TWI651104B - 以超臨界流體處理生醫材料之方法 - Google Patents

以超臨界流體處理生醫材料之方法 Download PDF

Info

Publication number
TWI651104B
TWI651104B TW107106643A TW107106643A TWI651104B TW I651104 B TWI651104 B TW I651104B TW 107106643 A TW107106643 A TW 107106643A TW 107106643 A TW107106643 A TW 107106643A TW I651104 B TWI651104 B TW I651104B
Authority
TW
Taiwan
Prior art keywords
supercritical fluid
biomedical
biomedical material
supercritical
treating
Prior art date
Application number
TW107106643A
Other languages
English (en)
Other versions
TW201825129A (zh
Inventor
張鼎張
張冠張
施志承
潘致宏
林志陽
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW107106643A priority Critical patent/TWI651104B/zh
Publication of TW201825129A publication Critical patent/TW201825129A/zh
Application granted granted Critical
Publication of TWI651104B publication Critical patent/TWI651104B/zh

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

本發明主要揭示一種以超臨界流體處理生醫材料之方法,用於解決習知生醫材料之問題,該方法之步驟包含:於一反應腔室通入一超臨界流體,該超臨界流體摻雜一氫同位素之化合物,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體對該反應腔室內的至少一生醫材料進行改質反應。藉此,可將生醫材料均勻或選擇性改質,以解決上述問題。

Description

以超臨界流體處理生醫材料之方法
本發明係關於一種生醫材料處理方法;特別是關於一種以超臨界流體處理改質生醫材料之方法。
生醫材料泛指具生物相容性而可作為失能器官或受損組織替代物的天然或人工合成材料,依材料性質實現不同功能的醫療裝置,以便用於不同醫療用途之裝置。
上述生醫材料製造過程首重生物相容性,因此大多選用不會產生生物免疫排斥、惰性、無毒性、不產生過敏、不致癌之材料,依照醫療器材的需求而言其材料性能可能並非最佳,如機械性能(強度、硬度、韌性和塑性等),惟大多數特性較佳材料之生物相容性可能不佳或使用期間可能會產生毒性物質,導致大多數材料難以應用於醫療用途。為了克服此問題,習知生醫材料性能改善方式通常從材料成型後的材料改質著手,經由合成、塗佈、鍍膜、電漿噴塗等後處理技術改善生醫材料之生物相容性、可降解性、可靠度及性能,期能改善生醫材料的品質。
然而,生醫材料改質受成品塑形之形狀影響不易均勻改質,儘管生醫材料製造及改質技術不斷改良,仍無法保證生醫材料的性能、均勻度與可靠度,故生醫材料之性能改善幅度仍有限。且,上述生醫材料品質改良方式會受限於製程中的溫度、壓力、材料化性及表面形貌等必要條件,導致效果不甚理想。
有鑑於此,上述先前技術在實際使用時確有不便之處,亟需進一步改良,以提升其實用性。
本發明係提供一種以超臨界流體處理生醫材料之方法,無須改變生醫材料原有製程,即可加工處理生醫材料,以改善生醫材料的性能、可靠度、生物相容性或生物可降解性。
本發明揭示一種以超臨界流體處理生醫材料之方法,其步驟可包含:於一反應腔室通入一超臨界流體,該超臨界流體摻雜一氫同位素之化合物,所述氫同位素可為氘,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體對該反應腔室內的至少一生醫材料進行改質反應,該生醫材料為一醫療裝置之成品或一醫療裝置之半成品,該醫療裝置為一手術器械、一人工關節、一心臟瓣膜座、一血管支架、一骨科固定器、一牙科補綴材料、一骨水泥、一隱形眼鏡、一人工水晶體、一人造血管、一人工皮、一縫線、一美容醫學填充物、一眼角膜、一疾病診斷工具、一藥物傳送載體或一生物感應器。其中,上述以超臨界流體處理生醫材料之方法可均勻或選擇性處理任意形狀之生醫材料。
所述氫同位素之化合物可選自LiH、NaH、KH、CaH2、MgH2、BeH2、PH3、BnHm、CxHy、HF、AsH3AlH3、H2S、H2Se、HCl、HBr、HI、NH4Cl、CO(NH2)2及NH3所組成之群組;所述生醫材料可選自任意金屬材料、陶瓷材料、高分子材料、生物來源材料或其複合材料;所述溫度範圍可為77至1000K;所述壓力範圍可為3至1000atm。
上揭以超臨界流體處理生醫材料之方法,可於上述生醫材料進行超臨界處理之改質,進而提升其生物相容性、可降解性、可靠度及性能,可以達成「提升生醫材料可應用性」及「提升醫療裝置效能」等功效。
A1‧‧‧腔體
A2‧‧‧流體進出孔
B‧‧‧超臨界流體
E‧‧‧生醫材料
第1圖:係本發明以超臨界流體處理生醫材料之方法實施例的使用示意圖。
第2圖:係本發明以超臨界流體處理生醫材料之方法實施例透過超臨界流體處理增強或減弱特定官能基及元素之特性示意圖。
第3圖:係本發明以超臨界流體處理生醫材料之方法實施例透過超臨界流體處理增加額外官能基及元素之材料原始特性曲線圖。
第4圖:係本發明以超臨界流體處理生醫材料之方法實施例透過超臨界流體處理增加額外官能基及元素之材料改質特性曲線圖。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明全文所述之方向性用語,例如「前」、「後」、「左」、「右」、「上(頂)」、「下(底)」、「內」、「外」、「側」等,主要係參考附加圖式的方向,各方向性用語僅用以輔助說明及理解本發明的各實施例,非用以限制本發明。
請參閱第1圖所示,其係本發明之以超臨界流體處理生醫材料之方法實施例的使用示意圖。其中,該方法實施例可在一腔體A1(如:具有反應腔室之腔體)中透過一流體進出孔A2通入一超臨界流體B(supercritical fluid),如:二氧化碳(CO2)、水(H2O)或氟利昂(Freon)等,CO2之臨界溫度31℃、臨界壓力72.8atm,CO2具備常溫加壓即可產生超臨界態之特性;H2O之臨界溫度374℃、臨界壓力218.3atm,H2O具備強氧化力與穿透力,惟不以此為限,用以對至少一生醫材料E進行超臨界改質加工處理。
該生醫材料E可為任意金屬材料、陶瓷材料、高分子材料、生物來源材料或其複合材料,並可以用作一醫療裝置之成品或一醫療裝置之半成品,如:手術器械、人工關節、心臟瓣膜座、血管支架、骨科固定器、牙科補綴材料、骨水泥、隱形眼鏡、人工水晶體、人造血管、人工皮、縫線、美容醫學填充物、眼角膜、疾病診斷工具、藥物傳送載體或生物感應器等,惟不以此為限。其中,上述生醫材料E之結構及其可能產生缺陷之位置係所屬技術領域中具有通常知識者可以理解,在此容不贅述。
在此例中,如第1圖所示,可於該腔體A1內通入該超臨界流體B(如:SCCO2),該超臨界流體B可摻雜一氫同位素(如:氕或氘等非放射性氫同位素)之化合物作為共溶劑,例如:該氫同位素之化合物可選自LiH、NaH、KH、CaH2、MgH2、BeH2、PH3、BnHm、CxHy、HF、AsH3、NH3、AlH3、H2S、H2Se、HCl、HBr、HI、NH4Cl及CO(NH2)2所組成之群組,該群組之化合物的佔比可依實際需求調整;或者,該超臨界流體B可摻雜一有機金屬化合物作為共溶劑,該有機金屬化合物可由一前驅物(如經由一化學反應形成之前驅物)所形成,惟不以此為限;或者,該超臨界流體B可摻雜鹵素、氧、硫、硒、磷、砷或其化合物作為共溶劑,該鹵素可為氟(F)、氯(Cl)、溴(Br)或碘(I)。在此實施例中,該共溶劑僅以氫同位素之化合物作為實施態樣說明;另於該超臨界流體B維持超臨界態之溫度範圍(如77至1000K)及壓力範圍(如3至1000atm)下,以該超臨界流體B對該腔體A1內的至少一生醫材料E進行改質反應,惟不以此為限。
在此例中,由於超臨界流體之密度、擴散率、黏滯率等特性介於液體與氣體之間,相較於氣體之高穿透度及無溶解度、液體之低穿透度及高溶解度,超臨界流體可兼具高穿透度及高溶解度。因此,可對該生醫材料原有之材料層進行消除材料缺陷、改善介面缺陷及薄膜改質(如K值 的變化,惟不以此為限)等作用。同時,更可外加電磁波加強超臨界處理效能,如:上述腔體可引入一電磁波,該電磁波與超臨界流體可共同對該腔體內的至少一生醫材料進行改質反應,用以加強改質反應效果,其實施方式係所屬技術領域中具有通常知識者可以理解,在此容不贅述。
因此,該生醫材料經過上述改質反應後,該生醫材料可在無缺陷或低缺陷的狀態下工作,避免因缺陷造成的性能損失,相較於未經超臨界流體加工處理之生醫材料,本案上述方法處理後的生醫材料可生物相容性、可降解性、可靠度及性能。以下係舉例說明生醫材料經超臨界流體加工處理與否之材料特性差異,惟不以此為限。
另,如第2圖所示,生醫材料經由超臨界流體改質〝處理後〞,相較於〝處理前〞之原始特性已大不相同,由圖可知,本案上述方法處理後的生醫材料可透過超臨界流體處理增強或移除特定官能基及元素,用以提升其生物相容性、可降解性、可靠度及性能。
另,如第3及4圖所示,其中,生醫材料經由超臨界流體改質〝處理後〞(如第4圖所示),相較於〝處理前〞(如第3圖所示),經超臨界處理確實能對生醫材料進行大幅度改質,可以達成「提升生醫材料可應用性」及「提升醫療裝置效能」等功效。
藉此,本發明上述實施例可於上述生醫材料之缺陷處進行超臨界處理之改質過程,進而降低介面及內部缺陷,透過超臨界流體處理增強或移除特定官能基及元素,無須改變生醫材料原有製程,即可加工處理生醫材料,即可提升其生物相容性、可降解性、可靠度及性能,可以達成「提升生醫材料可應用性」及「提升醫療裝置效能」等功效。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。

Claims (5)

  1. 一種以超臨界流體處理生醫材料之方法,其步驟包含:於一反應腔室通入一超臨界流體,該超臨界流體摻雜一氫同位素之化合物,該氫同位素為氘,於該超臨界流體維持超臨界態之溫度範圍及壓力範圍下,使該超臨界流體對該反應腔室內的至少一生醫材料進行改質處理,該生醫材料為一醫療裝置之成品或一醫療裝置之半成品,該醫療裝置為一手術器械、一人工關節、一心臟瓣膜座、一血管支架、一骨科固定器、一牙科補綴材料、一骨水泥、一隱形眼鏡、一人工水晶體、一人造血管、一人工皮、一縫線、一美容醫學填充物、一眼角膜、一疾病診斷工具、一藥物傳送載體或一生物感應器。
  2. 根據申請專利範圍第1項所述以超臨界流體處理生醫材料之方法,其中該氫同位素之化合物係選自LiH、NaH、KH、CaH2、MgH2、BeH2、PH3、BnHm、CxHy、HF、AsH3、AlH3、H2S、H2Se、HCl、HBr、HI、NH4Cl、CO(NH2)2及NH3所組成之群組。
  3. 根據申請專利範圍第1或2項所述以超臨界流體處理生醫材料之方法,其中該生醫材料係選自金屬材料、陶瓷材料、高分子材料、生物來源材料或其複合材料。
  4. 根據申請專利範圍第1或2項所述以超臨界流體處理生醫材料之方法,其中該溫度範圍為77至1000K。
  5. 根據申請專利範圍第1或2項所述以超臨界流體處理生醫材料之方法,其中該壓力範圍為3至1000atm。
TW107106643A 2017-01-12 2017-01-12 以超臨界流體處理生醫材料之方法 TWI651104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107106643A TWI651104B (zh) 2017-01-12 2017-01-12 以超臨界流體處理生醫材料之方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107106643A TWI651104B (zh) 2017-01-12 2017-01-12 以超臨界流體處理生醫材料之方法

Publications (2)

Publication Number Publication Date
TW201825129A TW201825129A (zh) 2018-07-16
TWI651104B true TWI651104B (zh) 2019-02-21

Family

ID=63640192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107106643A TWI651104B (zh) 2017-01-12 2017-01-12 以超臨界流體處理生醫材料之方法

Country Status (1)

Country Link
TW (1) TWI651104B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792008B (zh) * 2020-06-19 2023-02-11 國立中山大學 針具的表面改質方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670102A (en) * 1993-02-11 1997-09-23 Minnesota Mining And Manufacturing Company Method of making thermoplastic foamed articles using supercritical fluid
CN1653112A (zh) * 2002-03-13 2005-08-10 诺丁汉大学 带有内部分布的沉积物的聚合物复合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670102A (en) * 1993-02-11 1997-09-23 Minnesota Mining And Manufacturing Company Method of making thermoplastic foamed articles using supercritical fluid
CN1653112A (zh) * 2002-03-13 2005-08-10 诺丁汉大学 带有内部分布的沉积物的聚合物复合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792008B (zh) * 2020-06-19 2023-02-11 國立中山大學 針具的表面改質方法

Also Published As

Publication number Publication date
TW201825129A (zh) 2018-07-16

Similar Documents

Publication Publication Date Title
ES2394181T3 (es) Dispositivo médico intervencional para su uso en la obtención de imágenes por resonancia magnética
AU2016241211B2 (en) Hemostatic injection needle coated with crosslinked chitosan having catechol group and oxidized catechol group
TWI627975B (zh) 以超臨界流體處理生醫材料之方法
RU121735U1 (ru) Сетчатый имплантат для реконструктивной хирургии (варианты)
CN105530888B (zh) 多孔牙科植入物
MXPA05001149A (es) Aparato y metodo para prevenir adhesiones entre un implante y tejidos circundantes.
AU2003230519A1 (en) An implant and a method for treating an implant surface
TWI651104B (zh) 以超臨界流體處理生醫材料之方法
Kural et al. Late calcification and rupture: a rare complication of ventriculoperitoneal shunting
CN108042847A (zh) 一种改善钛合金种植体表面生物仿生矿化能力的方法
CN106659737A (zh) 抗凝血及脱凝血质的方法、组成物和装置
AU2019432092A1 (en) Treatment method for zirconium alloy and application
MD2784F1 (en) Method of treatment of gigantic ventral hernias
JP5629503B2 (ja) 注射針の製造方法および注射針
Haugen et al. Long-term in vivo response of a polyurethane gastric implant for treating gastro-oesophageal reflux diseases: a comparison of different surface treatments
TWI405593B (zh) 促骨生成之水膠敷料
RU2311879C1 (ru) Миниинвазивный способ хирургического лечения дефектов брюшной стенки
RU2522932C9 (ru) Устройство зонтичное (окклюдер) с модифицированным поверхностным слоем
KR101266344B1 (ko) 스텐트의 제조방법
Al Saeedi Evaluation of bioimplants surface nano-micro design by chemical mechanical polishing against alternative methods
Bialas et al. Advanced Polymeric Materials for Reconstructive Treatment after the Intra-Oral Tumor Resections
US7988892B2 (en) Preparation and sterilization of green state devices using a supercritical fluid sterilant
Siboro et al. Harnessing HfO2 Nanoparticles for Wearable Tumor Monitoring and Sonodynamic Therapy in Advancing Cancer Care
JP7333553B2 (ja) 生体軟組織用接着材の製造方法、生体内埋入型センサの製造方法、生体軟組織変形補助材の製造方法、生体軟組織穿孔封鎖材の製造方法および生体軟組織補強材の製造方法
CN107475686A (zh) 一种基于原子层沉积氧化锆抗腐蚀性陶瓷薄膜的制备方法