TWI649596B - Liquid crystal display panel - Google Patents

Liquid crystal display panel Download PDF

Info

Publication number
TWI649596B
TWI649596B TW105102140A TW105102140A TWI649596B TW I649596 B TWI649596 B TW I649596B TW 105102140 A TW105102140 A TW 105102140A TW 105102140 A TW105102140 A TW 105102140A TW I649596 B TWI649596 B TW I649596B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
display panel
substrate
layer
Prior art date
Application number
TW105102140A
Other languages
Chinese (zh)
Other versions
TW201727318A (en
Inventor
龔晏瑩
鍾介文
陳卓彥
丁天倫
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW105102140A priority Critical patent/TWI649596B/en
Publication of TW201727318A publication Critical patent/TW201727318A/en
Application granted granted Critical
Publication of TWI649596B publication Critical patent/TWI649596B/en

Links

Abstract

本發明提供一種液晶顯示面板,包括第一基板、掃描線、資料線、畫素結構、對向電極層、液晶層以及第二基板。掃描線、資料線及畫素結構位於第一基板上,每一畫素結構包括電性連接至掃描線與資料線的第一主動元件及電性連接至第一主動元件的第一畫素電極。第一畫素電極具有多個第一條狀部。第二基板位於第一基板的對向。對向電極層及液晶層配置於第一與第二基板之間。對向電極層配置於第二基板上。液晶層具有厚度d且包括液晶組合物,液晶顯示面板符合式(1):式(1),其中320 nm≦(Δn.d)≦350 nm,K11 是擴張彈性係數、Δε是介電常數非等向性,Δn是光學各向異性。The present invention provides a liquid crystal display panel including a first substrate, a scan line, a data line, a pixel structure, a counter electrode layer, a liquid crystal layer, and a second substrate. The scan line, the data line and the pixel structure are located on the first substrate, each pixel structure includes a first active component electrically connected to the scan line and the data line, and a first pixel electrode electrically connected to the first active component . The first pixel electrode has a plurality of first strips. The second substrate is located opposite to the first substrate. The counter electrode layer and the liquid crystal layer are disposed between the first and second substrates. The counter electrode layer is disposed on the second substrate. The liquid crystal layer has a thickness d and includes a liquid crystal composition, and the liquid crystal display panel conforms to the formula (1): Formula (1), wherein 320 nm ≦(Δn.d) ≦ 350 nm, K 11 is an expansion elastic coefficient, Δ ε is a dielectric constant anisotropy, and Δn is optical anisotropy.

Description

液晶顯示面板LCD panel

本發明是有關於一種顯示面板,且特別是有關於一種液晶顯示面板。The present invention relates to a display panel, and more particularly to a liquid crystal display panel.

無輻射、高畫質等優越特性的平面顯示面板(flat display panels)已成為市場主流。常見的平面顯示器包括液晶顯示器(liquid crystal displays,LCD)、電漿顯示器(plasma displays)、有機電激發光顯示器(electroluminescent displays)等。以最普及的液晶顯示器為例,液晶顯示器為兩個基板之間夾有顯示介質所構成。在液晶顯示器中,其基板上形成有諸如畫素電極和共電極的場發生電極,而液晶層則配置於這兩個顯示面板之間。在液晶顯示器中,透過將電壓施加到場發生電極而在液晶層上產生電場,且藉由產生的電場來確定液晶層之液晶分子的取向和入射光的偏振,從而顯示圖案。Flat display panels with superior characteristics such as no radiation and high image quality have become the mainstream in the market. Common flat panel displays include liquid crystal displays (LCDs), plasma displays, organic electroluminescent displays, and the like. Taking the most popular liquid crystal display as an example, the liquid crystal display is composed of a display medium sandwiched between two substrates. In a liquid crystal display, a field generating electrode such as a pixel electrode and a common electrode is formed on a substrate thereof, and a liquid crystal layer is disposed between the two display panels. In the liquid crystal display, an electric field is generated on the liquid crystal layer by applying a voltage to the field generating electrode, and the orientation of the liquid crystal molecules of the liquid crystal layer and the polarization of the incident light are determined by the generated electric field, thereby displaying a pattern.

舉例來說,上述LCD可透過在一個畫素電極上僅形成條狀電極微結構的方式,使液晶倒向順著條狀電極方向,在一個畫素中形成不同取向方向之液晶分子的多個區域,進而形成廣視角。然而,液晶在利用於畫素電極中形成微結構的分支電極的上述方式中,由於電極的邊緣電場發生液晶分子有輕微的扭轉或傾斜不穩定的現象,故相對地減少了液晶顯示器在高解析度下的液晶效率與顯示品質。惟,藉由降低兩基板之間的液晶層的厚度d可減輕液晶對應不同波長的色散現象,其將導致光穿透率劣化。因此,如何在高解析度下優化液晶顯示器的顯示品質,同時提高光穿透率,實為研發人員亟欲解決的議題之一。For example, the LCD can form a plurality of liquid crystal molecules of different orientation directions in one pixel by inverting the liquid crystal in a direction of the strip electrode by forming only the strip electrode microstructure on one pixel electrode. The area, which in turn forms a wide viewing angle. However, in the above-described manner in which the liquid crystal is used to form a microstructured branch electrode in the pixel electrode, the liquid crystal molecules are slightly twisted or tilted due to the electric field at the edge of the electrode, so that the liquid crystal display is relatively low in resolution. Liquid crystal efficiency and display quality. However, by reducing the thickness d of the liquid crystal layer between the two substrates, the dispersion phenomenon of the liquid crystal corresponding to different wavelengths can be alleviated, which will cause the light transmittance to deteriorate. Therefore, how to optimize the display quality of the liquid crystal display at high resolution and improve the light transmittance is one of the topics that the researcher wants to solve.

本發明提供一種液晶顯示面板,其除了改善液晶顯示器的液晶效率與顯示品質外,更能有效地提高光穿透率。The invention provides a liquid crystal display panel which can effectively improve the light transmittance in addition to improving the liquid crystal efficiency and display quality of the liquid crystal display.

本發明提供一種液晶顯示面板,包括第一基板、掃描線、資料線、畫素結構、對向電極層、液晶層以及第二基板。掃描線、資料線及畫素結構位於第一基板上,每一畫素結構包括第一主動元件及第一畫素電極。第一主動元件電性連接至掃描線其中之一與資料線其中之一。第一畫素電極電性連接至第一主動元件,且具有多個第一條狀部。第二基板位於第一基板的對向。對向電極層配置於第二基板上並位於第一基板與第二基板之間。液晶層配至於位於第一基板與第二基板之間,且具有厚度d。其中晶層包括液晶組合物,且液晶顯示面板符合下述式(1):式(1),其中320 nm≦(Δn.d)≦350 nm,k11 是擴張彈性係數、Δε是介電常數非等向性,Δn是光學各向異性。The present invention provides a liquid crystal display panel including a first substrate, a scan line, a data line, a pixel structure, a counter electrode layer, a liquid crystal layer, and a second substrate. The scan line, the data line and the pixel structure are located on the first substrate, and each pixel structure comprises a first active component and a first pixel electrode. The first active component is electrically connected to one of the scan lines and one of the data lines. The first pixel electrode is electrically connected to the first active element and has a plurality of first strips. The second substrate is located opposite to the first substrate. The opposite electrode layer is disposed on the second substrate and located between the first substrate and the second substrate. The liquid crystal layer is disposed between the first substrate and the second substrate and has a thickness d. Wherein the crystal layer comprises a liquid crystal composition, and the liquid crystal display panel conforms to the following formula (1): Formula (1), wherein 320 nm ≦(Δn.d) ≦ 350 nm, k 11 is the expansion elastic coefficient, Δ ε is the dielectric constant anisotropy, and Δn is the optical anisotropy.

基於上述,本發明的液晶顯示面板藉由液晶組合物的特定性質與調整液晶層的厚度達到較好的顯示品質與快速應答時間外,並搭配滿足上述式(1)的特定畫素結構的設計,能夠有效地提高液晶顯示面板的光穿透率。Based on the above, the liquid crystal display panel of the present invention achieves better display quality and fast response time by adjusting the specific properties of the liquid crystal composition and adjusting the thickness of the liquid crystal layer, and is matched with the design of the specific pixel structure satisfying the above formula (1). It can effectively improve the light transmittance of the liquid crystal display panel.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1是根據本發明一實施例的液晶顯示面板10的剖面示意圖。圖2是圖1的液晶顯示面板中的主動元件層的電路示意圖。請參照圖1,液晶顯示面板10包括第一基板100、第二基板200、主動元件陣列層300、對向電極層400、第一配向層502、第二配向層504以及液晶層600。1 is a schematic cross-sectional view of a liquid crystal display panel 10 in accordance with an embodiment of the present invention. 2 is a circuit diagram of an active device layer in the liquid crystal display panel of FIG. 1. Referring to FIG. 1 , the liquid crystal display panel 10 includes a first substrate 100 , a second substrate 200 , an active device array layer 300 , a counter electrode layer 400 , a first alignment layer 502 , a second alignment layer 504 , and a liquid crystal layer 600 .

第一基板100之材質可為玻璃、石英、有機聚合物、或是不透光/反射材料(例如:導電材料、金屬、晶圓、陶瓷、或其它可適用的材料)、或是其它可適用的材料,本發明不以此為限。若使用導電材料或金屬時,則在基板100上覆蓋一層絕緣層(未繪示),以避免短路問題。第一基板100上包括設置有如圖2所示之主動元件陣列層300。The material of the first substrate 100 may be glass, quartz, organic polymer, or an opaque/reflective material (for example, conductive material, metal, wafer, ceramic, or other applicable materials), or other applicable. The material of the invention is not limited thereto. If a conductive material or metal is used, the substrate 100 is covered with an insulating layer (not shown) to avoid short circuit problems. The first substrate 100 includes an active device array layer 300 as shown in FIG.

如上述,主動元件陣列層300位於第一基板100上。請先參照圖2,主動元件陣列層300包括多條掃描線SL1~SLn、多條資料線DL1~DLn以及多個畫素結構P。其中,掃描線SL1~SLn與資料線DL1~DLn彼此交錯設置,且每一個畫素結構P電性連接於所對應的掃描線SL1~SLn其中一條和所對應的資料線DL1~DLn其中一條。在本實施例中,是以掃描線SL1~SLn與資料線DL1~DLn彼此交錯設置形成多個畫素結構P,但不限於此。本發明之實施例,是以掃描線SL1~SLn的延伸方向與資料線DL1~DLn的延伸方向不平行。較佳的是,掃描線SL1~SLn的延伸方向與資料線DL1~DLn的延伸方向垂直。基於導電性的考量,掃描線SL1~SLn與資料線DL1~DLn之間夾有絕緣層。掃描線SL1~SLn與資料線DL1~DLn一般是使用金屬材料。然,本發明不限於此,根據其他實施例,掃描線SL1~SLn與資料線DL1~DLn也可以使用其他導電材料。例如:合金、金屬材料的氮化物、金屬材料的氧化物、金屬材料的氮氧化物、或其它合適的材料)、或是金屬材料與其它導電材料的堆疊層。更具體來說,每一個畫素結構P包括第一主動元件T1以及第一畫素電極PE1,其中第一主動元件T1電性連接至掃描線SL1~SLn其中之一者與資料線DL1~DLn其中之一者,且第一畫素電極PE1電性連接至第一主動元件T1。此外,主動元件陣列層300的畫素結構P的詳細結構將於後續段落說明。As described above, the active device array layer 300 is located on the first substrate 100. Referring first to FIG. 2, the active device array layer 300 includes a plurality of scan lines SL1 SLSLn, a plurality of data lines DL1 DLDLn, and a plurality of pixel structures P. The scan lines SL1 - SLn and the data lines DL1 - DLn are alternately arranged with each other, and each pixel structure P is electrically connected to one of the corresponding scan lines SL1 - SLn and one of the corresponding data lines DL1 - DLn. In the present embodiment, the plurality of pixel structures P are formed by interlacing the scan lines SL1 to SLn and the data lines DL1 to DLn, but are not limited thereto. In the embodiment of the present invention, the extending direction of the scanning lines SL1 to SLn is not parallel to the extending direction of the data lines DL1 to DLn. Preferably, the extending direction of the scanning lines SL1 to SLn is perpendicular to the extending direction of the data lines DL1 to DLn. Based on the conductivity considerations, an insulating layer is interposed between the scanning lines SL1 to SLn and the data lines DL1 to DLn. The scan lines SL1 to SLn and the data lines DL1 to DLn are generally made of a metal material. However, the present invention is not limited thereto, and according to other embodiments, other conductive materials may be used for the scan lines SL1 to SLn and the data lines DL1 to DLn. For example: alloys, nitrides of metallic materials, oxides of metallic materials, oxynitrides of metallic materials, or other suitable materials), or stacked layers of metallic materials and other electrically conductive materials. More specifically, each pixel structure P includes a first active device T1 and a first pixel electrode PE1, wherein the first active device T1 is electrically connected to one of the scan lines SL1 SLSLn and the data lines DL1 DL DLn One of the first pixel electrodes PE1 is electrically connected to the first active device T1. Further, the detailed structure of the pixel structure P of the active device array layer 300 will be explained in the subsequent paragraphs.

請再參照圖1,第二基板200是設置在第一基板100的對向側。第二基板200之材質可為玻璃、石英、有機聚合物、或是不透光/反射材料(例如:導電材料、金屬、晶圓、陶瓷、或其它可適用的材料)、或是其它可適用的材料,本發明不以此為限。具體來說,第二基板200的材質可以與第一基板100的材質相同或不同。除此之外,為了使液晶顯示面板100可呈現多彩化的顯示效果,第一基板100或第二基板200可以具有彩色濾光層(未繪示),其包括紅、綠、藍色濾光圖案。亦即,第二基板200可以是彩色濾光基板或是第一基板100可以是彩色濾光層製作於畫素陣列上(Color filter on Array, COA)或是畫素陣列製作於彩色濾光層上(Array on Color filter, AOC)的設計。另外,液晶顯示面板10更可包括設置遮光圖案層(或稱為黑矩陣,未繪示)於第二基板200或第一基板100上,設置於彩色濾光陣列的濾光圖案之間。Referring to FIG. 1 again, the second substrate 200 is disposed on the opposite side of the first substrate 100. The material of the second substrate 200 may be glass, quartz, organic polymer, or an opaque/reflective material (for example, conductive material, metal, wafer, ceramic, or other applicable material), or other applicable. The material of the invention is not limited thereto. Specifically, the material of the second substrate 200 may be the same as or different from the material of the first substrate 100. In addition, in order to enable the liquid crystal display panel 100 to exhibit a colorful display effect, the first substrate 100 or the second substrate 200 may have a color filter layer (not shown) including red, green, and blue filters. pattern. That is, the second substrate 200 may be a color filter substrate or the first substrate 100 may be a color filter layer formed on a pixel array (Color filter on Array (COA) or a pixel array formed on a color filter layer. Array on Color filter (AOC) design. In addition, the liquid crystal display panel 10 may further include a light shielding pattern layer (also referred to as a black matrix, not shown) on the second substrate 200 or the first substrate 100, and disposed between the filter patterns of the color filter array.

對向電極層400設置於第二基板200上,且對向電極層400位於第一基板100以及第二基板200之間。對向電極層400為透明導電層,其材質包括金屬氧化物,例如是銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物、或其它合適的氧化物、或者是上述至少二者之堆疊層。在本實施例中,對向電極層400是全面地覆蓋於第二基板200上,然本發明不限於此。在一實施例,對向電極層400經圖案化後設置於第二基板200上。在本實施例中,對向電極層400連接至一共用電壓(Vcom),且當一不同於共用電壓的電壓被施加於主動元件陣列層300時,主動元件陣列層300以及對向電極層400之間會產生垂直電場,以驅動在主動元件陣列層300以及對向電極層400之間的液晶層600中的液晶組成物。The counter electrode layer 400 is disposed on the second substrate 200, and the counter electrode layer 400 is located between the first substrate 100 and the second substrate 200. The counter electrode layer 400 is a transparent conductive layer made of a metal oxide such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium antimony zinc oxide, or other suitable oxidation. Or a stacked layer of at least two of the above. In the present embodiment, the counter electrode layer 400 is entirely covered on the second substrate 200, but the present invention is not limited thereto. In an embodiment, the counter electrode layer 400 is patterned and disposed on the second substrate 200. In the present embodiment, the counter electrode layer 400 is connected to a common voltage (Vcom), and when a voltage different from the common voltage is applied to the active device array layer 300, the active device array layer 300 and the counter electrode layer 400 A vertical electric field is generated to drive the liquid crystal composition in the liquid crystal layer 600 between the active device array layer 300 and the counter electrode layer 400.

第一配向層502配置於主動元件陣列層300上,以對液晶層600進行配向作用。另一方面,第二配向層504配置於對向電極層400上,以對液晶層600進行配向作用。第一配向層502以及第二配向層504例如是有機材料,且可以是採用接觸式或是非接觸式配向方式對液晶層600進行配向。在本實施例中,第一配向層502以及第二配向層504並不需要經過摩擦取向(Rubbing)程序。The first alignment layer 502 is disposed on the active device array layer 300 to align the liquid crystal layer 600. On the other hand, the second alignment layer 504 is disposed on the counter electrode layer 400 to align the liquid crystal layer 600. The first alignment layer 502 and the second alignment layer 504 are, for example, organic materials, and the liquid crystal layer 600 may be aligned by a contact or non-contact alignment. In the present embodiment, the first alignment layer 502 and the second alignment layer 504 do not need to undergo a rubbing process.

液晶層600位於第一基板100以及第二基板200之間。進一步來說,液晶層600是位於主動元件陣列層300以及對向電極層400之間,且更是位於第一配向層502以及第二配向層504之間。另一方面,液晶層600的厚度為d,其中厚度d介於3.00微米(μm)至3.50微米之間。此外,液晶層600具有液晶組成物。在本實施例中,液晶顯示面板10為使用聚合物穩定配向(Polymer-Stabilized Alignment,PSA)技術之液晶顯示面板,因此在液晶層600中的液晶組成物除了包含屬必要成分的液晶分子之外,還包括反應性單體化合物。換言之,在此液晶顯示面板尚未進行反應性單體化合物之照光程序時,液晶層600中的液晶組成物包含有液晶分子以及反應性單體化合物。當此液晶顯示面板於進行單體化合物之照光程序時,反應性單體化合物會進行聚合反應而於主動元件陣列層300之表面形成聚合物薄膜。因此當此液晶顯示面板於進行反應性單體化合物之照光程序之後,此時液晶層600中的液晶組成物主要為液晶分子。The liquid crystal layer 600 is located between the first substrate 100 and the second substrate 200. Further, the liquid crystal layer 600 is located between the active device array layer 300 and the counter electrode layer 400, and is located between the first alignment layer 502 and the second alignment layer 504. On the other hand, the thickness of the liquid crystal layer 600 is d, wherein the thickness d is between 3.00 micrometers (μm) and 3.50 micrometers. Further, the liquid crystal layer 600 has a liquid crystal composition. In the present embodiment, the liquid crystal display panel 10 is a liquid crystal display panel using Polymer-Stabilized Alignment (PSA) technology, and therefore the liquid crystal composition in the liquid crystal layer 600 contains not only liquid crystal molecules which are essential components but also liquid crystal molecules which are essential components. Also included are reactive monomer compounds. In other words, when the liquid crystal display panel has not been subjected to the illumination process of the reactive monomer compound, the liquid crystal composition in the liquid crystal layer 600 contains liquid crystal molecules and a reactive monomer compound. When the liquid crystal display panel performs the illumination process of the monomer compound, the reactive monomer compound undergoes polymerization to form a polymer film on the surface of the active device array layer 300. Therefore, after the liquid crystal display panel is subjected to the illumination process of the reactive monomer compound, the liquid crystal composition in the liquid crystal layer 600 is mainly liquid crystal molecules.

在本實施例中,液晶層600中的液晶組成物之液晶分子例如是含有作為下述第一成分的選自以化學式(1)所表示的化合物的群組的至少一種化合物、以及作為第二成分的選自以化學式(2)所表示的化合物的群組的至少一種化合物。In the present embodiment, the liquid crystal molecules of the liquid crystal composition in the liquid crystal layer 600 are, for example, at least one compound selected from the group consisting of the compounds represented by the chemical formula (1) as the first component described below, and as the second The component is at least one compound selected from the group consisting of compounds represented by the chemical formula (2).

化學式(1) Chemical formula (1)

化學式(1)中,Y1 及Y2 各自獨立為-CH=CH2(乙烯基)、-CH=CHCH3 、-CH=CHF、-CH=CF2 、碳數為1至6的烷基,例如propyl(丙基)、hexyl(己基)、碳數為1至6的烷氧基,例如ethoxyl(乙氧基)或methoxyl(甲氧基);環A及環B各自獨立為1,4-伸環己基或1,4-伸苯基;m及n各自獨立為0至3的整數,m+n≧2。In the chemical formula (1), Y 1 and Y 2 are each independently -CH=CH 2 (vinyl), -CH=CHCH 3 , -CH=CHF, -CH=CF 2 , and an alkyl group having 1 to 6 carbon atoms. For example, propyl (propyl), hexyl (hexyl), alkoxy groups having a carbon number of 1 to 6, such as ethoxyl (ethoxy) or methoxyl (methoxy); ring A and ring B are each independently 1,4- Cyclohexylene or 1,4-phenylene; m and n are each independently an integer from 0 to 3, m+n≧2.

化學式(2) 化學式(2)中,Y3 為碳數為1至6的烷基,例如-CH3 (甲基)、-C2 H5 (乙基)、-C3 H7 (丙基)、-C4 H9 (丁基)、-C5 H11 (戊基)或-C6 H12 (己基);Y4 為碳數為1至4的烷氧基或碳數為1至4的烷基,例如-OCH3 (甲氧基)、-OC2 H5 (乙氧基)、-OC3 H7 (丙氧基)、-OC4 H9 (丁氧基)、-CH3 (甲基)、-C2 H5 (乙基)、-C3 H7 (丙基)或-C4H9 (丁基);Z為單鍵、-C2 H4 -、-COO-、-OCO-或-CH=CH-;環C及環D各自獨立為1,4-伸環己基或1,4-伸苯基;R為F(氟)、Cl(氯)、Br(溴)、CF3 (三氟甲基)或CN(氰基);p及q各自獨立為0至3的整數,p+q≧1,r為0至4的整數,當r≧2時,R各自可為相同或不同。 In the chemical formula (2), Y 3 is an alkyl group having a carbon number of 1 to 6, such as -CH 3 (methyl), -C 2 H 5 (ethyl), -C 3 H 7 (propyl) ), -C 4 H 9 (butyl), -C 5 H 11 (pentyl) or -C 6 H 12 (hexyl); Y 4 is an alkoxy group having a carbon number of 1 to 4 or a carbon number of 1 to An alkyl group of 4, for example, -OCH 3 (methoxy), -OC 2 H 5 (ethoxy), -OC 3 H 7 (propoxy), -OC 4 H 9 (butoxy), -CH 3 (methyl), -C 2 H 5 (ethyl), -C 3 H 7 (propyl) or -C 4H9 (butyl); Z is a single bond, -C 2 H 4 -, -COO-, -OCO- or -CH=CH-; ring C and ring D are each independently 1,4-cyclohexylene or 1,4-phenylene; R is F (fluorine), Cl (chlorine), Br (bromine) , CF 3 (trifluoromethyl) or CN (cyano); p and q are each independently an integer from 0 to 3, p + q ≧ 1, r is an integer from 0 to 4, and when r ≧ 2, R is each Can be the same or different.

圖3是本發明之實施例的液晶顯示面板之(K11 /Δε)比值與(Δn.d)比值的關係圖。值得注意的是,本發明不特別限定液晶層600中的液晶組成物的成分,惟本實施例之液晶顯示面板10須符合下述式(1):式(1) 式(1)中,K11 為液晶層600中的液晶組成物之擴張彈性係數、Δn為液晶層600中的液晶組成物之光學各向異性、Δε為液晶層600中的液晶組成物之介電常數非等向性以及d為液晶層600的厚度,且(Δn.d)是等於或大於320奈米(nm)以及小於或等於350奈米。由圖3可知,當(Δn.d)值的範圍落於320nm≦(Δn.d)≦350nm時,(K11 /Δε)比值與(Δn.d)值之間確實存在一反比線性關係。此外,液晶層600中的液晶組成物為負性液晶,其介電常數非等向性Δε小於0(即為負值)。Fig. 3 is a graph showing the relationship between the ratio of (K 11 / Δε) and the ratio of (Δn.d) of the liquid crystal display panel of the embodiment of the present invention. It is to be noted that the present invention does not particularly limit the composition of the liquid crystal composition in the liquid crystal layer 600, but the liquid crystal display panel 10 of the present embodiment must conform to the following formula (1): In the formula (1), K 11 is the expansion elastic modulus of the liquid crystal composition in the liquid crystal layer 600, Δn is the optical anisotropy of the liquid crystal composition in the liquid crystal layer 600, and Δε is the liquid crystal in the liquid crystal layer 600. The dielectric constant anisotropy of the composition and d are the thickness of the liquid crystal layer 600, and (Δn.d) is equal to or greater than 320 nm (nm) and less than or equal to 350 nm. As can be seen from Fig. 3, when the value of (Δn.d) falls within 320 nm Δ(Δn.d) ≦350 nm, there is indeed an inverse linear relationship between the (K 11 /Δε) ratio and the (Δn.d) value. Further, the liquid crystal composition in the liquid crystal layer 600 is a negative liquid crystal whose dielectric constant anisotropy Δ ε is less than 0 (that is, a negative value).

由於液晶層600中的液晶分子的擴張(Splay)形變是由|K11 /Δε|比值與施加在液晶層600的電場所決定。其中,當液晶顯示面板使用低(Δn.d)值時,除了可以改善液晶顯示面板的色偏以及大視角偏黃的問題,更同時能降低液晶顯示面板的反應時間。惟,由於使用低(Δn.d)值,液晶層600的厚度d變小,由施加在液晶層600的電場所產生之邊緣電場效應Eff 會相對增大,導致液晶顯示面板中的液晶層600的液晶分子的擴張形變更嚴重,光穿透率下降。又,當液晶顯示面板具有高|K11 /Δε|比值時,液晶層600中的液晶分子較不容易形變。因此,藉由使本實施例的液晶顯示面板10滿足上述式(1)的條件時,可同時解決色偏、改善反應時間以及提高光穿透率。The Splay deformation of the liquid crystal molecules in the liquid crystal layer 600 is determined by the ratio of |K 11 /Δε| and the electric field applied to the liquid crystal layer 600. When the liquid crystal display panel uses a low (Δn.d) value, in addition to improving the color shift of the liquid crystal display panel and the yellowing of the large viewing angle, the reaction time of the liquid crystal display panel can be reduced at the same time. However, since the thickness d of the liquid crystal layer 600 becomes small by using a low (Δn.d) value, the fringe electric field effect E ff generated by the electric field applied to the liquid crystal layer 600 is relatively increased, resulting in a liquid crystal layer in the liquid crystal display panel. The expansion shape of the liquid crystal molecules of 600 is severely changed, and the light transmittance is lowered. Further, when the liquid crystal display panel has a high ratio of |K 11 /Δε|, the liquid crystal molecules in the liquid crystal layer 600 are less likely to be deformed. Therefore, when the liquid crystal display panel 10 of the present embodiment satisfies the condition of the above formula (1), the color shift can be simultaneously solved, the reaction time can be improved, and the light transmittance can be improved.

為了證明本實施例之液晶顯示面板的設計確實具有較佳的光穿透率,特以數個實驗條件進行實驗來做驗證。圖4是以不同實驗條件所測量之液晶顯示面板的穿透率-電壓曲線圖。詳言之,下方表1分別列出圖4中之液晶顯示面板之各樣本的實驗條件。 表1 In order to prove that the design of the liquid crystal display panel of the present embodiment does have a better light transmittance, experiments were carried out under several experimental conditions for verification. Figure 4 is a graph showing the transmittance-voltage curve of a liquid crystal display panel measured under different experimental conditions. In detail, Table 1 below lists the experimental conditions of each sample of the liquid crystal display panel in FIG. Table 1

請同時參照圖4與表1,以樣本A-1與樣本A-2為例,同樣具有相同的液晶組成物,相較於樣本A-2之液晶顯示面板(具有高(Δn.d)值),在測量電壓值為7.5伏特(V)時,樣本A-1之液晶顯示面板(具有低(Δn.d)值)具有較差的光穿透率。相似地,以樣本B-1與樣本B-2為例,同樣具有相同的液晶組成物,相較於樣本B-2之液晶顯示面板(具有高(Δn.d)值),在測量電壓值為7.5伏特(V)時,樣本B-1之液晶顯示面板(具有低(Δn.d)值)具有較差的光穿透率。由此可知,降低(Δn.d)值,雖可提高反應時間與改善顯示品質,但導致光穿透率的劣化。另外,當(Δn.d)值約為325-326 nm與測量電壓值為7.5伏特(V)時,樣品B-1的液晶顯示面板之光穿透率高於樣品A-1的液晶顯示面板之光穿透率。當(Δn.d)值約為348-349 nm與測量電壓值為7.5伏特(V)時,樣品B-2的液晶顯示面板之光穿透率高於樣品A-2的液晶顯示面板之光穿透率。換言之,當具有相似的(Δn.d)值時,相較於具有低|K11 /Δε|比值之液晶顯示面板,具有高|K11 /Δε|比值之液晶顯示面板確實有較高的光穿透率。其中,當測量電壓值為7.5伏特(V)時,由圖4更可發現,具有低(Δn.d)值之液晶顯示面板(樣本A-1與樣本B-1)來說,|K11 /Δε|比值之大小對光穿透率的影響更為顯著。具體來說,當(Δn.d)值約為325-326 nm,樣本B-1之液晶顯示面板的光穿透率相對於樣本A-1之液晶顯示面板的光穿透率提高了約3.74%。如上述,藉由使本實施例的液晶顯示面板10滿足上述式(1)的條件時,除了解決色偏、改善反應時間外,液晶層600中的液晶分子的擴張形變能夠得到平衡,進而在被驅動時,提供較佳的排列方式,使得液晶顯示面板10的光穿透率能夠有所提升。Please refer to FIG. 4 and Table 1 at the same time, taking sample A-1 and sample A-2 as examples, and having the same liquid crystal composition as compared with the liquid crystal display panel of sample A-2 (having a high (Δn.d) value. The liquid crystal display panel of Sample A-1 (having a low (Δn.d) value) has a poor light transmittance when the measured voltage value is 7.5 volts (V). Similarly, taking sample B-1 and sample B-2 as an example, the same liquid crystal composition is also used, compared to the liquid crystal display panel of sample B-2 (having a high (Δn.d) value), the voltage value is measured. At 7.5 volts (V), the liquid crystal display panel of sample B-1 (having a low (Δn.d) value) has a poor light transmittance. From this, it is understood that lowering the value of (Δn.d) improves the reaction time and improves the display quality, but causes deterioration of the light transmittance. In addition, when the (Δn.d) value is about 325-326 nm and the measured voltage value is 7.5 volts (V), the liquid transmittance of the liquid crystal display panel of the sample B-1 is higher than that of the liquid crystal display panel of the sample A-1. Light penetration rate. When the (Δn.d) value is about 348-349 nm and the measured voltage value is 7.5 volts (V), the light transmittance of the liquid crystal display panel of the sample B-2 is higher than that of the liquid crystal display panel of the sample A-2. Penetration rate. In other words, when a similar (Δn.d) value, compared with low | K 11 / Δε | ratio of the liquid crystal display panel having a high | K 11 / Δε | ratio of the liquid crystal display panel does have a high light Penetration rate. Wherein, when the measured voltage value is 7.5 volts (V), it can be further seen from FIG. 4 that for a liquid crystal display panel having a low (Δn.d) value (sample A-1 and sample B-1), |K 11 The effect of the ratio of /Δε| on the light transmittance is more pronounced. Specifically, when the value of (Δn.d) is about 325-326 nm, the light transmittance of the liquid crystal display panel of the sample B-1 is improved by about 3.74 with respect to the light transmittance of the liquid crystal display panel of the sample A-1. %. As described above, when the liquid crystal display panel 10 of the present embodiment satisfies the condition of the above formula (1), in addition to solving the color shift and improving the reaction time, the expansion deformation of the liquid crystal molecules in the liquid crystal layer 600 can be balanced, and further When driven, a better arrangement is provided, so that the light transmittance of the liquid crystal display panel 10 can be improved.

圖5是圖2的主動元件層300中的畫素結構P的放大上視示意圖。以下將針對主動元件陣列層300的畫素結構P做詳細解說。請參照圖5,每一個畫素結構P包括第一主動元件T1以及第一畫素電極PE1。第一主動元件T1包括第一閘極G1、第一通道層CH1、第一源極S1以及第一汲極D1。在本實施例中,第一主動元件T1與對應的掃描線(以掃描線SL1為範例)及對應的資料線(以資料線DL1為範例)電性連接。具體來說,第一閘極G1與掃描線SL1電性連接。第一通道層CH1位於第一閘極G1的上方。第一源極S1以及第一汲極D1位於第一通道層CH1的上方,且第一源極S1與資料線DL1電性連接。在本實施例中,第一主動元件T1是以底部閘極型薄膜電晶體為例示,但本發明不限於此。在其他實施例中,第一主動元件T1亦可以是頂部閘極型薄膜電晶體。此外,第一畫素電極PE1藉由第一接觸窗C1與第一主動元件T1的第一汲極D1電性連接。第一閘極G1、第一源極S1以及第一汲極D1例如是金屬材料,但不以此為限。另一方面,第一通道CH1的材質可選擇為非晶矽、多晶矽或是氧化物半導體材料(例如氧化銦鎵鋅(Indium-Gallium-Zinc Oxide, IGZO)、氧化鋅(ZnO)、氧化錫(SnO)、氧化銦鋅(Indium-Zinc Oxide, IZO)、氧化鎵鋅(Gallium-Zinc Oxide, GZO)、氧化鋅錫(Zinc-Tin Oxide, ZTO)或氧化銦錫(Indium-Tin Oxide, ITO)),但本發明不限於此。除此之外,畫素結構P更可以包括連接至共用電壓(Vcom)的共用電極線(未繪示)。共用電極線CL例如是與資料線DL1或與掃描線DL1為同一膜層,其中共用電極線與第一畫素電極PE1重疊,以形成儲存電容(未繪示)。FIG. 5 is an enlarged top plan view of the pixel structure P in the active device layer 300 of FIG. 2. The pixel structure P of the active device array layer 300 will be explained in detail below. Referring to FIG. 5, each pixel structure P includes a first active element T1 and a first pixel electrode PE1. The first active device T1 includes a first gate G1, a first channel layer CH1, a first source S1, and a first drain D1. In this embodiment, the first active device T1 is electrically connected to the corresponding scan line (exemplified by the scan line SL1) and the corresponding data line (exemplified by the data line DL1). Specifically, the first gate G1 is electrically connected to the scan line SL1. The first channel layer CH1 is located above the first gate G1. The first source S1 and the first drain D1 are located above the first channel layer CH1, and the first source S1 is electrically connected to the data line DL1. In the present embodiment, the first active device T1 is exemplified by a bottom gate type thin film transistor, but the present invention is not limited thereto. In other embodiments, the first active device T1 may also be a top gate type thin film transistor. In addition, the first pixel electrode PE1 is electrically connected to the first drain D1 of the first active device T1 via the first contact window C1. The first gate G1, the first source S1, and the first drain D1 are, for example, metal materials, but are not limited thereto. On the other hand, the material of the first channel CH1 may be selected from amorphous germanium, polycrystalline germanium or an oxide semiconductor material (for example, Indium-Gallium-Zinc Oxide (IGZO), zinc oxide (ZnO), tin oxide ( SnO), Indium-Zinc Oxide (IZO), Gallium-Zinc Oxide (GZO), Zinc-Tin Oxide (ZTO) or Indium-Tin Oxide (ITO) ), but the invention is not limited thereto. In addition to this, the pixel structure P may further include a common electrode line (not shown) connected to the common voltage (Vcom). The common electrode line CL is, for example, the same film layer as the data line DL1 or the scan line DL1, wherein the common electrode line overlaps with the first pixel electrode PE1 to form a storage capacitor (not shown).

第一畫素電極PE1具有第一主體部700以及與第一主體部700連接的多個第一條狀部702。第一條狀部702是由第一主體部700往四個方向延伸。換言之,第一條狀部702是由第一主體部700往四周延伸至第一畫素電極PE1的邊緣處,以形成魚骨狀圖案並定義出四個配向區域(domain region)。另一方面,相鄰的兩個第一條狀部702之間定義出第一狹縫704。The first pixel electrode PE1 has a first body portion 700 and a plurality of first strip portions 702 connected to the first body portion 700. The first strip portion 702 is extended by the first body portion 700 in four directions. In other words, the first strip 702 extends from the first body portion 700 to the periphery of the first pixel electrode PE1 to form a fishbone pattern and defines four domain regions. On the other hand, a first slit 704 is defined between the adjacent two first strips 702.

圖6是圖5的畫素結構P中的部份區域A的放大上視示意圖。請參照圖6,第一條狀部702具有第一線寬L1,且第一狹縫704具有第一狹縫寬S1。換言之,兩相鄰的第一條狀部702之間定義出第一狹縫704。在本實施例中,兩相鄰的第一條狀部702的中心點之間的距離定義出第一間距P1。也就是說,第一間距P1會等於第一條狀部702的第一線寬L1以及第一狹縫704的第一狹縫寬S1的總和,其中第一間距P1介於4微米至10微米。除此之外,第一畫素電極PE1的具有第一線寬/間距比(L1/P1),且第一線寬/間距比(L1/P1)符合下述式(2):式(2)。FIG. 6 is an enlarged top plan view showing a partial area A in the pixel structure P of FIG. 5. Referring to FIG. 6, the first strip 702 has a first line width L1, and the first slit 704 has a first slit width S1. In other words, a first slit 704 is defined between the two adjacent first strips 702. In the present embodiment, the distance between the center points of the two adjacent first strips 702 defines a first pitch P1. That is, the first pitch P1 may be equal to the sum of the first line width L1 of the first strip 702 and the first slit width S1 of the first slit 704, wherein the first pitch P1 is between 4 micrometers and 10 micrometers. . In addition, the first pixel electrode PE1 has a first line width/pitch ratio (L1/P1), and the first line width/pitch ratio (L1/P1) conforms to the following formula (2): Formula (2).

圖7A至圖7F是本發明之一實施例的液晶顯示面板之穿透率對第一間距的變化之液晶倒向分布圖。具體的說,圖7A至圖7F的液晶顯示面板具有相同的|K11 /Δε|比值(約4.33)以及相同的(Δn.d)值(約340 nm)。圖7A至圖7F的液晶顯示面板之第一間距P1分別為4微米、6微米、7微米、8微米、10微米以及12微米。在各個實驗例中,一相同操作電壓被施加在各個實驗例的顯示面板上,使各個實驗例的顯示面板中的上下兩個電極層(例如是:對向電極層以及第一畫素電極)之間具有一致的電壓差。在具有相同電壓差下,將圖7A至圖7F之液晶顯示面板的液晶倒向分布圖進行比較;相較於圖7A、圖7E及圖7F之液晶顯示面板,圖7B至圖7D之液晶顯示面板確實可改善液晶倒向不穩定現象,具有較佳的光穿透率。7A to 7F are views showing a liquid crystal reverse distribution of a change in transmittance of a liquid crystal display panel with respect to a first pitch according to an embodiment of the present invention. Specifically, the liquid crystal display panels of FIGS. 7A to 7F have the same |K 11 /Δε| ratio (about 4.33) and the same (Δn.d) value (about 340 nm). The first pitch P1 of the liquid crystal display panel of FIGS. 7A to 7F is 4 micrometers, 6 micrometers, 7 micrometers, 8 micrometers, 10 micrometers, and 12 micrometers, respectively. In each of the experimental examples, a same operating voltage was applied to the display panel of each experimental example, so that the upper and lower electrode layers (for example, the counter electrode layer and the first pixel electrode) in the display panel of each experimental example were used. There is a consistent voltage difference between them. Comparing the liquid crystal reverse distribution patterns of the liquid crystal display panels of FIGS. 7A to 7F with the same voltage difference; compared with the liquid crystal display panels of FIGS. 7A, 7E and 7F, the liquid crystal display of FIGS. 7B to 7D The panel does improve the reverse instability of the liquid crystal and has a better light transmittance.

圖8A至圖8F是本發明之另一實施例的液晶顯示面板之穿透率對第一部間距的變化之液晶倒向分布圖。具體的說,圖8A至圖8F的液晶顯示面板具有相同的|K11 /Δε|比值(約4.93)以及相同的(Δn.d)值(約340 nm)。圖8A至圖8F的液晶顯示面板之第一間距P1分別為4微米、6微米、7微米、8微米、10微米以及12微米。在各個實驗例中,一相同操作電壓被施加在各個實驗例的顯示面板上,使各個實驗例的顯示面板中的上下兩個電極層(例如是:對向電極層以及第一畫素電極)之間具有一致的電壓差。在具有相同電壓差下,將圖8A至圖8F之液晶顯示面板的液晶倒向分布圖進行比較;相較於圖8A、圖8E及圖8F之液晶顯示面板,圖8B至圖8D之液晶顯示面板確實可改善液晶倒向不穩定之現象,具有較佳的光穿透率。8A to 8F are views showing a liquid crystal reverse distribution of a change in transmittance of a liquid crystal display panel to a first portion pitch according to another embodiment of the present invention. Specifically, the liquid crystal display panels of FIGS. 8A to 8F have the same |K 11 /Δε| ratio (about 4.93) and the same (Δn.d) value (about 340 nm). The first pitch P1 of the liquid crystal display panel of FIGS. 8A to 8F is 4 micrometers, 6 micrometers, 7 micrometers, 8 micrometers, 10 micrometers, and 12 micrometers, respectively. In each of the experimental examples, a same operating voltage was applied to the display panel of each experimental example, so that the upper and lower electrode layers (for example, the counter electrode layer and the first pixel electrode) in the display panel of each experimental example were used. There is a consistent voltage difference between them. Comparing the liquid crystal reverse distribution patterns of the liquid crystal display panels of FIGS. 8A to 8F with the same voltage difference; compared with the liquid crystal display panels of FIGS. 8A, 8E and 8F, the liquid crystal display of FIGS. 8B to 8D The panel does improve the reverse instability of the liquid crystal and has a better light transmittance.

圖9A至圖9F是本發明之另一實施例的液晶顯示面板之穿透率對第一部間距的變化之液晶倒向分布圖。具體的說,圖9A至圖9F的液晶顯示面板具有相同的|K11 /Δε|比值(約5.17)以及相同的(Δn.d)值(約340 nm)。圖9A至圖9F的液晶顯示面板之第一間距P1分別為4微米、6微米、7微米、8微米、10微米以及12微米。在各個實驗例中,一相同操作電壓被施加在各個實驗例的顯示面板上,使各個實驗例的顯示面板中的上下兩個電極層(例如是:對向電極層以及第一畫素電極)之間具有一致的電壓差。在具有相同電壓差下,將圖9A至圖9F之液晶顯示面板的液晶倒向分布圖進行比較;相較於圖9A、圖9E及圖9F之液晶顯示面板,圖9B至圖9D之液晶顯示面板確實可改善液晶倒向不穩定之現象,具有較佳的光穿透率。9A to 9F are views showing a liquid crystal reverse distribution of a change in transmittance of a liquid crystal display panel to a first portion pitch according to another embodiment of the present invention. Specifically, the liquid crystal display panels of FIGS. 9A to 9F have the same |K 11 /Δε| ratio (about 5.17) and the same (Δn.d) value (about 340 nm). The first pitch P1 of the liquid crystal display panel of FIGS. 9A to 9F is 4 micrometers, 6 micrometers, 7 micrometers, 8 micrometers, 10 micrometers, and 12 micrometers, respectively. In each of the experimental examples, a same operating voltage was applied to the display panel of each experimental example, so that the upper and lower electrode layers (for example, the counter electrode layer and the first pixel electrode) in the display panel of each experimental example were used. There is a consistent voltage difference between them. Comparing the liquid crystal reverse distribution patterns of the liquid crystal display panels of FIGS. 9A to 9F with the same voltage difference; compared with the liquid crystal display panels of FIGS. 9A, 9E and 9F, the liquid crystal display of FIGS. 9B to 9D The panel does improve the reverse instability of the liquid crystal and has a better light transmittance.

如上所述,當本發明之實施例的液晶顯示面板的畫素電極具有第一間距P1介於4微米至10微米之間時,能夠有效地提高液晶顯示面板的光穿透率。As described above, when the pixel electrode of the liquid crystal display panel of the embodiment of the present invention has the first pitch P1 of between 4 μm and 10 μm, the light transmittance of the liquid crystal display panel can be effectively improved.

圖10A至圖10F是本發明之一實施例的液晶顯示面板之穿透率對第一線寬/間距比的變化之液晶倒向分布圖。具體的說,圖10A至圖10F的液晶顯示面板具有相同的|K11 /Δε|比值(約4.33)以及相同的(Δn.d)值(約340 nm)。圖10A至圖10F的液晶顯示面板之第一線寬/間距比(L1/P1)分別為75%、67%、58%、50%、42%以及33%。在各個實驗例中,一相同操作電壓被施加在各個實驗例的顯示面板上,使各個實驗例的顯示面板中的上下兩個電極層(例如是:對向電極層以及第一畫素電極)之間具有一致的電壓差。在具有相同電壓差下,將圖10A至圖10F之液晶顯示面板的液晶倒向分布圖進行比較;相較於圖10A之液晶顯示面板,圖10B至圖10F之液晶顯示面板確實可改善液晶倒向不穩定之現象,具有較佳的光穿透率。10A to 10F are views showing a liquid crystal reverse distribution of a transmittance of a liquid crystal display panel according to an embodiment of the present invention with respect to a change in a first line width/pitch ratio. Specifically, the liquid crystal display panels of FIGS. 10A to 10F have the same |K 11 /Δε| ratio (about 4.33) and the same (Δn.d) value (about 340 nm). The first line width/pitch ratio (L1/P1) of the liquid crystal display panel of FIGS. 10A to 10F is 75%, 67%, 58%, 50%, 42%, and 33%, respectively. In each of the experimental examples, a same operating voltage was applied to the display panel of each experimental example, so that the upper and lower electrode layers (for example, the counter electrode layer and the first pixel electrode) in the display panel of each experimental example were used. There is a consistent voltage difference between them. Comparing the liquid crystal reverse distribution patterns of the liquid crystal display panels of FIGS. 10A to 10F with the same voltage difference; compared with the liquid crystal display panel of FIG. 10A, the liquid crystal display panels of FIGS. 10B to 10F can actually improve the liquid crystal display. It has a better light transmittance to the phenomenon of instability.

圖11A至圖11F是本發明之另一實施例的液晶顯示面板之穿透率對第一線寬/間距比的變化之液晶倒向分布圖。具體的說,圖11A至圖11F的液晶顯示面板具有相同的|K11 /Δε|比值(約4.93)以及相同的(Δn.d)值(約340 nm)。圖11A至圖11F的液晶顯示面板之第一線寬/間距比(L1/P1)分別為75%、67%、58%、50%、42%以及33%。在各個實驗例中,一相同操作電壓被施加在各個實驗例的顯示面板上,使各個實驗例的顯示面板中的上下兩個電極層(例如是:對向電極層以及第一畫素電極)之間具有一致的電壓差。在具有相同電壓差下,將圖11A至圖11F之液晶顯示面板的液晶倒向分布圖進行比較;相較於圖11A之液晶顯示面板,圖11B至圖11F之液晶顯示面板確實可改善液晶倒向不穩定之現象,具有較佳的光穿透率。11A to 11F are views showing a liquid crystal reverse distribution of a transmittance of a liquid crystal display panel to a first line width/pitch ratio according to another embodiment of the present invention. Specifically, the liquid crystal display panels of FIGS. 11A to 11F have the same |K 11 /Δε| ratio (about 4.93) and the same (Δn.d) value (about 340 nm). The first line width/pitch ratio (L1/P1) of the liquid crystal display panel of FIGS. 11A to 11F is 75%, 67%, 58%, 50%, 42%, and 33%, respectively. In each of the experimental examples, a same operating voltage was applied to the display panel of each experimental example, so that the upper and lower electrode layers (for example, the counter electrode layer and the first pixel electrode) in the display panel of each experimental example were used. There is a consistent voltage difference between them. Comparing the liquid crystal reverse distribution patterns of the liquid crystal display panels of FIGS. 11A to 11F with the same voltage difference; compared with the liquid crystal display panel of FIG. 11A, the liquid crystal display panels of FIGS. 11B to 11F can actually improve the liquid crystal display. It has a better light transmittance to the phenomenon of instability.

圖12A至圖12F是本發明之另一實施例的液晶顯示面板之穿透率對第一線寬/間距比的變化之液晶倒向分布圖。具體的說,圖12A至圖12F的液晶顯示面板具有相同的|K12 /Δε|比值(約5.17)以及相同的(Δn.d)值(約340 nm)。圖12A至圖12F的液晶顯示面板之第一線寬/間距比(L1/P1)分別為75%、67%、58%、50%、42%以及33%。在各個實驗例中,一相同操作電壓被施加在各個實驗例的顯示面板上,使各個實驗例的顯示面板中的上下兩個電極層(例如是:對向電極層以及第一畫素電極)之間具有一致的電壓差。在具有相同電壓差下,將圖12A至圖12F之液晶顯示面板的液晶倒向分布圖進行比較;相較於圖12A之液晶顯示面板,圖12B至圖12F之液晶顯示面板確實可改善液晶倒向不穩定之現象,具有較佳的光穿透率。12A to 12F are views showing a liquid crystal reverse distribution of a transmittance of a liquid crystal display panel to a first line width/pitch ratio according to another embodiment of the present invention. Specifically, the liquid crystal display panels of FIGS. 12A to 12F have the same |K 12 /Δε| ratio (about 5.17) and the same (Δn.d) value (about 340 nm). The first line width/pitch ratio (L1/P1) of the liquid crystal display panel of FIGS. 12A to 12F is 75%, 67%, 58%, 50%, 42%, and 33%, respectively. In each of the experimental examples, a same operating voltage was applied to the display panel of each experimental example, so that the upper and lower electrode layers (for example, the counter electrode layer and the first pixel electrode) in the display panel of each experimental example were used. There is a consistent voltage difference between them. Comparing the liquid crystal reverse distribution patterns of the liquid crystal display panels of FIGS. 12A to 12F with the same voltage difference; compared with the liquid crystal display panel of FIG. 12A, the liquid crystal display panels of FIGS. 12B to 12F can actually improve the liquid crystal display. It has a better light transmittance to the phenomenon of instability.

如上所述,當本發明之實施例的液晶顯示面板所具有的第一線寬/間距比(L1/P1)符合上述式(2)的條件時,能夠有效地提高液晶顯示面板的光穿透率。As described above, when the first line width/pitch ratio (L1/P1) of the liquid crystal display panel of the embodiment of the present invention satisfies the condition of the above formula (2), the light penetration of the liquid crystal display panel can be effectively improved. rate.

圖13是根據本發明另一實施例的畫素結構P的放大上視示意圖。本實施例的畫素結構P與圖5的實施例相似,因此相同的元件以相同的符號表示,且不在重複說明。本實施例與圖5的實施例的不同之處在於本實施例的畫素結構P更包括第二主動元件T2以及第二畫素電極PE2。第二主動元件T2包括第二閘極G2、第二通道層CH2、第二源極S2以及第二汲極D2。Figure 13 is an enlarged top plan view of a pixel structure P in accordance with another embodiment of the present invention. The pixel structure P of the present embodiment is similar to the embodiment of FIG. 5, and therefore the same elements are denoted by the same reference numerals and the description is not repeated. The difference between the embodiment and the embodiment of FIG. 5 is that the pixel structure P of the embodiment further includes the second active element T2 and the second pixel electrode PE2. The second active device T2 includes a second gate G2, a second channel layer CH2, a second source S2, and a second drain D2.

請參照圖13,在本實施例中,第二主動元件T2與對應的掃描線SL1及對應的資料線DL2電性連接。具體來說,第二閘極G2與掃描線SL1電性連接。第二通道層CH2位於第二閘極G2的上方。第二源極S2以及第二汲極D2位於第二通道層CH2的上方,且第二源極S2與資料線DL2電性連接。換言之,在本實施例中,第一主動元件T1以及第二主動元件T2連接至同一條掃描線SL1,故第一閘極G1以及第二閘極G2亦電性連接。第二主動元件T2中各元件的材質可以與第一主動元件T1中各元件的材質相同或不同,本發明並不特別作限制。此外,第二畫素電極PE2藉由第二接觸窗C2與第二主動元件T2的第二汲極D2電性連接。另一方面,畫素結構P更可以包括連接至共用電壓(Vcom)的共用電極線(未繪示)。共用電極線與第一畫素電極PE1以及第二畫素電極PE2重疊,以形成儲存電容。Referring to FIG. 13, in the embodiment, the second active device T2 is electrically connected to the corresponding scan line SL1 and the corresponding data line DL2. Specifically, the second gate G2 is electrically connected to the scan line SL1. The second channel layer CH2 is located above the second gate G2. The second source S2 and the second drain D2 are located above the second channel layer CH2, and the second source S2 is electrically connected to the data line DL2. In other words, in the present embodiment, the first active device T1 and the second active device T2 are connected to the same scan line SL1, so that the first gate G1 and the second gate G2 are also electrically connected. The material of each component in the second active component T2 may be the same as or different from the material of each component in the first active component T1, and the invention is not particularly limited. In addition, the second pixel electrode PE2 is electrically connected to the second drain D2 of the second active device T2 via the second contact window C2. On the other hand, the pixel structure P may further include a common electrode line (not shown) connected to the common voltage (Vcom). The common electrode line overlaps the first pixel electrode PE1 and the second pixel electrode PE2 to form a storage capacitor.

類似於第一畫素電極PE1,第二畫素電極PE2亦具有第二主體部710以及與第二主體部710連接的多個第二條狀部706。第二條狀部706是由第二主體部710往四個方向延伸。換言之,第二條狀部706是由第二主體部710往四周延伸至第二畫素電極PE2的邊緣處,以形成魚骨狀圖案並定義出四個配向區域。因此,在本實施例的畫素結構P中,第一畫素電極PE1以及第二畫素電極PE2共定義出八個配向區域。除此之外,相鄰的兩個第二條狀部706之間定義出第二狹縫708。Similar to the first pixel electrode PE1, the second pixel electrode PE2 also has a second body portion 710 and a plurality of second strip portions 706 connected to the second body portion 710. The second strip 706 is extended by the second body portion 710 in four directions. In other words, the second strip 706 extends from the second body portion 710 to the periphery of the second pixel electrode PE2 to form a fishbone pattern and defines four alignment regions. Therefore, in the pixel structure P of the present embodiment, the first pixel electrode PE1 and the second pixel electrode PE2 define a total of eight alignment regions. In addition to this, a second slit 708 is defined between the adjacent two second strips 706.

圖14是圖13的畫素結構中的部份區域B的放大上視示意圖。請參照圖14,類似於圖6的實施例,第二條狀部706具有第二線寬L2,且第二狹縫708具有第二狹縫寬S2。換言之,兩相鄰的第二條狀部706之間定義出第二狹縫708。在本實施例中,兩相鄰的第二條狀部706的中心點之間的距離定義出第二間距P2。也就是說,一個第二間距P2會等於一個第二條狀部706的第二線寬L2以及一個第二狹縫708的第二狹縫寬S2的總和,其中第二間距P2介於4微米至10微米。除此之外,第二畫素電極PE2的具有第二線寬/間距比(L2/P2),且第二線寬/間距比(L2/P2)符合下述式(3):式(3)。Fig. 14 is an enlarged top plan view showing a partial region B in the pixel structure of Fig. 13. Referring to FIG. 14, similar to the embodiment of FIG. 6, the second strip 706 has a second line width L2, and the second slit 708 has a second slit width S2. In other words, a second slit 708 is defined between the two adjacent second strips 706. In the present embodiment, the distance between the center points of the two adjacent second strips 706 defines a second pitch P2. That is, a second pitch P2 will be equal to the sum of the second line width L2 of one second strip 706 and the second slit width S2 of a second slit 708, wherein the second pitch P2 is between 4 microns Up to 10 microns. In addition, the second pixel electrode PE2 has a second line width/pitch ratio (L2/P2), and the second line width/pitch ratio (L2/P2) conforms to the following formula (3): Formula (3).

值得注意的是,由於第二主動元件T2中的第二畫素電極PE2之第二線寬L2、第二狹縫寬S2及第二間距P2是分別與第一主動元件T1中的第一畫素電極PE1之第一線寬L1、第一狹縫寬S1及第一間距P1具有相同定義,因此對應於第二畫素電極PE2之顯示畫面與對應於第一畫素電極PE1之顯示畫面具有相同的顯示品質之表現,皆可達到較佳的光穿透率。It is noted that the second line width L2, the second slit width S2, and the second pitch P2 of the second pixel electrode PE2 in the second active device T2 are respectively the first picture in the first active device T1. The first line width L1, the first slit width S1, and the first pitch P1 of the element electrode PE1 have the same definition, and thus the display screen corresponding to the second pixel electrode PE2 and the display screen corresponding to the first pixel electrode PE1 have The same display quality performance can achieve better light transmittance.

綜上所述,本發明的液晶顯示面板藉由液晶組合物的特定性質與調整液晶層的厚度達到較好的顯示品質與快速應答時間外,並搭配滿足上述式(1)的特定畫素結構的設計,能夠有效地提高液晶顯示面板的光穿透率。且當本發明之實施例的液晶顯示面板的第一畫素電極具有第一間距P1介於4微米至10微米之間以及/或的第一線寬/間距比(L1/P1)符合上述式(2)的條件,能夠有效地提高液晶顯示面板的光穿透率。除此之外,當本發明之實施例的液晶顯示面板具有第二畫素電極,且第二畫素電極具有第二間距P2介於4微米至10微米之間以及/或第二線寬/間距比(L2/P2)符合上述式(3)的條件時,亦能夠有效地提高液晶顯示面板的光穿透率。In summary, the liquid crystal display panel of the present invention achieves better display quality and fast response time by adjusting the specific properties of the liquid crystal composition and adjusting the thickness of the liquid crystal layer, and is matched with the specific pixel structure satisfying the above formula (1). The design can effectively improve the light transmittance of the liquid crystal display panel. And the first pixel electrode of the liquid crystal display panel of the embodiment of the present invention has a first pitch P1 of between 4 micrometers and 10 micrometers and/or a first line width/pitch ratio (L1/P1) conforming to the above formula. The condition of (2) can effectively increase the light transmittance of the liquid crystal display panel. In addition, the liquid crystal display panel of the embodiment of the present invention has a second pixel electrode, and the second pixel electrode has a second pitch P2 of between 4 micrometers and 10 micrometers and/or a second line width/ When the pitch ratio (L2/P2) satisfies the condition of the above formula (3), the light transmittance of the liquid crystal display panel can be effectively improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧液晶顯示面板10‧‧‧LCD panel

100‧‧‧第一基板100‧‧‧First substrate

200‧‧‧第二基板200‧‧‧second substrate

300‧‧‧主動元件陣列層300‧‧‧Active component array layer

400‧‧‧對向電極400‧‧‧ opposite electrode

502‧‧‧第一配向層502‧‧‧First alignment layer

504‧‧‧第二配向層504‧‧‧Second alignment layer

600‧‧‧液晶層600‧‧‧Liquid layer

SL1~SLn‧‧‧掃描線SL1~SLn‧‧‧ scan line

DL1~DLn‧‧‧資料線DL1~DLn‧‧‧ data line

P‧‧‧畫素結構P‧‧‧ pixel structure

T1‧‧‧第一主動元件T1‧‧‧ first active component

T2‧‧‧第二主動元件T2‧‧‧second active component

G1‧‧‧第一閘極G1‧‧‧ first gate

G2‧‧‧第二閘極G2‧‧‧second gate

CH1‧‧‧第一通道層CH1‧‧‧ first channel layer

CH2‧‧‧第二通道層CH2‧‧‧Second channel layer

S1‧‧‧第一源極S1‧‧‧first source

S2‧‧‧第二源極S2‧‧‧Second source

D1‧‧‧第一汲極D1‧‧‧First bungee

D2‧‧‧第二汲極D2‧‧‧second bungee

C1‧‧‧第一接觸窗C1‧‧‧ first contact window

C2‧‧‧第二接觸窗C2‧‧‧second contact window

PE1‧‧‧第一畫素電極PE1‧‧‧ first pixel electrode

PE2‧‧‧第二畫素電極PE2‧‧‧second pixel electrode

700‧‧‧第一主體部700‧‧‧First Main Body

702‧‧‧第一條狀部702‧‧‧ first article

704‧‧‧第一狹縫704‧‧‧first slit

706‧‧‧第二條狀部706‧‧‧Second section

708‧‧‧第二狹縫708‧‧‧Second slit

710‧‧‧第二主體部710‧‧‧Second Main Body

d‧‧‧厚度D‧‧‧thickness

L1‧‧‧第一線寬L1‧‧‧first line width

L2‧‧‧第二線寬L2‧‧‧ second line width

P1‧‧‧第一間距P1‧‧‧ first spacing

P2‧‧‧第二間距P2‧‧‧Second spacing

S1‧‧‧第一狹縫S1‧‧‧ first slit

S2‧‧‧第二狹縫S2‧‧‧Second slit

A、 B‧‧‧區域A, B‧‧‧ area

A-1、A-2、B-1、B-2‧‧‧曲線A-1, A-2, B-1, B-2‧‧‧ curves

圖1是根據本發明一實施例的液晶顯示面板的剖面示意圖。 圖2是圖1的液晶顯示面板中的主動元件層的電路示意圖。 圖3是本發明之實施例的液晶顯示面板之(K11 /Δε) 比值與(Δn.d)值的關係圖。 圖4是以不同實驗條件所測量之液晶顯示面板的穿透率-電壓曲線圖。 圖5是圖2的主動元件層中的畫素結構的放大上視示意圖。 圖6是圖5的畫素結構中的部份區域的放大上視示意圖。 圖7A至圖7F是本發明之一實施例的液晶顯示面板之穿透率對第一間距的變化之液晶倒向分布圖。 圖8A至圖8F是本發明之另一實施例的液晶顯示面板之穿透率對第一間距的變化之液晶倒向分布圖。 圖9A至圖9F是本發明之另一實施例的液晶顯示面板之穿透率對第一間距的變化之液晶倒向分布圖。 圖10A至圖10F是本發明之另一實施例的液晶顯示面板之穿透率對第一線寬/間距比的變化之液晶倒向分布圖。 圖11A至圖11F是本發明之另一實施例的液晶顯示面板之穿透率對第一線寬/間距比的變化之液晶倒向分布圖。 圖12A至圖12F是本發明之另一實施例的液晶顯示面板之穿透率對第一線寬/間距比的變化之液晶倒向分布圖。 圖13是根據本發明另一實施例的畫素結構的放大上視示意圖。 圖14是圖13的畫素結構中的部份區域的放大上視示意圖。1 is a cross-sectional view of a liquid crystal display panel in accordance with an embodiment of the present invention. 2 is a circuit diagram of an active device layer in the liquid crystal display panel of FIG. 1. Fig. 3 is a graph showing the relationship between the ratio of (K 11 / Δε ) and the value of (Δn.d) of the liquid crystal display panel of the embodiment of the present invention. Figure 4 is a graph showing the transmittance-voltage curve of a liquid crystal display panel measured under different experimental conditions. FIG. 5 is an enlarged top plan view of a pixel structure in the active device layer of FIG. 2. FIG. Figure 6 is an enlarged top plan view of a portion of the pixel structure of Figure 5. 7A to 7F are views showing a liquid crystal reverse distribution of a change in transmittance of a liquid crystal display panel with respect to a first pitch according to an embodiment of the present invention. 8A to 8F are views showing a liquid crystal reverse distribution of a change in transmittance of a liquid crystal display panel with respect to a first pitch according to another embodiment of the present invention. 9A to 9F are views showing a liquid crystal reverse distribution of a change in transmittance of a liquid crystal display panel with respect to a first pitch according to another embodiment of the present invention. 10A to 10F are views showing a liquid crystal reverse distribution of a transmittance of a liquid crystal display panel to a first line width/pitch ratio according to another embodiment of the present invention. 11A to 11F are views showing a liquid crystal reverse distribution of a transmittance of a liquid crystal display panel to a first line width/pitch ratio according to another embodiment of the present invention. 12A to 12F are views showing a liquid crystal reverse distribution of a transmittance of a liquid crystal display panel to a first line width/pitch ratio according to another embodiment of the present invention. Figure 13 is an enlarged top plan view of a pixel structure in accordance with another embodiment of the present invention. Figure 14 is an enlarged top plan view showing a partial region of the pixel structure of Figure 13;

Claims (8)

一種液晶顯示面板,包括:一第一基板;多條掃描線以及多條資料線,位於該第一基板上;多個畫素結構,位於該第一基板上,其中每一畫素結構包括:一第一主動元件,電性連接至該些掃描線其中之一與該些資料線其中之一;以及一第一畫素電極,電性連接至該第一主動元件,該第一畫素電極具有多個第一條狀部;一第二基板,位於該第一基板的對向;一對向電極層,配置於該第二基板上,且位於該第一基板與該第二基板之間;以及一液晶層,配置於該第一基板與該第二基板之間,其中該液晶層在該第一基板與該第二基板之間具有一厚度d,且該液晶層包括一液晶組合物,其中該液晶顯示面板符合下述式(1): 其中320奈米≦(△n.d)≦340奈米,k11是該液晶組合物的擴張彈性係數、△ε是該液晶組合物的介電常數非等向性、△n是該 液晶組合物的光學各向異性,且值與(△nd)值之間存在一反比線性關係。 A liquid crystal display panel includes: a first substrate; a plurality of scan lines and a plurality of data lines on the first substrate; and a plurality of pixel structures on the first substrate, wherein each pixel structure comprises: a first active component electrically connected to one of the scan lines and one of the data lines; and a first pixel electrode electrically connected to the first active component, the first pixel electrode Having a plurality of first strips; a second substrate located opposite the first substrate; a pair of electrode layers disposed on the second substrate and located between the first substrate and the second substrate And a liquid crystal layer disposed between the first substrate and the second substrate, wherein the liquid crystal layer has a thickness d between the first substrate and the second substrate, and the liquid crystal layer comprises a liquid crystal composition , wherein the liquid crystal display panel conforms to the following formula (1): Wherein 320 nm △ (Δn.d) ≦ 340 nm, k11 is the expansion modulus of the liquid crystal composition, Δ ε is the dielectric constant anisotropy of the liquid crystal composition, and Δn is the liquid crystal composition Optical anisotropy, and There is an inverse linear relationship between the value and the value of (Δ n . d ). 如申請專利範圍第1項所述的液晶顯示面板,更包括:一第一配向層,配置於該畫素結構以及該液晶層之間;以及一第二配向層,配置於該對向電極層以及該液晶層之間。 The liquid crystal display panel of claim 1, further comprising: a first alignment layer disposed between the pixel structure and the liquid crystal layer; and a second alignment layer disposed on the opposite electrode layer And between the liquid crystal layers. 如申請專利範圍第1項所述的液晶顯示面板,其中兩相鄰的該些第一條狀部之間定義出一第一狹縫,其中該些第一條狀部具有一第一線寬L1,該些第一狹縫具有一第一狹縫寬S1,該些第一條狀部之間具有一第一間距P1,且P1=L1+S1,其中該第一間距P1介於4微米至10微米之間。 The liquid crystal display panel of claim 1, wherein a first slit is defined between the two adjacent first strips, wherein the first strips have a first line width L1, the first slits have a first slit width S1, the first strips have a first pitch P1 therebetween, and P1=L1+S1, wherein the first pitch P1 is between 4 micrometers Between 10 microns. 如申請專利範圍第1項所述的液晶顯示面板,其中兩相鄰的該些第一條狀部之間定義出一第一狹縫,其中該些第一條狀部具有一第一線寬L1,該些第一狹縫具有一第一狹縫寬S1,該些第一條狀部之間具有一第一間距P1,且P1=L1+S1,且該第一畫素電極具有一第一線寬/間距比(L1/P1),且該第一線寬/間距比(L1/P1)符合下述式(2): The liquid crystal display panel of claim 1, wherein a first slit is defined between the two adjacent first strips, wherein the first strips have a first line width L1, the first slits have a first slit width S1, the first strips have a first pitch P1 therebetween, and P1=L1+S1, and the first pixel electrode has a first A line width/pitch ratio (L1/P1), and the first line width/pitch ratio (L1/P1) conforms to the following formula (2): 如申請專利範圍第1項所述的液晶顯示面板,其中該液晶層的該厚度d介於3.00微米至3.50微米之間。 The liquid crystal display panel of claim 1, wherein the thickness d of the liquid crystal layer is between 3.00 micrometers and 3.50 micrometers. 如申請專利範圍第1項所述的液晶顯示面板,其中每一畫素結構更包括:一第二主動元件,電性連接至該些掃描線其中之一與該些資料線其中之一;以及 一第二畫素電極,電性連接至該第二主動元件,該第二畫素電極具有多個第二條狀部,且相鄰的該些第二條狀部之間定義出一第二狹縫,其中該些第二條狀部具有一第二線寬L2,該些第二狹縫具有一第二狹縫寬S2,該些第二條狀部之間具有一第二間距P2,且P2=L2+S2。 The liquid crystal display panel of claim 1, wherein each of the pixel structures further comprises: a second active component electrically connected to one of the scan lines and one of the data lines; a second pixel electrode electrically connected to the second active component, the second pixel electrode has a plurality of second strips, and a second is defined between the adjacent second strips a slit, wherein the second strips have a second line width L2, the second slits have a second slit width S2, and the second strips have a second pitch P2 therebetween. And P2 = L2 + S2. 如申請專利範圍第6項所述的液晶顯示面板,其中該第二間距P2介於4微米至10微米之間。 The liquid crystal display panel of claim 6, wherein the second pitch P2 is between 4 micrometers and 10 micrometers. 如申請專利範圍第6項所述的液晶顯示面板,其中該第二畫素電極具有一第二線寬/間距比(L2/P2),且該第二線寬/間距比(L2/P2)符合下述式(3): The liquid crystal display panel of claim 6, wherein the second pixel electrode has a second line width/pitch ratio (L2/P2), and the second line width/pitch ratio (L2/P2) Comply with the following formula (3):
TW105102140A 2016-01-22 2016-01-22 Liquid crystal display panel TWI649596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105102140A TWI649596B (en) 2016-01-22 2016-01-22 Liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105102140A TWI649596B (en) 2016-01-22 2016-01-22 Liquid crystal display panel

Publications (2)

Publication Number Publication Date
TW201727318A TW201727318A (en) 2017-08-01
TWI649596B true TWI649596B (en) 2019-02-01

Family

ID=60186473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102140A TWI649596B (en) 2016-01-22 2016-01-22 Liquid crystal display panel

Country Status (1)

Country Link
TW (1) TWI649596B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216233A1 (en) * 2018-05-09 2019-11-14 Dic株式会社 Liquid crystal display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594121B (en) * 2001-03-30 2004-06-21 Fujitsu Display Tech Liquid crystal display
US20150198847A1 (en) * 2014-01-10 2015-07-16 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594121B (en) * 2001-03-30 2004-06-21 Fujitsu Display Tech Liquid crystal display
US20150198847A1 (en) * 2014-01-10 2015-07-16 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201727318A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
KR101628989B1 (en) Liquid crystal display and fabrication method of the same
US10228597B2 (en) TFT liquid crystal display device
TWI418904B (en) Pixel structure and display panel having the same
US8711315B2 (en) Liquid crystal display having particular pixel structure
TW200825586A (en) Liquid crystal display
TWI567464B (en) Liquid crystal display panel
US9664962B2 (en) Liquid crystal display device
TWI648582B (en) Pixel structure
WO2017121009A1 (en) Manufacturing method for ips tft-lcd array substrate, and ips tft-lcd array substrate
KR101326507B1 (en) Liquid Crystal Display Device
CN105652499A (en) Liquid crystal composition and liquid crystal display element or display
TWI649596B (en) Liquid crystal display panel
TWI648580B (en) Pixel structure and display panel
TWI332094B (en) In plane switching liquid crystal display
KR102114879B1 (en) Liquid crystal dispaly
KR101133757B1 (en) Liquid crystal display
TWI622834B (en) Pixel array substrate
CN108279518A (en) In-cell touch display panel
TW201913205A (en) Pixel structure
KR101965167B1 (en) Liquid Crystal Display Device
TWI417370B (en) Liquid crystal material and optical compensated bend mode display
TWI333110B (en) Multi-domain vertically alignment liquid crystal display panel
CN106802521B (en) Pixel structure, array substrate and liquid crystal display panel
TW201518834A (en) Lens structure and 3D display device having the same
KR101894552B1 (en) Liquid crystal display device including pixel electrode having different width