如,於成為金屬含有層21之金屬含有膜之上形成上述積層體後,將未被積層體覆蓋之金屬含有膜之表面進行處理(例如電漿處理)。處理係例如氧化處理或氮化處理。藉此,被處理之金屬含有膜之表面部分被氧化或氮化。剩餘部分成為金屬含有層21。例如,藉由此種處理而可形成上述之厚度差。 絕緣部40包含例如選自由氧化矽、氮化矽及氮氧化矽所組成之群之至少一部分。絕緣部40亦可包含藉由上述氧化或氮化而形成之化合物之一部分。 於該例中設有化合物層41。化合物層41包含含有第2磁性層12(或第4磁性層14)中所含之金屬之化合物。化合物層41亦可進而包含含有第1磁性層11(或第3磁性層13)中所含之金屬之化合物。第2磁性層12具有側面12s。側面12s例如與第2方向(X軸方向)交叉。化合物層41與該側面12s對向。第4磁性層14具有側面14s。側面14s例如與第2方向(X軸方向)交叉。化合物層與該側面14s對向。藉由化合物層41可抑制例如積層體之側面之漏電流。 如圖4(b)所示,於本實施形態之另一磁性記憶裝置110B中,設置第1化合物區域42a(化合物層)。第1化合物區域42a包含含有第2磁性層12(或第4磁性層14)中所含之金屬之化合物。第1化合物區域42a與第2磁性層12之側面12s及第4磁性層14之側面14s對向。第1化合物區域42a係於第2磁性層12與第4磁性層14之間沿著將第2磁性層12與第4磁性層14相連之方向(X軸方向)。例如,第1化合物區域42a相連地設於第2磁性層12與第4磁性層14之間。第1化合物區域42a藉由例如處理成為第2磁性層12及第4磁性層14之磁性膜之一部分而形成。未處理之部分成為第2磁性層12及第4磁性層14。該處理為氧化或氮化。經處理之部分(第1化合物區域42a)作為絕緣膜發揮功能。處理亦可包含非晶化。 第1化合物區域42a設於絕緣部40與第5部分21e之間。亦可於第1化合物區域42a與第5部分21e之間設置第2化合物區域42b。第2化合物區域42b亦可例如由成為金屬含有層21之金屬含有膜之一部分變化而形成。第2化合物區域42b包含例如金屬含有層21所含之金屬之氧化物、氮化物或氮氧化物。 第2化合物區域42b亦可藉由第1化合物區域42a之上述處理而形成。第2化合物區域42a與第2化合物區域42b之間之交界可為明確、亦可不明確。第2化合物區域42b所含之金屬亦可擴散於第1化合物區域42a中。第1化合物區域42a所含之金屬亦可擴散於第2化合物區域42b中。 第1化合物區域42a亦可於第2磁性層12與第4磁性層14之間不相連。第1化合物區域42a亦可進而包含第1磁性層11(或第3磁性層13)中所含之金屬。 如圖4(c)所示,於本實施形態之另一磁性記憶裝置110C中,金屬含有層21之第3部分21c之結晶構造與金屬含有層21之其他部分(例如第1部分21a、第2部分21b及第5部分21e等)之結晶構造不同。例如,於成為金屬含有層21之金屬含有膜之一部分進行表面處理等。另一方面,於位於積層體之下之部分(第3部分21c及第4部分21d等)不進行該處理。該處理例如為氣體團簇離子束之照射。照射例如Ar團簇。藉由此種處理,使經處理之部分之至少一部分之結晶構造變化。 例如,金屬含有層21之第3部分21c之結晶構造為β相。金屬含有層21之其他部分(例如第1部分21a、第2部分21b及第5部分21e等)之至少一部分(例如表面部分)之結晶構造為α相。與該等結晶構造相關之資訊例如利用透過型電子顯微鏡之觀察等而獲得。 例如,單位體積(單位面積)下,第3部分21c之β相之區域占第3部分21c全體之比例,高於例如其他區域(例如第1部分21a、第2部分21b或第5部分21e等)之β相之區域占其他區域全體之比例。 例如,第3部分21c之至少一部分包含β相之Ta。例如,第1部分21a(或第5部分21e)之至少一部分包含α相之Ta。於β相之Ta中,自旋霍爾角之絕對值較大。另一方面,α相之Ta之導電率高於β相之Ta之導電率。 如上,藉由使結晶構造不同,例如可實現伴隨高電導率化之低電阻化,因此可降低寫入功率。且,可降低金屬含有層21之電阻。藉由寫入功率之降低,而可降低例如驅動記憶部之驅動器之能力,可減小例如驅動器之尺寸。可提高記憶密度。 圖5(a)~圖5(h)係例示第1實施形態之另一磁性記憶裝置之示意性剖面圖。 如圖5(a)所示,於磁性記憶裝置110a中,第1非重疊區域21ca及第2非重疊區域21cb之各者之厚度階梯狀地變化。 如圖5(b)所示,於磁性記憶裝置110b中,金屬含有層21之第3部分21c之第3方向(Y軸方向)之寬度於第1方向(Z軸方向)之中央部分為最大。第1非重疊區域21ca及第2非重疊區域21cb之各者之厚度連續變化。 如圖5(c)所示,於磁性記憶裝置110c中,金屬含有層21之第3部分21c之第3方向(Y軸方向)之寬度,於第1方向(Z軸方向)之中央部分為最大。第1非重疊區域21ca及第2非重疊區域21cb之各者之厚度階梯狀地變化。 如圖5(d)所示,於磁性記憶裝置110d中,金屬含有層21之第3部分21c具有與第2磁性層12對向之面21cU。面21cU之沿著第3方向(Y軸方向)之寬度與第2磁性層12之沿著第3方向之寬度實質相同。例如,面21cU之上述寬度為第2磁性層12之上述寬度之0.9倍以上1.1倍以下。 如圖5(e)所示,於磁性記憶裝置110e中,金屬含有層21之第3部分21c具有與第2磁性層12對向之面21cU。面21cU之沿著第3方向(Y軸方向)之寬度大於第2磁性層12之沿著第3方向之寬度。 如圖5(f)所示,於磁性記憶裝置110f中,金屬含有層21具有面21cL。面21cL係與面21cU相反之面。面21cU之沿著第3方向(Y軸方向)之寬度大於面21cL之沿著第3方向(Y軸方向)之寬度。於該例中,面21cL之沿著第3方向(Y軸方向)之寬度與第2磁性層12之沿著第3方向之寬度實質相同。例如,面21cL之上述寬度為第2磁性層12之上述寬度之0.9倍以上1.1倍以下。 如圖5(g)所示,於磁性記憶裝置110g中,面21cU之沿著第3方向(Y軸方向)之寬度大於面21cL之沿著第3方向(Y軸方向)之寬度。於該例中,面21cL之沿著第3方向(Y軸方向)之寬度大於第2磁性層12之沿著第3方向之寬度。 如圖5(h)所示,於磁性記憶裝置110h中,面21cU之沿著第3方向(Y軸方向)之寬度亦大於面21cL之沿著第3方向(Y軸方向)之寬度。於該例中,面21cL之沿著第3方向(Y軸方向)之寬度小於第2磁性層12之沿著第3方向之寬度。 如此,於本實施形態中,金屬含有層21之寬度可進行各種變化。 於實施形態中,積層體SB0之Y軸方向之中心與金屬含有層21之Y軸方向之中心可為一致,亦可偏移。於實施形態中,於金屬含有層21之Y軸方向之2個端部,亦可設置錐形狀之差及錐角度之差之至少任一者。 於實施形態中,第2磁性層12之Y軸方向之長度亦可短於金屬含有層21之Y軸方向之長度。例如,亦可將成為第2磁性層12之磁性膜之Y軸方向之端部藉由氧化等而非磁性化。未氧化之磁性膜成為第2磁性膜12。亦可藉由利用氧化等而成之磁性區域性形狀而形成第2磁性層。亦可根據成為金屬含有層21之金屬含有膜之導電區域性形狀而形成金屬含有層21。 以下,針對金屬含有層21、第1磁性層11、第2磁性層12及第1中間層11i之例進行說明。與以下之金屬含有層21相關之說明,可應用於其他金屬含有層21X(金屬含有層21A等)。與以下之第1磁性層11相關之說明,可應用於第3磁性層13。與以下之第2磁性層12相關之說明,可應用於第4磁性層。與以下之第1中間層11i相關之說明,可應用於第2中間層12i。 金屬含有層21亦可包含例如具有高自旋霍爾效應之材料。例如,金屬含有層21與第2磁性層12相接。例如,金屬含有層21對第2磁性層12賦予自旋軌道矩。金屬含有層21亦可作為例如自旋軌道層(SOL)發揮功能。例如,藉由於金屬含有層21與第2磁性層12之間產生之自旋軌道矩,可改變第2磁性層12之第2磁化12M之朝向。例如,可根據流動於金屬含有層21之電流之朝向(第1寫入電流Iw1之朝向或第2寫入電流Iw2之朝向),控制第2磁化12M之方向。 金屬含有層21包含例如選自由鉭及鎢所組成之群之至少一者。金屬含有層21包含例如選自由β-鉭及β-鎢所組成之群之至少一者。該等材料之自旋力矩角為負。該等材料之自旋力矩角之絕對值較大。藉此,可藉由寫入電流而有效率地控制第2磁化12M。 金屬含有層21亦可包含選自由鉑或金所組成之群之至少一者。該等材料之自旋霍爾角為正。該等材料之自旋霍爾角之絕對值較大。藉此,可藉由寫入電流而有效率地控制第2磁化12M。 施加於第2磁性層12之自旋軌道矩之方向(朝向)係因自旋霍爾角之極性而異。例如,金屬含有層21對第2磁性層12賦予自旋軌道相互作用扭矩。 第2磁性層12例如為磁化自由層。第2磁性層12包含例如強磁性材料及軟磁性材料之至少任一者。第2磁性層12亦可包含例如人造光柵。 第2磁性層12包含例如選自由FePd(鐵-鈀)、FePt(鐵-鉑)、CoPd(鈷-鈀)及CoPt(鈷-鉑)所組成之群之至少一者。上述軟磁性材料包含例如CoFeB(鈷-鐵-硼)。上述人造光柵包含含有例如第1膜與第2膜之積層膜。第1膜包含例如NiFe(鎳-鐵)、Fe(鐵)及Co(鈷)之至少任一者。第2膜包含例如Cu(銅)、Pd(鈀)及Pt(鉑)之至少任一者。第1膜例如為磁性材料,第2膜例如為非磁性材料。 第2磁性層亦可包含例如亞鐵磁性材料。 於實施形態中,例如第2磁性層12具有面內磁性各向異性。藉此,例如可自金屬含有層21獲得與磁化方向反平行之極化自旋。例如第2磁性層12亦可具有面內之形狀磁性各向異性、面內之結晶磁性各向異性、及因應力等之面內之感應磁性各向異性之至少任一者。 第1中間層11i包含例如選自由MgO(氧化鎂)、CaO(氧化鈣)、SrO(氧化鍶)、TiO(氧化鈦)、VO(氧化釩)、NbO(氧化鈮)及Al2 O3 (氧化鋁)所組成之群之至少一者。第1中間層11i例如為穿隧障壁層。第1中間層11i包含MgO之情形時,第1中間層11i之厚度例如為約1 nm。 第1磁性層11例如為參照層。第1磁性層11例如為磁性固定層。第1磁性層11包含例如Co(鈷)、CoFeB(鈷-鐵-硼)。第1磁性層11之第1磁化11M固定於面內之實質性單一方向(與Z軸方向交叉之方向)。第1磁性層11成為例如面內磁化膜。 例如,第1磁性層11(參照層)之厚度較第2磁性層12(自由層)之厚度更厚。藉此,將第1磁性層11之第1磁化11M穩定地固定於特定方向。 於實施形態中,例如基底構件20s為氧化鋁。金屬含有層21為Ta層(厚度為例如3 nm以上10 nm以下)。第2磁性層12包含例如CoFeB層(厚度為例如1.5 nm以上2.5 nm以下)。第1中間層11i包含例如MgO層(厚度為例如0.8 nm以上1.2 nm以下) 第1磁性層11包含第1~第3膜。第1膜設於第3膜與第1中間層11i之間。第2膜設於第1膜與第3膜之間。第1膜包含例如CoFeB膜(厚度為例如1.5 nm以上2.5 nm以下)。第2膜包含例如Ru膜(厚度為例如0.7 nm以上0.9 nm以下)。第3膜包含例如CoFeB膜(厚度為例如1.5 nm以上2.5 nm以下) 亦可設置例如強磁性層。於強磁性層與中間層11i之間設置第1磁性層11。強磁性層例如為IrMn層(厚度為7 nm以上9 nm以下)。強磁性層係固定第1磁性層11之第1磁化11M。亦可於該強磁性層之上設置Ta層。 (第2實施形態) 圖6(a)~圖6(d)係例示第2實施形態之磁性記憶裝置之模式圖。 圖6(a)係立體圖。圖6(b)係圖6(a)之D1-D2線剖面圖。圖6(c)係圖6(a)之E1-E2線剖面圖。圖6(d)係圖6(a)之F1-F2線剖面圖。 如圖6(a)~圖6(d)所示,本實施形態之磁性記憶裝置120亦包含金屬含有層21、第1~第4磁性層11~14、第1中間層11i、第2中間層12i及控制部70。 於該例中,亦將金屬含有層21設於基底構件20s之上。金屬含有層21包含第1~第5部分21a~21e。第3部分21c位於第1部分21a與第2部分21b之間。第4部分21d位於第3部分21c與第2部分21b之間。第5部分21e位於第3部分21c與第4部分21d之間。 第1磁性層11於第1方向(例如Z軸方向)上與第3部分21c隔開。第1方向與自第1部分21a朝向第2部分21b之第2方向(例如X軸方向)交叉。第2磁性層12設於第3部分21c之一部分與第1磁性層11之間。第1中間層11i包含設於第1磁性層11與第2磁性層12之間之部分。第1中間層11i為非磁性。第1磁性層11、第2磁性層12及第1中間層11i含在第1積層體SB1中。 第3磁性層13於第1方向(Z軸方向)上與第4部分21d隔開。第4磁性層14設於第4部分21d之一部分與第3磁性層13之間。第2中間層12i包含設於第3磁性層13與第4磁性層14之間之部分。第2中間層12i為非磁性。第3磁性層13、第4磁性層14及第2中間層12i含在第2積層體SB2中。 控制部70與第1部分21a、第2部分21b、第1磁性層11及第3磁性層13電性連接。於該例中,亦於控制部70之驅動電路75與第1磁性層11之間之電流路徑設置第1開關元件Sw1。於驅動電路75與第3磁性層13之間之電流路徑設置第2開關元件Sw2。 於該例中亦為,控制部70於第1寫入動作中,將自第1部分21a朝向第2部分21b之第1寫入電流Iw1供給至金屬含有層21,形成第1狀態。控制部70於第2寫入動作中,將自第2部分21b朝向第1部分21a之第2寫入電流Iw2供給至金屬含有層21,形成第2狀態。第1狀態之第1磁性層11與第1部分21a之間之第1電阻,與第2狀態之第1磁性層11與第1部分21a之間之第2電阻不同。 控制部70將第1寫入電流Iw1供給至金屬含有層21,形成第3狀態。控制部70將第2寫入電流Iw2供給至金屬含有層21,形成第4狀態。第3狀態之第3磁性層13與第1部分21a之間之第3電阻,與第4狀態之第3磁性層13與第1部分21a之間之第4電阻不同。 控制部70亦可於讀取動作中,檢測對應於第1磁性層11與第1部分21a之間之電阻之特性(亦可為電壓或電流等)。控制部70亦可於讀取動作中,檢測對應於第3磁性層13與第1部分21a之間之電阻之特性(亦可為電壓或電流等) 於該例中,如圖6(a)所示,金屬含有層21之Y軸方向之寬度在第3部分21c與第5部分21e之間不同。且,金屬含有層21之Y軸方向之寬度在第4部分21d與第5部分21e之間不同。除此以外,可將例如針對磁性記憶裝置110所說明之構成應用於磁性記憶裝置120。 以下,針對金屬含有層21之Y軸方向之寬度之例進行說明。 如圖6(a)所示,金屬含有層21之第3部分21c以第2磁性層12為基準而於Y軸方向突出。 例如,如圖6(b)所示,設第3部分21c之沿著第3方向(例如Y軸方向)之長度為長度21cy。第3方向與第1方向(Z軸方向)及第2方向(X軸方向)交叉。另一方面,設第2磁性層12之沿著第3方向之長度為長度12y。長度12y例如係已說明之長度12yL及長度12yU之平均。長度21cy較長度12y更長。 另一方面,如圖6(d)所示,設金屬含有層21之第5部分21e之沿著第3方向之長度為長度21ey。 金屬含有層21之第3部分21c之上述長度12cy較第5部分21e之沿著第3方向之上述長度21ey更長。 另一方面,如圖6(c)所示,金屬含有層21之第4部分21d之沿著第3方向之長度21dy較第4磁性層14之沿著第3方向之長度14y更長。第4部分21d之上述長度21dy較第5部分21e之上述長度21ey(參照圖6(d))更長。 如此,設置積層體之部分(第3部分21c及第4部分21d)之金屬含有層21之沿著Y軸方向之寬度,大於未設置積層體之部分(第5部分21e)之金屬含有層21之沿著Y軸方向之寬度。 例如,設想金屬含有層21之Y軸方向之寬度為固定之第3參考例。例如,金屬含有層21之中、與積層體重合之區域之電導高於未與積層體重合之區域之電導。因此,於第3參考例中,於金屬含有層21之Y軸方向之端,會比與Y軸方向之中央部分更易集中電流。因電流集中所致之記錄電流之方向之分散(不均)例如會引起自旋電流之方向之分散(不均)。其結果,自旋同調性之分散變大,記錄電流增大。 與此相對,於實施形態中,將金屬含有層21之中與積層體重合之區域之沿著Y軸方向之寬度局部加寬。例如,於第3部分21c設置突出部(第1非重疊區域21ca及第2非重疊區域21cb)。該突出部成為自旋局部區域。藉此,與上述第3參考例相比,可抑制金屬含有層21之Y軸方向之端之電流集中。例如寫入電流之分佈變得均一。藉此而有效獲得自旋軌道矩之作用。例如,有效率地進行利用寫入電流之第2磁性層12之第2磁化12M之控制。 藉此,可提供例如可降低寫入電流之磁性記憶裝置。於本實施形態形態中亦可提高記憶密度。 例如,藉由於第3部分21c及第4部分21d中設置非重疊區域,而產生如上之寬度之差。 即,第3部分21c包含第1重疊區域21cc、第1非重疊區域21ca及第2非重疊區域21cb。第1重疊區域21cc於第1方向(Z軸方向)上與第2磁性層12重疊。第1非重疊區域21ca於第1方向上不與第2磁性層12重疊。第2非重疊區域21cb於第1方向上不與第2磁性層12重疊。自第1非重疊區域21ca朝向第2非重疊區域21cb之方向係沿著第3方向(Y軸方向)。第1重疊區域21cc於第3方向上位於第1非重疊區域21ca與第2非重疊區域21cb之間。 同樣地,第4部分21d包含第2重疊區域21dc、第3非重疊區域21da及第4非重疊區域21db。第2重疊區域21dc於第1方向(Z軸方向)上與第4磁性層14重疊。第3非重疊區域21da於第1方向上不與第4磁性層14重疊。第4非重疊區域21db於第1方向上不與第4磁性層14重疊。自第3非重疊區域21da朝向第4非重疊區域21db之方向係沿著第3方向(Y軸方向)。第2重疊區域21dc於第3方向上位於第3非重疊區域21da與第4非重疊區域21db之間。 於本實施形態中,非重疊區域之厚度亦可與重疊區域之厚度相同。於本實施形態中,非重疊區域之厚度亦可較重疊區域之厚度更厚。如後述,非重疊區域之厚度亦可較重疊區域之厚度更薄。 圖7係例示第2實施形態之磁性記憶裝置之示意性俯視圖。 如圖7所示,於磁性記憶裝置120中,亦可設置複數個電極22X及複數個金屬含有層21X。複數個電極22X及複數個金屬含有層21X如同針對圖3(b)所做之說明。例如,於複數個電極22X與複數個金屬含有層21X之間設置積層體SB0。例如,於金屬含有層21與電極22之間設置第1積層體SB1。於金屬含有層21與電極22A之間設置第2積層體SB2。 於該例中,金屬含有層21之第5部分21e之端之位置實質上係沿著第2磁性層12之端之位置(第1積層體SB1之端之位置)。例如第5部分21e之沿著第3方向(Y軸方向)之長度21ey係第2磁性層12之沿著第3方向之長度12y之0.9倍以上1.1倍以下。 於本實施形態中,亦可設置1個積層體SB1。例如,圖6(a)所示之磁性記憶裝置120亦可包含金屬含有層21、第1磁性層11、第2磁性層12、第1中間層11i及控制部70。此時,第3部分21c之沿著與第1方向及第2方向交叉之第3方向(Y軸方向)之長度21cy(參照圖6(b))較第2磁性層12之沿著第3方向之長度12y更長。且,第3部分21c之該長度21cy較第3部分21c與第2部分21b之間之部分(亦可為例如圖6(a)所示之第5部分21e)之沿著第3方向之長度(例如圖6(d)所示之長度21ey)更長。該情形時,控制部70亦實施上述之第1及第2寫入動作。此時,第1寫入動作後之第1磁性層11與第1部分21a及第2部分21b之任一者之間的第1電阻,與第2寫入動作後之第1磁性層11、第1部分21a及第2部分21b之上述任一者之間的第2電阻不同。可提供於此種磁性記憶裝置中亦可提高記憶密度之磁性記憶裝置。 圖8(a)及圖8(b)係例示第2實施形態之磁性記憶裝置之示意性剖面圖。 圖8(a)係與圖6(a)之D1-D2線對應之剖面圖。圖8(b)係與圖6(a)之E1-E2線對應之剖面圖。 如圖8(a)所示,於本實施形態之其他磁性記憶裝置121中,金屬含有層21之第3部分21c包含第1重疊區域21cc、第1非重疊區域21ca及第2非重疊區域21cb。於該例中,第1非重疊區域21ca之至少一部分之沿著第1方向(Z軸方向)之厚度,較第1重疊區域21cc之沿著第1方向之第1重疊區域厚度21cct更薄。第2非重疊區域21cb之至少一部分之沿著第1方向之厚度較上述第1重疊區域厚度21cct更薄。 如圖8(b)所示,第4部分21d包含第2重疊區域21dc、第3非重疊區域21da及第4非重疊區域21db。第3非重疊區域21da之至少一部分之沿著第1方向(Z軸方向)之厚度,較第2重疊區域21dc之沿著第1方向之第2重疊區域厚度21dct更薄。第4非重疊區域21db之至少一部分之沿著第1方向之厚度較上述第2重疊區域厚度21dct更薄。 此外與磁性記憶裝置120相同。 於磁性記憶裝置121中,藉由使非重疊區域薄化,可維持例如自旋極化之同調性。可提高自旋力矩之傳遞效率,並抑制記錄電流。藉此,寫入效率提升。藉此可降低寫入電流。藉此可進而提高記憶密度。 於磁性記憶裝置121中亦為於第3部分21c,第1重疊區域21cc於第1方向(Z軸方向)上與第2磁性層12重合。第1非重疊區域21ca於第1方向上不與第2磁性層12重合。第2非重疊區域21cb於第1方向上不與第2磁性層12重合。自第1非重疊區域21ca向第2非重疊區域21cb之方向係沿著第3方向(Y軸方向)。第1重疊區域21cc於第3方向上位於第1非重疊區域21ca與第2非重疊區域21cb之間。 同樣地,於第4部分21d中,包含第2重疊區域21dc、第3非重疊區域21da及第4非重疊區域21db。第2重疊區域21dc於第1方向(Z軸方向)上與第4磁性層14重合。第3非重疊區域21da於第1方向上不與第4磁性層14重合。第4非重疊區域21db於第1方向上不與第4磁性層14重合。自第3非重疊區域21d向第4非重疊區域21db之方向係沿著第3方向(Y軸方向)。第2重疊區域21dc於第3方向上位於第3非重疊區域21da與第4非重疊區域21db之間。 於磁性記憶裝置121中,將第1非重疊區域21ca之沿著第3方向(Y軸方向)之長度、及第2非重疊區域21cb之沿著第3方向之長度21cby之合計相對於第1重疊區域厚度21cct之比設為第1比。 於磁性記憶裝置121中,可應用磁性記憶裝置110之構成(參照圖1(b))之一部分。於磁性記憶裝置121中,亦將第2磁性層12之厚度(沿著第1方向之第2磁性層之厚度)設為厚度t12(參照圖1(b))。將第2磁性層12之與金屬含有層21對向之面12L之沿著第2方向之長度設為長度12xL。將第2磁性層12之與第1中間層11i對向之面12U之沿著第2方向之長度設為長度12xU。 例如,上述第1比高於長度12xL與長度12xU之差之絕對值相對於厚度t12之比。藉由增大非重疊區域之Y軸方向之寬度,而可抑制例如自旋同調性之分散。可提高寫入效率,且降低寫入電流。 圖9(a)~圖9(c)係例示第2實施形態之另一磁性記憶裝置之示意性剖面圖。 如圖9(a)所示,於本實施形態之另一磁性記憶裝置122A中,亦設置金屬含有層21、第1積層體SB1及第2積層體SB2。於磁性記憶裝置122A中,金屬含有層21之第5部分21e之沿著第1方向(Z軸方向)之厚度21et,較第1重疊區域厚度21cct薄。厚度21et較第2重疊區域厚度21dct薄。藉由設置此種厚度差,例如自旋同調性提升。 於該例中,設有化合物層41。化合物層41包含含有第2磁性層12(或第4磁性層14)中所含之金屬之化合物。化合物層41與第2磁性層12之側面12s對向。化合物層41與第4磁性層14之側面14s對向。藉由化合物層41,可抑制例如積層體之側面之漏電流。 如圖9(b)所示,於本實施形態之另一磁性記憶裝置122B中,設置第1化合物區域42a(化合物層)。第1化合物區域42a包含含有第2磁性層12(或第4磁性層14)中所含之金屬之化合物。第1化合物區域42a與第2磁性層12之側面12s及第4磁性層14之側面14s對向。第1化合物區域42a於第2磁性層12與第4磁性層14之間相連地設置。 亦可於第1化合物區域42a與第5部分21e之間設置第2化合物區域42b。第2化合物區域42b包含例如金屬含有層21中所含之金屬之氧化物、氮化物或氮氧化物。 於圖9(c)所示之本實施形態之另一磁性記憶裝置122C中,金屬含有層21之第3部分21c之結晶構造與金屬含有層21之其他部分(例如第1部分21a、第2部分21b及第5部分21e等)之結晶構造不同。 例如,金屬含有層21之第3部分21c之結晶構造為β相。金屬含有層21之其他部分(例如第1部分21a、第2部分21b及第5部分21e等)之至少一部分(例如表面部分)之結晶構造為α相。 例如,單位體積(單位面積)中,第3部分21c之β相之區域占第3部分21c全體之比例,例如高於其他區域(例如第1部分21a、第2部分21b或第5部分21e等)之β相區域占其他區域全體之比例。 例如,第3部分21c之至少一部分包含β相之Ta。例如,第1部分21a(或第5部分21e)之至少一部分包含α相之Ta。例如,可獲得較高自旋霍爾效應,且降低寫入電流。且,可降低金屬含有層21之電阻。 圖10(a)~圖10(d)係例示第2實施形態之另一磁性記憶裝置之示意性俯視圖。 如圖10(a)所示,於磁性記憶裝置123a中,第5部分21e之沿著第3方向(Y軸方向)之長度21ey與第2磁性層12之沿著第3方向之長度12y實質相同。例如,長度21ey為長度12y之0.9倍以上1.1倍以下。 如圖10(b)所示,於磁性記憶裝置123b中,第5部分21e之沿著第3方向(Y軸方向)之長度21ey較第2磁性層12之沿著第3方向之長度12y更長。 如圖10(c)所示,於磁性記憶裝置123c中,第1非重疊區域21ca之第2方向(X軸方向)之寬度與第2磁性層12之沿著第2方向之寬度實質相同。例如,第1非重疊區域21ca之第2方向之寬度為第2磁性層12之沿著第2方向之寬度之0.9倍以上1.1倍以下。 如圖10(d)所示,於磁性記憶裝置123d中,第1非重疊區域21ca之第2方向(X軸方向)之寬度較第2磁性層12之沿著第2方向之寬度更小。 (第3實施形態) 第3實施形態係第2實施形態之磁性記憶裝置之製造方法。 圖11係例示第3實施形態之磁性記憶裝置之製造方法之流程圖。 圖12(a)~圖12(d)、圖13(a)~圖13(e)、圖14(a)~圖14(c)、圖15(a)及圖15(b)係例示第3實施形態之磁性記憶裝置之製造方法之模式圖。 圖12(a)、圖12(c)、圖13(d)、圖14(a)~圖14(c)、圖15(a)及圖15(b)係示意性俯視圖。圖12(b)、圖12(d)、圖13(a)~圖13(c)、圖13(e)係示意性剖面圖。 如圖11所示,於設於基底構件20s之上之金屬含有膜之上形成積層膜(步驟S110)。 例如,如圖12(b)所示,於基底構件20s(例如氧化鋁基板)之上,設有金屬含有膜21F(例如Ta膜)。 設相對於金屬含有膜21F之表面21Fa垂直之方向為第1方向(Z軸方向)。設相對於Z軸方向垂直之1個方向為X軸方向。設相對於Z軸方向及X軸方向垂直之方向為Y軸方向。 金屬含有膜21F成為金屬含有層21。於金屬含有膜21F之上設置積層膜SBF。積層膜SBF包含第1磁性膜11F、第2磁性膜12F及中間膜11iF。第2磁性膜12F設於第1磁性膜11F與金屬含有膜21F之間。中間膜11iF設於第1磁性膜11F與第2磁性膜12F之間。中間膜11iF為非磁性。 再者,於積層膜SBF之上形成第1遮罩M1。第1遮罩M1包含例如鎢膜Mb1(厚度為例如25 nm以上35 nm以下),與釕膜Ma1(厚度為例如1 nm以上3 nm以下)。於鎢膜Mb1與積層膜SBF之間設置釕膜Ma1。 如圖12(a)所示,第1遮罩M1具有於Y軸方向延伸之複數條帶狀形狀。於第1遮罩M1之開口部,積層膜SBF露出。第1遮罩M1亦可藉由例如雙重曝光技術形成。 如圖12(c)及圖12(d)所示,使用第1遮罩M1加工積層膜SBF。例如照射離子束IB1。將積層膜SBF之一部分去除。殘留金屬含有膜21F。藉此形成複數個第1槽T1。複數個第1槽T1排列於與第1方向交叉之第2方向(X軸方向)。複數個第1槽T1沿著第3方向(該例中為Y軸方向)延伸。第3方向與第1方向及第2方向交叉。第1槽T1到達金屬含有膜21F。藉由第1槽T1將積層膜SBF分斷。 如此,於本製造方法中,形成複數個第1槽T1(步驟S120,參照圖11)。 如圖13(a)所示,進行例如電漿處理。藉此,於積層膜SBF之側壁形成化合物膜43。電漿處理係氧電漿處理或氮電漿處理。例如,化合物膜43包含含有金屬含有膜21F中所含之元素之化合物。化合物膜43例如成為保護膜。 如圖13(b)所示,於第1槽T1中形成第1絕緣膜44a。第1絕緣膜44a例如為SiN膜。 如圖13(c)所示,形成第2絕緣膜44b。第2絕緣膜44b例如為包含氧化鋁膜與氧化矽膜之積層膜。之後進行平坦化處理。 藉此,如圖13(d)及圖13(e)所示,於第1槽T1內形成第1絕緣部In1。第1絕緣部In1包含例如上述化合物膜43。第1絕緣部In1包含上述第1絕緣膜44a。第1絕緣部In1亦可包含上述第2絕緣膜44b。 第1絕緣部In1之形成與圖11之步驟S130對應。 之後,如圖11所示,形成複數個第2槽(步驟S140,參照圖11)。 例如,如圖14(a)所示,於加工體之上形成第2遮罩M2。第2遮罩M2具有沿著第2方向(X軸方向)延伸之複數條帶狀形狀。使用第2遮罩M2加工加工體。例如將自第2遮罩M2之開口部露出之形成第1絕緣部In1後之積層膜SBF之一部分,及第1絕緣膜In1之一部分去除。藉此形成複數個第2槽T2。複數個第2槽T2於第2方向(例如X軸方向)延伸。如已說明,複數個第1槽T1之延伸方向(第3方向)與第1方向及第2方向交叉。第2方向可相對於第3方向傾斜,第2方向亦可相對於第3方向垂直。 例如,可藉由使用第2遮罩M2之處理(例如離子束之照射),使第2遮罩M2之Y軸方向之寬度變化。例如進行第2遮罩M2之細化。於該處理中,例如可於積層膜SBF與第1絕緣部In1之間,產生蝕刻速度之差異。藉此,例如可使1個積層膜SBF之Y軸方向之寬度,大於第1絕緣部In1之Y軸方向之寬度。 例如如圖14(b)所示,複數個第2槽T2之一個包含第1槽區域Tp2與第2槽區域Tq2。第1槽區域Tp2於第3方向(Y軸方向)上與積層膜SBF重合。第2槽區域Tq2於第3方向(Y軸方向)與第1絕緣部In1重合。第1槽區域Tp2之沿著第3方向之寬度wTp2小於第2槽區域Tq2之沿著第3方向之寬度wTq2。 之後,如圖11所示,將於複數個第2槽T2中露出之金屬含有膜21F去除(步驟S150)。再者,於複數個第2槽T2內形成第2絕緣部(步驟S160)。 例如如圖14(c)所示,將於複數個第2槽T2中露出之金屬含有膜21F去除。設於被去除之金屬含有膜21F之下之基底構件20s露出。 如圖15(a)所示,於複數個第2槽T2內形成第2絕緣部In2。此時,第2絕緣部In2之材料亦可與第1絕緣部In1之材料不同。例如,第1絕緣部In1包含氮化矽,第2絕緣部In2包含氧化矽。例如,第1絕緣部In1包含氮化矽,第2絕緣部In2包含氧化鋁。 於不同之材料中,例如產生之應力會有所差異。對2個絕緣部使用互不相同之材料,例如可獲得互不相同之應力。例如於第2磁性層12及第4磁性層14中,在X軸方向與Y軸方向產生互不相同之應力。藉此,於該等磁性層中,可產生單軸性之各向異性。藉此,該等磁性層之磁化穩定化,獲得穩定之記憶動作。 如圖15(b)所示,形成電極22及電極22A等,製作出磁性記憶裝置。 (第4實施形態) 圖16係例示第4實施形態之磁性記憶裝置之示意性剖面圖。 如圖16所示,於本實施形態之磁性記憶裝置142中,設置導電部24。除此以外,亦可將例如針對磁性記憶裝置110及120等所說明之構成之至少一部分應用於磁性記憶裝置142。 導電部24例如與第5部分21e電性連接。導電部24例如與第5部分21e相接。於Z軸方向上,於導電部24之位置與積層體SB0之位置之間設置金屬含有層21。例如,於金屬含有層21之上表面設置複數個積層體SB0。例如,於金屬含有層21之下表面設置導電部24。 藉由設置導電部24,可降低金屬含有層21中第1部分21a與第2本部分21b之間之電阻。 於該例中,導電部24包含第1導電層24a及第2導電層24b。於金屬含有層21與第2導電層24b之間設置第1導電層24a。第1導電層24a包含例如銅、鎢、氮化鈦及碳之至少任一者。第2導電層24b包含例如銅、鎢、氮化鈦及碳之至少任一者。 圖17係例示第4實施形態之另一磁性記憶裝置之模式圖。 如圖17所示,於本實施形態之另一磁性記憶裝置143中,設置第1~第4電晶體TR1~TR3。除此以外,亦可將例如針對磁性記憶裝置110及120等所說明之構成之至少一部分應用於磁性記憶裝置143。 第1電晶體TR1之一端與金屬含有層21之第1部分21a電性連接。第1電晶體TR1之另一端與驅動電路75電性連接。第2電晶體TR2之一端與金屬含有層21之第2部分21b電性連接。第2電晶體TR2之另一端與驅動電路75電性連接。第3電晶體TR3之一端與金屬含有層21之第5部分21e電性連接。第3電晶體TR3之另一端與驅動電路75電性連接。該等電晶體例如含在控制部70中。該等電晶體亦可視作與控制部70分開設置。 對應於第1電晶體TR1之第1閘極G1、第2電晶體TR2之第2閘極G2、及第3電晶體TR3之第3閘極各者之電位,流通金屬含有層21之所需之電流(寫入電流)。 例如,寫入電流自第1部分21a流向第5部分21e。例如,寫入電流自第5部分21e流向第1部分21a。例如,寫入電流自第2部分21b流向第5部分21e。例如,寫入電流自第5部分21e流向第2部分21b。可獲得任意組合之電流之方向。 藉由於金屬含有層21之中間之位置(例如第5部分21e)設置電晶體,而可降低控制用電晶體之數量。例如獲得大容量之磁性記憶裝置。例如,可相對於磁性記憶裝置全體之尺寸而增大記憶容量。可提高記憶密度。 (第5實施形態) 圖18係例示第5實施形態之磁性記憶裝置之模式圖。 如圖18所示,本實施形態之磁性記憶裝置151包含第1金屬含有層31、第2金屬含有層32、複數個第1積層體SB1、複數個第2積層體SB2、第3積層體SB3及控制部70。 第1金屬含有層31包含第1部分31a、第2部分31b及第1間置部分31m。第1間置部分31m設於第1部分31a與第2部分31b之間。 第2金屬含有層32包含第3部分32c、第4部分32d及第2間置部分32m。第2間置部分32m設於第3部分32c與第4部分32d之間。於第1部分31a與第4部分32d之間設置第2部分31b。於第2部分31b與第4部分32d之間設置第3部分32c。 於該例中,第1金屬含有層31及第2金屬含有層32設於基底構件20s之上。 複數個第1積層體SB1沿著第1金屬含有層31排列。複數個第1積層體SB1之1個包含第1磁性層11、第2磁性層12及第1中間層11i。第1磁性層11於第1方向(例如Z軸方向)上與第1間置部分31m隔開。第2磁性層12設於第1間置部分31m與第1磁性層11之間。第1中間層11i包含設於第1磁性層11與第2磁性層12之間之部分。第1中間層11i為非磁性。於第1金屬含有層31中,將自第1部分31a朝向第2部分31b之方向設為第2方向(例如X軸方向)。上述第1方向(例如Z軸方向)與第2方向交叉。複數個第1積層體SB1各自具有包含上述之第1磁性層11、第2磁性層12及第1中間層11i之構成。第2磁性層12例如與第1金屬含有層31相接。 複數個第2積層體SB2沿著第2金屬含有層32排列。複數個第2積層體SB2之一個包含第3磁性層13、第4磁性層14及第2中間層12i。第3磁性層13於第1方向(Z軸方向)上與第2間置部分32m隔開。第4磁性層14設於第2間置部分32m與第3磁性層14之間。第2中間層12i包含設於第3磁性層13與第4磁性層14之間之部分。第2中間層12i為非磁性。複數個第2積層體SB2各自具有包含上述之第3磁性層13、第4磁性層14及第2中間層12i之構成。第4磁性層14例如與第2金屬含有層32相接。 第3積層體SB3設於複數個第1積層體SB1與複數個第2積層體SB2之間。第3積層體SB3包含第5磁性層15。 例如,第5磁性層15於X-Y平面(相對於第1方向垂直之平面)內,與第2磁性層12及第4磁性層14並排。例如,第5磁性層15包含第2磁性層12及第4磁性層14之至少任一者所含之材料。 於該例中,第3積層體SB3進而包含第6磁性層16及第3中間層13i。第6磁性層16於上述平面(X-Y平面)內,與第1磁性層11及第3磁性層13並排。第3中間層13i於上述平面內,與第1中間層11i及第2中間層12i並排。於實施形態中,亦可省略第6磁性層16及第3中間層13i之至少任一者。 控制部70與第1部分31a、第2部分31b、第3部分32c及第4部分32d、複數個第1積層體SB1及複數個第2積層體SB2電性連接。於該圖中,為看圖方便起見,將控制部70分成兩個描繪。 於該例中,於複數個第1積層體SB1之各者與驅動電路75之間,設有第1開關元件Sw1。於複數個第2積層體SB2之各者與驅動電路75之間設有第2開關元件Sw2。於第1部分31a與驅動電路75之間設有第1電晶體TR1。於第2部分31b與驅動電路75之間設有第2電晶體TR2。於第3部分32c與驅動電路75之間設有第3電晶體TR3。於第4部分32d與驅動電路75之間設有第4電晶體TR4。 控制部70於第1寫入動作中,將自第1部分31a朝向第2部分31b之第1寫入電流Iw1供給至第1金屬含有層31,形成第1狀態。控制部70於第2寫入動作中,將自第2部分31b朝向第1部分31a之第2寫入電流Iw2供給至第1金屬含有層31,形成第2狀態。第1狀態之第1磁性層11與第1部分31a及第2部分31b之一者之間的第1電阻,與第2狀態之第1磁性層11與第1部分31a及第2部分31a之上述一者之間的第2電阻不同。 控制部70於第3寫入動作中,將自第3部分32c朝向第4部分32d之第3寫入電流Iw3供給至第2金屬含有層32,形成第3狀態。控制部70於第4寫入動作中,將自第4部分32d朝向第3部分32c之第4寫入電流Iw4供給至第2金屬含有層32,形成第4狀態。第3狀態之第3磁性層13與第3部分32c及第4部分32d之一者之間的第3電阻,與第2狀態之第3磁性層13與第3部分32c及第4部分32d之上述一者之間的第4電阻不同。 例如,藉由施加於複數個第1積層體SB1中所含之第1磁性層11之電壓,控制複數個第1積層體SB1之選擇。 例如,控制部70與複數個第1積層體SB1之各者所含之第1磁性層11電性連接。控制部70於第1、第2寫入動作中,將複數個第1積層體SB1之一個所含之第1磁性層11之電位,設定為與複數個第1積層體SB1之另一個所含之第1磁性層11之電位(例如非選擇電位)不同之電位(例如選擇電位)。 例如,控制部70與複數個第2積層體SB2之各者所含之第3磁性層13電性連接。控制部70於第3、第4寫入動作中,將複數個第2積層體SB2之一個所含之第3磁性層13之電位,設定為與複數個第2積層體SB2之另一個所含之第3磁性層13之電位(例如非選擇電位)不同之電位(例如選擇電位)。 於磁性記憶裝置151中,亦可對第1金屬含有層31及第2金屬含有層32,應用例如針對磁性記憶裝置110及120等金屬含有層21所說明之構成之至少一部分。於磁性記憶裝置151中,亦可對複數個第1積層體SB1及複數個第2積層體SB2,應用例如針對磁性記憶裝置110及120等第1積層體SB1所說明之構成之至少一部分。於磁性記憶裝置151中,亦可對控制部70應用例如針對磁性記憶裝置110及120所說明之構成之至少一部分。 第1金屬含有層31及複數個第1積層體SB1形成1個記憶體行(記憶體串)。第1金屬含有層32及複數個第2積層體SB2形成另一個記憶體行(記憶體串)。 於該等記憶體部之間設置第3積層體SB3。例如,控制部70與第3積層體SB3之第5磁性層15電性絕緣。第3積層體SB3不作為記憶體部使用。第3積層體SB3例如作為虛設元件發揮功能。 例如,複數個第1積層體SB1具有複數個第1積層體SB1中位於端部之積層體(端部之積層體),及位於中央部之積層體(中央部之積層體)。於中央部之積層體之兩側存在其他積層體。中央部之積層體之一者受到來自設於其兩側之其他積層體(例如1個積層體)之作用。另一方面,於未設有第3積層體SB3之參考例中,於端部之積層體之一者不存在其他積層體。於端部之積層體中,產生來自設於一側之積層體之作用。因此,於該參考例中,會產生複數個第1積層體SB1中之端部之積層體之特性與中央部之積層體不同之情形。 此時,於本實施形態中,因設置第3積層體SB3,故端部之積層體之特性接近中央部之積層體之特性。藉此,例如可進行穩定之記憶動作。例如可提高成品率。例如於縮小複數個積層體SB0各者之尺寸時亦可獲得穩定之動作。可提高記憶密度。 於實施形態中,設複數個第1積層體SB1之2個(最接近之2個)之間之距離為第1距離d1。設複數個第2積層體SB2之2個(最接近之2個)之間之距離為第2距離d2。複數個第1積層體SB1之1個與第3積層體SB3之間之第3距離d3例如實質為第1距離d1。例如,第3距離d3為第1距離d1之0.5倍以上2倍以下。複數個第2積層體SB2之1個與第3積層體SB3之間之第4距離d4例如實質為第2距離d2。第4距離d4為第2距離d2之0.5倍以上2倍以下。 藉由於複數個第1積層體SB1之一者之附近設置第3積層體SB3,例如於複數個第1積層體SB1之其中一者中,易獲得穩定之動作。藉由於複數個第2積層體SB2之一者附近設置第3積層體SB3,例如於複數個第2積層體SB2之其中一者中,易獲得穩定之動作。 於本實施形態中,第1金屬含有層31與第2金屬含有層32亦可相互絕緣。第1金屬含有層31與第2金屬含有層32亦可相互電性連接。 於該例中,於第1金屬含有層31與第2金屬含有層32之間設有第3金屬含有層33。第3金屬含有層33亦設於基底構件20s之上。第3金屬含有層33設於第1金屬含有層31之第2部分31b,與第2金屬含有層32之第3部分32c之間。對第3金屬含有層33使用例如第1金屬含有層31之材料。 於該例中,設置第1絕緣區域35a及第2絕緣區域35b。第1絕緣區域35a設於第2部分31b與第3金屬含有層33之間。第1絕緣區域35a電性絕緣第2部分31b與第3金屬含有層33之間。第2絕緣區域35b設於第3部分32c與第3金屬含有層33之間。第2絕緣區域35b將第3部分32c與第3金屬含有層33之間電性絕緣。第1絕緣區域35a亦可包含第1金屬含有層31中所含之第1金屬之氧化物、第1金屬之氮化物及第1金屬之氮氧化物之任一者。 以下,針對磁性記憶裝置151之製造方法之例進行說明。 圖19(a)及圖19(b)係例示第5實施形態之磁性記憶裝置之製造方法之示意性剖面圖。 如圖19(a)所示,於基底構件20s之上設置金屬含有膜31FM。金屬含有膜31FM之一部分成為第1金屬含有膜,金屬含有膜31FM之另一部分成為第2金屬含有膜32。於金屬含有膜31FM之一部分之上設置複數個第1積層體SB1。於金屬含有膜31FM之另一部分之上設置複數個第2積層體SB2。於金屬含有膜31FM之上設置第3積層體SB3。於複數個第1積層體SB1及複數個第2積層體SB2之上設置遮罩MS1。第3積層體SB3未被遮罩MS1覆蓋。金屬含有膜31FM於沿著X-Y平面之方向上,具有位於複數個第1積層體SB1與第3積層體SB3之間之部分。該部位未被遮罩MS1覆蓋。金屬含有膜31FM於沿著X-Y平面之方向上,具有位於複數個第2積層體SB2與第3積層體SB3之間之部分。該部分未被遮罩MS1覆蓋。 如圖19(b)所示,對包含金屬含有膜31FM、複數個第1積層體SB1、複數個第2積層體SB2及第3積層體SB3之加工體進行處理。該處理包含蝕刻處理、氧化處理及離子束照射處理之至少任一者。於蝕刻處理中,例如將未被遮罩MS1覆蓋之金屬含有膜31FM之部分去除。於氧化處理中,例如將未被遮罩MS1覆蓋之金屬含有膜31FM之部分氧化。經氧化之部分成為絕緣部。於離子束照射處理中,例如將未被遮罩MS1覆蓋之金屬含有膜31FM之部分去除。於離子束照射處理中,例如亦可自未被遮罩MS1覆蓋之金屬含有膜31FM之部分產生化合物。該化合物包含金屬含有膜31FM中所含之金屬之氧化物、該金屬之氮化物、及該金屬之氮氧化物之至少任一者。 例如,已實施氧化處理及離子束照射處理之至少任一者之情形時,會自金屬含有膜31FM形成化合物。該化合物成為第1絕緣區域35a及第2絕緣區域35b。 藉由此種處理而形成磁性記憶裝置151。亦可於上述處理之前後,使積層體SB3之至少一部分變化。若於上述處理之前存在第6磁性層16之情形時,亦可藉由上述處理而使第6磁性層16變化。亦可將第6磁性層16去除。 圖20係例示第5實施形態之其他磁性記憶裝置之模式圖。 如圖20所示,本實施形態之磁性記憶裝置152亦包含第1金屬含有層31、第2金屬含有層32、複數個第1積層體SB1、複數個第2積層體SB2、第3積層體SB3、及控制部70。於磁性記憶裝置152中設有絕緣部40。絕緣部40設於複數個第1積層體SB1、複數個第2積層體SB2及第3積層體SB3之間。絕緣部40例如為層間絕緣膜。 於磁性記憶裝置152中,設置第1絕緣區域40a及第2絕緣區域40b。第1絕緣區域40a及第2絕緣區域40b例如使用與絕緣部40所使用之材料相同之材料。 例如,於針對圖19(b)所說明之處理中,例如進行蝕刻處理,將金屬含有膜31FM之一部分去除。於該被去除之部分形成凹部。於該凹部埋入成為絕緣部40之材料。藉此形成第1絕緣區域40a及第2絕緣區域40b。 於磁性記憶裝置152中,例如亦可進行穩定之記憶動作。例如可提高成品率。例如易獲得即使縮小複數個積層體SB0各者之尺寸時亦穩定之動作。可提高記憶密度。 根據實施形態,可提供一種可提高記憶密度之磁性記憶裝置及其製造方法。 於本申請案說明書中,「電性連接狀態」包含複數個導電體物理性相接而於該等複數個導電體之間流動電流之狀態。「電性連接狀態」包含於複數個導電體之間插入另一導電體而於該等複數個導電體之間流動電流之狀態。「電性連接狀態」包含於複數個導電體之間插入電性元件(電晶體等開關元件等)而可形成於該等複數個導電體之間流動電流之狀態的狀態。 於本申請案說明書中,「垂直」及「平行」不僅包含嚴格之垂直及嚴格之平行,亦包含例如製造步驟中之偏差等,只要實質上垂直及實質上平行即可。 以上,已參照具體例並針對本發明之實施形態進行說明。但本發明並非限定於該等具體例。例如關於磁性記憶裝置中所含之金屬含有層、磁性層、中間層、及控制部之各要件之具體構成,可由同業人士藉由自眾所周知之範圍適當選擇而同樣地實施本發明,且獲得相同效果者,皆含在本發明之範圍內。 又,凡於技術性可行之範圍內適當組合各具體例之任意兩個以上之要件者,只要包含本發明之要旨,亦含在本發明之範圍內。 此外,凡基於作為本發明之實施形態而於上述之磁性記憶裝置及其製造方法,由同業人士進行適當設計變更而實施之所有的磁性記憶裝置及其製造方法,只要包含本發明之要旨,亦屬於本發明之範圍。 此外,於本發明之思想範疇中,若為同業人士,當可想到各種變更例及修正例,且應明瞭該等變更例及修正例亦屬於本發明之範圍。 以上已說明本發明之若干實施形態,但該等實施形態係作為例子提示者,並非意圖限定發明之範圍。該等新穎之實施形態得以其他各種形態實施,且在不脫離發明之要旨之範圍內,可進行各種省略、置換、變更。該等實施形態及其變化皆含在發明之範圍或要旨內,且含在申請專利範圍所記述之發明及其均等之範圍內。 本申請案係主張日本專利申請案第2016-154039(申請日2016年8月4日)之優先權,該申請案之全部內容以引用的方式併入本文中。Hereinafter, embodiments of the present invention will be described with reference to the drawings. Where the drawings are schematic or conceptual, the relationship between the thickness and width of each part and the size ratio between parts may not necessarily be the same as the actual ones. In the case of the same part, there may be cases where the dimensions or ratios are different due to different drawings. In this specification and the drawings, the same elements as the above-mentioned drawings are marked with the same symbols, and detailed descriptions are appropriately omitted. (First Embodiment) Figs. 1 (a) to 1 (d) are schematic diagrams illustrating a magnetic memory device according to a first embodiment. Fig. 1 (a) is a perspective view. Fig. 1 (b) is a sectional view taken along the line A1-A2 of Fig. 1 (a). Fig. 1 (c) is a sectional view taken along the line B1-B2 in Fig. 1 (a). Fig. 1 (d) is a sectional view taken along the line C1-C2 of Fig. 1 (a). As shown in FIGS. 1 (a) to 1 (d), the magnetic memory device 110 of this embodiment includes a metal-containing layer 21, a first magnetic layer 11, a second magnetic layer 12, a first intermediate layer 11i, and a control unit 70. . In this example, a base member 20s, a third magnetic layer 13, a fourth magnetic layer 14, and a second intermediate layer 12i are further provided. The first magnetic layer 11, the second magnetic layer 12, and the first intermediate layer 11i are included in the first laminated body SB1. The third magnetic layer 13, the fourth magnetic layer 14, and the second intermediate layer 12i are included in the second laminated body SB2. Each of these layers corresponds to one memory part (memory cell). In this way, a plurality of laminated bodies are provided in the magnetic memory device 110. The number of laminated bodies is arbitrary. A metal-containing layer 21 is provided on the base member 20s. The laminated body is provided on the metal-containing layer 21. The base member 20s may be at least a part of the substrate, and the base member 20s is, for example, insulating. The base member 20s may include a substrate or the like containing at least one of silicon oxide and aluminum oxide. The silicon oxide is, for example, thermal silicon oxide. The metal-containing layer 21 contains, for example, tantalum (Ta). Examples of the material of the metal-containing layer 21 will be described later. The metal-containing layer 21 includes a first portion 21a to a fifth portion 21e. The third portion 21c is located between the first portion 21a and the second portion 21b. The fourth portion 21d is located between the third portion 21c and the second portion 21b. The fifth portion 21e is located between the third portion 21c and the fourth portion 21d. A first laminated body SB1 is provided on the third portion 21c. A second laminated body SB2 is provided on the fourth portion 21d. No laminated body is provided on the fifth portion 21e. The fifth portion 21e is provided with an insulating portion described later. The first magnetic layer 11 is spaced from the third portion 21c along the first direction. Let the first direction be the Z-axis direction. Let one of the axes perpendicular to the Z-axis direction be the X-axis direction. Let the direction perpendicular to the Z-axis direction and the X-axis direction be the Y-axis direction. In the metal-containing layer 21, a direction from the first portion 21a toward the second portion 21b is set to a second direction. The second direction is, for example, the X-axis direction. The first direction intersects the second direction. The metal-containing layer 21 extends in the X-axis direction. The second magnetic layer 12 is provided between a portion of the third portion 21 c and the first magnetic layer 11. The first intermediate layer 11 i includes a portion provided between the first magnetic layer 11 and the second magnetic layer 12. The first intermediate layer 11i is non-magnetic. In the second multilayer body SB2, the third magnetic layer 13 is spaced from the fourth portion 21d in the first direction (Z-axis direction). The fourth magnetic layer 14 is provided between a portion of the fourth portion 21 d and the third magnetic layer 13. The second intermediate layer 12 i includes a portion provided between the third magnetic layer 13 and the fourth magnetic layer 14. The second intermediate layer 12i is non-magnetic. The first magnetic layer 11 and the third magnetic layer 13 are, for example, a fixed magnetization layer. The second magnetic layer 12 and the fourth magnetic layer 14 are, for example, magnetization free layers. The first magnetization 11M of the first magnetic layer 11 is less likely to change than the second magnetization 12M of the second magnetic layer 12. The third magnetization 13M of the third magnetic layer 13 is less likely to change than the fourth magnetization 14M of the fourth magnetic layer 14. The first intermediate layer 11i and the second intermediate layer 12i function as, for example, channel layers. The multilayer body (the first multilayer body SB1, the second multilayer body SB2, and the like) functions as, for example, a magnetoresistance change element. In the multilayer body, for example, TMR (Tunnel Magneto Resistance Effect) is generated. For example, the resistance on the path including the first magnetic layer 11, the first intermediate layer 11 i, and the second magnetic layer 12 changes according to the difference between the orientation of the first magnetization 11M and the orientation of the second magnetization 12M. For example, the resistance on the path including the third magnetic layer 13, the second intermediate layer 12i, and the fourth magnetic layer 14 changes in accordance with the difference between the orientation of the third magnetization 13M and the orientation of the fourth magnetization 14M. The laminated body has, for example, a magnetic tunnel junction (MTJ). In this example, the first magnetization 11M and the third magnetization 13M are along the Y-axis direction. The second magnetization 12M and the fourth magnetization 14M are along the Y-axis direction. The first magnetic layer 11 and the third magnetic layer 13 function as a reference layer, for example. The second magnetic layer 12 and the fourth magnetic layer 14 function as a memory layer, for example. The second magnetic layer 12 and the fourth magnetic layer 14 function as layers for storing information, for example. For example, the first state in which the second magnetization 12M faces in one direction corresponds to the first information memorized. The second state in which the second magnetization 12M faces in the other direction corresponds to the stored second information. The first information corresponds to, for example, one of "0" and "1". The second information corresponds to the other of "0" and "1". Similarly, the orientation of the fourth magnetization 14M corresponds to such information. The second magnetization 12M and the fourth magnetization 14M can be controlled by, for example, a current (writing current) flowing through the metal-containing layer 21. For example, the orientation of the second magnetization 12M and the fourth magnetization 14M can be controlled according to the orientation of the current (writing current) of the metal-containing layer 21. For example, the metal-containing layer 21 functions as a spin orbit layer (SOL). For example, the orientation of the second magnetization 12M can be changed by a spin orbit moment generated between the metal-containing layer 21 and the second magnetic layer 12. For example, the orientation of the fourth magnetization 14M can be changed by the spin orbit moment generated between the metal-containing layer 21 and the fourth magnetic layer 14. The spin orbit moment is derived from a current (writing current) flowing through the metal-containing layer 21. This current (writing current) is supplied by the control unit 70. The control unit includes, for example, a drive circuit 75. The control unit 70 is electrically connected to the first portion 21a, the second portion 21b, and the first magnetic layer 11. In this example, the control unit 70 is further electrically connected to the third magnetic layer 13. In this example, a first switching element Sw1 (for example, a transistor) is provided on a current path between the driving circuit 75 and the first magnetic layer 11. A second switching element Sw2 (for example, a transistor) is provided on a current path between the driving circuit 75 and the third magnetic layer 13. These switching elements are included in the control section 70. The control unit 70 supplies the first write current Iw1 to the metal-containing layer 21 in the first write operation. Thereby, a first state is formed. The first write current Iw1 is a current from the first portion 21a to the second portion 21b. The control unit 70 supplies the second write current Iw2 to the metal-containing layer 21 in the second write operation. Thereby, a second state is formed. The second write current Iw2 is a current from the second portion 21b toward the first portion 21a. The first resistance between the first magnetic layer 11 and the first portion 21a after the first writing operation (first state), and the first magnetic layer 11 and the first resistance after the second writing operation (second state) The second resistance is different between the portions 21a. This difference in resistance is, for example, the difference between the states of the second magnetization 12M between the first state and the second state. Similarly, the control unit 70 performs a third writing operation of supplying the first writing current Iw1 to the metal-containing layer 21. Thereby, a third state is formed. The control unit 70 performs a fourth writing operation of supplying the second writing current Iw2 to the metal-containing layer 21. Thereby, a fourth state is formed. The third resistance between the third magnetic layer 13 and the first portion 21a after the third writing operation (third state), and the third magnetic layer 13 and the first resistance after the fourth writing operation (fourth state). The fourth resistance is different between the portions 21a. This difference in resistance is based on the difference in the state of the fourth magnetization 14M between the third state and the fourth state, for example. The control unit 70 may also detect a characteristic (which may also be a voltage, a current, or the like) of a telecommunication resistance between the first magnetic layer 11 and the first portion 21a during the reading operation. The control unit 70 may also detect a characteristic (which may also be a voltage, a current, or the like) corresponding to the resistance between the third magnetic layer 13 and the first portion 21a during the reading operation. Based on the operation of the first switching element Sw1 and the second switching element Sw2 described above, any one of the first multilayer body SB1 (first memory cell) and the second multilayer body SB2 (second memory cell) is selected. Write and read operations are performed on the required memory cells. As described above, the control unit 70 is electrically connected to the first multilayer body (first magnetic layer 11) and the second multilayer body SB2 (third magnetic layer 13). When information is written in the first multilayer body SB1, a specific selection voltage is applied to the first magnetic layer 11. At this time, a non-selective voltage is applied to the second multilayer body SB2. On the other hand, when information is written in the second multilayer body SB2, a specific selection voltage is applied to the third magnetic layer 13. At this time, a non-selective voltage is applied to the first multilayer body SB1. "Applied voltage" also includes the application of a voltage of 0 volts. The potential of the selection voltage is different from the potential of the non-selection voltage. For example, in the first write operation, the control unit 70 sets the first magnetic layer 11 to a potential (for example, a selected potential) different from the potential (for example, a non-selected potential) of the third magnetic layer 13. In the second write operation, the control unit 70 sets the first magnetic layer 11 to a potential (for example, a selected potential) different from the potential (for example, a non-selected potential) of the third magnetic layer 13. For example, in the third write operation, the control unit 70 sets the third magnetic layer 13 to a potential (for example, a selected potential) different from the potential (for example, a non-selected potential) of the first magnetic layer 11. In the fourth write operation, the control unit 70 sets the third magnetic layer 13 to a potential (for example, a selected potential) different from the potential (for example, a non-selected potential) of the first magnetic layer 11. Such potential selection is performed by, for example, the operation of the first switching element Sw1 and the second switching element Sw2. The plurality of layers correspond to the plurality of memory cells, respectively. Different information can be stored in a plurality of memory cells. When information is stored in a plurality of memory cells, for example, one of "1" and "0" may be stored in a plurality of memory cells, and "1" and "a" may be stored in required ones of the plurality of memory cells 0 "the other. For example, one of "1" and "0" may be memorized in one of the plurality of memory cells, and one of "1" and "0" may be memorized in the other of the plurality of memory cells. In the above, the first portion 21a and the second portion 21b may be replaced with each other. For example, the resistance may be a resistance between the first magnetic layer 11 and the second portion 21b. The resistance may be a resistance between the third magnetic layer 13 and the second portion 21b. In the embodiment, a part of the metal-containing layer 21 protrudes in the Y-axis direction based on the position of the laminated body. The thickness of the protruding portion becomes locally thin. This configuration will be described below. As shown in FIG. 1 (c), the third portion 21c includes a first overlapping area 21cc, a first non-overlapping area 21ca, and a second non-overlapping area 21cb. The first overlapping region 21cc overlaps the second magnetic layer 12 in the first direction (Z-axis direction). The first non-overlapping region 21ca does not overlap the second magnetic layer 12 in the first direction. The second non-overlapping region 21cb does not overlap the second magnetic layer 12 in the first direction. The direction from the first non-overlapping area 21ca to the second non-overlapping area 21cb is along the third direction. The third direction intersects the first direction and the second direction. The third direction is, for example, the Y-axis direction. The first overlapping area 21cc is located between the first non-overlapping area 21ca and the second non-overlapping area 21cb in the third direction. The thickness of at least a part of the first non-overlapping region 21ca along the first direction (Z-axis direction) is thinner than the thickness of the first overlapping region 21cc along the first direction of the first overlapping region 21cc is 21cct. The thickness of at least a part of the second non-overlapping region 21cb along the first direction is thinner than the thickness of the first overlapping region 21cct. As described above, in the embodiment, a protruding portion (the first non-overlapping area 21ca and the second non-overlapping area 21cb) is provided, and the thickness of the protruding portion is thinner than the thickness of the other portion (the first overlapping area 21cc) (the thickness of the first overlapping area) 21cct). This reduces the write current. Hereinafter, examples of the characteristics of the magnetic memory device will be described. 2 (a) and 2 (b) are schematic cross-sectional views illustrating the operation of a magnetic memory device. Fig. 2 (a) corresponds to the magnetic memory device 110 of the embodiment. FIG. 2 (b) corresponds to the magnetic memory device 119 of the first reference example. In this first reference example, a first overlapping region 21cc is provided on the third portion 21c of the metal-containing layer 21, and no protruding portion is provided (the first non-overlapping region 21ca and the second non-overlapping region 21cb). As shown in FIG. 2 (b), if a current flows in the metal-containing layer 21, the orbit of the electrons in the metal-containing layer 21 is bent in accordance with the direction of the spin 21sp. It is considered that, on the upper side portion of the metal-containing layer 21, spins 21sp polarized in an antiparallel direction with respect to the second magnetization 12M of the second magnetic layer 12 are accumulated. On the other hand, it is thought that in the lower portion of the metal-containing layer 21, spins 21sp polarized in a direction parallel to the second magnetization 12M are accumulated. It is considered that, at the end in the Y-axis direction of the metal-containing layer 21, spins 21sp polarized upward or downward are accumulated. In the magnetic memory device 119 of the first reference example, the non-overlapping region as described above is not provided on the metal-containing layer 21. In the first reference example, the polarized spins transmit the spin torque from the metal-containing layer 21 to the multilayer body (MTJ element) through the region (the end in the Y-axis direction) polarized in the vertical direction (Z-axis direction). Therefore, the coherence of the magnetization reversal is liable to deteriorate. In contrast, as shown in FIG. 2 (a), in the magnetic memory device 110 according to the embodiment, the first non-overlapping region 21ca and the second non-overlapping region 21ca are provided in the metal-containing layer 21 in addition to the first overlapping region 21cc. The overlapping area 21cb. In addition, the thickness of the non-overlapping regions is made thinner than the thickness of the first overlapping region 21cc. In this case, it is easy to maintain the coherence of spin polarization. Can improve the transfer efficiency of spin torque. This improves writing efficiency. This reduces the write current. On the other hand, consider a second reference example in which the first non-overlapping area 21ca and the second non-overlapping area 21cb are provided, and the thickness of these non-overlapping areas is the same as the thickness of the first overlapping area 21cc. In this second reference example, the first non-overlapping region 21ca and the second non-overlapping region 21cb do not contribute to the transmission of spin torque. As a result, the write current increases. In contrast, in the magnetic memory device 110 of the embodiment, the thickness of the non-overlapping region is made thinner than the thickness of the first overlapping region 21cc. Thereby, for example, polarized electrons having a homogeneity that reduces the spin polarization can be biased to the edge of the metal-containing layer 21, and the first non-overlapping region 21ca and the second non-overlapping region that flow ineffectively in recording function can be reduced. The shunt current in the overlapping area 21cb. This makes it possible, for example, to reduce the write current and to easily maintain the coherence of the spin polarization. Since the transfer efficiency of the spin torque can be improved, the writing efficiency is improved, and the writing current can be reduced. Since the write current can be reduced, the ability to drive, for example, the memory section can be reduced. Thereby, for example, since the size of the drive can be reduced, the memory density can be increased. The reduction of the write current is advantageous for energy saving. For example, the width (protrusion amount) in the Y-axis direction of the non-overlapping region of the metal-containing layer 21 is greater than the protrusion amount due to processing errors. As shown in FIG. 1 (c), for example, the metal-containing layer 21 has a length 21cay along the third direction (Y-axis direction) of the first non-overlapping region 21ca, and a length along the third direction of the second non-overlapping region 21cb. 21cby in length. At this time, the ratio of the total of the length 21cay and the length 21cby with respect to the thickness 21cct of the first overlapping region is assumed to be the first ratio. The first ratio is a ratio of the protruding amount of the metal-containing layer 21 to the thickness. When the first is higher, the amount of protrusion is larger. On the other hand, as shown in FIG. 1 (b), the second magnetic layer 12 may be tapered. For example, the second magnetic layer 12 has a thickness t12 along the first direction (Z-axis direction). The second magnetic layer 12 has a surface 12L (lower surface) facing the metal-containing layer 21 and a surface 12U (upper surface) facing the first intermediate layer 11i. Let the length of the surface 12L along the second direction (X-axis direction) be 12xL. Let the length of the surface 12U along the second direction (X-axis direction) be 12xU in length. At this time, the first ratio is higher than the ratio of the absolute value of the difference between the length 12xL and the length 12xU to the thickness t12. That is, the first ratio is higher than the above ratio due to the taper provided in the second magnetic layer 12. In this way, by providing larger protrusions (the first non-overlapping region 21ca and the second non-overlapping region 21cb), it is possible to maintain the coherence of the spin polarization and improve the transmission efficiency of the spin torque. Improves write efficiency and reduces write current. This can increase memory density. If the protruding amount of the protruding portion is too large, the width in the Y-axis direction of the metal-containing layer 21 becomes large. When a plurality of metal-containing layers 21 are provided, the distance between the plurality of metal-containing layers 21 becomes large, and the memory density cannot be sufficiently increased. In the embodiment, for example, each of the length 21cay of the first non-overlapping region 21ca along the third direction (Y-axis direction) and the length 21cby of the second non-overlapping region 21cb along the third direction is preferably The width of the second magnetic layer 12 in the third direction (length 21yL described later) is less than 0. 25 times. This can maintain a higher memory density. In an embodiment, the protruding amount of the protruding portion of the metal-containing layer 21 (for example, a length of 21cay or a length of 21cby), such as the spin diffusion length of the metal-containing layer 21 of 0. 5 times to 10 times. As shown in FIG. 1 (c), the length along the third direction (Y-axis direction) of the surface 12L facing the metal-containing layer 21 of the second magnetic layer 12 is set to a length of 12 μL. The length along the third direction (Y-axis direction) of the surface 12U facing the first intermediate layer 11i of the second magnetic layer 12 is set to a length of 12 μU. In the embodiment, the first ratio is higher than the absolute value of the difference between the length 12yL and the length 12yU with respect to the thickness t12 of the second magnetic layer 12 along the first direction. The second laminated body SB2 also has the same configuration as the first laminated body SB1 as follows. As shown in FIG. 1 (d), the fourth portion 21d includes a second overlapping area 21dc, a third non-overlapping area 21da, and a fourth non-overlapping area 21db. The second overlapping region 21dc overlaps the fourth magnetic layer 14 in the first direction (Z-axis direction). The third non-overlapping region 21da does not overlap the fourth magnetic layer 14 in the first direction. The fourth non-overlapping region 21db does not overlap the fourth magnetic layer 14 in the first direction. The direction from the third non-overlapping area 21da to the fourth non-overlapping area 21db is along the third direction (Y-axis direction). The second overlapping area 21dc is located between the third non-overlapping area 21da and the fourth non-overlapping area 21db in the third direction. The thickness of at least a part of the third non-overlapping region 21da along the first direction (Z-axis direction) is thinner than the thickness of the second overlapping region 21dc along the first direction of the second overlapping region 21dc is 21dct. The thickness of at least a part of the fourth non-overlapping region 21db along the first direction is thinner than the thickness of the second overlapping region 21dct. As shown in FIG. 1 (d), the metal-containing layer 21 has a length 21day along the third direction (Y-axis direction) of the third non-overlapping region 21da and a length along the third direction of the fourth non-overlapping region 21db 21dby. At this time, the ratio of the total of the length 21day and the length 21dby to the thickness 21dct of the second overlapping region is set as the second ratio. On the other hand, as shown in FIG. 1 (b), the fourth magnetic layer 14 has a thickness t14 along the first direction (Z-axis direction). The fourth magnetic layer 14 has a surface 14L (lower surface) opposed to the metal-containing layer 21 and a surface 14U (upper surface) opposed to the second intermediate layer 12i. The length of the surface 14L along the second direction (X-axis direction) is set to a length of 14xL. The length of the surface 14U in the second direction (X-axis direction) is set to a length of 14xU. At this time, the second ratio is higher than the ratio of the absolute value of the difference between the length 14xL and the length 14xU to the thickness t14. That is, the second ratio is higher than the ratio due to the taper provided in the fourth magnetic layer 14. As shown in FIG. 1 (d), the length along the third direction (Y-axis direction) of the surface 14L facing the metal containing layer 21 of the fourth magnetic layer 14 is set to a length of 14 μL. The length along the third direction (Y-axis direction) of the surface 14U facing the second intermediate layer 12i of the fourth magnetic layer 14 is set to a length of 14 μU. In the embodiment, the second ratio is higher than the ratio of the absolute value of the difference between the length 14yL and the length 14yU to the thickness t14 of the fourth magnetic layer 14 along the first direction. Information related to the aforementioned length, thickness, and width can be obtained, for example, by a transmission electron microscope. 3 (a) and 3 (b) are schematic diagrams illustrating a magnetic memory device according to the first embodiment. Fig. 3 (a) is a perspective view. Fig. 3 (b) is a plan view. As shown in FIG. 3 (b), the magnetic memory device 110 includes, for example, a plurality of electrodes 22X and a plurality of metal-containing layers 21X. The plurality of electrodes 22X extend in the Y-axis direction, for example. The plurality of electrodes 22X are arranged in the X-axis direction. One of the plurality of electrodes 22X is an electrode 22. The other of the plurality of electrodes 22X is an electrode 22A. The plurality of metal-containing layers 21X extend in the X-axis direction, for example. The plurality of metal-containing layers 21X are aligned in the Y-axis direction. One of the plurality of metal-containing layers 21X is the metal-containing layer 21. The other of the plurality of metal-containing layers 21X is a metal-containing layer 21A. For example, a multilayer body SB0 is provided between the plurality of electrodes 22X and the plurality of metal-containing layers 21X. As shown in FIG. 3 (a), for example, a first multilayer body SB1 is provided between the metal-containing layer 21 and the electrode 22. A second laminated body SB2 is provided between the metal-containing layer 21 and the electrode 22A. As shown in FIG. 3 (b), for example, the distance between the plurality of electrodes 22X is "2F". The distance between the plurality of metal-containing layers 21X is, for example, “3F”. "F" is, for example, the minimum processing size. As shown in FIG. 3 (b), the control unit 70 includes first to third circuits 71 to 73. The first circuit 71 is electrically connected to the first portion 21 a of the metal-containing layer 21. The second circuit 72 is electrically connected to the second portion 21 b of the metal-containing layer 21. The third circuit 73 is electrically connected to the multilayer body SB1 (the first magnetic layer 11) via the electrode 22. The first circuit 71 is electrically connected to each of one ends of the plurality of metal-containing layers 21X. The second circuit 72 is electrically connected to each of the other ends of the plurality of metal-containing layers 21X. The third circuit 73 is electrically connected to each of the plurality of electrodes 22X. In FIG. 3 (b), the switching element is omitted (see FIG. 1 (a)). 4 (a) to 4 (c) are schematic cross-sectional views illustrating another magnetic memory device according to the first embodiment. As shown in FIG. 4 (a), in another magnetic memory device 110A of this embodiment, a metal-containing layer 21, a first laminated body SB1, and a second laminated body SB2 are provided. In this example, in the region between the two laminated bodies, the thickness of the metal-containing layer 21 becomes locally thin. An insulating portion 40 is provided around the plurality of laminated bodies. Otherwise, it is the same as the magnetic memory device 110. In the magnetic memory device 110A, the thickness 21et of the fifth portion 21e of the metal-containing layer 21 along the first direction (Z-axis direction) is thinner than the thickness of the first overlapping region 21cct. The thickness 21et is thinner than the thickness 21dct of the second overlapping region. By setting such a thickness difference, for example, spin homology is improved. For example, in the case where the width (length along the Y-axis direction) of the metal-containing layer 21 is larger than the width (length along the Y-axis direction) of the multilayer body SB0, the spin homology is further improved. For example, since the thickness 21et of the fifth portion 21e of the metal-containing layer 21 is thin, when the electrons pass through the fifth portion 21e, the energy consumption per unit movement distance becomes high. The movement direction of the electrons is along the X-axis direction, and for example, the dispersion (unevenness) of the current flowing direction from the fifth portion 21e to the third portion 21c or the fourth portion 21d becomes smaller. As a result, the dispersion (unevenness) of the direction of the electrons flowing into the multilayer body SB0 is suppressed, and the spin homology is improved. For example, after forming the above-mentioned laminated body on the metal-containing film that becomes the metal-containing layer 21, the surface of the metal-containing film that is not covered by the laminated body is treated (for example, plasma treatment). The treatment is, for example, an oxidation treatment or a nitridation treatment. Thereby, the surface portion of the treated metal-containing film is oxidized or nitrided. The remaining portion becomes the metal-containing layer 21. For example, the thickness difference described above can be formed by such a treatment. The insulating portion 40 includes, for example, at least a part selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride. The insulating portion 40 may include a part of a compound formed by the above-mentioned oxidation or nitridation. A compound layer 41 is provided in this example. The compound layer 41 includes a compound containing a metal contained in the second magnetic layer 12 (or the fourth magnetic layer 14). The compound layer 41 may further include a compound containing a metal contained in the first magnetic layer 11 (or the third magnetic layer 13). The second magnetic layer 12 has a side surface 12s. The side surface 12s intersects the second direction (X-axis direction), for example. The compound layer 41 faces the side surface 12s. The fourth magnetic layer 14 has a side surface 14s. The side surface 14s intersects the second direction (X-axis direction), for example. The compound layer faces the side 14s. The compound layer 41 can suppress, for example, a leakage current on the side surface of the laminated body. As shown in FIG. 4 (b), in another magnetic memory device 110B of this embodiment, a first compound region 42a (compound layer) is provided. The first compound region 42a contains a compound containing a metal contained in the second magnetic layer 12 (or the fourth magnetic layer 14). The first compound region 42 a faces the side surface 12 s of the second magnetic layer 12 and the side surface 14 s of the fourth magnetic layer 14. The first compound region 42 a is located between the second magnetic layer 12 and the fourth magnetic layer 14 in a direction (X-axis direction) connecting the second magnetic layer 12 and the fourth magnetic layer 14. For example, the first compound region 42 a is continuously provided between the second magnetic layer 12 and the fourth magnetic layer 14. The first compound region 42 a is formed by, for example, processing a part of the magnetic film that becomes the second magnetic layer 12 and the fourth magnetic layer 14. The unprocessed portions become the second magnetic layer 12 and the fourth magnetic layer 14. This treatment is oxidation or nitridation. The processed portion (the first compound region 42a) functions as an insulating film. Processing may also include amorphization. The first compound region 42a is provided between the insulating portion 40 and the fifth portion 21e. A second compound region 42b may be provided between the first compound region 42a and the fifth portion 21e. The second compound region 42 b may be formed by, for example, changing a part of the metal-containing film serving as the metal-containing layer 21. The second compound region 42 b includes, for example, an oxide, a nitride, or an oxynitride of a metal contained in the metal-containing layer 21. The second compound region 42b may be formed by the above-mentioned treatment of the first compound region 42a. The boundary between the second compound region 42a and the second compound region 42b may be clear or unclear. The metal contained in the second compound region 42b may also diffuse into the first compound region 42a. The metal contained in the first compound region 42a may also diffuse into the second compound region 42b. The first compound region 42 a may not be connected between the second magnetic layer 12 and the fourth magnetic layer 14. The first compound region 42a may further include a metal contained in the first magnetic layer 11 (or the third magnetic layer 13). As shown in FIG. 4 (c), in another magnetic memory device 110C of this embodiment, the crystal structure of the third portion 21c of the metal-containing layer 21 and other portions of the metal-containing layer 21 (for example, the first portion 21a, the first portion The crystal structures of the second part 21b and the fifth part 21e, etc.) are different. For example, surface treatment is performed on a part of the metal-containing film that becomes the metal-containing layer 21. On the other hand, this processing is not performed on the portions (the third portion 21c and the fourth portion 21d, etc.) located below the laminated body. This process is, for example, irradiation of a gas cluster ion beam. Irradiate, for example, an Ar cluster. By this treatment, the crystal structure of at least a part of the treated part is changed. For example, the crystal structure of the third portion 21c of the metal-containing layer 21 is a β phase. The crystal structure of at least a part (for example, the surface part) of other parts (for example, the first part 21a, the second part 21b, and the fifth part 21e) of the metal-containing layer 21 is an α phase. Information related to these crystal structures is obtained, for example, by observation with a transmission electron microscope. For example, in a unit volume (unit area), the proportion of the β-phase region of the third portion 21c in the entire portion of the third portion 21c is higher than that of other regions (such as the first portion 21a, the second portion 21b, or the fifth portion 21e) The ratio of the β-phase region to the other regions. For example, at least a part of the third portion 21c includes β-phase Ta. For example, at least a part of the first portion 21a (or the fifth portion 21e) includes Ta of the α phase. In the β-phase Ta, the absolute value of the spin Hall angle is large. On the other hand, the conductivity of Ta in the α phase is higher than that of Ta in the β phase. As described above, by making the crystal structure different, for example, a reduction in resistance due to a high electrical conductivity can be achieved, so that the writing power can be reduced. In addition, the resistance of the metal-containing layer 21 can be reduced. By reducing the writing power, for example, the ability to drive a memory unit can be reduced, and the size of the drive can be reduced, for example. Can increase memory density. 5 (a) to 5 (h) are schematic cross-sectional views illustrating another magnetic memory device according to the first embodiment. As shown in FIG. 5 (a), in the magnetic memory device 110a, the thickness of each of the first non-overlapping region 21ca and the second non-overlapping region 21cb changes stepwise. As shown in FIG. 5 (b), in the magnetic memory device 110b, the width of the third direction (Y-axis direction) of the third portion 21c of the metal-containing layer 21 is the largest at the center portion of the first direction (Z-axis direction). . The thickness of each of the first non-overlapping region 21ca and the second non-overlapping region 21cb continuously changes. As shown in FIG. 5 (c), in the magnetic memory device 110c, the width in the third direction (Y-axis direction) of the third portion 21c of the metal-containing layer 21 is the center portion in the first direction (Z-axis direction) is maximum. The thickness of each of the first non-overlapping region 21ca and the second non-overlapping region 21cb changes stepwise. As shown in FIG. 5 (d), in the magnetic memory device 110 d, the third portion 21 c of the metal-containing layer 21 has a surface 21 cU facing the second magnetic layer 12. The width of the surface 21cU in the third direction (the Y-axis direction) is substantially the same as the width of the second magnetic layer 12 in the third direction. For example, the aforementioned width of the surface 21cU is 0 of the aforementioned width of the second magnetic layer 12. 9 times or more 1. Less than 1 time. As shown in FIG. 5 (e), in the magnetic memory device 110e, the third portion 21c of the metal-containing layer 21 has a surface 21cU facing the second magnetic layer 12. The width of the surface 21cU in the third direction (the Y-axis direction) is larger than the width of the second magnetic layer 12 in the third direction. As shown in FIG. 5 (f), in the magnetic memory device 110f, the metal-containing layer 21 has a surface 21cL. The surface 21cL is a surface opposite to the surface 21cU. The width of the surface 21cU along the third direction (Y-axis direction) is larger than the width of the surface 21cL along the third direction (Y-axis direction). In this example, the width of the surface 21cL along the third direction (the Y-axis direction) is substantially the same as the width of the second magnetic layer 12 along the third direction. For example, the width of the surface 21cL is 0 of the width of the second magnetic layer 12. 9 times or more 1. Less than 1 time. As shown in FIG. 5 (g), in the magnetic memory device 110g, the width of the surface 21cU along the third direction (Y-axis direction) is larger than the width of the surface 21cL along the third direction (Y-axis direction). In this example, the width of the surface 21cL in the third direction (the Y-axis direction) is larger than the width of the second magnetic layer 12 in the third direction. As shown in FIG. 5 (h), in the magnetic memory device 110h, the width of the surface 21cU along the third direction (Y-axis direction) is also larger than the width of the surface 21cL along the third direction (Y-axis direction). In this example, the width of the surface 21cL along the third direction (the Y-axis direction) is smaller than the width of the second magnetic layer 12 along the third direction. Thus, in this embodiment, the width of the metal-containing layer 21 can be variously changed. In the embodiment, the center in the Y-axis direction of the multilayer body SB0 and the center in the Y-axis direction of the metal-containing layer 21 may be the same or may be offset. In the embodiment, at least one of the difference in the taper shape and the difference in the taper angle may be provided at the two end portions in the Y-axis direction of the metal-containing layer 21. In the embodiment, the length in the Y-axis direction of the second magnetic layer 12 may be shorter than the length in the Y-axis direction of the metal-containing layer 21. For example, an end portion in the Y-axis direction of the magnetic film serving as the second magnetic layer 12 may be not magnetized by oxidation or the like. The non-oxidized magnetic film becomes the second magnetic film 12. The second magnetic layer may be formed by using a magnetic regional shape formed by oxidation or the like. The metal-containing layer 21 may be formed in accordance with the conductive regional shape of the metal-containing film serving as the metal-containing layer 21. Hereinafter, examples of the metal-containing layer 21, the first magnetic layer 11, the second magnetic layer 12, and the first intermediate layer 11i will be described. The description related to the following metal-containing layer 21 is applicable to other metal-containing layers 21X (metal-containing layer 21A, etc.). The description related to the first magnetic layer 11 below can be applied to the third magnetic layer 13. The description related to the second magnetic layer 12 below can be applied to the fourth magnetic layer. The description related to the first intermediate layer 11i below can be applied to the second intermediate layer 12i. The metal-containing layer 21 may also include, for example, a material having a high spin Hall effect. For example, the metal-containing layer 21 is in contact with the second magnetic layer 12. For example, the metal-containing layer 21 imparts a spin orbit moment to the second magnetic layer 12. The metal-containing layer 21 can also function as, for example, a spin orbit layer (SOL). For example, the orientation of the second magnetization 12M of the second magnetic layer 12 can be changed by the spin orbit moment generated between the metal-containing layer 21 and the second magnetic layer 12. For example, the direction of the second magnetization 12M can be controlled according to the direction of the current flowing in the metal-containing layer 21 (the direction of the first write current Iw1 or the direction of the second write current Iw2). The metal-containing layer 21 includes, for example, at least one selected from the group consisting of tantalum and tungsten. The metal-containing layer 21 includes, for example, at least one selected from the group consisting of β-tantalum and β-tungsten. The spin torque angle of these materials is negative. The absolute value of the spin torque angle of these materials is large. Thereby, the second magnetization 12M can be efficiently controlled by the write current. The metal-containing layer 21 may include at least one selected from the group consisting of platinum or gold. The spin Hall angle of these materials is positive. The absolute value of the spin Hall angle of these materials is large. Thereby, the second magnetization 12M can be efficiently controlled by the write current. The direction (orientation) of the spin orbit moment applied to the second magnetic layer 12 varies depending on the polarity of the spin Hall angle. For example, the metal-containing layer 21 imparts a spin-orbit interaction torque to the second magnetic layer 12. The second magnetic layer 12 is, for example, a magnetization free layer. The second magnetic layer 12 includes, for example, at least one of a ferromagnetic material and a soft magnetic material. The second magnetic layer 12 may include, for example, an artificial grating. The second magnetic layer 12 includes, for example, at least one selected from the group consisting of FePd (iron-palladium), FePt (iron-platinum), CoPd (cobalt-palladium), and CoPt (cobalt-platinum). The soft magnetic material includes, for example, CoFeB (cobalt-iron-boron). The artificial grating includes a laminated film including, for example, a first film and a second film. The first film includes, for example, at least any one of NiFe (nickel-iron), Fe (iron), and Co (cobalt). The second film includes, for example, at least any one of Cu (copper), Pd (palladium), and Pt (platinum). The first film is, for example, a magnetic material, and the second film is, for example, a non-magnetic material. The second magnetic layer may include, for example, a ferrimagnetic material. In the embodiment, for example, the second magnetic layer 12 has in-plane magnetic anisotropy. Thereby, for example, a polarization spin antiparallel to the magnetization direction can be obtained from the metal-containing layer 21. For example, the second magnetic layer 12 may have at least any one of in-plane shape magnetic anisotropy, in-plane crystalline magnetic anisotropy, and in-plane inductive magnetic anisotropy due to stress and the like. The first intermediate layer 11i contains, for example, a material selected from the group consisting of MgO (magnesium oxide), CaO (calcium oxide), SrO (strontium oxide), TiO (titanium oxide), VO (vanadium oxide), NbO (niobium oxide), and Al. 2 O 3 (Alumina) at least one of the group. The first intermediate layer 11i is, for example, a tunnel barrier layer. When the first intermediate layer 11i includes MgO, the thickness of the first intermediate layer 11i is, for example, about 1 nm. The first magnetic layer 11 is, for example, a reference layer. The first magnetic layer 11 is, for example, a magnetic fixed layer. The first magnetic layer 11 includes, for example, Co (cobalt) and CoFeB (cobalt-iron-boron). The first magnetization 11M of the first magnetic layer 11 is fixed in a substantially single direction (a direction crossing the Z-axis direction) in a plane. The first magnetic layer 11 is, for example, an in-plane magnetized film. For example, the thickness of the first magnetic layer 11 (reference layer) is thicker than the thickness of the second magnetic layer 12 (free layer). Thereby, the first magnetization 11M of the first magnetic layer 11 is stably fixed in a specific direction. In the embodiment, for example, the base member 20s is alumina. The metal-containing layer 21 is a Ta layer (thickness is, for example, 3 nm or more and 10 nm or less). The second magnetic layer 12 includes, for example, a CoFeB layer (having a thickness of, for example, 1. Above 5 nm 2. 5 nm or less). The first intermediate layer 11i includes, for example, a MgO layer (the thickness is, for example, 0. Above 8 nm 1. 2 nm or less) The first magnetic layer 11 includes first to third films. The first film is provided between the third film and the first intermediate layer 11i. The second film is provided between the first film and the third film. The first film includes, for example, a CoFeB film (with a thickness of, for example, 1. Above 5 nm 2. 5 nm or less). The second film includes, for example, a Ru film (with a thickness of, for example, 0. Above 7 nm 0. 9 nm or less). The third film includes, for example, a CoFeB film (having a thickness of, for example, 1. Above 5 nm 2. 5 nm or less) A ferromagnetic layer may be provided, for example. A first magnetic layer 11 is provided between the ferromagnetic layer and the intermediate layer 11i. The ferromagnetic layer is, for example, an IrMn layer (having a thickness of 7 nm or more and 9 nm or less). The ferromagnetic layer is a first magnetization 11M to which the first magnetic layer 11 is fixed. A Ta layer may be provided on the ferromagnetic layer. (Second Embodiment) Figs. 6 (a) to 6 (d) are schematic diagrams illustrating a magnetic memory device according to a second embodiment. Fig. 6 (a) is a perspective view. Fig. 6 (b) is a sectional view taken along line D1-D2 of Fig. 6 (a). Fig. 6 (c) is a sectional view taken along line E1-E2 of Fig. 6 (a). Fig. 6 (d) is a sectional view taken along line F1-F2 of Fig. 6 (a). As shown in FIGS. 6 (a) to 6 (d), the magnetic memory device 120 of this embodiment also includes a metal-containing layer 21, first to fourth magnetic layers 11 to 14, first intermediate layer 11i, and second intermediate layer. Layer 12i and control section 70. In this example, the metal-containing layer 21 is also provided on the base member 20s. The metal-containing layer 21 includes first to fifth portions 21a to 21e. The third portion 21c is located between the first portion 21a and the second portion 21b. The fourth portion 21d is located between the third portion 21c and the second portion 21b. The fifth portion 21e is located between the third portion 21c and the fourth portion 21d. The first magnetic layer 11 is separated from the third portion 21c in the first direction (for example, the Z-axis direction). The first direction intersects with the second direction (for example, the X-axis direction) from the first portion 21a toward the second portion 21b. The second magnetic layer 12 is provided between a portion of the third portion 21 c and the first magnetic layer 11. The first intermediate layer 11 i includes a portion provided between the first magnetic layer 11 and the second magnetic layer 12. The first intermediate layer 11i is non-magnetic. The first magnetic layer 11, the second magnetic layer 12, and the first intermediate layer 11i are contained in the first laminated body SB1. The third magnetic layer 13 is spaced from the fourth portion 21d in the first direction (Z-axis direction). The fourth magnetic layer 14 is provided between a portion of the fourth portion 21 d and the third magnetic layer 13. The second intermediate layer 12 i includes a portion provided between the third magnetic layer 13 and the fourth magnetic layer 14. The second intermediate layer 12i is non-magnetic. The third magnetic layer 13, the fourth magnetic layer 14, and the second intermediate layer 12i are contained in the second laminated body SB2. The control unit 70 is electrically connected to the first portion 21a, the second portion 21b, the first magnetic layer 11 and the third magnetic layer 13. In this example, a first switching element Sw1 is also provided in a current path between the driving circuit 75 of the control section 70 and the first magnetic layer 11. A second switching element Sw2 is provided in a current path between the driving circuit 75 and the third magnetic layer 13. In this example as well, the control unit 70 supplies the first writing current Iw1 from the first portion 21a to the second portion 21b to the metal-containing layer 21 in the first writing operation to form the first state. In the second writing operation, the control unit 70 supplies the second writing current Iw2 from the second portion 21b to the first portion 21a to the metal-containing layer 21 to form a second state. The first resistance between the first magnetic layer 11 and the first portion 21a in the first state is different from the second resistance between the first magnetic layer 11 and the first portion 21a in the second state. The control unit 70 supplies the first write current Iw1 to the metal-containing layer 21 to form a third state. The control unit 70 supplies the second write current Iw2 to the metal-containing layer 21 to form a fourth state. The third resistance between the third magnetic layer 13 and the first portion 21a in the third state is different from the fourth resistance between the third magnetic layer 13 and the first portion 21a in the fourth state. The control unit 70 may also detect a characteristic (which may also be a voltage, a current, or the like) corresponding to the resistance between the first magnetic layer 11 and the first portion 21a during the reading operation. The control unit 70 can also detect the characteristics (also voltage or current, etc.) corresponding to the resistance between the third magnetic layer 13 and the first portion 21a during the reading operation. As shown, the width in the Y-axis direction of the metal-containing layer 21 is different between the third portion 21c and the fifth portion 21e. The width in the Y-axis direction of the metal-containing layer 21 is different between the fourth portion 21d and the fifth portion 21e. In addition, the configuration described for the magnetic memory device 110 can be applied to the magnetic memory device 120, for example. An example of the width in the Y-axis direction of the metal-containing layer 21 will be described below. As shown in FIG. 6 (a), the third portion 21 c of the metal-containing layer 21 projects in the Y-axis direction based on the second magnetic layer 12. For example, as shown in FIG. 6 (b), the length of the third portion 21c along the third direction (for example, the Y-axis direction) is set to a length 21cy. The third direction intersects the first direction (Z-axis direction) and the second direction (X-axis direction). On the other hand, let the length of the second magnetic layer 12 along the third direction be 12y. The length 12y is, for example, the average of the length 12yL and the length 12yU already described. The length 21cy is longer than the length 12y. On the other hand, as shown in FIG. 6 (d), the length of the fifth portion 21e of the metal containing layer 21 along the third direction is set to a length 21ey. The aforementioned length 12cy of the third portion 21c of the metal-containing layer 21 is longer than the aforementioned length 21ey of the fifth portion 21e along the third direction. On the other hand, as shown in FIG. 6 (c), the length 21dy of the fourth portion 21d of the metal containing layer 21 along the third direction is longer than the length 14y of the fourth magnetic layer 14 along the third direction. The length 21dy of the fourth portion 21d is longer than the length 21ey of the fifth portion 21e (see FIG. 6 (d)). In this way, the width of the metal-containing layer 21 in the portion (the third portion 21c and the fourth portion 21d) in which the laminate is provided is larger than the metal-containing layer 21 in the portion (the fifth portion 21e) where the laminate is not provided The width along the Y axis. For example, a third reference example in which the width in the Y-axis direction of the metal-containing layer 21 is fixed is assumed. For example, in the metal-containing layer 21, the conductance of the area overlapping the build-up layer is higher than the conductance of the area not overlapping the build-up layer. Therefore, in the third reference example, the current is more easily concentrated at the end in the Y-axis direction of the metal-containing layer 21 than in the center portion in the Y-axis direction. The dispersion (unevenness) in the direction of the recording current due to the current concentration causes, for example, the dispersion (unevenness) in the direction of the spin current. As a result, the dispersion of spin homogeneity becomes large, and the recording current increases. On the other hand, in the embodiment, the width in the Y-axis direction of the region of the metal-containing layer 21 that coincides with the build-up layer is partially widened. For example, a protruding portion (a first non-overlapping region 21ca and a second non-overlapping region 21cb) is provided in the third portion 21c. This protrusion becomes a spin local area. As a result, compared with the third reference example described above, current concentration at the end in the Y-axis direction of the metal-containing layer 21 can be suppressed. For example, the distribution of the write current becomes uniform. This effectively obtains the effect of the spin orbit moment. For example, the control of the second magnetization 12M of the second magnetic layer 12 using the write current is efficiently performed. Thereby, for example, a magnetic memory device capable of reducing a write current can be provided. The memory density can also be increased in this embodiment. For example, since the non-overlapping regions are provided in the third portion 21c and the fourth portion 21d, a difference in width as described above occurs. That is, the third portion 21c includes a first overlapping area 21cc, a first non-overlapping area 21ca, and a second non-overlapping area 21cb. The first overlapping region 21cc overlaps the second magnetic layer 12 in the first direction (Z-axis direction). The first non-overlapping region 21ca does not overlap the second magnetic layer 12 in the first direction. The second non-overlapping region 21cb does not overlap the second magnetic layer 12 in the first direction. The direction from the first non-overlapping area 21ca to the second non-overlapping area 21cb is along the third direction (Y-axis direction). The first overlapping area 21cc is located between the first non-overlapping area 21ca and the second non-overlapping area 21cb in the third direction. Similarly, the fourth portion 21d includes a second overlapping area 21dc, a third non-overlapping area 21da, and a fourth non-overlapping area 21db. The second overlapping region 21dc overlaps the fourth magnetic layer 14 in the first direction (Z-axis direction). The third non-overlapping region 21da does not overlap the fourth magnetic layer 14 in the first direction. The fourth non-overlapping region 21db does not overlap the fourth magnetic layer 14 in the first direction. The direction from the third non-overlapping area 21da to the fourth non-overlapping area 21db is along the third direction (Y-axis direction). The second overlapping area 21dc is located between the third non-overlapping area 21da and the fourth non-overlapping area 21db in the third direction. In this embodiment, the thickness of the non-overlapping region may be the same as the thickness of the overlapping region. In this embodiment, the thickness of the non-overlapping region may be thicker than the thickness of the overlapping region. As described later, the thickness of the non-overlapping region may be thinner than the thickness of the overlapping region. FIG. 7 is a schematic plan view illustrating a magnetic memory device according to a second embodiment. As shown in FIG. 7, in the magnetic memory device 120, a plurality of electrodes 22X and a plurality of metal containing layers 21X may be provided. The plurality of electrodes 22X and the plurality of metal-containing layers 21X are as described with reference to FIG. 3 (b). For example, a multilayer body SB0 is provided between the plurality of electrodes 22X and the plurality of metal-containing layers 21X. For example, a first multilayer body SB1 is provided between the metal-containing layer 21 and the electrode 22. A second multilayer body SB2 is provided between the metal-containing layer 21 and the electrode 22A. In this example, the position of the end of the fifth portion 21e of the metal-containing layer 21 is substantially the position along the end of the second magnetic layer 12 (the position of the end of the first multilayer body SB1). For example, the length 21ey of the fifth part 21e along the third direction (Y-axis direction) is 0, which is the length of the second magnetic layer 12 along the third direction 12y. 9 times or more 1. Less than 1 time. In this embodiment, one laminated body SB1 may be provided. For example, the magnetic memory device 120 shown in FIG. 6 (a) may include a metal-containing layer 21, a first magnetic layer 11, a second magnetic layer 12, a first intermediate layer 11i, and a control unit 70. At this time, the length 21cy (see FIG. 6 (b)) of the third portion 21c along the third direction (Y-axis direction) crossing the first direction and the second direction is longer than the length of the second magnetic layer 12 along the third direction. The length of the direction is 12y longer. In addition, the length 21cy of the third portion 21c is longer than the length along the third direction of the portion between the third portion 21c and the second portion 21b (or, for example, the fifth portion 21e shown in FIG. 6 (a)). (For example, the length 21ey shown in FIG. 6 (d)) is longer. In this case, the control unit 70 also performs the first and second write operations described above. At this time, the first resistance between the first magnetic layer 11 after the first writing operation and any one of the first portion 21a and the second portion 21b, and the first magnetic layer 11 after the second writing operation, The second resistance is different between any of the first portion 21a and the second portion 21b. A magnetic memory device can be provided in such a magnetic memory device, which can also improve the memory density. 8 (a) and 8 (b) are schematic cross-sectional views illustrating a magnetic memory device according to a second embodiment. Fig. 8 (a) is a sectional view corresponding to the line D1-D2 of Fig. 6 (a). Fig. 8 (b) is a sectional view corresponding to the line E1-E2 in Fig. 6 (a). As shown in FIG. 8 (a), in another magnetic memory device 121 of this embodiment, the third portion 21c of the metal-containing layer 21 includes a first overlapping region 21cc, a first non-overlapping region 21ca, and a second non-overlapping region 21cb. . In this example, the thickness of at least a part of the first non-overlapping region 21ca along the first direction (Z-axis direction) is thinner than the thickness of the first overlapping region 21cc along the first direction along the first direction 21cct. The thickness of at least a part of the second non-overlapping region 21cb along the first direction is thinner than the thickness of the first overlapping region 21cct. As shown in FIG. 8 (b), the fourth portion 21d includes a second overlapping area 21dc, a third non-overlapping area 21da, and a fourth non-overlapping area 21db. The thickness of at least a part of the third non-overlapping region 21da along the first direction (Z-axis direction) is thinner than the thickness of the second overlapping region 21dc along the first direction of the second overlapping region 21dc. The thickness of at least a part of the fourth non-overlapping region 21db along the first direction is thinner than the thickness of the second overlapping region 21dct. Otherwise, it is the same as the magnetic memory device 120. In the magnetic memory device 121, by reducing the non-overlapping region, for example, the homology of spin polarization can be maintained. It can improve the transfer efficiency of spin torque and suppress the recording current. This improves writing efficiency. This reduces the write current. This can further increase the memory density. In the magnetic memory device 121, the third portion 21c, the first overlapping region 21cc, and the second magnetic layer 12 are overlapped in the first direction (Z-axis direction). The first non-overlapping region 21ca does not overlap the second magnetic layer 12 in the first direction. The second non-overlapping region 21cb does not overlap the second magnetic layer 12 in the first direction. The direction from the first non-overlapping area 21ca to the second non-overlapping area 21cb is along the third direction (Y-axis direction). The first overlapping area 21cc is located between the first non-overlapping area 21ca and the second non-overlapping area 21cb in the third direction. Similarly, the fourth portion 21d includes a second overlapping area 21dc, a third non-overlapping area 21da, and a fourth non-overlapping area 21db. The second overlapping region 21dc overlaps the fourth magnetic layer 14 in the first direction (Z-axis direction). The third non-overlapping region 21da does not overlap the fourth magnetic layer 14 in the first direction. The fourth non-overlapping region 21db does not overlap the fourth magnetic layer 14 in the first direction. The direction from the third non-overlapping region 21d to the fourth non-overlapping region 21db is along the third direction (Y-axis direction). The second overlapping area 21dc is located between the third non-overlapping area 21da and the fourth non-overlapping area 21db in the third direction. In the magnetic memory device 121, the total length of the first non-overlapping area 21ca along the third direction (Y-axis direction) and the length of the second non-overlapping area 21cb along the third direction 21cby are compared with the first The ratio of the overlapped region thickness 21cct is set to the first ratio. As the magnetic memory device 121, a part of the configuration of the magnetic memory device 110 (see FIG. 1 (b)) can be applied. In the magnetic memory device 121, the thickness of the second magnetic layer 12 (thickness of the second magnetic layer along the first direction) is also set to a thickness t12 (see FIG. 1 (b)). The length along the second direction of the surface 12L of the second magnetic layer 12 facing the metal-containing layer 21 was set to a length of 12 × L. The length along the second direction of the surface 12U of the second magnetic layer 12 facing the first intermediate layer 11i is set to a length of 12xU. For example, the first ratio is higher than the ratio of the absolute value of the difference between the length 12xL and the length 12xU to the thickness t12. By increasing the width in the Y-axis direction of the non-overlapping region, for example, dispersion of spin homology can be suppressed. It can improve the writing efficiency and reduce the writing current. 9 (a) to 9 (c) are schematic cross-sectional views illustrating another magnetic memory device according to the second embodiment. As shown in FIG. 9 (a), in another magnetic memory device 122A of this embodiment, a metal-containing layer 21, a first laminated body SB1, and a second laminated body SB2 are also provided. In the magnetic memory device 122A, the thickness 21et of the fifth portion 21e of the metal-containing layer 21 along the first direction (Z-axis direction) is thinner than the thickness of the first overlapping region 21cct. The thickness 21et is thinner than the thickness 21dct of the second overlapping region. By setting such a thickness difference, for example, spin homology is improved. In this example, a compound layer 41 is provided. The compound layer 41 includes a compound containing a metal contained in the second magnetic layer 12 (or the fourth magnetic layer 14). The compound layer 41 faces the side surface 12s of the second magnetic layer 12. The compound layer 41 faces the side surface 14s of the fourth magnetic layer 14. The compound layer 41 can suppress, for example, a leakage current on the side surface of the laminated body. As shown in FIG. 9 (b), in another magnetic memory device 122B of this embodiment, a first compound region 42a (compound layer) is provided. The first compound region 42a contains a compound containing a metal contained in the second magnetic layer 12 (or the fourth magnetic layer 14). The first compound region 42 a faces the side surface 12 s of the second magnetic layer 12 and the side surface 14 s of the fourth magnetic layer 14. The first compound region 42 a is provided continuously between the second magnetic layer 12 and the fourth magnetic layer 14. A second compound region 42b may be provided between the first compound region 42a and the fifth portion 21e. The second compound region 42 b includes, for example, an oxide, a nitride, or an oxynitride of a metal contained in the metal-containing layer 21. In another magnetic memory device 122C of this embodiment shown in FIG. 9 (c), the crystal structure of the third portion 21c of the metal-containing layer 21 and other portions of the metal-containing layer 21 (for example, the first portion 21a, the second portion The crystal structures of the part 21b and the 5th part 21e, etc.) are different. For example, the crystal structure of the third portion 21c of the metal-containing layer 21 is a β phase. The crystal structure of at least a part (for example, the surface part) of other parts (for example, the first part 21a, the second part 21b, and the fifth part 21e) of the metal-containing layer 21 is an α phase. For example, in the unit volume (unit area), the ratio of the β-phase region of the third part 21c to the entirety of the third part 21c is higher than other regions (such as the first part 21a, the second part 21b, or the fifth part 21e, etc.) The ratio of β-phase region to the total of other regions. For example, at least a part of the third portion 21c includes β-phase Ta. For example, at least a part of the first portion 21a (or the fifth portion 21e) includes Ta of the α phase. For example, higher spin Hall effect can be obtained, and write current can be reduced. In addition, the resistance of the metal-containing layer 21 can be reduced. 10 (a) to 10 (d) are schematic plan views illustrating another magnetic memory device according to the second embodiment. As shown in FIG. 10 (a), in the magnetic memory device 123a, the length 21ey of the fifth portion 21e along the third direction (Y-axis direction) and the length 12y of the second magnetic layer 12 along the third direction are substantially the same. the same. For example, length 21ey is 0 of length 12y. 9 times or more 1. Less than 1 time. As shown in FIG. 10 (b), in the magnetic memory device 123b, the length 21ey of the fifth portion 21e along the third direction (Y-axis direction) is longer than the length 12y of the second magnetic layer 12 along the third direction. long. As shown in FIG. 10 (c), in the magnetic memory device 123c, the width in the second direction (X-axis direction) of the first non-overlapping region 21ca is substantially the same as the width in the second direction of the second magnetic layer 12. For example, the width of the second non-overlapping region 21ca in the second direction is 0 from the width of the second magnetic layer 12 along the second direction. 9 times or more 1. Less than 1 time. As shown in FIG. 10 (d), in the magnetic memory device 123d, the width of the second non-overlapping region 21ca in the second direction (X-axis direction) is smaller than the width of the second magnetic layer 12 along the second direction. (Third embodiment) A third embodiment is a method for manufacturing a magnetic memory device according to the second embodiment. FIG. 11 is a flowchart illustrating a method of manufacturing the magnetic memory device according to the third embodiment. Figs. 12 (a) to 12 (d), Figs. 13 (a) to 13 (e), Figs. 14 (a) to 14 (c), Figs. 15 (a), and 15 (b) are illustrative examples. 3 is a schematic diagram of a manufacturing method of a magnetic memory device according to an embodiment. 12 (a), 12 (c), 13 (d), 14 (a) to 14 (c), 15 (a), and 15 (b) are schematic plan views. 12 (b), 12 (d), 13 (a) to 13 (c), and 13 (e) are schematic cross-sectional views. As shown in FIG. 11, a laminated film is formed on the metal-containing film provided on the base member 20s (step S110). For example, as shown in FIG. 12 (b), a metal-containing film 21F (for example, a Ta film) is provided on the base member 20s (for example, an alumina substrate). A direction perpendicular to the surface 21Fa of the metal-containing film 21F is assumed to be a first direction (Z-axis direction). Let one direction perpendicular to the Z-axis direction be the X-axis direction. Let the direction perpendicular to the Z-axis direction and the X-axis direction be the Y-axis direction. The metal-containing film 21F becomes the metal-containing layer 21. A multilayer film SBF is provided on the metal-containing film 21F. The laminated film SBF includes a first magnetic film 11F, a second magnetic film 12F, and an intermediate film 11iF. The second magnetic film 12F is provided between the first magnetic film 11F and the metal-containing film 21F. The intermediate film 11iF is provided between the first magnetic film 11F and the second magnetic film 12F. The intermediate film 11iF is non-magnetic. A first mask M1 is formed on the multilayer film SBF. The first mask M1 includes, for example, a tungsten film Mb1 (having a thickness of, for example, 25 nm to 35 nm) and a ruthenium film Ma1 (having a thickness of, for example, 1 nm or more and 3 nm or less). A ruthenium film Ma1 is provided between the tungsten film Mb1 and the multilayer film SBF. As shown in FIG. 12 (a), the first mask M1 has a plurality of strip-like shapes extending in the Y-axis direction. At the opening of the first mask M1, the laminated film SBF is exposed. The first mask M1 can also be formed by, for example, a double exposure technique. As shown in FIGS. 12 (c) and 12 (d), the laminated film SBF is processed using the first mask M1. For example, the ion beam IB1 is irradiated. A part of the laminated film SBF is removed. The residual metal contains the film 21F. Thereby, a plurality of first grooves T1 are formed. The plurality of first grooves T1 are arranged in a second direction (X-axis direction) crossing the first direction. The plurality of first grooves T1 extend in the third direction (the Y-axis direction in this example). The third direction intersects the first direction and the second direction. The first groove T1 reaches the metal-containing film 21F. The laminated film SBF is cut by the first groove T1. In this way, in this manufacturing method, a plurality of first grooves T1 are formed (step S120, see FIG. 11). As shown in FIG. 13 (a), for example, a plasma treatment is performed. Thereby, the compound film 43 is formed on the side wall of the laminated film SBF. Plasma treatment is oxygen plasma treatment or nitrogen plasma treatment. For example, the compound film 43 includes a compound containing an element contained in the metal-containing film 21F. The compound film 43 becomes, for example, a protective film. As shown in FIG. 13 (b), a first insulating film 44a is formed in the first trench T1. The first insulating film 44a is, for example, a SiN film. As shown in FIG. 13 (c), a second insulating film 44b is formed. The second insulating film 44b is, for example, a laminated film including an aluminum oxide film and a silicon oxide film. Thereafter, a planarization process is performed. Thereby, as shown in FIG.13 (d) and FIG.13 (e), the 1st insulation part In1 is formed in the 1st trench T1. The first insulating portion In1 includes, for example, the compound film 43 described above. The first insulating portion In1 includes the first insulating film 44a. The first insulating portion In1 may include the second insulating film 44b described above. The formation of the first insulating portion In1 corresponds to step S130 in FIG. 11. Thereafter, as shown in FIG. 11, a plurality of second grooves are formed (step S140, see FIG. 11). For example, as shown in FIG. 14 (a), a second mask M2 is formed on the processed body. The second mask M2 has a plurality of strip-like shapes extending along the second direction (X-axis direction). The processed object is processed using the second mask M2. For example, a part of the multilayer film SBF formed after the first insulating portion In1 is exposed from the opening of the second mask M2 and a part of the first insulating film In1 are removed. Thereby, a plurality of second grooves T2 are formed. The plurality of second grooves T2 extend in the second direction (for example, the X-axis direction). As described, the extending direction (third direction) of the plurality of first grooves T1 intersects the first direction and the second direction. The second direction may be inclined with respect to the third direction, and the second direction may be perpendicular to the third direction. For example, the width of the second mask M2 in the Y-axis direction can be changed by processing using the second mask M2 (for example, irradiation with an ion beam). For example, the second mask M2 is refined. In this process, for example, a difference in etching rate may occur between the multilayer film SBF and the first insulating portion In1. Thereby, for example, the width in the Y-axis direction of one laminated film SBF can be made larger than the width in the Y-axis direction of the first insulating portion In1. For example, as shown in FIG. 14 (b), one of the plurality of second grooves T2 includes a first groove region Tp2 and a second groove region Tq2. The first groove region Tp2 overlaps the laminated film SBF in the third direction (Y-axis direction). The second groove region Tq2 overlaps the first insulating portion In1 in the third direction (Y-axis direction). The width wTp2 of the first groove region Tp2 along the third direction is smaller than the width wTq2 of the second groove region Tq2 along the third direction. Thereafter, as shown in FIG. 11, the metal-containing film 21F exposed in the plurality of second grooves T2 is removed (step S150). Furthermore, a second insulating portion is formed in the plurality of second grooves T2 (step S160). For example, as shown in FIG. 14 (c), the metal-containing film 21F exposed in the plurality of second grooves T2 is removed. The base member 20s provided under the removed metal-containing film 21F is exposed. As shown in FIG. 15 (a), a second insulating portion In2 is formed in the plurality of second grooves T2. At this time, the material of the second insulating portion In2 may be different from the material of the first insulating portion In1. For example, the first insulating portion In1 includes silicon nitride, and the second insulating portion In2 includes silicon oxide. For example, the first insulating portion In1 includes silicon nitride, and the second insulating portion In2 includes aluminum oxide. In different materials, for example, the stress generated will be different. By using different materials for the two insulating portions, different stresses can be obtained, for example. For example, in the second magnetic layer 12 and the fourth magnetic layer 14, mutually different stresses are generated in the X-axis direction and the Y-axis direction. Thereby, uniaxial anisotropy can be generated in these magnetic layers. Thereby, the magnetization of these magnetic layers is stabilized, and a stable memory action is obtained. As shown in FIG. 15 (b), an electrode 22, an electrode 22A, and the like are formed to produce a magnetic memory device. (Fourth Embodiment) Fig. 16 is a schematic cross-sectional view illustrating a magnetic memory device according to a fourth embodiment. As shown in FIG. 16, in the magnetic memory device 142 of this embodiment, a conductive portion 24 is provided. In addition, at least a part of the configuration described for the magnetic memory devices 110 and 120 may be applied to the magnetic memory device 142, for example. The conductive portion 24 is electrically connected to the fifth portion 21e, for example. The conductive portion 24 is in contact with, for example, the fifth portion 21e. A metal-containing layer 21 is provided between the position of the conductive portion 24 and the position of the multilayer body SB0 in the Z-axis direction. For example, a plurality of laminated bodies SB0 are provided on the upper surface of the metal-containing layer 21. For example, a conductive portion 24 is provided on the lower surface of the metal-containing layer 21. By providing the conductive portion 24, the resistance between the first portion 21a and the second portion 21b in the metal-containing layer 21 can be reduced. In this example, the conductive portion 24 includes a first conductive layer 24a and a second conductive layer 24b. A first conductive layer 24a is provided between the metal-containing layer 21 and the second conductive layer 24b. The first conductive layer 24a includes at least any one of copper, tungsten, titanium nitride, and carbon. The second conductive layer 24b includes, for example, at least any one of copper, tungsten, titanium nitride, and carbon. FIG. 17 is a schematic diagram illustrating another magnetic memory device according to the fourth embodiment. As shown in FIG. 17, in another magnetic memory device 143 of this embodiment, first to fourth transistors TR1 to TR3 are provided. In addition, at least a part of the configuration described for the magnetic memory devices 110 and 120 may be applied to the magnetic memory device 143, for example. One end of the first transistor TR1 is electrically connected to the first portion 21 a of the metal-containing layer 21. The other end of the first transistor TR1 is electrically connected to the driving circuit 75. One end of the second transistor TR2 is electrically connected to the second portion 21 b of the metal-containing layer 21. The other end of the second transistor TR2 is electrically connected to the driving circuit 75. One end of the third transistor TR3 is electrically connected to the fifth portion 21e of the metal-containing layer 21. The other end of the third transistor TR3 is electrically connected to the driving circuit 75. These transistors are included in the control unit 70, for example. These transistors can also be regarded as being provided separately from the control section 70. Corresponding to the potential of each of the first gate G1 of the first transistor TR1, the second gate G2 of the second transistor TR2, and the third gate of the third transistor TR3, the metal containing layer 21 needs to flow Current (write current). For example, the write current flows from the first portion 21a to the fifth portion 21e. For example, the write current flows from the fifth portion 21e to the first portion 21a. For example, the write current flows from the second portion 21b to the fifth portion 21e. For example, the write current flows from the fifth portion 21e to the second portion 21b. The direction of the current can be obtained in any combination. Since the transistor is provided in the middle of the metal-containing layer 21 (for example, the fifth portion 21e), the number of control transistors can be reduced. For example, to obtain a large-capacity magnetic memory device. For example, the memory capacity can be increased relative to the size of the entire magnetic memory device. Can increase memory density. (Fifth Embodiment) Fig. 18 is a schematic diagram illustrating a magnetic memory device according to a fifth embodiment. As shown in FIG. 18, the magnetic memory device 151 of this embodiment includes a first metal-containing layer 31, a second metal-containing layer 32, a plurality of first laminated bodies SB1, a plurality of second laminated bodies SB2, and a third laminated body SB3. And control section 70. The first metal-containing layer 31 includes a first portion 31a, a second portion 31b, and a first intervening portion 31m. The first interposed portion 31m is provided between the first portion 31a and the second portion 31b. The second metal-containing layer 32 includes a third portion 32c, a fourth portion 32d, and a second intervening portion 32m. The second interposed portion 32m is provided between the third portion 32c and the fourth portion 32d. A second portion 31b is provided between the first portion 31a and the fourth portion 32d. A third portion 32c is provided between the second portion 31b and the fourth portion 32d. In this example, the first metal-containing layer 31 and the second metal-containing layer 32 are provided on the base member 20s. The plurality of first laminated bodies SB1 are arranged along the first metal-containing layer 31. One of the plurality of first laminated bodies SB1 includes a first magnetic layer 11, a second magnetic layer 12, and a first intermediate layer 11 i. The first magnetic layer 11 is spaced from the first intervening portion 31m in the first direction (for example, the Z-axis direction). The second magnetic layer 12 is provided between the first interposed portion 31 m and the first magnetic layer 11. The first intermediate layer 11 i includes a portion provided between the first magnetic layer 11 and the second magnetic layer 12. The first intermediate layer 11i is non-magnetic. In the first metal-containing layer 31, a direction from the first portion 31a to the second portion 31b is set to a second direction (for example, the X-axis direction). The first direction (for example, the Z-axis direction) intersects the second direction. Each of the plurality of first laminated bodies SB1 has a configuration including the first magnetic layer 11, the second magnetic layer 12, and the first intermediate layer 11 i described above. The second magnetic layer 12 is in contact with, for example, the first metal-containing layer 31. The plurality of second laminated bodies SB2 are arranged along the second metal-containing layer 32. One of the plurality of second laminated bodies SB2 includes a third magnetic layer 13, a fourth magnetic layer 14, and a second intermediate layer 12 i. The third magnetic layer 13 is spaced from the second interposed portion 32m in the first direction (Z-axis direction). The fourth magnetic layer 14 is provided between the second interposed portion 32m and the third magnetic layer 14. The second intermediate layer 12 i includes a portion provided between the third magnetic layer 13 and the fourth magnetic layer 14. The second intermediate layer 12i is non-magnetic. Each of the plurality of second laminated bodies SB2 has a configuration including the third magnetic layer 13, the fourth magnetic layer 14, and the second intermediate layer 12 i described above. The fourth magnetic layer 14 is in contact with, for example, the second metal-containing layer 32. The third laminated body SB3 is provided between the plurality of first laminated bodies SB1 and the plurality of second laminated bodies SB2. The third laminated body SB3 includes a fifth magnetic layer 15. For example, the fifth magnetic layer 15 is aligned with the second magnetic layer 12 and the fourth magnetic layer 14 in an XY plane (a plane perpendicular to the first direction). For example, the fifth magnetic layer 15 includes a material included in at least one of the second magnetic layer 12 and the fourth magnetic layer 14. In this example, the third multilayer body SB3 further includes a sixth magnetic layer 16 and a third intermediate layer 13i. The sixth magnetic layer 16 is arranged in parallel with the first magnetic layer 11 and the third magnetic layer 13 in the above-mentioned plane (XY plane). The third intermediate layer 13i is in the above-mentioned plane, and is juxtaposed with the first intermediate layer 11i and the second intermediate layer 12i. In the embodiment, at least one of the sixth magnetic layer 16 and the third intermediate layer 13i may be omitted. The control unit 70 is electrically connected to the first portion 31a, the second portion 31b, the third portion 32c and the fourth portion 32d, the plurality of first multilayer bodies SB1, and the plurality of second multilayer bodies SB2. In this figure, the control unit 70 is divided into two parts for the convenience of viewing the figure. In this example, a first switching element Sw1 is provided between each of the plurality of first laminated bodies SB1 and the driving circuit 75. A second switching element Sw2 is provided between each of the plurality of second laminated bodies SB2 and the driving circuit 75. A first transistor TR1 is provided between the first portion 31a and the driving circuit 75. A second transistor TR2 is provided between the second portion 31b and the driving circuit 75. A third transistor TR3 is provided between the third portion 32c and the driving circuit 75. A fourth transistor TR4 is provided between the fourth portion 32d and the driving circuit 75. In the first writing operation, the control unit 70 supplies the first writing current Iw1 from the first portion 31 a to the second portion 31 b to the first metal-containing layer 31 to form a first state. In the second writing operation, the control unit 70 supplies a second writing current Iw2 from the second portion 31b to the first portion 31a to the first metal-containing layer 31 to form a second state. The first resistance between the first magnetic layer 11 and one of the first portion 31a and the second portion 31b in the first state, and the first magnetic layer 11 and the first portion 31a and the second portion 31a of the second state The second resistance is different between the above. In the third write operation, the control unit 70 supplies a third write current Iw3 from the third portion 32c to the fourth portion 32d to the second metal-containing layer 32 to form a third state. In the fourth writing operation, the control unit 70 supplies a fourth writing current Iw4 from the fourth portion 32d to the third portion 32c to the second metal-containing layer 32 to form a fourth state. The third resistance between the third magnetic layer 13 and one of the third portion 32c and the fourth portion 32d in the third state, and the third magnetic layer 13 and the third portion 32c and the fourth portion 32d of the second state The fourth resistance is different between the above. For example, the selection of the plurality of first multilayer bodies SB1 is controlled by a voltage applied to the first magnetic layers 11 contained in the plurality of first multilayer bodies SB1. For example, the control unit 70 is electrically connected to the first magnetic layer 11 included in each of the plurality of first laminated bodies SB1. In the first and second writing operations, the control unit 70 sets the potential of the first magnetic layer 11 included in one of the plurality of first layered bodies SB1 to be included in the other of the plurality of first layered bodies SB1. The potential (for example, non-selective potential) of the first magnetic layer 11 is different from the potential (for example, selective potential). For example, the control unit 70 is electrically connected to the third magnetic layer 13 included in each of the plurality of second laminated bodies SB2. In the third and fourth writing operations, the control unit 70 sets the potential of the third magnetic layer 13 included in one of the plurality of second layered bodies SB2 to be included in the other of the plurality of second layered bodies SB2. The potential (for example, non-selective potential) of the third magnetic layer 13 is different from each other (for example, selective potential). In the magnetic memory device 151, for the first metal-containing layer 31 and the second metal-containing layer 32, at least a part of the structure described for the metal-containing layer 21 such as the magnetic memory devices 110 and 120 may be applied. In the magnetic memory device 151, at least a part of the structure described for the first laminated body SB1 such as the magnetic memory devices 110 and 120 may be applied to the plurality of first laminated bodies SB1 and the plurality of second laminated bodies SB2. In the magnetic memory device 151, at least a part of the configuration described for the magnetic memory devices 110 and 120 may be applied to the control unit 70, for example. The first metal-containing layer 31 and the plurality of first laminated bodies SB1 form one memory line (memory string). The first metal-containing layer 32 and the plurality of second laminated bodies SB2 form another memory row (memory string). A third layered body SB3 is provided between the memory portions. For example, the control unit 70 is electrically insulated from the fifth magnetic layer 15 of the third multilayer body SB3. The third layered body SB3 is not used as a memory portion. The third multilayer body SB3 functions as, for example, a dummy element. For example, the plurality of first layered bodies SB1 includes a layered body (layered body at the end portion) and a layered body (layered body at the center portion) located at the end portion of the plurality of first layered bodies SB1. There are other laminated bodies on both sides of the laminated body in the central part. One of the laminated bodies in the central part receives the action from other laminated bodies (for example, one laminated body) provided on both sides thereof. On the other hand, in the reference example in which the third laminated body SB3 is not provided, there is no other laminated body in one of the laminated bodies at the end. In the laminated body at the end, an effect from the laminated body provided on one side is generated. Therefore, in this reference example, the characteristics of the laminated body at the end portion of the plurality of first laminated bodies SB1 may be different from the laminated body at the center portion. At this time, in this embodiment, since the third multilayer body SB3 is provided, the characteristics of the multilayer body at the end portion are close to the characteristics of the multilayer body at the center portion. Thereby, for example, a stable memory operation can be performed. For example, the yield can be improved. For example, a stable operation can also be obtained when reducing the size of each of the plurality of laminated bodies SB0. Can increase memory density. In the embodiment, a distance between two (closest two) of the plurality of first laminated bodies SB1 is set to a first distance d1. Let the distance between two (the closest two) of the plurality of second laminated bodies SB2 be the second distance d2. The third distance d3 between one of the plurality of first laminated bodies SB1 and the third laminated body SB3 is, for example, substantially the first distance d1. For example, the third distance d3 is 0 of the first distance d1. 5 times or more and 2 times or less. The fourth distance d4 between one of the plurality of second layered bodies SB2 and the third layered body SB3 is substantially the second distance d2, for example. The fourth distance d4 is 0 of the second distance d2. 5 times or more and 2 times or less. Since the third laminated body SB3 is provided near one of the plurality of first laminated bodies SB1, for example, stable operation can be easily obtained in one of the plurality of first laminated bodies SB1. Since the third laminated body SB3 is provided near one of the plurality of second laminated bodies SB2, for example, stable operation is easily obtained in one of the plurality of second laminated bodies SB2. In this embodiment, the first metal-containing layer 31 and the second metal-containing layer 32 may be insulated from each other. The first metal-containing layer 31 and the second metal-containing layer 32 may be electrically connected to each other. In this example, a third metal-containing layer 33 is provided between the first metal-containing layer 31 and the second metal-containing layer 32. The third metal-containing layer 33 is also provided on the base member 20s. The third metal-containing layer 33 is provided between the second portion 31 b of the first metal-containing layer 31 and the third portion 32 c of the second metal-containing layer 32. For the third metal-containing layer 33, for example, a material of the first metal-containing layer 31 is used. In this example, a first insulating region 35a and a second insulating region 35b are provided. The first insulating region 35 a is provided between the second portion 31 b and the third metal-containing layer 33. The first insulating region 35 a is electrically insulated between the second portion 31 b and the third metal-containing layer 33. The second insulating region 35b is provided between the third portion 32c and the third metal-containing layer 33. The second insulating region 35b electrically insulates the third portion 32c from the third metal-containing layer 33. The first insulating region 35 a may include any one of an oxide of the first metal, a nitride of the first metal, and an oxynitride of the first metal contained in the first metal-containing layer 31. An example of a method of manufacturing the magnetic memory device 151 will be described below. 19 (a) and 19 (b) are schematic cross-sectional views illustrating a method of manufacturing a magnetic memory device according to a fifth embodiment. As shown in FIG. 19 (a), a metal-containing film 31FM is provided on the base member 20s. One part of the metal-containing film 31FM becomes the first metal-containing film, and the other part of the metal-containing film 31FM becomes the second metal-containing film 32. A plurality of first laminated bodies SB1 are provided on a portion of the metal-containing film 31FM. A plurality of second laminated bodies SB2 are provided on the other part of the metal-containing film 31FM. A third laminated body SB3 is provided on the metal-containing film 31FM. A mask MS1 is provided on the plurality of first multilayer bodies SB1 and the plurality of second multilayer bodies SB2. The third laminated body SB3 is not covered by the mask MS1. The metal-containing film 31FM has a portion located between the plurality of first multilayer bodies SB1 and the third multilayer body SB3 in a direction along the XY plane. This part is not covered by the mask MS1. The metal-containing film 31FM has a portion located between the plurality of second layered bodies SB2 and the third layered body SB3 in a direction along the XY plane. This part is not covered by the mask MS1. As shown in FIG. 19 (b), a processed body including a metal-containing film 31FM, a plurality of first laminated bodies SB1, a plurality of second laminated bodies SB2, and a third laminated body SB3 is processed. This process includes at least one of an etching process, an oxidation process, and an ion beam irradiation process. In the etching process, for example, a portion of the metal-containing film 31FM which is not covered by the mask MS1 is removed. In the oxidation treatment, for example, a part of the metal-containing film 31FM which is not covered by the mask MS1 is oxidized. The oxidized portion becomes an insulating portion. In the ion beam irradiation treatment, for example, a portion of the metal-containing film 31FM which is not covered by the mask MS1 is removed. In the ion beam irradiation treatment, for example, a compound may be generated from a portion of the metal-containing film 31FM that is not covered by the mask MS1. The compound includes at least any one of an oxide of a metal contained in the metal-containing film 31FM, a nitride of the metal, and an oxynitride of the metal. For example, when at least one of the oxidation treatment and the ion beam irradiation treatment has been performed, a compound is formed from the metal-containing film 31FM. This compound becomes the first insulating region 35a and the second insulating region 35b. The magnetic memory device 151 is formed by this process. You may change at least one part of the laminated body SB3 before and after the said process. If the sixth magnetic layer 16 exists before the above-mentioned processing, the sixth magnetic layer 16 may be changed by the above-mentioned processing. The sixth magnetic layer 16 may be removed. FIG. 20 is a schematic diagram illustrating another magnetic memory device according to the fifth embodiment. As shown in FIG. 20, the magnetic memory device 152 of this embodiment also includes a first metal-containing layer 31, a second metal-containing layer 32, a plurality of first laminated bodies SB1, a plurality of second laminated bodies SB2, and a third laminated body. SB3 and control section 70. An insulating portion 40 is provided in the magnetic memory device 152. The insulating portion 40 is provided between the plurality of first multilayer bodies SB1, the plurality of second multilayer bodies SB2, and the third multilayer body SB3. The insulating portion 40 is, for example, an interlayer insulating film. In the magnetic memory device 152, a first insulating region 40a and a second insulating region 40b are provided. The first insulating region 40a and the second insulating region 40b are made of the same material as that used for the insulating portion 40, for example. For example, in the process described with reference to FIG. 19 (b), for example, an etching process is performed to remove a part of the metal-containing film 31FM. A recessed portion is formed on the removed portion. A material that becomes the insulating portion 40 is buried in the recessed portion. Thereby, the first insulating region 40a and the second insulating region 40b are formed. In the magnetic memory device 152, for example, a stable memory operation can also be performed. For example, the yield can be improved. For example, it is easy to obtain a stable operation even when the size of each of the plurality of laminated bodies SB0 is reduced. Can increase memory density. According to the embodiment, a magnetic memory device capable of improving the memory density and a manufacturing method thereof can be provided. In the specification of this application, the “electrical connection state” includes a state in which a plurality of electrical conductors are physically connected and a current flows between the plurality of electrical conductors. "Electrically connected state" includes a state in which another conductor is inserted between a plurality of conductors and a current flows between the plurality of conductors. The “electrically connected state” includes a state in which an electric element (a switching element such as a transistor) is inserted between a plurality of electrical conductors and a current can flow between the plurality of electrical conductors. In the specification of this application, "vertical" and "parallel" include not only strict vertical and strict parallel, but also, for example, deviations in manufacturing steps, as long as they are substantially vertical and substantially parallel. The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, regarding the specific configuration of each element of the metal-containing layer, the magnetic layer, the intermediate layer, and the control section contained in the magnetic memory device, those skilled in the art can appropriately implement the present invention by appropriately selecting from well-known ranges, and obtain the same The effects are included in the scope of the present invention. In addition, any combination of any two or more requirements of each specific example within a technically feasible range is included in the scope of the present invention as long as it includes the gist of the present invention. In addition, all magnetic memory devices and methods for manufacturing the magnetic memory devices and methods for manufacturing the magnetic memory devices based on the embodiments of the present invention by appropriately designing and changing the same industry as long as they include the gist of the present invention It belongs to the scope of the present invention. In addition, in the ideological scope of the present invention, if it is a person skilled in the art, various changes and amendments can be conceived, and it should be understood that these changes and amendments also belong to the scope of the present invention. A number of embodiments of the present invention have been described above, but these embodiments are provided as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and variations are included in the scope or gist of the invention, and are included in the invention described in the scope of patent application and its equivalent. This application claims the priority of Japanese Patent Application No. 2016-154039 (filed on August 4, 2016), the entire contents of which are incorporated herein by reference.

11‧‧‧第1磁性層11‧‧‧ 1st magnetic layer

11F‧‧‧第1磁性膜11F‧‧‧The first magnetic film

11M‧‧‧第1磁化11M‧‧‧1st magnetization

11i‧‧‧第1中間層11i‧‧‧The first middle layer

11iF‧‧‧中間膜11iF‧‧‧Interlayer

12‧‧‧第2磁性層12‧‧‧ 2nd magnetic layer

12F‧‧‧第2磁性膜12F‧‧‧Second magnetic film

12L‧‧‧面12L‧‧‧face

12M‧‧‧第2磁化12M‧‧‧Second magnetization

12U‧‧‧面12U‧‧‧face

12cy‧‧‧長度12cy‧‧‧length

12i‧‧‧第2中間層12i‧‧‧2nd middle layer

12s‧‧‧側面12s‧‧‧side

12xL‧‧‧長度12xL‧‧‧ length

12xU‧‧‧長度12xU‧‧‧length

12y‧‧‧長度12y‧‧‧ length

12yL‧‧‧長度12yL‧‧‧length

12yU‧‧‧長度12yU‧‧‧length

13‧‧‧第3磁性層13‧‧‧3rd magnetic layer

13M‧‧‧第3磁化13M‧‧‧3rd magnetization

13i‧‧‧第3中間層13i‧‧‧3rd middle layer

14‧‧‧第4磁性層14‧‧‧ 4th magnetic layer

14L‧‧‧面14L‧‧‧face

14M‧‧‧第4磁化14M‧‧‧4th magnetization

14U‧‧‧面14U‧‧‧face

14s‧‧‧側面14s‧‧‧side

14xL‧‧‧長度14xL‧‧‧ length

14xU‧‧‧長度14xU‧‧‧length

14y‧‧‧長度14y‧‧‧ length

14yL‧‧‧長度14yL‧‧‧length

14yU‧‧‧長度14yU‧‧‧length

15‧‧‧第5磁性層15‧‧‧5th magnetic layer

16‧‧‧第6磁性層16‧‧‧ 6th magnetic layer

20s‧‧‧基底構件20s‧‧‧base member

21、21A‧‧‧金屬含有層21, 21A‧‧‧ metal containing layer

21F‧‧‧金屬含有層21F‧‧‧ metal containing layer

21Fa‧‧‧表面21Fa‧‧‧ surface

21X‧‧‧金屬含有層21X‧‧‧metal containing layer

21a~21e‧‧‧第1~第5部分21a ~ 21e‧‧‧Parts 1 ~ 5

21cL‧‧‧面21cL‧‧‧face

21cU‧‧‧面21cU‧‧‧face

21ca‧‧‧第1非重疊區域21ca‧‧‧The first non-overlapping area

21cay‧‧‧長度21cay‧‧‧length

21cb‧‧‧第2非重疊區域21cb‧‧‧The second non-overlapping area

21cby‧‧‧長度21cby‧‧‧length

21cc‧‧‧第1重疊區域21cc‧‧‧1st overlapping area

21cct‧‧‧第1重疊區域厚度21cct‧‧‧ thickness of 1st overlapping area

21cy‧‧‧長度21cy‧‧‧length

21da‧‧‧第3非重疊區域21da‧‧‧The third non-overlapping area

21day‧‧‧長度21day‧‧‧length

21db‧‧‧第4非重疊區域21db‧‧‧4th non-overlapping area

21dby‧‧‧長度21dby‧‧‧length

21dc‧‧‧第2重疊區域21dc‧‧‧ 2nd overlapping area

21dct‧‧‧第2重疊區域厚度21dct‧‧‧2nd overlapping area thickness

21dy‧‧‧長度21dy‧‧‧ length

21et‧‧‧厚度21et‧‧‧thickness

21ey‧‧‧長度21ey‧‧‧length

21sp‧‧‧自旋21sp‧‧‧spin

21yL‧‧‧長度21yL‧‧‧length

22、22A、22X‧‧‧電極22, 22A, 22X‧‧‧ electrodes

24‧‧‧導電部24‧‧‧ Conductive section

24a、24b‧‧‧第1、第2導電層24a, 24b‧‧‧The first and second conductive layers

31‧‧‧第1金屬含有層31‧‧‧ the first metal-containing layer

31FM‧‧‧金屬含有膜31FM‧‧‧Metal Containing Film

31a、31b‧‧‧第1、第2部分31a, 31b‧‧‧ Part 1, Part 2

31m‧‧‧第1間置部分31m‧‧‧The first interposition

32‧‧‧第2金屬含有層32‧‧‧ 2nd metal containing layer

32c、32d‧‧‧第3、第4部分32c, 32d‧‧‧ Part 3, Part 4

32m‧‧‧第2間置部分32m‧‧‧The second interposition

33‧‧‧第3金屬含有層33‧‧‧ 3rd metal containing layer

35a、35b‧‧‧第1、第2絕緣區域35a and 35b

40‧‧‧絕緣部40‧‧‧Insulation Department

40a、40b‧‧‧第1、第2絕緣區域40a, 40b ‧‧‧ the first and second insulation area

41‧‧‧化合物層41‧‧‧compound layer

42a‧‧‧第1化合物區域42a‧‧‧1st compound region

42b‧‧‧第2化合物區域42b‧‧‧2nd compound area

43‧‧‧化合物膜43‧‧‧Compound film

44a‧‧‧第1絕緣膜44a‧‧‧The first insulating film

44b‧‧‧第2絕緣膜44b‧‧‧Second insulation film

70‧‧‧控制部70‧‧‧Control Department

71~73‧‧‧第1~第3電路71 ~ 73‧‧‧1st to 3rd circuits

75‧‧‧驅動電路75‧‧‧Drive circuit

110、110A~110C、110a~110h、119、120、121、122A~122C、123a~123d、142、143、151、152‧‧‧磁性記憶裝置110, 110A-110C, 110a-110h, 119, 120, 121, 122A-122C, 123a-123d, 142, 143, 151, 152

G1~ G3‧‧‧第1~第3閘極G1 ~ G3‧‧‧1st ~ 3rd gate

IB1‧‧‧離子束IB1‧‧‧ ion beam

In1、In2‧‧‧第1、第2絕緣部In1, In2‧‧‧, 1st and 2nd insulation parts

Iw1~Iw4‧‧‧第1~第4寫入電流Iw1 ~ Iw4‧‧‧1st to 4th write current

M1、M2‧‧‧第1、第2遮罩M1, M2‧‧‧1, 2nd mask

MS1‧‧‧遮罩MS1‧‧‧Mask

Ma1‧‧‧釕膜Ma1‧‧‧Ruthenium film

Mb1‧‧‧鎢膜Mb1‧‧‧Tungsten film

SB0‧‧‧積層體SB0‧‧‧Laminated body

SB1~SB3‧‧‧第1~第3積層體SB1 ~ SB3‧‧‧The first to third layers

SBF‧‧‧積層膜SBF‧‧‧Laminated Film

Sw1、Sw2‧‧‧第1、第2開關元件Sw1, Sw2‧‧‧ first, second switching elements

T1、T2‧‧‧第1、第2槽T1, T2‧‧‧‧Slots 1, 2

TR1~TR4‧‧‧第1~第4電晶體TR1 ~ TR4‧‧‧1st ~ 4th transistors

Tp2、Tq2‧‧‧第1、第2槽區域Tp2, Tq2‧‧‧Slots 1, 2

d1~d4‧‧‧第1~第4距離d1 ~ d4‧‧‧1st ~ 4th distance

t12‧‧‧厚度t12‧‧‧thickness

t14‧‧‧厚度t14‧‧‧thickness

wTp2‧‧‧寬度wTp2‧‧‧Width

wTq2‧‧‧寬度wTq2‧‧‧Width

X‧‧‧方向X‧‧‧ direction

Y‧‧‧方向Y‧‧‧ direction

Z‧‧‧方向Z‧‧‧ direction

圖1(a)~圖1(d)係例示第1實施形態之磁性記憶裝置之模式圖。 圖2(a)及圖2(b)係例示磁性記憶裝置之動作之示意性剖面圖。 圖3(a)及圖3(b)係例示第1實施形態之磁性記憶裝置之模式圖。 圖4(a)~圖4(c)係例示第1實施形態之另一磁性記憶裝置之示意性剖面圖。 圖5(a)~圖5(h)係例示第1實施形態之另一磁性記憶裝置之示意性剖面圖。 圖6(a)~圖6(d)係例示第2實施形態之磁性記憶裝置之剖面圖。 圖7係例示第2實施形態之磁性記憶裝置之示意性俯視圖。 圖8(a)及圖8(b)係例示第2實施形態之磁性記憶裝置之示意性剖面圖。 圖9(a)~圖9(c)係例示第2實施形態之另一磁性記憶裝置之示意性剖面圖。 圖10(a)~圖10(d)係例示第2實施形態之另一磁性記憶裝置之示意性俯視圖。 圖11係例示第3實施形態之磁性記憶裝置之製造方法之流程圖。 圖12(a)~圖12(d)係例示第3實施形態之磁性記憶裝置之製造方法之模式圖。 圖13(a)~圖13(e)係例示第3實施形態之磁性記憶裝置之製造方法之模式圖。 圖14(a)~圖14(c)係例示第3實施形態之磁性記憶裝置之製造方法之模式圖。 圖15(a)及圖15(b)係例示第3實施形態之磁性記憶裝置之製造方法之模式圖。 圖16係例示第4實施形態之磁性記憶裝置之示意性剖面圖。 圖17係例示第4實施形態之另一磁性記憶裝置之示意性圖。 圖18係例示第5實施形態之磁性記憶裝置之模式圖。 圖19(a)及圖19(b)係例示第5實施形態之磁性記憶裝置之製造方法之示意性剖面圖。 圖20係例示第5實施形態之另一磁性記憶裝置之模式圖。1 (a) to 1 (d) are schematic diagrams illustrating a magnetic memory device according to the first embodiment. 2 (a) and 2 (b) are schematic cross-sectional views illustrating the operation of a magnetic memory device. 3 (a) and 3 (b) are schematic diagrams illustrating a magnetic memory device according to the first embodiment. 4 (a) to 4 (c) are schematic cross-sectional views illustrating another magnetic memory device according to the first embodiment. 5 (a) to 5 (h) are schematic cross-sectional views illustrating another magnetic memory device according to the first embodiment. 6 (a) to 6 (d) are cross-sectional views illustrating a magnetic memory device according to a second embodiment. FIG. 7 is a schematic plan view illustrating a magnetic memory device according to a second embodiment. 8 (a) and 8 (b) are schematic cross-sectional views illustrating a magnetic memory device according to a second embodiment. 9 (a) to 9 (c) are schematic cross-sectional views illustrating another magnetic memory device according to the second embodiment. 10 (a) to 10 (d) are schematic plan views illustrating another magnetic memory device according to the second embodiment. FIG. 11 is a flowchart illustrating a method of manufacturing the magnetic memory device according to the third embodiment. 12 (a) to 12 (d) are schematic views illustrating a method of manufacturing a magnetic memory device according to a third embodiment. 13 (a) to 13 (e) are schematic views illustrating a method of manufacturing a magnetic memory device according to a third embodiment. 14 (a) to 14 (c) are schematic views illustrating a method of manufacturing a magnetic memory device according to a third embodiment. 15 (a) and 15 (b) are schematic diagrams illustrating a method of manufacturing a magnetic memory device according to a third embodiment. FIG. 16 is a schematic cross-sectional view illustrating a magnetic memory device according to a fourth embodiment. FIG. 17 is a schematic diagram illustrating another magnetic memory device according to the fourth embodiment. FIG. 18 is a schematic diagram illustrating a magnetic memory device according to a fifth embodiment. 19 (a) and 19 (b) are schematic cross-sectional views illustrating a method of manufacturing a magnetic memory device according to a fifth embodiment. FIG. 20 is a schematic diagram illustrating another magnetic memory device according to the fifth embodiment.

Claims (19)

一種磁性記憶裝置,其包含:金屬含有層,其包含:第1部分、第2部分、上述第1部分與上述第2部分之間之第3部分、上述第3部分與上述第2部分之間之第4部分、及上述第3部分與上述第4部分之間之第5部分;第1磁性層,其在與自上述第1部分向上述第2部分之第2方向交叉之第1方向上,與上述第3部分隔開;第2磁性層,其設於上述第3部分之一部分與上述第1磁性層之間;非磁性之第1中間層,其包含設於上述第1磁性層與上述第2磁性層之間之部分;第3磁性層,其於上述第1方向上與上述第4部分隔開;第4磁性層,其設於上述第4部分之一部分與上述第3磁性層之間;非磁性之第2中間層,其包含設於上述第3磁性層與上述第4磁性層之間之部分;及控制部,其與上述第1部分及第2部分電性連接;且上述第3部分之沿著與上述第1方向及上述第2方向交叉之第3方向之長度,較上述第2磁性層之沿著上述第3方向之長度更長,上述第3部分之沿著上述第3方向之上述長度,較上述第5部分之沿著上述第3方向之長度長;上述控制部係實施:第1寫入動作,其供給自上述第1部分向上述第2部分之第1寫入電流,及第2寫入動作,其供給自上述第2部分向上述第1部分之第2寫入電流;上述第1寫入動作後之上述第1磁性層與上述第1部分之間之第1電阻,與上述第2寫入動作後之上述第1磁性層與上述第1部分之間之第2電阻不同。A magnetic memory device comprising: a metal-containing layer including: a first part, a second part, a third part between the first part and the second part, and between the third part and the second part The fourth part, and the fifth part between the third part and the fourth part; the first magnetic layer is in the first direction crossing the second direction from the first part to the second part Is separated from the above-mentioned third part; a second magnetic layer is provided between one part of the above-mentioned third part and the above-mentioned first magnetic layer; a first non-magnetic intermediate layer including the above-mentioned first magnetic layer and A portion between the second magnetic layer; a third magnetic layer separated from the fourth portion in the first direction; a fourth magnetic layer provided between a portion of the fourth portion and the third magnetic layer Between; a non-magnetic second intermediate layer including a portion provided between the third magnetic layer and the fourth magnetic layer; and a control portion electrically connected to the first portion and the second portion; and The length of the third part along the third direction crossing the first direction and the second direction Longer than the length of the second magnetic layer along the third direction, the length of the third portion along the third direction, and longer than the length of the fifth portion along the third direction; The control unit performs a first writing operation that supplies a first writing current from the first portion to the second portion, and a second writing operation that supplies a first writing current from the second portion to the first portion. A second write current; a first resistance between the first magnetic layer and the first portion after the first write operation, and a first resistance between the first magnetic layer and the first portion after the second write operation The second resistance is different between them. 如請求項1之磁性記憶裝置,其中上述第4部分之沿著上述第3方向之長度,較上述第4磁性層之沿著上述第3方向之長度長,上述第4部分之上述長度較上述第5部分之上述長度長。For example, the magnetic memory device of claim 1, wherein the length of the fourth part in the third direction is longer than the length of the fourth magnetic layer in the third direction, and the length of the fourth part is longer than the length of the fourth magnetic layer. The length of the above part 5 is long. 如請求項1或2之磁性記憶裝置,其中上述第3部分包含:第1重疊區域,其於上述第1方向上與上述第2磁性層重合;及第1非重疊區域,其於上述第1方向上不與上述第2磁性層重合;上述第1非重疊區域之至少一部分之沿著上述第1方向之厚度,較上述第1重疊區域之沿著上述第1方向之第1重疊區域厚度薄。For example, the magnetic memory device of claim 1 or 2, wherein the third part includes: a first overlapping region that overlaps the second magnetic layer in the first direction; and a first non-overlapping region that is in the first Does not overlap with the second magnetic layer in the direction; the thickness of at least a part of the first non-overlapping region along the first direction is thinner than the thickness of the first overlapping region along the first direction of the first overlapping region . 如請求項3之磁性記憶裝置,其中上述第3部分進而包含第2非重疊區域,上述第2非重疊區域於上述第1方向上不與上述第2磁性層重合,上述第1重疊區域在與上述第1方向及上述第2方向交叉之第3方向上,位於上述第1非重疊區域與上述第2非重疊區域之間,上述第2非重疊區域之至少一部分之沿著上述第1方向之上述厚度,較上述第1重疊區域之厚度薄。For example, the magnetic memory device of claim 3, wherein the third portion further includes a second non-overlapping area, the second non-overlapping area does not overlap with the second magnetic layer in the first direction, and the first overlapping area is in contact with The third direction intersecting the first direction and the second direction is located between the first non-overlapping area and the second non-overlapping area, and at least a part of the second non-overlapping area is along the first direction. The thickness is thinner than the thickness of the first overlapping region. 如請求項4之磁性記憶裝置,其中上述第1非重疊區域之沿著上述第3方向之長度及上述第2非重疊區域之沿著上述第3方向之長度之合計相對於上述第1重疊區域厚度之第1比,高於上述第2磁性層之與上述金屬含有層對向之面之沿著上述第2方向之長度、及上述第2磁性層之與上述第1中間層對向之面之沿著上述第2方向之長度之差之絕對值相對於上述第2磁性層之沿著上述第1方向之第2磁性層之厚度之比。The magnetic memory device of claim 4, wherein the total length of the first non-overlapping area along the third direction and the length of the second non-overlapping area along the third direction are relative to the first overlapping area. The first ratio of thickness is longer than the length of the second magnetic layer facing the metal-containing layer along the second direction, and the second magnetic layer facing the first intermediate layer. The ratio of the absolute value of the difference in length along the second direction to the thickness of the second magnetic layer along the first direction of the second magnetic layer. 如請求項1或2之磁性記憶裝置,其中上述第3部分包含於上述第1方向上與上述第2磁性層重合之第1重疊區域,上述第5部分之沿著上述第1方向之厚度,較上述第1重疊區域之沿著上述第1方向之第1重疊區域之厚度薄。For example, the magnetic memory device of claim 1 or 2, wherein the third portion includes a first overlapping area overlapping the second magnetic layer in the first direction, and a thickness of the fifth portion along the first direction, The thickness of the first overlapping region along the first direction is thinner than the thickness of the first overlapping region. 一種磁性記憶裝置,其包含:金屬含有層,其包含第1部分、第2部分、及上述第1部分與上述第2部分之間之第3部分;第1磁性層,其在與自上述第1部分向上述第2部分之第2方向交叉之第1方向上,與上述第3部分隔開;第2磁性層,其設於上述第3部分之一部分與上述第1磁性層之間;非磁性之第1中間層,其包含設於上述第1磁性層與上述第2磁性層之間之部分;及控制部,其與上述第1部分及第2部分電性連接;且上述第3部分之沿著與上述第1方向及上述第2方向交叉之第3方向之長度,較上述第2磁性層之沿著上述第3方向之長度長;上述第3部分之沿著第3方向之上述長度,較上述第3部分與上述第2部分之間之部分之沿著上述第3方向之長度長,上述控制部係實施:第1寫入動作,其供給自上述第1部分向上述第2部分之第1寫入電流,及第2寫入動作,其供給自上述第2部分向上述第1部分之第2寫入電流;上述第1寫入動作後之上述第1磁性層與上述第1部分及上述第2部分之一者之間的第1電阻,與上述第2寫入動作後之上述第1磁性層與上述第1部分及上述第2部分之上述一者之間的第2電阻不同。A magnetic memory device includes: a metal-containing layer including a first portion, a second portion, and a third portion between the first portion and the second portion; and a first magnetic layer between the first and second portions. One part is separated from the third part in the first direction crossing the second direction of the second part; the second magnetic layer is provided between one part of the third part and the first magnetic layer; The first magnetic intermediate layer includes a portion provided between the first magnetic layer and the second magnetic layer; and a control portion electrically connected to the first and second portions; and the third portion The length along the third direction crossing the first direction and the second direction is longer than the length along the third direction of the second magnetic layer; the length of the third part along the third direction The length is longer than the length along the third direction between the part between the third part and the second part. The control unit performs a first writing operation, which is supplied from the first part to the second part. Part of the first write current and the second write operation are supplied from the second part The second write current to the first part; the first resistance between the first magnetic layer and one of the first part and the second part after the first write operation, and the second write The second resistance between the first magnetic layer and the one of the first part and the second part after the operation is different. 一種磁性記憶裝置,其包含:金屬含有層,其包含第1部分、第2部分、及上述第1部分與上述第2部分之間之第3部分;第1磁性層,其在與自上述第1部分向上述第2部分之第2方向交叉之第1方向上,與上述第3部分隔開;第2磁性層,其設於上述第3部分之一部分與上述第1磁性層之間;非磁性之第1中間層,其包含設於上述第1磁性層與上述第2磁性層之間之部分;及控制部,其與上述第1部分及第2部分電性連接;且上述第3部分包含:第1重疊區域,其於上述第1方向上與上述第2磁性層重合;及第1非重疊區域,其於上述第1方向上不與上述第2磁性層重合;上述第1非重疊區域之至少一部分之沿著上述第1方向之厚度,較上述第1重疊區域之沿著上述第1方向之第1重疊區域厚度薄;上述控制部係實施:第1寫入動作,其供給自上述第1部分向上述第2部分之第1寫入電流,及第2寫入動作,其供給自上述第2部分向上述第1部分之第2寫入電流;上述第1寫入動作後之上述第1磁性層與上述第1部分之間之第1電阻,與上述第2寫入動作後之上述第1磁性層與上述第1部分之間之第2電阻不同。A magnetic memory device includes: a metal-containing layer including a first portion, a second portion, and a third portion between the first portion and the second portion; and a first magnetic layer between the first and second portions. One part is separated from the third part in the first direction crossing the second direction of the second part; the second magnetic layer is provided between one part of the third part and the first magnetic layer; The first magnetic intermediate layer includes a portion provided between the first magnetic layer and the second magnetic layer; and a control portion electrically connected to the first and second portions; and the third portion Including: a first overlapping region that overlaps the second magnetic layer in the first direction; and a first non-overlapping region that does not overlap the second magnetic layer in the first direction; the first non-overlapping region The thickness of at least a part of the area along the first direction is thinner than the thickness of the first overlapping area of the first overlapping area along the first direction; the control unit performs the first writing operation, which is supplied from The first part writes a current to the first part of the second part, and 2 writing operation, which supplies a second writing current from the second portion to the first portion; a first resistance between the first magnetic layer and the first portion after the first writing operation, and The second resistance between the first magnetic layer and the first portion after the second write operation is different. 如請求項8之磁性記憶裝置,其中上述第3部分進而包含第2非重疊區域,上述第2非重疊區域於上述第1方向上不與上述第2磁性層重合,上述第1重疊區域在與上述第1方向及上述第2方向交叉之第3方向上,位於上述第1非重疊區域與上述第2非重疊區域之間,上述第2非重疊區域之至少一部分之沿著上述第1方向之厚度,較上述第1重疊區域之厚度薄。For example, the magnetic memory device of claim 8, wherein the third portion further includes a second non-overlapping area, the second non-overlapping area does not overlap with the second magnetic layer in the first direction, and the first overlapping area is in contact with The third direction intersecting the first direction and the second direction is located between the first non-overlapping area and the second non-overlapping area, and at least a part of the second non-overlapping area is along the first direction. The thickness is thinner than the thickness of the first overlapping region. 如請求項9之磁性記憶裝置,其中上述第1非重疊區域之沿著上述第3方向之長度及上述第2非重疊區域之沿著上述第3方向之長度之合計相對於上述第1重疊區域厚度之第1比,高於上述第2磁性層之與上述金屬含有層對向之面之沿著上述第2方向之長度、與上述第2磁性層之與上述第1中間層對象之面之沿著上述第2方向之差之絕對值相對於上述第2磁性層之沿著上述第1方向之厚度之比。The magnetic memory device according to claim 9, wherein the sum of the length of the first non-overlapping area along the third direction and the length of the second non-overlapping area along the third direction are relative to the first overlapping area. The first ratio of thickness is higher than the length along the second direction of the surface of the second magnetic layer facing the metal-containing layer, and the surface of the second magnetic layer and the surface of the first intermediate layer object. The ratio of the absolute value of the difference along the second direction to the thickness of the second magnetic layer along the first direction. 如請求項10之磁性記憶裝置,其中上述第1比高於上述第2磁性層之與上述金屬含有層對向之上述面之沿著上述第3方向之長度、與上述第2磁性層之與上述第1中間層對象之上述面之沿著上述第3方向之差之絕對值相對於上述第2磁性層之沿著上述第1方向之上述厚度之比。The magnetic memory device according to claim 10, wherein the first ratio is higher than the length along the third direction of the surface facing the metal-containing layer of the second magnetic layer and the sum of the second magnetic layer. A ratio of an absolute value of a difference between the surfaces of the first intermediate layer object along the third direction to a thickness of the second magnetic layer along the first direction. 如請求項8至11中任一項之磁性記憶裝置,其中進而包含:第3磁性層;第4磁性層;及非磁性之第2中間層;且上述金屬含有層進而包含:上述第3部分與上述第2部分之間之第4部分,及上述第3部分與上述第4部分之間之第5部分;上述第3磁性層於上述第1方向上與上述第4部分隔開,上述第4磁性層設於上述第4部分之一部分與上述第3磁性層之間,上述第2中間層包含設於上述第3磁性層與上述第4磁性層之間之部分,上述第5部分之沿著上述第1方向之厚度,較上述第1重疊區域厚度薄。The magnetic memory device according to any one of claims 8 to 11, further comprising: a third magnetic layer; a fourth magnetic layer; and a nonmagnetic second intermediate layer; and the metal-containing layer further includes: the above-mentioned part 3 The fourth part between the second part and the fifth part between the third part and the fourth part; the third magnetic layer is separated from the fourth part in the first direction, and the first 4 The magnetic layer is provided between a portion of the fourth magnetic layer and the third magnetic layer, the second intermediate layer includes a portion provided between the third magnetic layer and the fourth magnetic layer, and an edge of the fifth portion The thickness in the first direction is smaller than the thickness in the first overlapping region. 如請求項1或2之磁性記憶裝置,其中上述控制部進而與上述第1磁性層及上述第3磁性層電性連接,上述控制部於上述第1寫入動作中,將上述第1磁性層設定為與上述第3磁性層之電位不同之電位。For example, the magnetic memory device of claim 1 or 2, wherein the control unit is further electrically connected to the first magnetic layer and the third magnetic layer, and the control unit is configured to connect the first magnetic layer in the first writing operation. The potential is set to a potential different from the potential of the third magnetic layer. 如請求項1或2之磁性記憶裝置,其中進而具備包含上述第2磁性層中所含之金屬之化合物區域,上述化合物區域係於上述第2磁性層與上述第4磁性層之間,沿著將上述第2磁性層與上述第4磁性層相連之方向。For example, the magnetic memory device according to claim 1 or 2, further comprising a compound region containing a metal contained in the second magnetic layer, the compound region being between the second magnetic layer and the fourth magnetic layer, A direction in which the second magnetic layer is connected to the fourth magnetic layer. 如請求項1或2之磁性記憶裝置,其中上述第3部分之結晶構造與上述第5部分之至少一部分之結晶構造不同。The magnetic memory device according to claim 1 or 2, wherein the crystal structure of the third part is different from the crystal structure of at least a part of the fifth part. 一種磁性記憶裝置,其包含:第1金屬含有層,其包含第1部分、第2部分、及設於上述第1部分與上述第2部分之間之第1間置部分;第2金屬含有層,其包含第3部分、第4部分、及設於上述第3部分與上述第4部分之間之第2間置部分,於上述第1部分與上述第4部分之間設有上述第2部分,於上述第2部分與上述第4部分之間設有上述第3部分;複數個第1積層體,上述複數個第1積層體係沿著上述第1金屬含有層排列,上述複數個第1積層體之1個包含第1磁性層、第2磁性層、及第1中間層;上述第1磁性層在與自上述第1部分向上述第2部分之第2方向交叉之第1方向上,與上述第1間置部分隔開;上述第2磁性層設於上述第1間置部分與上述第1磁性層之間;上述第1中間層包含設於上述第1磁性層與上述第2磁性層之間之部分,且為非磁性;複數個第2積層體,上述複數個第2積層體係沿著上述第2金屬含有層排列,上述複數個第2積層體之1個包含第3磁性層、第4磁性層、及第2中間層;上述第3磁性層於上述第1方向上與上述第2間置部分隔開;上述第4磁性層設於上述第2間置部分與上述第3磁性層之間;上述第2中間層包含設於上述第3磁性層與上述第4磁性層之間之部分,且為非磁性;第3積層體,其設於上述複數個第1積層體與上述複數個第2積層體之間,且包含第5磁性層;及控制部,其與上述第1至上述第4部分、上述複數個第1積層體、及上述複數個第2積層體電性連接;且上述控制部係實施:第1寫入動作,其供給自上述第1部分向上述第2部分之第1寫入電流,及第2寫入動作,其供給自上述第2部分向上述第1部分之第2寫入電流;上述第1寫入動作後之上述第1磁性層與上述第1部分及上述第2部分之一者之間的第1電阻,與上述第2寫入動作後之上述第1磁性層與上述第1部分及上述第2部分之上述一者之間的第2電阻不同;上述控制部係實施:第3寫入動作,其供給自上述第3部分向上述第4部分之第3寫入電流,及第4寫入動作,其供給自上述第4部分朝向上述第3部分之第4寫入電流;上述第3寫入動作後之上述第3磁性層與上述第3部分及上述第4部分之一者之間的第3電阻,與上述第2寫入動作後之上述第3磁性層與上述第3部分及上述第4部分之上述一者之間的第4電阻不同。A magnetic memory device includes: a first metal-containing layer including a first portion, a second portion, and a first intervening portion provided between the first portion and the second portion; and a second metal-containing layer , Which includes a third part, a fourth part, and a second intervening part provided between the third part and the fourth part, and the second part is provided between the first part and the fourth part The third part is provided between the second part and the fourth part; a plurality of first laminated bodies, the plurality of first laminated systems are arranged along the first metal-containing layer, and the plurality of first laminated layers One of the body includes a first magnetic layer, a second magnetic layer, and a first intermediate layer; the first magnetic layer intersects with the second direction from the first portion to the second direction of the second portion, and The first interposed portion is separated; the second magnetic layer is provided between the first interposed portion and the first magnetic layer; the first intermediate layer includes the first magnetic layer and the second magnetic layer. Between the two, and non-magnetic; a plurality of second laminated bodies, the above-mentioned plurality of second laminated systems Arranged along the second metal-containing layer, one of the plurality of second laminated bodies includes a third magnetic layer, a fourth magnetic layer, and a second intermediate layer; the third magnetic layer is in the first direction and the above The second interposed portion is separated; the fourth magnetic layer is provided between the second interposed portion and the third magnetic layer; the second intermediate layer includes a portion provided between the third magnetic layer and the fourth magnetic layer. And a non-magnetic part; a third laminated body provided between the plurality of first laminated bodies and the plurality of second laminated bodies, and including a fifth magnetic layer; and a control section, which is in communication with the first 1 to the fourth part, the plurality of first laminated bodies, and the plurality of second laminated bodies are electrically connected; and the control unit performs a first writing operation, which is supplied from the first part to the first The first writing current in the second part and the second writing operation supply the second writing current from the second part to the first part; the first magnetic layer and the above after the first writing operation The first resistance between the first part and one of the above second parts is higher than that after the second writing operation. The second resistance between the first magnetic layer and the one of the first part and the second part is different; the control unit is configured to perform a third write operation, which is supplied from the third part to the fourth Part of the third write current and the fourth write operation, which supplies the fourth write current from the fourth part to the third part; the third magnetic layer and the third write current after the third write operation The third resistance between part 3 and one of the fourth part, and the fourth resistance between the third magnetic layer after the second writing operation and the one of the third part and the fourth part. The resistance is different. 如請求項16之磁性記憶裝置,其中進而包含:第3金屬含有層,其設於上述第2部分與上述第3部分之間;第1絕緣區域,其設於上述第2部分與上述第3金屬含有層之間;及第2絕緣區域,其設於上述第3部分與上述第3金屬含有層之間。The magnetic memory device according to claim 16, further comprising: a third metal-containing layer provided between the second portion and the third portion; and a first insulating region provided between the second portion and the third portion. Between the metal-containing layers; and a second insulating region provided between the third portion and the third metal-containing layer. 如請求項16或17之磁性記憶裝置,其中上述控制部進而與上述複數個第1積層體各者之上述第1磁性層電性連接,上述控制部於上述第1寫入動作中,將上述複數個第1積層體之上述1個中所含之上述第1磁性層之電位,設定為與上述複數個第1積層體之另一個中所含之上述第1磁性層之電位不同之電位。For example, the magnetic memory device of claim 16 or 17, wherein the control unit is further electrically connected to the first magnetic layer of each of the plurality of first laminated bodies, and the control unit performs the first writing operation in the first writing operation. The potential of the first magnetic layer contained in the one of the plurality of first multilayers is set to a potential different from the potential of the first magnetic layer contained in the other of the plurality of first multilayers. 一種磁性記憶裝置之製造方法,其係於設於基底構件之上之金屬含有膜之上形成積層膜,上述積層膜包含:第1磁性膜;第2磁性膜,其設於上述第1磁性膜與上述金屬含有膜之間;及非磁性之中間膜,其設於上述第1磁性膜與上述第2磁性膜之間;形成複數個第1槽,該等複數個第1槽排列於與相對於上述金屬含有膜之表面垂直之第1方向交叉之第2方向,且沿著與上述第1方向及上述第2方向交叉之第3方向延伸而到達上述金屬含有膜;於上述第1槽內形成第1絕緣部;將形成上述第1絕緣部後之上述積層膜之一部分、及上述第1絕緣部之一部分去除,而形成於上述第2方向延伸之複數個第2槽;上述複數個第2槽之1個包含於上述第3方向上與上述積層膜重合之第1槽區域、及於上述第3方向上與上述第1絕緣部重合之第2槽區域;上述第1槽區域之沿著上述第3方向之寬度,較上述第2槽區域之沿著上述第3方向之寬度窄;將上述複數個第2槽中露出之上述金屬含有膜去除;及於上述複數個第2槽內形成第2絕緣部。A method for manufacturing a magnetic memory device is to form a laminated film on a metal-containing film provided on a base member. The laminated film includes: a first magnetic film; and a second magnetic film provided on the first magnetic film. And the metal-containing film; and a non-magnetic intermediate film provided between the first magnetic film and the second magnetic film; a plurality of first grooves are formed, and the plurality of first grooves are arranged opposite to each other In the second direction crossing the first direction perpendicular to the surface of the metal containing film, and extending in the third direction crossing the first direction and the second direction to reach the metal containing film; in the first groove Forming a first insulating portion; removing a portion of the laminated film and a portion of the first insulating portion after forming the first insulating portion, and forming a plurality of second grooves extending in the second direction; the plurality of first grooves One of the two grooves includes a first groove region overlapping the laminated film in the third direction, and a second groove region overlapping the first insulating portion in the third direction. The edge of the first groove region is included. The width in the third direction above, Said second narrow groove area along the third direction; and the metal exposed by the plurality of first grooves 2 containing film is removed; and to the second plurality of slots forming the second insulating portion.
TW106107098A 2016-08-04 2017-03-03 Magnetic memory device and method of manufacturing same TWI652799B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP??2016-154039 2016-08-04
JP2016154039A JP6271653B1 (en) 2016-08-04 2016-08-04 Magnetic storage device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201816987A TW201816987A (en) 2018-05-01
TWI652799B true TWI652799B (en) 2019-03-01

Family

ID=61069530

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106107098A TWI652799B (en) 2016-08-04 2017-03-03 Magnetic memory device and method of manufacturing same

Country Status (4)

Country Link
US (2) US10096770B2 (en)
JP (1) JP6271653B1 (en)
CN (1) CN107689232B (en)
TW (1) TWI652799B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6271653B1 (en) * 2016-08-04 2018-01-31 株式会社東芝 Magnetic storage device and manufacturing method thereof
JP6275806B1 (en) 2016-12-02 2018-02-07 株式会社東芝 Magnetic storage
JP6283437B1 (en) 2017-03-21 2018-02-21 株式会社東芝 Magnetic storage
JP6438531B1 (en) * 2017-06-16 2018-12-12 株式会社東芝 Magnetic storage
JP6542319B2 (en) 2017-09-20 2019-07-10 株式会社東芝 Magnetic memory
JP6581634B2 (en) 2017-09-20 2019-09-25 株式会社東芝 Magnetic storage
JP6553224B1 (en) 2018-03-07 2019-07-31 株式会社東芝 Magnetic storage
KR102572158B1 (en) 2018-09-12 2023-08-30 삼성전자주식회사 Magnetic memory devices
JP6970076B2 (en) 2018-11-16 2021-11-24 株式会社東芝 Magnetic storage device
KR102576209B1 (en) * 2018-12-03 2023-09-07 삼성전자주식회사 Semiconductor device including spin-orbit torque line
US10930843B2 (en) * 2018-12-17 2021-02-23 Spin Memory, Inc. Process for manufacturing scalable spin-orbit torque (SOT) magnetic memory
KR102573570B1 (en) * 2019-01-14 2023-09-01 삼성전자주식회사 Semiconductor device including spin-orbit torque line and contact plug
US11637235B2 (en) * 2019-01-18 2023-04-25 Everspin Technologies, Inc. In-plane spin orbit torque magnetoresistive stack/structure and methods therefor
JP2020155488A (en) * 2019-03-18 2020-09-24 キオクシア株式会社 Magnetic storage device
US11469267B2 (en) * 2019-05-17 2022-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. SOT MRAM having dielectric interfacial layer and method forming same
US11522015B2 (en) 2019-07-19 2022-12-06 Samsung Electronics Co., Ltd. Variable resistance memory device
JP2021048240A (en) * 2019-09-18 2021-03-25 キオクシア株式会社 Magnetic memory

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963153B1 (en) 2010-07-26 2013-04-26 Centre Nat Rech Scient INDEXABLE MAGNETIC ELEMENT
JP5677187B2 (en) * 2011-05-09 2015-02-25 株式会社東芝 Semiconductor memory device
US9076537B2 (en) 2012-08-26 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction
KR102099192B1 (en) 2013-03-14 2020-04-09 인텔 코포레이션 Cross point array mram having spin hall mtj devices
US9218864B1 (en) * 2014-10-04 2015-12-22 Ge Yi Magnetoresistive random access memory cell and 3D memory cell array
US9425738B2 (en) * 2014-11-13 2016-08-23 Regents Of The University Of Minnesota Spin current generation with nano-oscillator
US9768229B2 (en) 2015-10-22 2017-09-19 Western Digital Technologies, Inc. Bottom pinned SOT-MRAM bit structure and method of fabrication
JP6271653B1 (en) * 2016-08-04 2018-01-31 株式会社東芝 Magnetic storage device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201816987A (en) 2018-05-01
CN107689232A (en) 2018-02-13
US20180375016A1 (en) 2018-12-27
US20180040812A1 (en) 2018-02-08
CN107689232B (en) 2020-03-06
US10096770B2 (en) 2018-10-09
US10510949B2 (en) 2019-12-17
JP2018022805A (en) 2018-02-08
JP6271653B1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
TWI652799B (en) Magnetic memory device and method of manufacturing same
JP6275806B1 (en) Magnetic storage
US9985201B2 (en) Magnetic memory based on spin hall effect
US10580472B2 (en) Magnetic memory device
US8531875B2 (en) Magnetic memory
JP2006179891A (en) Mram of voltage controlled magnetization reversal writing type and method of writing and reading information
CN107845725B (en) Magnetoresistive element and magnetic memory
US10573449B2 (en) Tunnel magnetoresistive effect element
US10340311B2 (en) Magnetoresistive effect element with magnetic layers and magnetic memory
JP2013073973A (en) Spin transistor and memory
US11854589B2 (en) STT-SOT hybrid magnetoresistive element and manufacture thereof
US20220045267A1 (en) Magnetoresistive element having a sidewall-current-channel structure
US11963458B2 (en) Magnetic tunnel junction device, method for manufacturing magnetic tunnel junction device, and magnetic memory
US10608047B1 (en) Magnetic memory element with voltage controlled magnetic anistropy
JP6538792B2 (en) Magnetic storage
JP2008047840A (en) Magnetoresistive effect element, magnetic random access memory, and manufacturing method thereof
JP2014053508A (en) Semiconductor storage device and operation method thereof
JP2020088013A (en) Magnetic memory device
JP2017168588A (en) Magnetic storage element, magnetoresistive memory and manufacturing method of magnetic storage element