TWI652279B - Antigen-binding molecules containing altered antibody variable regions - Google Patents

Antigen-binding molecules containing altered antibody variable regions Download PDF

Info

Publication number
TWI652279B
TWI652279B TW103138989A TW103138989A TWI652279B TW I652279 B TWI652279 B TW I652279B TW 103138989 A TW103138989 A TW 103138989A TW 103138989 A TW103138989 A TW 103138989A TW I652279 B TWI652279 B TW I652279B
Authority
TW
Taiwan
Prior art keywords
antigen
binding
antibody
region
amino acid
Prior art date
Application number
TW103138989A
Other languages
Chinese (zh)
Other versions
TW201605900A (en
Inventor
井川智之
門野正次郎
廣庭奈緒香
櫻井実香
Original Assignee
中外製藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製藥股份有限公司 filed Critical 中外製藥股份有限公司
Publication of TW201605900A publication Critical patent/TW201605900A/en
Application granted granted Critical
Publication of TWI652279B publication Critical patent/TWI652279B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • C07K16/2848Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta3-subunit-containing molecules, e.g. CD41, CD51, CD61
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction

Abstract

本案發明人等成功地製作出對於在T細胞表面表現的分子及在其他免疫細胞表面表現的分子有結合活性但不會同時結合的含有抗體之可變區的抗原結合分子。依本發明,能製作可避免T細胞與其他免疫細胞交聯時可能引起的副作用的抗原結合分子,且能提供適於作為醫藥品的抗原結合分子。 The inventors of the present case have succeeded in producing an antigen-binding molecule containing a variable region of an antibody that has binding activity to molecules expressed on the surface of T cells and molecules expressed on the surface of other immune cells but will not bind simultaneously. According to the present invention, an antigen-binding molecule capable of avoiding side effects that may be caused when T cells are cross-linked with other immune cells can be produced, and an antigen-binding molecule suitable for use as a pharmaceutical can be provided.

Description

含改變的抗體可變區之抗原結合分子 Antigen-binding molecules containing altered antibody variable regions

本發明提供一種抗原結合分子,包括:能和不同的2個抗原(第1抗原及第2抗原)結合但是不會和兩抗原同時結合之抗體之可變區、以及會與和該等抗原不同的第3抗原結合之抗體之可變區;並提供含該抗原結合分子之醫藥組合物、以及此等之製造方法。 The present invention provides an antigen-binding molecule comprising: a variable region of an antibody capable of binding to two different antigens (the first antigen and the second antigen) but not simultaneously binding to the two antigens, and different from the antigens A variable region of a third antigen-binding antibody; and a pharmaceutical composition containing the antigen-binding molecule, and a method for producing the same.

抗體在血漿中的安定性高、副作用少,故作為醫藥品受到重視(Nat.Biotechnol.(2005)23,1073-1078(非專利文獻1)及Eur J Pharm Biopharm.(2005)59(3),389-396(非專利文獻2))。抗體,不僅有和抗原結合之作用、致效劑作用、拮抗劑作用,尚可誘導ADCC(Antibody Dependent Cytotoxicity:抗體依存性障害活性)、ADCP(Antibody Dependent Cell phagocytosis:抗體依存性細胞吞噬作用)、CDC(補體依存性細胞傷害活性)此類由效應子細胞所致之細胞毒性活性(也稱為效應子機能)。尤其IgG1次型的抗體對於癌細胞顯示效應子機能,故在癌領域已有多數抗體醫藥品開發。 Antibodies have high stability in plasma and few side effects, so they have been valued as medicines (Nat. Biotechnol. (2005) 23, 1073-1078 (Non-Patent Document 1) and Eur J Pharm Biopharm. (2005) 59 (3) 389-396 (non-patent document 2)). Antibodies not only have the function of binding to antigens, allergens, antagonists, but also induce ADCC (Antibody Dependent Cytotoxicity: Antibody Dependence Barrier Activity), ADCP (Antibody Dependent Cell phagocytosis) CDC (Complement Dependent Cell Harmful Activity) This type of cytotoxic activity (also called effector function) caused by effector cells. In particular, antibodies of the IgG1 subtype exhibit effector functions on cancer cells, and therefore, many antibody drugs have been developed in the field of cancer.

抗體為了表現ADCC、ADCP、CDC,抗體之Fc區,必須與NK細胞、巨噬細胞等效應子細胞中存在的抗體受體(FcγR)及各種補體成分結合。人之中,作為FcγR之蛋白質 家族,已有人報告FcγRIa、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIb之異構體(isoform),也有人報告各自的異型(allotype)(Immunol.Lett.(2002)82,57-65(非專利文獻3))。該等異構體(isoform)之中,FcγRIa、FcγRIIa、FcγRIIIa在細胞內分域帶有稱為ITAM(Immunoreceptor Tyrosine-based Activation Motif)的分域,傳遞活化信號。而只有FcγRIIb在細胞內分域帶有稱為ITIM(Immunoreceptor Tyrosine-based Inhibitory Motif)的分域,傳遞抑制信號。任一FcγR已知均藉由免疫複合體等而被交聯,以傳遞信號(Nat.Rev.Immunol.(2008)8,34-47(非專利文獻4))。實際上,抗體在對於癌細胞發揮效應子機能時,於癌細胞膜上有多數個結合的抗體的Fc區,效應子細胞膜上的FcγR成為簇集,利用效應子細胞傳遞活化信號。其結果雖發揮殺細胞效果,但是FcγR的交聯只限於存在癌細胞附近的效應子細胞,所以免疫活化呈現只在癌細胞局部發生的情形。(Ann.Rev.Immunol.(1988).6.251-81(非專利文獻5)) In order for antibodies to express ADCC, ADCP, and CDC, the Fc region of antibodies must bind to antibody receptors (FcγR) and various complement components present in effector cells such as NK cells and macrophages. Among humans, as a protein of FcγR Families have reported isoforms of FcγRIa, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb, and others have reported their allotypes (Immunol. Lett. (2002) 82, 57-65 (Non-Patent Document 3) ). Among the isoforms, FcγRIa, FcγRIIa, and FcγRIIIa have a domain called IMAM (Immunoreceptor Tyrosine-based Activation Motif) in the intracellular domain to transmit activation signals. However, only FcγRIIb has a subdomain called ITIM (Immunoreceptor Tyrosine-based Inhibitory Motif) in the intracellular domain, which transmits inhibitory signals. Any FcγR is known to be cross-linked by an immune complex or the like to transmit a signal (Nat. Rev. Immunol. (2008) 8, 34-47 (Non-Patent Document 4)). In fact, when an antibody exerts effector functions on cancer cells, there are a large number of Fc regions of the antibody bound on the cancer cell membrane, and FcγR on the effector cell membrane becomes a cluster, and the activation signal is transmitted by the effector cell. As a result, although the cell-killing effect is exhibited, the cross-linking of FcγR is limited to the presence of effector cells near the cancer cells, so immune activation occurs only locally in the cancer cells. (Ann. Rev. Immunol. (1988). 6.251-81 (Non-Patent Document 5))

天然型免疫球蛋白,於可變區和抗原結合,於不變區則和FcγR、FcRn、FcαR、FcεR此類受體、補體結合。於IgG之Fc區交互作用的一結合分子即FcRn,會和抗體之重鏈各結合1分子,所以據報告IgG型之抗體1分子會有2分子FcRn結合。但是FcγR和FcRn等不同,FcγR係於抗體之鉸鏈區及CH2分域交互作用,對於IgG型抗體1分子只有1分子結合(J.Bio.Chem.,(20001)276,16469-16477)。又,FcγR與抗體之Fc區之結合,據顯示:抗體之鉸鏈區及CH2分域內的一些胺基酸殘基及CH2分域所結合之EU編號297號之Asn 上附加的糖鏈係為重要(Chem.Immunol.(1997),65,88-110(非專利文獻6)、Eur.J.Immunol.(1993)23,1098-1104(非專利文獻7)、Immunol.(1995)86,319-324(非專利文獻8))。以此結合部位為中心,至今已有各種帶有FcγR結合特性的Fc區的變異體被研究,已獲得對於活化FcγR有更高結合活性的Fc區變異體(WO2000/042072(專利文獻1)、WO2006/019447(專利文獻2))。例如:Lazar等人,成功地藉由將人IgG1之EU編號239號之Ser、330之Ala、332之Ile各取代為Asn、Leu、Glu,而使人IgG1對於人FcγRIIIa(V158)之結合活性增加至約370倍(Proc.Natl.Acad.Sci.U.S.A.(2006)103,4005-4010(非專利文獻9)、WO2006/019447(專利文獻2))。此改變體比起野生型,對於FcγRIIIa與FcγIIb之結合活性之比(A/I比)成為約9倍。又,Shinkawa等人藉由使在EU編號297號之Asn附加之糖鏈之岩藻糖缺失,而成功地使對於FcγRIIIa之結合活性增加至約100倍(J.Biol.Chem.(2003)278,3466-3473(非專利文獻10))。利用該等方法,相對於天然型人IgG1,人IgG1之ADCC活性能大幅提高。 Natural immunoglobulins bind to the variable region and antigen, and bind to the receptors and complements such as FcγR, FcRn, FcαR, and FcεR in the constant region. A binding molecule that interacts with the Fc region of IgG, FcRn, binds one molecule each to the heavy chain of the antibody, so it is reported that one molecule of an IgG-type antibody will bind two molecules of FcRn. However, FcγR and FcRn are different. FcγR interacts with the hinge region and CH2 domain of an antibody, and only one molecule binds to one molecule of an IgG antibody (J. Bio.Chem., (20001) 276,16469-16477). In addition, the binding of FcγR to the Fc region of the antibody shows that some amino acid residues in the hinge region of the antibody and the CH2 domain and the Asn of EU number 297 bound to the CH2 domain The added sugar chains are important (Chem. Immunol. (1997), 65, 88-110 (Non-Patent Document 6), Eur. J. Immunol. (1993) 23, 1098-1104 (Non-Patent Document 7), Immunol. (1995) 86,319-324 (non-patent document 8)). With this binding site as the center, various Fc region variants with FcγR binding properties have been studied so far, and Fc region variants with higher binding activity for activating FcγR have been obtained (WO2000 / 042072 (Patent Document 1), WO2006 / 019447 (Patent Document 2)). For example: Lazar et al. Succeeded in making human IgG1 binding activity to human FcγRIIIa (V158) by replacing Ser, 330, Ala, 332, and Ile of human IgG1 with Asn, Leu, and Glu, respectively. It increased to about 370 times (Proc. Natl. Acad. Sci. USA (2006) 103, 4005-4010 (Non-Patent Document 9), WO2006 / 019447 (Patent Document 2)). Compared with the wild type, the ratio of this modified body to the binding activity of FcγRIIIa to FcγIIb (A / I ratio) was approximately 9 times. Furthermore, Shinkawa et al. Succeeded in increasing the binding activity to FcγRIIIa by approximately 100-fold by deleting fucose from the sugar chain attached to Asn of EU No. 297 (J. Biol. Chem. (2003) 278 3466-3473 (Non-Patent Document 10)). Using these methods, the ADCC activity of human IgG1 can be greatly improved compared to natural human IgG1.

通常天然型IgG型之抗體,係利用其可變區(Fab)認識並結合1個抗原決定位,所以只會和1個抗原結合。而已知涉及癌、發炎的多種蛋白質,蛋白質彼此有時會交擾(crosstalk)。例如免疫病症中,已知有一些發炎性細胞介素(TNF,IL1、IL6)涉及(Nat.Biotech.,(2011)28,502-10(非專利文獻11))。且已知癌獲得藥劑耐性的一機轉,係其他受體活化(Endocr Relat Cancer(2006)13,45-51(非專利文獻12))。在如 此的情形,認識1個抗原決定位的通常的抗體,無法阻斷(block)多數蛋白質。 Generally, antibodies of the natural IgG type use their variable regions (Fabs) to recognize and bind one epitope, so they only bind to one antigen. A variety of proteins known to be involved in cancer and inflammation may sometimes crosstalk with each other. For example, in immunological disorders, some inflammatory cytokines (TNF, IL1, IL6) are known to be involved (Nat. Biotech., (2011) 28,502-10 (Non-Patent Document 11)). In addition, it is known that cancer has acquired a drug resistance that is activated by other receptors (Endocr Relat Cancer (2006) 13, 45-51 (Non-Patent Document 12)). In such In this case, a common antibody that recognizes one epitope cannot block most proteins.

作為阻斷多數標靶的分子,已有人研究以1分子和2種以上的抗原結合的抗體(稱為雙專一性(Bispecific)抗體)。藉由將天然型IgG型抗體予以改良,能賦予對於不同的2個抗原(第1抗原與第2抗原)的結合活性(MAbs.(2012)Mar 1,4(2))。所以,不僅是將2種以上的抗原以1個分子中和,也有藉由將帶有細胞毒性活性之細胞與癌細胞予以交聯而提高抗腫瘤活性的作用。至今,作為雙專一性(Bispecific)抗體之分子形式,已有人報告:在抗體之N末端、C末端附加抗原結合部位之分子(DVD-Ig、scFv-IgG)、抗體之2個Fab區有不同序列之分子(共通L鏈雙專一性抗體及混合融合瘤(hybrid hybridoma)、1個Fab區認識2個抗原的分子(Two-in-one IgG)、將CH3區的迴圈部位作為新抗原結合部位的分子(Fcab)(Nat.Rev.(2010),10,301-316(非專利文獻13)、Peds(2010),23(4),289-297(非專利文獻14))。任一雙專一性抗體均是以Fc區和FcγR交互作用,所以可保守抗體的效應子機能。因此雙專一性抗體對於認識的任一抗原,均會和FcγR同時結合並對於表現抗原的細胞呈現ADCC活性。 As a molecule that blocks most targets, an antibody (called a bispecific antibody) that binds one molecule and two or more antigens has been studied. By improving the natural IgG antibody, binding activity to two different antigens (the first antigen and the second antigen) can be imparted (MAbs. (2012) Mar 1, 4 (2)). Therefore, not only is it possible to neutralize two or more antigens with one molecule, but it also has the effect of increasing antitumor activity by cross-linking cells with cytotoxic activity and cancer cells. So far, as the molecular form of a bispecific antibody, it has been reported that the molecule that attaches an antigen-binding site to the N-terminus and C-terminus of the antibody (DVD-Ig, scFv-IgG), and the two Fab regions of the antibody differ Sequence molecules (common L-chain bispecific antibodies and hybrid hybridomas), a molecule that recognizes two antigens in one Fab region (Two-in-one IgG), and binds the loop site of the CH3 region as a new antigen Molecules (Fcab) (Nat. Rev. (2010), 10, 301-316 (Non-Patent Document 13), Peds (2010), 23 (4), 289-297 (Non-Patent Document 14)). Either double specificity Sexual antibodies interact with the Fc region and FcγR, so the effector function of the antibody can be conserved. Therefore, the bispecific antibody will bind to FcγR at the same time for any recognized antigen, and will exhibit ADCC activity for cells expressing the antigen.

雙專一性抗體所認識之抗原若均為在癌專一性地表現的抗原,則對於任一抗原均對於癌細胞顯示細胞毒性活性,能期待比起認識1個抗原的通常抗體醫藥品有更高效率的抗癌效果。但是雙專一性抗體所認識之抗原中有任一抗原是在正常組織表現時、在免疫細胞表現的細胞時,會因和FcγR之 交聯而傷害正常組織、釋出細胞介素(J.Immunol.(1999)Aug 1,163(3),1246-52(非專利文獻15))。其結果會誘導強副作用。 If the antigens recognized by the bispecific antibodies are all antigens that are specifically expressed in cancer, they will show cytotoxic activity to cancer cells for any antigen, and can be expected to be higher than that of ordinary antibody drugs that recognize one antigen. Effective anti-cancer effect. However, any of the antigens recognized by the bispecific antibody is expressed in normal tissues and in cells expressed by immune cells. Cross-linking damages normal tissues and releases interleukins (J. Immunol. (1999) Aug 1,163 (3), 1246-52 (Non-Patent Document 15)). As a result, strong side effects are induced.

例如:已知Catumaxomab係認識在T細胞表現之蛋白質及在癌細胞表現的蛋白質(癌抗原)的雙專一性抗體。Catumaxomab以2個Fab各和癌抗原(EpCAM)與T細胞表現的CD3ε鏈結合。Catumaxomab藉由和癌抗原與CD3ε同時結合,會誘導T細胞所致之細胞毒性活性,藉由和癌抗原與FcγR同時結合,會誘導NK細胞、巨噬細胞等抗原提示細胞所致之細胞毒性活性。藉由利用2種細胞毒性活性,Catumaxomab利用腹腔內投予顯示於惡性腹水症有高治療效果,且已在歐洲獲認可。(Cancer Treat Rev.(2010)Oct 36(6),458-67(非專利文獻16))進一步報告利用Catumaxomab投予而出現對於癌細胞有反應的抗體的例子,而解明:可誘導獲得性免疫(Future Oncol.(2012)Jan 8(1),73-85(非專利文獻17))。由此結果,同時帶有由T細胞獲致之細胞毒性活性及介由FcγR之NK細胞、巨噬細胞等細胞獲致之作用兩者的抗體(特別稱為三官能(trifunctional)抗體),因可期待強抗腫瘤效果及獲得性免疫誘導,故受人重視。 For example, Catumaxomab is known as a bispecific antibody that recognizes proteins expressed on T cells and proteins (cancer antigens) expressed on cancer cells. Catumaxomab binds to the CD3ε chain expressed by T cells with two Fabs and cancer antigen (EpCAM). Catumaxomab can induce cytotoxic activity caused by T cells by combining with cancer antigen and CD3ε at the same time, and can induce NK cells, macrophages and other antigens suggesting cytotoxic activity by cells by combining with cancer antigen and FcγR simultaneously. . By utilizing two cytotoxic activities, Catumaxomab has been shown to have high therapeutic effects in malignant ascites by intraperitoneal administration, and has been recognized in Europe. (Cancer Treat Rev. (2010) Oct 36 (6), 458-67 (Non-Patent Document 16)) further reports an example of the use of Catatumxomab administration to give rise to antibodies that respond to cancer cells, and explains that it can induce adaptive immunity (Future Oncol. (2012) Jan 8 (1), 73-85 (Non-Patent Document 17)). From this result, antibodies (especially called trifunctional antibodies) with both cytotoxic activity by T cells and effects by cells such as NK cells and macrophages via FcγR can be expected. Because of its strong anti-tumor effect and adaptive immune induction, it has attracted much attention.

但是三官能(trifunctional)抗體即是於癌抗原不存在時,仍會和CD3ε與FcγR同時結合,故在癌細胞不存在的環境,表現CD3ε之T細胞與表現FcγR之細胞還是會交聯,而大量產生各種細胞介素。由於如此的癌抗原非依存性的各種細胞介素的產生誘導,目前三官能(trifunctional)抗體之投予係限於腹腔內(Cancer Treat Rev.2010 Oct 36(6),458-67(非專利 文獻16)),由於嚴重的細胞介素風暴(cytokine storm)狀的副作用,全身投予極困難(Cancer Immunol Immunother.2007 Sep;56(9):1397-406(非專利文獻18))。 However, trifunctional antibodies bind to CD3ε and FcγR simultaneously when the cancer antigen is absent. Therefore, in the absence of cancer cells, T cells expressing CD3ε and cells expressing FcγR will still crosslink, and Various cytokines are produced in large quantities. Due to the induction of the production of various cytokines that are not dependent on such cancer antigens, the administration of trifunctional antibodies is currently limited to the intraperitoneal cavity (Cancer Treat Rev. 2010 Oct 36 (6), 458-67 (non-patent Document 16)), due to severe cytokine storm-like side effects, systemic administration is extremely difficult (Cancer Immunol Immunother. 2007 Sep; 56 (9): 1397-406 (Non-Patent Document 18)).

又,習知技術之雙專一性抗體,由於第1抗原即癌抗原(EpCAM)和第2抗原即CD3ε兩者的抗原可能和FcγR同時結合,所以於分子結構無法避免由於FcγR和第2抗原之CD3ε之同時結合導致的如此的副作用。 In addition, the bispecific antibodies of the conventional technology, because the antigens of both the first antigen, namely, the cancer antigen (EpCAM) and the second antigen, such as CD3ε, may be bound to FcγR simultaneously. Therefore, due to the molecular structure, FcγR and the second antigen cannot be avoided. CD3ε caused such side effects at the same time.

近年來,藉由使用使對FcγR之結合活性減低的Fc區,已能提供避免副作用且同時引起T細胞所致細胞傷害活性之改良型抗體(WO2012/073985)。 In recent years, by using an Fc region that reduces the binding activity to FcγR, it has been possible to provide an improved antibody that avoids side effects and simultaneously induces cytotoxic activity caused by T cells (WO2012 / 073985).

但是如此的抗體,於分子結構上,也無法和癌抗原結合且和CD3ε與FcγR之2個免疫受體作用。 However, such antibodies are also unable to bind to cancer antigens in the molecular structure and interact with two immunoreceptors of CD3ε and FcγR.

至今,尚未知有能避免副作用且同時以癌抗原專一性地使T細胞所致之細胞毒性活性與T細胞以外之細胞所致之細胞傷害活性兩者作用的抗體。 To date, no antibody has been known that can prevent side effects and specifically act on both the cytotoxic activity caused by T cells and the cytotoxic activity caused by cells other than T cells with a cancer antigen.

【先前技術文獻】 [Previous Technical Literature]

【專利文獻】 [Patent Literature]

【專利文獻1】WO2000/042072 [Patent Document 1] WO2000 / 042072

【專利文獻2】WO2006/019447 [Patent Document 2] WO2006 / 019447

【非專利文獻】 [Non-patent literature]

【非專利文獻1】Nat. Biotechnol. (2005) 23, 1073-1078 [Non-Patent Document 1] Nat. Biotechnol. (2005) 23, 1073-1078

【非專利文獻2】Eur J Pharm Biopharm. (2005) 59 (3), 389-396 [Non-Patent Document 2] Eur J Pharm Biopharm. (2005) 59 (3), 389-396

【非專利文獻3】Immunol. Lett. (2002) 82, 57-65 [Non-Patent Document 3] Immunol. Lett. (2002) 82, 57-65

【非專利文獻4】Nat. Rev. Immunol. (2008) 8, 34-47 [Non-Patent Document 4] Nat. Rev. Immunol. (2008) 8, 34-47

【非專利文獻5】Ann. Rev. Immunol. (1988). 6. 251-81 [Non-Patent Document 5] Ann. Rev. Immunol. (1988). 6. 251-81

【非專利文獻6】Chem. Immunol. (1997), 65, 88-110 [Non-Patent Document 6] Chem. Immunol. (1997), 65, 88-110

【非專利文獻7】Eur. J. Immunol. (1993) 23, 1098-1104 [Non-Patent Document 7] Eur. J. Immunol. (1993) 23, 1098-1104

【非專利文獻8】Immunol. (1995) 86, 319-324 [Non-Patent Document 8] Immunol. (1995) 86, 319-324

【非專利文獻9】Proc. Natl. Acad. Sci. U. S. A. (2006) 103, 4005-4010 [Non-Patent Document 9] Proc. Natl. Acad. Sci. U. S. A. (2006) 103, 4005-4010

【非專利文獻10】J. Biol. Chem. (2003) 278, 3466-3473 [Non-Patent Document 10] J. Biol. Chem. (2003) 278, 3466-3473

【非專利文獻11】Nat. Biotech., (2011) 28, 502-10 [Non-Patent Document 11] Nat. Biotech., (2011) 28, 502-10

【非專利文獻12】Endocr Relat Cancer (2006) 13, 45-51 [Non-Patent Document 12] Endocr Relat Cancer (2006) 13, 45-51

【非專利文獻13】Nat. Rev. (2010), 10, 301-316 [Non-Patent Document 13] Nat. Rev. (2010), 10, 301-316

【非專利文獻14】Peds(2010), 23(4), 289-297 [Non-Patent Document 14] Peds (2010), 23 (4), 289-297

【非專利文獻15】J. Immunol. (1999) Aug 1, 163(3), 1246-52 [Non-Patent Document 15] J. Immunol. (1999) Aug 1, 163 (3), 1246-52

【非專利文獻16】Cancer Treat Rev. (2010) Oct 36(6), 458-67 [Non-Patent Document 16] Cancer Treat Rev. (2010) Oct 36 (6), 458-67

【非專利文獻17】Future Oncol. (2012) Jan 8(1), 73-85 [Non-Patent Document 17] Future Oncol. (2012) Jan 8 (1), 73-85

【非專利文獻18】Cancer Immunol Immunother. 2007 Sep; 56(9):1397-406 [Non-Patent Document 18] Cancer Immunol Immunother. 2007 Sep; 56 (9): 1397-406

本發明係有鑑於如此的狀況而生,其課題在於提供一種抗原結合分子,包含:1個可變區對於不同的2個抗原 (第1抗原與第2抗原)有結合活性但是對於該等抗原不同時結合之抗體之可變區,以及與和該等抗原不同之抗原(第3抗原)結合之可變區;並提供含該抗原結合分子之醫藥組合物、及該抗原結合分子之製造方法。 The present invention was made in view of such a situation, and an object thereof is to provide an antigen-binding molecule including: one variable region for two different antigens (The first antigen and the second antigen) a variable region of an antibody that has binding activity but does not bind to these antigens at the same time, and a variable region that binds to an antigen (third antigen) different from these antigens; and A pharmaceutical composition of the antigen-binding molecule and a method for producing the antigen-binding molecule.

本案發明人等為了解決上述課題努力研究。其結果,本案發明人等藉由製作包含1個可變區係對於不同的2個抗原(第1抗原與第2抗原)有結合活性但對於該等抗原不同時結合之抗體之可變區,及與和該等抗原不同之抗原(第3抗原)結合之可變區之抗原結合分子,利用該抗原結合分子對於3個不同抗原的結合活性,而成功地使抗原結合分子產生的活性增強。再者,將能避免至今的多專一性抗原結合分子利用於作為醫藥品時據認為會成為副作用之原因的因和在不同的細胞上表現之抗原結合所導致的該不同的細胞間的交聯的抗原結合分子予以成功地製作。 The inventors of the present case have worked hard to solve the above problems. As a result, the inventors of the present case have prepared a variable region that contains one variable region that binds to two different antigens (the first antigen and the second antigen), but does not bind to these antigens at the same time. And the antigen-binding molecule of the variable region that binds to an antigen different from these antigens (third antigen), the binding activity of the antigen-binding molecule to three different antigens is used to successfully enhance the activity produced by the antigen-binding molecule. Furthermore, the use of multispecific antigen-binding molecules that can be avoided to date is considered to be a cause of side effects and cross-linking between different cells due to antigen binding expressed on different cells when used as pharmaceuticals. The antigen-binding molecules were successfully produced.

更具體而言,本發明關於以下。 More specifically, the present invention relates to the following.

[1]一種抗原結合分子,包含:能和第1抗原及與該第1抗原為不同之第2抗原結合但不同時結合於第1抗原與第2抗原之抗體之可變區;及結合於和該第1抗原及第2抗原為不同之第3抗原之可變區。 [1] An antigen-binding molecule comprising: a variable region of an antibody capable of binding to a first antigen and a second antigen different from the first antigen, but not simultaneously to the first antigen and the second antigen; and The variable region of the third antigen is different from the first and second antigens.

[2]一種抗原結合分子,包含:重鏈可變區之胺基酸經改變之抗體之可變區,係成為能和第1抗原及與該第1抗原不同之第2抗原結合但不同時結合於 第1抗原與第2抗原。 [2] An antigen-binding molecule comprising: a variable region of an amino acid-modified antibody of a heavy chain variable region, capable of binding to a first antigen and a second antigen different from the first antigen, but not at the same time Combined with The first antigen and the second antigen.

[3]如[1]或[2]之抗原結合分子,其中,不同時結合於第1抗原與第2抗原之可變區,係不同時結合於在各自不同的細胞上表現之第1抗原與第2抗原的可變區。 [3] The antigen-binding molecule according to [1] or [2], wherein they do not bind to the variable region of the first antigen and the second antigen at the same time, and do not bind to the first antigen expressed on different cells at the same time. Variable region with 2nd antigen.

[4]如[1]至[3]中任一項之抗原結合分子,更含有抗體之Fc區。 [4] The antigen-binding molecule according to any one of [1] to [3], further comprising an Fc region of an antibody.

[5]如[4]之抗原結合分子,其中,該Fc區係比起天然型人IgG1抗體之Fc區對FcγR之結合活性為低之Fc區。 [5] The antigen-binding molecule of [4], wherein the Fc region is an Fc region having a lower binding activity to FcγR than the Fc region of a natural human IgG1 antibody.

[6]如[1]至[5]中任一項之抗原結合分子,係多專一性抗體。 [6] The antigen-binding molecule according to any one of [1] to [5], which is a multispecific antibody.

[7]如[1]至[6]中任一項之抗原結合分子,其中,能結合於第1抗原與第2抗原之抗體之可變區係導入至少1個胺基酸之改變的可變區。 [7] The antigen-binding molecule according to any one of [1] to [6], wherein the variable region of the antibody capable of binding to the first antigen and the second antigen introduces at least one amino acid modified Variable zone.

[8]如[7]之抗原結合分子,其中,該改變係至少1個胺基酸之取代或插入。 [8] The antigen-binding molecule of [7], wherein the change is a substitution or insertion of at least one amino acid.

[9]如[7]或[8]之抗原結合分子,其中,該改變係將結合於第1抗原之可變區之一部分胺基酸序列取代為結合於第2抗原之胺基酸序列、或將結合於第2抗原之胺基酸序列插入結合於第1抗原之可變區之胺基酸序列。 [9] The antigen-binding molecule of [7] or [8], wherein the change is to replace a part of the amino acid sequence bound to the variable region of the first antigen with the amino acid sequence bound to the second antigen, Alternatively, an amino acid sequence that binds to the second antigen is inserted into an amino acid sequence that binds to the variable region of the first antigen.

[10]如[8]或[9]之抗原結合分子,其中,插入胺基酸的數目為1~25個。 [10] The antigen-binding molecule according to [8] or [9], wherein the number of amino acids inserted is 1 to 25.

[11]如[7]至[10]中任一項之抗原結合分子,其中,改變的胺基酸為抗體之可變區之CDR1、CDR2、CDR3或FR3區域的胺基酸。 [11] The antigen-binding molecule of any one of [7] to [10], wherein the altered amino acid is an amino acid of a CDR1, CDR2, CDR3, or FR3 region of a variable region of an antibody.

[12]如[7]至[11]中任一項之抗原結合分子,其中,改變的胺基酸為迴圈區域的胺基酸。 [12] The antigen-binding molecule according to any one of [7] to [11], wherein the modified amino acid is an amino acid in a loop region.

[13]如[7]至[11]中任一項之抗原結合分子,其中,改變的胺基酸係選自於抗體H鏈可變區之Kabat編號31~35、50~65、71~74及95~102、L鏈可變區之Kabat編號24~34、50~56及89~97中的至少1個胺基酸。 [13] The antigen-binding molecule of any one of [7] to [11], wherein the modified amino acid is selected from Kabat numbers 31 to 35, 50 to 65, and 71 to 35 of the variable region of the H chain of the antibody. At least one of the 74 and 95-102, L-chain variable region Kabat numbers 24-34, 50-56, and 89-97.

[14]如[1]至[13]中任一項之抗原結合分子,其中,第1抗原或第2抗原任一者係在T細胞表面專一性地表現的分子,另一抗原係在T細胞或其他免疫細胞表面表現的分子。 [14] The antigen-binding molecule of any one of [1] to [13], wherein either the first antigen or the second antigen is a molecule specifically expressed on the surface of a T cell, and the other antigen is on a T cell Molecules expressed on the surface of cells or other immune cells.

[15]如[14]之抗原結合分子,其中,第1抗原或第2抗原中任一者為CD3,另一抗原為FcγR、TLR、凝集素、IgA、免疫核對點分子、TNF超級家族分子、TNFR超級家族分子或NK受體分子。 [15] The antigen-binding molecule of [14], wherein either the first antigen or the second antigen is CD3, and the other antigen is FcγR, TLR, lectin, IgA, immune checkpoint molecule, TNF super family molecule TNFR superfamily molecule or NK receptor molecule.

[16]如[14]或[15]之抗原結合分子,其中,第3抗原係癌組織專一性地表現的分子。 [16] The antigen-binding molecule according to [14] or [15], wherein the third antigen is a molecule specifically expressed in cancer tissue.

[17]一種醫藥組合物,包含:如[1]至[16]中任一項之抗原結合分子及醫學上可容許之擔體。 [17] A pharmaceutical composition comprising the antigen-binding molecule according to any one of [1] to [16] and a medically acceptable carrier.

[18]一種抗原結合分子之製造方法,係製造如[1]至[16]中任一項之抗原結合分子,包含步驟(i)~(iv):(i)製作結合於第1抗原或第2抗原之抗體之可變區之至少1個胺基酸經改變之抗原結合分子且係含有該改變之可變區之胺基酸之至少1個彼此不同之可變區之抗原結合分子之庫;(ii)從製作之庫之中選擇含有對於第1抗原及第2抗原有結合活性但不同時結合於該第1抗原及第2抗原之可變區之抗 原結合分子;(iii)將含有編碼為步驟(ii)選出之抗原結合分子之該可變區之核酸、及/或編碼為結合於第3抗原之抗原結合分子之可變區之核酸的寄主細胞進行培養,使含有能和第1抗原與第2抗原結合但不同時結合於該第1抗原與第2抗原之抗體之可變區、及/或結合於第3抗原之可變區的抗原結合分子表現;及(iv)從該寄主細胞培養物回收抗原結合分子。 [18] A method for producing an antigen-binding molecule, which is to produce the antigen-binding molecule according to any one of [1] to [16], comprising steps (i) to (iv): (i) making a binding to a first antigen or At least one amino acid-modified antigen-binding molecule of the variable region of the antibody of the second antigen is at least one antigen-binding molecule of the variable region that contains at least one amino acid of the changed variable region. Library; (ii) selecting from the prepared libraries an antibody containing binding activity to the first antigen and the second antigen but not simultaneously binding to the variable regions of the first antigen and the second antigen Original binding molecule; (iii) a host containing a nucleic acid encoding the variable region encoding the antigen-binding molecule selected in step (ii), and / or a host encoding a nucleic acid encoding a variable region of the antigen-binding molecule of the third antigen Cells are cultured such that they contain a variable region that can bind to the first antigen and the second antigen but not both to the antibodies of the first antigen and the second antigen, and / or the antigen that binds to the variable region of the third antigen Binding molecule expression; and (iv) recovering the antigen binding molecule from the host cell culture.

[19]如[18]之抗原結合分子之製造方法,其中,於步驟(ii)選擇之抗原結合分子所含之不同時結合於第1抗原與第2抗原之可變區,係不同時結合於各自不同的細胞上表現之第1抗原與第2抗原之可變區。 [19] The method for producing an antigen-binding molecule according to [18], wherein the antigen-binding molecule selected in step (ii) does not bind to the variable region of the first antigen and the second antigen at the same time, and does not bind at the same time. Variable regions of the first antigen and the second antigen expressed on different cells.

[20]如[18]或[19]之抗原結合分子之製造方法,其中,步驟(iii)培養之寄主細胞更包含編碼為抗體之Fc區之核酸。 [20] The method for producing an antigen-binding molecule according to [18] or [19], wherein the host cell cultured in step (iii) further comprises a nucleic acid encoding an Fc region of an antibody.

[21]如[20]之抗原結合分子之製造方法,其中,Fc區係比起天然型人IgG1抗體之Fc區對於FcγR之結合活性為低之Fc區。 [21] The method for producing an antigen-binding molecule according to [20], wherein the Fc region is an Fc region having a lower FcγR binding activity than the Fc region of a natural human IgG1 antibody.

[22]如[18]至[21]中任一項之抗原結合分子之製造方法,其中,製造之抗原結合分子為多專一性抗體。 [22] The method for producing an antigen-binding molecule according to any one of [18] to [21], wherein the produced antigen-binding molecule is a multispecific antibody.

[23]如[18]至[22]中任一項之抗原結合分子之製造方法,其中,步驟(i)中之可變區之至少1個的改變胺基酸係取代或插入的胺基酸。 [23] The method for producing an antigen-binding molecule according to any one of [18] to [22], wherein at least one of the variable regions in step (i) changes an amino group substituted or inserted into an amino group acid.

[24]如[23]之抗原結合分子之製造方法,其中,插入之胺基酸的數目為1~25個。 [24] The method for producing an antigen-binding molecule according to [23], wherein the number of inserted amino acids is 1 to 25.

[25]如[18]至[24]中任一項之抗原結合分子之製造方 法,其中,改變係抗體之可變區之CDR1、CDR2、CDR3或FR3區之胺基酸之改變。 [25] A method for producing an antigen-binding molecule according to any one of [18] to [24] The method is to change the amino acid of the CDR1, CDR2, CDR3 or FR3 region of the variable region of the antibody.

[26]如[18]至[25]中任一項之抗原結合分子之製造方法,其中,改變係迴圈區域之胺基酸之改變。 [26] The method for producing an antigen-binding molecule according to any one of [18] to [25], wherein the change is a change in an amino acid in a loop region.

[27]如[18]至[25]中任一項之抗原結合分子之製造方法,其中,改變係選自於抗體之H鏈可變區之Kabat編號31~35、50~65、71~74及95~102、L鏈可變區之Kabat編號24~34、50~56及89~97中之至少1個胺基酸之改變。 [27] The method for producing an antigen-binding molecule according to any one of [18] to [25], wherein the change is selected from the Kabat numbers 31 to 35, 50 to 65, and 71 to H variable region of the antibody. Changes in at least one amino acid of Kabat numbering 24 to 34, 50 to 56 and 89 to 97 of 74 and 95 to 102 and L chain variable regions.

[28]如[18]至[27]中任一項之抗原結合分子之製造方法,其中,第1抗原或第2抗原中任一者為在T細胞表面專一性地表現的分子,另一抗原為在T細胞或其他免疫細胞表面表現的分子。 [28] The method for producing an antigen-binding molecule according to any one of [18] to [27], wherein either the first antigen or the second antigen is a molecule specifically expressed on the surface of a T cell, and the other Antigens are molecules that appear on the surface of T cells or other immune cells.

[29]如[28]之抗原結合分子之製造方法,其中,第1抗原或第2抗原中任一者為CD3,另一抗原為FcγR、TLR、IgA、凝集素、免疫核對點分子、TNF超級家族分子、TNFR超級家族分子或NK受體分子。 [29] The method for producing an antigen-binding molecule according to [28], wherein either the first antigen or the second antigen is CD3, and the other antigen is FcγR, TLR, IgA, lectin, immune checkpoint molecule, TNF Superfamily molecule, TNFR superfamily molecule or NK receptor molecule.

[30]如[28]或[29]之抗原結合分子之製造方法,其中,第3抗原係於癌組織專一性地表現的分子。 [30] The method for producing an antigen-binding molecule according to [28] or [29], wherein the third antigen is a molecule specifically expressed in cancer tissue.

[31]一種癌之治療方法,包含投予如[1]至[16]中任一項之抗原結合分子之步驟。 [31] A method for treating cancer, comprising the step of administering an antigen-binding molecule according to any one of [1] to [16].

[32]如[1]至[16]中任一項之抗原結合分子,使用在癌治療。 [32] The antigen-binding molecule according to any one of [1] to [16], for use in cancer treatment.

[33]一種如[1]至[16]中任一項之抗原結合分子之使用,使用在癌治療劑之製造。 [33] Use of an antigen-binding molecule according to any one of [1] to [16] for use in the manufacture of a cancer therapeutic agent.

[34]一種製造癌治療劑之處理,包含使用如[1]至[16]中任一項之抗原結合分子之步驟。 [34] A process for producing a cancer therapeutic agent, comprising the step of using an antigen-binding molecule according to any one of [1] to [16].

[35]該技術領域之人士當然理解:將上述記載之1或多數態樣任意組合者,只要基於該技術領域之人士之技術常識在技術上不矛盾,則包括在本發明。 [35] Of course, those in the technical field understand that any combination of one or more of the above descriptions is included in the present invention as long as there is no technical contradiction based on the technical common sense of those in the technical field.

第1圖係和第1抗原與第2抗原結合但不同時結合之抗體之概念圖。 Figure 1 is a conceptual diagram of an antibody that binds a first antigen to a second antigen but does not bind at the same time.

第2圖係和2個抗原不同時結合,故不引起交聯之抗體之概念圖。 Figure 2 is a conceptual diagram of an antibody that does not cause cross-linking because it does not bind to two antigens at the same time.

第3圖係即使和2個抗原同時結合,仍不同時結合2個細胞之抗體之概念圖。 Figure 3 is a conceptual diagram of an antibody that does not bind to two cells at the same time, even though it binds to two antigens at the same time.

第4圖係將癌細胞、以及表現第1受體之T細胞交聯之抗體之概念圖。 Figure 4 is a conceptual diagram of an antibody that cross-links cancer cells and T cells expressing the first receptor.

第5圖係將癌細胞、以及表現第2受體之細胞交聯之抗體之概念圖。 Figure 5 is a conceptual diagram of an antibody that cross-links cancer cells and cells expressing the second receptor.

第6圖係將癌細胞與免疫細胞交聯,但免疫細胞彼此不交聯之抗體之概念圖。 Figure 6 is a conceptual diagram of an antibody that cross-links cancer cells and immune cells, but immune cells are not cross-linked to each other.

第7圖係CE115對CD3ε之細胞ELISA之結果。 Figure 7 shows the results of the cell ELISA of CE115 against CD3ε.

第8圖係EGFR_ERY22_CE115之分子形式圖。 Figure 8 shows the molecular form of EGFR_ERY22_CE115.

第9圖係EGFR_ERY22_CE115之TDCC結果(SK-pca13a)。 Figure 9 is the TDCC result (SK-pca13a) of EGFR_ERY22_CE115.

第10圖係人化CE115對CD3ε之結合性。 Figure 10 shows the binding of humanized CE115 to CD3ε.

第11圖係檢測RGD插入CE115對於整合素(integrin)之結 合之ECL-ELISA之結果。 Figure 11 shows the results of RGD insertion into CE115 on integrin. Combined ECL-ELISA results.

第12圖係檢測RGD插入CE115對於CD3ε之結合之ECL-ELISA之結果。 Figure 12 is the result of ECL-ELISA detecting the binding of RGD to CE115 to CD3ε.

第13圖係檢測RGD插入CE115對於整合素及CD3ε之同時結合之ECL-ELSIA之結果。顯示針對同時結合之改變體之結果。 Figure 13 is the result of detecting ECL-ELSIA of RGD insertion into CE115 for simultaneous integration of integrin and CD3ε. Shows results for variants that bind simultaneously.

第14圖係RGD插入CE115之同時結合ECL-ELISA之結果。顯示針對未同時結合之改變體之結果。 Figure 14 shows the results of binding RGD to CE115 and binding to ECL-ELISA. Results are shown for variants that are not simultaneously bound.

第15圖係檢測TLR2結合胜肽插入CE115對於TLR2之結合之ECL-ELISA之結果。 Fig. 15 is a result of an ECL-ELISA for detecting the binding of TLR2 binding peptide to CE115 binding to TLR2.

第16圖係檢測TLR2結合胜肽插入CE115對於CD3ε之結合之ECL-ELISA之結果。 Figure 16 is the result of ECL-ELISA detecting the binding of TLR2 binding peptide to CE115 binding to CD3ε.

第17圖係檢測TLR2結合胜肽插入CE115對於TLR2及CD3之同時結合之ECL-ELISA之結果。 Figure 17 is a result of an ECL-ELISA detecting the simultaneous binding of TLR2 binding peptide to CE115 for TLR2 and CD3 binding.

第18圖係結合量之比未達0.8之抗體之感應圖之例。縱軸為RU值(回應)、橫軸為時間。 FIG. 18 is an example of an induction map of an antibody whose ratio of binding amounts is less than 0.8. The vertical axis is the RU value (response), and the horizontal axis is time.

第19圖係噬菌體展示之Fab分域與CD3ε、IL6R之結合。 Figure 19 shows the binding of Fab domains to CD3ε and IL6R displayed by phage.

第20圖係噬菌體展示之Fab分域與CD3ε、人IgA(hIgA)之結合。NC代表對於未固定抗原之板之結合。 Figure 20 shows the binding of the Fab domain displayed by phage to CD3ε and human IgA (hIgA). NC stands for binding to plates without immobilized antigen.

第21圖係IgG化之選殖體之與CD3ε、人IgA(hIgA)之結合。 Figure 21 shows the binding of IgG-selected colonies to CD3ε and human IgA (hIgA).

第22圖係IgG化之選殖體與人IgA之結合因CD3ε而受阻斷,該選殖體無法和人IgA(hIgA)及CD3ε同時結合之圖。 Fig. 22 is a diagram showing that the binding of IgG-based colonies to human IgA is blocked by CD3ε, and the colonies cannot bind to human IgA (hIgA) and CD3ε at the same time.

第23圖係噬菌體展示之Fab分域與CD3ε、人CD154之 結合。NC代表對於未固定抗原之板之結合。 Figure 23 shows the Fab domain displayed by phage and CD3ε, human CD154 Combined. NC stands for binding to plates without immobilized antigen.

第24圖係IgG化之選殖體與CD3ε、人CD154之結合。 Figure 24 shows the binding of IgG-selected colonies to CD3ε and human CD154.

第25圖係IgG化之選殖體和人CD154之結合因CD3ε而受阻斷,該選殖體無法和人CD154及CD3ε同時結合之圖。 Figure 25 is a diagram showing that the binding of IgG-based clones to human CD154 is blocked by CD3ε, and this clone cannot bind to human CD154 and CD3ε at the same time.

本發明中「抗體之可變區」通常意指由4個框架區域(FR)及夾在其之間的3個互補性決定區域(complementarity-determining region;CDR)構成的區域,只要有和抗原之一部分或全部結合之活性即可,也包括其部分序列。尤其宜為包括抗體輕鏈可變區(VL)與抗體重鏈可變區(VH)之區域為較佳。本發明之抗體之可變區可為任意序列,也可為小鼠抗體、大鼠抗體、兔抗體、山羊抗體、駱駝抗體、及將該等非人抗體予以人化而成的人化抗體、及人抗體等任一來源的抗體之可變區。「人化抗體」,也稱為再構成(reshaped)人抗體。人以外的哺乳動物來源的抗體,例如係將小鼠抗體的互補性決定區域(CDR;complementarity determining region)移植到人抗體之CDR者。鑑別CDR的方法為公知(Kabat et al.,Sequence of Proteins of Immunological Interest(1987),National Institute of Health,Bethesda,Md.;Chothia et al.,Nature(1989)342:877)。又,其一般的基因重組手法亦為公知(參照歐洲專利申請公開編號EP 125023號公報、WO 96/02576號公報)。 In the present invention, the "variable region of an antibody" generally means a region composed of 4 framework regions (FR) and 3 complementarity-determining regions (CDRs) sandwiched therebetween, as long as there is an antigen A part or all of the binding activity is sufficient, and a partial sequence thereof is also included. Particularly preferred is a region including an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH). The variable region of the antibody of the present invention may be any sequence, and may also be a mouse antibody, a rat antibody, a rabbit antibody, a goat antibody, a camel antibody, and a humanized antibody obtained by humanizing these non-human antibodies. And human antibody, and the variable regions of antibodies of any origin. "Humanized antibodies" are also called reshaped human antibodies. Antibodies of mammalian origin other than human are, for example, those in which the complementarity determining region (CDR) of a mouse antibody is transplanted to the CDR of a human antibody. Methods for identifying CDRs are well known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al., Nature (1989) 342: 877). Moreover, its general genetic recombination method is also known (refer to European Patent Application Publication No. EP 125023, WO 96/02576).

本發明之「抗體之可變區」,所謂「不和第1抗原與第2抗原同時結合」是指本發明之抗體之可變區在和第1 抗原結合之狀態時,無法和第2抗原結合,反之該可變區在和第2抗原結合的狀態時,無法和第1抗原結合。在此,「不和第1抗原與第2抗原同時結合」,也包括表現第1抗原表現之細胞與表現第2抗原之細胞之2個細胞不交聯,或不和分別在各自細胞表現的第1抗原與第2抗原同時結合。再者,也包括:第1抗原與第2抗原於係像可溶型蛋白質般不在細胞膜上、或兩者係存在於同一細胞上時,雖能和第1抗原與第2抗原兩者同時結合,但是在各自不同的細胞上表現時無法同時結合的情形。作為如此的抗體之可變區,只要有該機能即可,不特別限定,例如:將IgG型抗體之可變區之一部分胺基酸結合於所望抗原的方式改變而得之可變區。經改變之胺基酸,可選擇例如:和第1抗原或第2抗原結合之抗體之可變區之中,不因胺基酸改變而喪失和該抗原之結合的胺基酸。 The "variable region of an antibody" of the present invention, the so-called "does not bind to the first antigen and the second antigen simultaneously" means that the variable region of the antibody of the present invention is in the first region In the state where the antigen is bound, the second antigen cannot be bound; otherwise, when the variable region is in the state bound to the second antigen, the variable region cannot be bound to the first antigen. Here, "does not bind to the first antigen and the second antigen simultaneously" also includes the fact that the cells expressing the first antigen and the two cells expressing the second antigen are not cross-linked, or the cells expressing the respective antigens are not cross-linked, respectively. The first antigen and the second antigen bind simultaneously. Furthermore, it also includes that when the first antigen and the second antigen are not soluble on the cell membrane like a soluble protein, or when both are present on the same cell, they can bind to both the first antigen and the second antigen at the same time. , But cannot be combined at the same time when expressed on different cells. The variable region of such an antibody is not particularly limited as long as it has this function. For example, a variable region obtained by changing the manner in which a part of the amino acid of the variable region of an IgG antibody binds an amino acid to a desired antigen. The altered amino acid can be selected, for example, from the variable region of the antibody that binds to the first antigen or the second antigen, the amino acid that does not lose its binding to the antigen due to the amino acid change.

在此,「於不同的細胞上表現」只要在各別細胞上表現即可,如此的細胞的組合,例如:T細胞和另一T細胞之類的同種細胞,也可為T細胞與NK細胞之類的異種細胞。 Here, "expressing on different cells" may be performed on individual cells. A combination of such cells, for example, the same kind of cells such as T cells and another T cell, may also be T cells and NK cells. Heterogeneous cells.

本發明之胺基酸改變可單獨使用也可使用多種。 The amino acid modification of the present invention can be used alone or in combination.

使用多種時,組合數不特別限定,可於能達成發明目的之範圍內適當設定,例如:2個以上30個以下,較佳為2個以上25個以下、2個以上22個以下、2個以上20個以下、2個以上15個以下、2個以上10個以下、2個以上5個以下、2個以上3個以下。 When multiple types are used, the number of combinations is not particularly limited and can be appropriately set within a range that can achieve the object of the invention, for example: 2 or more and 30 or less, preferably 2 or more and 25 or less, 2 or more and 22 or less, and 2 More than 20 or less, 2 or more and 15 or less, 2 or more and 10 or less, 2 or more and 5 or less, and 2 or more and 3 or less.

組合多數時,可只對抗體之重鏈可變區或輕鏈可變區施以該胺基酸改變,也可對於重鏈可變區與輕鏈可變區兩者適當區 分施加。 In most combinations, the amino acid change may be applied to only the heavy chain variable region or the light chain variable region of the antibody, and appropriate regions for both the heavy chain and light chain variable regions may be applied. 分 应用。 Points imposed.

改變的胺基酸殘基只要能維持其抗原結合活性即可,可容許可變區中之1或多數胺基酸殘基改變。改變可變區之胺基酸時,不特別限定,宜維持改變前之抗體之結合活性較佳,例如:宜和改變前相較,有50%以上,較佳為80%以上,更佳為100%以上的結合活性。又,也可利用胺基酸改變而結合活性上昇,例如宜和結合活性改變前相較,成為2倍、5倍、10倍等。 The altered amino acid residue is only required to maintain its antigen-binding activity, and it is allowable that one or most of the amino acid residues in the variable region are changed. When changing the amino acid in the variable region, it is not particularly limited. It is better to maintain the binding activity of the antibody before the change. For example, it is more than 50%, preferably 80% or more, more preferably More than 100% binding activity. In addition, the binding activity may be increased by changing the amino acid. For example, the binding activity may be increased by 2 times, 5 times, or 10 times as compared with that before the binding activity is changed.

作為用以胺基酸改變之理想區域,可列舉可變區中之露出於溶劑之區域及迴圈區域。其中,CDR1、CDR2、CDR3、FR3區域、迴圈區域為較佳。具體而言,H鏈可變區之Kabat編號31~35、50~65、71~74、95~102、L鏈可變區之Kabat編號24~34、50~56、89~97較理想,H鏈可變區之Kabat編號31、52a~61、71~74、97~101、L鏈可變區之Kabat編號24~34、51~56、89~96更理想。又,胺基酸改變時,也可一併導入使和抗原之結合活性上昇的胺基酸。 Examples of the ideal region for amino acid change include a region exposed to a solvent and a loop region in the variable region. Among them, CDR1, CDR2, CDR3, FR3 regions, and loop regions are preferred. Specifically, Kabat numbers of H-chain variable regions are 31-35, 50-65, 71-74, 95-102, and Kabat numbers of L-chain variable regions are 24-34, 50-56, and 89-97. Kabat numbers of H-chain variable regions are 31, 52a-61, 71-74, 97-101, and Kabat numbers of L-chain variable regions are 24-34, 51-56, and 89-96. When the amino acid is changed, an amino acid that increases the binding activity with the antigen may be introduced together.

又,本發明中「迴圈區域」,係指不涉及免疫球蛋白之β筒狀結構之維持的殘基所存在的區域。 The "circle region" in the present invention refers to a region where residues not involved in the maintenance of the β-cylindrical structure of the immunoglobulin exist.

本發明中,胺基酸之改變係指取代、缺失、附加、插入、或修飾中任一者、或此等的組合。本發明中,胺基酸之改變也可改稱胺基酸之變異,以相同含意使用。 In the present invention, an amino acid change refers to any one of substitution, deletion, addition, insertion, or modification, or a combination thereof. In the present invention, the change of the amino acid may also be renamed the variation of the amino acid, and used with the same meaning.

取代胺基酸殘基時,目的為藉由取代為其他胺基酸殘基,而針對例如以下(a)~(c)的點加以改變。(a)片結構、或、螺旋結構的區域中的多胜肽的骨幹結構;(b)標的部位的 電荷或疏水性、或(c)側鏈大小。 When an amino acid residue is substituted, the purpose is to change, for example, the following points (a) to (c) by substitution with another amino acid residue. (a) the backbone structure of the polypeptide in the region of the sheet structure, or the helical structure; (b) the Charge or hydrophobicity, or (c) side chain size.

胺基酸殘基依據一般側鏈的特性分類為以下群:(1)疏水性:正白胺酸、met、ala、val、leu、ile;(2)中性親水性:cys、ser、thr、asn、gln;(3)酸性:asp、glu;(4)鹼性:his、lys、arg;(5)影響鏈配向之殘基:gly、pro;及(6)芳香族性:trp、tyr、phe。 Amino acid residues are classified into the following groups based on the characteristics of general side chains: (1) Hydrophobic: n-leucine, met, ala, val, leu, ile; (2) Neutral hydrophilicity: cys, ser, thr , Asn, gln; (3) acidic: asp, glu; (4) basic: his, lys, arg; (5) residues affecting chain alignment: glyc, pro; and (6) aromaticity: trp, tyr, phe.

該等各群內的胺基酸殘基的取代稱為保守性取代,另一方面,他群間彼此的胺基酸殘基的取代稱為非保守性取代。 Substitution of amino acid residues in each of these groups is called conservative substitution, and substitution of amino acid residues among other groups is called non-conservative substitution.

本發明中的取代可為保守性取代,也可為非保守性取代,且也可為保守性取代與非保守性取代之組合。 The substitution in the present invention may be a conservative substitution or a non-conservative substitution, and may also be a combination of a conservative substitution and a non-conservative substitution.

又,對於胺基酸殘基施加改變,也包括:從可和第1抗原或第2抗原結合之抗體之可變區當中不因胺基酸改變而喪失向該抗原之結合之胺基酸予以隨機改變者當中,選擇會和第1抗原與第2抗原結合但不能同時結合的可變區、或預先將已知具有對於所望抗原有結合活性的胜肽插入上述區域之改變。預先已知對於所望抗原有結合活性的胜肽,例如:表1所示胜肽。 In addition, applying changes to amino acid residues also includes amino acid residues that do not lose binding to the antigen from the variable region of the antibody that can bind to the first or second antigen due to the amino acid change. Among the random changes, a variable region that binds to the first antigen and the second antigen but cannot be simultaneously bound is selected, or a peptide known to have binding activity to the desired antigen is inserted into the aforementioned region in advance. Peptides having binding activity to the desired antigen are known in advance, for example, the peptides shown in Table 1.

本發明之一態樣中,提供一種抗原結合分子,包含以能和第1抗原以及和該第1抗原不同的第2抗原結合但是不和第1抗原與第2抗原同時結合的方式將重鏈可變區之胺基酸予以改變而得之抗體之可變區。例如,藉由將上述胺基酸改變(取代、缺失、附加、插入、或修飾中之任一者、或此等之組合)導入到重鏈可變區,能製作可和第1抗原以及與該第1抗原不同之第2抗原結合但不和第1抗原與第2抗原同時結合的抗體之可變區。導入胺基酸改變的位置宜為重鏈可變區,作為更理想的區域,可列舉可變區中露出於溶劑之區域及迴圈區域。其中,CDR1、CDR2、CDR3、FR3區域、迴圈區域為較佳。 具體而言,H鏈可變區之Kabat編號31~35、50~65、71~74、95~102較理想,H鏈可變區之Kabat編號31、52a~61、71~74、97~101更理想。又,胺基酸改變時,也可一併導入使和抗原之結合活性上昇的胺基酸。 In one aspect of the present invention, there is provided an antigen-binding molecule comprising a heavy chain in a manner capable of binding to a first antigen and a second antigen different from the first antigen, but not simultaneously to the first antigen and the second antigen. The variable region of the antibody is obtained by changing the amino acid of the variable region. For example, by introducing the aforementioned amino acid change (substitution, deletion, addition, insertion, or modification, or a combination thereof) into the variable region of the heavy chain, it is possible to prepare a first antigen and a The variable region of an antibody that binds to a second antigen different from the first antigen but does not bind to the first antigen and the second antigen simultaneously. The position where the amino acid is introduced is preferably a variable region of the heavy chain. As a more desirable region, a region exposed to a solvent and a loop region in the variable region may be cited. Among them, CDR1, CDR2, CDR3, FR3 regions, and loop regions are preferred. Specifically, Kabat numbers 31 to 35, 50 to 65, 71 to 74, and 95 to 102 of the H chain variable region are ideal, and Kabat numbers 31, 52a to 61, 71 to 74, and 97 to H chain variable region. 101 is more ideal. When the amino acid is changed, an amino acid that increases the binding activity with the antigen may be introduced together.

本發明之抗體之可變區,除了上述改變,還可組合公知之改變。例如:可變區之N末端之麩醯胺酸利用焦麩胺醯基化而修飾為焦麩胺酸係該領域中通常知識者熟知的修飾。因此本發明之抗體,於其重鏈之N末端為麩醯胺酸時,包括其修飾成焦麩胺酸而成的可變區。 In addition to the above-mentioned changes, the variable region of the antibody of the present invention can be combined with known changes. For example, the glutamic acid at the N-terminus of the variable region is modified to a pyroglutamic acid by pyroglutamation, which is a modification well known to those skilled in the art. Therefore, when the N-terminus of the heavy chain of the antibody of the present invention is glutamic acid, it includes a variable region modified by pyroglutamic acid.

又,例如:對於該等抗體之可變區,為了改善向抗原之結合、藥物動態、安定性、抗原性,也可進一步導入胺基酸改變。本發明之抗體之可變區,可藉由施以對抗原有pH依存性結合性之改變,能對抗原重複結合(WO/2009/125825)。 In addition, for example, in order to improve the variable region of these antibodies, in order to improve the binding to the antigen, drug dynamics, stability, and antigenicity, amino acid changes may be further introduced. The variable region of the antibody of the present invention can repeatedly bind to an antigen by applying a change in binding resistance against the original pH dependence (WO / 2009/125825).

又,例如:也可對於該等抗體之和第3抗原結合之可變區,施加能因應標的組織專一性化合物之濃度而改變對於抗原之結合活性之胺基酸改變(WO2013/180200)。 In addition, for example, an amino acid change capable of changing the binding activity to the antigen according to the concentration of the target tissue-specific compound may be applied to the variable region that the antibodies bind to the third antigen (WO2013 / 180200).

又,可變區之改變會使結合活性上升、專一性改善、pI下降,對於抗原之結合賦予pH依存的性質、結合熱安定性改善、溶解性改善、對於化學修飾之安定性、來自於糖鏈之異質性(heterogeneity)之改善、免疫原性下降的現象,可使用經電腦模擬(in silico)預測鑑定,或利用使用體外(in vitro)的T細胞的分析鑑定之T細胞抗原決定部位的規避、或活化調節性T細胞之T細胞抗原決定部位之導入等作為目的而實施(mAbs 3:243-247、2011) In addition, changes in the variable region can increase binding activity, improve specificity, and decrease pI, impart pH-dependent properties to antigen binding, improve binding thermal stability, improve solubility, stability to chemical modification, and sugar-derived properties. The phenomenon of improvement of heterogeneity of the chain and decrease of immunogenicity can be predicted and identified by computer simulation (in silico), or the T cell epitope identified by the analysis using in vitro T cells can be used. Implemented for the purpose of avoiding or activating T-cell epitopes of regulatory T cells (mAbs 3: 243-247, 2011)

本發明之抗體之可變區是否「能和第1抗原與第2抗原結合」,可使用公知之方法測定。 Whether or not the variable region of the antibody of the present invention can bind to the first antigen and the second antigen can be determined by a known method.

例如:可利用電化學發光法(ECL法)測定(BMC Research Notes 2011,4:281)。 For example, it can be measured by the electrochemical luminescence method (ECL method) (BMC Research Notes 2011, 4: 281).

具體而言,例如:使由經生物素標記之待驗抗原結合分子之能和第1抗原與第2抗原結合之區域,例如:由Fab區構成之低分子化抗體、或一價性抗體(通常的抗體所擁有之2個Fab區中的1個沒有的抗體),混合經sulfo-tag(Ru錯合物)標記的第1抗原或第2抗原,添加在鏈黴抗生物素蛋白固相化板上。此時經生物素標記之待驗抗原結合分子會與板上之鏈黴抗生物素蛋白結合。藉由使Sulfo-tag發光,利用ector Imager 600、2400(MSD)等以檢測其發光信號,能確認第1抗原或第2抗原和待驗抗原結合分子之上述區域間之結合。 Specifically, for example, a region that binds the biotin-labeled test antigen-binding molecule and the first antigen to the second antigen, such as a low-molecular-weight antibody composed of a Fab region, or a univalent antibody ( One of the two Fab regions that a normal antibody possesses does not have an antibody), mixed with the first or second antigen labeled with sulfo-tag (Ru complex), and added to the streptavidin solid phase On the board. At this time, the biotin-labeled test antigen-binding molecule will bind to streptavidin on the plate. By emitting light from the Sulfo-tag and detecting the luminescence signal using ector Imager 600, 2400 (MSD), etc., the binding between the first or second antigen and the aforementioned region of the antigen-binding molecule to be tested can be confirmed.

又,也可利用ELISA、FACS(fluorescence activated cell sorting)、ALPHAscreen(Amplified Luminescent Proximity Homogeneous Assay)、利用表面電漿子共振(SPR)現象之BIACORE法等進行測定(Proc.Natl.Acad.Sci.USA(2006)103(11),4005-4010)。 It can also be measured by ELISA, FACS (fluorescence activated cell sorting), ALPHAscreen (Amplified Luminescent Proximity Homogeneous Assay), and the BIACORE method using the surface plasmon resonance (SPR) phenomenon. (2006) 103 (11), 4005-4010).

具體而言,例如:可使用利用表面電漿子共振(SPR)現象之交互作用解析設備Biacore(GE Healthcare)測定。Biacore包括Biacore T100、T200、X100、A100、4000、3000、2000、1000、C等任一機種。感應晶片可使用CM7、CM5、CM4、CM3、C1、SA、NTA、L1、HPA,Au晶片等任一Biacore用感應晶片。於感應晶片上利用胺偶聯、雙硫鍵偶聯、醛偶聯等 偶聯方法將捕捉本發明之抗原結合分子捕捉之ProteinA、ProteinG、ProteinL、抗人IgG抗體、抗人IgG-Fab、抗人L鏈抗體、抗人Fc抗體、抗原蛋白質、抗原胜肽等捕捉用蛋白質固定化。使第1抗原或第2抗原作為分析物流入此晶片,並測定交互作用,取得感應圖。此時之第1抗原或第2抗原濃度,可配合測定樣本之KD等交互作用的強度,於數μM至數pM之範圍內實施。 Specifically, for example, the measurement can be performed using a Biacore (GE Healthcare) interaction analysis device utilizing a surface plasmon resonance (SPR) phenomenon. Biacore includes Biacore T100, T200, X100, A100, 4000, 3000, 2000, 1000, C and other models. As the sensor chip, any of Biacore sensor chips such as CM7, CM5, CM4, CM3, C1, SA, NTA, L1, HPA, and Au chips can be used. Utilize amine coupling, disulfide coupling, aldehyde coupling, etc. on sensor wafers The coupling method is used for capturing ProteinA, ProteinG, ProteinL, anti-human IgG antibody, anti-human IgG-Fab, anti-human L chain antibody, anti-human Fc antibody, antigen protein, antigen peptide and the like captured by the antigen-binding molecule of the present invention. Protein immobilization. The first antigen or the second antigen is flowed into the wafer as an analysis, and the interaction is measured to obtain an induction map. At this time, the concentration of the first antigen or the second antigen can be implemented in the range of several μM to several pM according to the intensity of the interaction such as KD of the measurement sample.

又,也可不是固定抗原結合分子,而是將第1抗原或第2抗原固定在感應晶片上,並使其和欲評價之抗體樣本交互作用。從交互作用之感應圖算出之解離常數(KD)值、或使抗原結合分子樣本作用前後之感應圖之增加程度,能判斷本發明之抗原結合分子之抗體可變區是否對於第1抗原或第2抗原有結合活性。 In addition, instead of immobilizing the antigen-binding molecule, the first antigen or the second antigen may be immobilized on a sensor chip and interact with the antibody sample to be evaluated. The dissociation constant (KD) value calculated from the interaction induction map, or the degree of increase of the induction map before and after the antigen-binding molecule sample is applied, can determine whether the antibody variable region of the antigen-binding molecule of the present invention is to the first antigen or 2 Antigen has binding activity.

ALPHAscreen,係使用提供者(donor)與接受者(acceptor)的2種珠粒,利用ALPHA技術依下列原理實施。和提供者珠粒已結合的分子,會與和接受者珠粒已結合的分子進行生物學交互作用,而僅於2個珠粒接近的狀態時方檢測到發光信號。因雷射而激發的提供者珠粒內的光敏劑會將周圍的氧變換為激發狀態之單線態氧。單線態氧向提供者珠粒周邊擴散,若到達接近的接受者珠粒,則引起珠粒內的化學發光反應,最終放出光。若與提供者珠粒結合之分子和與接受者珠粒結合之分子不交互作用時,提供者珠粒產生之單線態氧不會到達接受者珠粒,不引起化學發光反應。 ALPHAscreen uses two types of beads, a donor and an acceptor, and uses ALPHA technology to implement the following principles. Molecules that have been bound to the bead of the provider will interact biologically with molecules that have been bound to the bead of the recipient, and the luminescence signal will be detected only when the two beads are close to each other. The photosensitizer in the provider's beads excited by the laser will convert the surrounding oxygen into excited singlet oxygen. The singlet oxygen diffuses to the periphery of the provider bead, and if it reaches the close recipient bead, it causes a chemiluminescence reaction in the bead and finally emits light. If the molecules bound to the donor beads and the molecules bound to the recipient beads do not interact, the singlet oxygen generated by the provider beads will not reach the recipient beads and will not cause a chemiluminescence reaction.

將觀察交互作用的物質中之一者(配體)固定在感 應晶片的金薄膜上,若光從感應晶片的內側照到金薄膜與玻璃之交界面而發生全反射,則會形成反射光的一部分的反射強度降低的部分(SPR信號)。若觀察交互作用之物質的另一者(分析物)流到感應晶片表面並且配體和分析物結合,則固定化配體分子的質量增加,並且感應晶片表面之溶劑之折射率變化。由於此折射率之變化,PR信號之位置偏移(反之若結合解離,則信號位置回復)。Biacore系統取上述偏移之量,亦即在感應晶片表面的質量變化為縱軸,將質量之時間變化作為測定數據顯示(感應圖)。從感應圖求出分析物對於在感應晶片表面捕捉之配體的結合量(使分析物交互作用前後在感應圖上之回應之變化量)。惟,結合量也依存於配體量,所以比較時,須在將配體量視為本質為同量的條件下進行比較。又,從感應圖的曲線可求出動力學:結合速度常數(ka)與解離速度常數(kd),從該常數之比可求出親和性(KD)。BIACORE法也可理想地用在抑制測定法。抑制測定法例如記載於Proc.Natl.Acad.Sci.USA(2006)103(11),4005-4010。 Fix one of the substances (ligands) that observe the interaction to the sense On the gold thin film of the application wafer, if light is totally reflected from the inside of the sensor wafer to the interface between the gold thin film and the glass, a part where the reflection intensity of a part of the reflected light decreases (SPR signal) will be formed. If the other of the interacting substances (analyte) flows to the surface of the induction wafer and the ligand is bound to the analyte, the mass of the immobilized ligand molecule increases and the refractive index of the solvent on the surface of the induction wafer changes. Due to this change in refractive index, the position of the PR signal is shifted (or vice versa if the dissociation is combined). The Biacore system takes the above-mentioned offset, that is, the mass change on the surface of the sensor chip is the vertical axis, and the time change of the mass is displayed as the measurement data (induction map). The amount of binding of the analyte to the ligand captured on the surface of the sensor wafer (the amount of change in the response on the sensor map before and after the interaction of the analyte) was obtained from the sensor map. However, the amount of binding also depends on the amount of ligand. Therefore, the comparison must be made under the condition that the amount of ligand is considered to be essentially the same amount. In addition, the kinetics can be obtained from the curve of the induction diagram: the rate constant (ka) and the dissociation rate constant (kd) are combined, and the affinity (KD) can be obtained from the ratio of the constants. The BIACORE method is also ideally used in inhibition assays. Inhibition assays are described, for example, in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.

本發明之抗原結合分子是否「不和第1抗原與第2抗原同時結合」,可使用上述方法測定以下事項以確認:確認對於第1抗原及第2抗原有結合活性後,對於包括有該結合活性之可變區之抗原結合分子,先使第1抗原或第2抗原中任一者結合後,確認是否和其餘的一者有結合活性。 Whether the antigen-binding molecule of the present invention “does not bind to the first antigen and the second antigen at the same time” can be determined by measuring the following matters using the method described above: after confirming that the first antigen and the second antigen have binding activity, it is necessary to include the binding The antigen-binding molecule of the active variable region binds to either the first antigen or the second antigen, and then confirms whether it has binding activity with the remaining one.

又,抗原結合分子向已固定在ELISA板或感應晶片之第1抗原或第2抗原中任一者的結合,也可藉由測定是否因將另一者添加在溶液中能抑制以確認。 In addition, the binding of the antigen-binding molecule to either the first antigen or the second antigen that has been immobilized on the ELISA plate or the sensor chip can be confirmed by measuring whether it can be inhibited by adding the other to the solution.

具體而言,例如:使用ECL法時,準備經生物素標記之待驗抗原結合分子、經sulfo-tag(Ru錯合物)標記之第1抗原與未經標記之第2抗原。待驗抗原結合分子能和第1抗原與第2抗原結合但不和第1抗原與第2抗原同時結合的情形,於未經標記之第2抗原非存在下,將待驗抗原結合分子與第1抗原之混合物添加到鏈黴抗生物素蛋白固相化板上,使Sulfo-tag發光的話,會檢測到其發光信號,但於第2抗原存在下則發光信號減少。藉由將此發光信號之減少予以定量,可決定相對的結合活性。 Specifically, for example, when the ECL method is used, a biotin-labeled test antigen-binding molecule, a sulfo-tag (Ru complex) -labeled first antigen, and an unlabeled second antigen are prepared. In the case where the test antigen-binding molecule can bind to the first antigen and the second antigen but does not simultaneously bind to the first antigen and the second antigen, the test antigen-binding molecule and the first antigen are bound in the absence of the unlabeled second antigen. When a mixture of 1 antigen is added to a streptavidin solid-phase plate and the Sulfo-tag emits light, the light signal is detected, but the light signal decreases in the presence of the second antigen. By quantifying this decrease in luminescence signal, the relative binding activity can be determined.

又,ALPHAscreen的情形,於互相競爭的第2抗原非存在下,待驗抗原結合分子會和第1抗原交互作用並產生520-620nm的信號。未標記的第2抗原會和待驗抗原結合分子與第1抗原間之交互作用進行競爭。將競爭之結果表達出的螢光減少予以定量,可決定相對的結合活性。多胜肽使用Sulfo-NHS-生物素等予以生物素化係為公知。將第1抗原以GST予以加標籤的方法,可適當採用以下方法:把將編碼為第1抗原之多核苷酸與編碼為GST之多核苷酸於讀框內融合成的融合基因於保持能表現之載體的細胞等中表現,並使用谷胱甘肽管柱精製之方法等。獲得之信號例如使用GRAPHPAD PRISM(GraphPad公司、San Diego)等軟體,以利用非線形迴歸解析之一部位競爭(one-site competition)模型擬合,可理想地解析。此時,第2抗原予以標籤化、第1抗原不標籤化,也可同樣地解析。 In the case of ALPHAscreen, in the absence of the competing second antigen, the test antigen-binding molecule interacts with the first antigen and generates a signal of 520-620nm. The unlabeled second antigen competes with the interaction between the test antigen-binding molecule and the first antigen. Quantifying the decrease in fluorescence expressed as a result of competition determines the relative binding activity. Polypeptides are known to be biotinylated using Sulfo-NHS-biotin or the like. For the method of tagging the first antigen with GST, the following method can be suitably adopted: a fusion gene formed by fusing a polynucleotide encoding the first antigen and a polynucleotide encoding the GST in the reading frame to maintain performance The carrier is expressed in cells and the like, and a glutathione column purification method is used. The obtained signal can be ideally analyzed by using a software such as GRAPHPAD PRISM (GraphPad, San Diego) to analyze one-site competition model fitting using non-linear regression analysis. In this case, the second antigen is labeled and the first antigen is not labeled, and the analysis can be performed similarly.

又,也可使用利用螢光共振能量移動(FRET;Fluorescence Resonance Energy Transfer)之方法。FRET係接近的2個螢光分子之間,激發能量因電子共振而直接移動的現象。若發生FRET,提供者(處於激發狀態之螢光分子)的激發能量會向接受者(處於提供者附近的另1個螢光分子)移動,所以從提供者發射的螢光消失(正確說,是螢光壽命縮短),而代之以從接受者發射螢光。使用此現象能解析是否為雙Fab(dual-Fab)。例如:若已導入螢光提供者之第1抗原與已導入螢光接受者的第2抗原和待驗抗原結合分子同時結合,則提供者之螢光消失,且從接受者發出螢光,故出現螢光波長變化。如此的抗體可判斷不是雙Fab(dual-Fab)。另一方面,將第1抗原、第2抗原、待驗抗原結合分子混合時,若已和第1抗原結合之螢光提供者之螢光波長不變化,可判斷此待驗抗原結合分子為雙Fab(dual-Fab)。 It is also possible to use fluorescence resonance energy movement (FRET; Fluorescence). Resonance Energy Transfer). FRET is a phenomenon in which the excitation energy directly moves between two fluorescent molecules that are close to each other due to electronic resonance. If FRET occurs, the excitation energy of the provider (fluorescent molecule in the excited state) will move to the receiver (another fluorescent molecule near the provider), so the fluorescence emitted from the provider disappears (correctly, Is the shortened fluorescent lifetime), and instead emits fluorescent light from the recipient. This phenomenon can be used to analyze whether it is a dual-Fab. For example: if the first antigen introduced into the fluorescence provider is combined with the second antigen and the test antigen-binding molecule introduced into the fluorescence receiver at the same time, the fluorescence of the provider disappears and the fluorescence is emitted from the receiver, so A change in fluorescence wavelength appears. Such an antibody can be judged not to be a dual-Fab. On the other hand, when the first antigen, the second antigen, and the test antigen-binding molecule are mixed, if the fluorescence wavelength of the fluorescence provider that has been bound to the first antigen does not change, it can be judged that the test antigen-binding molecule is double. Fab (dual-Fab).

又,例如:於提供者珠粒,有生物素標記之待驗抗原結合分子會和提供者珠粒上之鏈黴抗生物素蛋白結合,接受者珠粒則有經谷胱甘肽S轉移酶(GST)標籤化的第1抗原結合。於競爭之第2抗原非存在下,待驗抗原結合分子與第1抗原會交互作用並發出520-620nm之信號。未經標籤化的第2抗原,會和待驗抗原結合分子與第1抗原間之交互作用競爭。藉由將競爭之結果表達之螢光之減少予以定量,可決定相對的結合活性。將多胜肽使用Sulfo-NHS-生物素等予以生物素化係公知。作為將第1抗原以GST標籤化的方法,可適當採用以下方法:把將編碼為第1抗原之多核苷酸與編碼為GST之多核苷酸於讀框內融合成的融合基因於保持能表現之載體的細胞 等中表現,並使用谷胱甘肽管柱精製之方法等。獲得之信號例如使用GRAPHPAD PRISM(GraphPad公司、San Diego)等軟體,以利用非線形迴歸解析之一部位競爭(one-site competition)模型擬合,可理想地解析。 For another example, in the provider beads, the biotin-labeled test antigen-binding molecule binds to streptavidin on the provider beads, and the recipient beads have glutathione S-transferase (GST) tagged first antigen binding. In the absence of a competing second antigen, the test antigen-binding molecule interacts with the first antigen and emits a signal of 520-620nm. The unlabeled second antigen competes with the interaction between the test antigen-binding molecule and the first antigen. By quantifying the decrease in fluorescence expressed as a result of competition, the relative binding activity can be determined. It is known that polypeptides are biotinylated using Sulfo-NHS-biotin or the like. As a method for labeling the first antigen with GST, the following method may be appropriately adopted: a fusion gene fused in a reading frame with a polynucleotide encoding the first antigen and a polynucleotide encoding the GST in a reading frame can be maintained to perform Carrier cell And other methods, and using glutathione column purification method. The obtained signal can be ideally analyzed by using a software such as GRAPHPAD PRISM (GraphPad, San Diego) to analyze one-site competition model fitting using non-linear regression analysis.

又,加標籤不限GST,也可為如組胺酸標籤、MBP、CBP、Flag標籤、HA標籤、V5標籤、c-myc標籤等的標籤,無限定。又,針對待驗抗原結合分子向提供者珠粒之結合,不限於利用生物素-鏈黴抗生物素蛋白反應之結合。尤其待驗抗原結合分子包括Fc時,可考慮介由提供者珠粒上之Protein A、Protein G等Fc認識蛋白質使待驗抗原結合分子結合之方法。 The tag is not limited to GST, and may be a tag such as a histidine tag, MBP, CBP, Flag tag, HA tag, V5 tag, c-myc tag, and the like, without limitation. In addition, the binding of the test antigen-binding molecule to the provider beads is not limited to the binding using a biotin-streptavidin reaction. In particular, when the test antigen-binding molecule includes Fc, a method for binding the test antigen-binding molecule through an Fc recognition protein such as Protein A, Protein G on the beads of the provider may be considered.

又,針對第1抗原與第2抗原為可溶型蛋白質般未在細胞膜上表現時,或兩者存在於同一細胞上時,能和第1抗原與第2抗原兩者同時結合,但分別在不同的細胞上表現時,無法同時結合的情形,也可使用公知方法測定。 In addition, when the first antigen and the second antigen are soluble proteins and are not expressed on the cell membrane, or when both are present on the same cell, they can bind to both the first antigen and the second antigen at the same time. In the case where different cells are expressed, simultaneous binding cannot be performed, which can be measured by a known method.

具體而言,即使在檢測對於第1抗原與第2抗原同時結合之ECL-ELISA為陽性,若分別表現第1抗原之細胞與表現第2抗原之細胞及待驗抗原結合分子混合時,此等3者不同時結合,則代表在不同的細胞上表現時無法同時結合。例如:可利用使用細胞之ECL-ELISA法測定。預先將表現第1抗原之細胞固定於板,使待驗抗原結合分子結合後,加入表現第2抗原之細胞。藉由使用只在表現第2抗原之細胞中表現的對抗其他抗原之sulfo-tag標記抗體進行檢測,於和在2個細胞上表現的2個抗原同時結合的情形,會觀測到信號,未同時結合時則未 觀測到信號。 Specifically, even when the ECL-ELISA that detects the simultaneous binding of the first antigen and the second antigen is positive, if the cells expressing the first antigen are separately mixed with the cells expressing the second antigen and the test antigen-binding molecules, The three do not combine at the same time, which means that they cannot combine at the same time when they are expressed on different cells. For example: ECL-ELISA can be used to measure cells. Cells expressing the first antigen are fixed on the plate in advance, and the test antigen-binding molecules are bound, and then cells expressing the second antigen are added. By using a sulfo-tag-labeled antibody against other antigens that is expressed only in cells expressing the second antigen, signals are observed when they are bound to two antigens expressed on two cells at the same time. When combined Observed signal.

或也可利用alphascreen法測定。當經已結合提供者珠粒之表現第1抗原之細胞、與已結合接受者珠粒之表現第2抗原之細胞、與待驗抗原結合分子混合時,於和在2個細胞上表現的2個抗原同時結合的情形,會觀測到信號,未同時結合時則未觀測到信號。 Or it can also be measured using the alphascreen method. When the cells expressing the first antigen bound to the beads of the provider, the cells expressing the second antigen bound to the beads of the recipient, and the antigen-binding molecules to be tested are mixed, the cells expressing on the two cells When two antigens are bound at the same time, a signal is observed, and when they are not bound at the same time, no signal is observed.

或可利用使用Octet之交互作用解析法測定。首先,使附加胜肽標籤之表現第1抗原之細胞結合於認識胜肽標籤之生物感測子(biosensor)。在已放入表現第2抗原之細胞與待驗抗原結合分子的井內進行交互作用解析時,若和在2個細胞上表現的2個抗原同時結合,則待驗抗原結合分子與表現第2抗原之細胞因為和生物感測子結合而觀測到大的波長偏移,未同時結合時,只有待驗抗原結合分子和生物感測子結合,故觀測到小的波長偏移。 Alternatively, it can be determined by using an interactive analytical method using Octet. First, a peptide-labeled cell expressing the first antigen is bound to a biosensor that recognizes the peptide tag. When the interaction analysis is performed in a well where the cell expressing the second antigen and the test antigen-binding molecule have been placed, if the two antigens displayed on the two cells are bound at the same time, the test antigen-binding molecule and the second test antigen are expressed. Antigen cells have observed large wavelength shifts due to their binding to biosensors. When they do not bind at the same time, only the test antigen-binding molecules and biosensors bind, so small wavelength shifts are observed.

或也可不利用結合活性,而是利用生物活性測定。例如:當將表現第1抗原之細胞與表現第2抗原之細胞與待驗抗原結合分子進行混合培養時,當和在2個細胞上表現之2個抗原同時結合時,因介由待驗抗原結合分子而相互活化,故可檢測到各抗原的下游的磷酸化增加等活化信號的變化。或就活化之結果,誘導細胞介素產生,故藉由測定細胞介素之產生量,可判斷是否和2個細胞同時結合。 Alternatively, instead of using binding activity, a biological activity measurement may be used. For example, when a cell expressing a first antigen and a cell expressing a second antigen are mixed with a test antigen-binding molecule, when they are combined with two antigens expressed on two cells at the same time, the test antigen is mediated through the test antigen. Binding molecules activate each other, so changes in activation signals such as increased phosphorylation downstream of each antigen can be detected. Or, as a result of activation, the production of cytokines is induced. Therefore, by measuring the amount of cytokines produced, it can be judged whether it is bound to two cells at the same time.

本發明中,「Fc區」係指包括由抗體分子中之鉸鏈部或其一部分、CH2、CH3分域之片段的區域。IgG類別的Fc區,以EU編號(本說明書也稱為EU INDEX),指例如226 號之半胱胺酸至C末端、或230號之脯胺酸至C末端,但不限於此。Fc區,可藉由將IgG1、IgG2、IgG3、IgG4單株抗體等以胃蛋白酶等蛋白質分解酵素進行部分消化後,將已吸附於蛋白質A管柱或蛋白質G管柱之級分予以再溶出以理想地取得。作為該蛋白分解酵素,只要是可利用適當設定pH等酵素的反應條件,以限制性地產生Fab、F(ab')2的方式將全長抗體消化者即可,無特殊限定,例如:胃蛋白酶、木瓜酶等。 In the present invention, the "Fc region" refers to a region including a fragment of the CH2 and CH3 domains from a hinge portion or a part thereof in an antibody molecule. The Fc region of the IgG class is designated by EU number (also referred to as EU INDEX in the present specification), and means, for example, cysteine No. 226 to the C-terminus, or proline acid No. 230 to the C-terminus, but is not limited thereto. In the Fc region, IgG1, IgG2, IgG3, and IgG4 monoclonal antibodies can be partially digested with proteolytic enzymes such as pepsin, and the fraction that has been adsorbed on the protein A column or protein G column can be re-dissolved to Ideally made. The proteolytic enzyme is not particularly limited as long as it is capable of digesting the full-length antibody in a manner that restricts the production of Fab and F (ab ') 2 by using reaction conditions such as appropriate setting of pH and other enzymes, such as pepsin , Papain and so on.

本發明中,「抗原結合分子」只要是包括本發明之「抗體之可變區」的分子即可,不特別限定,也包括有5個胺基酸左右以上的長度的胜肽、蛋白質。不限於生物來源的胜肽、蛋白質,例如:可為由人工設計的序列構成的多胜肽。又,天然多胜肽、或合成多胜肽、重組多胜肽等均可。 In the present invention, the "antigen-binding molecule" is not particularly limited as long as it is a molecule including the "variable region of an antibody" of the present invention, and includes peptides and proteins having a length of about 5 or more amino acids. It is not limited to peptides and proteins of biological origin, for example, it may be a polypeptide composed of artificially designed sequences. In addition, natural polypeptides, synthetic polypeptides, and recombinant polypeptides may be used.

本發明之抗原結合分子之理想例,可舉包括抗體之Fc區之抗原結合分子。 Preferred examples of the antigen-binding molecule of the present invention include an antigen-binding molecule that includes an Fc region of an antibody.

本發明之「Fc區」,可使用例如:天然型IgG來源的Fc區。在此,天然型IgG,係指包括和天然發現的IgG有同一胺基酸序列,且屬於利用免疫球蛋白gamma基因實質編碼的抗體的類別的多胜肽。例如天然型人IgG,係指天然型人IgG1、天然型人IgG2、天然型人IgG3、天然型人IgG4等。天然型IgG也包括由其自然產生之變異體等。作為人IgG1、人IgG2、人IgG3、人IgG4抗體之不變區,因基因多型所得之多數異型序列已記載於Sequences of proteins of immunological interest,NIH Publication No.91-3242,本發明中可為其任一者。尤其人IgG1之序列,EU編號356-358號之胺基酸序列為 DEL也可為EEM。 As the "Fc region" of the present invention, for example, an Fc region derived from a natural IgG can be used. Here, the natural IgG refers to a polypeptide that includes the same amino acid sequence as the naturally-occurring IgG and belongs to the class of antibodies substantially encoded by the immunoglobulin gamma gene. For example, natural human IgG refers to natural human IgG1, natural human IgG2, natural human IgG3, and natural human IgG4. Natural IgG also includes naturally occurring variants and the like. As the invariant regions of human IgG1, human IgG2, human IgG3, and human IgG4 antibodies, most of the heterotypic sequences due to polymorphism have been described in Sequences of proteins of immunological interest, NIH Publication No. 91-3242. Either of them. Especially the sequence of human IgG1, the amino acid sequence of EU number 356-358 is DEL can also be EEM.

抗體之Fc區,例如存在IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4、IgM類型的Fc區。本發明之抗體之Fc區,可使用例如天然型人IgG抗體來源的Fc區。作為本發明之Fc區,可使用例如:天然型IgG之不變區,具體而言,以天然型人IgG1為起源之不變區(序列編號:1)、以天然型人IgG2為起源之不變區(序列編號:2)、以天然型人IgG3為起源之不變區(序列編號:3)、以天然型人IgG4為起源之不變區(序列編號:4)來源的Fc區。天然型IgG之不變區也包括由此自然產生的變異體等。 The Fc region of the antibody includes, for example, IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM type Fc regions. As the Fc region of the antibody of the present invention, for example, an Fc region derived from a natural human IgG antibody can be used. As the Fc region of the present invention, for example, an invariant region of natural IgG, specifically, an invariant region derived from natural human IgG1 (sequence number: 1), and an invariant region derived from natural human IgG2 can be used. Fc region derived from a variable region (sequence number: 2), an invariant region derived from natural human IgG3 (sequence number: 3), and an invariant region derived from natural human IgG4 (sequence number: 4). Invariant regions of natural IgG also include naturally occurring variants and the like.

作為本發明之Fc區,對於其Fcγ受體之結合活性低的Fc區為較佳。在此,Fcγ受體(本說明書有時記載為Fcγ受體、FcγR或Fcγ受體),係指能和IgG1、IgG2、IgG3、IgG4之Fc區結合之受體,也意指實質上由Fcγ受體基因編碼的蛋白質家族的各種成員。人的話,此家族包括:含有FcγRIa、FcγRIb及FcγRIc之FcγRI(CD64);FcγRIIa(包含異型H131(H型)及R131(R型))、FcγRIIb(包含FcγRIIb-1及FcγRIIb-2)及包含FcγRIIc之FcγRII(CD32);及含有FcγRIIIa(包含異型V158及F158)及FcγRIIIb(包含異型FcγRIIIb-NA1及FcγRIIIb-NA2)之FcγRIII(CD16)、及各種未發現的人FcγR類或FcγR或異型,但不限於此等。FcγR包括人、小鼠、大鼠、兔及猴來源者,但不限於此等,可為各種生物來源。小鼠FcγR類,包括FcγRI(CD64)、FcγRII(CD32)、FcγRIII(CD16)及FcγRIII-2(CD16-2)、及各種未發現的小鼠FcγR類或FcγR或異 型,但不限於此等。如此的Fcγ受體的理想例,可列舉人FcγRI(CD64)、FcγRIIa(CD32)、FcγRIIb(CD32)、FcγRIIIa(CD16)及/或FcγRIIIb(CD16)。 As the Fc region of the present invention, an Fc region having a low Fcγ receptor binding activity is preferred. Here, the Fcγ receptor (hereinafter sometimes referred to as Fcγ receptor, FcγR, or Fcγ receptor) refers to a receptor capable of binding to the Fc region of IgG1, IgG2, IgG3, and IgG4, and also means that it is substantially composed of Fcγ Receptor genes encode various members of the protein family. In humans, this family includes: FcγRI (CD64) containing FcγRIa, FcγRIb, and FcγRIc; FcγRIIa (including isoforms H131 (H type) and R131 (R type)), FcγRIIb (including FcγRIIb-1 and FcγRIIb-2) and FcγRIIc FcγRII (CD32); and FcγRIII (CD16) containing FcγRIIIa (including isoforms V158 and F158) and FcγRIIIb (including isoforms FcγRIIIb-NA1 and FcγRIIIb-NA2), and various undiscovered human FcγRs or FcγR or isotypes, but not Limited to these. FcγR includes, but is not limited to, human, mouse, rat, rabbit, and monkey origin, and can be of various biological origins. Mouse FcγRs, including FcγRI (CD64), FcγRII (CD32), FcγRIII (CD16), and FcγRIII-2 (CD16-2), and various undiscovered mouse FcγR classes or FcγR or isoforms Type, but not limited to these. Preferred examples of such an Fcγ receptor include human FcγRI (CD64), FcγRIIa (CD32), FcγRIIb (CD32), FcγRIIIa (CD16), and / or FcγRIIIb (CD16).

FcγR存在帶有ITAM(Immunoreceptor tyrosine-based activation motif)之活性型受體與帶有ITIM(immunoreceptor tyrosine-based inhibitory motif)之抑制型受體。FcγR分類為:FcγRI、FcγRIIa R、FcγRIIa H、FcγRIIIa、FcγRIIIb之活性型FcγR、及FcγRIIb之抑制型FcγR。 FcγR includes active receptors with ITAM (Immunoreceptor tyrosine-based activation motif) and inhibitory receptors with ITIM (immunoreceptor tyrosine-based inhibitory motif). FcγR is classified into FcγRI, FcγRIIa R, FcγRIIa H, FcγRIIIa, FcγRIIIb active FcγR, and FcγRIIb inhibitory FcγR.

FcγRI之多核苷酸序列及胺基酸序列各記載於NM_000566.3及NP_000557.1,FcγRIIa之多核苷酸序列及胺基酸序列各記載於BC020823.1及AAH20823.1,FcγRIIb之多核苷酸序列及胺基酸序列各記載於BC146678.1及AAI46679.1,FcγRIIIa之多核苷酸序列及胺基酸序列各記載於BC033678.1及AAH33678.1,及FcγRIIIb之多核苷酸序列及胺基酸序列各記載於BC128562.1及AAI28563.1(RefSeq註冊編號)。又,FcγRIIa存在FcγRIIa之131號之胺基酸取代為組胺酸(H型)或精胺酸(R型)的2種基因多型(J.Exp.Med,172,19-25,1990)。又,FcγRIIb存在FcγRIIb之232號之胺基酸取代為異白胺酸(I型)或蘇胺酸(T型)之2種基因多型(Arthritis.Rheum.46:1242-1254(2002))。又,FcγRIIIa存在FcγRIIIa之158號之胺基酸取代為纈胺酸(V型)或苯丙胺酸(F型)之2種基因多型(J.Clin.Invest.100(5):1059-1070(1997))。又,FcγRIIIb存在NA1型、NA2型之2種基因多型(J.Clin.Invest.85:1287-1295(1990))。 The polynucleotide sequence and amino acid sequence of FcγRI are described in NM_000566.3 and NP_000557.1, and the polynucleotide sequence and amino acid sequence of FcγRIIa are described in BC020823.1 and AAH20823.1, and polynucleotide sequence of FcγRIIb. And amino acid sequences are described in BC146678.1 and AAI46679.1, the polynucleotide sequence and amino acid sequence of FcγRIIIa are respectively described in BC033678.1 and AAH33678.1, and the polynucleotide sequence and amino acid sequence of FcγRIIIb Each is described in BC128562.1 and AAI28563.1 (RefSeq registration number). In addition, FcγRIIa has two types of polymorphisms in which the amino acid of No. 131 of FcγRIIa has been replaced with histidine (H type) or arginine (R type) (J. Exp. Med, 172, 19-25, 1990) . In addition, FcγRIIb has two gene polymorphisms in which the amino acid of FcγRIIb No. 232 is substituted with isoleucine (type I) or threonine (type T) (Arthritis.Rheum. 46: 1242-1254 (2002)) . In addition, FcγRIIIa has two gene polytypes in which the amino acid of No. 158 of FcγRIIIa has been replaced with valine (V type) or phenylalanine (F type) (J.Clin.Invest.100 (5): 1059-1070 ( 1997)). In addition, FcγRIIIb has two gene polytypes of NA1 type and NA2 type (J. Clin. Invest. 85: 1287-1295 (1990)).

對於Fcγ受體之結合活性是否低落,可依FACS、ELISA格式、ALPHAscreen(Amplified Luminescent Proximity Homogeneous Assay)、利用表面電漿子共振(SPR)現象之BIACORE法等周知方法確認(Proc.Natl.Acad.Sci.USA(2006)103(11),4005-4010)。 Whether the binding activity of the Fcγ receptor is low can be confirmed by known methods such as FACS, ELISA format, ALPHAscreen (Amplified Luminescent Proximity Homogeneous Assay), and BIACORE method using surface plasmon resonance (SPR) phenomenon (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).

ALPHAscreen,係使用提供者(donor)與接受者(acceptor)的2種珠粒,利用ALPHA技術依下列原理實施。和提供者珠粒已結合的分子,會與和接受者珠粒已結合的分子進行生物學交互作用,而僅於2個珠粒接近的狀態時方檢測到發光信號。因雷射而激發的提供者珠粒內的光敏劑會將周圍的氧變換為激發狀態之單線態氧。單線態氧向提供者珠粒周邊擴散,若到達接近的接受者珠粒,則引起珠粒內的化學發光反應,最終放出光。若與提供者珠粒結合之分子和與接受者珠粒結合之分子不交互作用時,提供者珠粒產生之單線態氧不會到達接受者珠粒,不引起化學發光反應。 ALPHAscreen uses two types of beads, a donor and an acceptor, and uses ALPHA technology to implement the following principles. Molecules that have been bound to the bead of the provider will interact biologically with molecules that have been bound to the bead of the recipient, and the luminescence signal will be detected only when the two beads are close to each other. The photosensitizer in the provider's beads excited by the laser will convert the surrounding oxygen into excited singlet oxygen. The singlet oxygen diffuses to the periphery of the provider bead, and if it reaches the close recipient bead, it causes a chemiluminescence reaction in the bead and finally emits light. If the molecules bound to the donor beads and the molecules bound to the recipient beads do not interact, the singlet oxygen generated by the provider beads will not reach the recipient beads and will not cause a chemiluminescence reaction.

例如:提供者珠粒有經生物素標記之抗原結合分子結合,接受者珠粒有經谷胱甘肽S轉移酶(GST)加標籤之Fcγ受體結合。於有競爭之變異Fc區之抗原結合分子非存在下,有野生型Fc區之抗原結合分子與Fcγ受體交互作用並產生520-620nm之信號。有未加標籤的變異Fc區的抗原結合分子,會和有野生型Fc區之抗原結合分子與Fcγ受體間之交互作用競爭。藉由將表達競爭之結果之螢光之減少予以定量,可決定相對的結合親和性。將抗體等抗原結合分子使用Sulfo-NHS-生物素等予以生物素化係公知。Fcγ受體以GST予以加標籤之 方法,可適當採用以下方法:把將編碼為Fcγ受體之多核苷酸與編碼為GST之多核苷酸於讀框內融合成的融合基因於保持能表現之載體的細胞等中表現,並使用谷胱甘肽管柱精製之方法等。獲得之信號例如使用GRAPHPAD PRISM(GraphPad公司、San Diego)等軟體,以利用非線形迴歸解析之一部位競爭(one-site competition)模型擬合,可理想地解析。 For example, donor beads are bound by a biotin-labeled antigen-binding molecule, and recipient beads are bound by a glutathione S-transferase (GST) -tagged Fcγ receptor. In the absence of competing antigen-binding molecules with a variant Fc region, the antigen-binding molecules with a wild-type Fc region interact with the Fcγ receptor and generate a signal at 520-620 nm. Antigen-binding molecules with unlabeled variant Fc regions compete with the interaction between antigen-binding molecules with wild-type Fc regions and Fcγ receptors. By quantifying the reduction in fluorescence that expresses the results of competition, the relative binding affinity can be determined. It is known that an antigen-binding molecule such as an antibody is biotinylated using Sulfo-NHS-biotin or the like. Fcγ receptor tagged with GST As a method, the following method can be suitably adopted: a fusion gene obtained by fusing a polynucleotide encoding an Fcγ receptor and a polynucleotide encoding a GST in a reading frame is expressed in a cell or the like that retains a vector capable of expression, and is used Methods for purification of glutathione columns. The obtained signal can be ideally analyzed by using a software such as GRAPHPAD PRISM (GraphPad, San Diego) to analyze one-site competition model fitting using non-linear regression analysis.

將觀察交互作用的物質中之一者(配體)固定在感應晶片的金薄膜上,若光從感應晶片的內側照到金薄膜與玻璃之交界面而發生全反射,則會形成反射光的一部分的反射強度降低的部分(SPR信號)。若觀察交互作用之物質的另一者(分析物)流到感應晶片表面並且配體和分析物結合,則固定化配體分子的質量增加,並且感應晶片表面之溶劑之折射率變化。由於此折射率之變化,SPR信號之位置偏移(反之若結合解離,則信號位置回復)。Biacore系統取上述偏移之量,亦即在感應晶片表面的質量變化為縱軸,將質量之時間變化作為測定數據顯示(感應圖)。又,從感應圖的曲線可求出動力學:結合速度常數(ka)與解離速度常數(kd),從該常數之比可求出親和性(KD)。BIACORE法也可理想地用在抑制測定法。抑制測定法例如記載於Proc.Natl.Acad.Sci.USA(2006)103(11),4005-4010。 One of the substances (ligands) that observe the interaction is fixed on the gold film of the sensor chip. If light is reflected from the inside of the sensor chip to the interface between the gold film and glass and total reflection occurs, a reflected light will be formed. Part of the reflection intensity is reduced (SPR signal). If the other of the interacting substances (analyte) flows to the surface of the induction wafer and the ligand is bound to the analyte, the mass of the immobilized ligand molecule increases and the refractive index of the solvent on the surface of the induction wafer changes. Due to this change in refractive index, the position of the SPR signal is shifted (or vice versa if the dissociation is combined). The Biacore system takes the above-mentioned offset, that is, the mass change on the surface of the sensor chip is the vertical axis, and the time change of the mass is displayed as the measurement data (induction map). In addition, the kinetics can be obtained from the curve of the induction diagram: the rate constant (ka) and the dissociation rate constant (kd) are combined, and the affinity (KD) can be obtained from the ratio of the constants. The BIACORE method is also ideally used in inhibition assays. Inhibition assays are described, for example, in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.

本說明書中,對於Fcγ受體之結合活性低落,例如指基於上述解析方法,和包括作為對照之Fc區之抗原結合分子之結合活性進行比較,待驗抗原結合分子之結合活性為50%以下,較佳為45%以下、40%以下、35%以下、30%以下、 20%以下、15%以下,尤佳為10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下之結合活性者。 In this specification, the low binding activity of the Fcγ receptor refers to, for example, the comparison of the binding activity of the antigen-binding molecule including the Fc region as a control based on the above analysis method, and the binding activity of the test antigen-binding molecule is 50% or less. It is preferably 45% or less, 40% or less, 35% or less, 30% or less, Below 20% and below 15%, particularly preferably below 10%, below 9%, below 8%, below 7%, below 6%, below 5%, below 4%, below 3%, below 2%, below 1% Those who combine activity.

作為對照之抗原結合分子,可適當使用有IgG1、IgG2、IgG3或IgG4單株抗體之Fc區之抗原結合分子。該Fc區之結構記載於序列編號:1(RefSeq註冊編號AAC82527.1之N末有A附加)、序列編號:2(RefSeq註冊編號AAB59393.1之N末有A附加)、序列編號:3(RefSeq註冊編號CAA27268.1之N末有A附加)、序列編號:4(RefSeq註冊編號AAB59394.1之N末有A附加)。又,使用有特定抗體之Fc區之變異體的抗原結合分子作為待驗物質時,藉由使用有該特定之抗體之Fc區之抗原結合分子作為對照,可驗證該變異體擁有之變異所致對於Fcγ受體之結合活性的效果。依上述,可適當製作已驗證有對於Fcγ受體之結合活性低落的Fc區之變異體的抗原結合分子。 As a control antigen-binding molecule, an antigen-binding molecule having an Fc region of an IgG1, IgG2, IgG3 or IgG4 monoclonal antibody can be suitably used. The structure of the Fc region is recorded in the sequence number: 1 (A is appended to N at the end of RefSeq registration number AAC82527.1), the sequence number is 2 (A is appended to N at the end of RefSeq registration number AAB59393.1), and the sequence number is 3 ( RefSeq registration number CAA27268.1 is appended with A at the end of N), sequence number: 4 (RefSeq registration number AAB59394.1 is appended with A at the end of N). In addition, when using an antigen-binding molecule of a variant of the Fc region of a specific antibody as a test substance, by using an antigen-binding molecule of the Fc region of the specific antibody as a control, it can be verified that the variation is caused by the mutation possessed by the variant. Effect on the binding activity of Fcγ receptor. As described above, an antigen-binding molecule in which a variant of the Fc region having a low binding activity to the Fcγ receptor has been confirmed can be appropriately prepared.

作為如此的變異體,例如依EU編號指定的胺基酸231A-238S之缺失(WO 2009/011941)、C226S,C229S,P238S,(C220S)(J.Rheumatol(2007)34,11)、C226S,C229S(Hum.Antibod.Hybridomas(1990)1(1),47-54)、C226S,C229S,E233P,L234V,L235A(Blood(2007)109,1185-1192)等變異體為公知。 As such a variant, for example, the deletion of amino acids 231A-238S specified by the EU number (WO 2009/011941), C226S, C229S, P238S, (C220S) (J. Rheumatol (2007) 34, 11), C226S, C229S (Hum. Antibod. Hybridomas (1990) 1 (1), 47-54), C226S, C229S, E233P, L234V, L235A (Blood (2007) 109, 1185-1192) and other variants are known.

亦即,具有構成特定抗體之Fc區之胺基酸中依EU編號指定之下列任一胺基酸;220位、226位、229位、231位、232位、233位、234位、235位、236位、237位、238位、239位、240位、264位、265位、266位、267位、269位、270 位、295位、296位、297位、298位、299位、300位、325位、327位、328位、329位、330位、331位、332位有取代之Fc區之抗原結合分子為理想例。Fc區之起源抗體之不特別限定,可適當利用以IgG1、IgG2、IgG3或IgG4單株抗體為起源之Fc區,可適當利用以天然型人IgG1抗體為起源之Fc區。 That is, any of the following amino acids specified by EU number among the amino acids constituting the Fc region of a specific antibody; positions 220, 226, 229, 231, 232, 233, 234, and 235 , 236, 237, 238, 239, 240, 264, 265, 266, 267, 269, 270 The antigen-binding molecules of the Fc region with positions 295, 296, 297, 298, 299, 299, 300, 325, 327, 328, 329, 330, 331, and 332 have substituted Fc regions. Ideal case. The Fc region-derived antibody is not particularly limited. An Fc region derived from an IgG1, IgG2, IgG3, or IgG4 monoclonal antibody can be appropriately used, and an Fc region derived from a natural human IgG1 antibody can be appropriately used.

例如:具施以構成IgG1抗體之Fc區之胺基酸之中依EU編號指定之下列任一取代的Fc區、或具231位至238位之胺基酸序列缺失之Fc區的抗原結合分子也可適當使用(數字代表依EU編號指定之胺基酸殘基之位置、位於數字前之單字母胺基酸記號代表取代前之胺基酸殘基、位於數字後之單字母胺基酸記號代表取代前之胺基酸殘基);(a)L234F、L235E、P331S、(b)C226S、C229S、P238S、(c)C226S、C229S、(d)C226S、C229S、E233P、L234V、L235A。 For example: an antigen-binding molecule having any of the following substituted Fc regions designated by the EU number among the amino acids administered to constitute the Fc region of an IgG1 antibody, or an Fc region having an amino acid sequence deleted at positions 231 to 238 Can also be used as appropriate (the number represents the position of the amino acid residue specified by the EU number, the single-letter amino acid symbol before the number represents the amino acid residue before the substitution, and the single-letter amino acid symbol after the number (Represents the amino acid residue before substitution); (a) L234F, L235E, P331S, (b) C226S, C229S, P238S, (c) C226S, C229S, (d) C226S, C229S, E233P, L234V, L235A.

又,具有施以構成IgG2抗體之Fc區之胺基酸中之依EU編號指定之下列任一取代的Fc區的抗原結合分子也可適當使用(數字代表依EU編號指定之胺基酸殘基之位置、位於數字前之單字母胺基酸記號代表取代前之胺基酸殘基、位於數字後之單字母胺基酸記號代表取代前之胺基酸殘基); In addition, an antigen-binding molecule having any of the following substituted Fc regions designated by the EU number among the amino acids to which the Fc region constituting the IgG2 antibody is applied may be used as appropriate (the numbers represent amino acid residues designated by the EU number Position, the single-letter amino acid symbol before the number represents the amino acid residue before the substitution, and the single-letter amino acid symbol after the number represents the amino acid residue before the substitution);

(e)H268Q、V309L、A330S、P331S (e) H268Q, V309L, A330S, P331S

(f)V234A (f) V234A

(g)G237A (g) G237A

(h)V234A、G237A (h) V234A, G237A

(i)A235E、G237A (i) A235E, G237A

(j)V234A、A235E、G237A。 (j) V234A, A235E, G237A.

又,也可適當使用具有施以構成IgG3抗體之Fc區之胺基酸中之依EU編號指定之下列任一取代之Fc區的抗原結合分子(數字代表依EU編號指定之胺基酸殘基之位置、位於數字前之單字母胺基酸記號代表取代前之胺基酸殘基、位於數字後之單字母胺基酸記號代表取代前之胺基酸殘基); In addition, an antigen-binding molecule having any of the following substituted Fc regions designated by the EU number among the amino acids administered to the Fc region constituting the IgG3 antibody may also be appropriately used (the numbers represent amino acid residues designated by the EU number Position, the single-letter amino acid symbol before the number represents the amino acid residue before the substitution, and the single-letter amino acid symbol after the number represents the amino acid residue before the substitution);

(k)F241A (k) F241A

(l)D265A (l) D265A

(m)V264A。 (m) V264A.

又,也可適當使用具有施以構成IgG4抗體之Fc區之胺基酸中之依EU編號指定之下列任一取代之Fc區之抗原結合分子(數字代表依EU編號指定之胺基酸殘基之位置、位於數字前之單字母胺基酸記號代表取代前之胺基酸殘基、位於數字後之單字母胺基酸記號代表取代前之胺基酸殘基); In addition, an antigen-binding molecule having any of the following substituted Fc regions designated by the EU number among the amino acids administered with the Fc region constituting the IgG4 antibody may also be appropriately used (the numbers represent amino acid residues designated by the EU number Position, the single-letter amino acid symbol before the number represents the amino acid residue before the substitution, and the single-letter amino acid symbol after the number represents the amino acid residue before the substitution);

(n)L235A、G237A、E318A (n) L235A, G237A, E318A

(o)L235E (o) L235E

(p)F234A、L235A。 (p) F234A, L235A.

作為其他理想例,可列舉具有構成天然型人IgG1抗體之Fc區之胺基酸中之依EU編號指定之下列任一胺基酸;233位、234位、235位、236位、237位、327位、330位、331位取代為對應之IgG2或IgG4中之其EU編號所對應之胺基酸之Fc區的抗原結合分子。 As other desirable examples, any of the following amino acids specified by the EU number among the amino acids having the Fc region of the natural human IgG1 antibody can be cited; positions 233, 234, 235, 236, 237, The 327, 330, and 331 positions are substituted with the antigen-binding molecule of the Fc region of the amino acid corresponding to its EU number in the corresponding IgG2 or IgG4.

作為其他理想例,可列舉具有構成天然型人IgG1 抗體之Fc區之胺基酸中之依EU編號指定之下列任一或更多胺基酸;234位、235位、297位取代為其他胺基酸之Fc區的抗原結合分子為理想例。取代後存在之胺基酸之種類不特別限定,具234位、235位、297位中之任一或更多的胺基酸取代為丙胺酸之Fc區之抗原結合分子尤佳。 As another desirable example, a natural human IgG1 Among the amino acids in the Fc region of the antibody, any one or more of the following amino acids are designated by the EU number; antigen-binding molecules in which the Fc region of positions 234, 235, and 297 are replaced with other amino acids are ideal examples. The type of the amino acid present after the substitution is not particularly limited, and an antigen-binding molecule having an amino acid in any one or more of positions 234, 235, and 297 substituted with the Fc region of alanine is particularly preferred.

作為其他理想例,具有構成IgG1抗體之Fc區之胺基酸中之依EU編號指定之下列任一胺基酸;265位取代為其他胺基酸之Fc區之抗原結合分子為理想例。取代後存在之胺基酸之種類不特別限定,尤其具265位之胺基酸取代為丙胺酸之Fc區之抗原結合分子尤佳。 As other ideal examples, among the amino acids constituting the Fc region of the IgG1 antibody, any one of the following amino acids designated by EU number is specified; an antigen-binding molecule in which the Fc region of the 265 region is replaced with another amino acid is an ideal example. The type of the amino acid present after the substitution is not particularly limited, and particularly an antigen-binding molecule having the Fc region of the 265 amino acid substituted with alanine is preferred.

又,本發明之「抗原結合分子」之理想態樣之一,可列舉包含本發明之抗體之可變區之多專一性抗體。 In addition, one of the desirable aspects of the "antigen-binding molecule" of the present invention includes a multispecific antibody comprising a variable region of the antibody of the present invention.

多專一性抗體之締合化可應用在抗體H鏈之第2不變區(CH2)或H鏈之第3不變區(CH3)的界面導入電荷性排斥而抑制非目的之H鏈彼此的締合的技術(WO2006/106905)。 The association of multispecific antibodies can be applied at the interface of the second invariant region (CH2) or the third invariant region (CH3) of the H chain of the antibody to introduce charge repulsion and inhibit the non-target H chains from each other. Associative technology (WO2006 / 106905).

於在CH2或CH3的界面導入電荷性排斥而抑制未意欲之H鏈彼此之締合的技術,於H鏈之其他不變區界面接觸之胺基酸殘基,例如和CH3區中之EU編號356號之殘基、EU編號439號之殘基、EU編號357號之殘基、EU編號370號之殘基、EU編號399號之殘基、EU編號409號之殘基相對的區域。 Technology that introduces charge repulsion at the interface of CH2 or CH3 to inhibit the association of unintended H chains with each other, amino acid residues in contact with the interface of other constant regions of the H chain, such as the EU number in the CH3 region Regions where residues 356, EU residues 439, EU residues 357, EU residues 370, EU residues 399, and EU residues 409 are opposite.

更具體而言,可為:例如於包含2種H鏈CH3區之抗體,第1H鏈CH3區中之以下(1)~(3)所示之胺基酸殘基之群組選出的1組至3組胺基酸殘基有同種電荷之抗體;(1)為H鏈CH3區所含之胺基酸殘基,且為EU編號356位及439位之 胺基酸殘基、(2)為H鏈CH3區所含之胺基酸殘基,且為EU編號357位及370位之胺基酸殘基、(3)為H鏈CH3區所含之胺基酸殘基,且為EU編號399位及409位之胺基酸殘基。 More specifically, it can be, for example, one group selected from the group consisting of the amino acid residues shown in (1) to (3) below in the first H chain CH3 region in an antibody containing two types of H chain CH3 regions. Antibodies with the same charge to 3 amino acid residues; (1) is the amino acid residue contained in the CH3 region of the H chain, and is the EU number 356 and 439 Amino acid residues, (2) are amino acid residues contained in the CH3 region of the H chain, and are amino acid residues at positions 357 and 370 of the EU number, and (3) are contained in the H chain CH3 region. Amino acid residues are the amino acid residues at positions 399 and 409 of the EU number.

又,可為:從和上述第1H鏈CH3區不同的第2H鏈CH3區中之前述(1)~(3)所示之胺基酸殘基之組中選出的胺基酸殘基之組且為和前述第1H鏈CH3區中有同種電荷之前述(1)~(3)所示之胺基酸殘基之組對應的1組至3組胺基酸殘基具有和前述第1H鏈CH3區中之對應胺基酸殘基為相反電荷之抗體。 In addition, it may be a group of amino acid residues selected from the group of amino acid residues shown in the above (1) to (3) in the second H chain CH3 region which is different from the first H chain CH3 region. 1 to 3 groups of amino acid residues corresponding to the group of amino acid residues shown in (1) to (3) above, which have the same kind of charge in the CH3 region of the 1H chain, have the same amino acid residues as the 1H chain. Antibodies with corresponding amino acid residues in the CH3 region are of opposite charge.

上述(1)~(3)記載的各胺基酸殘基於締合時會彼此靠近。該領域中通常知識者可針對所望H鏈CH3區或H鏈不變區,可利用使用市售軟體的同源建模法(Homology modeling)等發現對應於上述(1)~(3)記載之胺基酸殘基之部位,可適當將該部位之胺基酸殘基供改變。 Each of the amino acid residues described in the above (1) to (3) approaches each other based on association. Generally, a person skilled in the art can use the homology modeling method (Homology modeling) using commercially available software to find the desired H chain CH3 region or H chain invariant region. The position of the amino acid residue can be appropriately changed for the amino acid residue of the position.

上述抗體中,「有電荷之胺基酸殘基」宜從例如以下(a)或(b)中任一群所含之胺基酸殘基中選擇較佳;(a)麩胺酸(E)、天冬胺酸(D)、(b)離胺酸(K)、精胺酸(R)、組胺酸(H)。 In the above antibodies, the "charged amino acid residue" is preferably selected from, for example, amino acid residues contained in any of the following groups (a) or (b); (a) glutamic acid (E) , Aspartic acid (D), (b) lysine (K), arginine (R), histidine (H).

上述抗體中,「有同種電荷」,係指例如:2個以上的胺基酸殘基任一者有上述(a)或(b)中任一群所含之胺基酸殘基。「有相反電荷」,係指例如:2個以上的胺基酸殘基中的至少1個胺基酸殘基有上述(a)或(b)任一群所含之胺基酸殘基時,其餘胺基酸殘基具有不同群所含之胺基酸殘基。 In the above antibody, "having the same kind of charge" means that, for example, any one of the two or more amino acid residues has an amino acid residue contained in any one of the groups (a) or (b). "An opposite charge" means, for example, when at least one amino acid residue of two or more amino acid residues has an amino acid residue contained in any of the groups (a) or (b) above, The remaining amino acid residues have amino acid residues contained in different groups.

理想態樣中,上述抗體的第1H鏈CH3區與第2H 鏈CH3區也可利用雙硫鍵交聯。 In an ideal state, the 1H chain CH3 region and 2H The chain CH3 region can also be crosslinked using disulfide bonds.

本發明中供改變之胺基酸殘基,不限於上述抗體之可變區或抗體不變區之胺基酸殘基。若為該領域中通常知識者,可針對多胜肽變異體或異種多聚體,利用使用市售軟體之同源建模法等找出形成界面之胺基酸殘基,並以控制締合之方式將該部位之胺基酸殘基供改變。 The amino acid residue to be modified in the present invention is not limited to the amino acid residue in the variable region or the constant region of the antibody. If you are a person with ordinary knowledge in the field, you can use homology modeling methods using commercially available software to find polyamino acid residues or heteropolymers to control the associations This is done by changing the amino acid residues at this site.

又,本發明之多專一性抗體之締合化也可使用其他公知技術。藉由將抗體之其中一H鏈之可變區存在的胺基酸側鏈取代為較大側鏈(knob;突起),並將另一H鏈之相對之可變區存在的胺基酸側鏈取代為較小側鏈(hole;空隙),以將突起配置於空隙,以有效率地實施有Fc區之不同胺基酸之多胜肽彼此的締合化(WO1996/027011、Ridgway JB et al.,Protein Engineering(1996)9,617-621、Merchant AM et al.Nature Biotechnology(1998)16,677-681)。 Moreover, the association of the multispecific antibody of the present invention can also use other known techniques. By replacing the amino acid side chain present in the variable region of one H chain of the antibody with a larger side chain (knob; protrusion), and replacing the amino acid side of the opposite variable region of the other H chain The chain is replaced with a smaller side chain (hole; gap) to arrange the protrusions in the gap to efficiently associate the peptides of different amino acids with Fc regions with each other (WO1996 / 027011, Ridgway JB et al., Protein Engineering (1996) 9,617-621, Merchant AM et al. Nature Biotechnology (1998) 16,677-681).

除此以外,本發明之多專一性抗體之形成還可使用其他公知技術。藉由使用抗體的其中一H鏈之CH3之一部分設為和此部分對應的IgA來源的序列,並於另一H鏈之CH3的互補部分導入和此部分對應的IgA來源的序列而得的strand-exchange engineered domain CH3,可以有效率地利用CH3的互補性締合化生成有不同序列之多胜肽之締合化(Protein Engineering Design & Selection,23;195-202,2010)。使用此公知技術也可有效率地形成目的之多專一性抗體。 In addition to this, the formation of the multispecific antibodies of the present invention can use other well-known techniques. A strand obtained by using a portion of CH3 of one H chain of the antibody as an IgA-derived sequence corresponding to this portion, and introducing a IgA-derived sequence corresponding to this portion into the complementary portion of CH3 of the other H-chain -exchange engineered domain CH3, which can efficiently utilize the complementary association of CH3 to generate the association of multiple peptides with different sequences (Protein Engineering Design & Selection, 23; 195-202, 2010). The multispecific antibodies of interest can also be efficiently formed using this known technique.

另外,多專一性抗體的形成,也可使用利用WO2011/028952記載之抗體之CH1與CL之締合化、利用VH、 VL之締合化之抗體製作技術、使用WO2008/119353、WO2011/131746記載之個別製備的單株抗體彼此而製作雙重專一性抗體之技術(Fab Arm Exchange)、WO2012/058768、WO2013/063702記載之控制抗體重鏈之CH3間之締合之技術、WO2012/023053記載之製作由2種輕鏈與1種重鏈構成之雙重專一性抗體之技術、Christoph等人(Nature Biotechnology Vol.31,p 753-758(2013))記載之利用各自表現由1條H鏈與1條L鏈構成之抗體之單鏈的2個細菌細胞株的製作雙重專一性抗體的技術等。又,上述締合技術以外,已知有CrossMab技術,係使形成結合於第1抗原決定位之可變區的輕鏈、及形成結合於第2抗原決定位之可變區的輕鏈,分別和結合於第1抗原決定位之可變區的重鏈、及結合於第2抗原決定位之可變區的重鏈締合之異種輕鏈之締合技術(Scaefer等人(Proc.Natl.Acad.Sci.U.S.A.(2011)108,11187-11192)),此等技術也可用於製作本發明提供之多專一性或多抗體決定簇(paratopic)的抗原結合分子。作為使用各自製備的單株抗體彼此而製作雙重專一性抗體之技術,可列舉使重鏈CH3區存在之特定胺基酸經取代而得的單株抗體置於還原狀況,以促進抗體之異化,並獲得所望雙重專一性抗體之方法。該方法之理想胺基酸取代部位,例如CH3區之EU編號392號之殘基、EU編號397號之殘基。再者,也可利用第1H鏈CH3區之以下(1)~(3)所示之胺基酸殘基之組中選出的1組至3組胺基酸殘基有同種電荷之抗體來製作雙重專一性抗體;(1)為H鏈CH3區所含之胺基酸殘基且係EU編號356位及439位之胺基酸殘 基、(2)為H鏈CH3區所含之胺基酸殘基且係EU編號357位及370位之胺基酸殘基、(3)為H鏈CH3區所含之胺基酸殘基且係EU編號399位及409位之胺基酸殘基。又,也可利用和係從上述第1H鏈CH3區為不同的第2H鏈CH3區中的前述(1)~(3)所示之胺基酸殘基之組選出的胺基酸殘基之組且和前述第1H鏈CH3區中有同種電荷之前述(1)~(3)所示之胺基酸殘基之組所對應之1組至3組胺基酸殘基具有和前述第1H鏈CH3區之對應胺基酸殘基有相反電荷的抗體,來製作雙重專一性抗體。 In addition, for the formation of multispecific antibodies, the association between CH1 and CL of the antibody described in WO2011 / 028952, and the use of VH, VL-associated antibody production technology, Fab Arm Exchange technology using single-body antibodies prepared separately as described in WO2008 / 119353 and WO2011 / 131746 (Fab Arm Exchange), WO2012 / 058768, and WO2013 / 063702 Techniques for controlling association between CH3 of antibody heavy chains, technology for making a dual specific antibody composed of two light chains and one heavy chain described in WO2012 / 023053, Christoph et al. (Nature Biotechnology Vol. 31, p 753 -758 (2013)), a technique for producing a dual specific antibody using two bacterial cell lines each expressing a single chain of an antibody composed of one H chain and one L chain, and the like. In addition to the above-mentioned association technology, CrossMab technology is known, which makes a light chain that forms a variable region bound to a first epitope and a light chain that forms a variable region bound to a second epitope, respectively Technology for association of heterologous light chains with heavy chains that bind to the variable region of the first epitope and heavy chains that bind to the variable region of the second epitope (Scaefer et al. (Proc. Natl. Acad. Sci. USA (2011) 108, 11187-11192)), these techniques can also be used to make multispecific or multiantibody paratopic antigen-binding molecules provided by the present invention. As a technique for producing dual specific antibodies using the monoclonal antibodies prepared by each of them, a single antibody obtained by substituting a specific amino acid present in the CH3 region of the heavy chain in a reduced state can be cited to promote antibody alienation. And how to get the desired dual specificity antibody. The ideal amino acid substitution sites of this method are, for example, residues of EU number 392 and residues of EU number 397 in the CH3 region. In addition, antibodies having the same type of charge from one to three groups of amino acid residues selected from the group of amino acid residues shown in (1) to (3) below the CH3 region of the 1H chain can also be produced. Double specific antibody; (1) is the amino acid residue contained in the CH3 region of the H chain and is the amino acid residue in positions 356 and 439 of the EU number (2) is the amino acid residue contained in the CH3 region of the H chain and is the amino acid residue in positions 357 and 370 of the EU number, and (3) is the amino acid residue contained in the CH3 region of the H chain It is the amino acid residues at positions 399 and 409 of the EU. Alternatively, the amino acid residues selected from the group of amino acid residues shown in the above (1) to (3) in the second H chain CH3 region which is different from the first H chain CH3 region may be used. 1 to 3 groups of amino acid residues corresponding to the group of amino acid residues shown in (1) to (3) above and having the same charge in the CH3 region of the first 1H chain Antibodies with opposite charges on the corresponding amino acid residues in the CH3 region of the chain are used to make dual specific antibodies.

又,即使未能有效率地形成目的多專一性抗體的情形,也可藉由從產生之抗體中將目的之多專一性抗體予以分離、精製,而獲得本發明之多專一性抗體。例如有人報告:對於2種H鏈之可變區導入胺基酸取代並賦予等電點的差異,以將2種同形體與目的之異形抗體(heteroantibody)利用離子交換層析進行精製之方法(WO2007114325)。又,作為將異形體精製之方法,至今已有將由會結合於蛋白質A之小鼠IgG2a之H鏈於不結合於蛋白質A之大鼠IgG2b之H鏈構成的異二聚化抗體使用蛋白質A進行精製的方法(WO98050431,WO95033844)。又,藉由使用為IgG與ProteinA之結合部位即EU編號435號及436號之胺基酸殘基取代成Tyr、His等和ProteinA之結合力不同的胺基酸而得的H鏈,使各H鏈與Protein A間的交互作用變化,並使用Protein A管柱,可以有效率地只將異二聚化抗體進行精製。 In addition, even in the case where the multispecific antibody of interest cannot be efficiently formed, the multispecific antibody of the present invention can be obtained by separating and purifying the multispecific antibody of interest from the generated antibodies. For example, it has been reported that a method of purifying two isoforms and a heteroantibody of interest by ion exchange chromatography is used to introduce an amino acid substitution in the variable region of the two H chains and to impart an isoelectric point. WO2007114325). In addition, as a method for refining an isoform, a heterodimerized antibody composed of the H chain of mouse IgG2a that binds to protein A and the H chain of rat IgG2b that does not bind to protein A has hitherto been performed using protein A. Refined method (WO98050431, WO95033844). In addition, H chains obtained by substituting amino acid residues that are the binding sites of IgG and ProteinA, that is, EU Nos. 435 and 436, with amino acids having different binding forces from Tyr, His, and the like, make each The interaction between the H chain and Protein A changes, and using Protein A columns, it is possible to efficiently refine only the heterodimerized antibody.

該等技術可使用多個,例如組合使用2個以上。 又,該等技術也可對於欲締合之2個H鏈適當地分別適用。又,本發明之抗原結合分子,可以將已施加上述改變者作為基礎,另外製作有同一胺基酸序列之抗原結合分子。 These technologies can be used in multiples, for example in combination of two or more. These techniques can also be applied to the two H chains to be associated as appropriate. In addition, the antigen-binding molecule of the present invention can be prepared based on those to which the above-mentioned changes have been applied, and an antigen-binding molecule having the same amino acid sequence can also be prepared.

胺基酸序列之改變可依該領域中公知的各種方法實施。該等方法不限於以下方法,可利用部位專一性變異誘導法(Hashimoto-Gotoh,T,Mizuno,T,Ogasahara,Y,and Nakagawa,M.(1995)An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis.Gene 152,271-275、Zoller,MJ,and Smith,M.(1983)Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol.100,468-500、Kramer,W,Drutsa,V,Jansen,HW,Kramer,B,Pflugfelder,M,and Fritz,HJ(1984)The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res.12,9441-9456、Kramer W,and Fritz HJ(1987)Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods.Enzymol.154,350-367、Kunkel,TA(1985)Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci U S A.82,488-492)、PCR變異法、匣盒(cassette)變異法等方法實施。 The change of the amino acid sequence can be carried out according to various methods known in the art. These methods are not limited to the following methods, and site-specific mutation induction methods (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed can be used mutagenesis.Gene 152,271-275, Zoller, MJ, and Smith, M. (1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol. 100,468-500, Kramer, W, Drutsa, V, Jansen, HW, Kramer, B, Pflugfelder, M, and Fritz, HJ (1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12,9441-9456, Kramer W, and Fritz HJ (1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367, Kunkel, TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci US A. 82,488-492), PCR mutation method, cassette ( cassette) mutation and other methods.

又,本發明之「抗原結合分子」在單一多胜肽鏈內包括形成本發明之「抗體之可變區」之重鏈及輕鏈兩者,但也可為缺少不變區的抗體片段。如此的抗體片段,例如:雙體抗體(diabody;Db)、單鏈抗體、sc(Fab')2。 In addition, the "antigen-binding molecule" of the present invention includes both a heavy chain and a light chain forming a "variable region of an antibody" of the present invention within a single peptide chain, but it may also be an antibody fragment lacking a constant region . Such antibody fragments include, for example, diabody (Db), single-chain antibody, and sc (Fab ') 2.

Db係由2條多胜肽鏈構成的二聚物(Holliger P et al.,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)、EP404,097號、W093/11161號等),各多胜肽鏈係利用同鏈中L鏈可變區(VL)及H鏈可變區(VH)彼此無法結合的程度之短的例如:5個殘基左右的連結子結合。 Db is a dimer composed of two polypeptide chains (Holliger P et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP404, No. 097, W093 / 11161, etc.) Each polypeptide chain system uses a linker having a length of about 5 residues to bind the L chain variable region (VL) and the H chain variable region (VH) in the same chain to a short extent, for example, by a linker of about 5 residues.

同一多胜肽鏈上編碼的VL與VH,因為其之間之連結子短,故無法形成單鏈可變區片段,而利用二聚物化以形成2個抗原結合部位。 The VL and VH encoded on the same peptide chain cannot form a single-chain variable region fragment because of the short linker between them, and use dimerization to form two antigen-binding sites.

單鏈抗體,例如sc(Fv)2。sc(Fv)2係2個VL與2個VH之4個可變區利用胜肽連結子等連結子連結並構成1條鏈之單鏈抗體(J Immunol.Methods(1999)231(1-2),177-189)。此2個VH與VL可由不同單株抗體而來。例如:Journal of Immunology(1994)152(11),5368-5374揭示之認識在同一抗原中存在的2種抗原決定位之雙重專一性(bispecific sc(Fv)2)亦為理想例。sc(Fv)2可依該領域中通常知識者公知之方法製作。例如:可將scFv以胜肽連結子等連結子連結以製作。 Single chain antibodies, such as sc (Fv) 2. sc (Fv) 2 is a single chain antibody with two VLs and four variable regions of two VHs linked by a linker such as a peptide linker to form a single chain (J Immunol.Methods (1999) 231 (1-2 ), 177-189). The two VH and VL can be derived from different monoclonal antibodies. For example: Journal of Immunology (1994) 152 (11), 5368-5374 revealed that the dual specificity (bispecific sc (Fv) 2) of two epitopes existing in the same antigen is also an ideal example. sc (Fv) 2 can be prepared according to a method known to those skilled in the art. For example, scFv can be produced by linking with a linker such as a peptide linker.

本說明書中,作為構成sc(Fv)2之抗原結合分域之構成,可舉2個VH及2個VL以單條鏈多胜肽之N末端側為基點,並按順序以VH、VL、VH、VL([VH]連結子[VL]連結子[VH]連結子[VL])排列為特徵的抗體,但2個VH與2個VL的順序不特別限於上述構成,可依任意順序排列。例如以下順序之構成。 In this specification, as the structure of the antigen-binding domain constituting sc (Fv) 2, two VHs and two VLs may be based on the N-terminal side of a single-chain polypeptide, and VH, VL, and VH may be used in this order. VL ([VH] linker [VL] linker [VH] linker [VL]) is an antibody characterized by an arrangement, but the order of the two VHs and the two VLs is not particularly limited to the above-mentioned configuration, and may be arranged in any order. For example, the following sequence is used.

[VL]連結子[VH]連結子[VH]連結子[VL] [VL] linker [VH] linker [VH] linker [VL]

[VH]連結子[VL]連結子[VL]連結子[VH] [VH] linker [VL] linker [VL] linker [VH]

[VH]連結子[VH]連結子[VL]連結子[VL] [VH] linker [VH] linker [VL] linker [VL]

[VL]連結子[VL]連結子[VH]連結子[VH] [VL] linker [VL] linker [VH] linker [VH]

[VL]連結子[VH]連結子[VL]連結子[VH] [VL] linker [VH] linker [VL] linker [VH]

針對sc(Fv)2之分子形態,於WO2006/132352也有詳細記載,若為該領域中通常知識者,可基於該等記載製作用以製造本說明書揭示之抗原結合分子的適當所望的sc(Fv)2。 The molecular morphology of sc (Fv) 2 is also described in detail in WO2006 / 132352. If it is a person with ordinary knowledge in the field, based on these records, it is possible to produce sc (Fv) of the appropriate expectation for producing the antigen-binding molecules disclosed in this specification. )2.

本發明之抗原結合分子也可接合PEG等載體高分子、抗癌劑等有機化合物。又,也可插入糖鏈附加序列並使糖鏈獲得所望效果。 The antigen-binding molecule of the present invention may also be bonded to a carrier polymer such as PEG, or an organic compound such as an anticancer agent. Alternatively, a sugar chain additional sequence may be inserted to obtain a desired effect on the sugar chain.

將抗體之可變區結合之連結子,可使用能利用基因工程導入的任意胜肽連結子、或合成化合物連結子(例如參照:Protein Engineering,9(3),299-305,1996)揭示的連結子等,但本發明中宜為胜肽連結子為佳。胜肽連結子之長度不特別限定,可因應目的由該領域中通常知識者適當選擇,理想長度為5個胺基酸以上(上限不特別限定,通常為30個胺基酸以下,較佳為20個胺基酸以下),尤佳為15個胺基酸。sc(Fv)2包括3個胜肽連結子時,可使用長度全部相同的胜肽連結子,也可使用不同長度的胜肽連結子。 As the linker that binds the variable region of the antibody, any peptide linker that can be introduced by genetic engineering or a synthetic compound linker (for example, see: Engineering Engineering, 9 (3), 299-305, 1996) can be used. Linkers and the like, but preferred are peptide linkers in the present invention. The length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose. The ideal length is 5 amino acids or more (the upper limit is not particularly limited, and is usually 30 amino acids or less, preferably 20 amino acids or less), particularly preferably 15 amino acids. When sc (Fv) 2 includes three peptide linkers, all peptide linkers of the same length may be used, or peptide linkers of different lengths may be used.

例如:胜肽連結子的情形: Example: In the case of peptide linkers:

Ser Ser

Gly‧Ser Gly‧Ser

Gly‧Gly‧Ser Gly‧Gly‧Ser

Ser‧Gly‧Gly Ser‧Gly‧Gly

Gly‧Gly‧Gly‧Ser(序列編號:5) Gly‧Gly‧Gly‧Ser (Serial Number: 5)

Ser‧Gly‧Gly‧Gly(序列編號:6) Ser‧Gly‧Gly‧Gly (Serial Number: 6)

Gly‧Gly‧Gly‧Gly‧Ser(序列編號:7) Gly‧Gly‧Gly‧Gly‧Ser (Serial Number: 7)

Ser‧Gly‧Gly‧Gly‧Gly(序列編號:8) Ser‧Gly‧Gly‧Gly‧Gly (Serial Number: 8)

Gly‧Gly‧Gly‧Gly‧Gly‧Ser(序列編號:9) Gly‧Gly‧Gly‧Gly‧Gly‧Ser (Serial Number: 9)

Ser‧Gly‧Gly‧Gly‧Gly‧Gly(序列編號:10) Ser‧Gly‧Gly‧Gly‧Gly‧Gly (Serial Number: 10)

Gly‧Gly‧Gly‧Gly‧Gly‧Gly‧Ser(序列編號:11) Gly‧Gly‧Gly‧Gly‧Gly‧Gly‧Ser (Serial Number: 11)

Ser‧Gly‧Gly‧Gly‧Gly‧Gly‧Gly(序列編號:12) Ser‧Gly‧Gly‧Gly‧Gly‧Gly‧Gly (Serial Number: 12)

(Gly‧Gly‧Gly‧Gly‧Ser(序列編號:7))n (Gly‧Gly‧Gly‧Gly‧Ser (Serial Number: 7)) n

(Ser‧Gly‧Gly‧Gly‧Gly(序列編號:8))n (Ser‧Gly‧Gly‧Gly‧Gly (Serial Number: 8)) n

[n為1以上之整數]等。惟胜肽連結子之長度、序列可因應目的由該領域中通常知識者適當選擇。 [n is an integer of 1 or more] and the like. However, the length and sequence of the peptide linker can be appropriately selected by those skilled in the art according to the purpose.

合成化學物連結子(化學交聯劑),為胜肽交聯通常使用之交聯劑,例如N-羥基琥珀醯亞胺(NHS)、辛二酸二琥珀醯亞胺酯(DSS)、辛二酸二(硫琥珀醯亞胺基)酯(BS 3)、二硫雙(琥珀醯亞胺基丙酸酯)(DSP)、二硫雙(硫琥珀醯亞胺基丙酸酯)(DTSSP)、乙二醇雙(琥珀醯亞胺基琥珀酸酯)(EGS)、乙二醇雙(硫琥珀醯亞胺基琥珀酸酯)(硫-EGS)、二琥珀醯亞胺基酒石酸鹽(DST)、二硫琥珀醯亞胺基酒石酸鹽(硫-DST)、雙[2-(琥珀醯亞胺氧羰基氧)乙基]碸(BSOCOES)、雙[2-(硫琥珀醯亞胺氧羰基氧)乙基]碸(硫-BSOCOES)等,該等交聯劑在市面上可購得。 Synthetic chemical linker (chemical cross-linking agent), which is commonly used for peptide cross-linking, such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), octyl Bis (thiosuccinimide) diacid (BS 3), dithiobis (succinimide propionate) (DSP), dithiobis (thiosuccinimide propionate) (DTSSP ), Ethylene glycol bis (succinimide iminosuccinate) (EGS), ethylene glycol bis (succinimide iminosuccinate) (thio-EGS), disuccinimide imine tartrate ( DST), dithiosuccinimide imine tartrate (sulfur-DST), bis [2- (succinimide oxycarbonyloxy) ethyl] fluorene (BSOCOES), bis [2- (thiosuccinimide oxygen Carbonyloxy) ethyl] fluorene (sulfur-BSOCOES), etc., such crosslinking agents are commercially available.

將4個抗體可變區結合時,通常須要3個連結子,但可全 部使用相同連結子,也可使用不同連結子。 When binding the four antibody variable regions, usually three linkers are required, but all The same linker can be used for different parts, but different linkers can also be used.

F(ab')2,包含2條輕鏈;以及2條重鏈,以鏈間之雙硫鍵形成於2條重鏈間之方式,包括CH1分域及CH2分域之一部分不變區。本說明書揭示之構成多胜肽締合體之F(ab')2,可藉由將具有所望抗原結合分域之全長單株抗體等以胃蛋白酶等蛋白質分解酵素予以部分消化後,使Fc片段吸附於蛋白質A管柱並除去以理想地取得。該蛋白質分解酵素只要是可藉由適當設定pH等酵素的反應條件而限制性地產生F(ab')2的方式將全長抗體予以消化者即可,無特殊限定,例如:胃蛋白酶、無花果酶(ficin)等。 F (ab ') 2, which includes two light chains; and two heavy chains, in which the disulfide bonds between the chains are formed between the two heavy chains, including the CH1 subdomain and a part of the CH2 subdomain invariant regions. The F (ab ') 2 constituting the polypeptide complex disclosed in this specification can be partially digested with a protease such as pepsin by a full-length monoclonal antibody having a desired antigen-binding domain and the like, and then the Fc fragment can be adsorbed. Apply to protein A column and remove to obtain ideally. The proteolytic enzyme is not particularly limited as long as the full-length antibody can be digested by limiting the production of F (ab ') 2 by appropriately setting the reaction conditions of enzymes such as pH, such as pepsin and fig enzyme. (ficin) and so on.

本發明之抗原結合分子除了上述胺基酸之改變,可更包括附加的改變。附加的改變,例如可從胺基酸之取代、缺失、或修飾中任一者、或此等之組合選擇。 In addition to the aforementioned amino acid changes, the antigen-binding molecule of the present invention may further include additional changes. Additional changes can be selected, for example, from any one of amino acid substitutions, deletions, or modifications, or combinations thereof.

例如:在對於本發明之抗原結合分子不進一步使該分子之目的機能造成實質變化的範圍內任意施以改變。例如如此的變異可利用胺基酸殘基之保守性取代進行。又,對於本發明之抗原結合分子之目的機能造成變化的改變,只要是該機能之變化為本發明之目的之範圍內也可進行。 For example, the antigen-binding molecule of the present invention may be arbitrarily changed within a range that does not cause substantial changes in the intended function of the molecule. Such mutations can be performed, for example, using conservative substitutions of amino acid residues. In addition, changes in the target function of the antigen-binding molecule of the present invention can be changed as long as the change in the function is within the range of the object of the present invention.

本發明中,胺基酸序列之改變也包括轉譯後修飾。具體的轉譯後修飾,可舉出糖鏈之附加或缺損。例如本發明之抗原結合分子有IgG1型不變區的情形,EU編號之297號之胺基酸殘基可為經糖鏈修飾者。修飾之糖鏈結構不限定。一般,於真核細胞表現的抗體,於不變區包括糖鏈修飾。因此如以下細胞所表現之抗體,通常會以某糖鏈修飾。 In the present invention, changes in the amino acid sequence also include post-translational modifications. Specific post-translational modifications include addition or deletion of sugar chains. For example, when the antigen-binding molecule of the present invention has an IgG1 type invariant region, the amino acid residue of No. 297 of the EU number may be a sugar chain modified one. The modified sugar chain structure is not limited. Generally, antibodies expressed in eukaryotic cells include sugar chain modifications in the invariant region. Therefore, the antibodies shown in the following cells are usually modified with a certain sugar chain.

‧哺乳動物之抗體產生細胞 ‧Mammalian antibody-producing cells

‧以包括編碼抗體之DNA的表現載體轉形而得的真核細胞 ‧Eukaryotic cells transformed with expression vectors including DNA encoding antibodies

在此所示之真核細胞包括酵母、動物細胞。例如CHO細胞、HEK293H細胞,是為了以包括編碼抗體之DNA的表現載體轉形的代表動物細胞。另外,該位置無糖鏈修飾者也包括在本發明之抗體。不變區未經糖鏈修飾的抗體,能使編碼抗體之基因於大腸菌等原核細胞表現而得。 The eukaryotic cells shown here include yeast and animal cells. For example, CHO cells and HEK293H cells are representative animal cells transformed with expression vectors including DNA encoding antibodies. In addition, those having no sugar chain modification at this position are also included in the antibody of the present invention. Antibodies that are not modified by sugar chains in the constant region can be obtained by encoding the antibody-encoding gene in prokaryotic cells such as coliform bacteria.

本發明中附加的改變,更具體而言,也可為例如Fc區之糖鏈附加唾液酸而得者(MAbs.2010 Sep-Oct;2(5):519-27.)。 The additional changes in the present invention, more specifically, can also be obtained by adding sialic acid to the sugar chain of the Fc region (MAbs. 2010 Sep-Oct; 2 (5): 519-27.).

又,本發明之抗原結合分子擁有Fc區部分時,亦可施加例如使對於FcRn之結合活性提高之胺基酸取代(J Immunol.2006 Jan 1;176(1):346-56、J Biol Chem.2006 Aug 18;281(33):23514-24.、Int Immunol.2006 Dec;18(12):1759-69.、Nat Biotechnol.2010 Feb;28(2):157-9.、WO/2006/019447、WO/2006/053301、WO/2009/086320)、用以使抗體之異質性、安定性提高的胺基酸取代((WO/2009/041613))。 In addition, when the antigen-binding molecule of the present invention has an Fc region portion, for example, an amino acid substitution that improves the binding activity to FcRn can be added (J Immunol. 2006 Jan 1; 176 (1): 346-56, J Biol Chem .2006 Aug 18; 281 (33): 23514-24., Int Immunol.2006 Dec; 18 (12): 1759-69., Nat Biotechnol.2010 Feb; 28 (2): 157-9., WO / 2006 / 019447, WO / 2006/053301, WO / 2009/086320), amino acid substitutions to improve the heterogeneity and stability of antibodies ((WO / 2009/041613)).

再者,本發明中,「抗體」之用語係以最廣義使用,只要顯示所望之生物學的活性即包括,包括單株抗體(含全長單株抗體)、多株抗體、抗體變異體、抗體片段、多專一性抗體(例如:雙重專一性抗體)、嵌合抗體、人化抗體等各種抗體。 In addition, in the present invention, the term "antibody" is used in the broadest sense and includes a single antibody (including a full-length single antibody), a multiple antibody, an antibody variant, and an antibody as long as it exhibits the desired biological activity Various antibodies such as fragments, multispecific antibodies (eg, dual specific antibodies), chimeric antibodies, and humanized antibodies.

本發明之抗體不限定抗原種類、抗體來源等,可 為各種抗體。抗體的來源不特別限定,可列舉人抗體、小鼠抗體、大鼠抗體、兔抗體等。 The antibody of the present invention is not limited to the type of the antigen, the source of the antibody, etc., but For various antibodies. The source of the antibody is not particularly limited, and examples thereof include human antibodies, mouse antibodies, rat antibodies, and rabbit antibodies.

製作抗體的方法為該領域中通常知識者所熟知,例如單株抗體的情形,可利用融合瘤法(Kohler and Milstein,Nature 256:495(1975))、重組方法(美國專利第4,816,567號)製造。又,也可從噬菌體抗體庫單離(Clackson et al.,Nature 352:624-628(1991);Marks et al.,J.Mol.Biol.222:581-597(1991))。又,也可從單一之B細胞選殖體單離(N.Biotechnol.28(5):253-457(2011))。 The method of making antibodies is well known to those skilled in the art. For example, in the case of single antibodies, they can be produced by fusion tumor method (Kohler and Milstein, Nature 256: 495 (1975)), recombinant method (US Patent No. 4,816,567). . Alternatively, they can be isolated from the phage antibody library (Clackson et al., Nature 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1991)). Alternatively, a single B cell colony can be selected for isolation (N. Biotechnol. 28 (5): 253-457 (2011)).

人化抗體也稱為再構成(reshaped)人抗體。具體而言,將人以外動物,例如將小鼠抗體之CDR移植到人抗體而得之人化抗體等為公知。用以獲得人化抗體之一般基因重組手法亦為已知。具體而言,作為將小鼠抗體之CDR移植到人之FR的方法,例如Overlap Extension PCR為公知。 Humanized antibodies are also referred to as reshaped human antibodies. Specifically, a humanized antibody obtained by transplanting an animal other than human, for example, a CDR of a mouse antibody to a human antibody, is known. General genetic recombination techniques to obtain humanized antibodies are also known. Specifically, as a method for transplanting the CDR of a mouse antibody to a human FR, for example, the Overlap Extension PCR is known.

藉由將編碼為3個CDR與4個FR連結而得之抗體可變區的DNA和編碼為人抗體不變區之DNA以於讀框內融合的方式插入到表現載體中,可製成人化抗體表現用載體。將該已嵌入的載體導入到寄主並建立重組細胞後,培養該重組細胞,並使編碼為該人化抗體之DNA表現,能使該培養細胞之培養物中產生該人化抗體(參照歐洲專利公開EP 239400、國際公開WO1996/002576)。 The DNA encoding the variable region of the antibody obtained by linking 3 CDRs and 4 FRs and the DNA encoding the constant region of human antibodies can be inserted into the expression vector by fusion in frame to make it humanized. Carriers for antibody expression. After the embedded vector is introduced into the host and recombinant cells are established, the recombinant cells are cultured, and the DNA encoded as the humanized antibody is expressed, so that the humanized antibody can be produced in the culture of the cultured cells (see European patent) Publication EP 239400, International Publication WO1996 / 002576).

視須要,也可將FR之胺基酸殘基取代,以使再構成人抗體之CDR能形成適當的抗原結合部位。例如可應用將小鼠CDR移植到人FR時使用的PCR法,於FR導入胺基酸序 列的變異。 If necessary, the amino acid residues of the FR may be substituted so that the CDRs reconstituting the human antibody can form an appropriate antigen-binding site. For example, the PCR method used when transplanting mouse CDRs to human FRs can be applied, and amino acid sequences can be introduced into FRs. Column variation.

將擁有人抗體基因的全部庫存(repertory)的基因轉殖動物(國際公開WO1993/012227、WO1992/003918、WO1994/002602、WO1994/025585、WO1996/034096、WO1996/033735參照)作為免疫動物,利用DNA免疫可獲得所望之人抗體。 Gene-transplanted animals (references to International Publications WO1993 / 012227, WO1992 / 003918, WO1994 / 002602, WO1994 / 025585, WO1996 / 034096, WO1996 / 033735) that possess the entire repertory of human antibody genes are used as immunized animals, using DNA Immune to get the desired human antibody.

再者,使用人抗體庫,利用淘選取得人抗體之技術亦為已知。例如:將人抗體之V區域以單條鏈抗體(scFv)的形式利用噬菌體呈現法呈現在噬菌體表面。可選擇表現和抗原結合之scFv之噬菌體。藉由將選擇的噬菌體的基因進行解析,能決定編碼為和抗原結合之人抗體之V區域的DNA序列。決定和抗原結合之scFv之DNA序列後,將該V區域序列和所望人抗體C區域之序列於讀框內融合,之後插入適當的表現載體,可製作表現載體。將該表現載體導入上述列舉的理想表現細胞中,並使編碼為該人抗體之基因表現,可取得該人抗體。該等方法已為公知(參照國際公開WO1992/001047、WO1992/020791、WO1993/006213、WO1993/011236、WO1993/019172、WO1995/001438、WO1995/015388)。 Furthermore, techniques for obtaining human antibodies using panning using human antibody libraries are also known. For example, the V region of a human antibody is presented as a single chain antibody (scFv) on a phage surface using a phage presentation method. Phage that express scFv that binds to the antigen can be selected. By analyzing the genes of the selected phage, the DNA sequence encoding the V region of the human antibody that binds to the antigen can be determined. After the DNA sequence of the scFv bound to the antigen is determined, the sequence of the V region and the sequence of the desired human antibody C region are fused in the reading frame, and an appropriate expression vector is inserted into the expression vector to prepare a expression vector. The expression vector is introduced into the ideal expression cells listed above, and the gene encoding the human antibody is expressed, and the human antibody can be obtained. These methods are already known (refer to International Publications WO1992 / 001047, WO1992 / 020791, WO1993 / 006213, WO1993 / 011236, WO1993 / 019172, WO1995 / 001438, WO1995 / 015388).

構成本發明之抗體之可變區,可為任意認識抗原之可變區。 The variable region constituting the antibody of the present invention may be a variable region of any recognized antigen.

本說明書中,「抗原」不特別限定,可為任意抗原。抗原,例如:17-IA、4-1 BB、4Dc、6-酮-PGF1a、8-異-PGF2a、8-側氧基-dG、A1腺苷受體、A33、ACE、ACE-2、促進素(activin)、促進素A、促進素AB、促進素B、促 進素C、促進素RIA、促進素RIA ALK-2、促進素RIB ALK-4、促進素RIIA、促進素RIIB、ADAM、ADAM10、ADAM12、ADAM15、ADAM17/TACE、ADAM8、ADAM9、ADAMTS、ADAMTS4、ADAMTS5、位址素(Addressin)、脂聯素(adiponectin)、ADP核糖環化酶(ribosyl cyclase)-1、aFGF、AGE、ALCAM、ALK、ALK-1、ALK-7、過敏原(allergen)、alpha1-抗胰凝乳蛋白酶(antichemotrypsin)、alpha1-抗胰蛋白酶(antitrypsin)、alpha-突觸核蛋白(synuclein)、alpha-V/beta-1拮抗劑、aminin、amylin、類澱粉beta、類澱粉免疫球蛋白重鏈可變區、類澱粉免疫球蛋白輕鏈可變區、雄激素、ANG、血管收縮素原(angiotensinogen)、血管生成素(Angiopoietin)配體-2、抗-Id、抗凝血酶III、Anthrax、APAF-1、APE、APJ、apo A1、apo血清類澱粉A、Apo-SAA、APP、APRIL、AR、ARC、ART、Artemin、ASPARTIC、心房利鈉因子(Atrial natriuretic factor)、心房利鈉胜肽(Atrial natriuretic peptide)、心房利鈉胜肽A、心房利鈉胜肽B、心房利鈉胜肽C,av/b3整合素、Axl、B7-1、B7-2、B7-H、BACE、BACE-1、炭疽桿菌(Bacillus anthracis)保護性抗原、Bad、BAFF、BAFF-R、Bag-1、BAK、Bax、BCA-1、BCAM、BcI、BCMA、BDNF、b-ECGF、beta-2-細球蛋白、beta內醯胺酶、bFGF、BID、Bik、BIM、BLC、BL-CAM、BLK、B-淋巴球刺激子(BIyS)、BMP、BMP-2(BMP-2a)、BMP-3(Osteogenin)、BMP-4(BMP-2b)、BMP-5、BMP-6(Vgr-1)、BMP-7(OP-1)、 BMP-8(BMP-8a)、BMPR、BMPR-IA(ALK-3)、BMPR-IB(ALK-6)、BMPR-II(BRK-3)、BMPs、BOK、Bombesin、骨衍生神經滋養因子、胎牛生長激素、BPDE、BPDE-DNA、BRK-2、BTC、B-淋巴球細胞黏附分子、C10、C1-抑制子、C1q、C3、C3a、C4、C5、C5a(補體5a)、CA125、CAD-8、黏鈣蛋白(Cadherin)-3、抑鈣素(Calcitonin)、cAMP、碳酸酐酶(Carbonic anhydrase)-IX、癌胚抗原(CEA)、癌關連抗原、心營養素(Cardiotrophin)-1、細胞自溶酶(Cathepsin)A、細胞自溶酶B、細胞自溶酶C/DPPI、細胞自溶酶D、細胞自溶酶E、細胞自溶酶H、細胞自溶酶L、細胞自溶酶O、細胞自溶酶S,細胞自溶酶V、細胞自溶酶X/Z/P、CBL、CCI、CCK2、CCL、CCL1/I-309、CCL11/Eotaxin、CCL12/MCP-5、CCL13/MCP-4、CCL14/HCC-1、CCL15/HCC-2、CCL16/HCC-4、CCL17/TARC、CCL18/PARC、CCL19/ELC、CCL2/MCP-1、CCL20/MIP-3-alpha、CCL21/SLC、CCL22/MDC、CCL23/MPIF-1、CCL24/Eotaxin-2、CCL25/TECK、CCL26/Eotaxin-3、CCL27/CTACK、CCL28/MEC、CCL3/M1P-1-alpha、CCL3L1/LD-78-beta、CCL4/MIP-1-beta、CCL5/RANTES、CCL6/C10、CCL7/MCP-3、CCL8/MCP-2、CCL9/10/MTP-1-gamma、CCR、CCR1、CCR10、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CD1、CD10、CD105、CD11a、CD11b、CD11c,CD123、CD13、CD137、CD138、CD14、CD140a、CD146、CD147、CD148、CD15、CD152、CD16、CD164、CD18、CD19、CD2、CD20、 CD21、CD22、CD23、CD25、CD26、CD27L、CD28、CD29、CD3、CD30、CD30L、CD32、CD33(p67蛋白)、CD34、CD37、CD38、CD3E、CD4、CD40、CD40L、CD44、CD45、CD46、CD49a、CD49b、CD5、CD51、CD52、CD54、CD55、CD56、CD6、CD61、CD64、CD66e、CD7、CD70、CD74、CD8、CD80(B7-1)、CD89、CD95、CD105、CD158a、CEA、CEACAM5、CFTR、cGMP、CGRP受體、CINC、CKb8-1、密連蛋白(Claudin)18、CLC、肉毒桿菌(Clostridium botulinum)毒素、梭狀芽孢桿菌毒素(Clostridium difficile toxin)、產氣莢膜梭菌(Clostridium perfringens)毒素、c-Met、CMV、CMV UL、CNTF、CNTN-1、補體因子3(C3)、補體因子D、皮質類固醇結合球蛋白、群落刺激因子-1受體、COX、C-Ret、CRG-2、CRTH2、CT-1、CTACK、CTGF、CTLA-4、CX3CL1/Fractalkine、CX3CR1、CXCL、CXCL1/Gro-alpha、CXCL10、CXCL11/I-TAC、CXCL12/SDF-1-alpha/beta、CXCL13/BCA-1、CXCL14/BRAK、CXCL15/Lungkine.CXCL16、CXCL16、CXCL2/Gro-beta CXCL3/Gro-gamma、CXCL3、CXCL4/PF4、CXCL5/ENA-78、CXCL6/GCP-2、CXCL7/NAP-2、CXCL8/IL-8、CXCL9/Mig、CXCLlO/IP-10、CXCR、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CXCR6、cystatin C、細胞角蛋白腫瘤關聯抗原、DAN、DCC、DcR3、DC-SIGN、衰變加速因子(Decay accelerating factor)、類Delta蛋白配體4、des(1-3)-IGF-1(大腦IGF-1)、 Dhh、DHICA氧化酶、Dickkopf-1、地谷新(digoxin)、二肽肽解酶IV、DK1、DNAM-1、Dnase、Dpp、DPPIV/CD26、Dtk、ECAD、EDA、EDA-A1、EDA-A2、EDAR、EGF、EGFR(ErbB-1)、含類EGF分域之蛋白質7、彈性蛋白酶(Elastase)、彈性蛋白(elastin)、EMA、EMMPRIN、ENA、ENA-78、Endosialin、內皮素受體、內毒素、腦啡肽酶(Enkephalinase)、eNOS、Eot、伊紅趨素(Eotaxin)、Eotaxin-2、eotaxini、EpCAM、Ephrin B2/EphB4、Epha2酪胺酸激酶受體、上皮生長因子受體(EGFR)、ErbB2受體、ErbB3酪胺酸激酶受體、ERCC、EREG、紅血球生成素(erythropoietin)(EPO)、紅血球生成素受體、E-選擇蛋白(selectin)、ET-1、Exodus-2、RSV的F蛋白、F10、F11、F12、F13、F5、F9、第Ia因子、第IX因子、第Xa因子、第VII因子、第VIII因子、第VIIIc因子、Fas、FcalphaR、FcepsilonRI、FcgammaIIb、FcgammaRI、FcgammaRIIa、FcgammaRIIIa、FcgammaRIIIb、FcRn、FEN-1、鐵蛋白、FGF、FGF-19、FGF-2、FGF-2受體、FGF-3、FGF-8、酸性FGF、鹼性FGF、FGFR、FGFR-3、纖維蛋白(Fibrin)、纖維母細胞活化蛋白(FAP)、纖維母細胞生長因子、纖維母細胞生長因子-10、纖網蛋白(fibronectin)、FL、FLIP、Flt-3、FLT3配體、葉酸受體、濾泡刺激激素(FSH)、Fractalkine(CX3C)、游離重鏈、游離輕鏈、FZD1、FZD10、FZD2、FZD3、FZD4、FZD5、FZD6、FZD7、FZD8、FZD9、G250、Gas 6、GCP-2、GCSF、G-CSF、 G-CSF受體、GD2、GD3、GDF、GDF-1、GDF-15(MIC-1)、GDF-3(Vgr-2)、GDF-5(BMP-14/CDMP-1)、GDF-6(BMP-13/CDMP-2)、GDF-7(BMP-12/CDMP-3)、GDF-8(Myostatin)、GDF-9、GDNF、Gelsolin、GFAP、GF-CSF、GFR-alpha1、GFR-alpha2、GFR-alpha3、GF-β1、gH外膜糖蛋白、GITR、升糖素、升糖素受體、類升糖素胜肽1受體、Glut 4、麩胺酸羧基肽解酶(Glutamate carboxypeptidase)II、糖蛋白激素受體、糖蛋白IIb/IIIa(GP IIb/IIIa)、Glypican-3、GM-CSF、GM-CSF受體、gp130、gp140、gp72、顆粒細胞-CSF(G-CSF)、GRO/MGSA、生長激素釋放因子、GRO-β、GRO-γ、H.pylori、半抗原(NP-cap或NIP-cap)、HB-EGF、HCC、HCC 1、HCMV gB外膜糖蛋白、HCMV UL、造血生長因子(HGF)、Hep B gp120、肝素酶(heparanase)、肝素輔因子II、肝生長因子、炭疽桿菌保護性抗原、C型肝炎病毒E2糖蛋白、E型肝炎、Hepcidin、Her1、Her2/neu(ErbB-2)、Her3(ErbB-3)、Her4(ErbB-4)、單純皰疹病毒(HSV)gB糖蛋白、HGF、HGFA、高分子量黑色素瘤關連抗原(HMW-MAA)、HIV外膜蛋白,例如GP120、HIV MIB gp 120 V3 loop、HLA、HLA-DR、HM1.24、HMFG PEM、HMGB-1、HRG、Hrk、HSP47、Hsp90、HSV gD糖蛋白、人心肌凝蛋白、人細胞巨大病毒(HCMV)、人生長激素(hGH)、人血清白蛋白、人組織類型纖維蛋白溶酶原子活化子(t-PA)、Huntingtin、HVEM、IAP、ICAM、ICAM-1、ICAM-3、ICE、ICOS、IFN-alpha、 IFN-beta、IFN-gamma、IgA、IgA受體、IgE、IGF、IGF結合蛋白、IGF-1、IGF-1R、IGF-2、IGFBP、IGFR、IL、IL-1、IL-10、IL-10受體、IL-11、IL-11受體、IL-12、IL-12受體、IL-13、IL-13受體、IL-15、IL-15受體、IL-16、IL-16受體、IL-17、IL-17受體、IL-18(IGIF)、IL-18受體、IL-1alpha、IL-1beta、IL-1受體、IL-2、IL-2受體、IL-20、IL-20受體、IL-21、IL-21受體、IL-23、IL-23受體、IL-2受體、IL-3、IL-3受體、IL-31、IL-31受體、IL-3受體、IL-4、IL-4受體IL-5、IL-5受體、IL-6、IL-6受體、IL-7、IL-7受體、IL-8、IL-8受體、IL-9、IL-9受體、免疫球蛋白免疫複合體、免疫球蛋白、INF-alpha、INF-alpha受體、INF-beta、INF-beta受體、INF-gamma、INF-gamma受體、IFN第I類、IFN第I類受體、influenza、抑制素(inhibin)、抑制素α、抑制素β、iNOS、胰島素、胰島素A鏈、胰島素B鏈、類胰島素生長因子1、類胰島素生長因子2、類胰島素生長因子結合蛋白、整合素、整合素alpha2、整合素alpha3、整合素alpha4、整合素alpha4/beta1、整合素alpha-V/beta-3、整合素alpha-V/beta-6、整合素alpha4/beta7、整合素alpha5/beta1、整合素alpha5/beta3、整合素alpha5/beta6、整合素alphaσ(alphaV)、整合素alphaθ、整合素beta1、整合素beta2、整合素beta3(GPIIb-IIIa)、IP-10、I-TAC、JE、激肽釋放酶(Kallikrein)、激肽釋放酶11、激肽釋放酶12、激肽釋放酶14、激肽釋放酶15、激肽釋放酶2、 激肽釋放酶5、激肽釋放酶6、激肽釋放酶L1、激肽釋放酶L2、激肽釋放酶L3、激肽釋放酶L4、kallistatin、KC、KDR、角質細胞生長因子(KGF)、角質細胞生長因子-2(KGF-2)、KGF、類殺手免疫球蛋白受體、kit配體(KL)、Kit酪胺酸激酶、laminin 5、LAMP、LAPP(Amylin、islet-類澱粉多胜肽)、LAP(TGF-1)、潛伏關聯肽(latency associated peptide)、Latent TGF-1、Latent TGF-1 bp1、LBP、LDGF、LDL、LDL受體、LECT2、Lefty、Leptin、黃體化激素(LH)、Lewis-Y抗原、Lewis-Y相關抗原、LFA-1、LFA-3、LFA-3受體、Lfo、LIF、LIGHT、脂蛋白、LIX、LKN、Lptn、L-選擇素、LT-a、LT-b、LTB4、LTBP-1、肺界面活性劑、黃體化激素、Lymphotactin、淋巴毒素Beta受體、溶性鞘脂(Lysosphingolipid)受體、Mac-1、巨噬體-CSF(M-CSF)、MAdCAM、MAG、MAP2、MARC、maspin、MCAM、MCK-2、MCP、MCP-1、MCP-2、MCP-3、MCP-4、MCP-I(MCAF)、M-CSF、MDC、MDC(67 a.a.)、MDC(69 a.a.)、megsin、Mer、MET酪胺酸激酶受體家族、METALLOPROTEASES、膜糖蛋白OX2、Mesothelin、MGDF受體、MGMT、MHC(HLA-DR)、微生物蛋白、MIF、MIG、MIP、MIP-1α、MIP-1β、MIP-3α、MIP-3β、MIP-4、MK、MMAC1、MMP、MMP-1、MMP-10、MMP-11、MMP-12、MMP-13、MMP-14、MMP-15、MMP-2、MMP-24、MMP-3、MMP-7、MMP-8、MMP-9、單核球吸引蛋白、單核球群落抑制子y因子、小鼠性腺相關胜肽、MPIF、Mpo、 MSK、MSP、MUC-16、MUC18、mucin(Mud)、Muellerian抑制物質、Mug、MuSK、髓鞘脂(Myelin)關聯糖蛋白、骨髓前身抑制因子-1(MPIF-I)、NAIP、Nanobody、NAP、NAP-2、NCA 90、NCAD、N-鈣黏蛋白、NCAM、Neprilysin、神經細胞黏附分子、neroserpin、神經生長因子(NGF)、神經滋養素-3、神經滋養素-4、神經滋養素-6、Neuropilin 1、Neurturin、NGF-beta、NGFR、NKG20、N-甲硫胺醯基人生長激素、nNOS、NO、Nogo-A、Nogo受體、來自C型肝炎病毒的非結構蛋白第3型(NS3)、NOS、Npn、NRG-3、NT、NT-3、NT-4、NTN、OB、OGG1、Oncostatin M、OP-2、OPG、OPN、OSM、OSM受體、骨誘導因子、骨橋蛋白(osteopontin)、OX40L、OX40R、氧化LDL、p150、p95、PADPr、副甲狀腺素、PARC、PARP、PBR、PBSF、PCAD、P-鈣黏蛋白、PCNA、PCSK9、PDGF、PDGF受體、PDGF-AA、PDGF-AB、PDGF-BB、PDGF-D、PDK-1、PECAM、PEDF、PEM、PF-4、PGE、PGF、PGI2、PGJ2、PIGF、PIN、PLA2、胎盤生長因子、胎盤鹼性磷解酶(PLAP)、胎盤催乳激素、纖維蛋白溶酶原活化抑制子-1、血小板生長因子、plgR、PLP、不同大小的多二醇鏈(例如PEG-20、PEG-30、PEG40)、PP14、prekallikrein、prion protein、前降鈣素(procalcitonin)、程式化細胞死亡蛋白1、胰島素前驅體、泌乳素(prolactin)、蛋白前驅體轉換酶(Proprotein convertase)PC9、prorelaxin、前列腺專一性膜抗原(PSMA)、Protein A、Protein C、Protein D、Protein S、Protein Z、PS、PSA、PSCA、PsmAr、PTEN、PTHrp、Ptk、PTN、P-選擇素糖蛋白配體-1、R51、RAGE、RANK、RANKL、RANTES、relaxin、Relaxin A鏈、Relaxin B鏈、腎活素(rennin)、呼吸道合胞體病毒(RSV)F、Ret、reticulon 4、類風濕性因子(Rheumatoid factor)、RLI P76、RPA2、RPK-1、RSK、RSV Fgp、S100、RON-8、SCF/KL、SCGF、Sclerostin、SDF-1、SDF1α、SDF1β、SERINE、血清類澱粉P、血清白蛋白、sFRP-3、Shh、類Shiga毒素II、SIGIRR、SK-1、SLAM、SLPI、SMAC、SMDF、SMOH、SOD、SPARC、sphingosine 1-phosphate受體1、葡萄球菌磷脂壁酸(Staphylococcal lipoteichoic acid)、Stat、STEAP、STEAP-II、幹細胞因子(SCF)、streptokinase、superoxide dismutase、syndecan-1、TACE、TACI、TAG-72(腫瘤關聯糖蛋白-72)、TARC、TB、TCA-3、T-cell受體alpha/beta、TdT、TECK、TEM1、TEM5、TEM7、TEM8、Tenascin、TERT、類睪丸PLAP鹼性磷解酶、TfR、TGF、TGF-alpha、TGF-beta、TGF-beta Pan Specific、TGF-beta RII、TGF-beta RIIb、TGF-beta RIII、TGF-beta Rl(ALK-5)、TGF-beta1、TGF-beta2、TGF-beta3、TGF-beta4、TGF-beta5、TGF-I、凝血酶、thrombopoietin(TPO)、胸腺淋巴蛋白(Thymic stromal lymphoprotein)受體、Thymus Ck-1、甲狀腺刺激激素(TSH)、甲狀腺素結合球蛋白、Tie、TIMP、TIQ、組織因子、組織因子蛋白酶抑制子、組織因子蛋白、TMEFF2、Tmpo、TMPRSS2、TNF受體I、TNF受體II、TNF-alpha、 TNF-beta、TNF-beta2、TNFc、TNF-RI、TNF-RII、TNFRSF10A(TRAIL R1 Apo-2/DR4)、TNFRSF10B(TRAIL R2 DR5/KILLER/TRICK-2A/TRICK-B)、TNFRSF10C(TRAIL R3 DcR1/LIT/TRID)、TNFRSF10D(TRAIL R4 DcR2/TRUNDD)、TNFRSF11A(RANK ODF R/TRANCE R)、TNFRSF11B(OPG OCIF/TR1)、TNFRSF12(TWEAK R FN14)、TNFRSF12A、TNFRSF13B(TACI)、TNFRSF13C(BAFF R)、TNFRSF14(HVEM ATAR/HveA/LIGHT R/TR2)、TNFRSF16(NGFR p75NTR)、TNFRSF17(BCMA)、TNFRSF18(GITR AITR)、TNFRSF19(TROY TAJ/TRADE)、TNFRSF19L(RELT)、TNFRSF1A(TNF R1 CD120a/p55-60)、TNFRSF1B(TNF RII CD120b/p75-80)、TNFRSF21(DR6)、TNFRSF22(DcTRAIL R2 TNFRH2)、TNFRSF25(DR3 Apo-3/LARD/TR-3/TRAMP/WSL-1)、TNFRSF26(TNFRH3)、TNFRSF3(LTbR TNF RIII/TNFC R)、TNFRSF4(OX40 ACT35/TXGP1 R)、TNFRSF5 (CD40 p50)、TNFRSF6(Fas Apo-1/APT1/CD95)、TNFRSF6B(DcR3 M68/TR6)、TNFRSF7(CD27)、TNFRSF8(CD30)、TNFRSF9(4-1 BB CD137/ILA)、TNFRST23(DcTRAIL R1 TNFRH1)、TNFSF10(TRAIL Apo-2配體/TL2)、TNFSF11(TRANCE/RANK配體ODF/OPG配體)、TNFSF12(TWEAK Apo-3配體/DR3配體)、TNFSF13(APRIL TALL2)、TNFSF13B(BAFF BLYS/TALL1/THANK/TNFSF20)、TNFSF14(LIGHT HVEM配體/LTg)、TNFSF15(TL1A/VEGI)、TNFSF18(GITR Ligand AITR配體/TL6)、TNFSF1A(TNF-a Conectin/DIF/TNFSF2)、TNFSF1B(TNF-b LTa/TNFSF1)、TNFSF3(LTb TNFC/p33)、TNFSF4(OX40配體gp34/TXGP1)、TNFSF5(CD40配體CD154/gp39/HIGM1/IMD3/TRAP)、TNFSF6(Fas配體Apo-1配體/APT1配體)、TNFSF7(CD27配體CD70)、TNFSF8(CD30配體CD153)、TNFSF9(4-1 BB配體CD137配體)、TNF-α、TNF-β、TNIL-I、毒性代寫物、TP-1、t-PA、Tpo、TRAIL、TRAILR、TRAIL-R1、TRAIL-R2、TRANCE、運鐵蛋白受體、轉形生長因子(TGF),比如TGF-alpha及TGF-beta、穿膜糖蛋白NMB、Transthyretin、TRF、Trk、TROP-2、營養層糖蛋白、TSG、TSLP、腫瘤壞死因子(TNF)、腫瘤關聯抗原CA 125、表現腫瘤關連抗原之Lewis Y相關碳水化合物、TWEAK、TXB2、Ung、uPAR、uPAR-1、Urokinase、VAP-1、vascular endothelial生長因子(VEGF)、vaspin、VCAM、VCAM-1、VECAD、VE-鈣黏蛋白、VE-鈣黏蛋白-2、VEFGR-1(flt-1)、VEFGR-2、VEGF受體(VEGFR)、VEGFR-3(flt-4)、VEGI、VIM、Viral抗原s、VitB12受體、Vitronectin受體、VLA、VLA-1、VLA-4、VNR整合素、von Willebrand因子(vWF)、WIF-1、WNT1、WNT10A、WNT10B、WNT11、WNT16、WNT2、WNT2B/13、WNT3、WNT3A、WNT4、WNT5A、WNT5B、WNT6、WNT7A、WNT7B、WNT8A、WNT8B、WNT9A、WNT9B、XCL1、XCL2/SCM-1-beta、XCLl/Lymphotactin、XCR1、XEDAR、XIAP、XPD等。 In the present specification, the "antigen" is not particularly limited, and may be any antigen. Antigens, such as: 17-IA, 4-1 BB, 4Dc, 6-keto-PGF1a, 8-iso-PGF2a, 8-oxo-dG, A1 adenosine receptor, A33, ACE, ACE-2, promotion Activin, facilitator A, facilitator AB, facilitator B, facilitator Promoter C, Promoter RIA, Promoter RIA ALK-2, Promoter RIB ALK-4, Promoter RIIA, Promoter RIIB, ADAM, ADAM10, ADAM12, ADAM15, ADAM17 / TACE, ADAM8, ADAM9, ADAMTS, ADAMTS4, ADAMTS5, Addressin, adiponectin, ADP ribosyl cyclase-1, aFGF, AGE, ALCAM, ALK, ALK-1, ALK-7, allergen, alpha1-antichemotrypsin, alpha1-antitrypsin, alpha-synuclein, alpha-V / beta-1 antagonist, aminin, amylin, amyloid beta, amyloid Immunoglobulin heavy chain variable region, amyloid immunoglobulin light chain variable region, androgen, ANG, angiotensinogen, angiopoietin ligand-2, anti-Id, anticoagulation Serum III, Anthrax, APAF-1, APE, APJ, apo A1, apo serum amyloid A, Apo-SAA, APP, APRIL, AR, ARC, ART, Artemin, ASPARTIC, Atrial natriuretic factor Atrial natriuretic peptide, Atrial natriuretic peptide A, Atrial natriuretic peptide B, Fan natriuretic peptide C, av / b3 integrin, Axl, B7-1, B7-2, B7-H, BACE, BACE-1, Bacillus anthracis protective antigen, Bad, BAFF, BAFF-R , Bag-1, BAK, Bax, BCA-1, BCAM, BcI, BCMA, BDNF, b-ECGF, beta-2-fine globulin, beta endoplasminase, bFGF, BID, Bik, BIM, BLC, BL -CAM, BLK, B-lymphocyte stimulator (BIyS), BMP, BMP-2 (BMP-2a), BMP-3 (Osteogenin), BMP-4 (BMP-2b), BMP-5, BMP-6 ( Vgr-1), BMP-7 (OP-1), BMP-8 (BMP-8a), BMPR, BMPR-IA (ALK-3), BMPR-IB (ALK-6), BMPR-II (BRK-3), BMPs, BOK, Bombesin, bone-derived neurotrophic factor, Fetal bovine growth hormone, BPDE, BPDE-DNA, BRK-2, BTC, B-lymphocyte adhesion molecules, C10, C1-repressor, C1q, C3, C3a, C4, C5, C5a (complement 5a), CA125, CAD-8, Cadherin-3, Calcitonin, cAMP, Carbonic anhydrase-IX, Carcinoembryonic Antigen (CEA), Cancer-associated Antigen, Cardiotrophin-1 , Cell autolytic enzyme (Cathepsin) A, Cell autolytic enzyme B, Cell autolytic enzyme C / DPPI, Cell autolytic enzyme D, Cell autolytic enzyme E, Cell autolytic enzyme H, Cell autolytic enzyme L, Cell autolytic enzyme Lyso O, Autolysin S, Autolysin V, Autolysin X / Z / P, CBL, CCI, CCK2, CCL, CCL1 / I-309, CCL11 / Eotaxin, CCL12 / MCP-5, CCL13 / MCP-4, CCL14 / HCC-1, CCL15 / HCC-2, CCL16 / HCC-4, CCL17 / TARC, CCL18 / PARC, CCL19 / ELC, CCL2 / MCP-1, CCL20 / MIP-3-alpha, CCL21 / SLC, CCL22 / MDC, CCL23 / MPIF-1, CCL24 / Eotaxin-2, CCL25 / TECK, CCL26 / Eotaxin-3, CCL27 / CTACK, CCL28 / MEC, CCL 3 / M1P-1-alpha, CCL3L1 / LD-78-beta, CCL4 / MIP-1-beta, CCL5 / RANTES, CCL6 / C10, CCL7 / MCP-3, CCL8 / MCP-2, CCL9 / 10 / MTP- 1-gamma, CCR, CCR1, CCR10, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CD1, CD10, CD105, CD11a, CD11b, CD11c, CD123, CD13, CD137, CD138, CD14, CD140a, CD146, CD147, CD148, CD15, CD152, CD16, CD164, CD18, CD19, CD2, CD20, CD21, CD22, CD23, CD25, CD26, CD27L, CD28, CD29, CD3, CD30, CD30L, CD32, CD33 (p67 protein), CD34, CD37, CD38, CD3E, CD4, CD40, CD40L, CD44, CD45, CD46, CD49a, CD49b, CD5, CD51, CD52, CD54, CD55, CD56, CD6, CD61, CD64, CD66e, CD7, CD70, CD74, CD8, CD80 (B7-1), CD89, CD95, CD105, CD158a, CEA, CEACAM5 , CFTR, cGMP, CGRP receptor, CINC, CKb8-1, Claudin 18, CLC, Clostridium botulinum toxin, Clostridium difficile toxin, Clostridium difficile toxin Clostridium perfringens toxin, c-Met, CMV, CMV UL, CNTF, CNTN-1, complement factor 3 (C3), complement factor D, corticosteroid binding globulin, community stimulating factor-1 receptor, COX, C -Ret, CRG-2, CRTH2, CT-1, CTACK, CTGF, CTLA-4, CX3CL1 / Fractalkine, CX3CR1, CXCL, CXCL1 / Gro-alpha, CXCL10, CXCL11 / I-TAC, CXCL12 / SDF-1-alpha / beta, CXCL13 / BCA-1, CXCL14 / BRAK, CXCL15 / Lungkine.CXCL16, CXCL16, CXCL2 / Gro-beta CXCL3 / Gro-gamma, CXCL3, CXCL4 / PF4, CXCL5 / ENA- 78, CXCL6 / GCP-2, CXCL7 / NAP-2, CXCL8 / IL-8, CXCL9 / Mig, CXCLlO / IP-10, CXCR, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, cystatin C, cytokeratin Tumor-associated antigen, DAN, DCC, DcR3, DC-SIGN, Decay accelerating factor, Delta-like protein ligand 4, des (1-3) -IGF-1 (brain IGF-1), Dhh, DHICA oxidase, Dickkopf-1, digoxin, dipeptide peptidase IV, DK1, DNAM-1, Dnase, Dpp, DPPIV / CD26, Dtk, ECAD, EDA, EDA-A1, EDA- A2, EDAR, EGF, EGFR (ErbB-1), EGF domain-like protein 7, Elastase, elastin, EMA, EMMPRIN, ENA, ENA-78, Endosialin, endothelin receptor , Endotoxin, Enkephalinase, eNOS, Eot, Eotaxin, Eotaxin-2, eotaxinini, EpCAM, Ephrin B2 / EphB4, Epha2 tyrosine kinase receptor, epithelial growth factor receptor (EGFR), ErbB2 receptor, ErbB3 tyrosine kinase receptor, ERCC, EREG, erythropoietin (EPO), erythropoietin receptor, E-selectin, ET-1, Exodus- 2.F protein of RSV, F10, F11, F12, F13, F5, F9, Factor Ia, Factor IX, Factor Xa, Factor VII, Factor VIII, Factor VIIIc, Fas, FcalphaR, FcepsilonRI, FcgammaIIb , FcgammaRI, FcgammaRIIa, FcgammaRIIIa, FcgammaRIIIb, FcRn, FEN-1, ferritin, FGF, FGF-19, FGF-2, FGF-2 receptor, FGF-3 FGF-8, acidic FGF, basic FGF, FGFR, FGFR-3, fibrin, fibroblast activating protein (FAP), fibroblast growth factor, fibroblast growth factor-10, fibronectin ( fibronectin), FL, FLIP, Flt-3, FLT3 ligand, folate receptor, follicle stimulating hormone (FSH), Fractalkine (CX3C), free heavy chain, free light chain, FZD1, FZD10, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, G250, Gas 6, GCP-2, GCSF, G-CSF, G-CSF receptor, GD2, GD3, GDF, GDF-1, GDF-15 (MIC-1), GDF-3 (Vgr-2), GDF-5 (BMP-14 / CDMP-1), GDF-6 (BMP-13 / CDMP-2), GDF-7 (BMP-12 / CDMP-3), GDF-8 (Myostatin), GDF-9, GDNF, Gelsolin, GFAP, GF-CSF, GFR-alpha1, GFR- alpha2, GFR-alpha3, GF-β1, gH outer membrane glycoprotein, GITR, glucagon, glucagon receptor, glucagon-like peptide 1 receptor, Glut 4, glutamate carboxypeptidase (Glutamate carboxypeptidase) II, glycoprotein hormone receptor, glycoprotein IIb / IIIa (GP IIb / IIIa), Glypican-3, GM-CSF, GM-CSF receptor, gp130, gp140, gp72, granulocyte-CSF (G-CSF ), GRO / MGSA, growth hormone releasing factor, GRO-β, GRO-γ, H.pylori, hapten (NP-cap or NIP-cap), HB-EGF, HCC, HCC 1, HCMV gB outer membrane glycoprotein , HCMV UL, Hematopoietic Growth Factor (HGF), Hep B gp120, Heparanase, Heparin Cofactor II, Liver Growth Factor, Anthrax Anthracis Protective Antigen, Hepatitis C Virus E2 Glycoprotein, Hepatitis E, Hepcidin , Her1, Her2 / neu (ErbB-2), Her3 (ErbB-3), Her4 (ErbB-4), herpes simplex virus (HSV) gB glycoprotein, HGF, HGFA, polymer Melanoma-associated antigen (HMW-MAA), HIV outer membrane proteins, such as GP120, HIV MIB gp 120 V3 loop, HLA, HLA-DR, HM1.24, HMFG PEM, HMGB-1, HRG, Hrk, HSP47, Hsp90, HSV gD glycoprotein, human myocardiin, human cytomegalovirus (HCMV), human growth hormone (hGH), human serum albumin, human tissue type plasmin activator (t-PA), Huntingtin, HVEM, IAP, ICAM, ICAM-1, ICAM-3, ICE, ICOS, IFN-alpha, IFN-beta, IFN-gamma, IgA, IgA receptor, IgE, IGF, IGF-binding protein, IGF-1, IGF-1R, IGF-2, IGFBP, IGFR, IL, IL-1, IL-10, IL- 10 receptor, IL-11, IL-11 receptor, IL-12, IL-12 receptor, IL-13, IL-13 receptor, IL-15, IL-15 receptor, IL-16, IL- 16 receptor, IL-17, IL-17 receptor, IL-18 (IGIF), IL-18 receptor, IL-1alpha, IL-1beta, IL-1 receptor, IL-2, IL-2 receptor , IL-20, IL-20 receptor, IL-21, IL-21 receptor, IL-23, IL-23 receptor, IL-2 receptor, IL-3, IL-3 receptor, IL-31 , IL-31 receptor, IL-3 receptor, IL-4, IL-4 receptor IL-5, IL-5 receptor, IL-6, IL-6 receptor, IL-7, IL-7 receptor Body, IL-8, IL-8 receptor, IL-9, IL-9 receptor, immunoglobulin immune complex, immunoglobulin, INF-alpha, INF-alpha receptor, INF-beta, INF-beta Receptor, INF-gamma, INF-gamma receptor, IFN class I, IFN class I receptor, influenza, inhibitor, inhibin alpha, inhibin beta, iNOS, insulin, insulin A chain, insulin B chain, insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor binding protein, integrin Integrin alpha2, Integrin alpha3, Integrin alpha4, Integrin alpha4 / beta1, Integrin alpha-V / beta-3, Integrin alpha-V / beta-6, Integrin alpha4 / beta7, Integrin alpha5 / beta1, Integrin alpha5 / beta3, integrin alpha5 / beta6, integrin alphaσ (alphaV), integrin alphaθ, integrin beta1, integrin beta2, integrin beta3 (GPIIb-IIIa), IP-10, I-TAC, JE, Kallikrein, Kallikrein 11, Kallikrein 12, Kallikrein 14, Kallikrein 15, Kallikrein 2, Kallikrein 5, kallikrein 6, kallikrein L1, kallikrein L2, kallikrein L3, kallikrein L4, kallistatin, KC, KDR, keratinocyte growth factor (KGF), Keratinocyte growth factor-2 (KGF-2), KGF, killer-like immunoglobulin receptor, kit ligand (KL), Kit tyrosine kinase, laminin 5, LAMP, LAPP (Amylin, islet-amyloid-like starch) Peptide), LAP (TGF-1), latency associated peptide, Latent TGF-1, Latent TGF-1 bp1, LBP, LDGF, LDL, LDL receptor, LECT2, Lefty, Leptin, luteinizing hormone ( LH), Lewis-Y antigen, Lewis-Y related antigen, LFA-1, LFA-3, LFA-3 receptor, Lfo, LIF, LIGHT, lipoprotein, LIX, LKN, Lptn, L-selectin, LT- a, LT-b, LTB4, LTBP-1, lung surfactant, luteinizing hormone, Lymphotactin, lymphotoxin beta receptor, lysosphingolipid receptor, Mac-1, macrophage-CSF (M- (CSF), MAdCAM, MAG, MAP2, MARC, maspin, MCAM, MCK-2, MCP, MCP-1, MCP-2, MCP-3, MCP-4, MCP-I (MCAF), M-CSF, MDC, MDC (67 aa), MDC (69 aa), megsin, Mer, MET Amino acid kinase receptor family, METALLOPROTEASES, membrane glycoprotein OX2, Mesothelin, MGDF receptor, MGMT, MHC (HLA-DR), microbial protein, MIF, MIG, MIP, MIP-1α, MIP-1β, MIP-3α, MIP-3β, MIP-4, MK, MMAC1, MMP, MMP-1, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-2, MMP-24, MMP-3, MMP-7, MMP-8, MMP-9, mononuclear globulin attractor protein, mononuclear globular community inhibitor y factor, mouse gonad-related peptides, MPIF, Mpo, MSK, MSP, MUC-16, MUC18, mucin (Mud), Muellerian inhibitor, Mug, MuSK, Myelin-associated glycoprotein, bone marrow precursor inhibitor factor-1 (MPIF-I), NAIP, Nanobody, NAP , NAP-2, NCA 90, NCAD, N-cadherin, NCAM, Neprilysin, nerve cell adhesion molecule, neroserpin, nerve growth factor (NGF), neurotrophin-3, neurotrophin-4, neurotrophin- 6.Neuropilin 1, Neuroturin, NGF-beta, NGFR, NKG20, N-methionamine-based human growth hormone, nNOS, NO, Nogo-A, Nogo receptor, non-structural protein from hepatitis C virus type 3 (NS3), NOS, Npn, NRG-3, NT, NT-3, NT-4, NTN, OB, OGG1, Oncostatin M, OP-2, OPG, OPN, OSM, OSM receptor, osteoinductive factor, bone Osteopontin, OX40L, OX40R, oxidized LDL, p150, p95, PADPr, parathyroid hormone, PARC, PARP, PBR, PBSF, PCAD, P-cadherin, PCNA, PCSK9, PDGF, PDGF receptor, PDGF -AA, PDGF-AB, PDGF-BB, PDGF-D, PDK-1, PECAM, PEDF, PEM, PF-4, PGE, PGF, PGI2, PGJ2, PIGF, PIN, PLA2, placental growth factor, placenta Phospholytic enzyme (PLAP), placental prolactin, plasminogen activation inhibitor-1, platelet growth factor, plgR, PLP, polyglycol chains of different sizes (e.g. PEG-20, PEG-30, PEG40), PP14, prekallikrein, prion protein, procalcitonin, stylized cell death protein 1, insulin precursor, prolactin, proprotein convertase PC9, prorelaxin, prostate specific membrane antigen (PSMA), Protein A, Protein C, Protein D, Protein S, Protein Z, PS, PSA, PSCA, PsmAr, PTEN, PTHrp, Ptk, PTN, P-selectin glycoprotein ligand-1, R51, RAGE, RANK, RANKL, RANTES, relaxin, Relaxin A chain, Relaxin B Chain, rennin, respiratory syncytial virus (RSV) F, Ret, reticulon 4, rheumatoid factor (Rheumatoid factor), RLI P76, RPA2, RPK-1, RSK, RSV Fgp, S100, RON -8, SCF / KL, SCGF, Sclerostin, SDF-1, SDF1α, SDF1β, SERINE, serum starch P, serum albumin, sFRP-3, Shh, Shiga toxin II, SIGIRR, SK-1, SLAM, SLPI , SMAC, SMDF, SMOH, SOD, SPARC, sphingosine 1-phosphate receptor 1, Staphylococcal lipoteichoic acid, Stat, STEAP, STEAP-II, stem cell factor (SCF), streptokinase, superoxide dismutase, syndecan -1, TACE, TACI, TAG-72 (tumor-associated glycoprotein-72), TARC, TB, TCA-3, T-cell receptor alpha / beta, TdT, TECK, TEM1, TEM5, TEM7, TEM8, Tenascin, TERT, testosterone-like PLAP alkaline phosphatase, TfR, TGF, TGF-alpha, TGF-beta, TGF-beta Pan Specific, TGF-beta RII, T GF-beta RIIb, TGF-beta RIII, TGF-beta Rl (ALK-5), TGF-beta1, TGF-beta2, TGF-beta3, TGF-beta4, TGF-beta5, TGF-I, thrombin, thrombopoietin (TPO ), Thymic stromal lymphoprotein receptor, Thymus Ck-1, Thyroid Stimulating Hormone (TSH), Thyroxin-binding globulin, Tie, TIMP, TIQ, Tissue factor, Tissue factor protease inhibitor, Tissue factor protein, TMEFF2, Tmpo, TMPRSS2, TNF receptor I, TNF receptor II, TNF-alpha, TNF-beta, TNF-beta2, TNFc, TNF-RI, TNF-RII, TNFRSF10A (TRAIL R1 Apo-2 / DR4), TNFRSF10B (TRAIL R2 DR5 / KILLER / TRICK-2A / TRICK-B), TNFRSF10C (TRAIL R3 DcR1 / LIT / TRID), TNFRSF10D (TRAIL R4 DcR2 / TRUNDD), TNFRSF11A (RANK ODF R / TRANCE R), TNFRSF11B (OPG OCIF / TR1), TNFRSF12 (TWEAK R FN14), TNFRSF12A, TNFRSF13B (TACI), TNFRSF13 BAFF R), TNFRSF14 (HVEM ATAR / HveA / LIGHT R / TR2), TNFRSF16 (NGFR p75NTR), TNFRSF17 (BCMA), TNFRSF18 (GITR AITR), TNFRSF19 (TROY TAJ / TRADE), TNFRSF19L (RELT), TNFRSF1A (TNF R1 CD120a / p55-60), TNFRSF1B (TNF RII CD120b / p75-80), TNFRSF21 (DR6), TNFRSF22 (DcTRAIL R2 TNFRH2), TNFRSF25 (DR3 Apo-3 / LARD / TR-3 / TRAMP / WSL-1) TNFRSF26 (TNFRH3), TNFRSF3 (LTbR TNF RIII / TNFC R), TNFRSF4 (OX40 ACT35 / TXGP1 R), TNFRSF5 (CD40 p50), TNFRSF6 (Fas Apo-1 / APT1 / CD95), TNFRSF6B (DcR3 M68 / TR6) TNFRSF7 (CD27), TNFRSF8 (CD30), TNFRSF9 (4-1 BB CD137 / ILA), TNFRST23 (DcTRAIL R1 TNFRH1), TNFSF10 (TRAIL Apo-2 ligand / TL2), TNFSF11 (TRANCE / RANK ligand ODF / OPG ligand), TNFSF12 (TWEAK Apo-3 ligand / DR3 ligand) TNFSF13 (APRIL TALL2), TNFSF13B (BAFF BLYS / TALL1 / THANK / TNFSF20), TNFSF14 (LIGHT HVEM ligand / LTg), TNFSF15 (TL1A / VEGI), TNFSF18 (GITR Ligand AITR ligand / TL6), TNFSF1A (TNF- a Conectin / DIF / TNFSF2), TNFSF1B (TNF-b LTa / TNFSF1), TNFSF3 (LTb TNFC / p33), TNFSF4 (OX40 ligand gp34 / TXGP1), TNFSF5 (CD40 ligand CD154 / gp39 / HIGM1 / IMD3 / TRAP) TNFSF6 (Fas ligand Apo-1 ligand / APT1 ligand), TNFSF7 (CD27 ligand CD70), TNFSF8 (CD30 ligand CD153), TNFSF9 (4-1 BB ligand CD137 ligand), TNF-α, TNF-β, TNIL-I, Toxicity transcript, TP-1, t-PA, Tpo, TRAIL, TRAILR, TRAIL-R1, TRAIL-R2, TRANCE, transferrin receptor, transforming growth factor (TGF) , Such as TGF-alpha and TGF-beta, transmembrane glycoprotein NMB, Transthyretin, TRF, Trk, TROP-2, trophoblast, TSG, TSLP, tumor necrosis factor (TNF), tumor associated antigen CA 125, manifestation tumor Lewis Y-associated carbohydrates related to antigens, TWEAK, TXB2, Ung, uPAR, uPAR-1, Urokinase, VAP-1, vascular endothelial growth factor (VEGF), vaspin, VCAM, VCAM-1, VECAD, VE-cadherin , VE-cadherin-2, VEFGR-1 (flt-1), VEFGR-2, VEGF receptor (VEGFR), VEGFR-3 (flt-4), VEGI, VIM, Viral antigens, VitB12 receptor, Vitronectin receptor, VLA, VLA-1, VLA-4, VNR integration , Von Willebrand factor (vWF), WIF-1, WNT1, WNT10A, WNT10B, WNT11, WNT16, WNT2, WNT2B / 13, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9 WNT9B, XCL1, XCL2 / SCM-1-beta, XCLl / Lymphotactin, XCR1, XEDAR, XIAP, XPD, etc.

作為本發明之抗原結合分子所含之抗體的2個可 變區之中,能和不同的2個抗原結合但不能和該等抗原同時結合之可變區所結合之「第1抗原」及「第2抗原」,例如會在免疫細胞表面分子(例如:T細胞表面分子、NK細胞表面分子、樹狀細胞表面分子、B細胞表面分子、NKT細胞表面分子、MDSC細胞表面分子、巨噬細胞類表面分子)、腫瘤細胞、腫瘤之血管、間質細胞等表現但於正常組織也會表現的抗原(整合素、組織因子、VEGFR、PDGFR、EGFR、IGFR、MET趨化介素受體、乙醯肝素硫酸蛋白多糖、CD44、纖網蛋白、DR5、TNFRSF等)較理想,作為「第1抗原」與「第2抗原」之組合,宜為第1抗原與第2抗原中任一者為例如:T細胞上專一性地表現的分子,另一抗原為在T細胞或其他免疫細胞表面表現的分子較佳。作為其他態樣,就「第1抗原」與「第2抗原」之組合而言,宜為第1抗原與第2抗原中之任一者係例如在T細胞上專一性地表現的分子,另一抗原為在免疫細胞上表現的和先前選出的抗原不同的分子較佳。具體而言,例如:在T細胞上專一性地表現的分子可列舉CD3、T細胞受體。尤其CD3較佳。本發明之抗原結合分子所結合之CD3之部位,例如:人CD3的情形,只要是構成人CD3之γ鏈、δ鏈或ε鏈序列存在的抗原決定位即可,可結合於任一抗原決定位。尤其人CD3複合體之ε鏈之細胞外區域存在之抗原決定位為較佳。構成CD3之γ鏈、δ鏈或ε鏈之結構,其多核苷酸序列記載於序列編號:83(NM_000073.2)、85(NM_000732.4)及87(NM_000733.3),其多胜肽序列記載於序列編號:84(NP_000064.1)、86(NP_000723.1)及88(NP_000724.1)(括弧內顯示RefSeq註冊 編號)。作為另一抗原,可列舉Fcγ受體、TLR、凝集蛋白、IgA、免疫核對點分子、TNF超級家族分子、TNFR超級家族分子、NK受體分子。 As two antibodies of the antibody contained in the antigen-binding molecule of the present invention, Among the variable regions, the "first antigen" and "second antigen" bound by the variable regions that can bind to two different antigens but cannot simultaneously bind to these antigens, for example, molecules on the surface of immune cells (for example: T cell surface molecule, NK cell surface molecule, dendritic cell surface molecule, B cell surface molecule, NKT cell surface molecule, MDSC cell surface molecule, macrophage surface molecule), tumor cells, tumor blood vessels, interstitial cells, etc. Antigens (integrin, tissue factor, VEGFR, PDGFR, EGFR, IGFR, MET chemokine receptor, acetylheparin sulfate proteoglycan, CD44, fibronectin, DR5, TNFRSF, etc.) that are also expressed in normal tissues ) Ideally, as a combination of the "first antigen" and the "second antigen", it is preferable that either of the first antigen and the second antigen is, for example, a molecule specifically expressed on a T cell, and the other antigen is Molecules expressed on the surface of T cells or other immune cells are preferred. As another aspect, in the combination of the "first antigen" and the "second antigen", it is preferable that either one of the first antigen and the second antigen is a molecule specifically expressed on T cells, for example, and An antigen is preferably a molecule that appears on immune cells to be different from a previously selected antigen. Specifically, for example, molecules that specifically express on T cells include CD3 and T cell receptors. Especially CD3 is better. The part of CD3 to which the antigen-binding molecule of the present invention binds, for example, in the case of human CD3, as long as it is the epitope of the γ chain, δ chain, or ε chain sequence constituting human CD3, it can be bound to any antigenic determinant. Bit. In particular, epitopes present in the extracellular region of the epsilon chain of the human CD3 complex are preferred. The structure of the γ, δ, or ε chain constituting CD3. The polynucleotide sequence is described in sequence numbers: 83 (NM_000073.2), 85 (NM_000732.4), and 87 (NM_000733.3). Its polypeptide sequence Listed in sequence numbers: 84 (NP_000064.1), 86 (NP_000723.1), and 88 (NP_000724.1) (RefSeq registration is shown in parentheses Numbering). Examples of another antigen include Fcγ receptor, TLR, agglutinin, IgA, immune checkpoint molecule, TNF superfamily molecule, TNFR superfamily molecule, and NK receptor molecule.

又,本發明之抗原結合分子所含之抗體之2個可變區中的另一可變區所結合的和先前的「第1抗原」與「第2抗原」為不同的「第3抗原」,例如宜為腫瘤細胞專一性抗原,除了伴隨細胞之惡性化而表現的抗原以外,也包括細胞癌化時於細胞表面、蛋白質分子上出現的異常糖鏈。具體而言,例如:ALK受體(pleiotrophin受體)、pleiotrophin、KS 1/4胰臓癌抗原、卵巢癌抗原(CA125)、前列腺酸磷酸、前列腺專一性抗原(PSA)、黑色素瘤關連抗原p97、黑色素瘤抗原gp75、高分子量黑色素瘤抗原(HMW-MAA)、前列腺專一性膜抗原、癌性胚抗原(CEA)、多型上皮黏蛋白抗原、人乳脂肪球抗原、CEA、TAG-72、CO17-1A、GICA 19-9、CTA-1及LEA等結腸直腸腫瘤關連抗原、Burkitt淋巴瘤抗原-38.13、CD19、人B淋巴瘤抗原-CD20、CD33、神經節苷脂GD2、神經節苷脂GD3、神經節苷脂GM2及神經節苷脂GM3等黑色素瘤專一性抗原、腫瘤專一性移植型細胞表面抗原(TSTA)、T抗原、DNA腫瘤病毒及RNA腫瘤病毒之外膜抗原等由病毒誘導的腫瘤抗原、結腸之CEA、5T4癌胎兒營養層糖蛋白質及膀胱腫瘤癌胎兒抗原等癌胎兒抗原α-胎兒蛋白質、人肺癌抗原L6及L20等分化抗原、纖維肉瘤之抗原、人白血病T細胞抗原-Gp37、新生糖蛋白質、神經鞘脂、EGFR(上皮增殖因子受體)等乳癌抗原、NY-BR-16、NY-BR-16及HER2抗原(p185HER2)、多型上皮黏蛋白(PEM)、 悪性人淋巴球抗原-APO-1、胎兒紅血球中辨識到的I抗原等分化抗原、成人紅血球中辨識到的初期內胚葉I抗原、移植前之胚、胃癌中辨識到的I(Ma)、乳腺上皮辨識到的M18、M39、骨髓細胞中辨識到的SSEA-1、VEP8、VEP9、Myl、VIM-D5、結腸直腸癌中辨識到的D156-22、TRA-1-85(血液群H)、睪丸及卵巢癌中辨識到的SCP-1、結腸癌中辨識到的C14、肺癌中辨識到的F3、胃癌中辨識到的AH6、Y半抗原、胚性癌細胞中辨識到的Ley、TL5(血液群A)、A431細胞中辨識到的EGF受體、胰臓癌中辨識到的E1系列(血液群B)、胚性癌細胞中辨識到的FC10.2、胃癌抗原、腺癌中辨識到的CO-514(血液群Lea)、腺癌中辨識到的NS-10、CO-43(血液群Leb)、A431細胞之EGF受體中辨識到的G49、結腸癌中辨識到的MH2(血液群ALeb/Ley)、結腸癌中辨識到的19.9、胃癌黏蛋白、骨髓細胞中辨識到的T5A7、黑色素瘤中辨識到的R24、胚性癌細胞中辨識到的4.2、GD3、D1.1、OFA-1、GM2、OFA-2、GD2、及M1:22:25:8及4~8細胞階段之胚中辨識到的SSEA-3及SSEA-4、皮下T細胞淋巴瘤抗原、MART-1抗原、二烯丙基Tn(STn)抗原、結腸癌抗原NY-CO-45、肺癌抗原NY-LU-12變異體A、腺癌抗原ART1、腫瘤伴隨性關連腦-睪丸癌抗原(癌神經抗原MA2、腫瘤伴隨性神經抗原)、神經癌腹部抗原2(NOVA2)、血液細胞癌抗原基因520、腫瘤關連抗原CO-029、腫瘤關連抗原MAGE-C1(癌/睪丸抗原CT7)、MAGE-B1(MAGE-XP抗原)、MAGE-B2(DAM6)、MAGE-2、MAGE-4a、MAGE-4b及MAGE-X2、癌-睪丸抗原(NY-EOS-1)、 YKL-40及上述多胜肽中任一片段或對於此等加以修飾而得之結構等(前述修飾磷酸基、糖鏈等)、EpCAM、EREG、CA19-9、CA15-3、唾液酸基SSEA-1(SLX)、HER2、PSMA、CEA、CLEC12A等。 In addition, the "first antigen" and the "second antigen" which are bound to the other variable regions of the two variable regions of the antibody contained in the antigen-binding molecule of the present invention are different from the "third antigen" For example, it is preferably a tumor cell-specific antigen. In addition to the antigens that accompany the malignancy of the cell, it also includes abnormal sugar chains that appear on the cell surface and protein molecules when the cell is cancerous. Specifically, for example: ALK receptor (pleiotrophin receptor), pleiotrophin, KS 1/4 pancreatic cancer antigen, ovarian cancer antigen (CA125), prostatic acid phosphate, prostate specific antigen (PSA), melanoma-associated antigen p97 , Melanoma antigen gp75, high molecular weight melanoma antigen (HMW-MAA), prostate-specific membrane antigen, cancerous embryo antigen (CEA), polymorphic epithelial mucin antigen, human milk fat globule antigen, CEA, TAG-72, CO17-1A, GICA 19-9, CTA-1, LEA and other colorectal tumor-associated antigens, Burkitt lymphoma antigen-38.13, CD19, human B lymphoma antigen-CD20, CD33, ganglioside GD2, ganglioside GD3, ganglioside GM2, ganglioside GM3 and other melanoma-specific antigens, tumor-specific transplant cell surface antigens (TSTA), T antigens, DNA tumor viruses, and RNA tumor virus outer membrane antigens are induced by viruses Tumor antigen, colonic CEA, 5T4 cancer fetal trophoblastic protein, and bladder cancer cancer fetal antigens such as cancer fetal antigen α-fetal protein, human lung cancer antigens L6 and L20, differentiation antigens, fibrosarcoma antigens, human leukemia T cell antigens - Gp37, neoglycoprotein, sphingolipid, EGFR (epithelial proliferation factor receptor) and other breast cancer antigens, NY-BR-16, NY-BR-16 and HER2 antigen (p185HER2), polymorphic epithelial mucin (PEM), Human lymphocyte antigen-APO-1, differentiation antigens such as I antigen recognized in fetal red blood cells, primary endoderm I antigen recognized in adult red blood cells, preimplantation embryos, I (Ma) identified in gastric cancer, breast M18, M39 identified by epithelium, SSEA-1, VEP8, VEP9, Myl, VIM-D5 identified in bone marrow cells, D156-22, TRA-1-85 (blood group H) identified in colorectal cancer, SCP-1 identified in testicles and ovarian cancer, C14 identified in colon cancer, F3 identified in lung cancer, AH6, Y hapten identified in gastric cancer, Ley, TL5 identified in embryonic cancer cells ( Blood group A), EGF receptors identified in A431 cells, E1 series (blood group B) identified in pancreatic cancer, FC10.2. Identified in embryonic cancer cells, gastric cancer antigen, and adenocarcinoma CO-514 (blood group Lea), NS-10 identified in adenocarcinoma, CO-43 (blood group Leb), G49 identified in the EGF receptor of A431 cells, MH2 identified in colon cancer (blood Group ALeb / Ley), 19.9 identified in colon cancer, gastric cancer mucin, T5A7 identified in bone marrow cells, R24 identified in melanoma, embryonic cancer SSEA-3 and SSEA- identified in embryos identified at 4.2, GD3, D1.1, OFA-1, GM2, OFA-2, GD2, and M1: 22: 25: 8 and 4 ~ 8 cell stages 4.Subcutaneous T-cell lymphoma antigen, MART-1 antigen, diallyl Tn (STn) antigen, colon cancer antigen NY-CO-45, lung cancer antigen NY-LU-12 variant A, adenocarcinoma antigen ART1, tumor Concomitant Connected Brain-Testis Cancer Antigen (Carcinoma Neural Antigen MA2, Tumor Associated Neural Antigen), Neural Cancer Abdominal Antigen 2 (NOVA2), Hematocellular Carcinoma Antigen Gene 520, Tumor Related Antigen CO-029, Tumor Related Antigen MAGE-C1 (Cancer / Testis Antigen CT7), MAGE-B1 (MAGE-XP Antigen), MAGE-B2 (DAM6), MAGE-2, MAGE-4a, MAGE-4b and MAGE-X2, Cancer-Testis Antigen (NY-EOS- 1), YKL-40 and any of the above peptides or the structure obtained by modifying them (the aforementioned modified phosphate group, sugar chain, etc.), EpCAM, EREG, CA19-9, CA15-3, sialic acid SSEA -1 (SLX), HER2, PSMA, CEA, CLEC12A, etc.

本發明之抗原結合分子可依該領域中通常知識者公知之方法製造。例如:抗體可依以下方法製作,但不限於此。將編碼為單離之多胜肽的基因導入適當寄主以製作抗體之寄主細胞與表現載體的許多組合為公知。該等表現系均可應用在將本發明之抗原結合分子予以單離。真核細胞使用作為寄主細胞時,可以適當使用動物細胞、植物細胞、或真菌細胞。具體而言,動物細胞可列舉如下的細胞。 The antigen-binding molecules of the present invention can be produced according to methods known to those skilled in the art. For example, antibodies can be prepared by the following methods, but are not limited thereto. Many combinations of host genes and expression vectors that introduce genes encoding isolated peptides into appropriate hosts to make antibodies are well known. These manifestations are applicable to the isolation of the antigen-binding molecules of the present invention. When eukaryotic cells are used as host cells, animal cells, plant cells, or fungal cells can be suitably used. Specific examples of the animal cell include the following cells.

(1)哺乳類細胞:CHO(Chinese hamster ovary cell line)、COS(Monkey kidney cell line)、骨髓瘤(Sp2/O、NS0等)、BHK(baby hamster kidney cell line)、HEK293(人embryonic kidney cell line with sheared adenovirus(Ad)5 DNA)、PER.C6細胞(人embryonic retinal cell line transformed with the Adenovirus Type 5(Ad5)E1A and E1B genes)、Hela、Vero等(Current Protocols in Protein Science(May,2001,Unit 5.9,Table 5.9.1)) (1) Mammalian cells: CHO (Chinese hamster ovary cell line), COS (Monkey kidney cell line), myeloma (Sp2 / O, NS0, etc.), BHK (baby hamster kidney cell line), HEK293 (human embryonic kidney cell line with sheared adenovirus (Ad) 5 DNA), PER.C6 cells (human embryonic retinal cell line transformed with the Adenovirus Type 5 (Ad5) E1A and E1B genes), Hela, Vero, etc. (Current Protocols in Protein Science (May, 2001, Unit 5.9, Table 5.9.1))

(2)兩生類細胞:非洲爪蟾卵母細胞等 (2) Amphibian cells: Xenopus oocytes, etc.

(3)昆蟲細胞:sf9、sf21、Tn5等 (3) Insect cells: sf9, sf21, Tn5, etc.

又,抗體也可以利用大腸菌(mAbs 2012 Mar-Apr;4(2):217-225.)、酵母(WO2000023579)製作。利用大腸菌製作的抗體沒有糖鏈附加。另一方面,酵母製作的抗體有糖鏈附加。 The antibody can also be produced using coliform (mAbs 2012 Mar-Apr; 4 (2): 217-225.) And yeast (WO2000023579). Antibodies produced by coliforms do not have sugar chains attached. On the other hand, antibodies produced by yeast have sugar chains attached.

使為編碼為抗體重鏈的DNA且為編碼為可變區中之1或多數胺基酸殘基取代為目的之其他胺基酸之重鏈的DNA、及編碼為抗體輕鏈之DNA表現。編碼為可變區中之1或多數胺基酸殘基取代為目的之其他胺基酸而得之重鏈或輕鏈的DNA,例如可藉由取得編碼為對抗某抗原之利用公知方法製作之抗體之可變區的DNA,導入適當取代,而可將編碼為該區域中之特定胺基酸之密碼子變成編碼為目的之其他胺基酸而得。 The DNA encoding the heavy chain of the antibody and the DNA encoding the heavy chain of another amino acid for the purpose of substitution of one or more amino acid residues in the variable region, and the DNA encoding the light chain of the antibody are expressed. A DNA encoding a heavy or light chain obtained by substituting one or more amino acid residues in the variable region for other amino acids for the purpose can be produced, for example, by obtaining a code encoding a known method against an antigen. The DNA of the variable region of an antibody can be appropriately substituted by introducing codons encoding specific amino acids in the region into other amino acids encoding the purpose.

又,也可事先設計編碼為將對抗某抗原使用公知方法製作之抗體之可變區中之1或多數胺基酸殘基取代為目的之其他胺基酸而得之蛋白質的DNA,將該DNA進行化學合成,以獲得編碼為可變區中之1或多數胺基酸殘基取代為目的之其他胺基酸之重鏈的DNA。胺基酸之取代部位、取代之種類無特殊限定。胺基酸改變之理想區域,可列舉可變區中之露出於溶劑之區域及迴圈區域。其中,CDR1、CDR2、CDR3、FR3區域、迴圈區域為較佳。具體而言,H鏈可變區之Kabat編號31~35、50~65、71~74、95~102、L鏈可變區之Kabat編號24~34、50~56、89~97較佳,H鏈可變區之Kabat編號31、52a~61、71~74、97~101、L鏈可變區之Kabat編號24~34、51~56、89~96更理想。 Alternatively, a DNA encoding a protein obtained by substituting one or more amino acid residues in a variable region of an antibody prepared by a known method against an antigen with another amino acid as a purpose may be designed in advance, and the DNA Chemical synthesis is performed to obtain DNA encoding the heavy chain of another amino acid for the purpose of substitution of one or more amino acid residues in the variable region. The substitution site and the kind of substitution of the amino acid are not particularly limited. The ideal region where the amino acid changes includes the region exposed to the solvent and the loop region in the variable region. Among them, CDR1, CDR2, CDR3, FR3 regions, and loop regions are preferred. Specifically, Kabat numbers of H-chain variable regions are 31-35, 50-65, 71-74, 95-102, and Kabat numbers of L-chain variable regions are 24-34, 50-56, and 89-97. Kabat numbers of H-chain variable regions are 31, 52a-61, 71-74, 97-101, and Kabat numbers of L-chain variable regions are 24-34, 51-56, and 89-96.

胺基酸改變不限於取代,也可為缺失、附加、插入、或修飾中任一者、或此等之組合。 Amino acid changes are not limited to substitutions, but may be any of deletions, additions, insertions, or modifications, or combinations thereof.

又,編碼為可變區中之1或多數胺基酸殘基取代為目的之其他胺基酸而得之重鏈的DNA,可區分為部分DNA 製造。部分DNA之組合,例如:編碼為可變區之DNA與編碼為不變區之DNA、或編碼為Fab區之DNA與編碼為Fc區之DNA等,但不限於此等組合。編碼為輕鏈之DNA也同樣可區分為部分DNA製造。 In addition, DNA encoding a heavy chain obtained by substituting one or more amino acid residues in a variable region with another amino acid for the purpose can be distinguished into partial DNAs. Manufacturing. The combination of partial DNAs, for example: DNA encoding a variable region and DNA encoding a constant region, or DNA encoding a Fab region and DNA encoding an Fc region, but are not limited to these combinations. DNA encoded as a light chain can also be distinguished as part of DNA manufacturing.

作為表現上述DNA之方法可列舉以下方法。例如:將編碼為重鏈可變區之DNA和編碼為重鏈不變區之DNA一起納入表現載體,建構重鏈表現載體。同樣,將編碼為輕鏈可變區之DNA和編碼為輕鏈不變區之DNA一起納入表現載體,並建構輕鏈表現載體。該等重鏈、輕鏈之基因也可納入到單一載體中。 Examples of the method for expressing the DNA include the following methods. For example, a DNA encoding a variable region of a heavy chain and a DNA encoding a constant region of a heavy chain are incorporated into a expression vector to construct a heavy chain expression vector. Similarly, a DNA encoding a light chain variable region and a DNA encoding a light chain constant region are incorporated into a expression vector, and a light chain expression vector is constructed. These heavy and light chain genes can also be incorporated into a single vector.

當編碼為目的抗體之DNA納入到表現載體時,係在表現控制區域,例如:增強子、啟動子之控制下能表現的方式納入表現載體。然後,利用此表現載體將寄主細胞轉形,使抗體表現。此時,可以使用適當的寄主與表現載體的組合。 When the DNA encoding the antibody of interest is incorporated into the expression vector, it is included in the expression vector in a manner capable of expressing under the control of the expression control region, such as enhancer and promoter. Then, the expression vector is used to transform the host cell to express the antibody. In this case, a suitable combination of host and expression vector may be used.

載體,例如M13系載體、pUC系載體、pBR322、pBluescript、pCR-Script等。又,為了將cDNA予以次選殖、切出,除了上述載體以外,可使用例如:pGEM-T、pDIRECT、pT7等。 Vectors, such as M13-based vector, pUC-based vector, pBR322, pBluescript, pCR-Script, and the like. In addition, in order to sub-select and excise the cDNA, in addition to the above vectors, for example, pGEM-T, pDIRECT, pT7, and the like can be used.

為了生產本發明之抗體而使用載體時,尤其表現載體為有用。表現載體,例如:寄主為JM109、DH5±、HB101、XL1-Blue等大腸菌時,須帶有能於大腸菌以良好效率表現的啟動子,例如:lacZ啟動子(Ward等,Nature(1989)341,544-546;FASEB J.(1992)6,2422-2427,全體納入本說明書中作為參考)、araB啟動子(Better等,Science(1988)240, 1041-1043、全體納入本說明書中作為參考)、或T7啟動子等。如此的載體,除了上述載體以外,可列舉pGEX-5X-1(Pharmacia公司製)、「QIAexpress system」(QIAGEN公司製)、pEGFP、或pET(於此情形,寄主宜為表現T7 RNA聚合酶之BL21為較佳)等。 When a carrier is used for producing the antibody of the present invention, it is particularly useful to express the carrier. Expression vectors, for example: When the host is coliform bacteria such as JM109, DH5 ±, HB101, XL1-Blue, etc., it must carry a promoter that can perform efficiently in coliform bacteria, such as the lacZ promoter (Ward et al., Nature (1989) 341,544- 546; FASEB J. (1992) 6, 2422-2427, all incorporated herein by reference), the araB promoter (Better et al., Science (1988) 240, 1041-1043, all incorporated herein by reference), or the T7 promoter. Examples of such a vector include pGEX-5X-1 (manufactured by Pharmacia), "QIAexpress system" (manufactured by QIAGEN), pEGFP, or pET (in this case, the host should preferably be one expressing T7 RNA polymerase) BL21 is preferred) and the like.

又,載體也可包括用以將多胜肽分泌的信號序列。作為多胜肽分泌之信號序列,於使其在大腸菌之細胞間質產生時,可使用pelB信號序列(Lei,S.P.et al J.Bacteriol.(1987)169,4397、全體納入本說明書中作為參考)。載體向寄主細胞之導入,可使用例如脂質體(lipofectin)、磷酸鈣法、DEAE-Dextran法實施。 In addition, the vector may include a signal sequence for secreting the polypeptide. As a signal sequence for the secretion of a polypeptide, the pelB signal sequence (Lei, SPet al J. Bacteriol. (1987) 169, 4397) can be used when it is produced in the intercellular substance of coliform bacteria. The entirety is incorporated herein by reference. ). The introduction of a vector into a host cell can be performed using, for example, lipofectin, calcium phosphate method, or DEAE-Dextran method.

大腸菌表現載體以外,作為例如製造本發明之多胜肽之載體,考列舉哺乳動物來源的表現載體(例如:pcDNA3(Invitrogen公司製)、pEGF-BOS(Nucleic Acids.Res.1990,18(17),p5322、全體納入本說明書中作為參考)、pEF、pCDM8)、昆蟲細胞來源的表現載體(例如「Bac-to-BAC baculovirus expression system」(GIBCO BRL公司製)、pBacPAK8)、植物來源的表現載體(例如pMH1、pMH2)、動物病毒來源的表現載體(例如:pHSV、pMV、pAdexLcw)、反轉錄病毒來源的表現載體(例如:pZIPneo)、酵母來源的表現載體(例如:「Pichia Expression Kit」(Invitrogen公司製)、pNV11、SP-Q01)、枯草菌來源的表現載體(例如:pPL608、pKTH50)。 In addition to the coliform expression vector, examples of vectors for producing the polypeptide of the present invention include mammalian expression vectors (eg, pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res. 1990, 18 (17)). p5322, all incorporated herein by reference), pEF, pCDM8), insect cell-derived expression vectors (e.g., "Bac-to-BAC baculovirus expression system" (manufactured by GIBCO BRL), pBacPAK8), plant-derived expression vectors (E.g. pMH1, pMH2), expression vectors derived from animal viruses (e.g. pHSV, pMV, pAdexLcw), expression vectors derived from retrovirus (e.g. pZIPneo), expression vectors derived from yeast (e.g. "Pichia Expression Kit" ( (Manufactured by Invitrogen), pNV11, SP-Q01), subtilis-derived expression vectors (for example: pPL608, pKTH50).

為了在CHO細胞、COS細胞、NIH3T3細胞、HEK293細胞等動物細胞表現時,須要有在細胞內表現所必要 的啟動子,例如SV40啟動子(Mulligan等,Nature(1979)277,108、全體納入本說明書中作為參考)、MMTV-LTR啟動子、EF1α啟動子(Mizushima等,Nucleic Acids Res.(1990)18,5322、全體納入本說明書中作為參考)、CAG啟動子(Gene.(1991)108,193、全體納入本說明書中作為參考)、CMV啟動子等,具有用以選拔轉形細胞之基因(例如:能利用藥劑(新黴素、G418等)判別的藥劑耐性基因)則更佳。帶有如此特性之載體,例如:pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13等。又,有時為了增加基因的副本數,會使EBNA1蛋白質共表現,於此情形,使用有複製開始點OriP的載體。(Biotechnol Bioeng.2001 Oct 20;75(2):197-203.、Biotechnol Bioeng.2005 Sep 20;91(6):670-7.) In order to express in CHO cells, COS cells, NIH3T3 cells, HEK293 cells and other animal cells, it is necessary to express them in cells. Promoters, such as the SV40 promoter (Mulligan et al., Nature (1979) 277, 108, all incorporated herein by reference), MMTV-LTR promoter, EF1α promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322 (All incorporated in this specification as a reference), CAG promoter (Gene. (1991) 108, 193, all incorporated in this specification as a reference), CMV promoter, etc., have genes for selecting transformed cells (for example, the ability to use drugs (Neomycin, G418, etc.) to discriminate drug resistance genes). Carriers with such characteristics, such as: pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, pOP13, etc. In addition, in order to increase the number of copies of the gene, the EBNA1 protein may be co-expressed. In this case, a vector having an origin of replication OriP is used. (Biotechnol Bioeng. 2001 Oct 20; 75 (2): 197-203., Biotechnol Bioeng. 2005 Sep 20; 91 (6): 670-7.)

再者,為了使基因安定表現且放大細胞內之基因副本數時,可列舉在核酸合成路徑缺損的CHO細胞導入具有和其互補之DHFR基因的載體(例如:pCHOI等),利用胺甲喋呤(MTX)使其放大的方法,又,當為了暫時表現基因時,可列舉使用染色體上帶有表現SV40 T抗原之基因的COS細胞,以帶有SV40之複製起點的載體(pcD等)轉形的方法。複製開始點也可使用多瘤病毒、腺病毒、牛乳突瘤病毒(BPV)等來源者。再者,為了以寄主細胞系將基因副本數放大,表現載體就選擇標記而言,可包括胺基糖苷轉移酶(APH)基因、胸腺嘧啶激酶(TK)基因、大腸菌黃嘌呤鳥嘌呤磷酸核糖基轉移酶(Ecogpt)基因、二氫葉酸還原酵素(dhfr)基因等。 Furthermore, in order to stabilize the gene expression and enlarge the number of gene copies in a cell, a CHO cell with a defective nucleic acid synthesis pathway can be introduced to introduce a vector (for example, pCHOI) having a DHFR gene complementary thereto, and use methotrexate (MTX) A method for enlarging the gene. In order to temporarily express a gene, a COS cell carrying a gene expressing the SV40 T antigen on a chromosome can be used, and transformed with a vector (pcD, etc.) having an origin of replication of SV40. Methods. The origin of replication can also be derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and other sources. Furthermore, in order to amplify the number of gene copies in a host cell line, the expression vector may include an aminoglycoside transferase (APH) gene, a thymine kinase (TK) gene, and a coliform xanthine guanine phosphoribosyl phosphate in terms of selectable markers. Transferase (Ecogpt) gene, dihydrofolate reductase (dhfr) gene, etc.

抗體之回收,可藉由例如培養轉形的細胞後,從 經分子轉形之細胞之細胞內或培養液分離以進行。抗體之分離、精製可適當組合離心分離、硫安分級、鹽析、超過濾、C1q、FcRn、蛋白質A、蛋白質G管柱、親和性層析、離子交換層析、凝膠過濾層析等方法以實施。 Antibodies can be recovered by, for example, culturing transformed cells from Isolation of intracellular or culture fluid of molecularly transformed cells is performed. Isolation and purification of antibodies can be appropriately combined by centrifugation, thiosulfation fractionation, salting out, ultrafiltration, C1q, FcRn, protein A, protein G column, affinity chromatography, ion exchange chromatography, gel filtration chromatography and other methods. Implementation.

多專一性抗體之有效率的製作方法,可適用Knobs-into-holes技術(WO1996/027011、Ridgway JB et al.,Protein Engineering(1996)9,617-621、Merchant AM et al.Nature Biotechnology(1998)16,677-681)、導入電荷性排斥而抑制非目的之H鏈彼此締合的技術(WO2006/106905)等前述技術。 An efficient method for making multispecific antibodies is applicable to Knobs-into-holes technology (WO1996 / 027011, Ridgway JB et al., Protein Engineering (1996) 9,617-621, Merchant AM et al. Nature Biotechnology (1998) 16,677 -681), a technique of introducing a charge repulsion and suppressing the association of non-target H chains (WO2006 / 106905), and the aforementioned techniques.

本發明提供一種抗原結合分子之製造方法,係製造包括能和不同的2個第1抗原與第2抗原結合之抗體之可變區且和第1抗原與第2抗原不同時結合之可變區(第1可變區)、及和與該第1抗原及第2抗原為不同之第3抗原結合之可變區(第2可變區)的抗原結合分子,包含以下步驟:製作該第1可變區之胺基酸序列為多樣之抗原結合分子庫。 The present invention provides a method for manufacturing an antigen-binding molecule, which comprises a variable region comprising antibodies capable of binding to two different first and second antigens and different from the first and second antigens. (The first variable region) and an antigen-binding molecule that binds to a variable region (the second variable region) of a third antigen that is different from the first antigen and the second antigen, and includes the following steps: preparing the first variable region; The amino acid sequence of the variable region is a diverse library of antigen-binding molecules.

例如可列舉包含以下步驟之製造方法:(i)製作抗原結合分子之庫,係和第1抗原或第2抗原結合之抗體之可變區中的至少1個胺基酸改變的抗原結合分子且含有該經改變之可變區之胺基酸的至少1個係彼此不同的可變區之抗原結合分子之庫;(ii)從製作之庫之中,選擇含有對於第1抗原及第2抗原有結合活性、但是不和該第1抗原及第2抗原同時結合之可變區之抗原結合分子; (iii)將包含編碼為步驟(ii)選出之抗原結合分子之該可變區的核酸與編碼為和第3抗原結合之抗原結合分子之可變區的核酸的寄主細胞進行培養,使含有會和第1抗原與第2抗原結合但是不和該第1抗原與第2抗原同時結合之抗體之可變區、及、和第3抗原結合之可變區的抗原結合分子表現;及(iv)從前述寄主細胞培養物回收抗原結合分子。 For example, a manufacturing method including the following steps: (i) making a library of antigen-binding molecules, at least one amino acid-modified antigen-binding molecule in a variable region of an antibody that binds to the first antigen or the second antigen, and A library containing at least one amino acid of the modified variable region that is different from each other in a variable region; (ii) From the prepared library, select a library containing the first antigen and the second antigen An antigen-binding molecule that has binding activity but does not bind to the first and second antigens simultaneously; (iii) culturing a nucleic acid containing the variable region encoding the antigen-binding molecule selected in step (ii) and a nucleic acid encoding the variable region of the antigen-binding molecule that binds to the third antigen, The expression of an antigen-binding molecule that binds to the first antigen and the second antigen but does not bind to the first antigen and the second antigen simultaneously, and the antigen-binding molecule of the variable region that binds to the third antigen; and (iv) Antigen-binding molecules were recovered from the aforementioned host cell culture.

又,本製造方法中,步驟(ii)可為以下的選擇步驟:(v)從製作的庫中,選擇包含對於第1抗原及第2抗原有結合活性但不會和在各自不同的細胞上表現之第1抗原與第2抗原同時結合之可變區的抗原結合分子。 Moreover, in the present manufacturing method, step (ii) may be the following selection step: (v) selecting from the prepared library the cells that have binding activity to the first antigen and the second antigen but are not different from each other An antigen-binding molecule representing a variable region in which a first antigen and a second antigen bind simultaneously.

上述步驟(i)使用之抗原結合分子只要是含有抗體之可變區即不特別限定,可為Fv、Fab、Fab'等抗體片段,也可為含有Fc區之抗體。 The antigen-binding molecule used in the step (i) is not particularly limited as long as it is an antibody-containing variable region, and may be an antibody fragment such as Fv, Fab, Fab ', or an antibody containing an Fc region.

改變的胺基酸,可選擇例如和第1抗原或第2抗原結合之抗體之可變區之中不會因胺基酸改變而喪失向該抗原之結合的胺基酸。 For the modified amino acid, for example, among the variable regions of the antibody that binds to the first antigen or the second antigen, an amino acid that does not lose its binding to the antigen due to the amino acid change can be selected.

本發明之胺基酸改變可單獨使用也可組合多數使用。 The amino acid modification of the present invention can be used alone or in combination.

組合多數使用時,組合數不特別限定,例如:2個以上30個以下,較佳為2個以上25個以下、2個以上22個以下、2個以上20個以下、2個以上15個以下、2個以上10個以下、2個以上5個以下、2個以上3個以下。 The number of combinations is not particularly limited when used in combination, for example: 2 or more and 30 or less, preferably 2 or more and 25 or less, 2 or more and 22 or less, 2 or more and 20 or less, and 2 or more and 15 or less , 2 or more and 10 or less, 2 or more and 5 or less, and 2 or more and 3 or less.

組合多數時,可只對於抗體之重鏈可變區或輕鏈可變區施加該胺基酸改變,也可對於重鏈可變區與輕鏈可變區兩者適當 選別施加。 In most combinations, the amino acid change may be applied only to the heavy chain variable region or light chain variable region of the antibody, and may be appropriately applied to both the heavy chain variable region and the light chain variable region. Choose not to apply.

作為胺基酸改變的理想區域,可列舉可變區中之露出於溶劑之區域及迴圈區域。其中,CDR1、CDR2、CDR3、FR3區域、迴圈區域為較佳。具體而言,H鏈可變區之Kabat編號31~35、50~65、71~74、95~102、L鏈可變區之Kabat編號24~34、50~56、89~97較理想,H鏈可變區之Kabat編號31、52a~61、71~74、97~101、L鏈可變區之Kabat編號24~34、51~56、89~96更理想。 Examples of the ideal region where the amino acid changes include a region exposed to the solvent and a loop region in the variable region. Among them, CDR1, CDR2, CDR3, FR3 regions, and loop regions are preferred. Specifically, Kabat numbers of H-chain variable regions are 31-35, 50-65, 71-74, 95-102, and Kabat numbers of L-chain variable regions are 24-34, 50-56, and 89-97. Kabat numbers of H-chain variable regions are 31, 52a-61, 71-74, 97-101, and Kabat numbers of L-chain variable regions are 24-34, 51-56, and 89-96.

又,對於胺基酸殘基施加改變時,也包括將和第1抗原或第2抗原結合之抗體之可變區之中的上述區域之胺基酸予以隨機改變、或將預先已知對於所望抗原有結合活性的胜肽插入到上述區域。藉此,從已施加改變之抗原結合分子之中選出能和第1抗原與第2抗原結合但不能和該等抗原同時結合的可變區,可獲得本發明之抗原結合分子。作為預先已知對於所望抗原有結合活性的胜肽,例如上述表1所示之胜肽。 In addition, when a change is made to an amino acid residue, the amino acid in the above-mentioned region among the variable regions of the antibody that binds to the first antigen or the second antigen is also randomly changed, or it is known in advance that An antigen-binding peptide is inserted into the above region. Thereby, a variable region that can bind the first antigen to the second antigen but cannot simultaneously bind to the antigen is selected from among the antigen-binding molecules to which the change has been applied, to obtain the antigen-binding molecule of the present invention. Examples of peptides known to have binding activity to a desired antigen include peptides shown in Table 1 above.

是否是能和第1抗原與第2抗原結合但無法和該等抗原同時結合之可變區,又,第1抗原與第2抗原中的任一者於細胞上存在且另一者單獨存在、兩者單獨存在、或兩者存在於同一細胞上時,是否是能和第1抗原與第2抗原兩者同時結合但在各自不同的細胞上表現時不能同時結合之可變區,可依上述方法同樣地確認。 Whether it is a variable region that can bind to the first antigen and the second antigen but cannot simultaneously bind to those antigens, and whether any of the first antigen and the second antigen exists on the cell and the other exists alone, When the two exist alone or on the same cell, are they variable regions that can bind to both the first antigen and the second antigen at the same time but cannot bind at the same time when expressed on different cells, as described above. The method is similarly confirmed.

本發明提供一種抗原結合分子之製造方法,係製造包含能和不同的2個第1抗原與第2抗原結合之抗體之可變區且不和第1抗原與第2抗原同時結合之可變區(第1可變區) 的抗原結合分子, 包含製作該第1可變區之胺基酸序列為多樣的抗原結合分子庫的步驟。 The invention provides a method for producing an antigen-binding molecule, which is a variable region comprising an antibody capable of binding two different first and second antigens to an antibody and not simultaneously binding the first and second antigens. (1st variable region) Antigen-binding molecules, The method includes the steps of preparing a library of various antigen-binding molecules of the amino acid sequence of the first variable region.

作為如此的抗原結合分子之製造方法,例如:包含以下步驟:(i)製作係和第1抗原或第2抗原結合之抗體之可變區之至少1個胺基酸經改變之抗原結合分子且含有該改變之可變區之胺基酸之至少1個彼此不同之可變區之抗原結合分子之庫;(ii)從製作之庫之中,選出含有對於第1抗原及第2抗原有結合活性但不和該第1抗原及第2抗原同時結合之可變區的抗原結合分子;(iii)將含有編碼為步驟(ii)選出之抗原結合分子之該可變區的核酸的寄主細胞進行培養,使含有能和第1抗原與第2抗原結合但不和該第1抗原與第2抗原同時結合之抗體之可變區的抗原結合分子表現;及(iv)從前述寄主細胞培養物回收抗原結合分子。 As a method for producing such an antigen-binding molecule, for example, the method includes the following steps: (i) preparing at least one amino acid-modified antigen-binding molecule of the variable region of the antibody that binds to the first antigen or the second antigen, and A library of antigen-binding molecules containing at least one variable region of an amino acid of the changed variable region; (ii) from the prepared library, selecting a library containing binding to the first antigen and the second antigen An antigen-binding molecule that is active but does not bind to the variable region of the first and second antigen simultaneously; (iii) performing a host cell containing a nucleic acid encoding the variable region of the antigen-binding molecule selected in step (ii); Culturing such that an antigen-binding molecule containing a variable region capable of binding the first antigen to the second antigen but not the antibody that simultaneously binds the first antigen and the second antigen is expressed; and (iv) recovered from the aforementioned host cell culture Antigen-binding molecules.

又,用於上述胺基酸改變之理想區域可列舉重鏈可變區。更佳為例如可變區中之露出於溶劑之區域及迴圈區域。其中,CDR1、CDR2、CDR3、FR3區域、迴圈區域為較佳。具體而言,H鏈可變區之Kabat編號31~35、50~65、71~74、95~102、L鏈可變區之Kabat編號24~34、50~56、89~97較理想,H鏈可變區之Kabat編號31、52a~61、71~74、97~101、L鏈可變區之Kabat編號24~34、51~56、89~96更理想。 In addition, as a desirable region for the above amino acid change, a heavy chain variable region is exemplified. More preferably, for example, the solvent-exposed region and the loop region in the variable region. Among them, CDR1, CDR2, CDR3, FR3 regions, and loop regions are preferred. Specifically, Kabat numbers of H-chain variable regions are 31-35, 50-65, 71-74, 95-102, and Kabat numbers of L-chain variable regions are 24-34, 50-56, and 89-97. Kabat numbers of H-chain variable regions are 31, 52a-61, 71-74, 97-101, and Kabat numbers of L-chain variable regions are 24-34, 51-56, and 89-96.

又,本製造方法中,上述步驟(ii)也可為以下選擇 步驟:(v)從製作之庫之中,選擇含有對於第1抗原及第2抗原有結合活性但不和各自在不同的細胞上表現之第1抗原與第2抗原同時結合之可變區的抗原結合分子。 In the present manufacturing method, the above step (ii) may be selected as follows Step: (v) From the prepared library, select a variable region containing a binding activity to the first antigen and the second antigen, but not binding to the first antigen and the second antigen that are simultaneously expressed on different cells. Antigen-binding molecules.

上述步驟(i)使用之抗原結合分子只要是含有抗體之可變區即不特別限定,可為Fv、Fab、Fab'等抗體片段,也可為含Fc區之抗體。 The antigen-binding molecule used in the step (i) is not particularly limited as long as it is an antibody-containing variable region, and may be an antibody fragment such as Fv, Fab, Fab ', or an antibody containing an Fc region.

經改變之胺基酸,可選擇例如:和第1抗原或第2抗原結合之抗體之可變區之中,不因胺基酸改變而喪失和該抗原之結合的胺基酸。 The altered amino acid can be selected, for example, from the variable region of the antibody that binds to the first antigen or the second antigen, the amino acid that does not lose its binding to the antigen due to the amino acid change.

本發明之胺基酸改變可單獨使用也可使用多種。 The amino acid modification of the present invention can be used alone or in combination.

使用多種時,組合數不特別限定,如:2個以上30個以下,較佳為2個以上25個以下、2個以上22個以下、2個以上20個以下、2個以上15個以下、2個以上10個以下、2個以上5個以下、2個以上3個以下。 When using multiple types, the number of combinations is not particularly limited, such as: 2 or more and 30 or less, preferably 2 or more and 25 or less, 2 or more and 22 or less, 2 or more and 20 or less, 2 or more and 15 or less, Two or more and ten or less, two or more and five or less, and two or more and three or less.

組合多數時,可只對抗體之重鏈可變區或輕鏈可變區施以該胺基酸改變,也可對於重鏈可變區與輕鏈可變區兩者適當區分施加。 In many combinations, the amino acid change can be applied to only the heavy chain variable region or the light chain variable region of the antibody, and the heavy chain variable region and the light chain variable region can be appropriately differentiated and applied.

又,對於胺基酸殘基施加改變時,也包括將和第1抗原或第2抗原結合之抗體之可變區之中的上述區域之胺基酸予以隨機改變、或將預先已知對於所望抗原有結合活性的胜肽插入到上述區域。藉此,從已施加改變之抗原結合分子之中選出能和第1抗原與第2抗原結合但不能和該等抗原同時結合的可變區,可獲得本發明之抗原結合分子。作為預先已知對於所 望抗原有結合活性的胜肽,例如上述表1所示之胜肽。 In addition, when a change is made to an amino acid residue, the amino acid in the above-mentioned region among the variable regions of the antibody that binds to the first antigen or the second antigen is also randomly changed, or it is known in advance that An antigen-binding peptide is inserted into the above region. Thereby, a variable region that can bind the first antigen to the second antigen but cannot simultaneously bind to the antigen is selected from among the antigen-binding molecules to which the change has been applied, to obtain the antigen-binding molecule of the present invention. As known in advance for all Peptides that are expected to have binding activity, such as those shown in Table 1 above.

是否是能和第1抗原與第2抗原結合但無法和該等抗原同時結合之可變區,又,第1抗原與第2抗原中的任一者於細胞上存在且另一者單獨存在、兩者單獨存在、或兩者存在於同一細胞上時,是否是能和第1抗原與第2抗原兩者同時結合但在各自不同的細胞上表現時不能同時結合之可變區,可依上述方法同樣地確認。 Whether it is a variable region that can bind to the first antigen and the second antigen but cannot simultaneously bind to those antigens, and whether any of the first antigen and the second antigen exists on the cell and the other exists alone, When the two exist alone or on the same cell, are they variable regions that can bind to both the first antigen and the second antigen at the same time but cannot bind at the same time when expressed on different cells, as described above. The method is similarly confirmed.

又,依該製造方法製造之抗原結合分子也包括在本發明。 The antigen-binding molecule produced by this production method is also included in the present invention.

依本方法導入的胺基酸改變的種類、範圍無特殊限定。 There is no particular limitation on the kind and range of the amino acid introduced by this method.

作為本發明之庫之一非限定態樣,可列舉選擇CD3(人CD3的情形,為構成人CD3之γ鏈、δ鏈或ε鏈)作為第1抗原,由和CD3與任意第2抗原結合之抗原結合分子構成之庫。 As a non-limiting aspect of the library of the present invention, CD3 (in the case of human CD3, the γ chain, δ chain, or ε chain constituting human CD3) is selected as the first antigen, and CD3 is bound to any second antigen A library of antigen-binding molecules.

本說明書中,「庫」或「庫」係指多數抗原結合分子或含抗原結合分子之多數融合多胜肽、或編碼為該等序列之核酸、多核苷酸。庫中所含之多數抗原結合分子或含抗原結合分子之多數融合多胜肽之序列,非單一序列,而是序列彼此不同之抗原結合分子或含抗原結合分子之融合多胜肽。 In the present specification, "library" or "library" refers to a majority of antigen-binding molecules or a majority of fusion polypeptides containing antigen-binding molecules, or a nucleic acid or polynucleotide encoding such sequences. The sequence of most of the antigen-binding molecules or most of the fusion-binding peptides contained in the library is not a single sequence, but an antigen-binding molecule or an antigen-binding-molecule-containing fusion peptide with sequences different from each other.

本發明之一實施形態中,可製作本發明之抗原結合分子與異種多胜肽的融合多胜肽。在某實施形態,融合多胜肽,可和由病毒外殼蛋白質,例如pIII、pVIII、pVII、pIX、Soc、Hoc、gpD、pVI及其變異體構成之群中選出的病毒外殼蛋白質之至少一部分融合並獲得。 In one embodiment of the present invention, a fusion polypeptide of the antigen-binding molecule of the present invention and a heteropolypeptide can be prepared. In a certain embodiment, the fusion peptide can be fused to at least a part of a viral coat protein selected from the group consisting of viral coat proteins, such as pIII, pVIII, pVII, pIX, Soc, Hoc, gpD, pVI, and variants thereof. And get.

在某實施形態,本發明之抗原結合分子可為ScFv、Fab片段、F(ab)2或F(ab')2,故於另一實施形態,可提供為該等抗原結合分子與異種多胜肽之融合多胜肽,且係主要由彼此序列不同的多數融合多胜肽而成的庫。具體而言,可提供係將該等抗原結合分子與選自於由病毒外殼蛋白質,例如pIII、pVIII、pVII、pIX、Soc、Hoc、gpD、pVI及其變異體構成之群中之病毒外殼蛋白質之至少一部分融合而得之融合多胜肽,且係主要由序列彼此不同的多數融合多胜肽而成的庫。本發明之抗原結合分子可進一步含有二聚物化分域。在某實施形態中,前述二聚物化分域可存在於抗體之重鏈或輕鏈可變區與病毒外殼蛋白質的至少一部分之間。此二聚物化分域可含有二聚物化序列之至少1個、及/或含1個或多數半胱胺酸殘基之序列。此二聚物化分域較佳為能和重鏈可變區或不變區之C末端連結。二聚物化分域,藉由是否製作為前述抗體可變區和病毒之外殼蛋白質成分的融合多胜肽成分(二聚物化分域之後不具UAG(amber)終止密碼子)、或是否製作為前述抗體可變區主要不含病毒外殼蛋白質成分(例如:二聚物化分域之後有UAG(amber)終止密碼子),可採取各種結構。當前述抗體可變區係主要製作為和病毒外殼蛋白質成分之融合多胜肽時,可由1或多數雙硫鍵及/或單一之二聚物化序列進行二價展示。 In a certain embodiment, the antigen-binding molecules of the present invention may be ScFv, Fab fragments, F (ab) 2 or F (ab ') 2. Therefore, in another embodiment, the antigen-binding molecules may be provided with multiple antigens. The fusion peptides of peptides are a library mainly composed of a plurality of fusion peptides having different sequences from each other. Specifically, it is possible to provide a virus coat protein selected from the group consisting of virus coat proteins, such as pIII, pVIII, pVII, pIX, Soc, Hoc, gpD, pVI, and variants thereof. At least a part of the fused polypeptides is obtained by fusion, and is a library mainly composed of a plurality of fused polypeptides having different sequences from each other. The antigen-binding molecule of the present invention may further contain a dimerization domain. In one embodiment, the dimerization domain may be present between the variable region of the heavy or light chain of the antibody and at least a portion of the viral coat protein. The dimerization domain may contain at least one dimerization sequence and / or a sequence containing one or more cysteine residues. This dimerization domain is preferably capable of being linked to the C-terminus of the variable or constant region of the heavy chain. Dimerization domain, by whether it is made as a fusion peptide component of the antibody variable region and the envelope protein component of the virus (without the UAG (amber) stop codon after the dimerization domain), or whether it is made as described above The variable region of an antibody is mainly free of viral coat protein components (for example, there is a UAG (amber) stop codon after the dimerization domain), and can adopt various structures. When the aforementioned variable region of the antibody is mainly made as a fusion peptide with a viral coat protein component, bivalent display can be performed by 1 or more disulfide bonds and / or a single dimerization sequence.

本說明書中,序列彼此不同之多數抗原結合分子的記載中,「序列彼此不同」的用語,係指庫中的各個抗原結合分子的序列彼此不同。亦即,庫中彼此不同的序列的數目反映出庫中之序列不同的獨立選殖體的數目,有時也指稱「庫尺 寸」。通常之噬菌體呈現庫為106至1012,可利用核糖體呈現法等公知之技術將庫尺寸擴大到1014。但是噬菌體庫之淘選時使用之噬菌體粒子之實際數通常比起庫尺寸要大出10至10,000倍。此過剩倍數也稱為「庫當量數」,代表有相同胺基酸序列的各個選殖體可能有10至10,000個存在。是以本發明中「彼此序列不同」的用語,係指排除庫當量數後於庫中之各個抗原結合分子的序列彼此不同,更具體而言,是指彼此序列不同的抗原結合分子有106至1014分子,較佳有107至1012分子,更佳有108至1011,尤佳有108至1010存在。 In the description of most antigen-binding molecules having sequences different from each other, the term "sequences differ from each other" means that the sequences of the respective antigen-binding molecules in the library are different from each other. That is, the number of sequences in the pool that are different from each other reflects the number of independent colonies that differ in the sequence in the pool, and is sometimes referred to as "bank size". Usually, the phage display library is 10 6 to 10 12. The size of the library can be enlarged to 10 14 by using a known technique such as ribosome display method. However, the actual number of phage particles used in the phage library panning is usually 10 to 10,000 times larger than the library size. This excess multiple is also referred to as the "coefficient of equivalents", representing that there may be 10 to 10,000 individual colonies with the same amino acid sequence. The term "different sequences from each other" in the present invention means that the sequences of the respective antigen-binding molecules in the library after excluding the number of equivalents of the library are different from each other, and more specifically, that the antigen-binding molecules having different sequences from each other have 10 6 to 10 14 molecules, preferably having from 107 to 1012 molecules, more preferably 10 8 to 10 11 to plus 10 10 108 there is present.

再者,本發明之主要由多數抗原結合分子而成的庫的記載中,「主要由...構成」之用語,反映出庫中序列不同的獨立選殖體之數中,對於第1及/或第2抗原之抗原結合分子之結合活性不同的抗原結合分子的數目。具體而言,顯示如此結合活性之抗原結合分子於庫中至少宜有104分子存在較佳。更佳為本發明提供顯示如此結合活性之抗原結合分子至少有105分子存在之庫。又更佳為本發明提供顯示如此結合活性之抗原結合分子至少有106分子存在之庫。尤佳為本發明提供顯示如此結合活性之抗原結合分子至少有107分子存在之庫。較佳為本發明提供顯示如此結合活性之抗原結合分子至少有108分子存在之庫。於另一表達方式,也可利用以下方式表達:庫中之序列不同之獨立選殖體之數中,對於第1及/或第2抗原之抗原結合分子之結合活性不同之抗原結合分子之比例。具體而言,本發明提供顯示如此結合活性之抗原結合分子的含量為庫中序列不同之獨立選殖體之數目之0.1%至80%,較佳為 0.5%至60%,更佳為1%至40%,更佳為2%至20%,尤佳為4%至10%之庫。融合多胜肽、多核苷酸分子或載體的情形亦和上述同,可以用分子數目、在分子全體的比例表達。又,病毒的情形亦上述同,可以用病毒個體的數目、在個體全體的比例表達。 Furthermore, in the description of the library mainly composed of a large number of antigen-binding molecules of the present invention, the term "consisting mainly of" reflects the number of independent colonies with different sequences in the library. Or the number of antigen-binding molecules with different binding activity of the antigen-binding molecules of the second antigen. Specifically, the display such binding activity of the antigen binding molecules in a library should have at least 10 4 molecules present preferred. More preferably the present invention provides a display such binding activity of the antigen-binding molecule library at least the presence of 105 molecules. And providing a display such binding activity of the antigen-binding molecule library at least the presence of 106 molecules of the present invention better. Plus the present invention provides a display such binding activity of an antigen binding molecule having at least 107 molecules of the present library. Preferably, the present invention provides a library of antigen-binding molecules exhibiting such binding activity in the presence of at least 108 molecules. In another mode of expression, the following methods can also be used to express: the proportion of antigen-binding molecules with different binding activity to the antigen-binding molecules of the first and / or second antigen in the number of independent colonies with different sequences in the library . Specifically, the present invention provides that the content of the antigen-binding molecule exhibiting such binding activity is 0.1% to 80%, preferably 0.5% to 60%, and more preferably 1% of the number of independent colonies with different sequences in the library. To 40%, more preferably 2% to 20%, and even more preferably 4% to 10%. In the case where a peptide, a polynucleotide molecule or a vector is fused, the same can be said, and it can be expressed by the number of molecules and the proportion of the entire molecules. The situation of viruses is the same as above, and it can be expressed by the number of virus individuals and the proportion of the entire virus.

本說明書中,「噬菌體展示」係變異體多胜肽和噬菌體,例如和纖維狀噬菌體之粒子表面的外殼蛋白質的至少一部分融合而以蛋白質展示的手法。噬菌體展示的用途,在於從隨機的蛋白質變異體的大庫快速有效率地選出和對象抗原以高親和性結合的序列。噬菌體上之胜肽及蛋白質庫之展示利用在將數百萬多胜肽就專一性結合特性進行篩選。多價噬菌體展示方法,利用在藉由和纖維狀噬菌體之基因III或基因VIII之融合而展示無規胜肽及小蛋白質(Wells及Lowman(Curr.Opin.Struct.Biol.(1992)3,355-362)及其中的引用文獻)。一價之噬菌體展示時,蛋白質或胜肽之庫融合於基因III或其一部分,噬菌體粒子以展示融合蛋白質的1個或0個副本的方式,於野生型基因III蛋白質存在下以低水平表現。結合性(avidity)效果比起多價之噬菌體較低,所以篩選係依據內在性配體親和性,使用噬粒(phagemid)載體,此載體係將DNA操作簡化(Lowman及Wells、Methods:A Companion to Methods in Enzymology(1991)3,205-216)。 In the present specification, "phage display" refers to a method in which a mutant polypeptide and a phage are fused to at least a part of a coat protein on the surface of a particle of a fibrous phage to display the protein. The purpose of phage display is to quickly and efficiently select sequences that bind to a target antigen with high affinity from a large pool of random protein variants. The display of peptides and protein libraries on phages is used to screen millions of peptides for specific binding properties. Multivalent phage display method uses random peptides and small proteins displayed by fusion with fibrous phage gene III or gene VIII (Wells and Lowman (Curr. Opin. Struct. Biol. (1992) 3,355-362 ) And its references). For univalent phage display, a library of proteins or peptides is fused to gene III or a part of it, and phage particles are displayed at a low level in the presence of wild-type gene III protein by displaying one or zero copies of the fusion protein. The avidity effect is lower than that of multivalent phages, so the screening is based on intrinsic ligand affinity, using a phagemid vector, which simplifies DNA manipulation (Lowman and Wells, Methods: A Companion to Methods in Enzymology (1991) 3,205-216).

「噬粒」係具有細菌之複製起點,例如具有ColE1及細菌噬菌體之基因間區域之副本的質體載體。噬粒可適當使用各種公知之細菌噬菌體,例如纖維狀細菌噬菌體及lambda 型細菌噬菌體。質體通常也含有抗生物質耐性之選擇標記。選殖到該等載體的DNA片段可增殖作為質體。導入了該等載體的細胞當具備生產噬菌體粒子所必要的全部基因時,質體之複製樣式會變化為圓周開捲(Rolling circle)複製,生成質體DNA之1條鏈的副本和噬菌體粒子包裝體。噬粒可形成感染性或非感染性噬菌體粒子。此用語包括異種多胜肽以在噬菌體粒子表面展示的方式就基因融合而言和此異種多胜肽之基因結合而得的噬菌體外殼蛋白質基因、或含其片段的噬粒。 A "phagemid" is a plastid vector that has a replication origin for bacteria, such as a copy of the intergenic region of ColE1 and bacterial phage. As the phagemid, various known bacterial phages can be appropriately used, such as fibrous bacterial phages and lambdas. Type bacterial phage. Plastids also typically contain selection markers for resistance to biomass. DNA fragments cloned into these vectors can multiply as plastids. When the cells introduced with these vectors have all the genes necessary for the production of phage particles, the replication pattern of plastids will change to Rolling circle replication, generating a copy of one strand of plastid DNA and packaging of phage particles. body. Phagemids can form infectious or non-infectious phage particles. The term includes a phage coat protein gene obtained by combining a heteropolypeptide with a gene of this heteropolypeptide in terms of gene fusion in a manner displayed on the surface of a phage particle, or a phagemid containing a fragment thereof.

用語「噬菌體載體」係指含有異種基因而能複製之細菌噬菌體之2條鏈複製型。噬菌體載體具有能實施噬菌體複製及形成噬菌體粒子的噬菌體複製起點。噬菌體較佳為纖維狀細菌噬菌體,例如M13、f1、fd、Pf3噬菌體或其衍生物、或lambda型噬菌體,例如lambda、21、phi80、phi81、82、424、434、其他或其衍生物。 The term "phage vector" refers to a two-strand replication type of a bacterial phage that contains a heterologous gene and can replicate. The phage vector has a phage replication origin capable of performing phage replication and forming phage particles. The phage is preferably a fibrous bacterial phage, such as M13, fl, fd, Pf3 phage or a derivative thereof, or a lambda-type phage, such as lambda, 21, phi80, phi81, 82, 424, 434, others or a derivative thereof.

「寡核苷酸」係利用公知方法(例如:固相手法,例如利用EP266032記載之手法的磷酸三酯、亞磷酸鹽、或亞磷醯胺(phosphoramidite)化學、或Froeshler等(Nucl.Acids.Res.(1986)14,5399-5407)記載的去氧核苷酸H-膦酸鹽中間體的方法)以化學合成的短的單條鏈或2條鏈的聚去氧核苷酸。其他方法包括以下記載之聚合酶連鎖反應及其他自動引子法(auto primer method)、及固體擔體上之寡核苷酸合成。該等方法都記載於Engels等(Agnew.Chem.Int.Ed.Engl.(1989)28,716-734)。若基因的全部核酸序列公知,或可利用和編碼鏈互補的核酸序列的話,則可使用該等方法。或對象胺基酸序列若 為公知,可使用各胺基酸殘基之公知且理想的編碼殘基而適當推測可能的核酸序列。寡核苷酸可以利用聚丙烯醯胺凝膠或分子篩管柱、或沉澱法精製。 The "oligonucleotide" is a well-known method (for example, a solid phase method such as a phosphate triester, a phosphite, or a phosphorite chemistry using the method described in EP266032, or Froeshler, etc. (Nucl. Acids. Res. (1986) 14, 5399-5407), a method for deoxynucleotide H-phosphonate intermediates) to chemically synthesize short single-chain or two-chain polydeoxynucleotides. Other methods include polymerase chain reaction and other auto primer methods described below, and oligonucleotide synthesis on a solid support. These methods are described in Engels et al. (Agnew. Chem. Int. Ed. Engl. (1989) 28,716-734). These methods can be used if the entire nucleic acid sequence of the gene is known, or if a nucleic acid sequence complementary to the coding strand is available. Or the target amino acid sequence if As is known, a possible nucleic acid sequence can be appropriately estimated using a known and ideal coding residue of each amino acid residue. Oligonucleotides can be purified using a polyacrylamide gel or a molecular sieve column, or a precipitation method.

用語「融合蛋白質」及「融合多胜肽」係指帶有以共價鍵彼此鍵結的2個部分的多胜肽,為各部分有不同特性之多胜肽。此特性可為例如體外(in vitro)或體內(in vivo)活性等生物學的性質。又,此特性可為單一化學或物理性質,例如和對象抗原之結合、反應觸媒等。此2個部分可利用單一胜肽鍵直接結合,或介由含1或多數胺基酸殘基的胜肽連結子結合。通常此2個部分和連結子存在於相同讀框。較佳為多胜肽的2個部分係由異種或不同的多胜肽獲得。 The terms "fusion protein" and "fusion polypeptide" refer to a polypeptide having two parts bonded to each other by a covalent bond, and each is a polypeptide having different characteristics in each part. This property may be a biological property such as in vitro or in vivo activity. In addition, this characteristic may be a single chemical or physical property, such as binding to a target antigen, a reaction catalyst, and the like. These two moieties can be directly bound by a single peptide bond, or via a peptide linker containing 1 or more amino acid residues. Usually these two parts and linkers exist in the same reading frame. The two parts of the polypeptide are preferably obtained from heterologous or different polypeptides.

用語「外殼蛋白質」是指蛋白質中,至少其一部分存在於病毒粒子表面。從機能上之觀點,外殼蛋白質是在寄主細胞建構病毒的過程中和病毒粒子結合的任意蛋白質,直到病毒感染其他寄主細胞為止維持和其結合。外殼蛋白質可為主要外殼蛋白質,也可為少量的外殼蛋白質。少量外殼蛋白質,是通常病毒外殼存在的外殼蛋白質,較佳為每1病毒粒子(virion)存在至少約5個,更佳為至少約7個,再更佳為至少約10個或更多蛋白質的副本。主要外殼蛋白質,每1病毒粒子可存在數十、數百或數千個副本。主要外殼蛋白質,例如纖維狀噬菌體之p8蛋白質。 The term "shell protein" means that at least a part of the protein is present on the surface of a virion. From a functional point of view, a coat protein is any protein that binds to virions during host cell construction of a virus, and maintains its binding until the virus infects other host cells. The coat protein can be a major coat protein or a small amount of coat protein. A small amount of coat protein is a coat protein usually present in a virus coat, preferably at least about 5, more preferably at least about 7, and even more preferably at least about 10 or more proteins per virion. Copy. There are dozens, hundreds, or thousands of copies of the main coat protein. Major coat proteins, such as the p8 protein of fibrillar phage.

本發明之一非限定態樣,製作庫之方法可列舉以下6種。 In one non-limiting aspect of the present invention, there are six methods for making a library.

1.對於結合第1抗原之抗原結合分子插入結合第2抗原 之胜肽(此用語係以包括多胜肽及蛋白質的方式使用)之方法 1. Insertion of an antigen-binding molecule that binds a first antigen to a second antigen Method for peptides (this term is used in a way that includes multiple peptides and proteins)

2.製作在能將抗原結合分子中之迴圈加長改變(延長)的位置出現各種胺基酸的庫,從庫以對於抗原之結合活性作為指標,取得對於任意第2抗原有結合活性之抗原結合分子之方法 2. Make a library of various amino acids at positions where the loop in the antigen-binding molecule can be lengthened (changed), and use the library's binding activity to the antigen as an indicator to obtain an antigen with binding activity to any second antigen Molecular binding

3.從已知對第1抗原結合的抗原結合分子之中,使用利用部位專一性變異法製作的抗體鑑定維持和第1抗原之結合活性的胺基酸,從出現鑑定的胺基酸的庫之中,以對於抗原之結合活性為指標,取得對於任意第2抗原有結合活性之抗原結合分子之方法 3. From the known antigen-binding molecules that bind to the first antigen, use an antibody made using site-specific mutation to identify amino acids that maintain binding activity with the first antigen, and from the library of identified amino acids, Among them, a method for obtaining an antigen-binding molecule having binding activity to an arbitrary second antigen by using the binding activity to an antigen as an index

4.製作3.之方法中能將抗原結合分子中之迴圈加長改變(延長)的位置出現各種胺基酸的抗體庫,從庫以對於抗原之結合活性作為指標,取得對於任意第2抗原有結合活性之抗原結合分子之方法 4. The method of making 3. The antibody library capable of lengthening (changing) the loop in the antigen-binding molecule appears at various positions, and the library uses the binding activity to the antigen as an index to obtain an arbitrary second antigen. Method for binding antigen-binding molecules

5.於1.2.3.或4.之方法中,進行改變使糖鏈附加序列(例如NxS,NxT、x為P以外之胺基酸)出現,並附加糖鏈受體認識之糖鏈之方法(例如附加高甘露糖型糖鏈,高甘露糖受體會認識。高甘露糖型糖鏈已知可藉由於抗體表現時添加Kifunensine而得(MAbs.2012 Jul-Aug;4(4):475-87)) 5. In the method of 1.2.3. Or 4., a method of changing the sugar chain additional sequence (for example, NxS, NxT, and x is an amino acid other than P), and adding a sugar chain recognized by the sugar chain receptor (For example, if a high mannose type sugar chain is added, the high mannose receptor will recognize it. High mannose type sugar chains are known to be obtained by adding Kifunensine during antibody expression (MAbs. 2012 Jul-Aug; 4 (4): 475- 87))

6.於1.2.3.或4.之方法中,於迴圈部位、可改變為各種胺基酸之部位插入或取代Cys、Lys或非天然胺基酸,而以共價鍵附加結合第2抗原之分域之方法(Antibody drug conjugate為代表之方法,以共價鍵結合Cys、Lys或非天然胺基酸之方法(mAbs 6:1,34-45;January/February 2014、WO2009/134891A2、Bioconjug Chem.2014 Feb 19;25(2):351-61)) 6. In the method of 1.2.3. Or 4., insert or replace Cys, Lys, or non-natural amino acid in the loop site, which can be changed to various amino acids, and add a second covalent bond Antigen domain method (Antibody drug conjugate as the representative method, covalent bonding Cys, Lys or unnatural amino acid method (mAbs 6: 1,34-45; January / February 2014, WO2009 / 134891A2, Bioconjug Chem. 2014 Feb 19; 25 (2): 351-61))

又,上述例示的6種庫製作方法中,抗原結合分子中之胺基酸取代處或在抗原結合分子中插入胜肽之處,宜為抗原結合分子之Fab或可變區部分為較佳。理想的區域例如可變區中之露出於溶劑之區域及迴圈區域。其中,CDR1、CDR2、CDR3、FR3區域、迴圈區域為較佳。具體而言,H鏈可變區之Kabat編號31~35、50~65、71~74、95~102、L鏈可變區之Kabat編號24~34、50~56、89~97較理想,H鏈可變區之Kabat編號31、52a~61、71~74、97~101、L鏈可變區之Kabat編號24~34、51~56、89~96更理想。 Furthermore, in the six exemplary library preparation methods described above, where the amino acid substitution in the antigen binding molecule or the peptide is inserted in the antigen binding molecule, the Fab or variable region portion of the antigen binding molecule is preferred. Desirable regions are, for example, the solvent-exposed regions and the loop regions in the variable region. Among them, CDR1, CDR2, CDR3, FR3 regions, and loop regions are preferred. Specifically, Kabat numbers of H-chain variable regions are 31-35, 50-65, 71-74, 95-102, and Kabat numbers of L-chain variable regions are 24-34, 50-56, and 89-97. Kabat numbers of H-chain variable regions are 31, 52a-61, 71-74, 97-101, and Kabat numbers of L-chain variable regions are 24-34, 51-56, and 89-96.

上述方法1.記載的對於結合第1抗原之抗原結合分子插入結合第2抗原之胜肽的方法,就一態樣而言,可列舉如Angew Chem Int Ed Engl.2013 Aug 5;52(32):8295-8例示般插入G-CSF之方法。就其他一態樣而言,插入的胜肽可從展示胜肽的庫取得,也可利用天然存在的蛋白質的全體或其一部分。 The method of inserting an antigen-binding molecule that binds to a first antigen into a peptide that binds to a second antigen as described in the above method 1. In one aspect, for example, Angew Chem Int Ed Engl. 2013 Aug 5; 52 (32) : 8295-8 exemplifies a method for inserting G-CSF. In other aspects, the inserted peptide may be obtained from a library displaying peptides, or the whole or a part of a naturally occurring protein may be used.

為了鑑定維持和第1抗原CD3(人CD3的情形,為構成人CD3之γ鏈、δ鏈或ε鏈)之結合活性的胺基酸,例如可實施據認為涉及抗原結合的部位的胺基酸改變,製作1胺基酸改變抗體並判斷。1胺基酸改變抗體之CD3結合評價可適當選擇該領域中通常知識者公知之方法,可利用例如:ELISA、FACS(fluorescence activated cell sorting)、ALPHA screen(Amplified Luminescent Proximity Homogeneous Assay)、利用表面電漿子共振(SPR)現象之BIACORE法等測定。 In order to identify an amino acid that maintains binding activity to the first antigen CD3 (in the case of human CD3, which constitutes the γ chain, δ chain, or ε chain of human CD3), for example, an amino acid at a site thought to be involved in antigen binding can be implemented Change, make 1 amino acid change antibody and judge. 1 CD3 binding evaluation of amino acid-changing antibodies can be appropriately selected by methods commonly known to those skilled in the art. For example, ELISA, FACS (fluorescence activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay), and surface electricity can be used. The BIACORE method and other measurements of the SPR phenomenon.

為了鑑定維持與CD3之結合活性之胺基酸,可使 用各種改變體之結合量相對於改變前之抗體之比之結果。亦即,可使用令改變前抗體之結合量為X、1胺基酸改變體之結合量為Y時之Z(結合量之比)=Y/X之值。Z(結合量之比)為0.5以上、0.6以上、0.7以上、0.8以上、0.9以上,較佳為0.8以上時,可認為相對於改變前之抗體維持結合。可以維持該等結合之胺基酸出現的方式,製作抗體庫。 In order to identify amino acids that maintain binding activity with CD3, The results are obtained by using the ratio of the binding amount of each variant to the antibody before the change. That is, a value where the binding amount of the antibody before the change is X and the binding amount of the 1 amino acid modifier is Y (the ratio of the binding amount) = Y / X can be used. When Z (ratio of binding amount) is 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, and preferably 0.8 or more, it is considered that the binding is maintained with respect to the antibody before the change. An antibody library can be made by maintaining the appearance of such bound amino acids.

ECM(Extracellular matrix;細胞外基質)係細胞外之構成成分之一,存在於生命體內的各種部位。所以,已知和ECM強結合的抗體於血中動態變差(半減期變短)(WO2012093704A1)。是以,就抗體庫出現的胺基酸,也宜選擇ECM結合未增強的胺基酸較佳。 ECM (Extracellular matrix) is one of the constituent components outside the cell, and it exists in various parts of the living body. Therefore, it is known that an antibody that strongly binds to ECM deteriorates in blood (half-life becomes shorter) (WO2012093704A1). Therefore, for amino acids that appear in the antibody library, it is also preferable to choose amino acids that have no enhanced ECM binding.

選擇ECM結合未增強之胺基酸時,可例如依參考實施例2之方法評價ECM結合,使用各改變體之ECM結合值(ECL response;ECL反應之值)除以MRA(H鏈序列編號:57、L鏈序列編號:58)之抗體ECM結合值而得之值。該值可考慮多數改變所獲致之ECM結合增強效果,以直到5倍、6倍、7倍、8倍、9倍、10倍、15倍、20倍、30倍作為有效而採用,但較佳直到10倍作為有效而採用於庫。可依如此選擇之胺基酸出現的方法,製作抗體庫。 When selecting an amino acid whose ECM binding is not enhanced, for example, the ECM binding can be evaluated according to the method of Reference Example 2, and the ECM binding value (ECL response; ECL response value) of each variant is divided by MRA (H chain sequence number: 57. L chain sequence number: 58) The value obtained from the ECM binding value of the antibody. This value can consider the ECM combination enhancement effect obtained by most changes. It is effective up to 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 15 times, 20 times, and 30 times, but it is better. It is adopted up to 10 times as effective in the library. The library of antibodies can be prepared according to the method for the appearance of the amino acid thus selected.

又,非不限於此,當向CDR3插入的胜肽為6個胺基酸時,CDR3之伸長迴圈內若含有許多側鏈帶有正電荷的胺基酸,則向ECM之結合會增強,故迴圈內宜不出現3個以上的側鏈帶有正電荷的胺基酸較佳。 Moreover, without being limited to this, when the peptide inserted into CDR3 is 6 amino acids, if there are many amino acids with positive charges in the side chain in the extended loop of CDR3, the binding to ECM will be enhanced. Therefore, it is better not to have more than 3 amino acids with positive charges on the side chains in the loop.

本發明之庫,為了增加庫多樣性,可於可變區插 入胜肽。胜肽插入的理想區域,例如可變區中之露出於溶劑之區域及迴圈區域。其中,CDR1、CDR2、CDR3、FR3區域、迴圈區域為較佳。具體而言,H鏈可變區之Kabat編號31~35、50~65、71~74、95~102、L鏈可變區之Kabat編號24~34、50~56、89~97較理想,H鏈可變區之Kabat編號31、52a~61、71~74、97~101、L鏈可變區之Kabat編號24~34、51~56、89~96更理想。更佳為H鏈可變區之Kabat編號99~100之區域。又,胺基酸改變時,也可一併導入使和抗原之結合活性上昇之胺基酸。 In order to increase the diversity of the library of the present invention, Into the peptide. Ideal regions for peptide insertion, such as solvent-exposed regions and loop regions in variable regions. Among them, CDR1, CDR2, CDR3, FR3 regions, and loop regions are preferred. Specifically, Kabat numbers of H-chain variable regions are 31-35, 50-65, 71-74, 95-102, and Kabat numbers of L-chain variable regions are 24-34, 50-56, and 89-97. Kabat numbers of H-chain variable regions are 31, 52a-61, 71-74, 97-101, and Kabat numbers of L-chain variable regions are 24-34, 51-56, and 89-96. More preferably, it is a region with a Kabat number of 99 to 100 of the variable region of the H chain. When the amino acid is changed, an amino acid that increases the binding activity with the antigen may be introduced together.

作為本發明之一非限定態樣,插入胜肽之長度可例如為1~3個胺基酸、4~6個胺基酸、7~9個胺基酸、10~12個胺基酸、13~15個胺基酸、15~20個胺基酸、21-25個胺基酸,但較佳為1~3個胺基酸、4~6個胺基酸、7~9個胺基酸。 As a non-limiting aspect of the present invention, the length of the inserted peptide may be, for example, 1 to 3 amino acids, 4 to 6 amino acids, 7 to 9 amino acids, 10 to 12 amino acids, 13 to 15 amino acids, 15 to 20 amino acids, 21 to 25 amino acids, but preferably 1 to 3 amino acids, 4 to 6 amino acids, 7 to 9 amino groups acid.

用以使庫之多樣性增強之胜肽之插入處與長度之研究,可藉由製作已插入胜肽的分子並評價該分子之CD3結合以實施。評價可適當選擇該領域中通常知識者公知之方法,例如可藉由ELISA、FACS(fluorescence activated cell sorting)、ALPHA screen(Amplified Luminescent Proximity Homogeneous Assay)、利用表面電漿子共振(SPR)現象之BIACORE法等測定。 The study of insertion positions and lengths of peptides to enhance the diversity of the library can be carried out by making molecules into which peptides have been inserted and evaluating the CD3 binding of the molecules. The evaluation can be appropriately selected by methods generally known to those skilled in the art, such as BIACORE by ELISA, FACS (fluorescence activated cell sorting), ALPHA screen (Amplified Luminescent Proximity Homogeneous Assay), and surface plasmon resonance (SPR) phenomenon. Determination.

作為本發明之一非限定態樣,可依以下方式設計用以取得和CD3與第2抗原結合之抗體之抗體庫。 As a non-limiting aspect of the present invention, an antibody library for obtaining antibodies that bind to CD3 and the second antigen can be designed in the following manner.

步驟1:選擇保持有CD3結合能力之胺基酸(CD3結合量為未改變抗體之80%以上) Step 1: Select amino acids that retain CD3 binding capacity (CD3 binding amount is more than 80% of the unchanged antibody)

例如:可依以出現步驟1選出之胺基酸的方式,製作用以取得和CD3與第2抗原結合之抗體用的庫。 For example, a library for obtaining antibodies that bind to CD3 and the second antigen can be prepared in the manner in which the amino acid selected in step 1 appears.

作為本發明之一非限定態樣,可依以下方式設計用以取得和CD3與第2抗原結合之抗體用的抗體庫。 As a non-limiting aspect of the present invention, an antibody library for obtaining antibodies that bind to CD3 and the second antigen can be designed as follows.

步驟1:選擇保持有CD3結合能力之胺基酸(CD3結合量為未改變抗體之80%以上) Step 1: Select amino acids that retain CD3 binding capacity (CD3 binding amount is more than 80% of the unchanged antibody)

步驟2:將胺基酸插入H鏈CDR3之99-100(Kabat numbering)之間 Step 2: Insert amino acid between 99-100 (Kabat numbering) of CDR3 of H chain

例如:除了步驟1,尚於步驟2在CDR3區域插入胺基酸,可製作使庫之多樣性增強之用以取得和CD3與第2抗原結合之抗體之庫。 For example, in addition to step 1, inserting an amino acid in the CDR3 region in step 2 can create a library that enhances the diversity of the library to obtain antibodies that bind to CD3 and the second antigen.

作為本發明之一非限定態樣,可依以下方式設計用以取得和CD3與第2抗原結合之抗體之抗體庫。 As a non-limiting aspect of the present invention, an antibody library for obtaining antibodies that bind to CD3 and the second antigen can be designed in the following manner.

步驟1:選擇保持有CD3結合能力之胺基酸(CD3結合量為未改變抗體之80%以上) Step 1: Select amino acids that retain CD3 binding capacity (CD3 binding amount is more than 80% of the unchanged antibody)

步驟2:選擇ECM結合比起改變前,和MRA比較為10倍以內之胺基酸 Step 2: Select the amino acid that is within 10 times the MCM compared with the MRA before the change

步驟3:於H鏈CDR3之99-100(Kabat numbering)之間插入胺基酸 Step 3: Insert amino acid between 99-100 (Kabat numbering) of H chain CDR3

例如:除了步驟1及3,更加入步驟2,能針對在庫出現之胺基酸,也選擇ECM結合未增強之胺基酸,但不限於此手法。又,不經步驟2之庫設計,也能對於由庫取得之抗原結合分子測定ECM結合並進行評價。 For example: In addition to steps 1 and 3, step 2 is added, and for the amino acids appearing in the library, the ECM binding unenhanced amino acids can also be selected, but it is not limited to this method. In addition, without the library design of step 2, ECM binding can be measured and evaluated for the antigen-binding molecules obtained from the library.

作為本發明之一非限定態樣,當使用VH區域 CE115HA000(序列編號:52)作為CD3(CD3ε)結合抗體之模板序列時,庫設計利用之胺基酸可列舉重鏈可變區所含之Kabat編號11位、31位、52a位、52b位、52c位、53位、54位、56位、57位、61位、72位、78位、98位、99位、100位、100a位、100b位、100c位、100d位、100e位、100f位、100g位、101位中任一者以上的胺基酸等。 As a non-limiting aspect of the present invention, when the VH region is used When CE115HA000 (sequence number: 52) is used as the template sequence of the CD3 (CD3ε) binding antibody, the amino acids used in the library design can include Kabat number 11, 31, 52a, 52b, 52c bit, 53 bit, 54 bit, 56 bit, 57 bit, 61 bit, 72 bit, 78 bit, 98 bit, 99 bit, 100 bit, 100a bit, 100b bit, 100c bit, 100d bit, 100e bit, 100f bit Amino acids such as 100 g, 101 g or more.

對於VH區域CE115HA000(序列編號:52)施以V11L/L78I之胺基酸改變而得的上述庫為較佳,但不限定於此。再者,於VH區域CE115HA000(序列編號:52)施以V11L/D72A/L78I/D101Q之胺基酸改變而得的上述庫為較佳,但不限定於此。 The above library obtained by applying an amino acid change of V11L / L78I to CE115HA000 (sequence number: 52) in the VH region is preferred, but is not limited thereto. Furthermore, the aforementioned library obtained by applying an amino acid change of V11L / D72A / L78I / D101Q to CE115HA000 (sequence number: 52) in the VH region is preferable, but is not limited thereto.

作為本發明之一非限定態樣,當使用VL區域GLS3000(序列編號:53)作為CD3(CD3ε)結合抗體之模板序列時,作為庫設計利用之胺基酸,可列舉輕鏈可變區所含之Kabat編號24位、25位、26位、27位、27a位、27b位、27c位、27e位、30位、31位、33位、34位、51位、52位、53位、54位、55位、56位、74位、77位、89位、90位、92位、93位、94位、96位、107位中之任一者以上的胺基酸等。 As a non-limiting aspect of the present invention, when the VL region GLS3000 (sequence number: 53) is used as the template sequence of the CD3 (CD3ε) binding antibody, as the amino acid used for library design, a light chain variable region can be cited Included Kabat numbers 24, 25, 26, 27, 27a, 27b, 27c, 27e, 30, 31, 33, 34, 51, 52, 53, 54 Amino acids such as at least one of the 55th, 55th, 56th, 74th, 77th, 89th, 90th, 92th, 93th, 94th, 96th, and 107th positions.

本發明中,庫設計(設計)包括例如利用NNK及TRIM Library等(Gonzalez-Munoz A et al.MAbs 2012,Lee CV et al.J Mol Biol.2004,Knappik A.et al.J Mol Biol.2000,Tiller T et al.MAbs 2013)之公知之庫技術,設計含有特定部位之胺基酸改變為所望胺基酸之抗原結合分域或含抗原結合分域之抗原結合分子之多數改變體之庫,但不特別限定於此態 樣。 In the present invention, library design (design) includes, for example, the use of NNK and TRIM Library (Gonzalez-Munoz A et al. MAbs 2012, Lee CV et al. J Mol Biol. 2004, Knappik A. et al. J Mol Biol. 2000 (Tiller T et al. MAbs 2013), a well-known library technology is designed to design a library of most variants of an amino acid-binding domain containing a specific amino acid to a desired amino acid-binding domain or an antigen-binding domain containing an antigen-binding domain. , But not limited to this state kind.

本發明中,所謂「1或多數胺基酸」不特別限定胺基酸的數目,可為2種以上的胺基酸、5種以上的胺基酸、10種以上的胺基酸、15種以上的胺基酸或20種胺基酸。 In the present invention, the "one or more amino acids" does not specifically limit the number of amino acids, and may be two or more amino acids, five or more amino acids, 10 or more amino acids, and 15 types. The above amino acids or 20 kinds of amino acids.

關於融合多胜肽之展示,可將抗原結合分子之可變區之融合多胜肽於細胞、病毒或噬粒粒子的表面以各種態樣展示。該等態樣包括單鏈Fv片段(scFv)、F(ab)片段及該等片段之多價形態。多價之形態較佳為ScFv、Fab或F(ab')之二聚物,此等在本說明書分別指稱為(ScFv)2、F(ab)2及F(ab')2。多價形態之展示較理想的理由之一,可認為係:利用多價形態之展示,可鑑定通常低親和性之選殖體、或具有在選擇過程中更有效率地選擇稀少的選殖體之多數抗原結合部位。 As for the display of the fused polypeptide, the fused polypeptide of the variable region of the antigen-binding molecule can be displayed on the surface of a cell, a virus, or a phagemid particle in various forms. These aspects include single-chain Fv fragments (scFv), F (ab) fragments, and multivalent forms of these fragments. The polyvalent form is preferably a dimer of ScFv, Fab, or F (ab '), which is referred to in this specification as (ScFv) 2, F (ab) 2, and F (ab') 2, respectively. One of the reasons why the display of multivalent forms is ideal can be considered as: using the display of multivalent forms can identify usually low-affinity selections, or have the ability to select rare selections more efficiently in the selection process Most antigen-binding sites.

在細菌噬菌體表面使含抗體片段之融合多胜肽展示之方法在該發明所屬之技術區域係為公知,例如WO1992001047及本說明書中已記載。此外,於WO1992020791、WO1993006213、WO1993011236及1993019172已記載關連的方法,該領域中通常知識者可適當使用該等方法。在其他公知文獻(H.R.Hoogenboom & G.Winter(1992)J.Mol.Biol.227,381-388、WO1993006213及WO1993011236),揭示對於在噬菌體表面展示之各種抗原,利用人工再配置的可變區基因庫存所進行之抗體之鑑定。 A method for displaying a fusion peptide containing an antibody fragment on the surface of a bacterial phage is well known in the technical region to which the invention belongs, for example, it has been described in WO1992001047 and this specification. In addition, related methods have been described in WO1992020791, WO1993006213, WO1993011236, and 1993019172, and those skilled in the art can appropriately use these methods. In other well-known literatures (HR Hoogenboom & G. Winter (1992) J. Mol. Biol. 227, 381-388, WO1993006213, and WO1993011236), it has been revealed that for various antigens displayed on the surface of phages, artificially reconfigured variable region gene libraries are used. Identification of antibodies performed.

為了以scFv態樣展示建構載體時,此載體含有編碼為抗原結合分子之輕鏈可變區及重鏈可變區的核酸序列。一般而言,編碼為抗原結合分子之重鏈可變區之核酸序列融合於 病毒外殼蛋白質構成成分。編碼為抗原結合分子之輕鏈可變區的核酸序列,利用編碼為胜肽連結子之核酸序列而連結於抗原結合分子之重鏈可變區。胜肽連結子一般包括約至15個胺基酸。可任意地將有用於編碼為例如精製或檢測的標記的其他序列,融合在編碼為抗原結合分子之輕鏈可變區或抗原結合分子之重鏈可變區中之任一或兩者的核酸序列的3'末端。 When constructing a vector in scFv format, the vector contains a nucleic acid sequence encoding a light chain variable region and a heavy chain variable region as antigen-binding molecules. Generally, a nucleic acid sequence encoding a heavy chain variable region that is an antigen-binding molecule is fused to Viral shell protein constituents. The nucleic acid sequence encoding the light chain variable region of the antigen-binding molecule is linked to the heavy chain variable region of the antigen-binding molecule by using the nucleic acid sequence encoding the peptide linker. The peptide linker typically includes about to 15 amino acids. Nucleic acid encoding any one or both of a light chain variable region that is an antigen-binding molecule or a heavy chain variable region of an antigen-binding molecule may be arbitrarily mixed with another sequence that is encoded as, for example, a tag for purification or detection. 3 'end of the sequence.

建構用於以F(ab)態樣展示之載體時,此載體含有編碼為抗原結合分子之可變區及抗原結合分子之不變區之核酸序列。編碼為輕鏈可變區之核酸,融合於編碼為輕鏈不變區之核酸序列。編碼為抗原結合分子之重鏈可變區之核酸序列,融合於編碼為重鏈不變CH1區域之核酸序列。一般而言編碼為重鏈可變區及不變區之核酸序列,融合於編碼為病毒外殼蛋白質的全部或一部分的核酸序列。重鏈可變區及不變區較佳為以和病毒外殼蛋白質之至少一部分的融合體的形式表現,輕鏈可變區及不變區則和重鏈病毒外殼融合蛋白質各自表現。重鏈及輕鏈彼此結合,此結合可為共價鍵也可為非共價鍵。可任意地將有用於編碼為例如精製或檢測的標記的其他序列,融合在編碼為抗原結合分子之輕鏈可變區的核酸序列的3'末端或編碼為抗原結合分子之重鏈可變區中的核酸序列的3'末端的任一者或兩者。 When constructing a vector for display in F (ab) form, the vector contains a nucleic acid sequence encoding a variable region of an antigen-binding molecule and an invariant region of the antigen-binding molecule. A nucleic acid encoded as a variable region of a light chain is fused to a nucleic acid sequence encoded as a constant region of a light chain. The nucleic acid sequence encoding the variable region of the heavy chain of the antigen-binding molecule is fused to the nucleic acid sequence encoding the constant CH1 region of the heavy chain. Generally, a nucleic acid sequence encoded as a variable region and an invariant region of a heavy chain is fused to a nucleic acid sequence encoded as all or part of a viral coat protein. The heavy chain variable region and the invariant region are preferably expressed as a fusion with at least a portion of a viral coat protein, and the light chain variable region and the constant region are each expressed with a heavy chain virus coat fusion protein. The heavy and light chains are bonded to each other, and this combination may be a covalent bond or a non-covalent bond. Optionally, other sequences having a tag for encoding, for example, purification or detection, may be fused to the 3 'terminus of the nucleic acid sequence encoding the light chain variable region of the antigen-binding molecule or the heavy chain variable region of the antigen-binding molecule. Either or both of the 3 'terminus of the nucleic acid sequence in.

關於載體向寄主細胞之導入,以前述方式構建之載體,為了放大及/或表現而導入到寄主細胞。載體可以利用包括電穿孔、磷酸鈣沉澱等公知之轉形法而導入到寄主細胞。載體為如病毒之感染性粒子時,載體本身會侵入寄主細胞。利 用插入有編碼為融合蛋白質之多核苷酸的可複製之表現載體進行寄主細胞之轉染及利用公知之手法進行噬菌體粒子之生產,可將融合蛋白質展示在噬菌體粒子表面。 Regarding the introduction of the vector into the host cell, the vector constructed in the manner described above is introduced into the host cell for amplification and / or expression. The vector can be introduced into a host cell by a well-known transformation method including electroporation and calcium phosphate precipitation. When the vector is an infectious particle such as a virus, the vector itself invades the host cell. Profit The transfection of host cells with a replicable expression vector inserted with a polynucleotide encoding a fusion protein and the production of phage particles by known methods can display the fusion protein on the surface of the phage particles.

可複製之表現載體,能使用各種方法導入到寄主細胞。於一非限定之實施態樣,載體可如WO2000106717記載,使用電穿孔法導入到細胞。將細胞於標準培養液中任意地於37℃培養約6至48小時(或直到於600nm之OD成為0.6至0.8為止),然後將培養液離心分離,以將(例如利用傾析)培養上清取出。於精製之初期階段較佳為將細胞丸粒再懸浮於緩衝液(例如1.0mM之HEPES(pH7.4))中。然後,再度離心分離以從懸浮液取出上清。將獲得之細胞丸粒再懸浮於例如稀釋成5-20%V/V的甘油。再度離心分離以從懸浮液去除上清,以獲得細胞丸粒。依藉由將該細胞丸粒再懸浮於水或稀釋的甘油之中獲得之懸浮液之菌體濃度之測定值,將最終菌體濃度使用水或稀釋甘油調整為所望濃度。 Reproducible expression vectors can be introduced into host cells using a variety of methods. In a non-limiting embodiment, the vector can be introduced into cells using electroporation as described in WO2000106717. The cells are optionally cultured in a standard culture solution at 37 ° C for about 6 to 48 hours (or until the OD at 600 nm becomes 0.6 to 0.8), and then the culture solution is centrifuged to separate (for example, by decantation) the culture supernatant take out. In the initial stage of purification, the cell pellet is preferably resuspended in a buffer solution (for example, 1.0 mM HEPES (pH 7.4)). Then, centrifuge again to remove the supernatant from the suspension. The obtained cell pellets are resuspended in, for example, glycerol diluted to 5-20% V / V. Centrifuge again to remove the supernatant from the suspension to obtain cell pellets. Based on the measured value of the cell concentration of the suspension obtained by resuspending the cell pellets in water or diluted glycerol, the final cell concentration was adjusted to the desired concentration using water or diluted glycerol.

例如:作為理想接受細胞,可列舉有電穿孔回應能力的大腸菌株SS320(Sidhu等(Methods Enzymol.(2000)328,333-363))。大腸菌株SS320,係將可孕性游離基因體(F'質體)或XL1-BLUE於對於移轉到MC1061細胞為充分的條件,使MC1061細胞和XL1-BLUE細胞交配而製備。對於在ATCC(10801 University Boulevard,Manassas,Virginia)寄存的大腸菌株SS320給予寄存編號98795。可於此菌株複製噬菌體的各種F'游離基因體,亦可使用在本發明。適當的游離基因體可以由在ATCC寄存的菌株取得,或也可由市售品取得(TG1, CJ236、CSH18、DHF'、ER2738、JM101、JM103、JM105、JM107、JM109、JM110、KS1000、XL1-BLUE、71-18等)。 For example, as an ideal recipient cell, a large intestine strain SS320 (Sidhu et al. (Methods Enzymol. (2000) 328, 333-363)) capable of responding to electroporation can be cited. The large intestine strain SS320 was prepared by mating fertile free genomes (F 'plastids) or XL1-BLUE under conditions sufficient for migration to MC1061 cells, and mating MC1061 cells with XL1-BLUE cells. The coliform strain SS320 deposited at ATCC (10801 University Boulevard, Manassas, Virginia) was given a deposit number 98795. Various F 'episomes that can replicate phage in this strain can also be used in the present invention. Appropriate episomes can be obtained from strains deposited with the ATCC, or they can be obtained from commercially available products (TG1, CJ236, CSH18, DHF ', ER2738, JM101, JM103, JM105, JM107, JM109, JM110, KS1000, XL1-BLUE, 71-18, etc.).

若電穿孔使用更高DNA濃度(約10倍),轉形率會提高,向寄主細胞轉形之DNA的量增加。使用高菌體濃度也會提高效率(約10倍)。由於移轉的DNA量增加,有更大多樣性,能製作序列不同之獨立選殖體數目大的庫。轉形細胞通常可利用能否在含抗生物質之培養基增殖以選擇。 If a higher DNA concentration (about 10-fold) is used for electroporation, the transformation rate will increase and the amount of DNA transformed into the host cell will increase. The use of high cell concentrations also improves efficiency (about 10 times). As the amount of transferred DNA increases, there is greater diversity, and libraries with a large number of independent colonies with different sequences can be made. Transformed cells are usually selected based on their ability to proliferate in an antibiotic-containing medium.

本發明提供編碼為本發明之抗原結合分子之核酸。本發明之該核酸可為DNA、RNA等各種形態。 The invention provides a nucleic acid encoding an antigen-binding molecule of the invention. The nucleic acid of the present invention can be in various forms such as DNA and RNA.

本發明也提供含有上述本發明之核酸之載體。載體種類可因應導入有載體之寄主細胞由該領域中通常知識者適當選擇,例如可使用上述載體。 The present invention also provides a vector containing the nucleic acid of the present invention described above. The type of the vector can be appropriately selected by those skilled in the art in accordance with the host cell into which the vector is introduced, and for example, the aforementioned vector can be used.

本發明也關於由上述本發明之載體轉形之寄主細胞。寄主細胞可由該領域中通常知識者適當選擇,例如可使用上述寄主細胞。 The present invention also relates to a host cell transformed with the vector of the present invention described above. The host cells can be appropriately selected by those skilled in the art, and for example, the above-mentioned host cells can be used.

又,本發明提供一種醫藥組合物,含有本發明之抗原結合分子及醫學上可容許之擔體。本發明之醫藥組合物可除了本發明之抗原結合分子更導入醫藥上可容許之擔體,並以公知方法製劑化。例如:能以水或其他藥學上可容許之溶液的無菌性溶液、或懸浮液劑之注射劑之形態以非經口的使用。例如:藥理學上容許之擔體或介質,具體而言,可和滅菌水、生理食鹽水、植物油、乳化劑、懸浮劑、界面活性劑、安定劑、香味劑、賦形劑、運載劑、防腐劑、黏結劑等適當組合,以一般認可的製藥實務要求的單位用量形態混合以製劑化。具體而 言,可列舉輕質無水矽酸、乳糖、結晶纖維素、甘露醇、澱粉、羧甲纖維素鈣、羧甲纖維素鈉、羥丙基纖維素、羥丙基甲基纖維素、聚乙烯基縮醛二乙胺基乙酸酯、聚乙烯基吡咯烷酮、明膠、中鏈脂肪酸三酸甘油酯、聚氧乙烯硬化篦麻子油60、白糖、羧基甲基纖維素、玉米澱粉、無機鹽類等作為擔體。此等製劑的有效成分量可設為能獲得指示之範圍的適當容量。 The present invention also provides a pharmaceutical composition containing the antigen-binding molecule of the present invention and a medically acceptable carrier. The pharmaceutical composition of the present invention can be introduced into a pharmaceutically acceptable carrier in addition to the antigen-binding molecule of the present invention, and formulated in a known method. For example, it can be used parenterally in the form of sterile solutions of water or other pharmaceutically acceptable solutions, or injections of suspensions. For example: Pharmacologically acceptable carriers or media, specifically, with sterilized water, physiological saline, vegetable oils, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents, excipients, carriers, Preservatives, binders, and other appropriate combinations are mixed in the form of unit dosages required by generally accepted pharmaceutical practice for formulation. Specifically and Examples include light anhydrous silicic acid, lactose, crystalline cellulose, mannitol, starch, calcium carmellose calcium, sodium carmellose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and polyvinyl. Acetal diethylaminoacetate, polyvinylpyrrolidone, gelatin, medium chain fatty acid triglyceride, polyoxyethylene hardened ramie oil 60, white sugar, carboxymethyl cellulose, corn starch, inorganic salts, etc. Carrying body. The amount of the active ingredient in these preparations can be set to an appropriate capacity to obtain the indicated range.

用以注射之無菌組合物可使用如注射用蒸餾水之運載劑依通常之製劑實務配方。注射用水溶液,例如含生理食鹽水、葡萄糖、其他輔助藥之等張液,例如D-山梨醇、D-甘露糖、D-甘露醇、氯化鈉,也可和適當的溶解輔助劑,例如醇,具體而言,乙醇、多元醇例如丙二醇、聚乙二醇、非離子性界面活性劑例如Polysorbate80(TM)、HCO-50併用。 Sterile compositions for injection can be formulated using carriers such as distilled water for injection in accordance with usual formulation practices. Aqueous solutions for injection, such as isotonic solutions containing physiological saline, dextrose, and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride, may also be used with appropriate dissolution aids, such as The alcohol, specifically, ethanol, a polyhydric alcohol such as propylene glycol, polyethylene glycol, and a nonionic surfactant such as Polysorbate 80 (TM), HCO-50 are used in combination.

油性液可列舉麻油、黃豆油,也可和作為溶解輔助劑之苯甲酸苄酯、苯甲醇併用。又,也可摻合緩衝劑,例如磷酸鹽緩衝液、乙酸鈉緩衝液、止痛劑例如:鹽酸普卡因、安定劑例如苯甲醇、苯酚、抗氧化劑。調製的注射液通常填充在適當的安瓿。投予較佳為非經口投予,具體而言,可列舉注射劑型、經鼻投予劑型、經肺投予劑型、經皮投予型等。注射劑型,例如:利用靜脈內注射、肌肉內注射、腹腔內注射、皮下注射等以全身或局部性地投予。 Examples of the oily liquid include sesame oil and soybean oil, and may be used in combination with benzyl benzoate and benzyl alcohol as dissolution aids. Further, a buffering agent such as a phosphate buffer, a sodium acetate buffer, an analgesic such as procaine hydrochloride, a stabilizer such as benzyl alcohol, phenol, and an antioxidant may be blended. The prepared injection is usually filled in a suitable ampoule. The administration is preferably parenteral administration, and specific examples include injection forms, nasal administration forms, pulmonary administration forms, transdermal administration forms, and the like. Injectable dosage forms are administered systemically or locally, for example, by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.

又,可依患者的年齡、症狀選擇適當投予方法。含有多胜肽或編碼為多胜肽之多核苷酸之醫藥組合物之投予量,例如:可於每1次體重每1kg為0.0001mg至1000mg之範圍選擇。或例如:可於每位患者在0.001至100000mg/body之 範圍的投予量選擇,可不一定限於該等數值。投予量、投予方法依患者之體重、年齡、症狀等而變動,可由該領域中通常知識者適當選擇。 In addition, an appropriate administration method can be selected according to the age and symptoms of the patient. The dosage of a pharmaceutical composition containing a polypeptide or a polynucleotide encoding a polypeptide can be selected, for example, from 0.0001 mg to 1000 mg per 1 kg of body weight per time. Or for example: between 0.001 and 100,000 mg / body per patient The choice of the range of dosage may not necessarily be limited to these values. The amount and method of administration vary depending on the weight, age, and symptoms of the patient, and can be appropriately selected by those skilled in the art.

又,本發明提供:包含投予本發明之抗原結合分子的步驟之癌治療方法、癌治療使用的本發明之抗原結合分子、癌治療劑製造時本發明之抗原結合分子之使用、及包含使用本發明之抗原結合分子之步驟之癌治療劑製造用的處理。 The present invention also provides a method for treating cancer including a step of administering the antigen-binding molecule of the present invention, the antigen-binding molecule of the present invention for use in cancer treatment, the use of the antigen-binding molecule of the present invention during the manufacture of a cancer therapeutic agent, and the use thereof. The process for producing a cancer therapeutic agent in the step of the antigen-binding molecule of the present invention.

本說明書使用之胺基酸的3字母表示記載與單字母表示記載的對應如下。丙胺酸:Ala:A精胺酸:Arg:R天冬醯胺酸:Asn:N天冬胺酸:Asp:D半胱胺酸:Cys:C麩醯胺酸:Gln:Q麩胺酸:Glu:E甘胺酸:Gly:G組胺酸:His:H異白胺酸:Ile:I白胺酸:Leu:L離胺酸:Lys:K甲硫胺酸:Met:M苯丙胺酸:Phe:F脯胺酸:Pro:P絲胺酸:Ser:S蘇胺酸:Thr:T色胺酸:Trp:W酪胺酸:Tyr:Y纈胺酸:Val:V The correspondence between the 3-letter representation and the single-letter representation of the amino acid used in this specification is as follows. Alanine: Ala: A Arginine: Arg: R Aspartic acid: Asn: N Aspartic acid: Asp: D Cysteine: Cys: C-glutamic acid: Gln: Q-glutamic acid: Glu: E Glycine: Gly: G Histidine: His: H Isoleucine: Ile: I Leucine: Leu: L Leucine: Lys: K Methionine: Met: M Phenylalanine: Phe: F proline: Pro: P serine: Ser: S threonine: Thr: T tryptophan: Trp: W tyrosine: Tyr: Y valine: Val: V

該領域中通常知識者當然可理解:將本說明書記載之1或多數態樣任意組合者,只要和基於該領域中通常知識者之技術常識於技術上不矛盾即涵蓋於本發明。 Of course, it is understood by those skilled in the art that any combination of one or more of the aspects described in this specification is encompassed by the present invention as long as it is not technically inconsistent with the common technical knowledge of those skilled in the art.

本說明書引用的全部先前技術文獻援引於本說明書作為參照。 All prior art documents cited in this specification are incorporated herein by reference.

本發明依以下實施例進一步例示,但不限定於下列實施例。 The present invention is further illustrated by the following examples, but is not limited to the following examples.

【實施例】 [Example]

[實施例1]和CD3(第1抗原)及其他抗原(第2抗原) 結合且不和不同的細胞上之CD3(第1抗原)及該其他抗原(第2抗原)同時結合之改變免疫球蛋白可變(Fab)區域之概念 [Example 1] CD3 (first antigen) and other antigens (second antigen) The concept of binding to and not binding to CD3 (the first antigen) and the other antigen (the second antigen) on different cells changes the concept of the variable (Fab) region of the immunoglobulin

據認為:免疫球蛋白藉由向2分子以上的活性型FcγR同時結合、或向另一抗原與活性型FcγR同時結合而產生活化FcγR之交聯反應,則會傳達FcγR之ITAM信號,可能引起免疫細胞之活化。IgG型之抗體1分子,如上述,僅能和1分子FcγR結合,所以只有在抗原存在下,2分子以上的活性型FcγR交聯並引起免疫細胞活化。 It is believed that the cross-linking reaction that activates FcγR by immunoglobulin by binding to more than 2 molecules of active FcγR at the same time, or simultaneously binding to another antigen and active FcγR, will transmit the ITAM signal of FcγR, which may cause immunity Cell activation. As mentioned above, one molecule of an IgG antibody can only bind to one molecule of FcγR, so only in the presence of an antigen, two or more molecules of active FcγR can crosslink and activate immune cells.

又,IgG型之抗體以可變區(Fab)和抗原結合時,能同時以Fc區和1分子FcγR結合,所以會發生表現該抗原之細胞與FcγR表現細胞間之交聯。依表現抗原表現之細胞,有時會有抗原與FcγR之交聯較不理想的情形。具體而言,例如抗原為CD3時,T細胞和FcγR表現細胞交聯,藉此引起細胞介素釋出等免疫活化的情形(J.Immunol.(1999)Aug 1,163(3),1246-52)。如此的情形中,可藉由對於Fc區導入改變,而消除對於FcγR之結合活性,防止抗原與FcγR的交聯反應(Advanced Drug Delivery Reviews(2006)58,640-656)。同樣地,IgG型抗體之抗原為CD40、OX40、CD27等TNFR超級家族分子、CD3與TLR2、4、8、9等TLR等的情形,亦為若介由FcγR發生交聯,則會發生全身性免疫活化,故和其他細胞表現之該等分子同時結合不理想。 In addition, when an IgG-type antibody binds to a variable region (Fab) and an antigen, it can simultaneously bind to the Fc region and one molecule of FcγR. Therefore, cross-linking occurs between a cell expressing the antigen and an FcγR-expressing cell. Cells that express antigens sometimes have less desirable cross-linking of antigen and FcγR. Specifically, for example, when the antigen is CD3, T cells and FcγR express cells that are cross-linked, thereby causing immune activation such as cytokine release (J. Immunol. (1999) Aug 1,163 (3), 1246-52) . In such a case, by introducing changes to the Fc region, the binding activity to FcγR can be eliminated, and the cross-linking reaction between the antigen and FcγR can be prevented (Advanced Drug Delivery Reviews (2006) 58,640-656). Similarly, when the antigen of an IgG antibody is a TNFR superfamily molecule such as CD40, OX40, and CD27, and CD3 and TLRs such as TLR2, 4, 8, and 9 are systemic, if cross-linking occurs through FcγR, systemicity will occur. Immune activation, so the simultaneous binding of these molecules with other cells is not ideal.

另一方面,至今為止的多專一性抗體雖能和多數抗原同時結合,但依抗原組合,有時不宜和多數抗原同時結合。例如:已知為黏著分子的整合素αvβ3,因為在許多癌細胞 及腫瘤周邊的血管表現,所以作為標靶腫瘤的目標分子為有用(R.Haubner,PLoS Med.,2,e70(2005)),但另一方面,已知在各種正常細胞也有表現(Thromb Haemost.1998 Nov;80(5):726-34.)。因此多專一性抗體若和CD3與整合素αvβ3的兩者同時結合,據認為正常細胞會因T細胞的強力細胞傷害活性而受傷害。 On the other hand, although multispecific antibodies have been able to bind to most antigens at the same time, depending on the combination of antigens, it is sometimes inappropriate to bind to most antigens at the same time. For example: integrin αvβ3, known as an adhesion molecule, because in many cancer cells And vascular expression around the tumor, it is useful as a target molecule for target tumors (R. Haubner, PLoS Med., 2, e70 (2005)), but on the other hand, it is also known to show in various normal cells (Thromb Haemost 1998 Nov; 80 (5): 726-34.). Therefore, if the multispecific antibody binds to both CD3 and integrin αvβ3 at the same time, it is thought that normal cells will be injured by the potent cell-harmful activity of T cells.

而作為控制如此之不宜的交聯反應的方法,有人考慮:1個可變(Fab)區域中,其一部分和第1抗原結合,且未涉及此結合之該可變(Fab)區域的其他部分和第2抗原結合之可變區(Dual Binding Fab)(第1圖)。此時如第1圖所示,當1個可變(Fab)區域中靠近的2個部分須向各自的抗原結合時,若第1抗原結合,會妨礙第2抗原之結合,同樣,若第2抗原之結合已結合的話,會妨礙第1抗原之結合。因此有如此的雙結合Fab之性質的改良抗體,無法和第1抗原及第2抗原同時結合,據認為不會引起第1抗原與第2抗原之交聯反應(第2圖)。又,當第1抗原與第2抗原係如可溶型蛋白質未在細胞膜上表現、或兩者係於同一細胞上存在時,雖能和第1抗原與第2抗原兩者同時結合,但於各自不同的細胞上表現時則無法同時結合,據認為2個細胞不交聯也是雙結合Fab(Dual Binding Fab)(第3圖)。另一方面,據認為:和又另一者之可變(Fab)區域結合之抗原(第3抗原)會和第1抗原起交聯反應(第4圖),又,也會和第2抗原起交聯反應(第5圖)。作為該抗體之不變區,可使用和FcγR結合之Fc區,也可使用對於FcγR之結合活性減低的Fc區。 As a method for controlling such an inappropriate cross-linking reaction, some people have considered that: a part of a variable (Fab) region is bound to the first antigen, and the other part of the variable (Fab) region that does not involve this binding is involved Variable Binding Fab (Second Binding Fab) (Figure 1). At this time, as shown in Figure 1, when two adjacent parts of a variable (Fab) region must bind to their respective antigens, if the first antigen binds, it will prevent the binding of the second antigen. Similarly, if the first If the binding of 2 antigens has been bound, the binding of the first antigen will be prevented. Therefore, an improved antibody having such a double-binding Fab property cannot bind to the first antigen and the second antigen at the same time, and it is thought that it will not cause a cross-linking reaction between the first antigen and the second antigen (Figure 2). In addition, when the first antigen and the second antigen system such as soluble proteins are not expressed on the cell membrane, or both are present on the same cell, they can bind to both the first antigen and the second antigen at the same time. When expressed on different cells, they cannot bind at the same time, and it is considered that the two cells are also dual binding Fabs without cross-linking (Figure 3). On the other hand, it is thought that the antigen (the third antigen) bound to the variable (Fab) region of the other will react with the first antigen (Fig. 4), and will also react with the second antigen Cross-linking reaction (Figure 5). As the invariant region of the antibody, an Fc region that binds to FcγR, or an Fc region that has reduced binding activity to FcγR may be used.

若利用如此的雙結合Fab的性質,例如使利用介由抗體而重新導向T細胞以傷害表現癌抗原之癌細胞的技術進一步帶有標靶到癌組織中之整合素的功能,能使癌專一性更提高。 If the nature of such a double-binding Fab is used, for example, the technology that redirects T cells through antibodies to harm cancer cells expressing cancer antigens will further have the function of targeting integrin to cancer tissues, which can make cancer specific. Sex is more improved.

亦即,藉由將可變(Fab)區域改良成雙結合Fab(Dual Binding Fab),以賦予以下性質的話,能創制有第1圖所示之作用的抗體。 In other words, by modifying the variable (Fab) region into a dual binding Fab, the following properties can be imparted to an antibody capable of producing the effects shown in FIG. 1.

1.對於第1抗原有結合活性 1. Has binding activity to the first antigen

2.對於第2抗原有結合活性 2. Has binding activity to the second antigen

3.對於第1抗原及第2抗原不同時結合 3. The first and second antigens do not bind at the same time

又,「對於第1抗原及第2抗原不同時結合」,包括:表現第1抗原之細胞與表現第2抗原之細胞的2個細胞不交聯、或和在各自的細胞表現的第1抗原與第2抗原不同時結合,及,第1抗原與第2抗原為如可溶型蛋白質般未在細胞膜上表現、或兩者於同一細胞上存在時,雖能和第1抗原與第2抗原兩者同時結合,但在各自不同的細胞上表現時,無法同時結合的情形。 In addition, "the first antigen and the second antigen do not bind at the same time" includes a case where the cell expressing the first antigen and the cell expressing the second antigen are not crosslinked, or the first antigen expressed in each cell is not crosslinked. When it does not bind to the second antigen at the same time, and if the first antigen and the second antigen are not expressed on the cell membrane like soluble proteins, or both are present on the same cell, they can bind the first antigen and the second antigen. When the two are combined at the same time, they cannot be combined at the same time when they are expressed on different cells.

同樣地,藉由將可變(Fab)區域改良成雙結合Fab,賦予以下性質的話,可創製例如有如第6圖之作用的抗體。 Similarly, by modifying the variable (Fab) region into a double-binding Fab, the following properties can be imparted to create an antibody that acts as shown in FIG. 6, for example.

1.對於T細胞上之第1抗原有結合活性 1. Binding activity to the first antigen on T cells

2.對於抗原展示細胞上之第2抗原有結合活性 2. Has binding activity to the second antigen on the antigen display cell

3.對於第1抗原及第2抗原不同時結合 3. The first and second antigens do not bind at the same time

[實施例2]抗人、食蟹猴CD3ε抗體CE115之製作 [Example 2] Preparation of anti-human and cynomolgus CD3ε antibody CE115

(2-1)使用人CD3、食蟹猴CD3表現細胞免疫大鼠製作融合瘤 (2-1) Using human CD3 and cynomolgus CD3 expressing cells to immunize rats to make fusion tumors

對於SD大鼠(雌、免疫開始時6週大、日本Charles River),將人CD3εγ或食蟹猴CD3εγ表現Ba/F3細胞以下列方式免疫。若以初次免疫時為第0日,於第0日時將佛洛依德完全佐劑(Difco)和5×107個人CD3εγ表現Ba/F3細胞進行腹腔內投予。於第14日將佛洛依德不完全佐劑(Difco)和5×107個食蟹猴CD3εγ表現Ba/F3細胞進行腹腔內投予,之後每隔1週的期間將5×107個人或食蟹猴CD3εγ表現Ba/F3細胞交替地進行腹腔內投予4次。CD3εγ之最終投予1週後(第49日),將人CD3εγ表現Ba/F3細胞進行靜脈內投予作為追加(boost),於3日後,將大鼠脾臟細胞與小鼠骨髓瘤細胞SP2/0依使用PEG1500(Roche Diagnostics)之常法進行細胞融合。融合細胞,亦即融合瘤,係以含10% FBS之RPMI1640培養基(以下稱為10%FBS/RPMI1640)進行培養。 For SD rats (female, 6 weeks old at the start of immunization, Charles River, Japan), human CD3εγ or cynomolgus CD3εγ expressing Ba / F3 cells were immunized in the following manner. If the first immunization is the 0th day, Freud's complete adjuvant (Difco) and 5 × 10 7 human CD3εγ-expressing Ba / F3 cells will be administered intraperitoneally on the 0th day. On the 14th day, Freund's incomplete adjuvant (Difco) and 5 × 10 7 cynomolgus CD3εγ-expressing Ba / F3 cells were intraperitoneally administered, and thereafter 5 × 10 7 individuals were administered every 1 week. Or Cynomolgus CD3εγ-expressing Ba / F3 cells were administered intraperitoneally alternately 4 times. One week after the final administration of CD3εγ (day 49), human CD3εγ expressing Ba / F3 cells were administered intravenously as a boost. After 3 days, rat spleen cells and mouse myeloma cells SP2 / 0 Cell fusion was performed in the usual manner using PEG1500 (Roche Diagnostics). Fusion cells, that is, fusion tumors, were cultured in RPMI1640 medium (hereinafter referred to as 10% FBS / RPMI1640) containing 10% FBS.

融合的次日,(1)將融合細胞懸浮於半流動培養基(StemCells),進行融合瘤之選擇培養,同時實施融合瘤之群落化。 The next day of fusion, (1) the fusion cells were suspended in semi-fluid medium (StemCells) for selective culture of fusion tumors, and the fusion of the fusion tumors was carried out at the same time.

於融合後第9日或10日,挑取融合瘤的群落,於裝有HAT選擇培養基(10% FBS/RPMI1640、2vol% HAT 50x concentrate(大日本製藥)、5vol% BM-Condimed H1(Roche Diagnostics))的96井板,每1井接種1個群落。培養3~4日後,回收各井之培養上清,測定培養上清中之大鼠IgG濃度。針對已確認大鼠IgG的培養上清,利用已附著人CD3εγ表現Ba/F3細胞、或不表現人CD3εγ之Ba/F的細胞-ELISA,挑選產生對於人CD3εγ專一性地結合的抗體的選殖體(第7圖)。再者,實 施已附著食蟹猴CD3εγ表現Ba/F3細胞之細胞-ELISA,評價對於猴CD3εγ之交叉性(第7圖)。 On the 9th or 10th day after fusion, the fused tumor colonies were picked and loaded with HAT selection medium (10% FBS / RPMI1640, 2vol% HAT 50x concentrate (Dai Nihon Pharmaceutical), 5vol% BM-Condimed H1 (Roche Diagnostics )) 96-well plate, each community is inoculated with one community. After 3 to 4 days of culture, the culture supernatant of each well was recovered, and the rat IgG concentration in the culture supernatant was measured. For the culture supernatant of confirmed rat IgG, a cell-ELISA using Ba / F3 cells expressing human CD3εγ or Ba / F not expressing human CD3εγ was selected to select colonies that produce antibodies that specifically bind to human CD3εγ. Body (Figure 7). Moreover, real Cyto-ELISA of Ba / F3 cells expressing cynomolgus monkey CD3εγ was applied to evaluate the cross-over to CD3εγ in monkeys (Figure 7).

(2-2)抗人、猴CD3ε嵌合抗體之製作 (2-2) Preparation of anti-human and monkey CD3ε chimeric antibodies

從融合瘤細胞使用RNeasy Mini Kits(QIAGEN)萃取總RNA,依SMART RACE cDNA Amplification Kit(BD Biosciences)合成cDNA。使用製作的cDNA,依PCR將抗體之可變區基因插入到選殖載體。各DNA片段之鹼基序列使用BigDye Terminator Cycle Sequencing Kit(Applied Biosystems),於DNA定序儀ABI PRISM 3700 DNA Sequencer(Applied Biosystems),依附帶說明書記載的方法定序。CE115 H鏈可變區(序列編號:13)及CE115 L鏈可變區(序列編號:14)之CDR、FR之決定依Kabat numbering實施。 Total RNA was extracted from fusion tumor cells using RNeasy Mini Kits (QIAGEN), and cDNA was synthesized according to SMART RACE cDNA Amplification Kit (BD Biosciences). Using the prepared cDNA, the variable region gene of the antibody was inserted into the selection vector by PCR. The base sequence of each DNA fragment was sequenced using a BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) on a DNA sequencer ABI PRISM 3700 DNA Sequencer (Applied Biosystems) according to the method described in the attached manual. The CDR and FR of CE115 H-chain variable region (sequence number: 13) and CE115 L-chain variable region (sequence number: 14) were determined according to Kabat numbering.

將上述大鼠抗體H鏈可變區與人抗體IgG1鏈不變區結合而得之嵌合抗體H鏈、及上述大鼠抗體L鏈可變區與人抗體Kappa鏈不變區結合而得之嵌合抗體L鏈基因,嵌入到動物細胞表現載體。使用製作之表現載體實施CE115嵌合抗體之表現及精製(參考實施例1)。 A chimeric antibody H chain obtained by combining the rat antibody H chain variable region and a human antibody IgG1 chain constant region, and a rat antibody L chain variable region combined with a human antibody Kappa chain constant region. The chimeric antibody L chain gene is embedded in an animal cell expression vector. The expression vector CE115 chimeric antibody was expressed and purified using the prepared expression vector (see Example 1).

(2-3)EGFR_ERY22_CE115之製作 (2-3) Production of EGFR_ERY22_CE115

然後,以對抗癌抗原(EGFR)之IgG作為基本骨架,製作其中一Fab置換為對抗CD3ε之結合分域的形式的分子。此時,作為基本骨架之IgG之Fc,和上述情形同樣地,使用向FcgR(Fcγ受體)之結合性減弱的靜默型Fc。作為對於EGFR之結合分域,使用Cetuximab之可變區Cetuximab-VH(序列編號:15)、Cetuximab-VL(序列編號:16)。作為抗體H鏈不變 區,使用已去除IgG1之C末端之Gly及Lys的G1d、於G1d導入D356K及H435R之變異之A5、及對於G1d導入K439E之變異的B3,且將與各自的Cetuximab-VH組合而得的Cetuximab-VH-G1d(序列編號:17)、Cetuximab-VH-A5(序列編號:18)、Cetuximab-VH-B3(序列編號:19)依參考實施例1之方法製備。又,抗體H鏈不變區之名稱定為H1時,可變區帶有Cetuximab-VH之抗體之H鏈所對應的序列如Cetuximab-VH-H1所示。 Then, an anti-cancer antigen (EGFR) IgG was used as a basic skeleton, and a molecule in which one Fab was replaced with a binding domain against CD3ε was produced. In this case, the Fc of the IgG which is the basic skeleton is the same as that described above, and a silent Fc having reduced binding to FcgR (Fcγ receptor) is used. As the binding domain for EGFR, Cetuximab-VH (sequence number: 15) and Cetuximab-VL (sequence number: 16) were used as variable regions of Cetuximab. As the antibody H chain does not change G1d with Gly and Lys removed from the C-terminus of IgG1, A5 with D356K and H435R mutations introduced at G1, and B3 with K439E mutations introduced at G1d, and Cetuximab obtained by combining with Cetuximab-VH -VH-G1d (sequence number: 17), Cetuximab-VH-A5 (sequence number: 18), Cetuximab-VH-B3 (sequence number: 19) were prepared according to the method of Reference Example 1. When the name of the H chain constant region of the antibody is H1, the sequence corresponding to the H chain of the antibody having Cetuximab-VH in the variable region is shown as Cetuximab-VH-H1.

在此,顯示胺基酸改變的情形,如D356K。最初的字母(相當於D356K之D),意指改變前之胺基酸殘基以單字母表示記載時的字母,接續的數字(相當於D356K之356)意指其改變處之EU編號,最後的字母(相當於D356K之K)意指改變後之胺基酸殘基以單字母表示記載時的字母。 Here, it is shown that the amino acid is changed, such as D356K. The initial letter (equivalent to D of D356K) means the single-letter letter of the amino acid residue before the change, and the following number (equivalent to D356K of 356) means the EU number of the change. Finally The letter (equivalent to K of D356K) means that the amino acid residue after the change is represented by a single letter when recording.

製作對於EGFR之Fab之VH分域與VL分域置換而得的EGFR_ERY22_CE115(第8圖)。亦即,使用已附加和上述方法同樣適當序列的引子的PCR法等該領域中通常知識者公知之方法,製作已插入各編碼為EGFR ERY22_Hk(序列編號:20)、EGFR ERY22_L(序列編號:21)、CE115_ERY22_Hh(序列編號:22)、CE115_ERY22_L(序列編號:23)之多核苷酸的一系列的表現載體。 EGFR_ERY22_CE115 was obtained by substituting the VH domain and the VL domain of the Fab of EGFR (Figure 8). That is, a method known to those skilled in the art, such as a PCR method in which primers having an appropriate sequence similar to the above method is added, is prepared by inserting each of the codes into EGFR ERY22_Hk (sequence number: 20) and EGFR ERY22_L (sequence number: 21). ), CE115_ERY22_Hh (sequence number: 22), CE115_ERY22_L (sequence number: 23), a series of expression vectors.

將以下所示組合的表現載體導入到FreeStyle293-F細胞,將各目的分子暫時性表現。 The combination of expression vectors shown below was introduced into FreeStyle293-F cells, and each molecule of interest was temporarily expressed.

‧目的分子:EGFR_ERY22_CE115 ‧Target molecule: EGFR_ERY22_CE115

‧由已插入到表現載體的多核苷酸編碼的多胜肽:EGFR _ERY22_Hk、EGFR_ERY22_L、CE115_ERY22_Hh、CE115_ERY22_L ‧Polypeptide encoded by a polynucleotide inserted into a performance vector: EGFR _ERY22_Hk, EGFR_ERY22_L, CE115_ERY22_Hh, CE115_ERY22_L

(2-4)EGFR_ERY22_CE115之精製 (2-4) Refined EGFR_ERY22_CE115

將獲得之培養上清添加到抗FLAG M2管柱(Sigma公司),將該管柱洗滌後,利用0.1mg/mL FLAG胜肽(Sigma公司)實施溶出。將含目的分子之級分加到HisTrap HP管柱(GE Healthcare公司),將該管柱洗滌後,實施利用咪唑之濃度梯度所為之溶出。將含目的分子之級分以超過濾濃縮後,將該級分添加到Superdex 200管柱(GE Healthcare公司),僅回收溶出液之單體級分,藉此獲得精製的各目的分子。 The obtained culture supernatant was added to an anti-FLAG M2 column (Sigma), and after washing the column, elution was performed using 0.1 mg / mL FLAG peptide (Sigma). The fraction containing the target molecule was added to a HisTrap HP column (GE Healthcare), and the column was washed, and then eluted with a concentration gradient of imidazole. After the fraction containing the target molecule was concentrated by ultrafiltration, the fraction was added to a Superdex 200 column (GE Healthcare), and only the monomer fraction of the eluate was recovered to obtain a purified molecule of each target.

(2-5)使用人末梢血單核球測定細胞傷害活性 (2-5) Measurement of cellular nociceptive activity using human peripheral blood mononuclear spheres

(2-5-1)人末梢血單核球(PBMC:Peripheral Blood Mononuclear Cell)溶液之製備 (2-5-1) Preparation of human peripheral blood mononuclear cell (PBMC: Peripheral Blood Mononuclear Cell) solution

使用已注入1,000單位/mL之肝素溶液(Novo‧heparin注5千單位,Novonordisk公司)100μL的注射器,從健康正常人自願者(成人)抽取末梢血50mL。將以PBS(-)稀釋2倍稀釋後分成4等分的末梢血,加到已預先注入15mL Ficoll-Paque PLUS並實施離心操作的Leucosep淋巴球分離管(Cat.No.227290、Greiner bio-one公司)。該分離管離心分離(2,150rpm、10分鐘、室溫)後,分取單核球級分層。以含10%FBS之Dulbecco's Modified Eagle's Medium(SIGMA公司,以下稱為10%FBS/D-MEM)將單核球級分之細胞洗滌1次後,使用10%FBS/D-MEM調整該細胞之濃度,使細胞密度成為4×106/mL。以此方式製備的細胞溶液以人PBMC溶液的形式用在以 後的試驗。 50 mL of peripheral blood was collected from healthy volunteers (adults) using a 100 μL syringe infused with 1,000 units / mL of a heparin solution (5,000 units of Novo‧heparin injection, Novonordisk). Peripheral blood was divided into 4 aliquots after diluting with PBS (-) twice, and added to a Leucosep Lymphocyte Separation Tube (Cat. No. 227290, Greiner bio-one) that had been injected with 15 mL of Ficoll-Paque PLUS and centrifuged. the company). This separation tube was centrifuged (2,150 rpm, 10 minutes, room temperature), and then a single-core ball-level layer was separated. After washing the cells of the mononuclear sphere fraction with Dulbecco's Modified Eagle's Medium (SIGMA, hereinafter referred to as 10% FBS / D-MEM) containing 10% FBS, the cells were adjusted with 10% FBS / D-MEM. The concentration was such that the cell density was 4 × 10 6 / mL. The cell solution prepared in this way was used as a human PBMC solution for subsequent experiments.

(2-5-2)細胞傷害活性之測定 (2-5-2) Determination of cellular nociceptive activity

細胞傷害活性,依使用xCELLigence即時細胞分析儀(Roche Diagnostics co.)之細胞增殖抑制率評價。標的細胞使用使SK-HEP-1細胞株強制表現人EGFR而樹立的SK-pca13a細胞株。將SK-pca13a從培養皿剝離,以成為1×104cells/well的方式,接種100μL/well到E-Plate 96板(Roche Diagnostics公司),使用xCELLigence即時細胞分析儀開始活細胞之測定。次日從xCELLigence即時細胞分析儀取出板,於該板添加調整為各濃度(0.004、0.04、0.4、4nM)的各抗體50μL。於室溫使其反應15分鐘後加入於(2-5-1)調製的人PBMC溶液50μL(2×105cells/well),將該板再度安置於xCELLigence即時細胞分析儀,以開始活細胞之測定。反應係於5%二氧化碳氣體、37℃的條件下實施,從人PBMC添加72小時後之Cell Index值,依下式求出細胞增殖抑制率(%)。又,計算使用之Cell Index值,使用以即將添加抗體時之Cell Index值成為1的方式常態化後的數值。 Cellular nociceptive activity was evaluated according to the cell proliferation inhibition rate using the xCELLigence Instant Cell Analyzer (Roche Diagnostics co.). As the target cell, an SK-pca13a cell line established by forcing SK-HEP-1 cell line to express human EGFR was used. SK-pca13a was detached from the petri dish, and 100 μL / well was inoculated into an E-Plate 96 plate (Roche Diagnostics) so that the cells became 1 × 10 4 cells / well. The xCELLigence instant cell analyzer was used to start the measurement of live cells. The next day, the plate was removed from the xCELLigence real-time cell analyzer, and 50 μL of each antibody adjusted to each concentration (0.004, 0.04, 0.4, 4nM) was added to the plate. After reacting at room temperature for 15 minutes, 50 μL (2 × 10 5 cells / well) of human PBMC solution prepared in (2-5-1) was added, and the plate was placed in the xCELLigence real-time cell analyzer to start living cells Its determination. The reaction was performed under the conditions of 5% carbon dioxide gas and 37 ° C, and the cell proliferation inhibition rate (%) was calculated from the Cell Index value after human PBMC was added for 72 hours according to the following formula. In addition, the Cell Index value used was calculated, and a value normalized so that the Cell Index value immediately before the addition of the antibody was 1 was used.

細胞增殖抑制率(%)=(A-B)×100/(A-1) Cell proliferation inhibition rate (%) = (A-B) × 100 / (A-1)

A代表未添加抗體之井的Cell Index值的平均值(只有標的細胞及人PBMC)、B代表各井之Cell Index值的平均值。試驗進行3重複。 A represents the average value of the Cell Index value of the wells to which no antibody was added (only the target cells and human PBMC), and B represents the average value of the Cell Index value of each well. The test was performed in triplicate.

將由人血液調製的PBMC作為效應子細胞,實施使用CE115測定之EGFR_ERY22_CE115之細胞傷害活性,結果有極強活性(第9圖)。 Using PBMCs prepared from human blood as effector cells, the cell-injurious activity of EGFR_ERY22_CE115 was measured using CE115, and the results were extremely active (Figure 9).

[實施例3]會和CD3及人0整合素αvβ3結合但不同時結合之抗體之製作 [Example 3] Preparation of antibodies that bind to CD3 and human 0 integrin αvβ3 but do not bind at the same time

如第1~6圖所示,雙結合Fab係:於可變(Fab)區域會和CD3(第1抗原)與目的抗原(第2抗原)結合,但不和CD3(第1抗原)及目的抗原(第2抗原)同時結合之分子。當為了和第2抗原結合,於和CD3(第1抗原)結合之抗體之Fab區導入胺基酸改變時,通常係於2個H鏈或L鏈兩者導入胺基酸改變。但是若於兩者之H鏈或L鏈導入改變,抗體的2個Fab分別和2個抗原結合,因此2個Fab與CD3(第1抗原)及目的抗原(第2抗原)同時結合,可能會交聯。因此抗體之1個Fab,設為和第3抗原結合或什麼也不結合的Fab,而另一Fab設為雙結合Fab,以不發生CD3(第1抗原)及目的抗原(第2抗原)之交聯反應。 As shown in Figures 1 to 6, the double-binding Fab line: in the variable (Fab) region, it binds to CD3 (the first antigen) and the target antigen (the second antigen), but not to CD3 (the first antigen) and the target. A molecule that simultaneously binds an antigen (second antigen). When amino acid changes are introduced into the Fab region of an antibody that binds to CD3 (first antigen) in order to bind to the second antigen, amino acid changes are usually introduced into both the H chain or the L chain. However, if the H chain or L chain is changed in the two, the two Fabs of the antibody bind to the two antigens respectively. Therefore, the two Fabs can bind to CD3 (the first antigen) and the target antigen (the second antigen) at the same time. Cross-linking. Therefore, one Fab of the antibody is set to a Fab that binds to the third antigen or nothing, and the other Fab is set to a double-bound Fab so that CD3 (the first antigen) and the target antigen (the second antigen) do not occur. Cross-linking reaction.

(3-1)會和CD3及人整合素αvβ3結合但不同時結合之抗體之製作 (3-1) Production of antibodies that bind to CD3 and human integrin αvβ3 but do not bind at the same time

就黏著分子而言已知之整合素αvβ3會於許多癌細胞及腫瘤的周圍血管表現,所以作為標靶腫瘤之標的分子為有用,但已知在各種正常細胞也會表現(Thromb Haemost.1998 Nov;80(5):726-34.)。因此若同時結合在CD3與整合素αvβ3,據認為正常細胞可能會因T細胞的強力細胞傷害活性而受傷害。而據認為:若製作不同時結合於CD3與整合素αvβ3的分子,則不會對於正常細胞造成傷害,而能將抗EGFR抗體分子標靶到表現整合素αvβ3之腫瘤細胞。亦即,探討:以單側之可變區(Fab)結合於EGFR,於另一可變區結合於第1抗原CD3, 進一步結合於第2抗原整合素αvβ3,且不同時結合於CD3及整合素αvβ3之雙結合Fab分子之取得。 In terms of adhesion molecules, integrin αvβ3 is known to be expressed in many cancer cells and surrounding blood vessels, so it is useful as a target molecule for tumors, but it is also known to be expressed in various normal cells (Thromb Haemost. 1998 Nov; 80 (5): 726-34.). Therefore, if CD3 and integrin αvβ3 are bound at the same time, it is thought that normal cells may be injured by the potent cellular injury activity of T cells. It is thought that if molecules that do not bind to CD3 and integrin αvβ3 at the same time are produced, they will not cause damage to normal cells, and can target anti-EGFR antibody molecules to tumor cells expressing integrin αvβ3. That is, to investigate: one side of the variable region (Fab) is bound to EGFR, and the other variable region is bound to the first antigen CD3, Obtained by binding to the second antigen integrin αvβ3 and not simultaneously binding to the double-binding Fab molecule of CD3 and integrin αvβ3.

可說若能顯示以下特性:「係於整合素αvβ3不存在之條件,CD3與Fab區結合,於CD3不存在之條件,整合素αvβ3與Fab區結合之分子,結合於CD3之分子為不結合於整合素αvβ3之分子、或與整合素αvβ3結合之分子為不結合於CD3之分子」,則能創製有目的之雙結合Fab之特性(亦即,能結合於CD3及第2抗原且不同時結合於CD3及第2抗原)的雙結合Fab分子。 It can be said that if it can show the following characteristics: "It is under the condition that integrin αvβ3 is not present, CD3 is bound to the Fab region, and under the condition that CD3 is not present, the molecule that integrin αvβ3 is bound to the Fab region, and the molecule that is bound to CD3 is not bound. If the molecule of integrin αvβ3, or the molecule that binds to integrin αvβ3 is a molecule that does not bind to CD3 ", then the characteristics of a purposeful double-binding Fab can be created (that is, it can bind to CD3 and the second antigen and not simultaneously A double-binding Fab molecule that binds to CD3 and the second antigen).

(3-2)帶有與整合素αvβ3結合之Fab區之抗體之取得 (3-2) Obtaining an antibody with a Fab region bound to integrin αvβ3

作為取得雙結合Fab分子之方法,可考慮:利用庫之方法、與插入已知對於蛋白質有結合活性之胜肽的方法。作為對於整合素αvβ3有結合活性之胜肽,已知RGD(Arg-Gly-Asp)胜肽。故,依參考實施例1製作:單側之Fab作為EGFR結合分域,另一側之Fab作為CD3結合分域及整合素αvβ3結合分域之異二聚化抗體,其係結合於CD3μ之抗體CE115(重鏈可變區序列編號:13、輕鏈可變區序列編號:14)之重鏈迴圈部分已插入RGD胜肽之異二聚化抗體。亦即,製作已插入編碼為EGFR ERY22_Hk(序列編號:20)、EGFR ERY22_L(序列編號:21)及CE115_ERY22_L(序列編號:23)之多核苷酸以及編碼為以下任一者的多核苷酸的一系列表現載體:‧CE115_2 ERY22_Hh(序列編號:24、Kabat編號52b-53各取代為K及N)、 ‧CE115_4 ERY22_Hh(序列編號:25、Kabat編號52b-54各取代為S及N)、‧CE115_9 ERY22_Hh(序列編號:26、Kabat編號52a-52b之間插入RGD)、‧CE115_10 ERY22_Hh(序列編號:27、Kabat編號52b-52c之間插入RGD)、‧CE115_12 ERY22_Hh(序列編號:28、Kabat編號72-73之間插入RGD)、‧CE115_17 ERY22_Hh(序列編號:29、Kabat編號52b-52c各取代為K及S)、‧CE115_47 ERY22_Hh(序列編號:30、Kabat編號98-99之間插入RGD)、‧CE115_48 ERY22_Hh(序列編號:31、Kabat編號99-100之間插入RGD)、‧CE115_49 ERY22_Hh(序列編號:32、Kabat編號100-100a之間插入RGD)。 As a method for obtaining a double-binding Fab molecule, a method using a library and a method of inserting a peptide known to have binding activity to a protein can be considered. As a peptide having binding activity for integrin αvβ3, RGD (Arg-Gly-Asp) peptide is known. Therefore, according to Reference Example 1, a Fab on one side was used as an EGFR binding domain, and a Fab on the other side was used as a heterodimerizing antibody for the CD3 binding domain and the integrin αvβ3 binding domain. The antibody was bound to CD3μ. CE115 (heavy chain variable region sequence number: 13, light chain variable region sequence number: 14) has been inserted into the RGD peptide heterodimeric antibody in the heavy chain loop portion. That is, polynucleotides encoding the EGFR ERY22_Hk (sequence number: 20), EGFR ERY22_L (sequence number: 21), and CE115_ERY22_L (sequence number: 23) and one of the polynucleotides encoding any of the following are prepared. Series performance vectors: ‧CE115_2 ERY22_Hh (sequence number: 24, Kabat number 52b-53 each replaced by K and N), ‧CE115_4 ERY22_Hh (serial number: 25, Kabat number 52b-54 replaced by S and N), ‧CE115_9 ERY22_Hh (serial number: 26, Kabat number 52a-52b, insert RGD), ‧CE115_10 ERY22_Hh (serial number: 27 , Insert RGD between Kabat number 52b-52c), ‧CE115_12 ERY22_Hh (serial number: 28, insert RGD between Kabat number 72-73), ‧CE115_17 ERY22_Hh (serial number: 29, Kabat number 52b-52c each replaced by K And S), ‧CE115_47 ERY22_Hh (serial number: 30, insert RGD between Kabat number 98-99), ‧CE115_48 ERY22_Hh (serial number: 31, insert RGD between Kabat number 99-100), ‧CE115_49 ERY22_Hh (serial number : 32, insert RGD between Kabat number 100-100a).

又,作為對照,依參考實施例1製作:在J.Biotech,155,193-202,2011報告的抗體的CH3區插入有RGD(Arg-Gly-Asp)胜肽的抗體(EH240-Kn125/EH240-Hl076/L73;序列編號33/34/35)。據認為:介由CH3區和整合素αvβ3結合的此分子,能同時結合於CD3與整合素αvβ3。 As a control, an antibody (EH240-Kn125 / EH240-Hl076) having an RGD (Arg-Gly-Asp) peptide inserted into the CH3 region of the antibody reported in J. Biotech, 155, 193-202, 2011 was prepared as a reference example. / L73; sequence number 33/34/35). It is believed that this molecule, which binds via the CH3 region and integrin αvβ3, can bind to both CD3 and integrin αvβ3.

(3-3)整合素αvβ3與抗體之結合確認 (3-3) Confirmation of binding of integrin αvβ3 to antibody

Fab區已插入RGD(Arg-Gly-Asp)胜肽的分子是否與整合素αvβ3結合可依電化學發光法(ECL法)判定。具體而言,將 以含0.1%BSA及0.1g/L氯化鈣及0.1g/L氯化鎂之TBS溶液(表達為稀釋(+)溶液)稀釋而得的生物素-抗人IgG Ab(Southern biotech)、調整為5μg/mL或1μg/mL之抗體溶液、已附加sulfo-tag之整合素αvβ3(R&D Systems),各添加25μL到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)的各井並混合後,於4℃溫育一晚,使抗體抗原複合體形成。將含0.5%BSA及0.1g/L氯化鈣及0.1g/L氯化鎂之TBS溶液(記載為阻斷(bloking)(+)溶液)各加150μL到鏈黴抗生物素蛋白板(MSD)的各井,於4℃溫育1晚。去除阻斷溶液後,以含0.1g/L氯化鈣及0.1g/L氯化鎂之TBS溶液(記載為TBS(+)溶液)250μL洗滌3次。將抗體抗原複合體溶液各添加75μL到各井,於室溫溫育2小時,使生物素-抗人IgG Ab結合於鏈黴抗生物素蛋白板。去除抗體抗原複合體溶液後,以TBS(+)溶液洗滌3次,將READ緩衝液(MSD)各加150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Whether the RGD (Arg-Gly-Asp) peptide has been inserted into the Fab region can bind to the integrin αvβ3 can be determined according to the electroluminescence method (ECL method). Specifically, will Biotin-anti-human IgG Ab (Southern biotech) obtained by dilution with a TBS solution (expressed as a diluted (+) solution) containing 0.1% BSA and 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride, adjusted to 5 μg / mL or 1 μg / mL antibody solution, integrin αvβ3 (R & D Systems) with sulfo-tag added, each added 25 μL to each well of Nunc-Immuno (tm) MicroWell (tm) 96 well circular plate (Nunc) and mixed Then, it was incubated at 4 ° C overnight to form an antibody-antigen complex. Add 150 μL each of 0.5% BSA and 0.1g / L calcium chloride and 0.1g / L magnesium chloride in TBS solution (documented as a blocking (+) solution) to the streptavidin plate (MSD). Each well was incubated at 4 ° C for 1 night. After removing the blocking solution, it was washed three times with 250 μL of a TBS solution (denoted as a TBS (+) solution) containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride. Add 75 μL of each antibody-antigen complex solution to each well, and incubate at room temperature for 2 hours to bind the biotin-anti-human IgG Ab to the streptavidin plate. After the antibody-antigen complex solution was removed, it was washed three times with TBS (+) solution, 150 μL of READ buffer (MSD) was added to each well, and the luminescent signal of sulfo-tag was detected with Sector Imager 2400 (MSD).

其結果示於第11圖。為親代抗體之EGFR ERY22_Hk/EGFR ERY22_L/CE115 ERY22_Hh/CE115_ERY22_L對於整合素αvβ3完全未顯示結合活性,相對地,EGFR ERY22_Hk/EGFR ERY22_L/CE115_2 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_4 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_9 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_10 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_12 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_17 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_47 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_48 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_49 ERY22_Hh/CE115_ERY22_L均觀察到與整合素αvβ3之結合。 The results are shown in FIG. 11. EGFR ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / CE115_ERY22_L, which is a parental antibody, does not show any binding activity for integrin αvβ3. In contrast, EGFR ERY22_Hk / EGFR ERY22_L / CE115_2 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_H_ / K / EGFR ERY22_L EGFR ERY22_Hk / EGFR ERY22_L / CE115_9 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_12 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_17 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_48 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L was observed Binding to integrin αvβ3.

(3-4)CD3(CD3ε)與抗體之結合確認 (3-4) Confirmation of binding of CD3 (CD3ε) to antibodies

然後,以ECL法判定於前項製作之和整合素αvβ3於Fab區結合之抗體是否保持對CD3之結合活性。具體而言,將以含0.1%BSA之TBS溶液(記載為稀釋(-)溶液)稀釋成的生物素-抗人IgG Ab(Southern biotech)、調整為5μg/mL或1μg/mL之抗體溶液、與已附加sulfo-tag之CD3ε均二聚物蛋白質,各加25μL到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)的各井並混合後,於4℃溫育一晚,使抗體抗原複合體形成。將含0.5%BSA之TBS溶液(記載為阻斷(-)溶液)各加150μL到鏈黴抗生物素蛋白板(MSD)的各井,於4℃溫育1晚。去除阻斷溶液後,以TBS溶液(-)溶液250μL洗滌3次。將抗體抗原複合體溶液各加75μL到各井,於室溫溫育2小時,使生物素-抗人IgG Ab結合於鏈黴抗生物素蛋白板。去除抗體抗原複合體溶液後,以TBS(-)溶液洗滌3次,將READ buffer(MSD)各加150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Then, the ECL method was used to determine whether the antibody bound by the integrin αvβ3 prepared in the preceding paragraph to the Fab region maintained binding activity to CD3. Specifically, a biotin-anti-human IgG Ab (Southern biotech) diluted with a 0.1% BSA-containing TBS solution (described as a diluted (-) solution) was adjusted to an antibody solution of 5 μg / mL or 1 μg / mL, After mixing with sulfo-tag-added CD3ε homodimer protein, add 25 μL each to Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc) and mix, then incubate at 4 ° C overnight. The antibody-antigen complex is formed. Add 150 μL each of a 0.5% BSA-containing TBS solution (described as a blocking (-) solution) to each well of a streptavidin plate (MSD) and incubate at 4 ° C. for 1 night. After removing the blocking solution, it was washed three times with 250 μL of a TBS solution (-) solution. Add 75 μL of each antibody-antigen complex solution to each well and incubate at room temperature for 2 hours to bind the biotin-anti-human IgG Ab to the streptavidin plate. After the antibody-antigen complex solution was removed, it was washed three times with TBS (-) solution, 150 μL of each READ buffer (MSD) was added to each well, and the sulfo-tag luminescence signal was detected with Sector Imager 2400 (MSD).

其結果示於第12圖。為親代抗體之EGFR ERY22_Hk/EGFR ERY22_L/CE115 ERY22_Hh/CE115_ERY22_L以外,EGFR ERY22_Hk/EGFR ERY22_L/CE115_2 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_4 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_9 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_10 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_12 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_17 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_47 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_48 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_49 ERY22_Hh/CE115_ERY22_L也都觀察到與CD3之結合。 The results are shown in Fig. 12. EGFR as parent antibody ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / outside CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_2 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_9 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_12 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_17 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_48 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L were also observed to bind to CD3.

(3-5)利用ECL法確認整合素αvβ3與CD3不同時結合於Fab區 (3-5) Confirm that integrin αvβ3 and CD3 do not bind to Fab region at the same time by ECL method

由直到前項之結果,獲得對於整合素αvβ3有結合活性且對於CD3有結合活性的分子。然後,判定是否直到前項製作的Fab區會同時結合於CD3(CD3ε)及整合素αvβ3。 From the results up to the preceding item, a molecule having binding activity for integrin αvβ3 and binding activity for CD3 was obtained. Then, it is determined whether the Fab region produced up to the previous item will bind to both CD3 (CD3ε) and integrin αvβ3.

Fab區已插入RGD(Arg-Gly-Asp)胜肽的分子當同時結合於整合素αvβ3與CD3時,若於抗體溶液加入整合素αvβ3及已附加生物素的CD3,會結合於兩者之抗原,所以能以ECL法檢驗。具體而言,將經稀釋(+)溶液稀釋之已附著生物素的人CD3ε均聚二聚物蛋白質、調整成10μg/mL或5μg/mL 之抗體溶液、已附加sulfo-tag之整合素αvβ3(R&D Systems),各加入25μL到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)的各井並混合後,於4℃溫育1晚,使抗體抗原複合體形成。將阻斷(+)溶液加150μL到鏈黴抗生物素蛋白板(MSD)各井,於4℃溫育1晚。去除阻斷溶液後,以含0.1g/L氯化鈣及0.1g/L氯化鎂之TBS(+)溶液250μL洗滌3次。將抗體抗原複合體溶液各加75μL到各井,於室溫溫育2小時,使生物素-抗人IgG Ab與鏈黴抗生物素蛋白板結合。去除抗體抗原複合體溶液後,以TBS(+)溶液洗滌3次,將READ緩衝液(MSD)各加150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Arg-Gly-Asp peptide has been inserted into the Fab region. When binding to integrin αvβ3 and CD3 at the same time, if integrin αvβ3 and biotin-added CD3 are added to the antibody solution, they will bind to the antigen of both , So it can be tested by ECL method. Specifically, the biotin-attached human CD3ε homodimer protein diluted in the diluted (+) solution was adjusted to 10 μg / mL or 5 μg / mL. The antibody solution and the sulfo-tag integrin αvβ3 (R & D Systems) were added to each well of Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc) and mixed, and the temperature was at 4 ° C. Incubate for 1 night to allow antibody-antigen complexes to form. Add 150 μL of blocking (+) solution to each well of streptavidin plate (MSD) and incubate at 4 ° C for 1 night. After removing the blocking solution, it was washed 3 times with 250 μL of a TBS (+) solution containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride. Add 75 μL of each antibody-antigen complex solution to each well, and incubate at room temperature for 2 hours to bind the biotin-anti-human IgG Ab to the streptavidin plate. After the antibody-antigen complex solution was removed, it was washed three times with TBS (+) solution, 150 μL of READ buffer (MSD) was added to each well, and the luminescent signal of sulfo-tag was detected with Sector Imager 2400 (MSD).

其結果示於第13圖、第14圖。Fab區已插入RGD(Arg-Gly-Asp)胜肽之EGFR ERY22_Hk/EGFR ERY22_L/CE115_2 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_12 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_17 ERY22_Hh/CE115_ERY22_L,因為同時結合於整合素αvβ3與CD3,於ECL測定檢測到強信號。而,EGFR ERY22_Hk/EGFR ERY22_L/CE115_9 ERY22_Hh/CE115_ERY22_L與EGFR ERY22_Hk/EGFR ERY22_L/CE115_48 ERY22_Hh/CE115_ERY22_L,此信號微弱(第13圖)。又,EGFR ERY22_Hk/EGFR ERY22_L/CE115_4 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_10 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_47 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_49 ERY22_Hh/CE115_ERY22_L在ECL測定均幾乎未檢測到信號(第14圖)。亦即,啟示:該等抗體若與CD3結合,則不與整合素αvβ3結合。 The results are shown in Figs. 13 and 14. The Fab region has been inserted into the EGFR of RGD (Arg-Gly-Asp) peptide EGFR ERY22_Hk / EGFR ERY22_L / CE115_2 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_12 ERY22_Hh / CE115_CEY22_L, EGFR ERY22_H_ / EGFR / RY 115_Hk / EGFR Binding to integrin αvβ3 and CD3, a strong signal was detected in the ECL assay. However, EGFR ERY22_Hk / EGFR ERY22_L / CE115_9 ERY22_Hh / CE115_ERY22_L and EGFR ERY22_Hk / EGFR ERY22_L / CE115_48 ERY22_Hh / CE115_ERY22_L, this signal is weak (Figure 13). Also, EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_47 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_49 ERY22_Hh / CE115_ERY22_L hardly detect any signal in ECL measurement (Figure 14). That is, revelation: If these antibodies bind to CD3, they do not bind to integrin αvβ3.

(3-6)利用ECL法考察整合素αvβ3與CD3不同時結合於Fab區 (3-6) Investigate integrin αvβ3 and CD3 not simultaneously bind to Fab region by ECL method

由以上的結果,可製備有以1個Fab分別結合於CD3(CD3ε)、整合素αvβ3且不同時結合於CD3(CD3ε)及整合素αvβ3之雙結合Fab分子特性的抗體。本實施例中,藉由對於具有結合於第1抗原CD3之可變區的抗體,將於該可變區結合於第2抗原整合素αvβ3之RGD胜肽插入Fab,而賦予對於第2抗原之結合活性,且能取得不同時結合於CD3與第2抗原之分子。以同方法,藉由將對於WO2006036834例示之蛋白質有結合活性之胜肽插入到Fab中之迴圈,可取得對於任意第2抗原有結合活性之雙結合Fab分子。此外,對於蛋白質顯示結合活性之胜肽,可使用該領域中通常知識者公知之方法製作胜肽庫,並選擇有所望活性之胜肽以取得(Pasqualini R.,Nature,1996,380(6572):364-6)。再者,藉由使用將如實施例5記載之Fab中之迴圈加長改變(延長)的抗原結合分子的庫,據認為能製作對於任意第2抗原有結合活性之雙結合Fab分子。對抗第1抗原之可變區可以利用該領域中通常知識者公知之各種方法取得,所以使用如此的庫,可說能製作對於任意第1抗原與任意第2抗原有結合活性且無法同時結合於該第1抗 原及該第2抗原之雙結合Fab分子。 From the above results, an antibody having the characteristics of a double-binding Fab molecule that binds to CD3 (CD3ε), integrin αvβ3, and not both CD3 (CD3ε) and integrin αvβ3 with one Fab can be prepared. In this example, an antibody having a variable region that binds to the first antigen CD3 is inserted into the Fab with an RGD peptide that binds the variable region to the second antigen integrin αvβ3, thereby imparting Binding activity, and can obtain molecules that do not bind to CD3 and the second antigen at the same time. In the same way, by inserting a peptide having binding activity to the protein exemplified in WO2006036834 into the Fab, a double-binding Fab molecule having binding activity to any second antigen can be obtained. In addition, for peptides that show binding activity for proteins, peptide libraries can be prepared using methods known to those skilled in the art, and peptides with promising activity can be selected to obtain (Pasqualini R., Nature, 1996, 380 (6572) : 364-6). Furthermore, by using a library of antigen-binding molecules that lengthen (chang) the loop in the Fab as described in Example 5, it is considered that a double-binding Fab molecule having binding activity to an arbitrary second antigen can be produced. The variable region against the first antigen can be obtained by various methods commonly known to those skilled in the art. Therefore, using such a library, it can be said that it is possible to prepare a binding activity for any first antigen and any second antigen and cannot bind to both The 1st antibody A double-binding Fab molecule of the protogen and the second antigen.

由以上的結果,顯示EGFR ERY22_Hk/EGFR ERY22_L/CE115_4 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_10 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_47 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_49 ERY22_Hh/CE115_ERY22_L結合於CD3及整合素αvβ3且不同時結合於CD3與整合素αvβ3。亦即EGFR ERY22_Hk/EGFR ERY22_L/CE115_4 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_10 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_47 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_49 ERY22_Hh/CE115_ERY22_L是有雙結合Fab的分子,可知能製作如此的分子。 From the above results, EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L / CEH_RY_ ERY22_Hk / EGFR ERY22_L / CE115_ERY_RY_22_L CD3 and integrin αvβ3 are not bound to CD3 and integrin αvβ3 at the same time. EGFR ERY22_Hk / EGFR ERY22_L / CE115_4 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_10 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_HRY / EGFR ERY22_L / CE115_L_CE_HRY It is known that such molecules can be produced.

[實施例4]結合於CD3及人toll-like受體2(TLR2)但不同時結合之抗體之製作 [Example 4] Preparation of antibodies that bind to CD3 and human toll-like receptor 2 (TLR2) but do not bind at the same time

(4-1)結合於CD3及人TLR2但不同時結合之抗體之製作 (4-1) Production of antibodies that bind to CD3 and human TLR2 but do not bind at the same time

已知為圖案認識受體的TLR2主要表現於巨噬細胞、樹狀細胞、B細胞等免疫細胞,作為活化免疫細胞的標的分子為有用。又,TLR2已知於上皮細胞、內皮細胞等免疫細胞以外的正常細胞也表現。藉由同時結合於癌抗原與CD3,會補充腫瘤環境中表現CD3的T細胞,由T細胞傷害癌細胞,但據認為因為同時結合於癌抗原與TLR2,腫瘤環境中表現TLR2之免 疫細胞也會補充並能活化。被T細胞傷害的癌細胞被納入因TLR2而補充的免疫細胞,處理抗原,並展示於HLA,藉此能活化T細胞,故能更強力地活化T細胞,且同時也可能能誘導獲得免疫。但是若同時結合於CD3與TLR2,據認為免疫細胞及正常細胞會因T細胞的強力細胞傷害活性而可能受傷害。而若能製作不同時結合於CD3與TLR2的分子,據認為能對於表現TLR2之免疫細胞及正常細胞不造成傷害,而能補充該等細胞。亦即,研究:以單側之可變區(Fab)結合於EGFR,並以另一可變區結合於第1抗原CD3,進一步結合於第2抗原TLR2且不和CD3及TLR2同時結合之雙結合Fab分子的取得。 TLR2, which is known as a pattern recognition receptor, is mainly expressed in immune cells such as macrophages, dendritic cells, and B cells, and is useful as a target molecule for activating immune cells. In addition, TLR2 is also known to be expressed in normal cells other than immune cells such as epithelial cells and endothelial cells. By binding to cancer antigen and CD3 at the same time, T cells expressing CD3 in the tumor environment will be replenished, and T cells will harm the cancer cells. However, it is thought that because of binding to cancer antigen and TLR2 at the same time, TLR2 expression in the tumor environment is exempt. Epidemic cells will also be replenished and activated. Cancer cells injured by T cells are incorporated into immune cells supplemented by TLR2, processed with antigens, and displayed in HLA. This activates T cells, which in turn activates T cells more strongly, and may also induce immunity. However, if it binds to both CD3 and TLR2, it is thought that immune cells and normal cells may be injured due to the potent cytotoxic activity of T cells. And if it is possible to make molecules that do not bind to CD3 and TLR2 at the same time, it is thought that they can supplement the cells without causing harm to immune cells and normal cells that express TLR2. That is, studies: binding to EGFR with a single-sided variable region (Fab), and binding to the first antigen CD3 with another variable region, further binding to the second antigen TLR2 without binding to CD3 and TLR2 simultaneously Acquisition of binding Fab molecules.

若能顯示以下特性:「係於TLR2不存在的條件,CD3與Fab區結合,於CD3不存在的條件,TLR2與Fab區結合之分子,且結合於CD3之分子為不結合於TLR2之分子、或與TLR2結合之分子為不結合於CD3之分子」,則可說能製作有目的雙結合Fab之特性(亦即,能結合於CD3及第2抗原、且不同時結合於CD3及第2抗原)的雙結合Fab分子。 If the following characteristics can be displayed: "It is a condition in which TLR2 does not exist, CD3 binds to the Fab region, a condition in which CD3 does not exist, a molecule that TLR2 binds to the Fab region, and a molecule that binds to CD3 is a molecule that does not bind to TLR2, Or the molecule that binds to TLR2 is a molecule that does not bind to CD3 ", then it can be said that the characteristics of a purposeful double-binding Fab can be made (that is, it can bind to CD3 and the second antigen, and not to CD3 and the second antigen at the same time. ) Double-binding Fab molecule.

(4-2)帶有和TLR2結合之Fab區之抗體之取得 (4-2) Acquisition of antibodies with Fab region bound to TLR2

已知RWGYHLRDRKYKGVRSHKGVPR胜肽(序列編號:36)係對於人TLR2有結合活性的胜肽。依參考實施例1製作:以單側Fab作為EGFR結合分域,將另一側Fab作為CD3結合分域及TLR2結合分域之異二聚化抗體,其係結合於CD3ε之抗體CE115(重鏈可變區序列編號:13、輕鏈可變區序列編號:14)之重鏈迴圈部分插入有TRL2結合胜肽的異二聚化抗體抗體。亦即,製作插入有編碼為EGFR ERY22_Hk(序列編號: 20)、EGFR ERY22_L(序列編號:21)、及CE115_ERY22_L(序列編號:23)之多核苷酸以及編碼為以下任一者的多核苷酸的一系列表現載體:‧CE115_DU21 ERY22_Hh(序列編號:37、Kabat編號52b-52c之間插入TRL2結合胜肽)、‧CE115_DU22 ERY22_Hh(序列編號:38、Kabat編號52b-52c之間插入TRL2結合胜肽)、‧CE115_DU26 ERY22_Hh(序列編號:39、Kabat編號72-73之間插入TRL2結合胜肽)、‧CE115_DU27 ERY22_Hh(序列編號:40、Kabat編號72-73之間插入TRL2結合胜肽)。 The RWGYHLRDRKYKGVRSHKGVPR peptide (SEQ ID NO: 36) is known as a peptide having binding activity to human TLR2. Prepared according to Reference Example 1: Heterodimerization antibody with one side Fab as EGFR binding domain and the other side Fab as CD3 binding domain and TLR2 binding domain. The variable region sequence number: 13, and the light chain variable region sequence number: 14) A TRL2-binding peptide heterodimeric antibody antibody is inserted into the heavy chain loop portion of the heavy chain. That is, an insert encoding EGFR ERY22_Hk (sequence number: 20), EGFR ERY22_L (sequence number: 21), and CE115_ERY22_L (sequence number: 23) and a series of expression vectors encoding any of the following polynucleotides: ‧CE115_DU21 ERY22_Hh (sequence number: 37, TRL2 binding peptide is inserted between Kabat number 52b-52c), CE115_DU22 ERY22_Hh (sequence number: 38, TRL2 binding peptide is inserted between Kabat number 52b-52c), CE115_DU26 ERY22_Hh (sequence number: 39, Kabat number 72- TRL2 binding peptide was inserted between 73), CE115_DU27 ERY22_Hh (SEQ ID: 40, TRL2 binding peptide was inserted between Kabat number 72-73).

又,作為對照,依參考實施例1製作將TLR2結合胜肽附加於CH3區C末端而得的抗體(CE115_ERY22_DU42_Hh,序列編號:41)、及將TLR2結合胜肽兩端帶有Cys殘基的胜肽附加到CH3區C末端而得的抗體(CE115_ERY22_DU43_Hh,序列編號:42)。介由CH3區而和TLR2結合的此分子,據認為能同時結合於CD3與TLR2。 As a control, according to Reference Example 1, an antibody (CE115_ERY22_DU42_Hh, SEQ ID: 41) was prepared by adding a TLR2 binding peptide to the C-terminus of the CH3 region, and a TLR2 binding peptide containing Cys residues at both ends of the peptide was prepared. An antibody obtained by attaching a peptide to the C-terminus of the CH3 region (CE115_ERY22_DU43_Hh, sequence number: 42). This molecule that binds to TLR2 via the CH3 region is thought to bind to both CD3 and TLR2.

(4-3)TLR2與抗體之結合確認 (4-3) Confirmation of binding of TLR2 to antibody

於Fab區已插入TLR2結合胜肽的分子是否會和TLR2結合,係以電化學發光法(ECL法)判定。具體而言,將經含0.1%BSA之TBS溶液(記載為稀釋(-)溶液)稀釋的生物素-抗人IgG Ab(Southern biotech)、調整為5¼g/mL或1μg/mL之抗體溶液、已附加sulfo-tag之TLR2(abnova),各加25μL到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)之各井並混 合後,於4℃溫育1晚,使抗體抗原複合體形成。將含0.5%BSA之TBS溶液(記載為阻斷(-)溶液)各加150μL到鏈黴抗生物素蛋白板(MSD)各井,於4℃溫育1晚。去除阻斷溶液後以TBS(-)溶液250μL洗滌3次。將抗體抗原複合體溶液各加75μL到各井,於室溫溫育2小時,使生物素-抗人IgG Ab與鏈黴抗生物素蛋白板結合。去除抗體抗原複合體溶液後以TBS(-)溶液洗滌3次,加READ緩衝液(MSD)各150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Whether a molecule that has been inserted into the TLR2 binding peptide in the Fab region will bind to TLR2 is determined by the electroluminescence method (ECL method). Specifically, a biotin-anti-human IgG Ab (Southern biotech) diluted with a 0.1% BSA-containing TBS solution (described as a diluted (-) solution) was adjusted to an antibody solution of 5¼ g / mL or 1 μg / mL. Add TLR2 (abnova) with sulfo-tag, add 25μL each to Nunc-Immuno (tm) MicroWell (tm) 96 wells round plate (Nunc) and mix After combining, incubate at 4 ° C for 1 night to form an antibody-antigen complex. Add 150 μL each of 0.5% BSA-containing TBS solution (documented as blocking (-) solution) to each well of streptavidin plate (MSD) and incubate at 4 ° C for 1 night. After removing the blocking solution, it was washed 3 times with 250 μL of a TBS (-) solution. Add 75 μL of each antibody-antigen complex solution to each well, and incubate at room temperature for 2 hours to bind the biotin-anti-human IgG Ab to the streptavidin plate. After removing the antibody-antigen complex solution, washing with TBS (-) solution three times, adding 150 μL of READ buffer (MSD) to each well, and detecting the sulfo-tag luminescence signal with Sector Imager 2400 (MSD).

其結果示於第15圖。親代抗體EGFR ERY22_Hk/EGFR ERY22_L/CE115 ERY22_Hh/CE115_ERY22_L對於TLR2完全未顯示結合活性,相對地,EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU21 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU22 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU26 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU27 ERY22_Hh/CE115_ERY22_L均觀察到與TLR2之結合。 The results are shown in FIG. 15. The parental antibodies EGFR ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / CE115_ERY22_L did not show any binding activity at all for TLR2. In contrast, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_HRY / EGFR ERY22 ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L were observed to be combined with TLR2.

(4-4)CD3(CD3ε)與抗體之結合確認 (4-4) Confirmation of binding of CD3 (CD3ε) to antibodies

然後以ECL法判定是否前項製作的會和TLR2於Fab區結合的抗體是否保持對於CD3(CD3ε)的結合活性。具體而言,將經含0.1%BSA之TBS溶液(記載為稀釋(-)溶液)稀釋的生物素-抗人IgG Ab(Southern biotech)、調整為5μg/mL或1μg/mL之抗體溶液、及已附加sulfo-tag之CD3ε均二聚物蛋白質,各 加25μL到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)之各井,混合後於4℃溫育1晚,使抗體抗原複合體形成。將含0.5%BSA之TBS溶液(記載為阻斷(-)溶液)各加150μL到鏈黴抗生物素蛋白板(MSD)各井,於4℃溫育1晚。去除阻斷溶液後,以TBS溶液(-)溶液250μL洗滌3次。各加抗體抗原複合體溶液75μL到各井,於室溫溫育2小時,使生物素-抗人IgG Ab與鏈黴抗生物素蛋白板結合。去除抗體抗原複合體溶液後,以TBS(-)溶液洗滌3次,各加150μL READ緩衝液(MSD)到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Then, the ECL method was used to determine whether the antibody prepared in the previous paragraph that would bind to TLR2 in the Fab region maintained binding activity to CD3 (CD3ε). Specifically, a biotin-anti-human IgG Ab (Southern biotech) diluted with a 0.1% BSA-containing TBS solution (described as a diluted (-) solution), an antibody solution adjusted to 5 μg / mL or 1 μg / mL, and CD3ε homodimer protein with sulfo-tag attached, each Add 25 μL to each well of Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc), mix and incubate at 4 ° C for 1 night to form an antibody-antigen complex. Add 150 μL each of 0.5% BSA-containing TBS solution (documented as blocking (-) solution) to each well of streptavidin plate (MSD) and incubate at 4 ° C for 1 night. After removing the blocking solution, it was washed three times with 250 μL of a TBS solution (-) solution. Add 75 μL of the antibody-antigen complex solution to each well, and incubate at room temperature for 2 hours to bind the biotin-anti-human IgG Ab to the streptavidin plate. After the antibody-antigen complex solution was removed, it was washed three times with TBS (-) solution, and 150 μL of READ buffer (MSD) was added to each well, and the sulfo-tag luminescence signal was detected with Sector Imager 2400 (MSD).

其結果示於第16圖。除了親代抗體EGFR ERY22_Hk/EGFR ERY22_L/CE115 ERY22_Hh/CE115_ERY22_L,EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU21 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU22 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU26 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU27 ERY22_Hh/CE115_ERY22_L也均觀察到和CD3之結合。 The results are shown in FIG. 16. In addition to the parent antibody EGFR ERY22_Hk / EGFR ERY22_L / CE115 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L were also observed to bind to CD3.

(4-5)利用ECL法確認TLR2與CD3不同時結合於Fab區 (4-5) Confirming that TLR2 and CD3 do not bind to Fab region at the same time by ECL method

由直到前項之結果,獲得對於TLR2有結合活性且對於CD3有結合活性的分子。然後判定是否直到前項製作的Fab區會同時結合於CD3及TLR2。 From the results up to the preceding item, molecules having binding activity for TLR2 and binding activity for CD3 were obtained. Then, it is determined whether the Fab region produced by the previous item will bind to both CD3 and TLR2.

當於Fab區已插入TLR2結合胜肽的分子會同時結合於TLR2與CD3時,若於抗體溶液加入TLR2與已附加生物素的CD3,會與兩者之抗原結合,故能以ECL法檢測。具體而言,將經稀釋(-)溶液稀釋之已附加生物素的人CD3ε均二聚物蛋白質、調整為10μg/mL或5μg/mL之抗體溶液、及已附加sulfo-tag之TLR2(R&D Systems),各加25μL到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)之各井並混合後,於4℃溫育1晚,使抗體抗原複合體形成。各加阻斷(-)溶液150μL到鏈黴抗生物素蛋白板(MSD)各井,於4℃溫育1晚。去除阻斷溶液後,以含0.1g/L氯化鈣及0.1g/L氯化鎂之TBS(-)溶液250μL洗滌3次。將抗體抗原複合體溶液各加75μL到各井並於室溫溫育2小時,使生物素-抗人IgG Ab與鏈黴抗生物素蛋白板結合。去除抗體抗原複合體溶液後以TBS(-)溶液洗滌3次,各加READ緩衝液(MSD)150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 When TLR2 binding peptide molecules that have been inserted into the Fab region will bind to both TLR2 and CD3, if TLR2 and biotin-added CD3 are added to the antibody solution, they will bind to the antigens of both, so it can be detected by ECL method. Specifically, a biotin-added human CD3ε homodimer protein diluted with a diluted (-) solution, an antibody solution adjusted to 10 μg / mL or 5 μg / mL, and TLR2 (R & D Systems with sulfo-tag added) ), 25 μL each was added to each well of Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc) and mixed, and then incubated at 4 ° C. for 1 night to form an antibody-antigen complex. Add 150 μL of blocking (-) solution to each well of streptavidin plate (MSD), and incubate at 4 ° C for 1 night. After removing the blocking solution, it was washed 3 times with 250 μL of a TBS (-) solution containing 0.1 g / L calcium chloride and 0.1 g / L magnesium chloride. Add 75 μL of each antibody-antigen complex solution to each well and incubate at room temperature for 2 hours to bind the biotin-anti-human IgG Ab to the streptavidin plate. After removing the antibody-antigen complex solution, washing with TBS (-) solution three times, adding 150 μL of READ buffer (MSD) to each well, and detecting the sulfo-tag luminescence signal with Sector Imager 2400 (MSD).

其結果示於第17圖。於CH3區已附加TLR2結合胜肽之EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU42 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU43 ERY22_Hh/CE115_ERY22_L,因同時結合於TLR2與CD3,於ECL測定檢測出強信號。另一方面,EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU21 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU22 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU26 ERY22_Hh/ CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU27 ERY22_Hh/CE115_ERY22_L均於ECL測定幾乎未檢測到信號。亦即啟示:該等抗體若與CD3結合則不與TLR2結合。 The results are shown in FIG. 17. EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU42 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU43 ERY22_Hh / CE115_ERY22_L have been added to the CH3 region with TLR2 binding peptides, because strong binding to TLR2 and CD3 is detected at the same time. On the other hand, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22 CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L have almost no signal detected in ECL measurement. In other words, if these antibodies bind to CD3, they will not bind to TLR2.

(4-6)利用ECL法考察TLR2與CD3不同時結合於Fab區 (4-6) Using the ECL method to investigate that TLR2 and CD3 do not bind to the Fab region at the same time

由以上的結果,可知能製作有以1個Fab分別結合於CD3、TLR2且不同時結合於CD3及TLR2之雙結合Fab分子特性的抗體。本實施例中,藉由對於具有結合於第1抗原CD3之可變區的抗體,在該可變區將結合第2抗原TLR2之RWGYHLRDRKYKGVRSHKGVPR胜肽插入到Fab,而能取得賦予對於第2抗原之結合活性且不會同時結合於CD3與第2抗原之分子。以同方法,藉由將對於如WO2006036834例示之蛋白質有結合活性之胜肽插入到Fab中之迴圈,能取得對於任意第2抗原有結合活性的雙結合Fab分子。此外,對於蛋白質顯示結合活性之胜肽,可使用該領域中通常知識者公知之方法製作胜肽庫並選擇有所望活性之胜肽以取得(Pasqualini R.,Nature,1996,380(6572):364-6))。再者,藉由使用如實施例5記載之Fab中之迴圈加長改變(延長)的抗原結合分子的庫,據認為可製作對於任意第2抗原有結合活性的雙結合Fab分子。對抗第1抗原之可變區可依該領域中通常知識者公知之各種方法取得,故藉由使用如此的庫,可說能製作對於任意第1抗原與任意第2抗原有結合活性且無法同時結合於該第1抗原及該第2抗原之雙結合Fab分子。 From the above results, it can be seen that an antibody having the characteristics of a double-binding Fab molecule that binds to CD3 and TLR2 with one Fab and does not simultaneously bind to CD3 and TLR2 can be produced. In this example, an antibody having a variable region that binds to the first antigen CD3 is inserted into the Fab in the variable region by an RWGYHLRDRKYKGVRSHKGVPR peptide that binds to the second antigen TLR2. Binding activity and does not bind to the molecule of CD3 and the second antigen at the same time. In the same manner, by inserting a peptide having binding activity to a protein as exemplified in WO2006036834 into a Fab, a double-binding Fab molecule having binding activity to an arbitrary second antigen can be obtained. In addition, for peptides that show binding activity for proteins, peptide libraries can be made using methods well known to those skilled in the art and selected peptides with expected activity can be obtained (Pasqualini R., Nature, 1996, 380 (6572): 364-6)). Furthermore, by using a library of antigen-binding molecules whose length is changed (elongated) in the Fab in Example 5 as described in Example 5, it is thought that a double-binding Fab molecule having binding activity to an arbitrary second antigen can be produced. The variable region against the first antigen can be obtained by various methods known to those skilled in the art. Therefore, by using such a library, it can be said that it is possible to produce binding activity against any first antigen and any second antigen and cannot simultaneously A double-binding Fab molecule that binds to the first antigen and the second antigen.

由以上的結果,顯示:EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU21 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU22 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU26 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU27 ERY22_Hh/CE115_ERY22_L會結合於CD3及TLR2且不同時結合於CD3與TLR2。亦即EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU21 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU22 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU26 ERY22_Hh/CE115_ERY22_L、EGFR ERY22_Hk/EGFR ERY22_L/CE115_DU27 ERY22_Hh/CE115_ERY22_L係有雙結合Fab,且解明可製作如此的分子。 From the above results show: EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L Will bind to CD3 and TLR2 and not both to CD3 and TLR2. I.e. EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU21 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU22 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU26 ERY22_Hh / CE115_ERY22_L, EGFR ERY22_Hk / EGFR ERY22_L / CE115_DU27 ERY22_Hh / CE115_ERY22_L tied with binding Fab bis , And the explanation can make such a molecule.

[實施例5]用以製作結合於CD3及第2抗原之抗體的抗體改變 [Example 5] Antibody changes for preparing antibodies that bind to CD3 and the second antigen

(5-1)能結合於第2抗原之胜肽之插入處與長度之探討 (5-1) Discussion of the insertion and length of the peptide capable of binding to the second antigen

探討以單側之可變區(Fab)結合於癌抗原,以另一可變區結合於第1抗原CD3,並且結合於第2抗原但不同時結合於CD3及第2抗原之雙結合Fab分子之取得。依參考實施例1製作:係以單側Fab作為EGFR結合分域,以另一側之Fab作為CD3結合分域之異二聚化抗體,其係結合於CD3ε之抗體CE115之重鏈迴圈部分插入有GGS胜肽之異二聚化抗體。 To explore a double-binding Fab molecule that binds to a cancer antigen with a single variable region (Fab), a CD3 that binds to the first antigen with another variable region, and a CD3 that binds to the second antigen but not both to CD3 and the second antigen. Of it. Manufactured according to Reference Example 1: Heterodimerized antibody with one side Fab as EGFR binding domain and the other side Fab as CD3 binding domain, which is the heavy chain loop portion of antibody CE115 bound to CD3ε Heterodimeric antibody with GGS peptide inserted.

亦即,製作CDR2中之K52B與S52c之間插入有 GGS之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE31 ERY22_Hh/CE115_ERY22_L:((序列編號:20/21/43/23)、插入有GGSGGS胜肽(序列編號:90)之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE32 ERY22_Hh/CE115_ERY22_L((序列編號:20/21/44/23)、插入有GGSGGSGGS胜肽(序列編號:91)之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE33 ERY22_Hh/CE115_ERY22_L:((序列編號:20/21/45/23)。同樣地,製作框架3中之迴圈狀部位D72與D73之間插入GGS之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE34 ERY22_Hh/CE115_ERY22_L:((序列編號:20/21/46/23)、插入有GGSGGS胜肽(序列編號:90)之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE35 ERY22_Hh/CE115_ERY22_L((序列編號:20/21/47/23)、插入有GGSGGSGGS胜肽(序列編號:91)之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE36 ERY22_Hh/CE115_ERY22_L:((序列編號:20/21/48/23)。又,製作在CDR3中之A99與Y100之間插入有GGS之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE37 ERY22_Hh/CE115_ERY22_L:((序列編號:20/21/49/23)、插入有GGSGGS胜肽之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE38 ERY22_Hh/CE115_ERY22_L((序列編號:20/21/50/23)、插入有GGSGGSGGS胜肽之EGFR ERY22_Hk/EGFR ERY22_L/CE115_CE39 ERY22_Hh/CE115_ERY22_L:((序列編號:20/21/51/23)。 That is, between K52B and S52c in CDR2, GGS EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE31 ERY22_Hh / CE115_ERY22_L: ((Serial No .: 20/21/43/23), EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE32 ERY22_Hh_CEL_ER_ER_ERY_ERY_ERY_ERY_ERY_ERY (Sequence number: 20/21/44/23), EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE33 ERY22_Hh / CE115_ERY22_L: ((sequence number: 20/21/45/23) inserted with GGSGGSGGS peptide (sequence number: 91). Similarly, EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE34 ERY22_Hh / CE115_ERY22_L: ((SEQ ID: 20/21/46/23), GGSGGS peptide inserted (SEQ ID NO: 90) EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE35 ERY22_Hh / CE115_ERY22_L ((SEQ ID NO: 20/21/47/23), EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE36 inserted with GGSGGSGGS peptide (SEQ ID NO: 91) ERY22_Hh / CE115_ERY22_L: ((Serial number: 20/21/48/23). Also, produced EGFR ERY22_Hk / EGFR ERY22_L / CE115_CE37 ERY22_Hh / CE115_ERY22_L with GGS inserted between A99 and Y100 in CDR3: ((Serial number: 20/21/49/23), EGFR with GGSGGS peptide inserted ERY22_Hk / EGFR ERY22_L / CE115_CE38 ERY22_Hh / CE115_ERY22_L ((sequence number: 20/21/50/23), EGFR with GGSGGSGGS peptide inserted ERY22_Hk / EGFR ERY22_L / CE115_CE39 ERY22_Hh / CE115_ERY22_L: (Sequence number /twenty three).

(5-2)已插入GGS胜肽之CE115抗體向CD3ε之結 合確認 (5-2) The knot of CE115 antibody inserted into GGS peptide to CD3ε Confirmation

利用BiacoreT100確認製作的各種抗體是否維持向CD3ε之結合性。於CM5晶片介由鏈黴抗生物素蛋白使生物素化CD3ε抗原決定位胜肽結合,使製作的抗體作為分析物流過,解析結合親和性。 BiacoreT100 was used to confirm whether the various antibodies produced maintained binding to CD3ε. The biotinylated CD3ε antigen-determining peptide was bound to the CM5 chip via streptavidin, and the produced antibody was passed through as an analysis to analyze the binding affinity.

其結果示於表2。CE35、CE36、CE37、CE38、CE39向CD3ε之結合親和性,與親代抗體CE115為同等。由此顯示:該等迴圈中能插入結合於第2抗原之胜肽。又,已插入GGSGGSGGS的CE36、CE39,結合親和性也未降低,故顯示該等處至少插入9個胺基酸為止的胜肽,不影響向CD3ε之結合性。 The results are shown in Table 2. The binding affinity of CE35, CE36, CE37, CE38, CE39 to CD3ε is equivalent to that of the parent antibody CE115. This shows that a peptide capable of binding to the second antigen can be inserted into these loops. In addition, the binding affinity of CE36 and CE39 which have been inserted into GGSGGSGGS has not been reduced. Therefore, it has been shown that peptides having at least 9 amino acids inserted in these places do not affect the binding to CD3ε.

亦即,顯示:藉由使用如此的胜肽插入CE115以取得對於第2抗原結合之抗體,能製作會結合於CD3與第2抗原但不同時結合之抗體。 That is, it was shown that by using such a peptide to insert CE115 to obtain an antibody that binds to the second antigen, an antibody that can bind to CD3 and the second antigen but not to bind at the same time can be produced.

在此,藉由將插入或取代的胜肽的胺基酸序列依部位專一性變異誘發法(Kunkel等(Proc.Natl.Acad.Sci.U.S.A.(1985)82,488-492))、Overlap extension PCR等公知方法隨機改變, 並依上述方法比較各改變體之結合活性等,並改變胺基酸序列,以決定能顯示目的活性之插入、取代處、其胺基酸種類、長度,可製作庫。 Here, a site-specific variation induction method of the amino acid sequence of the inserted or substituted peptide (Kunkel et al. (Proc. Natl. Acad. Sci. USA (1985) 82, 488-492)), Overlap extension PCR, etc. Known methods change randomly, According to the above method, the binding activity of each modified body is compared, and the amino acid sequence is changed to determine the insertion, substitution, the type and length of the amino acid that can show the target activity, and a library can be made.

[實施例6]用以取得結合於CD3及第2抗原之抗體之庫設計 [Example 6] Library design for obtaining antibodies binding to CD3 and the second antigen

(6-1)針對取得結合於CD3及第2抗原之抗體之抗體庫(也稱為Dual Fab Library) (6-1) Antibody library (also called Dual Fab Library) for obtaining antibodies that bind to CD3 and the second antigen

選擇CD3(CD3ε)作為第1抗原,取得結合於CD3(CD3ε)與任意第2抗原之抗體的方法可列舉以下6種方法。 The method of selecting CD3 (CD3ε) as the first antigen and obtaining an antibody that binds to CD3 (CD3ε) and an arbitrary second antigen includes the following six methods.

1.在結合於第1抗原之Fab分域插入結合於第2抗原之胜肽或多胜肽的方法(實施例3與4所示之胜肽插入以外,尚有如Angew Chem Int Ed Engl.2013 Aug 5;52(32):8295-8例示之插入G-CSF之方法。)結合之胜肽或多胜肽,可從展示胜肽或多胜肽之庫取得,也可進一步利用天然存在蛋白質之全體或其一部分。 1. A method of inserting a peptide or a polypeptide that binds to a second antigen into a Fab domain that binds to a first antigen (In addition to the peptide insertion shown in Examples 3 and 4, there are methods such as Angew Chem Int Ed Engl. 2013 Aug 5; 52 (32): 8295-8 exemplified method of inserting G-CSF.) The binding peptide or polypeptide can be obtained from a library displaying peptides or polypeptides, and natural occurring proteins can be further used. All or part of it.

2.製作如實施例5所示,Fab中之迴圈能加長改變(延長)之位置出現各種胺基酸的抗體庫,而以從抗體庫向抗原之結合活性為指標取得對於任意第2抗原有結合活性之Fab之方法 2. Create an antibody library as shown in Example 5 in which the loops in the Fab can be changed (extended) at various positions, and the binding activity from the antibody library to the antigen is used as an indicator to obtain any second antigen. Method for binding active Fab

3.使用從預先已知對於CD3結合的Fab分域利用部位專一性變異法製得的抗體,鑑定維持與CD3之結合活性之胺基酸,從會出現已鑑定之胺基酸的抗體庫,以抗體庫向抗原之結合活性為指標,取得對於任意第2抗原有結合活性之Fab的方法 3. Using antibodies made from site-specific mutation methods for Fab domains known to bind to CD3 in advance to identify amino acids that maintain binding activity with CD3, and from the library of antibodies that will have identified amino acids, Method for obtaining binding activity of an antibody library to an antigen as an index, and obtaining a Fab having binding activity to any second antigen

4.製作3.之方法能進一步將Fab中之迴圈加長改變(延長)之位置有各種胺基酸出現的抗體庫,以抗體庫向抗原之結合活 性為指標,取得對於任意第2抗原有結合活性之Fab的方法 4. The method of 3. can further lengthen (change) the loop in the Fab. There is an antibody library with various amino acids in the position. Method for obtaining a Fab having binding activity to an arbitrary second antigen as an index

5.於1.2.3.或4.之方法中,進行改變使糖鏈附加序列(例如NxS,NxT、x為P以外之胺基酸)出現,並附加糖鏈受體認識之糖鏈之方法(例如附加高甘露糖型糖鏈,高甘露糖受體會認識。高甘露糖型糖鏈已知可藉由於抗體表現時添加Kifunensine而得(MAbs.2012 Jul-Aug;4(4):475-87)) 5. In the method of 1.2.3. Or 4., a method of changing the sugar chain additional sequence (for example, NxS, NxT, and x is an amino acid other than P), and adding a sugar chain recognized by the sugar chain receptor (For example, if a high mannose type sugar chain is added, the high mannose receptor will recognize it. High mannose type sugar chains are known to be obtained by adding Kifunensine during antibody expression (MAbs. 2012 Jul-Aug; 4 (4): 475- 87))

6.於1.2.3.或4.之方法中,於迴圈部位、可改變為各種胺基酸之部位插入或取代Cys、Lys或非天然胺基酸,而以共價鍵附加結合於第2抗原之分域之方法(Antibody drug conjugate為代表之方法,以共價鍵結合Cys、Lys或非天然胺基酸之方法、記載於mAbs 6:1,34-45;January/February 2014、WO2009/134891A2、Bioconjug Chem.2014 Feb 19;25(2):351-61)) 6. In the method of 1.2.3. Or 4., Cys, Lys, or unnatural amino acid is inserted or substituted at the loop position, which can be changed to various amino acids, and is additionally bonded to the first covalent bond. 2 Antigen domain method (Antibody drug conjugate as the representative method, covalent bonding Cys, Lys or unnatural amino acid method, described in mAbs 6: 1,34-45; January / February 2014, WO2009 / 134891A2, Bioconjug Chem. 2014 Feb 19; 25 (2): 351-61))

使用上述方法,可獲得與第1抗原與第2抗原結合且彼此不同時結合的雙結合Fab,且與任意第3抗原結合之分域(稱為另一可變區,記載於實施例1)可依該領域中通常知識者公知之方法,例如利用共通L鏈、Cross mab、Fab arm exchange法組合。 Using the above method, a dual-binding Fab that binds to the first antigen and the second antigen and does not bind to each other at the same time can be obtained, and a subdomain that binds to any third antigen (referred to as another variable region, described in Example 1) It can be combined according to a method well known to those skilled in the art, for example, by using a common L chain, Cross mab, and Fab arm exchange method.

(6-2)使用部位專一性變異法製作CD3(CD3ε)結合抗體之1胺基酸改變抗體 (6-2) Preparation of 1 amino acid-changing antibody of CD3 (CD3ε) binding antibody using site-specific mutation method

作為CD3(CD3ε)結合抗體之模板序列之VH區域選擇CE115HA000(序列編號:52)、VL區域選擇GLS3000(序列編號:53)。各對於認為涉及抗原結合的部位,參考實施例1實施胺基酸改變。又,H鏈之不變區使用pE22Hh(對於天然IgG1 之CH1以後的序列施加L234A,L235A,N297A,D356C,T366S,L368A,Y407V的改變,使C末端之GK序列缺失而附加DYKDDDDK序列(序列編號:89)之序列,序列編號:54),L鏈不變區使用Kappa鏈(序列編號:55)。已實施改變的部位示於表3。為了實施CD3(CD3ε)結合活性評價,取得單臂抗體(天然型IgG的其中一Fab分域缺損的抗體)作為1胺基酸改變抗體。具體而言,H鏈改變的情形,使用經改變之H鏈和不變區pE22Hh連結而得者以及Kn010G3(對於天然型IgG1之216號以後的胺基酸序列施以C220S,Y349C,T366W、H435R之改變者,序列編號:56)與kappa鏈連結於3'側而得之GLS3000,L鏈改變的情形使用於經改變之L鏈之3'側連結有Kappa鏈之序列、與就H鏈而言於3'側有pE22Hh連結之CE115HA000與Kn010G3,以FreeStyle293細胞實施表現‧精製(使用參考實施例1之方法)。 CE115HA000 (sequence number: 52) was selected as the VH region of the template sequence of the CD3 (CD3ε) binding antibody, and GLS3000 (sequence number: 53) was selected as the VL region. For each site considered to be involved in antigen binding, reference example 1 was performed for amino acid changes. In addition, the invariant region of the H chain uses pE22Hh (for natural IgG1 The sequence after CH1 applies the changes of L234A, L235A, N297A, D356C, T366S, L368A, Y407V, so that the GK sequence at the C-terminus is deleted and the sequence of DYKDDDDK (sequence number: 89) is added, sequence number: 54), L chain The invariant region uses a Kappa chain (sequence number: 55). The changed parts are shown in Table 3. In order to perform the CD3 (CD3ε) binding activity evaluation, a one-armed antibody (an antibody with a defective Fab domain of a native IgG) was obtained as a 1 amino acid modifying antibody. Specifically, when the H chain is changed, the modified H chain and the invariant region pE22Hh are used and Kn010G3 (C220S, Y349C, T366W, H435R is applied to the amino acid sequence of natural type IgG1 after 216 The changer, sequence number: 56) GLS3000 obtained by linking the kappa chain to the 3 'side. The L chain change is used for the sequence with the Kappa chain connected to the 3' side of the changed L chain, and for the H chain. CE115HA000 and Kn010G3 linked with pE22Hh on the 3 'side were expressed and purified using FreeStyle293 cells (using the method of Reference Example 1).

(6-3)1胺基酸改變抗體之CD3結合評價 (6-3) Evaluation of CD3 binding of 1 amino acid-modified antibody

於(6-2)構建及表現精製而得之1胺基酸改變體使用 BiacoreT200(GE Healthcare)評價。在Sensor chip CM4(GE Healthcare)上以胺基偶聯法將CD3ε均二聚物蛋白質予以固定化適當量後,注入作為分析物的適當濃度的抗體,使其與感應晶片上之CD3ε均二聚物蛋白質交互作用。之後,注入10mmol/L Glycine-HCl(pH1.5),將感應晶片予以再生。測定於25℃進行,運行緩衝液使用HBS-EP+(GE Healthcare)。測定結果係對於結合量與測定獲得之感應圖,使用single-cycle kinetics model(1:1binding RI=0)計算解離常數KD(M)。各參數的計算使用Biacore T200 Evaluation Software(GE Healthcare)。 The 1 amino acid altered body obtained by constructing and expressing (6-2) was evaluated using Biacore T200 (GE Healthcare). CD3ε homodimer protein was immobilized on the Sensor chip CM4 (GE Healthcare) by an amine coupling method, and then an appropriate amount of antibody as an analyte was injected to make it dimerize with the CD3ε homodimer Protein-protein interactions. Then, 10 mmol / L Glycine-HCl (pH 1.5) was injected to regenerate the sensor wafer. The measurement was performed at 25 ° C, and HBS-EP + (GE Healthcare) was used as a running buffer. The measurement result is a single-cycle kinetics model (1: 1 binding RI = 0) for the dissociation constant K D (M) for the binding amount and the induction diagram obtained by the measurement. The calculation of each parameter was performed using Biacore T200 Evaluation Software (GE Healthcare).

(6-3-1)H鏈之改變 (6-3-1) Change of H chain

各種H鏈改變體之結合量相對於改變前抗體CE115HA000之比之結果示於表4。亦即,令含CE115HA000之抗體之結合量為X、H鏈1胺基酸改變體之結合量為Y時之Z(結合量之比)=Y/X之值。此時如第18圖所示,Z未達0.8的情形,可知由感應圖得出的結合量非常少,啟示無法正確第計算解離常數KD(M)。然後,各種H鏈改變體相對於CE115HA000之解離常數KD(M)之比(=CE115HA000之KD值/改變體之KD值)示於表5。 Table 4 shows the results of the ratios of the binding amounts of various H chain modifiers to the CE115HA000 antibody before modification. That is, let the binding amount of the CE115HA000-containing antibody be X, and the binding amount of the amino-chain 1 amino acid modifier is Y (Z (binding amount ratio) = Y / X). At this time, as shown in Fig. 18, when Z is less than 0.8, it can be seen that the binding amount obtained from the induction map is very small, and it is revealed that the dissociation constant K D (M) cannot be calculated correctly. Table 5 shows the ratios of the dissociation constants K D (M) of various H-chain modifiers to CE115HA000 (= KD value of CE115HA000 / KD value of modifiers).

如表4所示之Z為0.8以上時,據認為對於改變前之抗體CE115HA000維持結合,故以出現該等胺基酸的方式設計的抗體庫可成為雙Fab庫。 As shown in Table 4, when Z is 0.8 or more, it is considered that binding to the antibody CE115HA000 before the change is maintained, so the antibody library designed in the manner in which these amino acids appear can be a double Fab library.

(6-3-2)L鏈之改變 (6-3-2) Change of L chain

各種L鏈改變體之結合量相對於改變前抗體GLS3000之比之結果示於表6。亦即,令含GLS3000之抗體之結合量為X、L鏈1胺基酸改變體之結合量為Y時,Z(結合量之比)=Y/X之值。此時如第18圖所示,Z未達0.8的情形,由感應圖可知結合量非常少,啟示無法正確計算解離常數KD(M)。然後,各種L鏈改變體對於GLS3000之解離常數KD(M)之比示於表7。 Table 6 shows the results of the ratios of the binding amounts of various L chain modifiers to the GLS3000 antibody before modification. That is, when the binding amount of the GLS3000-containing antibody is X, and the binding amount of the amino acid modified body of the L chain 1 is Y, Z (the ratio of the binding amount) = Y / X. At this time, as shown in Fig. 18, when Z is less than 0.8, it can be seen from the induction diagram that the amount of binding is very small, which suggests that the dissociation constant K D (M) cannot be calculated correctly. Table 7 shows the ratios of the dissociation constants K D (M) of various L-chain modifiers to GLS3000.

表6所示之Z為0.8以上時,考量對改變前之抗體GLS3000維持結合,故以該等胺基酸出現的方式設計的抗體庫可成為雙Fab庫。 When Z shown in Table 6 is 0.8 or more, it is considered to maintain binding to the antibody GLS3000 before the change, so the antibody library designed in the manner in which these amino acids appear can be a double Fab library.

(6-4)1胺基酸改變抗體之ECM(Extracellular matrix;細胞外基質)結合評價 (6-4) ECM (Extracellular matrix) binding assessment of 1 amino acid-changing antibody

ECM(Extracellular matrix;細胞外基質)係細胞外之構成成分之一,存於生命體內的各種部位。所以,已知和ECM強結合的抗體於血中動態變差(半減期縮短)(WO2012093704A1)。而,針對在抗體庫出現的胺基酸,宜選擇ECM結合不增強的胺基酸較佳。 ECM (Extracellular matrix; extracellular matrix) is one of the constituent components outside the cell, and is stored in various parts of the living body. Therefore, it is known that antibodies that strongly bind to ECM deteriorate dynamically in blood (shortening of half-life) (WO2012093704A1). However, for the amino acids that appear in the antibody library, it is better to choose amino acids that do not enhance ECM binding.

各H鏈或L鏈改變體依(6-2)所示方法取得抗體。然後依參考實施例2之方法評價ECM結合。各改變體之ECM結合值(ECL response;ECL反應之值)除以同一板內或同一實施日之MRA(H鏈序列編號:57、L鏈序列編號:58)之抗體ECM結合值而得之值示於表8(H鏈)、表9(L鏈)。如表8及9所示,在一些改變可觀察到ECM結合增強的傾向。 An antibody was obtained for each H-chain or L-chain altered body according to the method shown in (6-2). ECM binding was then evaluated as described in Reference Example 2. The ECM binding value (ECL response; ECL response value) of each variant is obtained by dividing the ECM binding value of the antibody in the same plate or the same implementation day as the MRA (H chain sequence number: 57, L chain sequence number: 58). The values are shown in Table 8 (H chain) and Table 9 (L chain). As shown in Tables 8 and 9, the tendency to increase ECM binding was observed in some changes.

表8(H鏈)、表9(L鏈)所示值之中,考慮多數改變所致ECM結合增強之效果,以直到10倍為有效而採用於雙Fab庫。 Among the values shown in Table 8 (H chain) and Table 9 (L chain), the effects of enhanced ECM binding caused by most changes are considered, and they are used up to 10 times as effective for the dual Fab library.

(6-5)用以增強庫多樣性之胜肽之插入處與長度的探討 (6-5) Discussion of insertion positions and lengths of peptides to enhance library diversity

實施例5中,顯示能在各處使用GGS序列而不喪失向CD3(CD3ε)之結合地插入胜肽。雙Fab庫中,只要迴圈能延長,據認為能成為含有更多種類的分子(也表達為多樣性大)的庫,可取得和多樣第2抗原結合的Fab分域。而預測由於胜肽插入 會使結合活性降低,所以對於CE115HA000序列施加V11L/D72A/L78I/D101Q改變以使向CD3ε之結合活性增高並連結pE22Hh之序列,和實施例5同樣地插入GGS連結子,製作此分子並進行CD3結合的評價。GGS序列插入於Kabat numbering的99-100之間。抗體分子表達為單臂抗體。具體而言,採用含GGS連結子之前述H鏈與Kn010G3(序列編號:56)及作為L鏈之GLS3000(序列編號:53)與Kappa序列(序列編號:55)連結成的序列,依參考實施例1實施表現精製。 In Example 5, it was shown that the GGS sequence can be used everywhere without losing the binding to CD3 (CD3ε) binding peptide. In the double Fab library, as long as the loop can be extended, it is thought that it can be a library containing more types of molecules (also expressed as a large diversity), and can obtain Fab domains that bind to multiple second antigens. And predicted due to peptide insertion The binding activity is reduced, so the V11L / D72A / L78I / D101Q change was applied to the CE115HA000 sequence to increase the binding activity to CD3ε and to link the sequence of pE22Hh. The GGS linker was inserted in the same manner as in Example 5 to make this molecule and perform CD3. Combined evaluation. The GGS sequence is inserted between 99-100 of Kabat numbering. The antibody molecule is expressed as a one-armed antibody. Specifically, the sequence in which the aforementioned H chain containing GGS linker and Kn010G3 (sequence number: 56) and the L chain of GLS3000 (sequence number: 53) and Kappa sequence (sequence number: 55) are linked is implemented according to reference Example 1 performed performance refinement.

(6-6)已插入GGS胜肽之CE115抗體向CD3之結合確認 (6-6) Confirmation of binding of CE115 antibody with GGS peptide to CD3

已插入GGS胜肽之改變抗體向CD3ε之結合,係使用實施例6記載的方法使用Biacore實施。其結果,可知如表10所示,可向迴圈部位插入GGS連結子。尤其可在對於抗原結合為重要的H鏈CDR3區域插入GGS連結子,3,6,9個胺基酸的任一均維持向CD3ε之結合。在本項研究使用GGS連結子進行研究,但據認為也可為不是出現GGS而是出現各種胺基酸的抗體庫。 The binding of the GGS peptide-modified antibody to CD3ε was performed using the method described in Example 6 using Biacore. As a result, as shown in Table 10, it was found that a GGS linker can be inserted into the loop portion. In particular, a GGS linker can be inserted into the H chain CDR3 region which is important for antigen binding, and any of 3, 6, 9 amino acids can maintain binding to CD3ε. In this study, the GGS linker was used for the research, but it is thought that it can be an antibody library in which various amino acids are present instead of GGS.

(6-7)使用NNS鹼基向H鏈CDR3進行庫插入之研究 (6-7) Study of library insertion into H chain CDR3 using NNS bases

於(6-6)可使用GGS連結子插入3,6,9個胺基酸,據認為製作插入有3,6,9個胺基酸的庫,使用通常之噬菌體展示(Phage display)法所代表的抗體取得法的話,則能取得結合於第2抗原的抗體。而,於向CDR3之插入為6個胺基酸時,使用NNS鹼基(出現各種胺基酸),探討是否於插入6個胺基酸的部位出現各種胺基酸仍保持和CD3之結合。因預測結合活性降低,所以使用NNS鹼基設計引子,使比起CE115HA000有更高CD3ε結合活性之CE115HA340序列(序列編號:59)之CDR3中之99-100(Kabat numbering)之間插入6個胺基酸。抗體分子表現作為單臂抗體。具體而言,採用含前述改變之前述H鏈與Kn010G3(序列編號:56)與作為L鏈之GLS3000(序列編號:53)與Kappa序列(序列編號:55)連結而得之序列,依參考實施例1實施表現精製。取得之改變抗體依(6-3)記載的方法評價結合。其結果示於表11。可知:即使於胺基酸延長的部位出現各種胺基酸,仍保持向CD3(CD3ε)之結合性。再者,依參考實施 例2所示之方法評價非專一性結合是否增強的結果示於表12其結果,若CDR3之伸長迴圈內有多數側鏈帶正電荷的胺基酸,則向ECM之結合增強,所以不希望於迴圈內出現3個以上於側鏈帶有正電荷的胺基酸。 In (6-6), 3,6,9 amino acids can be inserted using GGS linkers. It is thought that a library with 3,6,9 amino acids inserted can be made using the usual phage display method. In a typical antibody acquisition method, an antibody that binds to a second antigen can be obtained. However, when 6 amino acids were inserted into CDR3, NNS bases (various amino acids appeared) were used to investigate whether the presence of various amino acids at the sites where the 6 amino acids were inserted still remained in combination with CD3. Due to the predicted decrease in binding activity, NNS bases were used to design primers to insert 6 amines between 99-100 (Kabat numbering) in CDR3 of CE115HA340 sequence (SEQ ID NO: 59) that has higher CD3ε binding activity than CE115HA000. Based acid. The antibody molecule appears as a one-armed antibody. Specifically, a sequence obtained by linking the aforementioned H chain and Kn010G3 (sequence number: 56) with the aforementioned changes, and GLS3000 (sequence number: 53) as the L chain, and the Kappa sequence (sequence number: 55) is implemented according to reference. Example 1 performed performance refinement. The obtained modified antibody was evaluated for binding according to the method described in (6-3). The results are shown in Table 11. It can be seen that the binding property to CD3 (CD3ε) is maintained even when various amino acids appear at the site where the amino acid is prolonged. Furthermore, implementation by reference The results of the method shown in Example 2 to evaluate whether the non-specific binding is enhanced are shown in Table 12. The results are shown in Table 12. If there are most side chain positively charged amino acids in the CDR3 elongation loop, the binding to the ECM is enhanced, so It is expected that more than 3 amino acids with a positive charge in the side chain will appear in the loop.

(6-7)雙Fab庫之設計及構建 (6-7) Design and Construction of Double Fab Library

由實施例6記載之研究,依以下方式設計用以取得結合於CD3與第2抗原之抗體的抗體庫(Dual Fab Library)。 Based on the study described in Example 6, an antibody library (Dual Fab Library) was designed to obtain antibodies that bind to CD3 and the second antigen in the following manner.

步驟1:選擇保持CD3(CD3ε)結合能力的胺基酸(CD3結合量為CE115HA000之80%以上) Step 1: Select an amino acid that retains the binding capacity of CD3 (CD3ε) (CD3 binding capacity is more than 80% of CE115HA000)

步驟2:選擇ECM結合較改變前,比起MRA為10倍以內的胺基酸 Step 2: Select the amino acid that is less than 10 times the MRA before the ECM binding changes.

步驟3:在H鏈CDR3之99-100(Kabat numbering)之間插入6個胺基酸 Step 3: Insert 6 amino acids between 99-100 (Kabat numbering) of H chain CDR3

又,僅步驟1也能使Fab之抗原結合部位多樣化,所以可成為鑑定結合於第2抗原之抗原結合分子之庫又,僅步驟1與3也能使Fab之抗原結合部位多樣化,所以可成為鑑定結合 於第2抗原之抗原結合分子之庫。不經步驟2之庫設計也能測定對於取得之分子的ECM結合並進行評價。 Furthermore, only the step 1 can diversify the antigen-binding site of the Fab, so it can be used as a library for identifying antigen-binding molecules that bind to the second antigen. Furthermore, only the steps 1 and 3 can diversify the antigen-binding site of the Fab, so Identification binding A library of antigen-binding molecules in the second antigen. ECM binding to the obtained molecules can be determined and evaluated without the library design of step 2.

由以上,雙Fab庫之H鏈係對於CE115HA000之FR(框架)施加V11L/L78I變異而得的序列,就CDR而言以表13所示多樣化,L鏈係將GLS3000之CDR以表14所示多樣化。該等抗體庫片段可以用該領域中通常知識者公知之DNA合成方法合成該庫片段。作為雙Fab庫(Dual Fab library),可製作:(1)將H鏈以表13所示多樣化,L鏈固定為原序列GLS3000或實施例6所記載之CD3ε結合增強的L鏈的庫、(2)H鏈固定為原序列(CE115HA000)或實施例6記載之CD3ε結合增強的H鏈,L鏈為如表14所示多樣化之庫、(3)H鏈如表13所示多樣化,L鏈如表14所示多樣化之庫。將H鏈係對於CE115HA000之FR(框架)施加V11L/L78I變異之序列就CDR而言依表13所示多樣化而得的庫序列委託DNA2.0的DNA合成公司,取得抗體庫片段(DNA片段)。將取得之抗體庫片段插入到經PCR法放大的噬菌體展示用噬粒。於此時,L鏈選擇GLS3000。再將構建的噬菌體展示用噬粒以電穿孔法導入到大腸菌,製作保有抗體庫片段的大腸菌。 From the above, the sequence obtained by applying the V11L / L78I mutation to the FR (framework) of CE115HA000 in the H chain system of the double Fab library is diversified as shown in Table 13 for the CDR. Show diversity. The antibody library fragments can be synthesized by DNA synthesis methods known to those skilled in the art. As a dual Fab library, you can make: (1) a library that diversifies the H chain as shown in Table 13 and fixes the L chain to the original sequence GLS3000 or the CD3ε binding enhanced L chain described in Example 6, (2) The H chain is fixed to the original sequence (CE115HA000) or the CD3ε binding enhanced H chain described in Example 6, the L chain is a diversified library as shown in Table 14, and (3) the H chain is diversified as shown in Table 13. As shown in Table 14, the L chain is diversified. The H chain system was subjected to the V11L / L78I mutation sequence of the FR (framework) of CE115HA000. For the CDR, the library sequence diversified as shown in Table 13 was entrusted to DNA 2.0 DNA synthesis company to obtain antibody library fragments (DNA fragments ). The obtained antibody library fragment was inserted into a phage display phage amplified by PCR. At this time, the L chain chose GLS3000. Then, the constructed phage display was introduced into coliforms by electroporation using phagemids to prepare coliforms with antibody library fragments.

[實施例7]從雙Fab庫取得結合於CD3及第2抗原(IL6R)之Fab分域 [Example 7] Obtaining a Fab domain binding to CD3 and the second antigen (IL6R) from a dual Fab library

(7-1)結合於人IL6R之Fab分域之取得 (7-1) Fab domain binding to human IL6R

從實施例6設計及構建之雙Fab庫鑑定對人IL6R結合之Fab分域(抗體片段)。作為抗原,使用經生物素標記之人IL6R,並實施帶有對人IL6R之結合能力的抗體片段的濃縮。 Fab domains (antibody fragments) that bind to human IL6R were identified from the dual Fab library designed and constructed in Example 6. As the antigen, biotin-labeled human IL6R was used, and an antibody fragment having binding ability to human IL6R was concentrated.

從保持著構建之噬菌體展示用噬粒的大腸菌實施噬菌體產生。於已實施噬菌體產生的大腸菌培養液添加2.5M NaCl/10%PEG,將沉澱的噬菌體的集團以TBS稀釋,而獲得噬菌體庫液。然後,於噬菌體庫液添加BSA,使終濃度成為4%BSA。淘選方法可參照一般方法,即使用固定於磁性珠粒的抗原的淘選方法(J.Immunol.Methods.(2008)332(1-2),2-9、J.Immunol.Methods.(2001)247(1-2),191-203、Biotechnol.Prog.(2002)18(2)212-20、Mol.Cell Proteomics(2003)2(2),61-9)。磁性珠粒可使用NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)或Streptavidin coated beads(Dynabeads M-280 Streptavidin)。 Phage production was performed from coliforms that maintained the constructed phage display phagemid. 2.5M NaCl / 10% PEG was added to the coliform culture medium which had been subjected to phage production, and the group of the precipitated phages was diluted with TBS to obtain a phage library solution. Then, BSA was added to the phage library solution to a final concentration of 4% BSA. The panning method can refer to the general method, that is, the panning method using an antigen immobilized on magnetic beads (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol. Methods. (2001). ) 247 (1-2), 191-2203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9). Magnetic beads can be NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin).

具體而言,於製備的噬菌體庫液中加入250pmol的生物素標記抗原,使該噬菌體庫液於室溫和抗原接觸60分鐘。加入經BSA阻斷的磁性珠粒,使抗原與噬菌體之複合體和磁性珠粒於室溫進行15分鐘結合。珠粒以含TBST(0.1%Tween20之TBS,TBS為TaKaRa公司製)洗滌3次後,以1mLTBS再洗滌2次。之後,將已加入0.5mL之1mg/mL的胰蛋白酶的珠粒於室溫懸浮15分鐘後,立即使用磁座將珠粒分離,回收噬菌體溶液。將回收的噬菌體溶液加到成為對數增殖期(OD600為0.4-0.5)的10mL的大腸菌株ER2738。於37 ℃緩慢進行1小時上述大腸菌的攪拌培養,以使噬菌體感染大腸菌。將已感染的大腸菌接種到225mm x 225mm的板。然後從已接種大腸菌的培養液回收噬菌體,製備噬菌體庫液。此循環稱為淘選,重複多次。又,第2次後的淘選,使用40pmol之生物素標記抗原。又,於第4次淘選,以向CD3之結合性做為指標,實施噬菌體的濃縮。具體而言,於製備的噬菌體庫液加入250pmol的生物素標記CD3ε胜肽抗原(胺基酸序列序列編號:60),使噬菌體庫於室溫和抗原接觸60分鐘。加入經BSA阻斷的磁性珠粒,使抗原與噬菌體之複合體和磁性珠粒於室溫結合15分鐘。珠粒以含1mL之0.1% Tween20的TBS與TBS洗滌。將已加入0.5mL之1mg/mL之胰蛋白酶的珠粒於室溫懸浮15分鐘後,立即使用磁座將珠粒分離,回收噬菌體溶液。從經胰蛋白酶處理之噬菌體溶液回收的噬菌體加到成為對數增殖期(OD600為0.4-0.7)的10mL的大腸菌株ER2738。於37℃緩慢進行1小時上述大腸菌之攪拌培養,使噬菌體感染大腸菌。將已感染的大腸菌接種在225mm x 225mm的板。然後從已接種大腸菌的培養液回收噬菌體,以回收噬菌體庫液。 Specifically, 250 pmol of biotin-labeled antigen was added to the prepared phage library solution, and the phage library solution was contacted with the antigen at room temperature for 60 minutes. BSA-blocked magnetic beads were added to allow antigen-phage complexes and magnetic beads to bind for 15 minutes at room temperature. The beads were washed three times with TBST (0.1% Tween20 TBS, TBS manufactured by TaKaRa), and then washed twice with 1 mLTBS. Thereafter, the beads to which 0.5 mg of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and the beads were immediately separated using a magnetic stand to recover the phage solution. The recovered phage solution was added to 10 mL of a large intestine strain ER2738 at a logarithmic growth phase (OD600: 0.4-0.5). At 37 The agitated culture of the above coliform was slowly performed at 1 ° C for 1 hour to infect the phage with coliform. Infected coliforms were inoculated into 225mm x 225mm plates. Then, the phage was recovered from the culture solution inoculated with coliform bacteria to prepare a phage library solution. This cycle is called panning and is repeated multiple times. In the second and subsequent panning, 40 pmol of biotin-labeled antigen was used. In the fourth panning, phage was concentrated using the binding to CD3 as an index. Specifically, 250 pmol of biotin-labeled CD3ε peptide antigen (amino acid sequence number: 60) was added to the prepared phage library solution, and the phage library was contacted with the antigen at room temperature for 60 minutes. Add BSA-blocked magnetic beads to allow the antigen-phage complex and magnetic beads to bind for 15 minutes at room temperature. The beads were washed with TBS and TBS containing 1 mL of 0.1% Tween20. After 0.5 mL of 1 mg / mL trypsin beads were suspended at room temperature for 15 minutes, the beads were immediately separated using a magnetic stand, and the phage solution was recovered. The phage recovered from the trypsin-treated phage solution was added to 10 mL of a large intestinal strain ER2738 which became a logarithmic growth phase (OD600 0.4-0.7). The agitation of the above coliform was slowly performed at 37 ° C for 1 hour, and the phage was infected with the coliform. Infected coliforms were inoculated on 225mm x 225mm plates. Then, the phage was recovered from the culture medium inoculated with coliform to recover the phage pool.

再者,為了防止對一個大腸菌有多數噬菌體感染,針對由第5次淘選回收的已感染噬菌體的大腸菌製備的噬菌體庫液,再度以稀釋100,000倍的噬菌體液感染大腸菌,獲得單一群落。 Furthermore, in order to prevent a majority of phage infection to one coliform, the phage pool solution prepared from the coliform infected with the phage that had been recovered from the fifth panning was used to infect coliform with the phage fluid diluted 100,000 times to obtain a single community.

(7-2)展示噬菌體之Fab分域與CD3或IL6R之結合(噬菌體ELISA法) (7-2) Binding of Fab domain displaying phage to CD3 or IL6R (phage ELISA method)

從以上述方法獲得之大腸菌之單一群落依常法(Methods Mol.Biol.(2002)178,133-145),回收含噬菌體之培養上清。 將加入BSA使終濃度成為4%BSA的含噬菌體的培養上清依以下程序供ELISA。將StreptaWell 96微滴定板(Roche)於含生物素標記抗原(生物素化CD3ε胜肽或生物素化人IL6R)之100μLPBS於4℃包覆一晚或於室溫包覆1小時。將該板之各井以PBST洗滌以去除抗原後,將該井以250μL之4%BSA-TBS阻斷1小時以上。在已去除4%BSA-TBS之各井加有製備的培養上清的該板於室溫靜置1小時,使展示噬菌體之抗體和各井存在的抗原結合。將各井以TBST洗滌後,添加以終濃度4%之BSA的TBS稀釋的HRP結合抗M13抗體(Amersham Pharmacia Biotech),溫育1小時。以TBST洗滌後,以添加硫酸使已加有TMB single溶液(ZYMED)之各井中之溶液之發色反應停止,之後以450nm之吸光度測定該發色。其結果示於第19圖。#50及#62選殖體顯示對於CD3ε及人IL6R有結合性。亦即,藉由使用雙Fab庫,可選擇對於第2抗原(實施例7中為人IL6R)顯示結合性之選殖體。進一步增加評價數,選擇顯示結合性之選殖體,進行IgG化(選殖體帶有之VH及VL序列分別與人H鏈或L鏈不變區連結),可評價向CD3ε與第2抗原(人IL6R)之結合性。再者,是否同時與CD3ε及第2抗原(人IL6R)結合,可利用實施例3、4記載之方法、競爭法檢查。競爭法中,例如向CD3ε之結合,在比起抗體單獨時,於第2抗原存在時較減少,顯示未同時結合。 From the single colony of coliforms obtained by the above method (Methods Mol. Biol. (2002) 178, 133-145), a phage-containing culture supernatant was recovered. The phage-containing culture supernatant was added to BSA to a final concentration of 4% BSA for ELISA according to the following procedure. StreptaWell 96 microtiter plates (Roche) were coated with 100 μL PBS containing biotin-labeled antigen (biotinylated CD3ε peptide or biotinylated human IL6R) at 4 ° C. overnight or at room temperature for 1 hour. After washing each well of the plate with PBST to remove the antigen, the well was blocked with 250 μL of 4% BSA-TBS for more than 1 hour. The plate with the prepared culture supernatant added to each well from which 4% BSA-TBS has been removed is allowed to stand at room temperature for 1 hour, so that the antibody displaying the phage and the antigen present in each well are bound. After each well was washed with TBST, HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with TBS at a final concentration of 4% BSA was added and incubated for 1 hour. After washing with TBST, the color development reaction of the solution in each well to which TMB single solution (ZYMED) has been added was stopped by adding sulfuric acid, and then the color development was measured at an absorbance of 450 nm. The results are shown in FIG. 19. Colonies # 50 and # 62 showed binding to CD3ε and human IL6R. That is, by using a dual Fab library, a colony that can exhibit binding to a second antigen (human IL6R in Example 7) can be selected. The number of evaluations is further increased, and the selected clones showing binding ability are selected for IgG conversion (the VH and VL sequences carried by the selected clones are linked to the human H chain or L chain invariant regions, respectively), and can be evaluated for CD3ε and the second antigen (Human IL6R) binding. In addition, whether or not it binds to both CD3ε and the second antigen (human IL6R) can be checked by the method described in Examples 3 and 4 and the competition method. In the competition method, for example, the binding to CD3ε is reduced in the presence of the second antigen compared to when the antibody is alone, indicating that they do not bind simultaneously.

[實施例8]從雙Fab庫取得結合於CD3及第2抗原(人IgA)之Fab分域 [Example 8] Obtaining a Fab domain binding to CD3 and a second antigen (human IgA) from a dual Fab library

(8-1)結合於人IgA之Fab分域之取得 (8-1) Acquisition of Fab domain bound to human IgA

IgA為體內豐富存在的抗體的,已知是在腸、黏膜面的生命體防禦相關的分子,已知會結合於FcαR(Fc alpha受體)(J.Pathol.208:270-282,2006)。 IgA is an antibody abundant in the body. It is known to be a molecule related to the defense of life in the intestine and the mucosal surface, and it is known to bind to FcαR (Fc alpha receptor) (J. Pathol. 208: 270-282, 2006).

從實施例6設計及構建之雙Fab庫鑑定對於人IgA結合的Fab分域(抗體片段)。抗原使用經生物素標記之人IgA(記載於參考實施例3),進行帶有對人IgA之結合能力的抗體片段的濃縮。 Fab domains (antibody fragments) for human IgA binding were identified from the dual Fab library designed and constructed in Example 6. As the antigen, biotin-labeled human IgA (described in Reference Example 3) was used, and the antibody fragment having the ability to bind to human IgA was concentrated.

從保持了構建的噬菌體展示用噬粒的大腸菌進行噬菌體產生。於已實施噬菌體產生之大腸菌的培養液添加2.5M NaCl/10%PEG,將沉澱的噬菌體的集團以TBS稀釋,獲得噬菌體庫液。然後於噬菌體庫液加入BSA,使終濃度成為4%BSA。淘選方法參照一般方法,即使用固定有磁性珠粒之抗原的淘選方法(J.Immunol.Methods.(2008)332(1-2),2-9、J.Immunol.Methods.(2001)247(1-2),191-203、Biotechnol.Prog.(2002)18(2)212-20、Mol.Cell Proteomics(2003)2(2),61-9)。磁性珠粒可使用NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)或Streptavidin coated beads(Dynabeads M-280 Streptavidin)。 Phage production was performed from a phage display coliform with the constructed phage display. 2.5M NaCl / 10% PEG was added to the culture solution of the coliform bacteria which had been subjected to phage production, and the group of the precipitated phages was diluted with TBS to obtain a phage library solution. BSA was then added to the phage pool to make the final concentration 4% BSA. The panning method refers to the general method, that is, the panning method using an antigen immobilized with magnetic beads (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol. Methods. (2001) 247 (1-2), 191-2203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9). Magnetic beads can be NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) or Streptavidin coated beads (Dynabeads M-280 Streptavidin).

具體而言,於製備的噬菌體庫液中加入250pmol的生物素標記抗原,使該噬菌體庫液於室溫和抗原接觸60分鐘。加入經BSA阻斷的磁性珠粒,使抗原與噬菌體之複合體和磁性珠粒於室溫進行15分鐘結合。珠粒以含TBST(0.1%Tween20之TBS,TBS為TaKaRa公司製)洗滌3次後,以1mL TBS再洗滌2次。之後,將已加入0.5mL之1mg/mL的胰蛋白酶的 珠粒於室溫懸浮15分鐘後,立即使用磁座將珠粒分離,回收噬菌體溶液。將回收的噬菌體溶液加到成為對數增殖期(OD600為0.4-0.5)的10mL的大腸菌株ER2738。於37℃緩慢進行1小時上述大腸菌的攪拌培養,以使噬菌體感染大腸菌。將已感染的大腸菌接種到225mm x 225mm的板。然後從已接種大腸菌的培養液回收噬菌體,製備噬菌體庫液。此循環稱為淘選,重複4次。又,第2次後的淘選,人IgA設為40pmol。 Specifically, 250 pmol of biotin-labeled antigen was added to the prepared phage library solution, and the phage library solution was contacted with the antigen at room temperature for 60 minutes. BSA-blocked magnetic beads were added to allow antigen-phage complexes and magnetic beads to bind for 15 minutes at room temperature. The beads were washed three times with TBST (0.1% Tween20 in TBS, TBS manufactured by TaKaRa), and then washed twice with 1 mL of TBS. After that, 0.5 mL of 1 mg / mL of trypsin was added. After the beads were suspended at room temperature for 15 minutes, the beads were immediately separated using a magnetic stand to recover the phage solution. The recovered phage solution was added to 10 mL of a large intestine strain ER2738 at a logarithmic growth phase (OD600: 0.4-0.5). The agitated culture of the above coliform was slowly performed at 37 ° C for 1 hour to infect the phage with coliform. Infected coliforms were inoculated into 225mm x 225mm plates. Then, the phage was recovered from the culture solution inoculated with coliform bacteria to prepare a phage library solution. This cycle is called panning and is repeated 4 times. In the second and subsequent panning, human IgA was set to 40 pmol.

(8-2)噬菌體展示的Fab分域與CD3或人IgA之結合 (8-2) Binding of phage-displayed Fab domain to CD3 or human IgA

從以上述方法獲得之大腸菌的單一群落依常法(Methods Mol.Biol.(2002)178,133-145)回收含噬菌體之培養上清。將加入BSA使終濃度成為4%BSA的含噬菌體的培養上清依以下程序供ELISA。將StreptaWell 96微滴定板(Roche)於含生物素標記抗原(生物素標記CD3ε胜肽或生物素標記人IgA,參考實施例3)之100μLPBS於4℃包覆一晚或於室溫包覆1小時。將該板之各井以PBST洗滌以去除抗原後,將該井以250μL之0.1xTBS/150mM NaCl/0.02% Skim Milk阻斷1小時以上。在已去除0.1xTBS/150mM NaCl/0.02% Skim Milk之各井加有製備的培養上清的該板於室溫靜置1小時,使展示噬菌體之抗體和各井存在的抗原結合。將各井以0.1xTBS/150mM NaCl/0.01% Tween20洗滌後,添加以0.1xTBS/150mM NaCl/0.01% Tween20稀釋的HRP結合抗M13抗體(Amersham Pharmacia Biotech),溫育1小時。以TBST洗滌後,以添加硫酸使已加有TMB single溶液(ZYMED)之各井中之溶液之發色反應停止,之後以450nm 之吸光度測定該發色。其結果示於第20圖。如第20圖所示,顯示存在結合於CD3及人IgA之選殖體,藉由使用雙Fab庫,可選擇對於第2抗原(實施例8中為人IgA)顯示結合性的選殖體。 The phage-containing culture supernatant was recovered from a single community of coliforms obtained by the above method (Methods Mol. Biol. (2002) 178, 133-145). The phage-containing culture supernatant was added to BSA to a final concentration of 4% BSA for ELISA according to the following procedure. StreptaWell 96 microtiter plate (Roche) was coated with 100 μL PBS containing biotin-labeled antigen (biotin-labeled CD3ε peptide or biotin-labeled human IgA, reference example 3) at 4 ° C overnight or at room temperature. hour. After washing each well of the plate with PBST to remove the antigen, the well was blocked with 250 μL of 0.1 × TBS / 150 mM NaCl / 0.02% Skim Milk for more than 1 hour. The plate with the prepared culture supernatant added to each well from which 0.1xTBS / 150mM NaCl / 0.02% Skim Milk has been removed is allowed to stand at room temperature for 1 hour, so that the antibody displaying the phage and the antigen present in each well are bound. Each well was washed with 0.1xTBS / 150mM NaCl / 0.01% Tween20, and HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with 0.1xTBS / 150mM NaCl / 0.01% Tween20 was added and incubated for 1 hour. After washing with TBST, the color development reaction of the solution in each well to which TMB single solution (ZYMED) has been added was stopped by adding sulfuric acid, and then the reaction was performed at 450 nm. The absorbance was measured for the color development. The results are shown in Fig. 20. As shown in Fig. 20, it is shown that there is a colony that binds to CD3 and human IgA. By using a double Fab library, a colony that can exhibit binding to the second antigen (human IgA in Example 8) can be selected.

(8-3)具有取得之Fab分域之IgG之和CD3或人IgA之結合 (8-3) Combination of IgG with acquired Fab domain and CD3 or human IgA

對於(8-2)顯示結合於CD3與人IgA之選殖體,由具此序列之大腸菌使用對於雙Fab庫之H鏈專一性地結合的引子依PCR法放大VH片段。放大的VH片段依參考實施例1的方法嵌入已嵌入有pE22Hh的動物細胞表現用質體,和實施例6(6-2)同樣表現、精製為單臂抗體。選殖體名稱及H鏈序列之序列編號示於表15。亦即,採用表15所示之H鏈與Kn010G3(序列編號:56)與作為L鏈之GLS3000(序列編號:53)與Kappa序列(序列編號:55)連結成的序列,依參考實施例1實施表現精製。 For the selected colony (8-2) showing binding to CD3 and human IgA, the VH fragment was amplified by the PCR method using a primer that specifically binds to the H chain of the double Fab library from a coli with this sequence. The amplified VH fragment was embedded into pE22Hh-embedded plastids for expression of animal cells according to the method of Reference Example 1, and expressed and purified as a one-armed antibody in the same manner as in Example 6 (6-2). The name of the selection and the sequence number of the H chain sequence are shown in Table 15. That is, the sequence in which the H chain and Kn010G3 (sequence number: 56) shown in Table 15 and the GLS3000 (sequence number: 53) as the L chain and the Kappa sequence (sequence number: 55) are linked is used. According to Reference Example 1, Implement performance refinement.

帶有取得之Fab區之抗體分子是否會和CD3ε、人IgA結合,以電化學發光法(ECL法)判定。具體而言,將經TBST溶液(TaKaRa公司製TBS中加有0.1% Tween20者)稀釋之生物素標記CD3ε胜肽(實施例7記載)或生物素標記人IgA(參考實施例3)、調整為2μg/mL之抗體溶液、及已附加sulfo-tag 之抗人IgG抗體(Invitrogen #628400),各添加25μL到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)之各井並混合後,於遮光狀態於室溫溫育1小時以上,使抗體抗原複合體形成。將含0.5%BSA之TBST溶液(記載為阻斷溶液)各加150μL到鏈黴抗生物素蛋白板(MSD)各井,於室溫溫育1小時以上。去除阻斷溶液後,以TBS(-)溶液250μL洗滌3次。各加50μL抗體抗原複合體溶液到各井,於室溫溫育1小時,使生物素化抗原-抗體-檢測用sulfo-tag抗體之複合體溶液介由生物素化抗原結合於鏈黴抗生物素蛋白板。去除抗體抗原複合體溶液後,以TBST溶液洗滌3次,將4xREAD緩衝液(MSD)以水稀釋2倍而成的溶液各加150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Whether the antibody molecule with the obtained Fab region is bound to CD3ε or human IgA is determined by the electroluminescence method (ECL method). Specifically, a biotin-labeled CD3ε peptide (described in Example 7) or biotin-labeled human IgA (refer to Example 3) diluted with TBST solution (those with 0.1% Tween20 in TBS manufactured by TaKaRa) was adjusted to 2μg / mL antibody solution and sulfo-tag attached Anti-human IgG antibody (Invitrogen # 628400), each added 25 μL to each well of Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc) and mixed, and then incubated at room temperature for more than 1 hour in a light-shielded state To make the antibody-antigen complex. Add 150 μL of 0.5% BSA-containing TBST solution (documented as blocking solution) to each well of streptavidin plate (MSD), and incubate at room temperature for more than 1 hour. After removing the blocking solution, it was washed three times with 250 μL of a TBS (-) solution. Add 50 μL each of the antibody-antigen complex solution to each well, and incubate at room temperature for 1 hour, so that the biotinylated antigen-antibody-detection sulfo-tag antibody complex solution is bound to streptavidin via the biotinylated antigen Protein plate. After removing the antibody-antigen complex solution, wash three times with TBST solution, and add 150 μL of each solution of 4xREAD buffer (MSD) diluted twice with water to each well. Sector Imager 2400 (MSD) was used to detect the sulfo-tag Glowing signal.

其結果示於第21圖。從於噬菌體ELISA認為結合的選殖體,將包括一部分胺基酸變異者進行IgG化,結果即使於噬菌體ELISA認為結合的序列是IgG,仍顯示會和CD3ε及人IgA結合。 The results are shown in FIG. 21. The phage ELISA considers the selected clones to be bound to IgG, including a part of the amino acid mutations. As a result, even if the phage ELISA considers that the sequence to be bound is IgG, it still shows binding to CD3ε and human IgA.

由此結果顯示:從雙Fab庫可取得和第2抗原結合之抗體,在通常使用噬菌體庫之淘選,雖只有Fab分域,但能將成為含Fc區之IgG仍認為有結合的選殖體進行濃縮。因此雙Fab庫,可說是能取得保持和CD3之結合能力且有和第2抗原結合之能力的Fab分域的庫。 This result shows that the antibodies that bind to the second antigen can be obtained from the dual Fab library. In the panning in which the phage library is usually used, although only the Fab domain is available, the Fc region-containing IgG can still be considered to have bound clones. The body was concentrated. Therefore, the double Fab library can be said to be a library of Fab domains that can retain the ability to bind to CD3 and have the ability to bind to the second antigen.

(8-4)具有取得之Fab分域之IgG之和CD3(CD3ε)及人IgA之同時結合之評價 (8-4) Evaluation of simultaneous binding of IgG with acquired Fab domain and CD3 (CD3ε) and human IgA

(8-3)中,雖由雙Fab庫獲得之選殖體成為IgG仍顯示有結 合。然後,以競爭法(電化學發光法(ECL法))判定獲得之IgG是否會與CD3(CD3ε)及人IgA同時結合。和CD3(CD3ε)及人IgA同時結合時,即使在會和IgA結合之抗體加入CD3(CD3ε),ECL信號仍不變化,但無法同時結合時,若加入CD3(CD3ε),應有一部分抗體與CD3(CD3ε),而ECL信號降低。 In (8-3), although the clones obtained from the double Fab library became IgG, they still showed a knot. Together. Then, it is determined by competition method (electrochemiluminescence method (ECL method)) whether the IgG obtained can bind to CD3 (CD3ε) and human IgA at the same time. When binding to CD3 (CD3ε) and human IgA at the same time, the ECL signal does not change even if CD3 (CD3ε) is added to the antibody that binds to IgA. CD3 (CD3ε), while the ECL signal decreases.

具體而言,將經TBST溶液稀釋之生物素化人IgA25μL、調整為1μg/mL之抗體溶液12.5μL、TBST或用以競爭之CD3ε均二聚物蛋白質(9.4pmol/μL)12.5μL、及已附加sulfo-tag之抗人IgG抗體(Invitrogen #628400)25μL,加到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)的各井並混合後,於遮光狀態於室溫溫育1小時以上,使抗體抗原複合體形成。將含0.5%BSA之TBST溶液(記載為阻斷溶液。TBST溶液係於TaKaRa公司製TBS加有0.1%Tween20者)各加150μL到鏈黴抗生物素蛋白板(MSD)之各井,於室溫溫育1小時以上。去除阻斷溶液後以TBST溶液250μL洗滌3次。各加50μL抗體抗原複合體溶液到各井,於室溫溫育1小時,使生物素化抗原-抗體-檢測用sulfo-tag抗體之複合體溶液介由生物素化抗原結合於鏈黴抗生物素蛋白板。去除抗體抗原複合體溶液後以TBST溶液洗滌3次,將4xREAD緩衝液(MSD)以水稀釋為2倍的溶液各加150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Specifically, 25 μL of biotinylated human IgA diluted in TBST solution, 12.5 μL of antibody solution adjusted to 1 μg / mL, 12.5 μL of TBST or CD3ε homodimer protein (9.4 pmol / μL) for competition, and 25 μL of sulfo-tag-added anti-human IgG antibody (Invitrogen # 628400) was added to each well of Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc), mixed, and incubated at room temperature in a light-shielded state. At least one hour, an antibody-antigen complex was formed. Add 0.5 μL of TBST solution containing 0.5% BSA (recorded as a blocking solution. The TBST solution is made by TaKaRa Corporation with TBS plus 0.1% Tween20) to each well of streptavidin plate (MSD) in the chamber. Incubate for more than 1 hour. After removing the blocking solution, it was washed 3 times with 250 μL of TBST solution. Add 50 μL each of the antibody-antigen complex solution to each well, and incubate at room temperature for 1 hour, so that the biotinylated antigen-antibody-detection sulfo-tag antibody complex solution is bound to streptavidin via the biotinylated antigen Protein plate. After removing the antibody-antigen complex solution, wash it 3 times with TBST solution, and add 150 μL of each 4xREAD buffer (MSD) solution diluted twice with water to each well, and detect the sulfo-tag luminescence signal with Sector Imager 2400 (MSD) .

其結果示於第22圖。加入用以競爭之CD3ε均二聚物蛋白質時,比起加入TBST時,認為ECL信號較低。由此結果,顯示本研究找出的結合於CD3與人IgA之分子是若結 合於CD3則無法結合於人IgA之雙Fab分子。由此結果顯示:可從雙Fab庫取得和第2抗原有結合能力之抗體,其中,可取得若與CD3結合則無法與第2抗原結合(或若與第2抗原結合則無法與CD3結合之)的無法與多種抗原同時結合之雙Fab分子。 The results are shown in FIG. 22. When the CD3ε homodimer protein was added for competition, the ECL signal was considered to be lower than when TBST was added. From this result, it is shown that the molecule binding to CD3 and human IgA found in this study is CD3 does not bind to the double Fab molecule of human IgA. This result shows that antibodies capable of binding to the second antigen can be obtained from the double Fab library, and those that can not bind to the second antigen if they bind to CD3 (or those that cannot bind to CD3 if they bind to the second antigen) can be obtained. ) Double Fab molecules that cannot bind to multiple antigens simultaneously.

該領域中通常知識者可明白:若於(8-2)能由使用噬菌體之結合活性評價找出結合分子,可藉由增多評價數而增加結合分子之序列的多樣性,由以上可說:雙Fab庫是可取得保持著對於CD3之結合能力且同時具有和第2抗原結合之能力的Fab分域的庫。又,本實施例使用只將H鏈多樣化的雙Fab庫,但通常較大庫尺寸(也稱為多樣性,係指庫中含有的多樣序列)者能更取得抗原結合分子,所以使L鏈也多樣化的雙Fab庫也和本實施例所示同樣地可用於雙Fab分子取得。 Those skilled in the art can understand that if (8-2) can find the binding molecule from the evaluation of the binding activity of the phage, the diversity of the sequence of the binding molecule can be increased by increasing the number of evaluations. From the above, it can be said: The dual Fab library is a library that can obtain a Fab domain that maintains the ability to bind to CD3 and also has the ability to bind to a second antigen. In this embodiment, a double Fab library is used which diversifies only the H chain. However, usually a larger library size (also referred to as diversity, which refers to the diverse sequences contained in the library) can obtain the antigen-binding molecule more. The double Fab library with diversified chains can also be used for obtaining double Fab molecules as shown in this example.

若依實施例8所示方式製作雙Fab分子,能使用該領域中通常知識者公知之方法,例如融合瘤法、從抗體庫選出結合抗體(或結合分域)的方法鑑定結合於第3抗原之Fab、抗原結合分域,帶有鑑定之結合於第3抗原之抗原結合分域(例如Fab)與雙Fab分子之Fab分域的抗體可依該領域中通常知識者公知之多專一性抗體之製作方法,例如將L鏈共通化而製作2條H鏈不同之抗體的方法(控制Fc區之各分域之界面之技術)、Cross Mab法、Fab Arm Exchange法取得多專一性抗體。亦即,若能鑑定雙Fab分子,能利用該領域中通常知識者公知之方法將結合於第3抗原之Fab與實施例8所示之結合於第1與第2抗原之雙Fab予以組合而取得所望之多專一性抗體。 If the double Fab molecule is prepared as shown in Example 8, the method known to those skilled in the art, such as the fusion tumor method and the method of selecting a binding antibody (or binding domain) from an antibody library, can be used to identify the binding to the third antigen. Fab, antigen-binding domains, antibodies with identified antigen-binding domains (such as Fabs) that bind to the third antigen, and Fab domains of the dual Fab molecule can be based on the multispecific antibodies known to those skilled in the art The manufacturing method includes, for example, a method of preparing two antibodies with different H chains by commonizing the L chain (a technique for controlling the interface between the domains of the Fc region), the Cross Mab method, and the Fab Arm Exchange method to obtain multispecific antibodies. That is, if a double Fab molecule can be identified, the Fab bound to the third antigen and the double Fab bound to the first and second antigens shown in Example 8 can be combined using a method known to those skilled in the art. Get as much specificity as you want.

(8-5)針對CD3/人IgA雙Fab分子 (8-5) Against CD3 / human IgA double Fab molecule

實施例8中,顯示可獲得結合於CD3ε及人IgA且不同時結合於CD3ε與人IgA之雙Fab分子。進一步附加與第3抗原結合之抗原結合分域,也可依該領域中通常知識者公知之方法實施。 In Example 8, it was shown that a double Fab molecule that binds to CD3ε and human IgA and not both to CD3ε and human IgA can be obtained. Further, an antigen-binding domain that binds to the third antigen can be implemented by a method known to a person skilled in the art.

近年來,已有人揭示以結合於癌抗原之一即EGFR的方式改變而得的IgA分子會誘導表現EGFR之癌細胞的細胞死(J Immunol 2007;179:2936-2943)。就其機轉而言,據報告係IgA之受體FcαR於多形核細胞(Polymorphonuclear cell)表現,在癌細胞誘導自體吞噬(J Immunol 2011;187:726-732)。本實施例解明能建構結合於CD3與IgA的雙Fab分子,但若以該領域中通常知識者公知之方法(例如ELISA、ECL法)尋找介由IgA而與FcαR結合的分子,則能期待介由FcαR的抗腫瘤效果。亦即,本雙Fab,能誘導表現任意第3抗原之細胞中利用與CD3ε之結合引起的T細胞所致的細胞傷害活性、以及介由與IgA結合而引起的表現FcαR之細胞所致之細胞傷害活性兩者,能期待強細胞傷害活性。 In recent years, it has been revealed that IgA molecules obtained by altering the binding to EGFR, one of the cancer antigens, induce cell death of cancer cells expressing EGFR (J Immunol 2007; 179: 2936-2943). As far as its mechanism is concerned, it is reported that the receptor FcαR of IgA appears in Polymorphonuclear cells and induces autophagy in cancer cells (J Immunol 2011; 187: 726-732). This example illustrates that it is possible to construct a double Fab molecule that binds to CD3 and IgA. However, if a molecule known to those skilled in the art (eg, ELISA, ECL method) is used to find a molecule that binds to FcαR via IgA, it is expected Antitumor effect by FcaR. That is, the double Fab can induce cytotoxic activity of T cells caused by binding to CD3ε in cells expressing any third antigen, and cells caused by FcαR-expressing cells through binding to IgA. Nociceptive activity Both can expect strong cellular nociceptive activity.

[實施例9]從雙Fab庫取得結合於CD3及第2抗原(人CD154)之Fab分域 [Example 9] Obtaining a Fab domain binding to CD3 and a second antigen (human CD154) from a dual Fab library

(9-1)結合於人CD154之Fab分域之取得 (9-1) Fab domain binding to human CD154

從實施例6設計及構建的雙Fab庫鑑定對於人CD154結合之Fab分域(抗體片段)。抗原使用經生物素標記之人CD154,並進行帶有對於人CD154之結合能力之抗體片段之濃縮。 The Fab domain (antibody fragment) bound to human CD154 was identified from the dual Fab library designed and constructed in Example 6. As the antigen, biotin-labeled human CD154 was used, and an antibody fragment having a binding ability to human CD154 was concentrated.

從保持著構建之噬菌體展示用噬粒的大腸菌實施噬菌體產生。將藉由於已實施噬菌體產生的大腸菌培養液添加2.5M NaCl/10%PEG而沉澱的噬菌體的集團,以TBS稀釋,而獲得噬菌體庫液。然後於噬菌體庫液添加BSA使成為終濃度4%BSA。可參照一般方法,即使用固定於磁性珠粒的抗原的淘選方法(J.Immunol.Methods.(2008)332(1-2),2-9、J.Immunol.Methods.(2001)247(1-2),191-203、Biotechnol.Prog.(2002)18(2)212-20、Mol.Cell Proteomics(2003)2(2),61-9)。作為磁性珠粒可列舉NeutrAvidin coated beads(Sera-Mag SpeedBeads NeutrAvidin-coated)或Streptavidin coated beads(Dynabeads M-280 Streptavidin)。 Phage production was performed from coliforms that maintained the constructed phage display phagemid. The group of phages precipitated by adding 2.5M NaCl / 10% PEG to the coliform culture solution produced by the phage production was diluted with TBS to obtain a phage library solution. BSA was then added to the phage library solution to a final concentration of 4% BSA. Refer to the general method, that is, panning methods using antigens immobilized on magnetic beads (J. Immunol. Methods. (2008) 332 (1-2), 2-9, J. Immunol. Methods. (2001) 247 ( 1-2), 191-2203, Biotechnol. Prog. (2002) 18 (2) 212-20, Mol. Cell Proteomics (2003) 2 (2), 61-9). Examples of the magnetic beads include NeutrAvidin coated beads (Sera-Mag SpeedBeads NeutrAvidin-coated) and Streptavidin coated beads (Dynabeads M-280 Streptavidin).

具體而言,於製備的噬菌體庫液中加入250pmol的生物素標記抗原,使該噬菌體庫液於室溫和抗原接觸60分鐘。加入經BSA阻斷的磁性珠粒,使抗原與噬菌體之複合體和磁性珠粒於室溫進行15分鐘結合。珠粒以含TBST(0.1%Tween20之TBS,TBS為TaKaRa公司製)洗滌3次後,以1mLTBS再洗滌2次。之後,將已加入0.5mL之1mg/mL的胰蛋白酶的珠粒於室溫懸浮15分鐘後,立即使用磁座將珠粒分離,回收噬菌體溶液。將回收的噬菌體溶液加到成為對數增殖期(OD600為0.4-0.5)的10mL的大腸菌株ER2738。於37℃緩慢進行1小時上述大腸菌的攪拌培養,以使噬菌體感染大腸菌。將已感染的大腸菌接種到225mm x 225mm的板。然後從已接種大腸菌的培養液回收噬菌體,製備噬菌體庫液。此循環稱為淘選,重複5次。又,第2次後的淘選,使用40pmol之人CD154。 Specifically, 250 pmol of biotin-labeled antigen was added to the prepared phage library solution, and the phage library solution was contacted with the antigen at room temperature for 60 minutes. BSA-blocked magnetic beads were added to allow antigen-phage complexes and magnetic beads to bind for 15 minutes at room temperature. The beads were washed three times with TBST (0.1% Tween20 TBS, TBS manufactured by TaKaRa), and then washed twice with 1 mLTBS. Thereafter, the beads to which 0.5 mg of 1 mg / mL trypsin had been added were suspended at room temperature for 15 minutes, and the beads were immediately separated using a magnetic stand to recover the phage solution. The recovered phage solution was added to 10 mL of a large intestine strain ER2738 at a logarithmic growth phase (OD600: 0.4-0.5). The agitated culture of the above coliform was slowly performed at 37 ° C for 1 hour to infect the phage with coliform. Infected coliforms were inoculated into 225mm x 225mm plates. Then, the phage was recovered from the culture solution inoculated with coliform bacteria to prepare a phage library solution. This cycle is called panning and is repeated 5 times. In the second and subsequent panning, 40 pmol of human CD154 was used.

(9-2)展示噬菌體之Fab分域與CD3或人CD154之結合 (9-2) Binding of Fab domain of display phage to CD3 or human CD154

從以上述方法獲得之大腸菌之單一群落依常法(Methods Mol.Biol.(2002)178,133-145)回收含噬菌體之培養上清。將加入BSA使終濃度成為4%BSA的含噬菌體的培養上清依以下程序供ELISA。將StreptaWell 96微滴定板(Roche)於含生物素標記抗原(生物素標記CD3ε胜肽、生物素標記CD154)之100μL PBS於4℃包覆一晚或於室溫包覆1小時。將該板之各井以PBST洗滌以去除抗原後,將該井以250μL之0.1xTBS/150mM NaCl/0.02% Skim Milk阻斷1小時以上。在已去除0.1xTBS/150mM NaCl/0.02% Skim Milk之各井加有製備的培養上清的該板於室溫靜置1小時,使展示噬菌體之抗體和各井存在的抗原結合。將各井以0.1xTBS/150mM NaCl/0.01% Tween20洗滌後,添加以0.1xTBS/150mM NaCl/0.01% Tween20稀釋的HRP結合抗M13抗體(Amersham Pharmacia Biotech),溫育1小時。以TBST洗滌後,以添加硫酸使已加有TMB single溶液(ZYMED)之各井中之溶液之發色反應停止,之後以450nm之吸光度測定該發色。 The phage-containing culture supernatant was recovered from a single community of coliforms obtained by the above method (Methods Mol. Biol. (2002) 178, 133-145). The phage-containing culture supernatant was added to BSA to a final concentration of 4% BSA for ELISA according to the following procedure. StreptaWell 96 microtiter plate (Roche) was coated with 100 μL PBS containing biotin-labeled antigen (biotin-labeled CD3ε peptide, biotin-labeled CD154) at 4 ° C. overnight or at room temperature for 1 hour. After washing each well of the plate with PBST to remove the antigen, the well was blocked with 250 μL of 0.1 × TBS / 150 mM NaCl / 0.02% Skim Milk for more than 1 hour. The plate with the prepared culture supernatant added to each well from which 0.1xTBS / 150mM NaCl / 0.02% Skim Milk has been removed is allowed to stand at room temperature for 1 hour, so that the antibody displaying the phage and the antigen present in each well are bound. Each well was washed with 0.1xTBS / 150mM NaCl / 0.01% Tween20, and HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) diluted with 0.1xTBS / 150mM NaCl / 0.01% Tween20 was added and incubated for 1 hour. After washing with TBST, the color development reaction of the solution in each well to which TMB single solution (ZYMED) has been added was stopped by adding sulfuric acid, and then the color development was measured by absorbance at 450 nm.

其結果示於第23圖。如第23圖,顯示存在結合於CD3及CD154之選殖體,可藉由使用雙Fab庫,選擇顯示對於第2抗原(實施例9中為人CD154)有結合性的選殖體。又,能取得對於實施例7、8、9所示不同的3個抗原為結合之Fab分域,顯示雙Fab庫作為用以取得和第2抗原結合之分子之庫的機能。 The results are shown in FIG. 23. As shown in Fig. 23, it is shown that there is a colony that binds to CD3 and CD154, and by using a double Fab library, a colony that shows binding to the second antigen (human CD154 in Example 9) can be selected. In addition, it was possible to obtain a Fab domain that binds to three different antigens shown in Examples 7, 8, and 9 and showed the function of the dual Fab library as a library for obtaining molecules that bind to the second antigen.

(9-3)具有取得之Fab分域之IgG之CD3或人CD154之結合 (9-3) Binding of IgG CD3 or human CD154 with Fab domain obtained

對於在(9-2)顯示結合於CD3與人CD154之選殖體,從具有此序列之大腸菌使用對於雙Fab庫之H鏈專一性地結合的引子,利用PCR將VH片段放大。將放大的VH片段以參考實施例1的方法納入已有pE22Hh之動物細胞表現用質體,和實施例6(6-2)同樣地表現、精製為單臂抗體。取得之序列名與H鏈序列之序列編號記載於表16。具體而言,採用表16記載之H鏈與Kn010G3(序列編號:56)與作為L鏈之GLS3000(序列編號:53)與Kappa序列(序列編號:55)連結成的序列,依參考實施例1實施表現精製。 For the selected colonies showing binding to CD3 and human CD154 at (9-2), a VH fragment was amplified by PCR using a primer specifically binding to the H chain of the double Fab library from a coliform having this sequence. The amplified VH fragment was incorporated into the pE22Hh-expressing plastid for animal cell expression by the method of Reference Example 1, and expressed and purified as a one-armed antibody in the same manner as in Example 6 (6-2). The sequence names obtained and the sequence numbers of the H chain sequences are described in Table 16. Specifically, a sequence formed by linking the H chain and Kn010G3 (sequence number: 56) described in Table 16 with the GLS3000 (sequence number: 53) and the Kappa sequence (sequence number: 55) as the L chain is used. Implement performance refinement.

以電化學發光法(ECL法)判定於(9-2)在噬菌體ELISA法顯示帶有結合於CD3與人CD154的Fab區的抗體分子是否結合於CD3、人CD154。具體而言,將經TBST溶液稀釋之生物素化CD3或生物素化人CD15425μL、調整為2μg/mL之抗體溶液25μL、已附加sulfo-tag之抗人IgG抗體(Invitrogen #628400)25μL添加到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)的各井並混合後,於遮光狀態於室溫溫育1小時以上,使抗體抗原複合體形成。將含0.5%BSA之TBST溶液(記載為阻斷溶液。TBST溶液係於TaKaRa公司製TBS加有0.1%Tween20者)各加150μL到鏈黴抗生物素蛋白板(MSD)各井,於室溫溫育1小時以上。去除阻斷溶液後,以TBST溶液250μL洗滌3次。將抗體抗原複合體溶液各加50μL到各井,於室溫溫育1小時,將生物素化抗原-抗體-檢測用sulfo-tag抗體之複合體溶液介由生物素化抗原而結合於鏈黴抗生物素蛋白板。去除抗體抗原複合體溶液後以TBST溶液洗滌3次,把將4xREAD緩衝液(MSD)以水稀釋成2倍的溶液各加150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Electrochemical luminescence method (ECL method) was used to determine whether (9-2) the antibody molecule bearing the Fab region binding to CD3 and human CD154 was bound to CD3 and human CD154 by phage ELISA. Specifically, 25 μL of biotinylated CD3 or biotinylated human CD15425 μL diluted with TBST solution, adjusted to 2 μg / mL antibody solution, and sulfo-tag-added anti-human IgG antibody (Invitrogen # 628400) 25 μL was added to each well of a Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc) and mixed, and then incubated at room temperature for more than 1 hour in a light-shielded state to form an antibody-antigen complex. Add 150 μL each of 0.5% BSA-containing TBST solution (recorded as blocking solution. TBST solution is made by TaKaRa Corporation with TBS plus 0.1% Tween20) to each well of streptavidin plate (MSD), at room temperature Incubate for more than 1 hour. After removing the blocking solution, it was washed 3 times with 250 μL of TBST solution. Add 50 μL of each antibody-antigen complex solution to each well, and incubate at room temperature for 1 hour. The biotinylated antigen-antibody-sulfo-tag antibody detection complex solution is bound to streptomyces via biotinylated antigen Avidin plate. After removing the antibody-antigen complex solution, wash it 3 times with TBST solution, and add 150 μL of each solution of 4xREAD buffer (MSD) diluted twice with water to each well, and detect the sulfo-tag luminescence with Sector Imager 2400 (MSD) signal.

其結果示於第24圖。從噬菌體ELISA認為有結合之選殖體,將包含一部分胺基酸變異者進行IgG化,結果在噬菌體ELISA認為有結合之序列即使成為IgG也顯示與CD3μ及人CD154結合。 The results are shown in FIG. 24. From the phage ELISA-selected clones, those containing a portion of the amino acid mutations were IgGized. As a result, the phage ELISA-bound sequences showed binding to CD3μ and human CD154 even if they were IgG.

由此結果顯示:由雙Fab庫可取得和第2抗原結合的抗體,通常使用噬菌體庫之淘選只有Fab分域,但即使成為含Fc區之IgG也認為結合之選殖體之濃縮,不只在人IgA,在人CD154也可進行。因此雙Fab庫可說是能取得保持和CD3之結合能力且具有和第2抗原之結合能力的Fab分域的庫。 This result shows that the antibody that binds to the second antigen can be obtained from the dual Fab library. Usually, the phage library is used for panning only the Fab domain, but even if it becomes an Fc region-containing IgG, it is considered that the bound colony is not only concentrated, but not only It can also be performed in human IgA and human CD154. Therefore, the dual Fab library can be said to be a library of Fab domains that can retain the binding ability to CD3 and have the ability to bind to the second antigen.

(9-4)具有取得之Fab分域之IgG之和CD3ε及人CD154同時結合之評價 (9-4) Evaluation of simultaneous binding of CD3ε and human CD154 of IgG with the obtained Fab domain

(9-3)中,由雙Fab庫獲得之選殖體即使成為IgG也顯示結合。然後,以競爭法(電化學發光法(ECL法))判定獲得之IgG是否與CD3及人CD154同時結合。若和CD3及人CD154同時結合,則即使對於和CD154結合之抗體加入CD3,ECL信號仍不變化,但不能同時結合時,則若加入CD3,一部分抗體會與CD3結合,ECL信號應降低。 In (9-3), the selected clones obtained from the double Fab library showed binding even when they became IgG. Then, it was determined by competition method (electrochemiluminescence method (ECL method)) whether the obtained IgG was simultaneously bound to CD3 and human CD154. If it binds to CD3 and human CD154 at the same time, the ECL signal does not change even if CD3 is added to the antibody that binds to CD154, but if it cannot be bound at the same time, if CD3 is added, some antibodies will bind to CD3 and the ECL signal should decrease.

具體而言,將經TBST溶液稀釋之生物素化人CD154 25μL、調整為1μg/mL之抗體溶液12.5μL、TBST或用以競爭之CD3ε均二聚物蛋白質(9.4pmol/μL)12.5μL、及已附加sulfo-tag之抗人IgG抗體(Invitrogen #628400)25μL加到Nunc-Immuno(tm)MicroWell(tm)96井圓板(Nunc)的各井,混合後於遮光狀態於室溫溫育1小時以上,使抗體抗原複合體形成。將含有0.5%BSA之TBST溶液(記載為阻斷溶液。TBST溶液係於TaKaRa公司製TBS加入0.1%Tween20者)各加150μL到鏈黴抗生物素蛋白板(MSD)各井,於室溫溫育1小時以上。去除阻斷溶液後以TBST溶液250μL洗滌3次。各加抗體抗原複合體溶液50μL到各井,於室溫溫育1小時,使生物素化抗原-抗體-檢測用sulfo-tag抗體之複合體溶液介由生物素化抗原結合於鏈黴抗生物素蛋白板。去除抗體抗原複合體溶液後以TBST溶液洗滌3次,把將4xREAD緩衝液(MSD)以水稀釋2倍的溶液各加150μL到各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 Specifically, 25 μL of biotinylated human CD154 diluted with TBST solution, 12.5 μL of antibody solution adjusted to 1 μg / mL, TBST or 12.5 μL of CD3ε homodimer protein (9.4 pmol / μL) for competition, and 25 μL of sulfo-tag-added anti-human IgG antibody (Invitrogen # 628400) was added to each well of Nunc-Immuno (tm) MicroWell (tm) 96-well circular plate (Nunc), mixed and incubated at room temperature in a light-shielded state 1 Over an hour, an antibody-antigen complex was formed. Add TBST solution containing 0.5% BSA (recorded as blocking solution. TBST solution is made by TaKaRa company with 0.1% Tween20) to each well and add 150 μL to each well of streptavidin plate (MSD), at room temperature. Incubate for more than 1 hour. After removing the blocking solution, it was washed 3 times with 250 μL of TBST solution. Add 50 μL of the antibody-antigen complex solution to each well, and incubate at room temperature for 1 hour, so that the biotinylated antigen-antibody-sulfo-tag antibody detection solution is bound to streptavidin via the biotinylated antigen Protein plate. After removing the antibody-antigen complex solution, wash it 3 times with TBST solution, add 150 μL of each solution of 4xREAD buffer (MSD) diluted twice with water to each well, and detect the sulfo-tag luminescence signal with Sector Imager 2400 (MSD) .

其結果示於第25圖。加入用以競爭的CD3ε均二聚物蛋白質時,比起加入TBST,觀測到ECL信號降低。由此 結果顯示:本研究找出的結合於CD3ε與人CD154之分子係若結合於CD3則無法結合於人CD154之雙Fab分子。由此結果顯示,可從雙Fab庫取得和第2抗原結合之抗體,其中,可取得若和CD3結合則不能和第2抗原結合(或若與第2抗原結合則無法與CD3結合)的無法和多數種抗原同時結合的雙Fab分子。 The results are shown in Figure 25. When the CD3ε homodimer protein was added for competition, a decrease in the ECL signal was observed compared with the addition of TBST. thus The results show that the molecular systems found in this study that bind to CD3ε and human CD154 cannot bind to the double Fab molecules of human CD154 if they bind to CD3. This result shows that antibodies that bind to the second antigen can be obtained from the dual Fab library, and that it is possible to obtain antibodies that cannot bind to the second antigen if they bind to CD3 (or cannot bind to CD3 if they bind to the second antigen). A double Fab molecule that binds to most antigens simultaneously.

該領域中通常知識者可明白:若於(9-2)使用噬菌體之結合活性評價找到結合分子,可藉由增多評價數而增加結合分子的序列多樣性,所以,由以上可說:雙Fab庫是可取得保持和CD3之結合能力且同時具有與第2抗原之結合能力的Fab分域的庫。又,本實施例使用只使H鏈多樣化的雙Fab庫,但通常庫尺寸(也稱為多樣性,係指庫中含有多樣序列)較大則更能取得抗原結合分子,所以L鏈也多樣化的雙Fab庫也可用於和本實施例所示同樣地取得雙Fab分子。 Those skilled in the art can understand that if a binding molecule is found using (9-2) phage binding activity evaluation, the sequence diversity of the binding molecule can be increased by increasing the number of evaluations. Therefore, from the above, it can be said: double Fab A library is a library of Fab domains that can obtain the ability to bind to CD3 and also have the ability to bind to a second antigen. In this example, a double Fab library is used to diversify only the H chain. Generally, the larger the size of the library (also called diversity, which means that the library contains diverse sequences), the more antigen-binding molecules can be obtained. Diverse Fab libraries can be used to obtain dual Fab molecules in the same manner as shown in this example.

若能如實施例9所示製作雙Fab分子,則可將結合於第3抗原之Fab、抗原結合分域使用該領域中通常知識者公知之方法,例如融合瘤法、從抗體庫選擇結合抗體、抗原結合分域之選擇方法鑑定,鑑定之結合於第3抗原之抗原結合分域(例如Fab)與帶有雙Fab分子之Fab分域之抗體,可依該領域中通常知識者公知之多專一性抗體之製作方法,例如製作L鏈共通化而2條H鏈不同的抗體的方法(控制Fc區之各分域界面之技術)、Cross Mab法、Fab Arm Exchange法,而取得多專一性抗體。亦即,若能鑑定雙Fab分子,能依該領域中通常知識者公知之方法將結合於第3抗原之Fab與結合於實施例9所 示之第1與第2抗原的雙Fab組合而取得所望多專一性抗體。由以上的實施例顯示,藉由使雙Fab庫適應多種抗原,能取得結合於CD3ε與第2抗原之分子,進一步,於實施例8與9可知:能取得結合於第1抗原(CD3ε)及第2抗原但不同時結合於第1抗原與第2抗原之分子。如前述,鑑定結合於第3抗原之Fab能以該領域中通常知識者公知之方法進行,故可藉由使用雙Fab庫以獲得實施例1記載之所望抗體。 If a double Fab molecule can be prepared as shown in Example 9, the Fab and antigen-binding domain bound to the third antigen can be used by methods known to those skilled in the art, such as the fusion tumor method and the selection of binding antibodies from an antibody library. 2. Identification of selection methods for antigen-binding domains. The identified antibodies that bind to the third antigen-binding domain (e.g. Fab) and the Fab domain with double Fab molecules can be known to those skilled in the art. Methods for making specific antibodies, such as the method for making antibodies with common L chains and two different H chains (technology to control the domain interface of Fc region), Cross Mab method, Fab Arm Exchange method, and obtain multi-specificity antibody. That is, if a double Fab molecule can be identified, the Fab bound to the third antigen and the Fab bound to Example 9 can be bound according to a method known to those skilled in the art. The combination of the double Fabs of the first and second antigens is shown to obtain the desired multispecific antibody. The above examples show that by adapting the dual Fab library to multiple antigens, molecules that bind to CD3ε and the second antigen can be obtained. Furthermore, it can be seen in Examples 8 and 9 that the molecules that bind to the first antigen (CD3ε) and The second antigen does not bind to the molecules of the first antigen and the second antigen at the same time. As described above, the identification of the Fab bound to the third antigen can be performed by a method known to those skilled in the art. Therefore, the desired antibody described in Example 1 can be obtained by using a double Fab library.

(9-5)針對CD3/人CD154雙Fab分子 (9-5) Against CD3 / human CD154 double Fab molecule

實施例9中,顯示可獲得結合於CD3ε及人CD154且不同時結合於CD3ε與人CD154之雙Fab分子。且附加和第3抗原結合之抗原結合分域,也可依該領域中通常知識者公知之方法實施。 In Example 9, it was shown that a double Fab molecule that binds to CD3ε and human CD154 and not both CD3ε and human CD154 can be obtained. In addition, the antigen-binding domain that binds to the third antigen can also be implemented by a method known to those skilled in the art.

近年來,有人揭示CD154之受體即CD40之致效劑抗體在移入癌抗原反應性之T細胞的方法會增強抗腫瘤活性(J Immunother.2012 Apr;35(3):276-82.)。本實施例明白能建構結合於CD3與CD154之雙Fab分子,但若能選擇介由CD154而對於CD40顯示致效劑活性的抗體,則能期待介由CD40的抗腫瘤效果。亦即,本雙Fab,能期待:在表現任意第3抗原之細胞以和CD3ε之結合而獲得T細胞所致之細胞傷害活性、及介由與CD154之結合而引起的CD40之致效劑信號獲致之抗腫瘤效果之增強。 In recent years, it has been revealed that the method of transferring CD154 receptor, that is, an antibody against CD40, into cancer-reactive T cells will enhance antitumor activity (J Immunother. 2012 Apr; 35 (3): 276-82.). This example clearly understands that it is possible to construct a double Fab molecule that binds to CD3 and CD154, but if an antibody capable of exhibiting activator activity against CD40 via CD154 can be selected, the antitumor effect via CD40 can be expected. That is, the present double Fab can be expected to obtain the cytotoxic activity of T cells caused by the binding of CD3ε to cells expressing any of the third antigens, and the CD40 allergen signal caused by the binding to CD154. Enhanced antitumor effect obtained.

[參考實施例] [Reference Example]

[參考實施例1]抗體之表現載體之製作及抗體之表現與精製 [Reference Example 1] Preparation of antibody expression carrier and expression and purification of antibody

胺基酸取代之導入係使用QuikChange Site-Directed Mutagenesis Kit(Stratagene)、PCR或In fusion Advantage PCR cloning kit(TAKARA)等依該領域中通常知識者公知之方法進行,並建構表現載體。獲得之表現載體之鹼基序列依該領域中通常知識者公知之方法決定。將製作的質體暫時性導入人胎兒腎癌細胞來源HEK293H株(Invitrogen)、或FreeStyle293細胞(Invitrogen公司)並實施抗體表現。從獲得之培養上清使用rProtein A SepharoseTM Fast Flow(GEhealthcare),以該領域中通常知識者公知之方法精製抗體。精製抗體濃度係使用分光光度計測定於280nm之吸光度,從獲得之值使用依PACE法算出的吸光係數計算抗體濃度(Protein Science 1995;4:2411-2423)。 The amino acid substitution is introduced using a QuikChange Site-Directed Mutagenesis Kit (Stratagene), PCR or In fusion Advantage PCR cloning kit (TAKARA), etc., according to methods known to those skilled in the art, and the expression vector is constructed. The base sequence of the obtained expression vector is determined according to a method known to those skilled in the art. The prepared plastid was temporarily introduced into a human fetal kidney cancer cell-derived HEK293H strain (Invitrogen) or FreeStyle293 cells (Invitrogen) and subjected to antibody expression. From the obtained culture supernatant, antibodies were purified using rProtein A Sepharose Fast Flow (GE healthcare) by a method known to those skilled in the art. The purified antibody concentration was measured at 280 nm using a spectrophotometer, and the antibody concentration was calculated from the obtained value using the absorbance coefficient calculated by the PACE method (Protein Science 1995; 4: 2411-2423).

[參考實施例2]抗體之ECM(Extracellular matrix、細胞外基質)結合評價 [Reference Example 2] ECM (Extracellular matrix, extracellular matrix) binding evaluation of antibodies

抗體向ECM(Extracellular matrix)之結合評價係參考WO2012093704A1,依以下程序實施。將ECM Phenol red free(BD Matrigel #356237)以TBS稀釋為2mg/mL,於在冰上冷確的ECL測定用板(L15XB-3、MSD high bind)的各井的正中滴加5μL。之後,以板密封件加蓋,於4℃靜置一晚。使已固定ECM的板回到室溫,於各井加入ECL阻斷緩衝液(PBS中加有0.5%BSA及0.05%Tween 20者)150μL,於室溫靜置2小時以上或於4℃靜置一晚。然後使用PBS-T(PBS中加有0.05%Tween 20者)將抗體樣本稀釋為9μg/mL。將2次抗體以ECLDB(PBS中加有0.1%BSA及0.01%Tween 20者)稀釋為2μg/mL,於各加 ECLDB10μL在各井的圓底板中加入抗體溶液20μL、2次抗體溶液30μL,於遮光下於室溫攪拌1小時。從已裝有ECL Bloking緩衝液的ECM板倒出ECL阻斷緩衝液,並於此板各加50μL前述抗體‧二次抗體之混合溶液。之後於遮光下於室溫靜置1小時。將樣本倒掉後,各加READ緩衝液(MSD)150μL於各井,以Sector Imager 2400(MSD)檢測sulfo-tag的發光信號。 The evaluation of the binding of the antibody to the ECM (Extra cellular matrix) was performed with reference to WO2012093704A1, and was performed according to the following procedure. ECM Phenol red free (BD Matrigel # 356237) was diluted with TBS to 2 mg / mL, and 5 μL was added dropwise to the center of each well of an ECL measurement plate (L15XB-3, MSD high bind) that was cooled on ice. After that, it was capped with a plate seal and left at 4 ° C overnight. Return the ECM-fixed plate to room temperature, add 150 μL of ECL blocking buffer (0.5% BSA and 0.05% Tween 20 in PBS) to each well, and let stand at room temperature for more than 2 hours or at 4 ° C. Stay one night. Antibody samples were then diluted to 9 μg / mL using PBS-T (0.05% Tween 20 was added to PBS). Dilute the secondary antibody to 2 μg / mL with ECLDB (with 0.1% BSA and 0.01% Tween 20 in PBS). 10 μL of ECLDB was added to the round bottom plate of each well, 20 μL of the antibody solution and 30 μL of the secondary antibody solution, and the mixture was stirred at room temperature for 1 hour under light shielding. The ECL blocking buffer was decanted from the ECM plate containing the ECL Bloking buffer, and 50 μL of each of the aforementioned antibody and secondary antibody mixed solutions were added to the plate. After that, it was left to stand at room temperature under light-shielding for 1 hour. After the sample was discarded, 150 μL of READ buffer (MSD) was added to each well, and the luminescent signal of sulfo-tag was detected by Sector Imager 2400 (MSD).

[參考實施例3]人IgA之製備 [Reference Example 3] Preparation of human IgA

作為人IgA,使用天然存在的人IgA序列中的Fc部分(人IgA-Fc)。為了於人IgA-Fc之C末端附加生物素,利用生物素連接酶將編碼為附加生物素之專一性序列(AviTag序列、序列編號:79)的基因片段介由連結子連結。將編碼為已連結人IgA-Fc與AviTag序列的蛋白質(序列編號:80)的基因片段納入動物細胞表現用載體,將構建的質體載體使用293Fectin(Invitrogen)導入到FreeStyle293細胞(Invitrogen)。此時將表現EBNA1(序列編號:81)之基因及表現生物素連接酶(BirA、序列編號:82)的基因同時導入,進一步為了將人IgA-Fc進行生物素標記而添加生物素。將依前述程序導入有基因的細胞於37℃、8% CO2培養6日,使目的蛋白質分泌到培養上清中。 As human IgA, the Fc portion (human IgA-Fc) in the naturally occurring human IgA sequence was used. In order to attach biotin to the C-terminus of human IgA-Fc, a gene fragment encoded as a specific sequence of additional biotin (AviTag sequence, sequence number: 79) was linked via a linker using biotin ligase. A gene fragment encoding a protein (sequence number: 80) linked to human IgA-Fc and AviTag sequences was incorporated into an animal cell expression vector, and the constructed plastid vector was introduced into FreeStyle293 cells (Invitrogen) using 293Fectin (Invitrogen). At this time, a gene expressing EBNA1 (sequence number: 81) and a gene expressing biotin ligase (BirA, sequence number: 82) were simultaneously introduced, and biotin was added to biotin-label human IgA-Fc. The cells into which the gene has been introduced according to the aforementioned procedure are cultured at 37 ° C. and 8% CO 2 for 6 days, and the target protein is secreted into the culture supernatant.

將含有目的之人IgA-Fc之細胞培養液以0.22μm瓶頂濾器過濾,獲得培養上清。於經20mM Tris-HCl,pH7.4平衡化的HiTrap Q HP(GEhealthcare)加入以同溶液稀釋的培養上清,利用NaCl之濃度梯度使目的之人IgA-Fc溶出。然後於經50mM Tris-HCl,pH8.0平衡化之SoftLink Avidin管柱(Promega)加入以同溶液稀釋的前述HiTrap Q HP溶出液,以5mM生物素, 150mM NaCl,50mM Tris-HCl,pH8.0使目的之人IgA-Fc溶出。之後,利用使用Superdex200(GEhealthcare)之凝膠過濾層析,去除係目的外雜質之締合體,獲得緩衝液取代成20mM Histidine-HCl,150mM NaCl,pH6.0的精製人IgA-Fc。 The cell culture solution containing the target human IgA-Fc was filtered through a 0.22 μm bottle top filter to obtain a culture supernatant. The culture supernatant diluted with the same solution was added to HiTrap Q HP (GEhealthcare) equilibrated with 20 mM Tris-HCl, pH 7.4, and the target human IgA-Fc was eluted with a concentration gradient of NaCl. Then add the aforementioned HiTrap Q HP eluate diluted with the same solution to a SoftLink Avidin column (Promega) equilibrated with 50 mM Tris-HCl, pH 8.0, with 5 mM biotin, 150 mM NaCl, 50 mM Tris-HCl, pH 8.0 dissolved the target human IgA-Fc. Then, the gel filtration chromatography using Superdex200 (GEhealthcare) was used to remove the associations of extraneous impurities, and a purified human IgA-Fc having a buffer solution replaced with 20 mM Histidine-HCl, 150 mM NaCl, pH 6.0 was obtained.

[產業利用性] [Industrial availability]

依本發明可提供一種適於作為醫藥品之多胜肽,能使利用抗原結合分子產生之活性增強,而且可避免據認為成為副作用原因之由於向在不同的細胞上表現之抗原之結合導致之該不同的細胞間之交聯。 According to the present invention, a polypeptide suitable as a medicine can be provided, which can enhance the activity produced by the use of antigen-binding molecules, and can avoid the cause which is considered to be a side effect due to the binding to antigens expressed on different cells The different cells are cross-linked.

<110> 中外製藥股份有限公司(CHUGAI SEIYAKU KABUSHIKI KAISHA) <110> CHUGAI SEIYAKU KABUSHIKI KAISHA

<120> 含改變的抗體可變區之抗原結合分子 <120> Antigen-binding molecule containing altered antibody variable region

<130> C1-A1309-TW <130> C1-A1309-TW

<150> JP 2013-232803 <150> JP 2013-232803

<151> 2013-11-11 <151> 2013-11-11

<160> 93 <160> 93

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 1 <400> 1

<210> 2 <210> 2

<211> 326 <211> 326

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 2 <400> 2

<210> 3 <210> 3

<211> 377 <211> 377

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 3 <400> 3

<210> 4 <210> 4

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 4 <400> 4

<210> 5 <210> 5

<211> 4 <211> 4

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 5 <400> 5

<210> 6 <210> 6

<211> 4 <211> 4

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 6 <400> 6

<210> 7 <210> 7

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 7 <400> 7

<210> 8 <210> 8

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 8 <400> 8

<210> 9 <210> 9

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 9 <400> 9

<210> 10 <210> 10

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 10 <400> 10

<210> 11 <210> 11

<211> 7 <211> 7

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 11 <400> 11

<210> 12 <210> 12

<211> 7 <211> 7

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 12 <400> 12

<210> 13 <210> 13

<211> 122 <211> 122

<212> PRT <212> PRT

<213> Rattus norvegicus <213> Rattus norvegicus

<400> 13 <400> 13

<210> 14 <210> 14

<211> 112 <211> 112

<212> PRT <212> PRT

<213> Rattus norvegicus <213> Rattus norvegicus

<400> 14 <400> 14

<210> 15 <210> 15

<211> 119 <211> 119

<212> PRT <212> PRT

<213> Mus musculus <213> Mus musculus

<400> 15 <400> 15

<210> 16 <210> 16

<211> 107 <211> 107

<212> PRT <212> PRT

<213> Mus musculus <213> Mus musculus

<400> 16 <400> 16

<210> 17 <210> 17

<211> 447 <211> 447

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 17 <400> 17

<210> 18 <210> 18

<211> 447 <211> 447

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 18 <400> 18

<210> 19 <210> 19

<211> 447 <211> 447

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 19 <400> 19

<210> 20 <210> 20

<211> 445 <211> 445

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 20 <400> 20

<210> 21 <210> 21

<211> 226 <211> 226

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 21 <400> 21

<210> 22 <210> 22

<211> 458 <211> 458

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 22 <400> 22

<210> 23 <210> 23

<211> 219 <211> 219

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 23 <400> 23

<210> 24 <210> 24

<211> 462 <211> 462

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 24 <400> 24

<210> 25 <210> 25

<211> 462 <211> 462

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 25 <400> 25

<210> 26 <210> 26

<211> 465 <211> 465

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 26 <400> 26

<210> 27 <210> 27

<211> 465 <211> 465

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 27 <400> 27

<210> 28 <210> 28

<211> 465 <211> 465

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 28 <400> 28

<210> 29 <210> 29

<211> 463 <211> 463

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 29 <400> 29

<210> 30 <210> 30

<211> 465 <211> 465

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 30 <400> 30

<210> 31 <210> 31

<211> 465 <211> 465

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 31 <400> 31

<210> 32 <210> 32

<211> 465 <211> 465

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 32 <400> 32

<210> 33 <210> 33

<211> 444 <211> 444

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 33 <400> 33

<210> 34 <210> 34

<211> 444 <211> 444

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 34 <400> 34

<210> 35 <210> 35

<211> 213 <211> 213

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 35 <400> 35

<210> 36 <210> 36

<211> 22 <211> 22

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 36 <400> 36

<210> 37 <210> 37

<211> 480 <211> 480

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 37 <400> 37

<210> 38 <210> 38

<211> 482 <211> 482

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 38 <400> 38

<210> 39 <210> 39

<211> 480 <211> 480

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 39 <400> 39

<210> 40 <210> 40

<211> 482 <211> 482

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 40 <400> 40

<210> 41 <210> 41

<211> 477 <211> 477

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 41 <400> 41

<210> 42 <210> 42

<211> 479 <211> 479

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 42 <400> 42

<210> 43 <210> 43

<211> 461 <211> 461

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 43 <400> 43

<210> 44 <210> 44

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 44 <400> 44

<210> 45 <210> 45

<211> 467 <211> 467

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 45 <400> 45

<210> 46 <210> 46

<211> 461 <211> 461

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 46 <400> 46

<210> 47 <210> 47

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 47 <400> 47

<210> 48 <210> 48

<211> 467 <211> 467

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 48 <400> 48

<210> 49 <210> 49

<211> 461 <211> 461

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 49 <400> 49

<210> 50 <210> 50

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 50 <400> 50

<210> 51 <210> 51

<211> 467 <211> 467

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 51 <400> 51

<210> 52 <210> 52

<211> 122 <211> 122

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 52 <400> 52

<210> 53 <210> 53

<211> 112 <211> 112

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 53 <400> 53

<210> 54 <210> 54

<211> 336 <211> 336

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 54 <400> 54

<210> 55 <210> 55

<211> 107 <211> 107

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 55 <400> 55

<210> 56 <210> 56

<211> 230 <211> 230

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 56 <400> 56

<210> 57 <210> 57

<211> 449 <211> 449

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 57 <400> 57

<210> 58 <210> 58

<211> 214 <211> 214

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 58 <400> 58

<210> 59 <210> 59

<211> 458 <211> 458

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 59 <400> 59

<210> 60 <210> 60

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 60 <400> 60

<210> 61 <210> 61

<211> 467 <211> 467

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 61 <400> 61

<210> 62 <210> 62

<211> 467 <211> 467

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 62 <400> 62

<210> 63 <210> 63

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 63 <400> 63

<210> 64 <210> 64

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 64 <400> 64

<210> 65 <210> 65

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 65 <400> 65

<210> 66 <210> 66

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 66 <400> 66

<210> 67 <210> 67

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 67 <400> 67

<210> 68 <210> 68

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 68 <400> 68

<210> 69 <210> 69

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 69 <400> 69

<210> 70 <210> 70

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 70 <400> 70

<210> 71 <210> 71

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 71 <400> 71

<210> 72 <210> 72

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 72 <400> 72

<210> 73 <210> 73

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 73 <400> 73

<210> 74 <210> 74

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 74 <400> 74

<210> 75 <210> 75

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 75 <400> 75

<210> 76 <210> 76

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 76 <400> 76

<210> 77 <210> 77

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 77 <400> 77

<210> 78 <210> 78

<211> 464 <211> 464

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 78 <400> 78

<210> 79 <210> 79

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 79 <400> 79

<210> 80 <210> 80

<211> 233 <211> 233

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 80 <400> 80

<210> 81 <210> 81

<211> 641 <211> 641

<212> PRT <212> PRT

<213> Human herpesvirus 4 <213> Human herpesvirus 4

<400> 81 <400> 81

<210> 82 <210> 82

<211> 321 <211> 321

<212> PRT <212> PRT

<213> Escherichia coli <213> Escherichia coli

<400> 82 <400> 82

<210> 83 <210> 83

<211> 549 <211> 549

<212> DNA <212> DNA

<213> Homo sapiens <213> Homo sapiens

<400> 83 <400> 83

<210> 84 <210> 84

<211> 182 <211> 182

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 84 <400> 84

<210> 85 <210> 85

<211> 516 <211> 516

<212> DNA <212> DNA

<213> Homo sapiens <213> Homo sapiens

<400> 85 <400> 85

<210> 86 <210> 86

<211> 171 <211> 171

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 86 <400> 86

<210> 87 <210> 87

<211> 624 <211> 624

<212> DNA <212> DNA

<213> Homo sapiens <213> Homo sapiens

<400> 87 <400> 87

<210> 88 <210> 88

<211> 207 <211> 207

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 88 <400> 88

<210> 89 <210> 89

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 89 <400> 89

<210> 90 <210> 90

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 90 <400> 90

<210> 91 <210> 91

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 91 <400> 91

<210> 92 <210> 92

<211> 7 <211> 7

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 92 <400> 92

<210> 93 <210> 93

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 人工合成胜肽序列 <223> Synthetic peptide sequence

<400> 93 <400> 93

Claims (20)

一種抗原結合分子,包含:能和第1抗原及與該第1抗原不同之第2抗原結合、但不同時結合於第1抗原與第2抗原之第1可變區,其中該第1可變區是具有1~25個胺基酸的改變的可變區,其中該改變的胺基酸為迴圈區域的胺基酸、FR3區的胺基酸、或選自於抗體H鏈可變區之Kabat編號31~35、50~65、71~74及95~102及L鏈可變區之Kabat編號24~34、50~56及89~97中的胺基酸;及結合於和該第1抗原及第2抗原不同之第3抗原之第2可變區。An antigen binding molecule comprising: a first variable region capable of binding to a first antigen and a second antigen different from the first antigen, but not simultaneously to the first variable region of the first antigen and the second antigen, wherein the first variable The region is a variable region having 1 to 25 amino acid changes, wherein the changed amino acid is the amino acid of the loop region, the amino acid of the FR3 region, or is selected from the variable region of the antibody H chain Kabat numbers 31 to 35, 50 to 65, 71 to 74, and 95 to 102, and Kabat numbers 24 to 34, 50 to 56, and 89 to 97 of the L chain variable regions; and The second variable region of the third antigen is different from the first antigen and the second antigen. 如申請專利範圍第1項之抗原結合分子,其中該第1可變區係不同時結合於在各自不同的細胞上表現之第1抗原與第2抗原的可變區。For example, the antigen-binding molecule of the first scope of the patent application, wherein the first variable region is not simultaneously bound to the variable region of the first antigen and the second antigen expressed on different cells. 如申請專利範圍第1項之抗原結合分子,更含有抗體之Fc區。For example, the antigen-binding molecule of item 1 of the patent application scope further contains the Fc region of the antibody. 如申請專利範圍第3項之抗原結合分子,其中,該Fc區係比起天然型人IgG1抗體之Fc區對FcγR之結合活性為低之Fc區。For example, the antigen-binding molecule of claim 3, wherein the Fc region is an Fc region having a lower binding activity to FcγR than the Fc region of a natural human IgG1 antibody. 如申請專利範圍第1項之抗原結合分子,係多專一性抗體。For example, the antigen-binding molecule in item 1 of the patent application scope is a multispecific antibody. 如申請專利範圍第1項之抗原結合分子,其中,該改變係取代或插入。For example, the antigen-binding molecule of claim 1 in the patent application scope, wherein the change is a substitution or insertion. 如申請專利範圍第1項之抗原結合分子,其中,該改變係將結合於第1抗原之可變區之一部分胺基酸序列取代為結合於第2抗原之胺基酸序列、或將結合於第2抗原之胺基酸序列插入結合於第1抗原之可變區之胺基酸序列。For example, the antigen-binding molecule of the first scope of the patent application, wherein the change is to replace a part of the amino acid sequence bound to the variable region of the first antigen with the amino acid sequence bound to the second antigen, or to bind to The amino acid sequence of the second antigen is inserted into the amino acid sequence of the variable region of the first antigen. 如申請專利範圍第1項之抗原結合分子,其中,第1抗原或第2抗原任一者係在T細胞表面專一性地表現的分子,另一抗原係在T細胞或其他免疫細胞表面表現的分子。For example, the antigen-binding molecule of item 1 in the patent application scope, wherein either the first antigen or the second antigen is a molecule specifically expressed on the surface of T cells, and the other antigen is expressed on the surface of T cells or other immune cells molecule. 如申請專利範圍第8項之抗原結合分子,其中,第1抗原或第2抗原中任一者為CD3,另一抗原為FcγR、TLR、凝集素、IgA、免疫核對點分子、TNF超級家族分子、TNFR超級家族分子或NK受體分子。For example, the antigen-binding molecule of item 8 of the patent application, wherein either the first antigen or the second antigen is CD3, and the other antigen is FcγR, TLR, lectin, IgA, immune checkpoint molecule, TNF super family molecule TNFR superfamily molecule or NK receptor molecule. 如申請專利範圍第8項之抗原結合分子,其中,第3抗原係癌組織專一性地表現的分子。For example, the eighth antigen-binding molecule of the patent application scope, wherein the third antigen is a molecule specifically expressed by cancer tissue. 一種醫藥組合物,包含:如申請專利範圍第1至10項中任一項之抗原結合分子及醫學上可容許之載體。A pharmaceutical composition includes the antigen-binding molecule according to any one of claims 1 to 10 and a medically acceptable carrier. 一種抗原結合分子之製造方法,係製造如申請專利範圍第1至10項中任一項之抗原結合分子,包含步驟(i)~(iv):(i)製作抗原結合分子之庫,該抗原結合分子之結合於第1抗原或第2抗原之第1可變區之1~25個胺基酸經改變,其中該改變為迴圈區域的胺基酸、FR3區的胺基酸、或選自於抗體H鏈可變區之Kabat編號31~35、50~65、71~74及95~102及L鏈可變區之Kabat編號24~34、50~56及89~97中的胺基酸的改變,且其中該經改變之第1可變區之胺基酸之至少1個彼此不同;(ii)從製作之庫之中選擇含有對於第1抗原及第2抗原有結合活性但不同時結合於該第1抗原及第2抗原之第1可變區之抗原結合分子;(iii)將含有編碼為步驟(ii)選出之抗原結合分子之該第1可變區之核酸、及/或編碼為結合於第3抗原之抗原結合分子之第2可變區之核酸的寄主細胞進行培養,使含有能和第1抗原與第2抗原結合但不同時結合於該第1抗原與第2抗原之該第1可變區、及/或結合於第3抗原之該第2可變區的抗原結合分子表現;及(iv)從該寄主細胞培養物回收抗原結合分子。A method for manufacturing an antigen-binding molecule is to produce an antigen-binding molecule according to any one of claims 1 to 10, including steps (i) to (iv): (i) making a library of antigen-binding molecules, the antigen 1 to 25 amino acids of the binding molecule bound to the first variable region of the first antigen or the second antigen are changed, wherein the change is the amino acid of the loop region, the amino acid of the FR3 region, or an alternative Kabat numbers from antibody H-chain variable regions 31 to 35, 50 to 65, 71 to 74, and 95 to 102, and Kabat numbers 24 to 34, 50 to 56, and 89 to 97 of the L chain variable regions Acid change, and wherein at least one of the amino acids of the changed first variable region is different from each other; (ii) selecting from a library containing binding activity for the first antigen and the second antigen but different An antigen-binding molecule that binds to the first variable region of the first and second antigens; (iii) a nucleic acid containing the first variable region that encodes the antigen-binding molecule selected in step (ii), and / Or, a host cell encoding a nucleic acid encoding a second variable region of an antigen-binding molecule that binds to a third antigen is cultured so that it contains a molecule capable of binding the first antigen to the second antigen but not When the first variable region that binds the first antigen and the second antigen and / or the antigen-binding molecule that binds the second variable region of the third antigen manifest; Recover the antigen-binding molecule. 如申請專利範圍第12項之抗原結合分子之製造方法,其中,於步驟(ii)選擇之抗原結合分子所含之不同時結合於第1抗原與第2抗原之該第1可變區,係不同時結合於各自不同的細胞上表現之第1抗原與第2抗原之可變區。For example, the method for manufacturing an antigen-binding molecule according to item 12 of the patent application, wherein, when the antigen-binding molecule selected in step (ii) does not contain the first variable region that binds to the first antigen and the second antigen, Not simultaneously bind to the variable regions of the first antigen and the second antigen expressed on different cells. 如申請專利範圍第12或13項之抗原結合分子之製造方法,其中,步驟(iii)培養之寄主細胞更包含編碼為抗體之Fc區之核酸。For example, the method of manufacturing an antigen-binding molecule according to item 12 or 13 of the application, wherein the host cell cultured in step (iii) further comprises a nucleic acid encoding an Fc region of an antibody. 如申請專利範圍第14項之抗原結合分子之製造方法,其中,Fc區係比起天然型人IgG1抗體之Fc區對於FcγR之結合活性為低之Fc區。For example, the method for manufacturing an antigen-binding molecule according to item 14 of the application, wherein the Fc region is an Fc region having a lower FcγR binding activity than the Fc region of a natural human IgG1 antibody. 如申請專利範圍第12項之抗原結合分子之製造方法,其中,製造之抗原結合分子為多專一性抗體。For example, the method for manufacturing an antigen-binding molecule according to item 12 of the application, wherein the manufactured antigen-binding molecule is a multispecific antibody. 如申請專利範圍第12項之抗原結合分子之製造方法,其中,步驟(i)中之該第1可變區之改變胺基酸係取代或插入的胺基酸。For example, the method for manufacturing an antigen-binding molecule according to item 12 of the patent application, wherein the amino acid substituted or inserted in the first variable region in step (i) is changed. 如申請專利範圍第12項之抗原結合分子之製造方法,其中,第1抗原或第2抗原中任一者為在T細胞表面專一性地表現的分子,另一抗原為在T細胞或其他免疫細胞表面表現的分子。For example, a method for manufacturing an antigen-binding molecule according to item 12 of the patent application, wherein either the first antigen or the second antigen is a molecule specifically expressed on the surface of a T cell, and the other antigen is a T cell or other immune Molecules expressed on the cell surface. 如申請專利範圍第18項之抗原結合分子之製造方法,其中,第1抗原或第2抗原中任一者為CD3,另一抗原為FcγR、TLR、IgA、凝集素、免疫核對點分子、TNF超級家族分子、TNFR超級家族分子或NK受體分子。For example, the manufacturing method of the antigen-binding molecule of item 18 of the patent application, wherein either the first antigen or the second antigen is CD3, and the other antigen is FcγR, TLR, IgA, lectin, immune checkpoint molecule, TNF Superfamily molecule, TNFR superfamily molecule or NK receptor molecule. 如申請專利範圍第18項之抗原結合分子之製造方法,其中,第3抗原係於癌組織專一性地表現的分子。For example, the method for producing an antigen-binding molecule according to item 18 of the application, wherein the third antigen is a molecule specifically expressed in cancer tissue.
TW103138989A 2013-11-11 2014-11-11 Antigen-binding molecules containing altered antibody variable regions TWI652279B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-232803 2013-11-11
JP2013232803 2013-11-11

Publications (2)

Publication Number Publication Date
TW201605900A TW201605900A (en) 2016-02-16
TWI652279B true TWI652279B (en) 2019-03-01

Family

ID=53041619

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108101781A TWI712421B (en) 2013-11-11 2014-11-11 Antigen binding molecules containing altered antibody variable regions
TW103138989A TWI652279B (en) 2013-11-11 2014-11-11 Antigen-binding molecules containing altered antibody variable regions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108101781A TWI712421B (en) 2013-11-11 2014-11-11 Antigen binding molecules containing altered antibody variable regions

Country Status (12)

Country Link
US (3) US20160280787A1 (en)
EP (1) EP3070168A4 (en)
JP (3) JPWO2015068847A1 (en)
KR (2) KR20230104764A (en)
CN (3) CN105940107B (en)
AU (1) AU2014347565B2 (en)
BR (1) BR112016010025A2 (en)
CA (1) CA2929044A1 (en)
EA (1) EA201600354A1 (en)
MX (1) MX2016005762A (en)
TW (2) TWI712421B (en)
WO (1) WO2015068847A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628966B2 (en) 2012-06-14 2020-01-15 中外製薬株式会社 Antigen binding molecule containing an altered Fc region
CA2929044A1 (en) 2013-11-11 2015-05-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
US11154615B2 (en) 2014-11-11 2021-10-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
EP3296395B1 (en) 2015-05-13 2021-06-30 Chugai Seiyaku Kabushiki Kaisha Multiple antigen binding molecular fusion, pharmaceutical composition, method for identifying linear epitope, and method for preparing multiple antigen binding molecular fusion
CN110431231B (en) 2016-12-22 2024-01-02 第一三共株式会社 anti-CD 3 antibodies and molecules comprising said antibodies
CN110418648B (en) * 2017-02-22 2023-09-08 丁恩雨 mRNA cancer vaccine for encoding fusion of human GM-CSF and multiple tandem epitopes
MX2019011717A (en) * 2017-03-31 2019-12-16 Univ California Compositions and methods for targeting and killing alpha-v beta-3-positive cancer stem cells (cscs) and treating drug resistant cancers.
US11952422B2 (en) * 2017-12-05 2024-04-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
US20200399373A1 (en) * 2018-02-14 2020-12-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule and combination
WO2019161386A1 (en) * 2018-02-19 2019-08-22 New York University Alpha-synuclein single domain antibodies
US20220112296A1 (en) * 2018-09-28 2022-04-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region
BR112021005722A2 (en) * 2018-09-28 2021-07-06 Chugai Pharmaceutical Co Ltd antigen-binding molecules capable of binding cd3 and cd137, but not simultaneously
US20220242944A1 (en) * 2019-06-28 2022-08-04 Chugai Seiyaku Kabushiki Kaisha Antigen binding molecules that bind pdgf-b and pdgf-d and uses thereof
CN112794914B (en) * 2019-11-14 2022-09-16 深圳华大生命科学研究院 ALK nano antibody developed based on phage display technology and application thereof
CA3173519A1 (en) * 2020-03-31 2021-10-07 Vishnu Priyanka Reddy CHICHILI Method for producing multispecific antigen-binding molecules
CR20220541A (en) 2020-03-31 2022-11-28 Chugai Pharmaceutical Co Ltd Dll3-targeting multispecific antigen-binding molecules and uses thereof
MX2022013663A (en) * 2020-06-01 2022-11-30 Mustbio Co Ltd Bispecific antibody or antigen-binding fragment thereof, and preparation method therefor.
WO2023081266A2 (en) * 2021-11-03 2023-05-11 University Of Pittsburgh – Of The Commonwealth System Of Higher Education Molecules that bind to protogenin (prtg) polypeptides

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
EP0266032A1 (en) 1986-08-29 1988-05-04 Beecham Group Plc Modified fibrinolytic enzyme
DE3920358A1 (en) 1989-06-22 1991-01-17 Behringwerke Ag BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE
ATE185601T1 (en) 1990-07-10 1999-10-15 Cambridge Antibody Tech METHOD FOR PRODUCING SPECIFIC BONDING PAIRS
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
ATE158021T1 (en) 1990-08-29 1997-09-15 Genpharm Int PRODUCTION AND USE OF NON-HUMAN TRANSGENT ANIMALS FOR THE PRODUCTION OF HETEROLOGUE ANTIBODIES
EP0511011B1 (en) * 1991-04-26 1996-10-23 Surface Active Limited Novel antibodies and methods for their use
DE69229477T2 (en) 1991-09-23 1999-12-09 Cambridge Antibody Tech Methods for the production of humanized antibodies
ES2241710T3 (en) 1991-11-25 2005-11-01 Enzon, Inc. PROCEDURE TO PRODUCE MULTIVALENT PROTEINS FROM UNION TO ANTIGEN.
US5885793A (en) 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
CA2124967C (en) 1991-12-17 2008-04-08 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
EP0656941B1 (en) 1992-03-24 2005-06-01 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
ES2301158T3 (en) 1992-07-24 2008-06-16 Amgen Fremont Inc. XENOGENIC ANTIBODY PRODUCTION.
AU6235294A (en) * 1993-02-02 1994-08-29 Scripps Research Institute, The Methods for producing polypeptide binding sites
AU6819494A (en) 1993-04-26 1994-11-21 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
US5981478A (en) 1993-11-24 1999-11-09 La Jolla Cancer Research Foundation Integrin-binding peptides
CA2177367A1 (en) 1993-12-03 1995-06-08 Andrew David Griffiths Recombinant binding proteins and peptides
DE4419399C1 (en) 1994-06-03 1995-03-09 Gsf Forschungszentrum Umwelt Process for the preparation of heterologous bispecific antibodies
KR100261941B1 (en) 1994-07-13 2000-07-15 나가야마 오사무 Reconstituted human antibody against human interleukin-8
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
CA2761116A1 (en) 1995-04-27 1996-10-31 Amgen Fremont Inc. Human antibodies derived from immunized xenomice
CA2219486A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
JP4213224B2 (en) 1997-05-02 2009-01-21 ジェネンテック,インコーポレーテッド Method for producing multispecific antibody having heteromultimer and common component
US6344443B1 (en) 1998-07-08 2002-02-05 University Of South Florida Peptide antagonists of tumor necrosis factor alpha
AU5122499A (en) 1998-07-27 2000-02-21 Genentech Inc. Improved transformation efficiency in phage display through modification of a coat protein
US20010036647A1 (en) 1998-10-22 2001-11-01 Prabhakara V. Choudary Functionally assembled antigen-specific intact recombinant antibody and a method for production thereof
WO2000042072A2 (en) 1999-01-15 2000-07-20 Genentech, Inc. Polypeptide variants with altered effector function
US20100081792A1 (en) * 2001-06-28 2010-04-01 Smithkline Beecham Corporation Ligand
EP1293514B1 (en) 2001-09-14 2006-11-29 Affimed Therapeutics AG Multimeric single chain tandem Fv-antibodies
US8388955B2 (en) * 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
BRPI0506771A (en) 2004-01-12 2007-05-22 Applied Molecular Evolution antibody and pharmaceutical composition
AU2005206536B2 (en) * 2004-01-16 2010-09-02 Regeneron Pharmaceuticals, Inc. Fusion polypeptides capable of activating receptors
BRPI0510674A (en) 2004-07-15 2007-12-26 Xencor Inc optimized fc variants
CA2577329A1 (en) * 2004-08-16 2006-03-02 Medimmune, Inc. Eph receptor fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
AU2005289685B2 (en) 2004-09-24 2009-07-16 Amgen Inc. Modified Fc molecules
AU2005299355A1 (en) * 2004-10-27 2006-05-04 Medimmune, Llc Modulation of antibody specificity by tailoring the affinity to cognate antigens
CN101123983A (en) * 2004-10-27 2008-02-13 米迪缪尼股份有限公司 Modulation of antibody specificity by tailoring the affinity to cognate antigens
DK2325207T3 (en) 2004-11-12 2017-06-06 Xencor Inc Fc variants with altered binding to FcRn
DE602006005200D1 (en) 2005-01-05 2009-04-02 F Star Biotech Forsch & Entw Synthetic immunoglobulin domains with modified binding properties in regions of the molecule other than the complementarity determining regions
WO2006083706A2 (en) 2005-01-31 2006-08-10 Vaxinnate Corporation Method to identify polypeptide toll-like receptor (tlr) ligands
ES2592271T3 (en) 2005-03-31 2016-11-29 Chugai Seiyaku Kabushiki Kaisha Polypeptide production methods by regulating the association of polypeptides
EP1870458B1 (en) 2005-03-31 2018-05-09 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2 STRUCTURAL ISOMERS
WO2006132352A1 (en) 2005-06-10 2006-12-14 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition containing sc(fv)2
CN101262885B (en) * 2005-06-10 2015-04-01 中外制药株式会社 Pharmaceutical compositions containing sc(Fv)2
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
WO2007114325A1 (en) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
JP2009538273A (en) 2006-04-14 2009-11-05 トルビオン ファーマシューティカルズ, インコーポレイテッド Binding protein with immunoglobulin hinge region and Fc region with modified FC effector function
CA2652452C (en) 2006-05-15 2018-07-31 Sea Lane Biotechnologies, Llc Neutralizing antibodies to influenza viruses
AT503889B1 (en) 2006-07-05 2011-12-15 Star Biotechnologische Forschungs Und Entwicklungsges M B H F MULTIVALENT IMMUNE LOBULINE
WO2009134891A2 (en) 2008-04-29 2009-11-05 Immunexcite, Inc. Immunomodulating compositions and methods of use thereof
NZ614857A (en) 2007-03-29 2015-04-24 Genmab As Bispecific antibodies and methods for production thereof
PT2520590T (en) 2007-04-03 2018-11-14 Amgen Res Munich Gmbh Cross-species-specific binding domain
FI2155783T4 (en) 2007-04-03 2022-12-15 Cross-species-specific cd3-epsilon binding domain
WO2009011941A2 (en) 2007-04-04 2009-01-22 The Government Of U.S.A., As Represented By The Secretary, Departmetnt Of Health & Human Services Monoclonal antibodies against dengue and other viruses with deletion in fc region
MX342551B (en) 2007-09-26 2016-10-04 Chugai Pharmaceutical Co Ltd Modified antibody constant region.
EP4098661A1 (en) 2007-12-26 2022-12-07 Xencor, Inc. Fc variants with altered binding to fcrn
SG187457A1 (en) 2008-01-11 2013-02-28 Univ Tokyo Anti-cldn6 antibody
AU2009212747B2 (en) 2008-01-31 2013-11-07 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Engineered antibody constant domain molecules
NZ602884A (en) 2008-04-11 2014-08-29 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
PE20110593A1 (en) * 2008-09-03 2011-09-10 Genentech Inc MULTI-SPECIFIC ANTIBODIES
PT2334705T (en) 2008-09-26 2017-03-22 Ucb Biopharma Sprl Biological products
CN106220734A (en) 2008-12-19 2016-12-14 宏观基因有限公司 Covalent diabodies and application thereof
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
EP3689911A1 (en) 2009-11-11 2020-08-05 Ganymed Pharmaceuticals GmbH Antibodies specific for claudin 6 (cldn6)
PL3342786T3 (en) 2010-01-29 2021-12-20 Chugai Seiyaku Kabushiki Kaisha Anti-dll3 antibody
WO2011108714A1 (en) 2010-03-04 2011-09-09 中外製薬株式会社 Antibody constant region variant
TWI667346B (en) 2010-03-30 2019-08-01 中外製藥股份有限公司 Antibodies with modified affinity to fcrn that promote antigen clearance
AU2011244282A1 (en) 2010-04-20 2012-11-15 Genmab A/S Heterodimeric antibody Fc-containing proteins and methods for production thereof
TWI586806B (en) 2010-04-23 2017-06-11 建南德克公司 Production of heteromultimeric proteins
EP2404936A1 (en) 2010-07-06 2012-01-11 Ganymed Pharmaceuticals AG Cancer therapy using CLDN6 target-directed antibodies in vivo
CA2808482C (en) 2010-08-16 2021-10-26 Novimmune S.A. Methods for the generation of multispecific and multivalent antibodies
AU2011325833C1 (en) 2010-11-05 2017-07-13 Zymeworks Bc Inc. Stable heterodimeric antibody design with mutations in the Fc domain
WO2012064792A2 (en) 2010-11-09 2012-05-18 Altimab Therapeutics, Inc. Protein complexes for antigen binding and methods of use
CN103429737B (en) 2010-11-30 2020-07-14 中外制药株式会社 Cytotoxic induction therapeutic agent
US20140080153A1 (en) 2011-01-07 2014-03-20 Chugai Seiyaku Kabushiki Kaisha Method for improving physical properties of antibody
AU2012205663B2 (en) 2011-01-10 2017-02-02 Emory University Antibodies directed against influenza
US20140112926A1 (en) 2011-03-16 2014-04-24 Amgen Inc. Fc VARIANTS
US20140170149A1 (en) * 2011-04-20 2014-06-19 Genmab A/S Bispecific antibodies against her2 and cd3
RS58087B1 (en) 2011-05-13 2019-02-28 Ganymed Pharmaceuticals Gmbh Antibodies for treatment of cancer expressing claudin 6
EP2714733B1 (en) * 2011-05-21 2019-01-23 MacroGenics, Inc. Cd3-binding molecules capable of binding to human and non-human cd3
RU2641256C2 (en) 2011-06-30 2018-01-16 Чугаи Сейяку Кабусики Кайся Heterodimerizated polypeptide
EP2731970B1 (en) 2011-07-15 2018-11-28 MorphoSys AG Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
UA116192C2 (en) 2011-08-23 2018-02-26 Рош Глікарт Аг Bispecific t cell activating antigen binding molecules
CN109485730A (en) * 2011-10-20 2019-03-19 美国卫生和人力服务部 Anti- CD22 Chimeric antigen receptor
KR102052774B1 (en) 2011-11-04 2019-12-04 자임워크스 인코포레이티드 Stable heterodimeric antibody design with mutations in the fc domain
SI2817338T1 (en) 2012-02-24 2017-11-30 Abbvie Stemcentrx Llc Dll3 modulators and methods of use
DK2857420T3 (en) 2012-05-30 2020-11-23 Chugai Pharmaceutical Co Ltd TARGET TISSUE SPECIFIC ANTIGIN BINDING MOLECULE
JP6628966B2 (en) 2012-06-14 2020-01-15 中外製薬株式会社 Antigen binding molecule containing an altered Fc region
WO2014075697A1 (en) 2012-11-13 2014-05-22 Biontech Ag Agents for treatment of claudin expressing cancer diseases
US10093736B2 (en) 2012-11-13 2018-10-09 Biontech Ag Agents for treatment of claudin expressing cancer diseases
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
WO2014116846A2 (en) 2013-01-23 2014-07-31 Abbvie, Inc. Methods and compositions for modulating an immune response
AP2015008740A0 (en) 2013-03-14 2015-09-30 Macrogenics Inc Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor and an antigen expressed by a cell infected by a virus and uses thereof
SG11201603397QA (en) 2013-11-06 2016-05-30 Stemcentrx Inc Novel anti-claudin antibodies and methods of use
CA2929044A1 (en) 2013-11-11 2015-05-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
WO2015146438A1 (en) 2014-03-26 2015-10-01 国立大学法人東北大学 Bispecific antibody targeting human epidermal growth factor receptor
TWI726842B (en) 2014-04-07 2021-05-11 日商中外製藥股份有限公司 Immune activation antigen binding molecule
EP2982692A1 (en) 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
US11154615B2 (en) 2014-11-11 2021-10-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
TW202346349A (en) 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Antibody constructs for dll3 and cd3
US11952422B2 (en) 2017-12-05 2024-04-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
JP7314146B2 (en) 2017-12-28 2023-07-25 中外製薬株式会社 Cytotoxicity-inducing therapeutic agent
WO2019135404A1 (en) 2018-01-05 2019-07-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
BR112021005722A2 (en) 2018-09-28 2021-07-06 Chugai Pharmaceutical Co Ltd antigen-binding molecules capable of binding cd3 and cd137, but not simultaneously
US20220112296A1 (en) 2018-09-28 2022-04-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region
TW202204410A (en) 2020-03-31 2022-02-01 日商中外製藥股份有限公司 Immune activating multispecific antigen-binding molecules and uses thereof
EP4126956A4 (en) 2020-03-31 2024-04-24 Chugai Pharmaceutical Co Ltd Claudin-6 targeting multispecific antigen-binding molecules and uses thereof
CR20220541A (en) 2020-03-31 2022-11-28 Chugai Pharmaceutical Co Ltd Dll3-targeting multispecific antigen-binding molecules and uses thereof
CA3173519A1 (en) 2020-03-31 2021-10-07 Vishnu Priyanka Reddy CHICHILI Method for producing multispecific antigen-binding molecules

Also Published As

Publication number Publication date
CN105940107A (en) 2016-09-14
EP3070168A4 (en) 2017-06-28
JP2020196741A (en) 2020-12-10
US20200332001A1 (en) 2020-10-22
KR20230104764A (en) 2023-07-10
US11739149B2 (en) 2023-08-29
TW201919701A (en) 2019-06-01
CN105940107B (en) 2021-06-15
CN113278076A (en) 2021-08-20
WO2015068847A1 (en) 2015-05-14
JPWO2015068847A1 (en) 2017-03-09
JP2022191448A (en) 2022-12-27
US20240026000A1 (en) 2024-01-25
CN113307873A (en) 2021-08-27
KR20160083094A (en) 2016-07-11
CA2929044A1 (en) 2015-05-14
TW201605900A (en) 2016-02-16
MX2016005762A (en) 2016-08-19
US20160280787A1 (en) 2016-09-29
AU2014347565B2 (en) 2020-08-13
KR102551410B1 (en) 2023-07-04
BR112016010025A2 (en) 2017-12-05
EP3070168A1 (en) 2016-09-21
EA201600354A1 (en) 2016-12-30
TWI712421B (en) 2020-12-11

Similar Documents

Publication Publication Date Title
US11739149B2 (en) Antigen-binding molecule containing modified antibody variable region
JP7357616B2 (en) Antigen-binding molecules comprising engineered antibody variable regions that bind to CD3 and CD137
US20220040297A1 (en) Library of antigen-binding molecules including modified antibody variable region
WO2020067419A1 (en) Antigen-binding molecules capable of binding cd3 and cd137 but not simultaneously
WO2020067399A1 (en) Antigen-binding molecule comprising altered antibody variable region
TWI831044B (en) Antigen-binding molecules, pharmaceutical compositions containing antigen-binding molecules, and methods of manufacturing and selecting antigen-binding molecules
EA042507B1 (en) ANTIGEN-BINDING MOLECULE CONTAINING ANTIBODY VARIABLE REGION