TWI651911B - Cascaded power converter apparatus - Google Patents

Cascaded power converter apparatus Download PDF

Info

Publication number
TWI651911B
TWI651911B TW106139223A TW106139223A TWI651911B TW I651911 B TWI651911 B TW I651911B TW 106139223 A TW106139223 A TW 106139223A TW 106139223 A TW106139223 A TW 106139223A TW I651911 B TWI651911 B TW I651911B
Authority
TW
Taiwan
Prior art keywords
voltage
power
command
grid
conversion device
Prior art date
Application number
TW106139223A
Other languages
Chinese (zh)
Other versions
TW201919298A (en
Inventor
吳秉衡
鄭博泰
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW106139223A priority Critical patent/TWI651911B/en
Application granted granted Critical
Publication of TWI651911B publication Critical patent/TWI651911B/en
Publication of TW201919298A publication Critical patent/TW201919298A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

串接式電能轉換裝置包括多個電網電壓產生器、多數個自主電壓調整控制器以及總電流調整控制器。電網電壓產生器分別提供多數個電網電壓,各電網電壓產生器包括串接的多個電能轉換器,電能轉換器區分為多個前級電能轉換器以及至少一後級電能轉換器。各自主電壓調整控制器依據對應的前級直流電壓以及電網電壓來控制各前級電能轉換器的電壓轉換動作。總電流調整控制器依據多個電網電流以及後級電能轉換器接收的多個後級直流電壓來控制後級電能轉換器的電壓轉換動作。The series-connected power conversion device includes a plurality of grid voltage generators, a plurality of autonomous voltage adjustment controllers, and a total current adjustment controller. The grid voltage generators respectively provide a plurality of grid voltages, and each grid voltage generator comprises a plurality of power converters connected in series, the power converter being divided into a plurality of pre-stage power converters and at least one post-stage power converter. Each autonomous voltage adjustment controller controls the voltage conversion action of each of the preceding stage power converters according to the corresponding front stage DC voltage and the grid voltage. The total current adjustment controller controls the voltage conversion action of the subsequent stage power converter according to the plurality of grid currents and the plurality of subsequent stage DC voltages received by the subsequent stage power converter.

Description

串接式電能轉換裝置Series power conversion device

本發明是有關於一種串接式電能轉換裝置,且特別是有關於一種具有分散式控制機制的串接式電能轉換裝置。 The present invention relates to a series-connected power conversion device, and more particularly to a series-connected power conversion device having a distributed control mechanism.

多階層串接式電能轉換裝置是由許多橋式轉換器串接而成,並可應用於較高的電壓層級之電網。其中,各個橋式轉換器針對所接收的直流電壓進行電壓轉換動作,並產生多個不同相位的供應電能。在習知的技術領域中,多階層的串接式電能轉換裝置在硬體實現上,是透過一個中央控制器來回授訊號,並進行傳輸各橋式轉換器所需之開關控制信號。如此一來,中央控制器與橋式轉換器間,需要大量且複雜的通訊連接的導線配置。並且,由於中央控制器需要處理大量的回授信號,造成中央控制器需負擔大量的運算量。此外,當單一橋式轉換器發生故障時,由於整體系統訊號連接是相連的,易造成整組串接式電能轉換裝置的停機。而隨著串接的轉換器的個數的增加,上述的因素都將提升硬體實現上的困難。 The multi-level tandem power conversion device is a series of bridge converters and can be applied to a higher voltage level network. Wherein, each bridge converter performs a voltage conversion action on the received DC voltage and generates a plurality of supply powers of different phases. In the conventional technical field, the multi-level serial-connected power conversion device realizes the signal transmission back and forth through a central controller and performs the switching control signals required for transmitting the bridge converters. As a result, a large and complex communication connection wire arrangement is required between the central controller and the bridge converter. Moreover, since the central controller needs to process a large number of feedback signals, the central controller has to bear a large amount of computation. In addition, when a single bridge converter fails, since the overall system signal connection is connected, it is easy to cause the shutdown of the entire series of series-type power conversion devices. As the number of serially connected converters increases, the above factors will increase the difficulty in hardware implementation.

本發明提供一種串接式電能轉換裝置,具有分散式的控制機制,可有效提升故障容忍度,並可減低串接式電能轉換裝置中的配線數量,降低系統設計的複雜度。 The invention provides a series-connected electric energy conversion device with a distributed control mechanism, which can effectively improve the fault tolerance, reduce the number of wirings in the series-connected electric energy conversion device, and reduce the complexity of the system design.

本發明的串接式電能轉換裝置包括多個電網電壓產生器、多數個自主電壓調整控制器以及總電流調整控制器。電網電壓產生器分別提供多數個電網電壓,各電網電壓產生器包括串接的多個電能轉換器,電能轉換器區分為多個前級電能轉換器以及至少一後級電能轉換器。自主電壓調整控制器分別耦接電網電壓產生器中的前級電能轉換器,各自主電壓調整控制器依據對應的前級直流電壓以及電網電壓來控制各前級電能轉換器的電壓轉換動作。總電流調整控制器耦接電網電壓產生器中的該些級電能轉換器,依據電網電壓產生器上的多個電網電流以及後級電能轉換器接收的多個後級直流電壓來控制後級電能轉換器的電壓轉換動作。 The series-connected power conversion device of the present invention includes a plurality of grid voltage generators, a plurality of autonomous voltage adjustment controllers, and a total current adjustment controller. The grid voltage generators respectively provide a plurality of grid voltages, and each grid voltage generator comprises a plurality of power converters connected in series, the power converter being divided into a plurality of pre-stage power converters and at least one post-stage power converter. The autonomous voltage adjustment controllers are respectively coupled to the pre-stage power converters in the grid voltage generator, and the respective main voltage adjustment controllers control the voltage conversion actions of the respective pre-stage power converters according to the corresponding pre-stage DC voltages and the grid voltage. The total current adjustment controller is coupled to the level electric energy converters in the grid voltage generator, and controls the post-level electric energy according to the plurality of grid currents on the grid voltage generator and the plurality of post-stage DC voltages received by the post-stage power converter. The voltage conversion action of the converter.

基於上述,本發明提供多個自主電壓調整控制器,以針對串接式電能轉換裝置中,各電網電壓產生器中的多個前級電能轉換器的電壓轉換動作進行控制。並且,本發明另提供一總電流調整控制器來控制串接式電能轉換裝置中的多個後級電能轉換器的電壓轉換動作。藉由分散式的控制機制,串接式電能轉換裝置中的傳輸導線的數量可以減少,且導線的長度都可以減低,降低硬體佈局上困難,並減低硬體所需的面積。有效降低生產的成本, 並增加產品的競爭力。此外,本發明的串接式電能轉換裝置可提升故障容忍度,其中,在部分電能轉換裝置發生故障時,仍可維持系統的正常的運作。 Based on the above, the present invention provides a plurality of autonomous voltage adjustment controllers for controlling voltage conversion actions of a plurality of preceding stage power converters in respective grid voltage generators in a series-connected power conversion apparatus. Moreover, the present invention further provides a total current adjustment controller for controlling voltage conversion actions of a plurality of subsequent stage power converters in the series-connected power conversion apparatus. With the decentralized control mechanism, the number of transmission wires in the series-type power conversion device can be reduced, and the length of the wires can be reduced, the difficulty in layout of the hardware is reduced, and the area required for the hardware is reduced. Effectively reduce the cost of production, And increase the competitiveness of the product. In addition, the series-connected power conversion device of the present invention can improve fault tolerance, wherein the normal operation of the system can be maintained even when a part of the power conversion device fails.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧串接式電能轉換裝置 100‧‧‧Series power conversion device

110、120、130‧‧‧電網電壓產生器 110, 120, 130‧‧‧ grid voltage generator

AVR11-AVR1J、AVR21-AVR2J、AVR31-AVR3J‧‧‧自主電壓調整控制器 AVR11-AVR1J, AVR21-AVR2J, AVR31-AVR3J‧‧‧ independent voltage adjustment controller

TCR1‧‧‧總電流調整控制器 TCR1‧‧‧ total current adjustment controller

Va0、Vb0、Vc0‧‧‧電網電壓 V a0 , V b0 , V c0 ‧‧‧ grid voltage

111-11N、121-12N、131-13N‧‧‧電能轉換器 111-11N, 121-12N, 131-13N‧‧‧ power converter

PWM、PWMa1、PWMa2、PWMb1、PWMb2、PWMc1、PWMc2、PWMaN、PWMbN、PWMcN‧‧‧控制信號 PWM, PWM a1 , PWM a2 , PWM b1 , PWM b2 , PWM c1 , PWM c2 , PWM aN , PWM bN , PWM cN ‧‧‧ control signal

ia、ib、ic‧‧‧電網電流 i a , i b , i c ‧‧‧ grid current

VdcaN、VdcbN、VdccN‧‧‧後級直流電壓 V dcaN , V dcbN , V dccN ‧‧ ‧ DC voltage

200‧‧‧串接式電能轉換裝置 200‧‧‧Series power conversion device

210-230‧‧‧電網電壓產生器 210-230‧‧‧ Grid voltage generator

211-21N‧‧‧電能轉換器 211-21N‧‧‧Power Converter

Vdca1-VdcaN‧‧‧(前級)直流電壓 V dca1 -V dcaN ‧‧‧(pre-stage) DC voltage

idca1-idcaN‧‧‧直流電流 i dca1 -i dcaN ‧‧‧ DC current

Va1、Va2、Va3、VaM‧‧‧電壓 V a1 , V a2 , V a3 , V aM ‧‧‧ voltage

O‧‧‧原點 O‧‧‧ origin

M‧‧‧連接點 M‧‧‧ connection point

300‧‧‧自主電壓調整控制器 300‧‧‧Autonomous voltage adjustment controller

310、330‧‧‧運算器 310, 330‧‧‧ arithmetic

320‧‧‧調整器 320‧‧‧ adjuster

340‧‧‧調變器 340‧‧‧Transformer

Vdc*‧‧‧直流電壓命令 V dc *‧‧‧ DC voltage command

Va1*‧‧‧命令電壓值 V a1 *‧‧‧ command voltage value

331‧‧‧乘法器 331‧‧‧Multiplier

332‧‧‧加法器 332‧‧‧Adder

Vmag‧‧‧電壓 V mag ‧‧‧ voltage

400‧‧‧總電流調整控制器 400‧‧‧Total current adjustment controller

410‧‧‧總功率控制器 410‧‧‧Total power controller

420‧‧‧群集電壓控制器 420‧‧‧ Cluster voltage controller

430‧‧‧電流控制器 430‧‧‧ Current controller

440‧‧‧調變器 440‧‧‧Transformer

413‧‧‧調整器 413‧‧‧ adjuster

460‧‧‧獨立電壓平衡控制器 460‧‧‧Independent voltage balance controller

4122、470‧‧‧運算器 4122, 470‧‧‧ arithmetic

411‧‧‧第一部分 411‧‧‧Part 1

412‧‧‧第二部分 412‧‧‧Part II

4123‧‧‧減法器 4123‧‧‧Subtractor

4124‧‧‧加法器 4124‧‧‧Adder

VdcaJ+1~VdcaN、VdcbJ+1~VdcbN、VdccJ+1~VdccN‧‧‧後級直流電壓 V dcaJ+1 ~V dcaN , V dcbJ+1 ~V dcbN , V dccJ+1 ~V dccN ‧‧‧ After DC voltage

F11~F1M、F21~F2M、F31~F3M‧‧‧濾波器 F11~F1M, F21~F2M, F31~F3M‧‧‧ filter

4111a~4111c、4112a~4112c、4121、4122‧‧‧運算器 4111a~4111c, 4112a~4112c, 4121, 4122‧‧‧ arithmetic

V’dcaJ+1~V’dcaN、V’dcbJ+1~V’dcbN、V’dccJ+1~V’dccN‧‧‧濾波後的後級直流電壓 V' dcaJ+1 ~V' dcaN , V' dcbJ+1 ~V' dcbN , V' dccJ+1~ V' dccN ‧‧‧Filtered DC voltage

VdcaT、VdcbT、VdccT‧‧‧平均 V dcaT , V dcbT , V dccT ‧ ‧ average

Iq P*‧‧‧功率電流命令 I q P* ‧‧‧Power Current Command

Iff*‧‧‧偏移電流命令 I ff *‧‧‧ Offset current command

421-423‧‧‧減法器 421-423‧‧‧Subtractor

424-426‧‧‧調整器 424-426‧‧‧ adjuster

427‧‧‧零序電壓命令計算器 427‧‧‧ Zero Sequence Voltage Command Calculator

PCa*、PCb*、PCc*‧‧‧群集功率命令 P Ca *, P Cb *, P Cc *‧‧‧ Cluster Power Command

Vo*TCR‧‧‧需求電壓命令 V o * TCR ‧‧‧ demand voltage command

Vqd pn‧‧‧注入電壓 V qd pn ‧‧‧injection voltage

Iqd pn‧‧‧注入電流電壓 I qd pn ‧‧‧Inject current and voltage

AD1-AD6‧‧‧加法器 AD1-AD6‧‧‧Adder

Id P*、Id n*、Iq n*‧‧‧注入電流命令 I d P* , I d n* , I q n* ‧‧‧Inject current command

Va3*、Vb3*、Vc3*‧‧‧電壓控制命令 V a3 *, V b3 *, V c3 *‧‧‧ voltage control commands

圖1繪示本發明一實施例的串接式電能轉換裝置的示意圖。 1 is a schematic diagram of a series-connected power conversion device according to an embodiment of the invention.

圖2繪示本發明實施例的串接式電能轉換裝置的電網電壓產生器的硬體架構示意圖。 2 is a schematic diagram showing the hardware architecture of a grid voltage generator of a series-connected power conversion device according to an embodiment of the present invention.

圖3繪示本發明實施例的自主電壓調整控制器的實施方式的示意圖。 3 is a schematic diagram of an embodiment of an autonomous voltage adjustment controller according to an embodiment of the present invention.

圖4繪示本發明實施例的總電流調整控制器的實施方式的示意圖。 4 is a schematic diagram of an embodiment of a total current adjustment controller in accordance with an embodiment of the present invention.

請參照圖1,圖1繪示本發明一實施例的串接式電能轉換裝置的示意圖。串接式電能轉換裝置100包括電網電壓產生器110、120及130、自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J以及總電流調整控制器TCR1。其中,電網電壓產生器110、120及130分別提供電網電壓Va0、Vb0 以及Vc0。電網電壓產生器110包括電能轉換器111~11N;電網電壓產生器120包括電能轉換器121~12N;電網電壓產生器130則包括電能轉換器131~13N。在電網電壓產生器110中,電能轉換器111~11J可以為前級電能轉換器,電能轉換器11J+1~11N則可以為後級電能轉換器;在電網電壓產生器120中,電能轉換器121~12J可以為前級電能轉換器,電能轉換器12J+1~12N則可以為後級電能轉換器;在電網電壓產生器130中,電能轉換器131~13J可以為前級電能轉換器,電能轉換器13J+1~13N則可以為後級電能轉換器。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of a series-connected power conversion device according to an embodiment of the present invention. The series-connected power conversion device 100 includes grid voltage generators 110, 120, and 130, autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, AVR31~AVR3J, and a total current adjustment controller TCR1. The grid voltage generators 110, 120, and 130 provide grid voltages V a0 , V b0 , and V c0 , respectively . The grid voltage generator 110 includes power converters 111-11N; the grid voltage generator 120 includes power converters 121-12N; and the grid voltage generator 130 includes power converters 131-13N. In the grid voltage generator 110, the power converters 111~11J may be pre-stage power converters, and the power converters 11J+1~11N may be post-stage power converters; in the grid voltage generator 120, the power converters 121~12J can be a pre-stage power converter, and the power converter 12J+1~12N can be a post-stage power converter; in the grid voltage generator 130, the power converters 131~13J can be a pre-stage power converter, The power converter 13J+1~13N can be a post-stage power converter.

自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J分別耦接至做為前級電能轉換器的電能轉換器111、112、121、122、131以及132。各自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J依據對應的前級直流電壓以及電網電壓來控制各前級電能轉換器(即電能轉換器111、112、121、122、131以及132)的電壓轉換動作。以自主電壓調整控制器AVR11為範例,自主電壓調整控制器AVR11耦接至電能轉換器111,並接收電能轉換器111所接收的前級直流電壓Vdca1。另外,自主電壓調整控制器AVR11感測對應的電網電壓Va0,並且依據前級直流電壓Vdca1以及電網電壓Va0來產生控制信號PWMa1。其中,控制信號PWMa1被傳送至電能轉換器111並用以控制電能轉換器111的電壓轉換動作。 The autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, and AVR31~AVR3J are respectively coupled to the power converters 111, 112, 121, 122, 131, and 132 as the front stage power converters. Each of the autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, AVR31~AVR3J controls each of the preceding stage power converters according to the corresponding front stage DC voltage and the grid voltage (ie, the power converters 111, 112, 121, 122, 131 and 132) Voltage conversion action. Taking the autonomous voltage adjustment controller AVR11 as an example, the autonomous voltage adjustment controller AVR11 is coupled to the power converter 111 and receives the front-end DC voltage V dca1 received by the power converter 111. In addition, the autonomous voltage adjustment controller AVR11 senses the corresponding grid voltage V a0 and generates a control signal PWM a1 according to the pre-stage DC voltage V dca1 and the grid voltage V a0 . The control signal PWM a1 is transmitted to the power converter 111 and used to control the voltage conversion action of the power converter 111.

在此可以得知,在本發明實施例中,自主電壓調整控制 器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J分別依據對應的前級直流電壓Vdca1~VdcaJ、Vdcb1~VdcbJ、Vdcc1~VdccJ,以及分別依據對應的電網電壓Va0、Vb0以及Vc0來分別產生控制信號PWMa1~PWMaJ、PWMb1~PWMbJ、PWMc1~PWMcJ。控制信號PWMa1~PWMaJ、PWMb1~PWMbJ、PWMc1~PWMcJ分別傳送至做為前級電能轉換器的電能轉換器111~11J、121~12J以及131~13J,並分別控制電能轉換器111~11J、121~12J以及131~13J所分別進行的電壓轉換動作。 It can be seen that in the embodiment of the present invention, the autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, and AVR31~AVR3J are respectively according to the corresponding front-level DC voltages V dca1 ~V dcaJ , V dcb1 ~V dcbJ , V Dcc1 ~ V dccJ , and respectively generate control signals PWM a1 ~ PWM aJ , PWM b1 ~ PWM bJ , PWM c1 ~ PWM cJ according to the corresponding grid voltages V a0 , V b0 and V c0 . The control signals PWM a1 ~PWM aJ , PWM b1 ~PWM bJ , PWM c1 ~PWM cJ are respectively transmitted to the power converters 111~11J, 121~12J and 131~13J as the pre-stage power converter, and respectively control the electric energy conversion Voltage conversion operations performed by the respective switches 111 to 11J, 121 to 12J, and 131 to 13J.

總電流調整控制器TCR1耦接至電網電壓產生器110、120及130中的後級電能轉換器(電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N)。總電流調整控制器TCR1接收電網上不同相位的電網電流ia、ib以及ic,並且接收電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N對應的後級直流電壓VdcaJ+1~VdcaN、VdcbJ+1~VdcbN以及VdccJ+1~VdccN,並分別依據電網電流ia、ib以及ic以及後級直流電壓VdcaJ+1~VdcaN、VdcbJ+1~VdcbN以及VdccJ+1~VdccN來產生控制信號PWMaJ+1~PWMaN、PWMbJ+1~PWMbN以及PWMcJ+1~PWMcN。控制信號PWMaJ+1~PWMaN、PWMbJ+1~PWMbN以及PWMcJ+1~PWMcN分別傳送至做為後級電能轉換器的電能轉換器11J+1~11N、12J+1-12N以及13J+1-13N,並用以控制電能轉換器11N-13N的電壓轉換動作。 The total current adjustment controller TCR1 is coupled to the subsequent stage power converters (the power converters 11J+1~11N, 12J+1~12N, and 13J+1~13N) of the grid voltage generators 110, 120, and 130. The total current adjustment controller TCR1 receives the grid currents i a , i b and i c of different phases on the grid, and receives the subsequent stage DCs corresponding to the power converters 11J+1~11N, 12J+1~12N and 13J+1~13N. The voltages V dcaJ+1 ~V dcaN , V dcbJ+1 ~V dcbN and V dccJ+1 ~V dccN are respectively based on the grid currents i a , i b and i c and the subsequent DC voltage V dcaJ+1 ~V dcaN V dcbJ+1 ~V dcbN and V dccJ+1 ~V dccN to generate control signals PWM aJ+1 ~PWM aN , PWM bJ+1 ~PWM bN and PWM cJ+1 ~PWM cN . The control signals PWM aJ+1 ~PWM aN , PWM bJ+1 ~PWM bN and PWM cJ+1 ~PWM cN are respectively transmitted to the power converters 11J+1~11N, 12J+1-12N as the power converters of the latter stage. And 13J+1-13N, and used to control the voltage conversion action of the power converters 11N-13N.

由上述的說明可以得知,針對電網電壓產生器110~130中的前級電能轉換器(電能轉換器111~11J、121~12J、131~13J), 本發明實施例提供一對一的自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J來分別控制電能轉換器111~11J、121~12J、131~13J的電壓轉換動作。而對於後級電能轉換器(電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N),則透過總電流調整控制器TCR1來進行其電壓轉換動作的控制。如此一來,總電流調整控制器TCR1不需要與所有的電能轉換器111~13N進行信號通訊,有效降低傳輸導線的需求數量。並且,自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J與分別對應的電能轉換器111~11J、121~12J、131~13J也可以透過佈局在相近的位置,使總電流調整控制器TCR1與後級電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N佈局在相近的位置,以減低信號傳輸路徑的長度,除可提升信號品質外,也可降低系統設計的複雜度,降低生產成本。並且,本發明實施例的串接式電能轉換裝置100可提升故障容忍度,其中,在部分電能轉換裝置發生故障時,串接式電能轉換裝置100仍可維持系統的正常的運作。 As can be seen from the above description, for the pre-stage power converters (electric energy converters 111~11J, 121~12J, 131~13J) in the grid voltage generators 110-130, The embodiments of the present invention provide one-to-one autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, and AVR31~AVR3J to control the voltage conversion actions of the power converters 111~11J, 121~12J, 131~13J, respectively. For the subsequent stage power converters (power converters 11J+1~11N, 12J+1~12N, and 13J+1~13N), the voltage conversion operation is controlled by the total current adjustment controller TCR1. In this way, the total current adjustment controller TCR1 does not need to communicate with all the power converters 111~13N, thereby effectively reducing the number of transmission wires required. Moreover, the autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, AVR31~AVR3J and the corresponding power converters 111~11J, 121~12J, 131~13J can also be arranged in close positions to make the total current adjustment control. The TCR1 and the after-stage power converters 11J+1~11N, 12J+1~12N and 13J+1~13N are arranged in close positions to reduce the length of the signal transmission path, in addition to improving the signal quality, the system can also be reduced. The complexity of the design reduces production costs. Moreover, the series-connected power conversion device 100 of the embodiment of the present invention can improve the fault tolerance, wherein the series-connected power conversion device 100 can maintain the normal operation of the system when a part of the power conversion device fails.

附帶一提的,在本實施例中所提及的前級電能轉換器為各電網電壓產生器110~130中,配置位置較接近產生電網電壓Va0、Vb0、Vc0的傳輸導線的電能轉換器。相對的,所謂的後級電能轉換器則是其配置位置較接近電網電壓產生器110~130的共同耦接點M(較遠離產生電網電壓Va0、Vb0、Vc0的傳輸導線)的電能轉換器。並且,對應單一相的電網電壓,後級電能轉換器的數 量可以是一個或是多個,沒有固定的限制。 Incidentally, the pre-stage power converter mentioned in this embodiment is the power of the transmission line of the grid voltage generators 110-130 which is located closer to the transmission line voltages V a0 , V b0 , V c0 . converter. In contrast, the so-called after-stage power converter is a power that is disposed at a position closer to the common coupling point M of the grid voltage generators 110-130 (a transmission line that is farther away from the grid voltages V a0 , V b0 , V c0 ). converter. Moreover, corresponding to the grid voltage of a single phase, the number of power converters in the latter stage may be one or more, and there is no fixed limit.

在本實施例中,電網電壓Va0、Vb0、Vc0可以為三個具有不同相位的三個電壓信號,其中,電網電壓Va0、Vb0、Vc0可以兩兩具有1200的相位差。 In this embodiment, the grid voltages V a0 , V b0 , V c0 may be three voltage signals having different phases, wherein the grid voltages V a0 , V b0 , V c0 may have a phase difference of 120 0 . .

以下請參照圖2,圖2繪示本發明實施例的串接式電能轉換裝置的電網電壓產生器的硬體架構示意圖。串接式電能轉換裝置200包括電網電壓產生器210~230。其中,電網電壓產生器210~230彼此間可具有相同的硬體架構。以電網電壓產生器210為範例,電網電壓產生器210可包括多個電能轉換器211~21N,電能轉換器211~21N彼此間可具有相同的硬體架構。如電能轉換器211所示,各電能轉換器211~21N可由四個電晶體開關所組成。電能轉換器211~21N分別接收直流電壓Vdca1~VdcaN以及對應的直流電流idca1~idcaN,並依據所接收的控制信號使四個電晶體分別進行切換動作以分別產生電壓Va1、Va2以及Va3。透過串接的電壓Va1、Va2以及Va3可使電網電壓產生器210產生電壓VaM,並藉以產生電網電壓Va0Referring to FIG. 2, FIG. 2 is a schematic diagram of a hardware architecture of a grid voltage generator of a series-connected power conversion device according to an embodiment of the present invention. The series-connected power conversion device 200 includes grid voltage generators 210-230. The grid voltage generators 210-230 may have the same hardware architecture with each other. Taking the grid voltage generator 210 as an example, the grid voltage generator 210 may include a plurality of power converters 211 to 21N, and the power converters 211 to 21N may have the same hardware architecture with each other. As shown by the power converter 211, each of the power converters 211 to 21N may be composed of four transistor switches. The power converters 211 to 21N receive the DC voltages V dca1 VV dcaN and the corresponding DC currents i dca1 to i dcaN , respectively , and respectively switch the four transistors according to the received control signals to generate voltages V a1 and V respectively. A2 and V a3 . The grid voltage generator 210 generates a voltage V aM through the series connected voltages V a1 , V a2 , and V a3 , thereby generating a grid voltage V a0 .

另外,電網電壓產生器210-230可分別提供電網電流ia、ib以及ic。而在本實施例中,電網電壓產生器210-230並可共同耦接至原點O以形成Y形的連接組態。 Additionally, grid voltage generators 210-230 can provide grid currents i a , i b , and i c , respectively . In the present embodiment, the grid voltage generators 210-230 can be coupled to the origin O to form a Y-shaped connection configuration.

以下請參照圖3,圖3繪示本發明實施例的自主電壓調整控制器的實施方式的示意圖。自主電壓調整控制器300包括運算器310、調整器320、運算器330以及調變器340。運算器310接 收對應的前級電能轉換器所接收的前級直流電壓Vdca1以及直流電壓命令Vdc*,並計算出直流電壓命令Vdc*與前級直流電壓Vdca1的差值。在本實施方式中,運算器310為一減法器。 Please refer to FIG. 3 . FIG. 3 is a schematic diagram of an embodiment of an autonomous voltage adjustment controller according to an embodiment of the present invention. The autonomous voltage adjustment controller 300 includes an arithmetic unit 310, an adjuster 320, an arithmetic unit 330, and a modulator 340. The operator 310 receives the pre-stage DC voltage V dca1 and the DC voltage command V dc * received by the corresponding pre-stage power converter, and calculates a difference between the DC voltage command V dc * and the pre-stage DC voltage V dca1 . In the present embodiment, the arithmetic unit 310 is a subtractor.

調整器320耦接至運算器310,並接收運算器310所計算出的差值。調整器320針對所接收的差值進行調整,並產生調整後差值。在本實施方式中,調整器320可以為一比例積分調整器(PI regulator),且其轉移函數可以為Kpti+Kiti/S,其中,常數Kpti、Kiti可以由設計者進行設定,其數值沒有固定的限制。 The adjuster 320 is coupled to the operator 310 and receives the difference calculated by the operator 310. The adjuster 320 adjusts for the received difference and produces an adjusted difference. In this embodiment, the adjuster 320 can be a proportional integral adjuster (PI regulator), and the transfer function can be K pti +K iti /S, wherein the constants K pti , K iti can be set by the designer. There is no fixed limit on its value.

運算器330耦接調整器320,並接收調整後差值,並依據對應的電網電壓Va0來對調整後差值進行算數運算,來產生一命令電壓值Va1*。在本實施方式中,運算器330包括乘法器331以及加法器332。其中,電網電壓Vao可先透過與電壓Vmag相除以產生一正規化電網電壓(Va0/Vmag)。其中,電壓Vmag可以為電網電壓Vao的最大可能電壓值。乘法器331則可使調整後差值與正規化電網電壓(Va0/Vmag)相乘。另外,加法器332則使乘法器331所產生的乘法結果與電網電壓Va0除以N所獲得的商(做為前饋信號)相加,並藉以產生命令電壓值Va1*。其中,N可以等於串接式電能轉換裝置的相位數。 The operator 330 is coupled to the adjuster 320 and receives the adjusted difference, and performs an arithmetic operation on the adjusted difference according to the corresponding grid voltage V a0 to generate a command voltage value V a1 *. In the present embodiment, the arithmetic unit 330 includes a multiplier 331 and an adder 332. Wherein, the grid voltage V ao can be first divided by the voltage V mag to generate a normalized grid voltage (V a0 /V mag ). Wherein, the voltage V mag may be the maximum possible voltage value of the grid voltage V ao . The multiplier 331 multiplies the adjusted difference by the normalized grid voltage (V a0 /V mag ). Further, the adder 332 adds the multiplication result generated by the multiplier 331 to the quotient obtained by dividing the grid voltage V a0 by N (as a feedforward signal), and thereby generates the command voltage value V a1 *. Where N can be equal to the number of phases of the series-connected power conversion device.

調變器340接收命令電壓值Va1*,並依據命令電壓值Va1*進行調變動作,並藉此產生控制信號PWMa1。控制信號PWMa1可以為寬調變信號,並用以控制對應的電能轉換器的電晶體開關的切換動作。 The modulator 340 receives the command voltage value V a1 * and performs a modulation operation according to the command voltage value V a1 *, and thereby generates a control signal PWM a1 . The control signal PWM a1 can be a wide modulation signal and is used to control the switching action of the transistor switch of the corresponding power converter.

以下請參照圖4,圖4繪示本發明實施例的總電流調整控制器的實施方式的示意圖。總電流調整控制器400包括總功率控制器410、群集電壓控制器420、電流控制器430、調變器440、獨立電壓平衡控制器460以及運算器470。其中,總功率控制器410包括第一部分411以及第二部分412,並用來進行串接式電能轉換裝置的總體的電壓控制。第一部分411為平均電壓計算器,計算後級直流電壓VdcaJ+1~VdcaN、VdcbJ+1~VdcbN以及VdccJ+1~VdccN的平均值。群集電壓控制器420則用來進行串接式電能轉換裝置中,對應同一相位的電網電壓的電能轉換器所構成的群集的電壓控制,其中以產生三個相位的電網電壓為例,串接式電能轉換裝置具有三個電能轉換器群集。 Please refer to FIG. 4, which is a schematic diagram of an embodiment of a total current adjustment controller according to an embodiment of the present invention. The total current adjustment controller 400 includes a total power controller 410, a cluster voltage controller 420, a current controller 430, a modulator 440, an independent voltage balance controller 460, and an operator 470. The total power controller 410 includes a first portion 411 and a second portion 412 and is used to perform overall voltage control of the series-connected power conversion device. The first portion 411 is an average voltage calculator, and the average values of the subsequent DC voltages V dcaJ+1 ~V dcaN , V dcbJ+1 ~V dcbN , and V dccJ+1 ~V dccN are calculated. The cluster voltage controller 420 is used to perform voltage control of a cluster formed by a power converter corresponding to a grid voltage of the same phase in a series-connected power conversion device, wherein a grid voltage of three phases is taken as an example, and the series connection The power conversion device has three power converter clusters.

總功率控制器410包括多個濾波器F11~F1M、F21~F2M以及F31~F3M、運算器4111a~4111c、4112a~4112c、4121以及4122、減法器4123、調整器413以及加法器4124。濾波器F11~F1M、F21~F2M以及F31~F3M分別針對後級直流電壓VdcaJ+1~VdcaN、VdcbJ+1~VdcbN以及VdccJ+1~VdccN進行濾波。運算器4111a~4111c計算濾波後的後級直流電壓V’dcaJ+1~V’dcaN、V’dcbJ+1~V’dcbN、V’dccJ+1~V’dccN的和。運算器4112a~4112c分別計算濾波後的後級直流電壓V’dcaJ+1~V’dcaN、V’dcbJ+1~V’dcbN、V’dccJ+1~V’dccN的平均VdcaT、VdcbT、VdccT,並透過運算器4121計算出濾波後的後級直流電壓V’dcaJ+1~V’dcaN、V’dcbJ+1~V’dcbN、V’dccJ+1~V’dccN的平均的總和VdcT。運算器4122使總和VdcT除以3 並計算出後級直流電壓VdcaJ+1~VdcaN、VdcbJ+1~VdcbN以及VdccJ+1~VdccN的平均值。減法器4123使直流電壓命令Vdc*減去上述的平均值以產生減法結果。調整器413則針對減法結果進行調整以產生一調整後減法結果。其中,調整器413可以為一比例積分調整器,其轉移函數可以為Kpto+Kito/S,其中,常數Kpto、Kito可以由設計者進行設定,其數值沒有固定的限制。 The total power controller 410 includes a plurality of filters F11 to F1M, F21 to F2M, and F31 to F3M, operators 4111a to 4111c, 4112a to 4112c, 4121 and 4122, a subtractor 4123, an adjuster 413, and an adder 4124. Filters F11~F1M, F21~F2M, and F31~F3M are filtered for the subsequent DC voltages V dcaJ+1 ~V dcaN , V dcbJ+1 ~V dcbN , and V dccJ+1 ~V dccN , respectively. The arithmetic units 4111a to 4111c calculate the sum of the filtered subsequent-stage DC voltages V' dcaJ+1 to V' dcaN , V' dcbJ+1 ~V' dcbN , and V' dccJ+1 to V' dccN . The operators 4112a to 4112c respectively calculate the average V dcaT and V dcbT of the filtered subsequent DC voltages V' dcaJ+1 ~V' dcaN , V' dcbJ+1 ~V' dcbN , V' dccJ+1~ V' dccN . And V dccT , and calculate the average of the filtered DC voltages V' dcaJ+1 ~V' dcaN , V' dcbJ+1 ~V' dcbN , V' dccJ+1~ V' dccN through the arithmetic unit 4121 The sum V dcT . The arithmetic unit 4122 divides the total V dcT by 3 and calculates an average value of the subsequent DC voltages V dcaJ+1 to V dcaN , V dcbJ+1 to V dcbN , and V dccJ+1 to V dccN . The subtractor 4123 subtracts the above average value from the DC voltage command V dc * to produce a subtraction result. The adjuster 413 adjusts the subtraction result to produce an adjusted subtraction result. The adjuster 413 can be a proportional integral adjuster, and the transfer function can be K pto +K ito /S, wherein the constants K pto , Kito can be set by the designer, and the value thereof has no fixed limit.

加法器4124則使上述的調整後減法結果與偏移電流命令Iff*相加,並藉以產生(q軸上的)功率電流命令Iq P*The adder 4124 adds the above-described adjusted subtraction result to the offset current command I ff *, and thereby generates a power current command I q P* (on the q-axis).

在另一方面,群集電壓控制器420包括多數個減法器421-423、多數個調整器424-426以及零序電壓命令計算器427。減法器421-423分別使運算器4112a~4112c的輸出與運算器4122的輸出相減,並產生多個減法結果。調整器424-426分別接收減法器421-423所產生的減法結果,並針對減法器421-423所產生的減法結果進行調整以分別產生多個群集功率命令PCa*、PCb*以及PCc*。調整器424-426可以為具有相同轉移函數的比例積分調整器,其轉移函數可以為Kptc+Kitc/S,其中,常數Kptc、Kitc可以由設計者進行設定,其數值沒有固定的限制。 In another aspect, cluster voltage controller 420 includes a plurality of subtractors 421-423, a plurality of adjusters 424-426, and a zero sequence voltage command calculator 427. The subtracters 421-423 subtract the outputs of the operators 4112a-4112c from the outputs of the operators 4122, respectively, and generate a plurality of subtraction results. The adjusters 424-426 receive the subtraction results produced by the subtractors 421-423, respectively, and adjust the subtraction results produced by the subtractors 421-423 to generate a plurality of cluster power commands P Ca *, P Cb *, and P Cc , respectively. *. The adjusters 424-426 may be proportional integral adjusters having the same transfer function, and the transfer function may be K ptc +K itc /S, wherein the constants K ptc , K itc can be set by the designer, and the values are not fixed. limit.

零序電壓命令計算器427則接收群集功率命令PCa*、PCb*以及PCc*,並依據群集功率命令PCa*、PCb*以及PCc*進行零序電壓命令計算以產生需求電壓命令Vo*TCRThe zero sequence voltage command calculator 427 receives the cluster power commands P Ca *, P Cb *, and P Cc *, and performs zero sequence voltage command calculations according to the cluster power commands P Ca *, P Cb *, and P Cc * to generate the required voltage. Command V o * TCR .

在本實施方式中,零序電壓命令計算器427可以為具有運算能力的處理器。零序電壓命令計算器427可讀取存在記憶體 (或其他任意儲存媒介)中關於零序電壓命令計算的演算法來進行計算。在此,零序電壓命令計算的演算法可應用本領域具通常知識者所熟知的各種演算法,沒有特定的限制。 In the present embodiment, the zero sequence voltage command calculator 427 may be a processor having computing power. The zero sequence voltage command calculator 427 can read the presence memory The calculation of the zero sequence voltage command calculation in (or any other storage medium) is performed. Here, the algorithm for calculating the zero sequence voltage command can apply various algorithms well known to those skilled in the art without particular limitation.

電流控制器430接收功率電流命令Iq P*以及d-q軸上的正、負注入電壓Vqd pn、注入電流電壓Iqd pn來進行計算,並產生三相的電壓需求。在本實施方式中,電流控制器430另接收d軸的正注入電流命令Id P*,並設定d-q軸的負注入電流命令Id n*、Iq n*等於0。電流控制器430另應用加法器AD1-AD3來使需求電壓命令Vo*TCR與其所計算出的三相電壓需求進行相加,並透過運算器470以及加法器AD4~AD6來分別產生電壓控制命令Va3*、Vb3*、Vc3*。其中,加法器AD4~AD6另接收獨立電壓平衡控制器460所產生的對應各相的平衡信號,以達到三相電壓平衡的功效。 The current controller 430 receives the power current command I q P* and the positive and negative injection voltages V qd pn and the injection current voltage I qd pn on the dq axis for calculation and generates a voltage demand for the three phases. In the present embodiment, the current controller 430 additionally receives the positive injection current command I d P* of the d-axis and sets the negative injection current command I d n* , I q n* of the dq axis to be equal to zero. The current controller 430 additionally applies the adders AD1-AD3 to add the required voltage command V o * TCR to the calculated three-phase voltage demand, and respectively generates a voltage control command through the arithmetic unit 470 and the adders AD4 to AD6. V a3 *, V b3 *, V c3 *. The adders AD4~AD6 further receive the balanced signals corresponding to the respective phases generated by the independent voltage balance controller 460 to achieve the three-phase voltage balance.

調變器440則接收電壓控制命令Va3*、Vb3*、Vc3*並分別依據電壓控制命令Va3*、Vb3*、Vc3*來產生控制信號PWM。其中,控制信號PWM控制對應三個不同相位的電網電壓的後級電能轉換器的電壓轉換動作。 The modulator 440 receives the voltage control commands V a3 *, V b3 *, V c3 * and generates a control signal PWM according to the voltage control commands V a3 *, V b3 *, V c3 * , respectively. Wherein, the control signal PWM controls the voltage conversion action of the subsequent stage power converter corresponding to the grid voltages of three different phases.

由上述的說明可以得知,本發明提供分散式的控制機制,透過自主電壓調整控制器來個別控制各前級電能轉換器的電壓轉換動作,並透過總電流調整控制器來控制總體的以及各群集電能轉換器的電壓轉換動作。藉由分散式控制的架構,控制器(自主電壓調整控制器以及總電流調整控制器)與電能轉換器間的通訊通道數量可以有限的被減低,大幅降低系統設計的複雜度。有 效提升串接式電能轉換裝置的效能。 It can be seen from the above description that the present invention provides a decentralized control mechanism for individually controlling the voltage conversion actions of each of the preceding stage power converters through the autonomous voltage adjustment controller, and controlling the overall and each through the total current adjustment controller. The voltage conversion action of the cluster power converter. With a decentralized control architecture, the number of communication channels between the controller (autonomous voltage regulation controller and total current regulation controller) and the power converter can be reduced to a limited extent, greatly reducing the complexity of the system design. Have Improve the performance of the series-connected power conversion device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

Claims (9)

一種串接式電能轉換裝置,包括:多個電網電壓產生器,分別提供多數個電網電壓,各該電網電壓產生器包括串接的多數個電能轉換器,該些電能轉換器區分為多個前級電能轉換器以及至少一後級電能轉換器;多數個自主電壓調整控制器,分別耦接該些電網電壓產生器中的該些前級電能轉換器,各該自主電壓調整控制器依據對應的前級直流電壓以及電網電壓來控制各該前級電能轉換器的電壓轉換動作;以及一總電流調整控制器,耦接該些電網電壓產生器中的該些後級電能轉換器,依據該些電網電壓產生器上的多個電網電流以及該些後級電能轉換器接收的多個後級直流電壓來控制該些後級電能轉換器的電壓轉換動作,其中各該自主電壓調整控制器包括:一第一運算器,計算對應的前級直流電壓與一直流電壓命令的一差值;一第一調整器,耦接該第一運算器,調整該差值以獲得一調整後差值;一第二運算器,耦接該第一調整器,依據對應的電網電壓來對該調整後差值進行一算數運算,以產生一命令電壓值;以及一第一調變器,接收該命令電壓值並依據該命令電壓值以產生一控制信號, 其中,該控制信號用以控制對應的前級電能轉換器的電壓轉換動作。 A series-connected power conversion device includes: a plurality of grid voltage generators respectively providing a plurality of grid voltages, each grid voltage generator comprising a plurality of power converters connected in series, the power converters being divided into a plurality of front a stage power converter and at least one post-stage power converter; a plurality of autonomous voltage adjustment controllers respectively coupled to the pre-stage power converters in the grid voltage generators, each of the autonomous voltage adjustment controllers according to a corresponding a front-end DC voltage and a grid voltage to control voltage conversion actions of each of the pre-stage power converters; and a total current adjustment controller coupled to the post-stage power converters in the grid voltage generators, according to the a plurality of grid currents on the grid voltage generator and a plurality of post-stage DC voltages received by the post-stage power converters to control voltage conversion actions of the post-stage power converters, wherein each of the autonomous voltage adjustment controllers comprises: a first operator calculates a difference between the corresponding front-level DC voltage and the DC voltage command; a first regulator coupled to the first The controller adjusts the difference to obtain an adjusted difference; a second operator is coupled to the first regulator to perform an arithmetic operation on the adjusted difference according to the corresponding grid voltage to generate a command a voltage value; and a first modulator that receives the command voltage value and generates a control signal according to the command voltage value, The control signal is used to control the voltage conversion action of the corresponding front stage power converter. 如申請專利範圍第1項所述的串接式電能轉換裝置,其中該第一運算器為一減法器,該減法器接收對應的前級直流電壓與該直流電壓命令,並使該直流電壓命令減去對應的前級直流電壓以產生該差值。 The tandem power conversion device of claim 1, wherein the first operator is a subtractor, and the subtractor receives a corresponding front-end DC voltage and the DC voltage command, and causes the DC voltage command The corresponding front stage DC voltage is subtracted to produce the difference. 如申請專利範圍第1項所述的串接式電能轉換裝置,其中該第一調整器為比例積分調整器。 The tandem power conversion device of claim 1, wherein the first regulator is a proportional integral regulator. 如申請專利範圍第1項所述的串接式電能轉換裝置,其中該第二運算器包括:一乘法器,依據該調整後差值與對應的電網電壓進行乘法運算以獲得一乘法結果;以及一加法器,依據該乘法結果與對應的電網電壓進行乘法運算以獲得該命令電壓值。 The serial power conversion device of claim 1, wherein the second operator comprises: a multiplier, multiplying the adjusted difference value according to the corresponding grid voltage to obtain a multiplication result; An adder multiplies the corresponding grid voltage according to the multiplication result to obtain the command voltage value. 如申請專利範圍第1項所述的串接式電能轉換裝置,其中該總電流調整控制器包括:一總功率控制器,依據該些後級直流電壓的一平均值來產生一功率電流命令;以及一群集電壓控制器,分別依據該些後級直流電壓與該平均值的多數個差值產生多個群集功率命令,並針對該些群集功率命令進行零序電壓命令計算以產生一需求電壓命令; 一電流控制器,依據該電流命令、注入電壓、注入電流以及該需求電壓命令來產生多個電壓控制命令;以及一第二調變器,依據該些電壓控制命令來產生多個控制信號以控制該些後級電能轉換器的電壓轉換動作。 The series-connected power conversion device of claim 1, wherein the total current adjustment controller comprises: a total power controller, generating a power current command according to an average value of the second-level DC voltages; And a cluster voltage controller, respectively generating a plurality of cluster power commands according to the plurality of differences between the subsequent DC voltages and the average value, and performing zero sequence voltage command calculations on the cluster power commands to generate a demand voltage command ; a current controller that generates a plurality of voltage control commands according to the current command, the injection voltage, the injection current, and the demand voltage command; and a second modulator that generates a plurality of control signals to control according to the voltage control commands The voltage conversion actions of the latter power converters. 如申請專利範圍第5項所述的串接式電能轉換裝置,其中該總功率控制器包括:一平均電壓計算器,計算該些後級直流電壓的該平均值;一減法器,使該平均值減去一直流電壓命令以產生一減法結果;一第二調整器,調整該減法結果以產生一調整後減法結果;以及一加法器,使該調整後減法結果與一偏移電流命令相加以產生該功率電流命令。 The tandem power conversion device of claim 5, wherein the total power controller comprises: an average voltage calculator that calculates the average value of the DC voltages of the latter stages; and a subtractor to make the average The value is subtracted from the DC voltage command to generate a subtraction result; a second regulator adjusts the subtraction result to produce an adjusted subtraction result; and an adder that adds the adjusted subtraction result to an offset current command This power current command is generated. 如申請專利範圍第6項所述的串接式電能轉換裝置,其中該第二調整器為比例積分調整器。 The tandem power conversion device of claim 6, wherein the second regulator is a proportional integral regulator. 如申請專利範圍第5項所述的串接式電能轉換裝置,其中該群集電壓控制器包括:多數個減法器,分別使該些後級直流電壓與該平均值相減,並產生多個減法結果;多數個第二調整器,分別調整該些減法結果以分別產生該些群集功率命令;以及 一零序電壓命令計算器,依據該些群集功率命令進行零序電壓命令計算以產生該需求電壓命令。 The series-connected power conversion device of claim 5, wherein the cluster voltage controller comprises: a plurality of subtractors respectively subtracting the latter DC voltage from the average value and generating a plurality of subtractions a result; a plurality of second adjusters respectively adjusting the subtraction results to generate the cluster power commands respectively; A zero sequence voltage command calculator performs zero sequence voltage command calculations based on the cluster power commands to generate the demand voltage command. 如申請專利範圍第8項所述的串接式電能轉換裝置,其中該些第二調整器為比例積分調整器。The series-connected power conversion device of claim 8, wherein the second regulators are proportional integral regulators.
TW106139223A 2017-11-13 2017-11-13 Cascaded power converter apparatus TWI651911B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106139223A TWI651911B (en) 2017-11-13 2017-11-13 Cascaded power converter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106139223A TWI651911B (en) 2017-11-13 2017-11-13 Cascaded power converter apparatus

Publications (2)

Publication Number Publication Date
TWI651911B true TWI651911B (en) 2019-02-21
TW201919298A TW201919298A (en) 2019-05-16

Family

ID=66213753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139223A TWI651911B (en) 2017-11-13 2017-11-13 Cascaded power converter apparatus

Country Status (1)

Country Link
TW (1) TWI651911B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820217A (en) * 2009-02-26 2010-09-01 台达电子工业股份有限公司 Power conversion circuit with function of current decentralized input
TW201032448A (en) * 2009-02-23 2010-09-01 Delta Electronics Inc Power conversion circuit capable of distributing input current
CN102570804A (en) * 2010-12-28 2012-07-11 台达电子工业股份有限公司 DC (direct current) power supply conversion module and control method thereof as well as connector and energy collection system
TWI430557B (en) * 2011-11-30 2014-03-11 Ind Tech Res Inst A method for controlling hybrid multilevel dc/ac inverter apparatus
TWI601353B (en) * 2016-07-12 2017-10-01 Distributed module type grid connection conversion device and its control method
TWI602388B (en) * 2016-03-10 2017-10-11 盈正豫順電子股份有限公司 Bidirectional isolated multi-level dc-dc converter and method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201032448A (en) * 2009-02-23 2010-09-01 Delta Electronics Inc Power conversion circuit capable of distributing input current
CN101820217A (en) * 2009-02-26 2010-09-01 台达电子工业股份有限公司 Power conversion circuit with function of current decentralized input
CN102570804A (en) * 2010-12-28 2012-07-11 台达电子工业股份有限公司 DC (direct current) power supply conversion module and control method thereof as well as connector and energy collection system
TWI430557B (en) * 2011-11-30 2014-03-11 Ind Tech Res Inst A method for controlling hybrid multilevel dc/ac inverter apparatus
TWI602388B (en) * 2016-03-10 2017-10-11 盈正豫順電子股份有限公司 Bidirectional isolated multi-level dc-dc converter and method thereof
TWI601353B (en) * 2016-07-12 2017-10-01 Distributed module type grid connection conversion device and its control method

Also Published As

Publication number Publication date
TW201919298A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
de Araujo Ribeiro et al. A robust DC-link voltage control strategy to enhance the performance of shunt active power filters without harmonic detection schemes
US9621103B2 (en) Circulating current and oscillating current suppressing method and parallel inverter driver system
EP2719068B1 (en) Dc/ac converter and method of controlling a dc/ac converter
JP5596086B2 (en) Equipment and method for supplying power
RU2578171C1 (en) Converter in delta configuration
US10027217B2 (en) Converter and method of controlling a converter
JP2001506385A (en) Flicker controller using voltage source converter
JP6752401B1 (en) Power converter
WO2015107167A1 (en) Multi-terminal dc electrical network
TWI651911B (en) Cascaded power converter apparatus
CN108649828B (en) Optimized modulation method suitable for three-phase four-wire system three-level converter
CN105119314A (en) Dynamic switching method for power unit direct-current voltage balance control
RU2741061C1 (en) Multi-level active filter control system
Chugh et al. Reactive power compensation using D-STATCOM with fuzzy logic supervision
CN107612389B (en) High-frequency switching power supply parallel current-sharing control method based on average current feedforward
CN111525591B (en) VSC control method under three-phase unbalanced state
US10622882B2 (en) Control of power conversion device for decreasing total harmonic distortion
EP2719069B1 (en) Method of controlling a dc/ac converter
Routray et al. Capacitor voltage balancing in hybrid cascaded multilevel inverter using modified model predictive control
WO2024042696A1 (en) Dc power distribution system and voltage stabilizing device
JP7049294B2 (en) Self-excited power converter current control system design method, self-excited power converter control device, and self-excited power converter
Antoniewicz et al. Experimental research on model predictive control of 3-level 4-leg Flying Capacitor Converter operating as Shunt Active Power Filter
JP6895067B2 (en) 3-level chopper and its control circuit
Mohammadtabar et al. Adaptive control and Modulation Techniques of Five-Level Diode-Clamped-Based Shunt Active Power Filters under Disturbed System Voltages
Kumar et al. Three-Phase AC-DC Converter with Algorithm based Adaptive Direct Power Control Technique and Backstepping Controller