TW201919298A - Cascaded power converter apparatus - Google Patents

Cascaded power converter apparatus Download PDF

Info

Publication number
TW201919298A
TW201919298A TW106139223A TW106139223A TW201919298A TW 201919298 A TW201919298 A TW 201919298A TW 106139223 A TW106139223 A TW 106139223A TW 106139223 A TW106139223 A TW 106139223A TW 201919298 A TW201919298 A TW 201919298A
Authority
TW
Taiwan
Prior art keywords
sub
voltage
command
power
grid
Prior art date
Application number
TW106139223A
Other languages
Chinese (zh)
Other versions
TWI651911B (en
Inventor
吳秉衡
鄭博泰
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW106139223A priority Critical patent/TWI651911B/en
Application granted granted Critical
Publication of TWI651911B publication Critical patent/TWI651911B/en
Publication of TW201919298A publication Critical patent/TW201919298A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

A cascaded power converter apparatus includes a plurality of grid voltage generators, a plurality of autonomous voltage regulators (AVRs) and a total current regulator (TCR). The grid voltage generators respectively provide a plurality of grid voltages, each of the grid voltage generators includes a plurality of power converters, and the power converters are divided into a plurality of prior stage power converters and at least one rear stage power converter. Each of the AVRs controls a voltage converting operation of corresponding prior stage power converter according to corresponding prior direct current (DC) voltage and grid voltage. The TCR controls voltage converting operations of the rear stage power converters according to a plurality of grid currents and rear stage DC voltages of the rear stage power converters.

Description

<invention-title lang="zh">串接式電能轉換裝置</invention-title><invention-title lang="en">CASCADED POWER CONVERTER APPARATUS</invention-title><technical-field><p>本發明是有關於一種串接式電能轉換裝置,且特別是有關於一種具有分散式控制機制的串接式電能轉換裝置。</p></technical-field><background-art><p>多階層串接式電能轉換裝置是由許多橋式轉換器串接而成,並可應用於較高的電壓層級之電網。其中,各個橋式轉換器針對所接收的直流電壓進行電壓轉換動作,並產生多個不同相位的供應電能。在習知的技術領域中,多階層的串接式電能轉換裝置在硬體實現上,是透過一個中央控制器來回授訊號,並進行傳輸各橋式轉換器所需之開關控制信號。如此一來,中央控制器與橋式轉換器間,需要大量且複雜的通訊連接的導線配置。並且,由於中央控制器需要處理大量的回授信號,造成中央控制器需負擔大量的運算量。此外,當單一橋式轉換器發生故障時,由於整體系統訊號連接是相連的,易造成整組串接式電能轉換裝置的停機。而隨著串接的轉換器的個數的增加,上述的因素都將提升硬體實現上的困難。</p></background-art><disclosure><p>本發明提供一種串接式電能轉換裝置,具有分散式的控制機制,可有效提升故障容忍度,並可減低串接式電能轉換裝置中的配線數量,降低系統設計的複雜度。</p><p>本發明的串接式電能轉換裝置包括多個電網電壓產生器、多數個自主電壓調整控制器以及總電流調整控制器。電網電壓產生器分別提供多數個電網電壓,各電網電壓產生器包括串接的多個電能轉換器,電能轉換器區分為多個前級電能轉換器以及至少一後級電能轉換器。自主電壓調整控制器分別耦接電網電壓產生器中的前級電能轉換器,各自主電壓調整控制器依據對應的前級直流電壓以及電網電壓來控制各前級電能轉換器的電壓轉換動作。總電流調整控制器耦接電網電壓產生器中的該些級電能轉換器,依據電網電壓產生器上的多個電網電流以及後級電能轉換器接收的多個後級直流電壓來控制後級電能轉換器的電壓轉換動作。</p><p>基於上述,本發明提供多個自主電壓調整控制器,以針對串接式電能轉換裝置中,各電網電壓產生器中的多個前級電能轉換器的電壓轉換動作進行控制。並且,本發明另提供一總電流調整控制器來控制串接式電能轉換裝置中的多個後級電能轉換器的電壓轉換動作。藉由分散式的控制機制,串接式電能轉換裝置中的傳輸導線的數量可以減少,且導線的長度都可以減低,降低硬體佈局上困難,並減低硬體所需的面積。有效降低生產的成本,並增加產品的競爭力。此外,本發明的串接式電能轉換裝置可提升故障容忍度,其中,在部分電能轉換裝置發生故障時,仍可維持系統的正常的運作。</p><p>為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。</p></disclosure><mode-for-invention><p>請參照圖1,圖1繪示本發明一實施例的串接式電能轉換裝置的示意圖。串接式電能轉換裝置100包括電網電壓產生器110、120及130、自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J以及總電流調整控制器TCR1。其中,電網電壓產生器110、120及130分別提供電網電壓V<sub>a0</sub> 、V<sub>b0</sub> 以及V<sub>c0</sub> 。電網電壓產生器110包括電能轉換器111~11N;電網電壓產生器120包括電能轉換器121~12N;電網電壓產生器130則包括電能轉換器131~13N。在電網電壓產生器110中,電能轉換器111~11J可以為前級電能轉換器,電能轉換器11J+1~11N則可以為後級電能轉換器;在電網電壓產生器120中,電能轉換器121~12J可以為前級電能轉換器,電能轉換器12J+1~12N則可以為後級電能轉換器;在電網電壓產生器130中,電能轉換器131~13J可以為前級電能轉換器,電能轉換器13J+1~13N則可以為後級電能轉換器。</p><p>自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J分別耦接至做為前級電能轉換器的電能轉換器111、112、121、122、131以及132。各自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J依據對應的前級直流電壓以及電網電壓來控制各前級電能轉換器(即電能轉換器111、112、121、122、131以及132)的電壓轉換動作。以自主電壓調整控制器AVR11為範例,自主電壓調整控制器AVR11耦接至電能轉換器111,並接收電能轉換器111所接收的前級直流電壓V<sub>dca1</sub> 。另外,自主電壓調整控制器AVR11感測對應的電網電壓V<sub>a0</sub> ,並且依據前級直流電壓V<sub>dca1</sub> 以及電網電壓V<sub>a0</sub> 來產生控制信號PWM<sub>a1</sub> 。其中,控制信號PWM<sub>a1</sub> 被傳送至電能轉換器111並用以控制電能轉換器111的電壓轉換動作。</p><p>在此可以得知,在本發明實施例中,自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J分別依據對應的前級直流電壓V<sub>dca1</sub> ~V<sub>dcaJ</sub> 、V<sub>dcb1</sub> ~V<sub>dcbJ</sub> 、V<sub>dcc1</sub> ~V<sub>dccJ</sub> ,以及分別依據對應的電網電壓V<sub>a0</sub> 、V<sub>b0</sub> 以及V<sub>c0</sub> 來分別產生控制信號PWM<sub>a1</sub> ~PWM<sub>aJ</sub> 、PWM<sub>b1</sub> ~PWM<sub>bJ</sub> 、PWM<sub>c1</sub> ~PWM<sub>cJ</sub> 。控制信號PWM<sub>a1</sub> ~PWM<sub>aJ</sub> 、PWM<sub>b1</sub> ~PWM<sub>bJ</sub> 、PWM<sub>c1</sub> ~PWM<sub>cJ</sub> 分別傳送至做為前級電能轉換器的電能轉換器111~11J、121~12J以及131~13J,並分別控制電能轉換器111~11J、121~12J以及131~13J所分別進行的電壓轉換動作。</p><p>總電流調整控制器TCR1耦接至電網電壓產生器110、120及130中的後級電能轉換器(電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N)。總電流調整控制器TCR1接收電網上不同相位的電網電流i<sub>a</sub> 、i<sub>b</sub> 以及i<sub>c</sub> ,並且接收電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N對應的後級直流電壓V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> 、V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> 以及V<sub>dccJ+1</sub> ~V<sub>dccN</sub> ,並分別依據電網電流i<sub>a</sub> 、i<sub>b</sub> 以及i<sub>c</sub> 以及後級直流電壓V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> 、V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> 以及V<sub>dccJ+1</sub> ~V<sub>dccN</sub> 來產生控制信號PWM<sub>aJ+1</sub> ~PWM<sub>aN</sub> 、PWM<sub>bJ+1</sub> ~PWM<sub>bN</sub> 以及PWM<sub>cJ+1</sub> ~PWM<sub>cN</sub> 。控制信號PWM<sub>aJ+1</sub> ~PWM<sub>aN</sub> 、PWM<sub>bJ+1</sub> ~PWM<sub>bN</sub> 以及PWM<sub>cJ+1</sub> ~PWM<sub>cN</sub> 分別傳送至做為後級電能轉換器的電能轉換器11J+1~11N、12J+1-12N<u style="single">以及</u><u style="single">13J+1</u> -13N,並用以控制電能轉換器11N-13N的電壓轉換動作。</p><p>由上述的說明可以得知,針對電網電壓產生器110~130中的前級電能轉換器(電能轉換器111~11J、121~12J、131~13J),本發明實施例提供一對一的自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J來分別控制電能轉換器111~11J、121~12J、131~13J的電壓轉換動作。而對於後級電能轉換器(電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N),則透過總電流調整控制器TCR1來進行其電壓轉換動作的控制。如此一來,總電流調整控制器TCR1不需要與所有的電能轉換器111~13N進行信號通訊,有效降低傳輸導線的需求數量。並且,自主電壓調整控制器AVR11~AVR1J、AVR21~AVR2J、AVR31~AVR3J與分別對應的電能轉換器111~11J、121~12J、131~13J也可以透過佈局在相近的位置,使總電流調整控制器TCR1與後級電能轉換器11J+1~11N、12J+1~12N以及13J+1~13N佈局在相近的位置,以減低信號傳輸路徑的長度,除可提升信號品質外,也可降低系統設計的複雜度,降低生產成本。並且,本發明實施例的串接式電能轉換裝置100可提升故障容忍度,其中,在部分電能轉換裝置發生故障時,串接式電能轉換裝置100仍可維持系統的正常的運作。</p><p>附帶一提的,在本實施例中所提及的前級電能轉換器為各電網電壓產生器110~130中,配置位置較接近產生電網電壓V<sub>a0</sub> 、V<sub>b0</sub> 、V<sub>c0</sub> 的傳輸導線的電能轉換器。相對的,所謂的後級電能轉換器則是其配置位置較接近電網電壓產生器110~130的共同耦接點M(較遠離產生電網電壓V<sub>a0</sub> 、V<sub>b0</sub> 、V<sub>c0</sub> 的傳輸導線)的電能轉換器。並且,對應單一相的電網電壓,後級電能轉換器的數量可以是一個或是多個,沒有固定的限制。</p><p>在本實施例中,電網電壓V<sub>a0</sub> 、V<sub>b0</sub> 、V<sub>c0</sub> 可以為三個具有不同相位的三個電壓信號,其中,電網電壓V<sub>a0</sub> 、V<sub>b0</sub> 、V<sub>c0</sub> 可以兩兩具有120<sup>0</sup> 的相位差。</p><p>以下請參照圖2,圖2繪示本發明實施例的串接式電能轉換裝置的電網電壓產生器的硬體架構示意圖。串接式電能轉換裝置200包括電網電壓產生器210~230。其中,電網電壓產生器210~230彼此間可具有相同的硬體架構。以電網電壓產生器210為範例,電網電壓產生器210可包括多個電能轉換器211~21N,電能轉換器211~21N彼此間可具有相同的硬體架構。如電能轉換器211所示,各電能轉換器211~21N可由四個電晶體開關所組成。電能轉換器211~21N分別接收直流電壓V<sub>dca1</sub> ~V<sub>dcaN</sub> 以及對應的直流電流i<sub>dca1</sub> ~i<sub>dcaN</sub> ,並依據所接收的控制信號使四個電晶體分別進行切換動作以分別產生電壓V<sub>a1</sub> 、V<sub>a2</sub> 以及V<sub>a3</sub> 。透過串接的電壓V<sub>a1</sub> 、V<sub>a2</sub> 以及V<sub>a3</sub> 可使電網電壓產生器210產生電壓V<sub>aM</sub> ,並藉以產生電網電壓V<sub>a0</sub> 。</p><p>另外,電網電壓產生器210-230可分別提供電網電流i<sub>a</sub> 、i<sub>b</sub> 以及i<sub>c</sub> 。而在本實施例中,電網電壓產生器210-230並可共同耦接至原點O以形成Y形的連接組態。</p><p>以下請參照圖3,圖3繪示本發明實施例的自主電壓調整控制器的實施方式的示意圖。自主電壓調整控制器300包括運算器310、調整器320、運算器330以及調變器340。運算器310接收對應的前級電能轉換器所接收的前級直流電壓V<sub>dca1</sub> 以及直流電壓命令V<sub>dc</sub> *,並計算出直流電壓命令V<sub>dc</sub> *與前級直流電壓V<sub>dca1</sub> 的差值。在本實施方式中,運算器310為一減法器。</p><p>調整器320耦接至運算器310,並接收運算器310所計算出的差值。調整器320針對所接收的差值進行調整,並產生調整後差值。在本實施方式中,調整器320可以為一比例積分調整器(PI regulator),且其轉移函數可以為K<sub>pti</sub> + K<sub>iti</sub> /S,其中,常數K<sub>pti</sub> 、K<sub>iti</sub> 可以由設計者進行設定,其數值沒有固定的限制。</p><p>運算器330耦接調整器320,並接收調整後差值,並依據對應的電網電壓V<sub>a0</sub> 來對調整後差值進行算數運算,來產生一命令電壓值V<sub>a1</sub> *。在本實施方式中,運算器330包括乘法器331以及加法器332。其中,電網電壓V<sub>ao</sub> 可先透過與電壓V<sub>mag</sub> 相除以產生一正規化電網電壓(V<sub>a0</sub> /V<sub>mag</sub> )。其中,電壓V<sub>mag</sub> 可以為電網電壓V<sub>ao</sub> 的最大可能電壓值。乘法器331則可使調整後差值與正規化電網電壓(V<sub>a0</sub> /V<sub>mag</sub> )相乘。另外,加法器332則使乘法器331所產生的乘法結果與電網電壓V<sub>a0</sub> 除以N所獲得的商(做為前饋信號)相加,並藉以產生命令電壓值V<sub>a1</sub> *。其中,N可以等於串接式電能轉換裝置的相位數。</p><p>調變器340接收命令電壓值V<sub>a1</sub> *,並依據命令電壓值V<sub>a1</sub> *進行調變動作,並藉此產生控制信號PWM<sub>a1</sub> 。控制信號PWM<sub>a1</sub> 可以為寬調變信號,並用以控制對應的電能轉換器的電晶體開關的切換動作。</p><p>以下請參照圖4,圖4繪示本發明實施例的總電流調整控制器的實施方式的示意圖。總電流調整控制器400包括總功率控制器410、群集電壓控制器420、電流控制器430、調變器440、獨立電壓平衡控制器460以及運算器470。其中,總功率控制器410包括第一部分411以及第二部分412,並用來進行串接式電能轉換裝置的總體的電壓控制。第一部分411為平均電壓計算器,計算後級直流電壓V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> 、V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> 以及V<sub>dccJ+1</sub> ~V<sub>dccN</sub> 的平均值。群集電壓控制器420則用來進行串接式電能轉換裝置中,對應同一相位的電網電壓的電能轉換器所構成的群集的電壓控制,其中以產生三個相位的電網電壓為例,串接式電能轉換裝置具有三個電能轉換器群集。</p><p>總功率控制器410包括多個濾波器F11~F1M、F21~F2M<u style="single">以及</u><u style="single">F31~F3M</u><u style="single">、運算器</u><u style="single">4111a~4111c</u><u style="single">、</u><u style="single">4112a~4112c</u><u style="single">、</u><u style="single">4121</u><u style="single">以及</u><u style="single">4122</u> 、減法器4123、調整器413以及加法器4124。濾波器F11~F1M、F21~F2M<u style="single">以及</u><u style="single">F31~F3M</u><u style="single">分別針對</u> 後級直流電壓V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> 、V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> 以及V<sub>dccJ+1</sub> ~V<sub>dccN</sub> 進行濾波。運算器4111a~4111c計算濾波後的後級直流電壓V’<sub>dcaJ+1</sub> ~V’<sub>dcaN</sub> 、V’<sub>dcbJ+1</sub> ~V’<sub>dcbN</sub> 、V’<sub>dccJ+1~</sub> V’<sub>dccN</sub> 的和。運算器4112a~4112c分別計算濾波後的後級直流電壓V’<sub>dcaJ+1</sub> ~ V’<sub>dcaN</sub> 、V’<sub>dcbJ+1</sub> ~V’<sub>dcbN</sub> 、V’<sub>dccJ+1~</sub> V’<sub>dccN</sub> 的平均V<sub>dcaT</sub> 、V<sub>dcbT</sub> 、V<sub>dccT</sub> ,並透過運算器4121計算出濾波後的後級直流電壓V’<sub>dcaJ+1</sub> ~ V’<sub>dcaN</sub> 、V’<sub>dcbJ+1</sub> ~V’<sub>dcbN</sub> 、V’<sub>dccJ+1~</sub> V’<sub>dccN</sub> 的平均的總和V<sub>dcT</sub> 。運算器4122使總和V<sub>dcT</sub> 除以3並計算出後級直流電壓V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> 、V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> 以及V<sub>dccJ+1</sub> ~V<sub>dccN</sub> 的平均值。減法器4123使直流電壓命令V<sub>dc</sub> *減去上述的平均值以產生減法結果。調整器413則針對減法結果進行調整以產生一調整後減法結果。其中,調整器413可以為一比例積分調整器,其轉移函數可以為K<sub>pto</sub> + K<sub>ito</sub> /S,其中,常數K<sub>pto</sub> 、K<sub>ito</sub> 可以由設計者進行設定,其數值沒有固定的限制。</p><p>加法器4124則使上述的調整後減法結果與偏移電流命令I<sub>ff</sub> *相加,並藉以產生(q軸上的)功率電流命令I<sub>q</sub><sup>P*</sup> 。</p><p>在另一方面,群集電壓控制器420包括多數個減法器421-423、多數個調整器424-426以及零序電壓命令計算器427。減法器421-423分別使運算器4112a~4112c的輸出與運算器4122的輸出相減,並產生多個減法結果。調整器424-426分別接收減法器421-423所產生的減法結果,並針對減法器421-423所產生的減法結果進行調整以分別產生多個群集功率命令P<sub>Ca</sub> *、P<sub>Cb</sub> *以及P<sub>Cc</sub> *。調整器424-426可以為具有相同轉移函數的比例積分調整器,其轉移函數可以為K<sub>ptc</sub> + K<sub>itc</sub> /S,其中,常數K<sub>ptc</sub> 、K<sub>itc</sub> 可以由設計者進行設定,其數值沒有固定的限制。</p><p>零序電壓命令計算器427則接收群集功率命令P<sub>Ca</sub> *、P<sub>Cb</sub> *以及P<sub>Cc</sub> *,並依據群集功率命令P<sub>Ca</sub> *、P<sub>Cb</sub> *以及P<sub>Cc</sub> *進行零序電壓命令計算以產生需求電壓命令V<sub>o</sub> *<sub>TCR</sub> 。</p><p>在本實施方式中,零序電壓命令計算器427可以為具有運算能力的處理器。零序電壓命令計算器427可讀取存在記憶體(或其他任意儲存媒介)中關於零序電壓命令計算的演算法來進行計算。在此,零序電壓命令計算的演算法可應用本領域具通常知識者所熟知的各種演算法,沒有特定的限制。</p><p>電流控制器430接收功率電流命令I<sub>q</sub><sup>P*</sup> 以及d-q軸上的正、負注入電壓V<sub>qd</sub><sup>pn</sup> 、注入電流電壓I<sub>qd</sub><sup>pn</sup> 來進行計算,並產生三相的電壓需求。在本實施方式中,電流控制器430另接收d軸的正注入電流命令I<sub>d</sub><sup>P*</sup> ,並設定d-q軸的負注入電流命令I<sub>d</sub><sup>n*</sup> 、I<sub>q</sub><sup>n*</sup> 等於0。電流控制器430另應用加法器AD1-AD3來使需求電壓命令V<sub>o</sub> *<sub>TCR</sub> 與其所計算出的三相電壓需求進行相加,並透過運算器470以及加法器AD4~AD6來分別產生電壓控制命令V<sub>a3</sub> *、V<sub>b3</sub> *、V<sub>c3</sub> *。其中,加法器AD4~AD6另接收獨立電壓平衡控制器460所產生的對應各相的平衡信號,以達到三相電壓平衡的功效。</p><p>調變器440則接收電壓控制命令V<sub>a3</sub> *、V<sub>b3</sub> *、V<sub>c3</sub> *並分別依據電壓控制命令V<sub>a3</sub> *、V<sub>b3</sub> *、V<sub>c3</sub> *來產生控制信號PWM。其中,控制信號PWM控制對應三個不同相位的電網電壓的後級電能轉換器的電壓轉換動作。</p><p>由上述的說明可以得知,本發明提供分散式的控制機制,透過自主電壓調整控制器來個別控制各前級電能轉換器的電壓轉換動作,並透過總電流調整控制器來控制總體的以及各群集電能轉換器的電壓轉換動作。藉由分散式控制的架構,控制器(自主電壓調整控制器以及總電流調整控制器)與電能轉換器間的通訊通道數量可以有限的被減低,大幅降低系統設計的複雜度。有效提升串接式電能轉換裝置的效能。</p><p>雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。</p></mode-for-invention><description-of-drawings><description-of-element><p>100‧‧‧串接式電能轉換裝置</p><p>110、120、130‧‧‧電網電壓產生器</p><p>AVR11-AVR1J、AVR21-AVR2J、AVR31-AVR3J‧‧‧自主電壓調整控制器</p><p>TCR1‧‧‧總電流調整控制器</p><p>V<sub>a0</sub>、V<sub>b0</sub>、V<sub>c0</sub>‧‧‧電網電壓</p><p>111-11N、121-12N、131-13N‧‧‧電能轉換器</p><p>PWM、PWM<sub>a1</sub>、PWM<sub>a2</sub>、PWM<sub>b1</sub>、PWM<sub>b2</sub>、PWM<sub>c1</sub>、PWM<sub>c2</sub>、PWM<sub>aN</sub>、PWM<sub>bN</sub>、PWM<sub>cN</sub>‧‧‧控制信號</p><p>i<sub>a</sub>、i<sub>b</sub>、i<sub>c</sub>‧‧‧電網電流</p><p>V<sub>dcaN</sub>、V<sub>dcbN</sub>、V<sub>dccN</sub>‧‧‧後級直流電壓</p><p>200‧‧‧串接式電能轉換裝置</p><p>210-230‧‧‧電網電壓產生器</p><p>211-21N‧‧‧電能轉換器</p><p>V<sub>dca1</sub>-V<sub>dcaN</sub>‧‧‧(前級)直流電壓</p><p>i<sub>dca1</sub>-i<sub>dcaN</sub>‧‧‧直流電流</p><p>V<sub>a1</sub>、V<sub>a2</sub>、V<sub>a3</sub>、V<sub>aM</sub>‧‧‧電壓</p><p>O‧‧‧原點</p><p>M‧‧‧連接點</p><p>300‧‧‧自主電壓調整控制器</p><p>310、330‧‧‧運算器</p><p>320‧‧‧調整器</p><p>340‧‧‧調變器</p><p>V<sub>dc</sub>*‧‧‧直流電壓命令</p><p>V<sub>a1</sub>*‧‧‧命令電壓值</p><p>331‧‧‧乘法器</p><p>332‧‧‧加法器</p><p>V<sub>mag</sub>‧‧‧電壓</p><p>400‧‧‧總電流調整控制器</p><p>410‧‧‧總功率控制器</p><p>420‧‧‧群集電壓控制器</p><p>430‧‧‧電流控制器</p><p>440‧‧‧調變器</p><p>413‧‧‧調整器</p><p>460‧‧‧獨立電壓平衡控制器</p><p>4122、470‧‧‧運算器</p><p>411‧‧‧第一部分</p><p>412‧‧‧第二部分</p><p>4123‧‧‧減法器</p><p>4124‧‧‧加法器</p><p>V<sub>dcaJ+1</sub>~V<sub>dcaN</sub>、V<sub>dcbJ+1</sub>~V<sub>dcbN</sub>、V<sub>dccJ+1</sub>~V<sub>dccN</sub>‧‧‧後級直流電壓</p><p>F11~F1M、F21~F2M<u style="single">、</u><u style="single">F31~F3M</u>‧‧‧濾波器</p><p><u style="single">4111a~4111c</u><u style="single">、</u><u style="single">4112a~4112c</u><u style="single">、</u><u style="single">4121</u><u style="single">、</u><u style="single">4122</u>‧‧‧<u style="single">運算器</p><p></u>V’<sub>dcaJ+1</sub>~ V’<sub>dcaN</sub>、V’<sub>dcbJ+1</sub>~V’<sub>dcbN</sub>、V’<sub>dccJ+1~</sub>V’<sub>dccN</sub>‧‧‧濾波後的後級直流電壓</p><p>V<sub>dcaT</sub>、V<sub>dcbT</sub>、V<sub>dccT</sub>‧‧‧平均</p><p>I<sub>q</sub><sup>P*</sup>‧‧‧功率電流命令</p><p>I<sub>ff</sub>*‧‧‧偏移電流命令</p><p>421-423‧‧‧減法器</p><p>424-426‧‧‧調整器</p><p>427‧‧‧零序電壓命令計算器</p><p>P<sub>Ca</sub>*、P<sub>Cb</sub>*、P<sub>Cc</sub>*‧‧‧群集功率命令</p><p>V<sub>o</sub>*<sub>TCR</sub>‧‧‧需求電壓命令</p><p>V<sub>qd</sub><sup>pn</sup>‧‧‧注入電壓</p><p>I<sub>qd</sub><sup>pn</sup>‧‧‧注入電流電壓</p><p>AD1-AD6‧‧‧加法器</p><p>I<sub>d</sub><sup>P*</sup>、I<sub>d</sub><sup>n*</sup>、I<sub>q</sub><sup>n*</sup>‧‧‧注入電流命令</p><p>V<sub>a3</sub>*、V<sub>b3</sub>*、V<sub>c3</sub>*‧‧‧電壓控制命令</p></description-of-element><p>圖1繪示本發明一實施例的串接式電能轉換裝置的示意圖。 圖2繪示本發明實施例的串接式電能轉換裝置的電網電壓產生器的硬體架構示意圖。 圖3繪示本發明實施例的自主電壓調整控制器的實施方式的示意圖。 圖4繪示本發明實施例的總電流調整控制器的實施方式的示意圖。</p></description-of-drawings><bio-deposit></bio-deposit><sequence-list-text></sequence-list-text><invention-title lang="zh">Serial-type power conversion device</invention-title><invention-title lang="en">CASCADED POWER CONVERTER APPARATUS</invention-title><technical-field><p> The present invention relates to a series-connected power conversion device, and more particularly to a series-connected power conversion device having a distributed control mechanism. </p></technical-field><background-art><p>Multi-level tandem power conversion devices are cascaded from a number of bridge converters and can be applied to higher voltage level grids. Wherein, each bridge converter performs a voltage conversion action on the received DC voltage and generates a plurality of supply powers of different phases. In the conventional technical field, the multi-level serial-connected power conversion device realizes the signal transmission back and forth through a central controller and performs the switching control signals required for transmitting the bridge converters. As a result, a large and complex communication connection wire arrangement is required between the central controller and the bridge converter. Moreover, since the central controller needs to process a large number of feedback signals, the central controller has to bear a large amount of computation. In addition, when a single bridge converter fails, since the overall system signal connection is connected, it is easy to cause the shutdown of the entire series of series-type power conversion devices. As the number of serially connected converters increases, the above factors will increase the difficulty in hardware implementation. </p></background-art><disclosure><p>The present invention provides a series-connected power conversion device with a distributed control mechanism, which can effectively improve fault tolerance and reduce the series-connected power conversion device The amount of wiring in the system reduces the complexity of the system design. The series-connected power conversion apparatus of the present invention includes a plurality of grid voltage generators, a plurality of autonomous voltage adjustment controllers, and a total current adjustment controller. The grid voltage generators respectively provide a plurality of grid voltages, and each grid voltage generator comprises a plurality of power converters connected in series, the power converter being divided into a plurality of pre-stage power converters and at least one post-stage power converter. The autonomous voltage adjustment controllers are respectively coupled to the pre-stage power converters in the grid voltage generator, and the respective main voltage adjustment controllers control the voltage conversion actions of the respective pre-stage power converters according to the corresponding pre-stage DC voltages and the grid voltage. The total current adjustment controller is coupled to the level electric energy converters in the grid voltage generator, and controls the post-level electric energy according to the plurality of grid currents on the grid voltage generator and the plurality of post-stage DC voltages received by the post-stage power converter. The voltage conversion action of the converter. Based on the above, the present invention provides a plurality of autonomous voltage adjustment controllers for performing voltage conversion actions of a plurality of pre-stage power converters in respective grid voltage generators in a series-connected power conversion device. control. Moreover, the present invention further provides a total current adjustment controller for controlling voltage conversion actions of a plurality of subsequent stage power converters in the series-connected power conversion apparatus. With the decentralized control mechanism, the number of transmission wires in the series-type power conversion device can be reduced, and the length of the wires can be reduced, the difficulty in layout of the hardware is reduced, and the area required for the hardware is reduced. Effectively reduce the cost of production and increase the competitiveness of products. In addition, the series-connected power conversion device of the present invention can improve fault tolerance, wherein the normal operation of the system can be maintained even when a part of the power conversion device fails. The above described features and advantages of the present invention will be more apparent from the following description. </p></disclosure><mode-for-invention><p> Referring to FIG. 1, FIG. 1 is a schematic diagram of a series-connected power conversion device according to an embodiment of the present invention. The series-connected power conversion device 100 includes grid voltage generators 110, 120, and 130, autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, AVR31~AVR3J, and a total current adjustment controller TCR1. Wherein, the grid voltage generators 110, 120 and 130 respectively provide the grid voltage V<sub>a0</sub> , V<sub>b0</sub> And V<sub>c0</sub> . The grid voltage generator 110 includes power converters 111-11N; the grid voltage generator 120 includes power converters 121-12N; and the grid voltage generator 130 includes power converters 131-13N. In the grid voltage generator 110, the power converters 111~11J may be pre-stage power converters, and the power converters 11J+1~11N may be post-stage power converters; in the grid voltage generator 120, the power converters 121~12J can be a pre-stage power converter, and the power converter 12J+1~12N can be a post-stage power converter; in the grid voltage generator 130, the power converters 131~13J can be a pre-stage power converter, The power converter 13J+1~13N can be a post-stage power converter. </p><p> The autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, and AVR31~AVR3J are respectively coupled to the power converters 111, 112, 121, 122, 131, and 132 as the pre-stage power converters. Each of the autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, AVR31~AVR3J controls each of the preceding stage power converters according to the corresponding front stage DC voltage and the grid voltage (ie, the power converters 111, 112, 121, 122, 131 and 132) Voltage conversion action. Taking the autonomous voltage adjustment controller AVR11 as an example, the autonomous voltage adjustment controller AVR11 is coupled to the power converter 111 and receives the front-end DC voltage V<sub>dca1</sub> received by the power converter 111. . In addition, the autonomous voltage adjustment controller AVR11 senses the corresponding grid voltage V<sub>a0</sub> And according to the front stage DC voltage V<sub>dca1</sub> And the grid voltage V<sub>a0</sub> To generate the control signal PWM<sub>a1</sub> . Wherein, the control signal PWM<sub>a1</sub> It is transmitted to the power converter 111 and used to control the voltage conversion action of the power converter 111. </p><p> It can be seen that in the embodiment of the present invention, the autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, and AVR31~AVR3J are respectively based on the corresponding front-end DC voltage V<sub>dca1< /sub> ~V<sub>dcaJ</sub> , V<sub>dcb1</sub> ~V<sub>dcbJ</sub> , V<sub>dcc1</sub> ~V<sub>dccJ</sub> And according to the corresponding grid voltage V<sub>a0</sub> , V<sub>b0</sub> And V<sub>c0</sub> To generate the control signal PWM<sub>a1</sub> respectively ~PWM<sub>aJ</sub> ,PWM<sub>b1</sub> ~PWM<sub>bJ</sub> ,PWM<sub>c1</sub> ~PWM<sub>cJ</sub> . Control signal PWM<sub>a1</sub> ~PWM<sub>aJ</sub> ,PWM<sub>b1</sub> ~PWM<sub>bJ</sub> ,PWM<sub>c1</sub> ~PWM<sub>cJ</sub> The power converters 111~11J, 121~12J and 131~13J are respectively transmitted to the power converters of the preceding stage, and respectively control the voltage conversion actions of the power converters 111~11J, 121~12J and 131~13J respectively. . </p><p>The total current adjustment controller TCR1 is coupled to the post-stage power converters in the grid voltage generators 110, 120, and 130 (the power converters 11J+1~11N, 12J+1~12N, and 13J+) 1~13N). The total current regulation controller TCR1 receives the grid current i<sub>a</sub> at different phases on the grid , i<sub>b</sub> And i<sub>c</sub> And receiving the power converters 11J+1~11N, 12J+1~12N, and 13J+1~13N corresponding to the subsequent DC voltage V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> , V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> And V<sub>dccJ+1</sub> ~V<sub>dccN</sub> And according to the grid current i<sub>a</sub> , i<sub>b</sub> And i<sub>c</sub> And the subsequent stage DC voltage V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> , V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> And V<sub>dccJ+1</sub> ~V<sub>dccN</sub> To generate the control signal PWM<sub>aJ+1</sub> ~PWM<sub>aN</sub> ,PWM<sub>bJ+1</sub> ~PWM<sub>bN</sub> And PWM<sub>cJ+1</sub> ~PWM<sub>cN</sub> . Control signal PWM<sub>aJ+1</sub> ~PWM<sub>aN</sub> ,PWM<sub>bJ+1</sub> ~PWM<sub>bN</sub> And PWM<sub>cJ+1</sub> ~PWM<sub>cN</sub> Transfer to the power converters 11J+1~11N, 12J+1-12N<u style="single"> and </u><u style="single">13J+1< as the power converters of the latter stage /u> -13N and used to control the voltage conversion action of the power converters 11N-13N. </p><p> As can be seen from the above description, the present invention is implemented for the pre-stage power converters (electric energy converters 111~11J, 121~12J, 131~13J) in the grid voltage generators 110-130. For example, one-to-one autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, and AVR31~AVR3J are provided to control the voltage conversion actions of the power converters 111~11J, 121~12J, 131~13J, respectively. For the subsequent stage power converters (power converters 11J+1~11N, 12J+1~12N, and 13J+1~13N), the voltage conversion operation is controlled by the total current adjustment controller TCR1. In this way, the total current adjustment controller TCR1 does not need to communicate with all the power converters 111~13N, thereby effectively reducing the number of transmission wires required. Moreover, the autonomous voltage adjustment controllers AVR11~AVR1J, AVR21~AVR2J, AVR31~AVR3J and the corresponding power converters 111~11J, 121~12J, 131~13J can also be arranged in close positions to make the total current adjustment control. The TCR1 and the after-stage power converters 11J+1~11N, 12J+1~12N and 13J+1~13N are arranged in close positions to reduce the length of the signal transmission path, in addition to improving the signal quality, the system can also be reduced. The complexity of the design reduces production costs. Moreover, the series-connected power conversion device 100 of the embodiment of the present invention can improve the fault tolerance, wherein the series-connected power conversion device 100 can maintain the normal operation of the system when a part of the power conversion device fails. </p><p> Incidentally, the pre-stage power converter mentioned in this embodiment is in each of the grid voltage generators 110-130, and the configuration position is closer to the grid voltage V<sub>a0< /sub> , V<sub>b0</sub> , V<sub>c0</sub> The power converter for the transmission line. In contrast, the so-called post-stage power converter is a common coupling point M whose configuration position is closer to the grid voltage generators 110~130 (relatively far from the grid voltage V<sub>a0</sub>) , V<sub>b0</sub> , V<sub>c0</sub> Power transmission). Moreover, corresponding to the grid voltage of a single phase, the number of power converters in the latter stage may be one or more, and there is no fixed limit. </p><p>In this embodiment, the grid voltage V<sub>a0</sub> , V<sub>b0</sub> , V<sub>c0</sub> It can be three voltage signals with different phases, wherein the grid voltage V<sub>a0</sub> , V<sub>b0</sub> , V<sub>c0</sub> Can have 120<sup>0</sup> The phase difference. </p><p> Please refer to FIG. 2 below. FIG. 2 is a schematic diagram showing the hardware architecture of the grid voltage generator of the series-connected power conversion device according to the embodiment of the present invention. The series-connected power conversion device 200 includes grid voltage generators 210-230. The grid voltage generators 210-230 may have the same hardware architecture with each other. Taking the grid voltage generator 210 as an example, the grid voltage generator 210 may include a plurality of power converters 211 to 21N, and the power converters 211 to 21N may have the same hardware architecture with each other. As shown by the power converter 211, each of the power converters 211 to 21N may be composed of four transistor switches. The power converters 211~21N respectively receive the DC voltage V<sub>dca1</sub> ~V<sub>dcaN</sub> And the corresponding DC current i<sub>dca1</sub> ~i<sub>dcaN</sub> And respectively, according to the received control signal, the four transistors respectively perform a switching action to respectively generate a voltage V<sub>a1</sub> , V<sub>a2</sub> And V<sub>a3</sub> . Through the series voltage V<sub>a1</sub> , V<sub>a2</sub> And V<sub>a3</sub> The grid voltage generator 210 can be caused to generate a voltage V<sub>aM</sub> And generate grid voltage V<sub>a0</sub> . </p><p>In addition, the grid voltage generators 210-230 can respectively provide grid current i<sub>a</sub> , i<sub>b</sub> And i<sub>c</sub> . In the present embodiment, the grid voltage generators 210-230 can be coupled to the origin O to form a Y-shaped connection configuration. </p><p> Please refer to FIG. 3 below. FIG. 3 is a schematic diagram of an embodiment of an autonomous voltage adjustment controller according to an embodiment of the present invention. The autonomous voltage adjustment controller 300 includes an arithmetic unit 310, an adjuster 320, an arithmetic unit 330, and a modulator 340. The operator 310 receives the pre-stage DC voltage V<sub>dca1</sub> received by the corresponding pre-stage power converter. And DC voltage command V<sub>dc</sub> *, and calculate the DC voltage command V<sub>dc</sub> * with the front stage DC voltage V<sub>dca1</sub> The difference. In the present embodiment, the arithmetic unit 310 is a subtractor. </p><p> The adjuster 320 is coupled to the operator 310 and receives the difference calculated by the operator 310. The adjuster 320 adjusts for the received difference and produces an adjusted difference. In this embodiment, the adjuster 320 can be a proportional integral adjuster (PI regulator), and the transfer function can be K<sub>pti</sub> + K<sub>iti</sub> /S, where constant K<sub>pti</sub> , K<sub>iti</sub> It can be set by the designer, and its value has no fixed limit. </p><p> The arithmetic unit 330 is coupled to the adjuster 320 and receives the adjusted difference according to the corresponding grid voltage V<sub>a0</sub> To perform an arithmetic operation on the adjusted difference to generate a command voltage value V<sub>a1</sub> *. In the present embodiment, the arithmetic unit 330 includes a multiplier 331 and an adder 332. Among them, the grid voltage V<sub>ao</sub> Can pass through the voltage V<sub>mag</sub> Divide by to generate a normalized grid voltage (V<sub>a0</sub> /V<sub>mag</sub> ). Where the voltage V<sub>mag</sub> Can be the grid voltage V<sub>ao</sub> The maximum possible voltage value. The multiplier 331 can make the adjusted difference and the normalized grid voltage (V<sub>a0</sub> /V<sub>mag</sub> ) Multiply. In addition, the adder 332 causes the multiplication result generated by the multiplier 331 to be related to the grid voltage V<sub>a0</sub> Divide by the quotient obtained by N (as a feedforward signal) and generate a command voltage value V<sub>a1</sub> *. Where N can be equal to the number of phases of the series-connected power conversion device. </p><p> modulator 340 receives command voltage value V<sub>a1</sub> *, and according to the command voltage value V<sub>a1</sub> * Perform a modulation action and thereby generate a control signal PWM<sub>a1</sub> . Control signal PWM<sub>a1</sub> It can be a wide-tune signal and is used to control the switching action of the transistor switch of the corresponding power converter. </p><p> Please refer to FIG. 4 below. FIG. 4 is a schematic diagram of an embodiment of a total current adjustment controller according to an embodiment of the present invention. The total current adjustment controller 400 includes a total power controller 410, a cluster voltage controller 420, a current controller 430, a modulator 440, an independent voltage balance controller 460, and an operator 470. The total power controller 410 includes a first portion 411 and a second portion 412 and is used to perform overall voltage control of the series-connected power conversion device. The first part 411 is an average voltage calculator, and the DC voltage of the latter stage is calculated as V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> , V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> And V<sub>dccJ+1</sub> ~V<sub>dccN</sub> average of. The cluster voltage controller 420 is used to perform voltage control of a cluster formed by a power converter corresponding to a grid voltage of the same phase in a series-connected power conversion device, wherein a grid voltage of three phases is taken as an example, and the series connection The power conversion device has three power converter clusters. </p><p>The total power controller 410 includes a plurality of filters F11~F1M, F21~F2M<u style="single"> and </u><u style="single">F31~F3M</ u><u style="single">, computing unit</u><u style="single">4111a~4111c</u><u style="single">,</u><u style=" Single">4112a~4112c</u><u style="single">,</u><u style="single">4121</u><u style="single">and</u>< u style="single">4122</u> The subtractor 4123, the adjuster 413, and the adder 4124. Filters F11~F1M, F21~F2M<u style="single"> and </u><u style="single">F31~F3M</u><u style="single">for </u > After-stage DC voltage V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> , V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> And V<sub>dccJ+1</sub> ~V<sub>dccN</sub> Filtering is performed. The arithmetic unit 4111a~4111c calculates the filtered subsequent stage DC voltage V'<sub>dcaJ+1</sub> ~V’<sub>dcaN</sub> , V’<sub>dcbJ+1</sub> ~V’<sub>dcbN</sub> , V’<sub>dccJ+1~</sub> V’<sub>dccN</sub> And. The arithmetic units 4112a to 4112c respectively calculate the filtered subsequent stage DC voltage V'<sub>dcaJ+1</sub> ~ V’<sub>dcaN</sub> , V’<sub>dcbJ+1</sub> ~V’<sub>dcbN</sub> , V’<sub>dccJ+1~</sub> V’<sub>dccN</sub> Average V<sub>dcaT</sub> , V<sub>dcbT</sub> , V<sub>dccT</sub> And calculating the filtered after-stage DC voltage V'<sub>dcaJ+1</sub> through the arithmetic unit 4121 ~ V’<sub>dcaN</sub> , V’<sub>dcbJ+1</sub> ~V’<sub>dcbN</sub> , V’<sub>dccJ+1~</sub> V’<sub>dccN</sub> The average sum of V<sub>dcT</sub> . The operator 4122 makes the sum V<sub>dcT</sub> Divide by 3 and calculate the DC voltage of the latter stage V<sub>dcaJ+1</sub> ~V<sub>dcaN</sub> , V<sub>dcbJ+1</sub> ~V<sub>dcbN</sub> And V<sub>dccJ+1</sub> ~V<sub>dccN</sub> average of. Subtractor 4123 causes DC voltage command V<sub>dc</sub> * Subtract the above average to produce a subtraction result. The adjuster 413 adjusts the subtraction result to produce an adjusted subtraction result. The adjuster 413 can be a proportional integral adjuster, and the transfer function can be K<sub>pto</sub> + K<sub>ito</sub> /S, where constant K<sub>pto</sub> , K<sub>ito</sub> It can be set by the designer, and its value has no fixed limit. </p><p>Adder 4124 causes the above-mentioned adjusted subtraction result and offset current command I<sub>ff</sub> *Add and generate (on the q-axis) power current command I<sub>q</sub><sup>P*</sup> . </p><p> In another aspect, the cluster voltage controller 420 includes a plurality of subtractors 421-423, a plurality of adjusters 424-426, and a zero sequence voltage command calculator 427. The subtracters 421-423 subtract the outputs of the operators 4112a-4112c from the outputs of the operators 4122, respectively, and generate a plurality of subtraction results. The adjusters 424-426 receive the subtraction results produced by the subtractors 421-423, respectively, and adjust the subtraction results produced by the subtractors 421-423 to generate a plurality of cluster power commands P<sub>Ca</sub>, respectively. *, P<sub>Cb</sub> *and P<sub>Cc</sub> *. The adjusters 424-426 may be proportional integral adjusters having the same transfer function, and the transfer function may be K<sub>ptc</sub> + K<sub>itc</sub> /S, where constant K<sub>ptc</sub> , K<sub>itc</sub> It can be set by the designer, and its value has no fixed limit. </p><p>The zero sequence voltage command calculator 427 receives the cluster power command P<sub>Ca</sub> *, P<sub>Cb</sub> *and P<sub>Cc</sub> *, and according to the cluster power command P<sub>Ca</sub> *, P<sub>Cb</sub> *and P<sub>Cc</sub> * Perform zero sequence voltage command calculation to generate demand voltage command V<sub>o</sub> *<sub>TCR</sub> . </p><p> In the present embodiment, the zero sequence voltage command calculator 427 may be a processor having computing power. The zero sequence voltage command calculator 427 can read the algorithm for the calculation of the zero sequence voltage command in the memory (or any other storage medium) for calculation. Here, the algorithm for calculating the zero sequence voltage command can apply various algorithms well known to those skilled in the art without particular limitation. </p><p>The current controller 430 receives the power current command I<sub>q</sub><sup>P*</sup> And positive and negative injection voltages on the d-q axis V<sub>qd</sub><sup>pn</sup> Injection current voltage I<sub>qd</sub><sup>pn</sup> To calculate and generate three-phase voltage requirements. In the present embodiment, the current controller 430 additionally receives the positive injection current command of the d-axis I<sub>d</sub><sup>P*</sup> And set the negative injection current command of the d-q axis I<sub>d</sub><sup>n*</sup> , I<sub>q</sub><sup>n*</sup> Equal to 0. The current controller 430 additionally applies the adders AD1-AD3 to make the demand voltage command V<sub>o</sub> *<sub>TCR</sub> Adding to the calculated three-phase voltage demand, and generating a voltage control command V<sub>a3</sub> through the arithmetic unit 470 and the adders AD4~AD6, respectively. *, V<sub>b3</sub> *, V<sub>c3</sub> *. The adders AD4~AD6 further receive the balanced signals corresponding to the respective phases generated by the independent voltage balance controller 460 to achieve the three-phase voltage balance. </p><p>The modulator 440 receives the voltage control command V<sub>a3</sub> *, V<sub>b3</sub> *, V<sub>c3</sub> * and according to the voltage control command V<sub>a3</sub> *, V<sub>b3</sub> *, V<sub>c3</sub> * To generate the control signal PWM. Wherein, the control signal PWM controls the voltage conversion action of the subsequent stage power converter corresponding to the grid voltages of three different phases. </p><p> It can be known from the above description that the present invention provides a decentralized control mechanism for individually controlling the voltage conversion action of each pre-stage power converter through an autonomous voltage adjustment controller, and through the total current adjustment control. The controller controls the voltage conversion actions of the overall and each cluster power converter. With a decentralized control architecture, the number of communication channels between the controller (autonomous voltage regulation controller and total current regulation controller) and the power converter can be reduced to a limited extent, greatly reducing the complexity of the system design. Effectively improve the performance of the series-connected power conversion device. The present invention has been disclosed in the above embodiments, and is not intended to limit the scope of the present invention. There are a few changes and modifications, and the scope of protection of the present invention is defined by the scope of the appended claims. </p></mode-for-invention><description-of-drawings><description-of-element><p>100‧‧‧ tandem power conversion device</p><p>110, 120, 130‧‧‧ Grid voltage generator</p><p>AVR11-AVR1J, AVR21-AVR2J, AVR31-AVR3J‧‧‧Autonomous voltage adjustment controller</p><p>TCR1‧‧‧Total current adjustment controller </p><p>V<sub>a0</sub>, V<sub>b0</sub>, V<sub>c0</us> ‧‧‧ grid voltage</p><p>111- 11N, 121-12N, 131-13N‧‧‧Power Converter</p><p>PWM, PWM<sub>a1</sub>, PWM<sub>a2</sub>, PWM<sub>b1< /sub>, PWM<sub>b2</sub>, PWM<sub>c1</sub>, PWM<sub>c2</sub>, PWM<sub>aN</sub>, PWM<sub>bN< /sub>,PWM<sub>cN</sub>‧‧‧Control Signal</p><p>i<sub>a</sub>, i<sub>b</sub>, i<sub>c </sub>‧‧‧ Grid current</p><p>V<sub>dcaN</sub>, V<sub>dcbN</sub>, V<sub>dccN</sub> DC voltage</p><p>200‧‧‧Serial type power conversion device</p><p>210-230‧‧‧Grid voltage generator</p><p>211-21N‧‧‧electric energy Converter</p><p>V<sub>dca1</sub>-V<sub>dcaN</sub>‧‧‧(previous) DC voltage</p><p>i <sub>dca1</sub>-i<sub>dcaN</sub>‧‧‧ DC current</p><p>V<sub>a1</sub>, V<sub>a2</sub>, V<sub>a3</sub>, V<sub>aM</sub>‧‧‧voltage</p><p>O‧‧‧ origin</p><p>M‧‧‧ connection point< /p><p>300‧‧‧Autonomous Voltage Adjustment Controller</p><p>310, 330‧‧‧Operator</p><p>320‧‧‧ Adjuster</p><p> 340‧‧‧Transformer</p><p>V<sub>dc</sub>*‧‧‧DC Voltage Command</p><p>V<sub>a1</sub>*‧‧ Command voltage value</p><p>331‧‧‧Multiplier</p><p>332‧‧‧Adder</p><p>V<sub>mag</sub>‧‧‧ Voltage< /p><p>400‧‧‧Total Current Regulation Controller</p><p>410‧‧‧Total Power Controller</p><p>420‧‧‧ Cluster Voltage Controller</p>< p>430‧‧‧ Current controller</p><p>440‧‧‧ 调器</p><p>413‧‧‧ adjuster</p><p>460‧‧‧ Independent voltage balance Controller</p><p>4122,470‧‧‧Operator</p><p>411‧‧‧Part 1</p><p>412‧‧‧Part II</p><p >4123‧‧‧Subtractor</p><p>4124‧‧Adder</p><p>V<sub>dcaJ+1</sub>~V<sub>dcaN</sub>, V <sub>dcbJ+1</sub>~V<sub>dcbN</ Sub>, V<sub>dccJ+1</sub>~V<sub>dccN</sub>‧‧‧ After DC voltage</p><p>F11~F1M, F21~F2M<u style=" Single">,</u><u style="single">F31~F3M</u>‧‧‧Filter</p><p><u style="single">4111a~4111c</u> <u style="single">,</u><u style="single">4112a~4112c</u><u style="single">,</u><u style="single">4121 </u><u style="single">,</u><u style="single">4122</u>‧‧‧<u style="single">Operator</p><p> </u>V'<sub>dcaJ+1</sub>~ V'<sub>dcaN</sub>, V'<sub>dcbJ+1</sub>~V'<sub>dcbN</sub> >,V'<sub>dccJ+1~</sub>V'<sub>dccN</sub>‧‧‧Filtered post-level DC voltage</p><p>V<sub>dcaT</sub >, V<sub>dcbT</sub>, V<sub>dccT</sub>‧‧‧ average</p><p>I<sub>q</sub><sup>P*</sup> ‧‧‧Power Current Command</p><p>I<sub>ff</sub>*‧‧‧Offset Current Command</p><p>421-423‧‧‧Subtractor</p>< p>424-426‧‧‧ adjuster</p><p>427‧‧‧ Zero-order voltage command calculator</p><p>P<sub>Ca</sub>*, P<sub>Cb </sub>*, P<sub>Cc</sub>*‧‧‧Cluster Power Command</p><p>V<sub>o</sub>*<sub>TCR</sub>‧ ‧Required voltage command</p><p>V<sub>qd</sub><sup>pn</sup>‧‧‧Injection voltage</p><p>I<sub>qd</sub>< Sup>pn</sup>‧‧‧Inject current and voltage</p><p>AD1-AD6‧‧‧Adder</p><p>I<sub>d</sub><sup>P*< /sup>, I<sub>d</sub><sup>n*</sup>, I<sub>q</sub><sup>n*</sup>‧‧‧Inject current command</p ><p>V<sub>a3</sub>*, V<sub>b3</sub>*, V<sub>c3</sub>*‧‧‧Voltage Control Command</p></description- FIG. 1 is a schematic diagram of a series-connected power conversion device according to an embodiment of the present invention. 2 is a schematic diagram showing the hardware architecture of a grid voltage generator of a series-connected power conversion device according to an embodiment of the present invention. 3 is a schematic diagram of an embodiment of an autonomous voltage adjustment controller according to an embodiment of the present invention. 4 is a schematic diagram of an embodiment of a total current adjustment controller in accordance with an embodiment of the present invention. </p></description-of-drawings><bio-deposit></bio-deposit><sequence-list-text></sequence-list-text>

Claims (10)

一種串接式電能轉換裝置,包括: 多個電網電壓產生器,分別提供多數個電網電壓,各該電網電壓產生器包括串接的多數個電能轉換器,該些電能轉換器區分為多個前級電能轉換器以及至少一後級電能轉換器; 多數個自主電壓調整控制器,分別耦接該些電網電壓產生器中的該些前級電能轉換器,各該自主電壓調整控制器依據對應的前級直流電壓以及電網電壓來控制各該前級電能轉換器的電壓轉換動作;以及 一總電流調整控制器,耦接該些電網電壓產生器中的該些後級電能轉換器,依據該些電網電壓產生器上的多個電網電流以及該些後級電能轉換器接收的多個後級直流電壓來控制該些後級電能轉換器的電壓轉換動作。A series-connected power conversion device includes: a plurality of grid voltage generators respectively providing a plurality of grid voltages, each grid voltage generator comprising a plurality of power converters connected in series, the power converters being divided into a plurality of front a stage power converter and at least one post-stage power converter; a plurality of autonomous voltage adjustment controllers respectively coupled to the pre-stage power converters of the grid voltage generators, each of the autonomous voltage adjustment controllers according to a corresponding a front-end DC voltage and a grid voltage to control voltage conversion actions of each of the pre-stage power converters; and a total current adjustment controller coupled to the post-stage power converters in the grid voltage generators, according to the A plurality of grid currents on the grid voltage generator and a plurality of subsequent stage DC voltages received by the after-stage power converters control voltage conversion actions of the subsequent stage power converters. 如申請專利範圍第1項所述的串接式電能轉換裝置,其中各該自主電壓調整控制器包括: 一第一運算器,計算對應的前級直流電壓與一直流電壓命令的一差值; 一調整器,耦接該第一運算器,調整該差值以獲得一調整後差值; 一第二運算器,耦接該調整器,依據對應的電網電壓來對該調整後差值進行一算數運算,以產生一命令電壓值;以及 一調變器,接收該命令電壓值並依據該命令電壓值以產生一控制信號, 其中,該控制信號用以控制對應的前級電能轉換器的電壓轉換動作。The serial power conversion device of claim 1, wherein each of the autonomous voltage adjustment controllers comprises: a first operator that calculates a difference between the corresponding front-level DC voltage and the DC voltage command; a regulator coupled to the first operator to adjust the difference to obtain an adjusted difference; a second operator coupled to the regulator to perform the adjusted difference according to the corresponding grid voltage An arithmetic operation to generate a command voltage value; and a modulator that receives the command voltage value and generates a control signal according to the command voltage value, wherein the control signal is used to control a voltage of the corresponding front stage power converter Conversion action. 如申請專利範圍第2項所述的串接式電能轉換裝置,其中該第一運算器為一減法器,該減法器接收對應的前級直流電壓與該直流電壓命令,並使該直流電壓命令減去對應的前級直流電壓以產生該差值。The tandem power conversion device of claim 2, wherein the first operator is a subtractor, and the subtractor receives a corresponding front-end DC voltage and the DC voltage command, and causes the DC voltage command The corresponding front stage DC voltage is subtracted to produce the difference. 如申請專利範圍第2項所述的串接式電能轉換裝置,其中該調整器為比例積分調整器。The series-connected power conversion device of claim 2, wherein the regulator is a proportional integral regulator. 如申請專利範圍第2項所述的串接式電能轉換裝置,其中該第二運算器包括: 一乘法器,依據該調整後差值與對應的電網電壓進行乘法運算以獲得一乘法結果;以及 一加法器,依據該乘法結果與對應的電網電壓進行乘法運算以獲得該命令電壓值。The tandem power conversion device of claim 2, wherein the second operator comprises: a multiplier, multiplying the adjusted difference value according to the corresponding grid voltage to obtain a multiplication result; An adder multiplies the corresponding grid voltage according to the multiplication result to obtain the command voltage value. 如申請專利範圍第1項所述的串接式電能轉換裝置,其中該總電流調整控制器包括: 一總功率控制器,依據該些後級直流電壓的一平均值來產生一功率電流命令;以及 一群集電壓控制器,分別依據該些後級直流電壓與該平均值的多數個差值產生多個群集功率命令,並針對該些群集功率命令進行零序電壓命令計算以產生一需求電壓命令; 一電流控制器,依據該電流命令、注入電壓、注入電流以及該需求電壓命令來產生多個電壓控制命令;以及 一調變器,依據該些電壓控制命令來產生多個控制信號以控制該些後級電能轉換器的電壓轉換動作。The series-connected power conversion device of claim 1, wherein the total current adjustment controller comprises: a total power controller, generating a power current command according to an average value of the second-level DC voltages; And a cluster voltage controller, respectively generating a plurality of cluster power commands according to the plurality of differences between the subsequent DC voltages and the average value, and performing zero sequence voltage command calculations on the cluster power commands to generate a demand voltage command a current controller that generates a plurality of voltage control commands according to the current command, the injection voltage, the injection current, and the demand voltage command; and a modulator that generates a plurality of control signals according to the voltage control commands to control the The voltage conversion action of some of the latter power converters. 如申請專利範圍第6項所述的串接式電能轉換裝置,其中該總功率控制器包括: 一平均電壓計算器,計算該些後級直流電壓的該平均值; 一減法器,使該平均值減去一直流電壓命令以產生一減法結果; 一調整器,調整該減法結果以產生一調整後減法結果;以及 一加法器,使該調整後減法結果與一偏移電流命令相加以產生該功率電流命令。The tandem power conversion device of claim 6, wherein the total power controller comprises: an average voltage calculator that calculates the average value of the DC voltages of the latter stages; and a subtractor to make the average The value is subtracted from the DC voltage command to generate a subtraction result; an adjuster adjusts the subtraction result to produce an adjusted subtraction result; and an adder that adds the adjusted subtraction result to an offset current command to generate the subtraction result Power current command. 如申請專利範圍第7項所述的串接式電能轉換裝置,其中該調整器為比例積分調整器。The series-connected power conversion device of claim 7, wherein the regulator is a proportional-integral regulator. 如申請專利範圍第6項所述的串接式電能轉換裝置,其中該群集電壓控制器包括: 多數個減法器,分別使該些後級直流電壓與該平均值相減,並產生多個減法結果; 多數個調整器,分別調整該些減法結果以分別產生該些群集功率命令;以及 一零序電壓命令計算器,依據該些群集功率命令進行零序電壓命令計算以產生該需求電壓命令。The series-connected power conversion device of claim 6, wherein the cluster voltage controller comprises: a plurality of subtractors respectively subtracting the latter DC voltages from the average value and generating a plurality of subtractions As a result, a plurality of adjusters respectively adjust the subtraction results to generate the cluster power commands respectively; and a zero sequence voltage command calculator to perform a zero sequence voltage command calculation according to the cluster power commands to generate the demand voltage command. 如申請專利範圍第9項所述的串接式電能轉換裝置,其中該些調整器為比例積分調整器。The series-connected power conversion device of claim 9, wherein the adjusters are proportional integral adjusters.
TW106139223A 2017-11-13 2017-11-13 Cascaded power converter apparatus TWI651911B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106139223A TWI651911B (en) 2017-11-13 2017-11-13 Cascaded power converter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106139223A TWI651911B (en) 2017-11-13 2017-11-13 Cascaded power converter apparatus

Publications (2)

Publication Number Publication Date
TWI651911B TWI651911B (en) 2019-02-21
TW201919298A true TW201919298A (en) 2019-05-16

Family

ID=66213753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139223A TWI651911B (en) 2017-11-13 2017-11-13 Cascaded power converter apparatus

Country Status (1)

Country Link
TW (1) TWI651911B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201032448A (en) * 2009-02-23 2010-09-01 Delta Electronics Inc Power conversion circuit capable of distributing input current
CN101820217B (en) * 2009-02-26 2013-02-20 台达电子工业股份有限公司 Power conversion circuit with function of current decentralized input
CN102570804B (en) * 2010-12-28 2015-02-25 台达电子工业股份有限公司 DC (direct current) power supply conversion module and control method thereof as well as connector and energy collection system
TWI430557B (en) * 2011-11-30 2014-03-11 Ind Tech Res Inst A method for controlling hybrid multilevel dc/ac inverter apparatus
TWI602388B (en) * 2016-03-10 2017-10-11 盈正豫順電子股份有限公司 Bidirectional isolated multi-level dc-dc converter and method thereof
TWI601353B (en) * 2016-07-12 2017-10-01 Distributed module type grid connection conversion device and its control method

Also Published As

Publication number Publication date
TWI651911B (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US9621103B2 (en) Circulating current and oscillating current suppressing method and parallel inverter driver system
TWI474606B (en) Parallel inverter drive system and the apparatus and method for suppressing circulating current in such system
JP5596086B2 (en) Equipment and method for supplying power
EP2523298A1 (en) Method and apparatus for controlling electric grid in islanding mode
TW201315116A (en) Maximum power point tracking for power conversion system and method thereof
EP2719068B1 (en) Dc/ac converter and method of controlling a dc/ac converter
CN112550086B (en) Vehicle energy management method and device, vehicle and storage medium
CN103001581A (en) Parallel inverter drive system and circulating current restraining device and method therefor
JP6752401B1 (en) Power converter
EP2884653B1 (en) Improvements in or relating to the control of converters
JP6686562B2 (en) Power converter controller
CN113691150A (en) Energy conversion system and over-temperature operation control method and control equipment thereof
TWI651911B (en) Cascaded power converter apparatus
CN105119314A (en) Dynamic switching method for power unit direct-current voltage balance control
KR101361940B1 (en) Slave controller for parallel operation inverter system
RU2741061C1 (en) Multi-level active filter control system
CN111267649A (en) Maximum efficiency tracking control method and vehicle-mounted charging system
US10404185B2 (en) Three phase medium voltage power conversion system for closed-loop applications
Patel et al. A novel control method for UPS battery charging using Active Front End (AFE) PWM rectifier
JP2016158339A (en) Property stabilization device for dc power supply system
JP6245467B2 (en) Power converter for wind power generation
WO2024042696A1 (en) Dc power distribution system and voltage stabilizing device
Routray et al. Capacitor voltage balancing in hybrid cascaded multilevel inverter using modified model predictive control
EP2719069B1 (en) Method of controlling a dc/ac converter
US10622882B2 (en) Control of power conversion device for decreasing total harmonic distortion