TWI648934B - Power system and power factor control method thereof - Google Patents

Power system and power factor control method thereof Download PDF

Info

Publication number
TWI648934B
TWI648934B TW107100836A TW107100836A TWI648934B TW I648934 B TWI648934 B TW I648934B TW 107100836 A TW107100836 A TW 107100836A TW 107100836 A TW107100836 A TW 107100836A TW I648934 B TWI648934 B TW I648934B
Authority
TW
Taiwan
Prior art keywords
power
factor
inverter
power source
power factor
Prior art date
Application number
TW107100836A
Other languages
Chinese (zh)
Other versions
TW201931718A (en
Inventor
童世承
陳志霖
陳煜儒
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW107100836A priority Critical patent/TWI648934B/en
Application granted granted Critical
Publication of TWI648934B publication Critical patent/TWI648934B/en
Publication of TW201931718A publication Critical patent/TW201931718A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一種電力系統及其功率因數控制方法。電力系統包括交流電力網路、綠能發電裝置、逆變器、負載端、量測器以及控制器。交流電力網路用以提供第一交流電源。綠能發電裝置提供綠能電源。逆變器耦接綠能發電裝置,用以將綠能電源轉換為第二交流電源。負載端用以提供電源消耗。量測器耦接於逆變器、負載端與交流電力網路之間,用以量測第二交流電源與電源消耗的總和功率因數。控制器耦接量測器及逆變器,以依據第一交流電源的目標功率因數控制逆變器以調整第二交流電源,致使總和功率因數大於等於目標功率因數。A power system and a power factor control method thereof. The power system includes an AC power network, a green power generation device, an inverter, a load terminal, a measuring device, and a controller. The AC power network is used to provide the first AC power source. The green power generation unit provides green power. The inverter is coupled to the green energy generating device for converting the green energy source into the second alternating current power source. The load side is used to provide power consumption. The measuring device is coupled between the inverter, the load end and the AC power network to measure the sum total power factor of the second AC power source and the power consumption. The controller is coupled to the measuring device and the inverter to control the inverter according to the target power factor of the first alternating current power source to adjust the second alternating current power source, so that the sum power factor is greater than or equal to the target power factor.

Description

電力系統及其功率因數控制方法Power system and its power factor control method

本發明是有關於一種電網管理技術,且特別是有關於一種電力系統及其功率因數控制方法。 The present invention relates to a power grid management technique, and more particularly to a power system and a power factor control method thereof.

電力系統的功率計算包括有功功率(active power,以P來表示)以及視在功率(apparent power,以S來表示),而功率因數(power factor,PF)即為有功功率與其視在功率的比值,其中視在功率與有功功率、無功功率(reactive power,以Q來表示)滿足下列向量關係S2=P2+Q2The power calculation of the power system includes active power (represented by P) and apparent power (represented by S), and power factor (PF) is the ratio of active power to apparent power. Where the apparent power and active power, reactive power (represented by Q) satisfy the following vector relationship S 2 =P 2 +Q 2 .

一般而言,當電力系統中的逆變器將額外的能源,例如綠色能源,饋入電網(例如買電行為或是賣電行為),由於逆變器是提供有功功率給電力系統,反而造成電力系統端整體的功率因數下降,影響到電網末端的供電品質,因此如何能降低電力系統的目標功率因數的所受到的影響,成為目前電力系統的功率控制技術的主要課題之一。 In general, when an inverter in a power system feeds additional energy, such as green energy, into the grid (such as buying electricity or selling electricity), because the inverter supplies active power to the power system, it causes The overall power factor of the power system is reduced, which affects the power quality at the end of the power grid. Therefore, how to reduce the impact of the power factor of the power system has become one of the main topics of power control technology in power systems.

本發明的實施例提供一種電力系統及其功率因數控制方法,能在逆變器輸出的視在功率不變的情況下,改善電力系統整體的功率因數,使得原有電力系統的目標功率因數的所受到的影響被降低。 Embodiments of the present invention provide a power system and a power factor control method thereof, which can improve the power factor of the power system as a whole, and the target power factor of the original power system can be improved under the condition that the apparent power of the inverter output is constant. The impact is reduced.

本發明的實施例提供一種電力系統,包括交流電力網路、綠能發電裝置、逆變器、負載端、量測器以及控制器。交流電力網路用以提供第一交流電源。綠能發電裝置提供綠能電源。逆變器耦接綠能發電裝置,用以將綠能電源轉換為第二交流電源。負載端用以提供電源消耗。量測器耦接於逆變器、負載端與交流電力網路之間,用以量測第二交流電源與電源消耗的總和功率因數。控制器耦接量測器及逆變器,以依據第一交流電源的目標功率因數控制逆變器以調整第二交流電源,致使總和功率因數大於等於目標功率因數。 Embodiments of the present invention provide a power system including an AC power network, a green power generation device, an inverter, a load terminal, a gauge, and a controller. The AC power network is used to provide the first AC power source. The green power generation unit provides green power. The inverter is coupled to the green energy generating device for converting the green energy source into the second alternating current power source. The load side is used to provide power consumption. The measuring device is coupled between the inverter, the load end and the AC power network to measure the sum total power factor of the second AC power source and the power consumption. The controller is coupled to the measuring device and the inverter to control the inverter according to the target power factor of the first alternating current power source to adjust the second alternating current power source, so that the sum power factor is greater than or equal to the target power factor.

本發明的實施例提供一種電力系統的功率因數控制方法,其中電力系統透過逆變器將綠能發電裝置提供的綠能電源轉換為第二交流電源,以傳送至負載端及提供第一交流電源的交流電力網路,功率因數控制方法包括:透過量測器量測第二交流電源與電源消耗的總和功率因數;以及透過控制器依據第一交流電源的目標功率因數控制逆變器以調整第二交流電源,致使總和功率因數大於等於目標功率因數。 Embodiments of the present invention provide a power factor control method for a power system, wherein a power system converts a green power source provided by a green power generation device into a second AC power source through an inverter to transmit to a load terminal and provide a first AC power source The AC power network, the power factor control method includes: measuring a total power factor of the second AC power source and the power consumption through the measuring device; and controlling the inverter to adjust the second according to the target power factor of the first AC power source through the controller The AC power source causes the sum power factor to be greater than or equal to the target power factor.

基於上述,本發明的實施例的電力系統及其功率因數控 制方法,根據量測器量所測的第二交流電源與電源消耗的總和功率因數,並且通過控制器依據第一交流電源的目標功率因數控制逆變器以調整第二交流電源,致使總和功率因數大於等於目標功率因數,因此可以使得原有電力系統的目標功率因數的所受到的影響被降低。 Based on the above, the power system of the embodiment of the present invention and its power are controlled by numerical control The method, the total AC power factor of the second AC power source and the power consumption measured according to the amount of the measuring device, and the controller controls the inverter according to the target power factor of the first AC power source to adjust the second AC power source, thereby causing the sum power factor It is greater than or equal to the target power factor, so that the influence of the target power factor of the original power system can be reduced.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、600‧‧‧電力系統 100, 600‧‧‧ power system

110‧‧‧交流電力網路 110‧‧‧AC power network

120‧‧‧綠能發電裝置 120‧‧‧Green power generation unit

130‧‧‧逆變器 130‧‧‧Inverter

140‧‧‧負載端 140‧‧‧Load side

150‧‧‧控制器 150‧‧‧ Controller

160‧‧‧量測器 160‧‧‧Measurer

170‧‧‧儲能設備 170‧‧‧ Energy storage equipment

210‧‧‧線段(表示大於等於目標功率因數的正角度臨界值) 210‧‧‧ line segment (representing a positive angle threshold greater than or equal to the target power factor)

212‧‧‧線段(表示大於等於目標功率因數的負角度臨界值) 212‧‧‧ line segment (representing a negative angle threshold greater than or equal to the target power factor)

220‧‧‧線段(表示負載向量) 220‧‧‧ line segment (representing the load vector)

234、244、334、344、434、444、634、644‧‧‧總和功率因數 234, 244, 334, 344, 434, 444, 634, 644‧‧‧ sum power factor

232、242、332、342、432、442、632、642‧‧‧逆變器輸出的視在功率 232, 242, 332, 342, 432, 442, 632, 642‧‧ ‧ apparent power output from the inverter

646‧‧‧儲能設備向量 646‧‧‧ Energy storage equipment vector

NP‧‧‧電網 NP‧‧‧ grid

PAC1‧‧‧第一交流電源 PAC1‧‧‧First AC power supply

PAC2‧‧‧第二交流電源 PAC2‧‧‧Second AC power supply

PGE‧‧‧綠能電源 PGE‧‧‧Green Power

P‧‧‧有功功率 P‧‧‧Active power

Q‧‧‧無功功率 Q‧‧‧Reactive power

θ、θ1~θ9‧‧‧總和功因角 θ, θ1~θ9‧‧‧sum total power factor angle

S510~S570、S810~S830、S910、S920‧‧‧步驟 S510~S570, S810~S830, S910, S920‧‧‧ steps

圖1為依據本發明一實施例的電力系統的系統示意圖。 1 is a system diagram of a power system in accordance with an embodiment of the present invention.

圖2A為依據本發明一實施例的電力系統的電源傳送示意圖。 2A is a schematic diagram of power transmission of a power system in accordance with an embodiment of the present invention.

圖2B為依據本發明一實施例的電力系統的功率補償示意圖。 2B is a schematic diagram of power compensation of a power system according to an embodiment of the invention.

圖3A至圖3D為依據本發明一實施例的電力系統的買電狀態的功率補償示意圖。 3A-3D are schematic diagrams of power compensation of a power-on state of a power system according to an embodiment of the invention.

圖4A至圖4B為依據本發明一實施例的電力系統的賣電狀態的功率補償示意圖。 4A-4B are schematic diagrams of power compensation of a power selling state of a power system according to an embodiment of the invention.

圖5為依據本發明一實施例的電力系統的實施方式流程示意圖。 FIG. 5 is a flow chart showing an embodiment of a power system according to an embodiment of the invention.

圖6為依據本發明另一實施例的電力系統的系統示意圖。 6 is a system diagram of a power system in accordance with another embodiment of the present invention.

圖7A為依據本發明另一實施例的電力系統的電源傳送示意圖。 FIG. 7A is a schematic diagram of power transmission of a power system according to another embodiment of the present invention.

圖7B與圖7C分別為依據本發明另一實施例的電力系統的功率補償示意圖。 7B and 7C are respectively schematic diagrams of power compensation of a power system according to another embodiment of the present invention.

圖8為依據本發明另一實施例的電力系統的實施方式流程示意圖。 FIG. 8 is a flow chart showing an embodiment of a power system according to another embodiment of the present invention.

圖9為依據本發明一實施例的電力系統的功率因數控制方法的流程圖。 9 is a flow chart of a power factor control method for a power system in accordance with an embodiment of the present invention.

圖1為依據本發明一實施例的電力系統的系統示意圖。圖2A為依據本發明一實施例的電力系統的電源傳送示意圖。請參照圖1與圖2A,在本實施例中,電力系統100包括交流電力網路110、綠能發電裝置120、逆變器130、負載端140、控制器150以及量測器160,其中交流電力網路110用以提供第一交流電源PAC1,綠能發電裝置120則用以提供綠能電源PGE,例如利用太陽能發電,綠能電源PGE的產生方式不用以限制本發明。負載端140耦接交流電力網路110與綠能發電裝置120,用以提供電源消耗。 1 is a system diagram of a power system in accordance with an embodiment of the present invention. 2A is a schematic diagram of power transmission of a power system in accordance with an embodiment of the present invention. Referring to FIG. 1 and FIG. 2A , in the embodiment, the power system 100 includes an AC power network 110 , a green power generation device 120 , an inverter 130 , a load terminal 140 , a controller 150 , and a measuring device 160 , wherein the AC power network The road 110 is used to provide a first AC power source PAC1, and the green power generation device 120 is used to provide a green power source PGE, for example, using solar power. The manner in which the green power source PGE is generated is not limited to the present invention. The load terminal 140 is coupled to the AC power network 110 and the green power generating device 120 for providing power consumption.

具體來說,逆變器130耦接綠能發電裝置120、交流電力網路110與負載端140,用以將綠能發電裝置120所提供的綠能電源PGE轉換為第二交流電源PAC2,以饋入電網NP,進而與交流電力網路110連結。量測器160耦接於逆變器130、負載端140與交流電力網路110之間,用以量測由逆變器130所轉換成的第二 交流電源PAC2與負載端140的電源消耗的總和功率因數。控制器150耦接量測器160及逆變器130,以依據第一交流電源PAC1的目標功率因數控制逆變器130來調整第二交流電源PAC2,致使第二交流電源PAC2與負載端140的電源消耗的總和功率因數大於或等於第一交流電源PAC1的目標功率因數。下文的實施例會有更詳細的說明。 Specifically, the inverter 130 is coupled to the green power generation device 120, the AC power network 110, and the load terminal 140 for converting the green power source PGE provided by the green power generation device 120 into the second AC power source PAC2 for feeding. The grid NP is connected to the AC power network 110. The measuring device 160 is coupled between the inverter 130, the load terminal 140 and the AC power network 110 for measuring the second converted by the inverter 130. The sum total power factor of the power consumption of the AC power source PAC2 and the load terminal 140. The controller 150 is coupled to the measuring device 160 and the inverter 130 to control the inverter 130 according to the target power factor of the first AC power source PAC1 to adjust the second AC power source PAC2, so that the second AC power source PAC2 and the load terminal 140 are The sum power factor of the power consumption is greater than or equal to the target power factor of the first AC power source PAC1. The following examples will be explained in more detail.

圖2B為依據本發明一實施例的電力系統的功率補償示意圖。請參照圖1、圖2A及圖2B,橫軸表示有功功率P,縱軸表示無功功率Q,在此示例性地說明本發明的電力系統的實施方式。在本實施例中,電力系統100透過逆變器130將綠能發電裝置120所提供的綠能電源PGE轉換為第二交流電源PAC2,以傳送至負載端140及提供第一交流電源PAC1的交流電力網路110,其中電力系統100的目標功率因數值以圖2B的線段210表示大於等於目標功率因數值(例如0.8)的正角度臨界值,線段212表示大於等於目標功率因數值(例如0.8)的負角度臨界值。在此實施例中,負載端140的電源消耗(如線段220所示)位於線段210與212之間,表示負載端140的電源消耗(即線段220)的功率因數是大於目標功率因數值。在此,透過量測器160可以量測第二交流電源PAC2與負載端140電源消耗的總和功率因數,亦即|cos θ1|。 2B is a schematic diagram of power compensation of a power system according to an embodiment of the invention. Referring to FIG. 1, FIG. 2A and FIG. 2B, the horizontal axis represents the active power P, and the vertical axis represents the reactive power Q. Here, an embodiment of the power system of the present invention will be exemplarily described. In this embodiment, the power system 100 converts the green power source PGE provided by the green power generation device 120 into the second AC power source PAC2 through the inverter 130 to be transmitted to the load terminal 140 and provide the communication of the first AC power source PAC1. The power network 110, wherein the target power factor value of the power system 100 represents a positive angle threshold value greater than or equal to a target power factor value (eg, 0.8) in line segment 210 of FIG. 2B, and line segment 212 represents a target power factor value (eg, 0.8) greater than or equal to Negative angle threshold. In this embodiment, the power consumption of the load terminal 140 (as indicated by line segment 220) is between line segments 210 and 212, indicating that the power factor of the power consumption of load terminal 140 (ie, line segment 220) is greater than the target power factor value. Here, the transmission measurer 160 can measure the sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140, that is, |cos θ1|.

由於逆變器130原本提供給電網NP的是有功功率,例如虛線232,此時逆變器130所提供第二交流電源PAC2與負載端140的電源消耗的總和電能如虛線234所示。由於虛線234超出線段 210與212之間,表示虛線234所示的總和電能的總和功率因數是小於目標功率因數值。此時,本實施例的逆變器130可透過調整第二交流電源PAC2的無功功率,改變第二交流電源PAC2與負載端140的電源消耗的總和功率因數,而第二交流電源PAC2的視在功率的值維持不變。 Since the inverter 130 is originally supplied to the power grid NP is active power, such as the broken line 232, the sum of the power consumption of the second AC power source PAC2 and the load terminal 140 provided by the inverter 130 is indicated by a broken line 234. Since the dotted line 234 is beyond the line segment Between 210 and 212, the sum total power factor of the summed electrical energy indicated by the dashed line 234 is less than the target power factor value. At this time, the inverter 130 of the embodiment can change the reactive power of the second AC power source PAC2 and the load terminal 140 by adjusting the reactive power of the second AC power source PAC2, and the second AC power source PAC2 is viewed. The value of the power remains unchanged.

依據上述,控制器150可根據目標功率因數來控制逆變器130,例如增加或減少所輸出的無功功率,在圖2B的實施例中,控制器150可增加逆變器130所輸出第二交流電源PAC2的無功功率,使得逆變器130提供修正後的第二交流電源PAC2(如線段242所示),其中線段242可視為向下旋轉後的線段232,亦即線段242的值(即長度)相同於線段232的值(即長度)。相應地,第二交流電源PAC2與負載端140的電源消耗的調整後總和功率因數會如線段244所示,由於線段244與線段210重疊,表示第二交流電源PAC2與負載端140的電源消耗的調整後總和功率因數會等於目標功率因數值,亦即第二交流電源PAC2與負載端140的電源消耗的調整後總和功率因數會不小於目標功率因數。 According to the above, the controller 150 can control the inverter 130 according to the target power factor, for example, increase or decrease the output reactive power. In the embodiment of FIG. 2B, the controller 150 can increase the output of the inverter 130. The reactive power of the AC power source PAC2 causes the inverter 130 to provide the corrected second AC power source PAC2 (as indicated by line segment 242), wherein the line segment 242 can be considered as the downwardly rotated line segment 232, that is, the value of the line segment 242 ( That is, the length is the same as the value of the line segment 232 (ie, the length). Correspondingly, the adjusted sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 is as shown by the line segment 244. Since the line segment 244 overlaps with the line segment 210, the power consumption of the second AC power source PAC2 and the load terminal 140 is indicated. The adjusted sum power factor will be equal to the target power factor value, that is, the adjusted sum power factor of the second AC power source PAC2 and the load terminal 140 power consumption will be not less than the target power factor.

此外,在本實施例中,由於線段210與212之外是小於目標功率因數的區域,因此控制器150可以判斷第二交流電源PAC2與負載端140的電源消耗的總和功因角(如角度θ1所示)為正值或負值,以決定逆變器130的第二交流電源PAC2的調整方式。進一步來說,當總和功因角(如角度θ1所示)為正值且第二交流電源PAC2與負載端140的電源消耗的總和功率因數小於目標 功率因數時,控制器150可控制逆變器130增加第二交流電源PAC2的無功功率,使得第二交流電源PAC2的向下旋轉,直到第二交流電源PAC2與負載端140的電源消耗的調整後總和功率因數會不小於目標功率因數;當總和功因角(如角度θ1所示)為負值且第二交流電源PAC2與負載端140的電源消耗的總和功率因數小於目標功率因數時,控制逆變器130可減少第二交流電源PAC2的無功功率,使得第二交流電源PAC2的向上旋轉,直到第二交流電源PAC2與負載端140的電源消耗的調整後總和功率因數會不小於目標功率因數。除此之外,控制器150還可以判斷第二交流電源PAC2與負載端140的電源消耗為買電狀態或賣電狀態,其中圖2B所示實施例為第二交流電源PAC2與負載端140的電源消耗為買電狀態。此外,當第二交流電源PAC2與負載端140的電源消耗為賣電狀態時,亦即總電能溢出,控制器150可判斷總和功因角(如角度θ1所示)為正值或負值,決定逆變器130的第二交流電源PAC2的調整方式。 In addition, in this embodiment, since the line segments 210 and 212 are smaller than the target power factor, the controller 150 can determine the sum of the power consumption of the second AC power source PAC2 and the load terminal 140 (eg, the angle θ1). The shown) is a positive or negative value to determine the manner in which the second AC power source PAC2 of the inverter 130 is adjusted. Further, when the sum function power angle (as indicated by the angle θ1) is positive and the sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 is smaller than the target In the power factor, the controller 150 can control the inverter 130 to increase the reactive power of the second AC power source PAC2, so that the second AC power source PAC2 rotates downward until the power consumption of the second AC power source PAC2 and the load terminal 140 is adjusted. The post-sum power factor is not less than the target power factor; when the sum power factor angle (as indicated by the angle θ1) is negative and the sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 is less than the target power factor, the control The inverter 130 can reduce the reactive power of the second AC power source PAC2, so that the second AC power source PAC2 is rotated upward until the adjusted power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 is not less than the target power. Factor. In addition, the controller 150 can also determine that the power consumption of the second AC power source PAC2 and the load terminal 140 is a power-on state or a power-selling state, wherein the embodiment shown in FIG. 2B is the second AC power source PAC2 and the load terminal 140. The power consumption is in the state of buying power. In addition, when the power consumption of the second AC power source PAC2 and the load terminal 140 is in a power selling state, that is, the total power energy overflows, the controller 150 may determine that the sum function power angle (as indicated by the angle θ1) is positive or negative. The adjustment method of the second AC power source PAC2 of the inverter 130 is determined.

請參照圖3A至圖5。圖3A至圖3D為依據本發明一實施例的電力系統的買電狀態的功率補償示意圖。圖4A至圖4B為依據本發明一實施例的電力系統的賣電狀態的功率補償示意圖。圖5為依據本發明一實施例的電力系統的實施方式流程示意圖。圖1的電力系統100可適用於圖3A至圖5的任一實施例。其中,相同或相似元件使用相同或相似標號,但不同圖式中表示不同的實施例。 Please refer to FIG. 3A to FIG. 5. 3A-3D are schematic diagrams of power compensation of a power-on state of a power system according to an embodiment of the invention. 4A-4B are schematic diagrams of power compensation of a power selling state of a power system according to an embodiment of the invention. FIG. 5 is a flow chart showing an embodiment of a power system according to an embodiment of the invention. The power system 100 of Figure 1 can be applied to any of the embodiments of Figures 3A-5. Where the same or similar elements are given the same or similar reference numerals, but different embodiments are shown in the different drawings.

電力系統100開始運作後(步驟S510),控制器150會判斷第二交流電源PAC2與負載端140的電源消耗為買電狀態或賣電狀態(步驟S520)。 After the power system 100 starts operating (step S510), the controller 150 determines that the power consumption of the second alternating current power source PAC2 and the load terminal 140 is a power-on state or a power-sell state (step S520).

在圖3A至圖3D的實施例中,電力系統100假設為買電狀態,亦即總和電能未溢出,並且以線段210代表大於等於目標功率因數(例如0.8)的正角度臨界值,線段212代表大於等於目標功率因數(例如0.8)的負角度臨界值,且負載端140的負載向量(亦即電源消耗)以線段220作為表示。當電力系統100為買電狀態時,控制器150可以判斷第二交流電源PAC2與負載端140的電源消耗的總和功率因數是否大於或等於目標功率因數(亦即位於線段210與212之間)(步驟S530)。 In the embodiment of Figures 3A-3D, power system 100 is assumed to be in a power-on state, i.e., the sum power is not overflowed, and line segment 210 represents a positive angle threshold greater than or equal to a target power factor (e.g., 0.8), and line 212 represents A negative angle threshold greater than or equal to the target power factor (eg, 0.8), and the load vector of the load terminal 140 (ie, power consumption) is represented by line segment 220. When the power system 100 is in the power-on state, the controller 150 may determine whether the sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 is greater than or equal to the target power factor (ie, between the line segments 210 and 212) ( Step S530).

請參照圖3A與圖3B的實施例,當控制器150判斷電力系統100原先的總和功率因數大於目標功率因數(亦即位於線段210與212之間的線段334)時,控制器150可控制逆變器130所輸出的第二交流電源PAC2的功率因數往1.0修正。進一步來說,在圖3A的實施例中,總和功因角θ2大於0度(為正值),控制器150控制逆變器130以減少所輸出的第二交流電源PAC2的無功功率,以使第二交流電源PAC2的功率因數往1.0修正(步驟S550)。如圖3A所示,經修正後,第二交流電源PAC2的向量從線段332旋轉後為線段342,但修正後的總和功率因數(如線段344段示)仍位於線段210與212之間,亦即第二交流電源PAC2與負載端140的電源消耗的修正後總和功率因數仍大於或等於目標功率因 數。 Referring to the embodiment of FIG. 3A and FIG. 3B, when the controller 150 determines that the original sum power factor of the power system 100 is greater than the target power factor (ie, the line segment 334 between the line segments 210 and 212), the controller 150 can control the inverse. The power factor of the second AC power source PAC2 outputted by the transformer 130 is corrected to 1.0. Further, in the embodiment of FIG. 3A, the sum function power angle θ2 is greater than 0 degrees (which is a positive value), and the controller 150 controls the inverter 130 to reduce the reactive power of the output second AC power source PAC2 to The power factor of the second AC power source PAC2 is corrected to 1.0 (step S550). As shown in FIG. 3A, after correction, the vector of the second AC power source PAC2 is rotated from the line segment 332 to the line segment 342, but the corrected sum power factor (as indicated by the line segment 344) is still between the line segments 210 and 212. That is, the corrected sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 is still greater than or equal to the target power factor. number.

而在圖3B的實施例中,總和功因角θ3小於0度(為負值),控制器150可以控制逆變器130所輸出的第二交流電源PAC2的功率因數往1.0修正,經修正後,第二交流電源PAC2的向量從線段332旋轉後為線段342,但修正後的總和功率因數(如線段344段示)仍大於或等於目標功率因數(步驟S550)。 In the embodiment of FIG. 3B, the sum of the power factor angle θ3 is less than 0 degrees (which is a negative value), and the controller 150 can control the power factor of the second AC power source PAC2 output by the inverter 130 to be corrected to 1.0, after being corrected. The vector of the second AC power source PAC2 is rotated from the line segment 332 to the line segment 342, but the corrected sum power factor (as indicated by line segment 344) is still greater than or equal to the target power factor (step S550).

當控制器150判斷總和功率因數小於目標功率因數時,控制器150進一步判斷總和功因角為正值或負值(步驟S540)。在圖3C的實施例中,第二交流電源PAC2與負載端140的電源消耗的總和功率因數(如線段334所示)超出線段210與212之間,表示小於第一交流電源PAC1的目標功率因數,並且控制器150判斷總和功因角θ4大於0度後,控制器150就會控制逆變器130增加第二交流電源PAC2的無功功率,使得表示第二交流電源PAC2的線段332向下旋轉變為線段342,直到第二交流電源PAC2與負載端140的電源消耗的調整後總和功率因數(如線段344所示)大於或等於目標功率因數(步驟S560)。 When the controller 150 determines that the sum power factor is less than the target power factor, the controller 150 further determines that the sum function power angle is a positive value or a negative value (step S540). In the embodiment of FIG. 3C, the sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 (as indicated by line segment 334) is beyond the line segments 210 and 212, indicating that the target power factor is less than the target power factor of the first AC power source PAC1. After the controller 150 determines that the total power factor angle θ4 is greater than 0 degrees, the controller 150 controls the inverter 130 to increase the reactive power of the second alternating current power source PAC2, so that the line segment 332 indicating the second alternating current power source PAC2 is rotated downward. The line segment 342 is changed until the adjusted sum power factor (shown by line segment 344) of the power consumption of the second AC power source PAC2 and the load terminal 140 is greater than or equal to the target power factor (step S560).

在圖3D的實施例中,第二交流電源PAC2與負載端140的電源消耗的總和功率因數(如線段334所示)超出線段210與212之間,表示小於第一交流電源PAC1的目標功率因數,並且控制器150先判斷出總和功因角θ5為負值,進而控制器150控制逆變器130減少第二交流電源PAC2的無功功率的輸出量(步驟S570)。逆變器130提供修正後的第二交流電源PAC2(如線段342 所示),會使得修正後的第二交流電源PAC2與負載端140的電源消耗的總和功率因數(如線段344所示)會大於或等於目標功率因數。 In the embodiment of FIG. 3D, the sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 (as indicated by line segment 334) is beyond the line segments 210 and 212, indicating that the target power factor is less than the target power factor of the first AC power source PAC1. And the controller 150 first determines that the total power factor angle θ5 is a negative value, and the controller 150 controls the inverter 130 to reduce the output amount of the reactive power of the second alternating current power source PAC2 (step S570). The inverter 130 provides the corrected second AC power source PAC2 (eg, line segment 342) As shown, the summed power factor (as indicated by line segment 344) of the corrected power consumption of the second AC power source PAC2 and the load terminal 140 may be greater than or equal to the target power factor.

在圖4A至圖4B的實施例中,電力系統100假設為賣電狀態,並且以線段210代表大於等於目標功率因數(例如0.8)的正角度臨界值,線段212代表大於等於目標功率因數(例如0.8)的負角度臨界值,且負載端140的負載向量(亦即電源消耗)以線段220作為表示。當控制器150判斷第二交流電源PAC2與負載端140的電源消耗為電能溢出狀態時(步驟S520),電力系統100為賣電狀態,控制器150會進一步判斷總和功因角為正值或負值(步驟S540)。 In the embodiment of FIGS. 4A-4B, power system 100 is assumed to be in a power-selling state, and line segment 210 represents a positive angle threshold greater than or equal to a target power factor (eg, 0.8), and line segment 212 represents a target power factor greater than or equal to (eg, The negative angle threshold of 0.8), and the load vector of the load terminal 140 (ie, power consumption) is represented by line segment 220. When the controller 150 determines that the power consumption of the second AC power source PAC2 and the load terminal 140 is an electric energy overflow state (step S520), the power system 100 is in a power selling state, and the controller 150 further determines that the sum function power angle is positive or negative. Value (step S540).

在圖4A的實施例中,當控制器150判斷電力系統100原本的總和功率因數(如線段434所示)的總和功因角θ6為正值,原本逆變器130所輸出的第二交流電源PAC2的功率向量如線段432所示,控制器150控制逆變器130增加第二交流電源PAC2的無功功率的輸出量,第二交流電源PAC2的向量從線段432旋轉後為線段442,使得修正後的總和功率因數往1.0修正,亦即由線段434修正至線段444。在本實施例中,修正後的第二交流電源PAC2的功率向量442可以使得電力系統100在賣電狀態時的總和功率因數接近1.0。 In the embodiment of FIG. 4A, when the controller 150 determines that the sum of the power factor of the power system 100 (as indicated by the line segment 434) is positive, the second AC power source originally output by the inverter 130 The power vector of the PAC2 is as shown by the line segment 432. The controller 150 controls the inverter 130 to increase the output of the reactive power of the second AC power source PAC2. The vector of the second AC power source PAC2 is rotated from the line segment 432 to the line segment 442, so that the correction is made. The resulting sum power factor is corrected to 1.0, i.e., corrected by line segment 434 to line segment 444. In the present embodiment, the corrected power vector 442 of the second AC power source PAC2 may cause the power system 100 to have a total power factor close to 1.0 in the power-selling state.

在圖4B的實施例中,當控制器150判斷電力系統100的總和功率因數(如線段434所示)的總和功因角θ7為負值,控制 器150可以控制逆變器130減少第二交流電源PAC2的無功功率的輸出量,使得第二交流電源PAC2的功率向量從線段432旋轉後為線段442,使得修正後的電力系統100的總和功率因數(如線段444所示)往1.0修正,並且在賣電狀態時電力系統100的總和功率因數接近1.0。 In the embodiment of FIG. 4B, when controller 150 determines that the sum power factor θ7 of the sum power factor of power system 100 (as indicated by line segment 434) is negative, control The controller 150 can control the inverter 130 to reduce the output of the reactive power of the second alternating current power source PAC2 such that the power vector of the second alternating current power source PAC2 is rotated from the line segment 432 to the line segment 442, so that the summed power of the modified power system 100 The factor (as indicated by line 444) is corrected to 1.0, and the sum power factor of power system 100 is near 1.0 in the power selling state.

圖6為依據本發明另一實施例的電力系統的系統示意圖。請參照圖6,在本實施例中,電力系統600與電力系統100的實施方式類似,但相較於電力系統100還包括了儲能設備170。儲能設備170耦接綠能發電裝置120及控制器150,以受控於控制器150來利用綠能電源PGE進行充電或進行放電。本領域具有通常知識者可依據圖1至圖5的實施例的說明獲致相關的教示、建議或實施方式。 6 is a system diagram of a power system in accordance with another embodiment of the present invention. Referring to FIG. 6, in the present embodiment, the power system 600 is similar to the embodiment of the power system 100, but includes an energy storage device 170 as compared to the power system 100. The energy storage device 170 is coupled to the green power generation device 120 and the controller 150 to be controlled by the controller 150 to charge or discharge using the green power source PGE. Those skilled in the art will be able to obtain relevant teachings, suggestions, or implementations in accordance with the description of the embodiments of Figures 1 through 5.

圖7A為依據本發明另一實施例的電力系統的電源傳送示意圖,圖7B與圖7C分別為依據本發明另一實施例的電力系統的功率補償示意圖,圖8為依據本發明另一實施例的電力系統的實施方式流程示意圖。接下來,請搭配圖6,參照圖7A至圖8,在電力系統600開始運作後(步驟S810),控制器150會判斷第二交流電源PAC2與電源消耗為買電狀態或賣電狀態(步驟S812)。當第二交流電源PAC2與電源消耗為買電狀態時,控制器150判斷電力系統600的總和功率因數是否大於等於第一交流電源PAC1的目標功率因數(S814),以判斷增加或減少儲能設備170的充電功率。 7A is a schematic diagram of power transmission of a power system according to another embodiment of the present invention, FIG. 7B and FIG. 7C are respectively schematic diagrams of power compensation of a power system according to another embodiment of the present invention, and FIG. 8 is a schematic diagram of another embodiment of the present invention. Schematic diagram of the implementation of the power system. Next, with reference to FIG. 6 , referring to FIG. 7A to FIG. 8 , after the power system 600 starts operating (step S810 ), the controller 150 determines that the second AC power source PAC2 and the power consumption are in a power-on state or a power-sell state (steps). S812). When the second AC power source PAC2 and the power consumption are in the power-on state, the controller 150 determines whether the sum power factor of the power system 600 is greater than or equal to the target power factor of the first AC power source PAC1 (S814) to determine to increase or decrease the energy storage device. 170 charging power.

請參照圖7B,在此電力系統600假設為買電狀態,當控制器150判斷第二交流電源PAC2與負載端140的電源消耗的總和功率因數(如線段634所示)小於目標功率因數後(即位於線段210與212之外),控制器150進一步判斷儲能設備170是否達到最大充電功率(步驟S822),當儲能設備170未達到最大充電功率時,控制器150可以控制儲能設備170增加充電功率(步驟S824)。具體來說,控制器150可以控制逆變器130並且調整第二交流電源PAC2的無功功率的輸出量(如線段642所示),控制器150也可以控制儲能設備170利用綠能電源PGE進行充電(如圖7B中的儲能設備向量646所示),使得修正後的總和功率因數(如線段644所示)與線段210重疊,表示第二交流電源PAC2與負載端140的電源消耗的修正後總和功率因數仍不小於目標功率因數。在此實施例中,電力系統600為買電狀態,總和功因角θ8為正值,然而在另一實施例中,總和功因角θ8也可以為負值,本領域具有通常知識者可依據上述的實施方式獲致足夠的教示,在此不再贅述。 Referring to FIG. 7B, the power system 600 is assumed to be in a power-on state. When the controller 150 determines that the sum power factor of the power consumption of the second AC power source PAC2 and the load terminal 140 (as indicated by the line segment 634) is less than the target power factor ( That is, outside the line segments 210 and 212, the controller 150 further determines whether the energy storage device 170 reaches the maximum charging power (step S822). When the energy storage device 170 does not reach the maximum charging power, the controller 150 can control the energy storage device 170. The charging power is increased (step S824). Specifically, the controller 150 can control the inverter 130 and adjust the output of the reactive power of the second AC power source PAC2 (as indicated by the line segment 642), and the controller 150 can also control the energy storage device 170 to utilize the green power source PGE. Charging is performed (as shown by energy storage device vector 646 in Figure 7B) such that the corrected sum power factor (as indicated by line 644) overlaps line segment 210, indicating power consumption of second AC power source PAC2 and load terminal 140. The corrected sum power factor is still not less than the target power factor. In this embodiment, the power system 600 is in a power-on state, and the total power factor angle θ8 is a positive value. However, in another embodiment, the sum power factor angle θ8 may also be a negative value, which is generally available to those skilled in the art. The above embodiments have been given sufficient teachings and will not be described again.

圖7C為依據本發明另一實施例的電力系統的功率補償示意圖。請參照圖7C,在此電力系統600假設為買電狀態。當控制器150判斷出電力系統600的總和功率因數(如線段634所示)小於目標功率因數,亦即線段634位於線段210與212所夾區域之外,並且儲能設備170已達到最大充電功率時,代表儲能設備170已無法對電力作進一步的調整,因此控制器150可判斷總和功因角θ9為正值或負值,來決定要增加或減少逆變器130所輸出第 二交流電源PAC2的無功功率(步驟S826)。在本實施例中,總和功因角θ9為正值,控制器150控制逆變器130增加輸出第二交流電源PAC2的無功功率,第二交流電源PAC2的向量從線段632旋轉後為線段642(步驟S828),以使修正後的總和功率因數(如線段644所示)不小於目標功率因數。與上述的實施例類似,此外,當總和功因角θ9為負值時,控制器150控制逆變器130減少輸出第二交流電源PAC2的無功功率(步驟S830),關於具體的實施方式,本領域具有通常知識者可依據圖1至圖7B的實施例的實施方式獲致足夠的教示,在此不再贅述。 7C is a schematic diagram of power compensation of a power system according to another embodiment of the present invention. Referring to FIG. 7C, the power system 600 is assumed to be in a power-on state. When the controller 150 determines that the sum power factor of the power system 600 (as indicated by line 634) is less than the target power factor, that is, the line segment 634 is outside the area sandwiched by the line segments 210 and 212, and the energy storage device 170 has reached the maximum charging power. At this time, on behalf of the energy storage device 170, the power can not be further adjusted. Therefore, the controller 150 can determine that the total power factor angle θ9 is a positive value or a negative value to determine whether to increase or decrease the output of the inverter 130. The reactive power of the AC power source PAC2 (step S826). In this embodiment, the sum of the work power angle θ9 is a positive value, the controller 150 controls the inverter 130 to increase the reactive power outputting the second AC power source PAC2, and the vector of the second AC power source PAC2 is rotated from the line segment 632 to the line segment 642. (Step S828), so that the corrected sum power factor (as indicated by line 644) is not less than the target power factor. Similar to the above embodiment, in addition, when the sum function angle θ9 is a negative value, the controller 150 controls the inverter 130 to reduce the reactive power outputting the second AC power source PAC2 (step S830), with respect to a specific embodiment, Those skilled in the art can obtain sufficient teachings according to the embodiments of the embodiments of FIG. 1 to FIG. 7B, and details are not described herein again.

需說明的是,在上述的實施例中,總和功因角的大小僅作為示例,並不用以限制本發明。 It should be noted that, in the above embodiments, the magnitude of the sum of the power angles is only an example and is not intended to limit the present invention.

除此之外,在圖8的實施例中,當電力系統600的總和功率因數大於等於目標功率因數(亦即位於目標功率因數210與212所夾之區域)時,控制器150還可以判斷逆變器130是否輸出第二交流電源PAC2的無功功率(步驟S816)。當逆變器130未輸出第二交流電源PAC2的無功功率時,代表儲能設備170的充電功率過高,此時控制器130可控制儲能設備170減少充電功率,甚至進行放電(亦即負的充電功率)(步驟S820),而當逆變器130輸出第二交流電源PAC2的無功功率時,控制器150可控制逆變器130使第二交流電源PAC2與負載端140的電源消耗的總和功率因數往1.0修正(步驟S818)。關於步驟S826、S828及S830的細節可參照圖1至圖5的實施例所示,在此則不再贅述。 In addition, in the embodiment of FIG. 8, when the sum power factor of the power system 600 is greater than or equal to the target power factor (ie, located in the area sandwiched by the target power factors 210 and 212), the controller 150 may also determine the inverse Whether the inverter 130 outputs the reactive power of the second alternating current power source PAC2 (step S816). When the inverter 130 does not output the reactive power of the second AC power source PAC2, the charging power representing the energy storage device 170 is too high, and the controller 130 can control the energy storage device 170 to reduce the charging power and even discharge (ie, Negative charging power) (step S820), and when the inverter 130 outputs the reactive power of the second alternating current power source PAC2, the controller 150 can control the inverter 130 to consume the power of the second alternating current power source PAC2 and the load terminal 140. The sum power factor is corrected to 1.0 (step S818). The details of steps S826, S828, and S830 can be referred to the embodiment of FIG. 1 to FIG. 5, and details are not described herein again.

請參照圖9,圖9為依據本發明一實施例的電力系統的功率因數控制方法的流程圖。在本實施例中,電力系統透過逆變器將綠能發電裝置提供的綠能電源轉換為第二交流電源,以傳送至負載端及提供第一交流電源的交流電力網路,電力系統的功率因數控制方法包括下列步驟。在步驟S910中,透過量測器量測第二交流電源與電源消耗的總和功率因數。接著,在步驟S920中,透過控制器依據第一交流電源的目標功率因數控制逆變器以調整第二交流電源,致使總和功率因數大於等於目標功率因數。步驟S910及S920的細節可參照前述實施例中的教示,在此不再贅述。 Please refer to FIG. 9. FIG. 9 is a flowchart of a power factor control method for a power system according to an embodiment of the invention. In this embodiment, the power system converts the green energy power provided by the green power generation device into a second alternating current power source through the inverter, and transmits the power to the load terminal and the alternating current power network that provides the first alternating current power source, and the power factor of the power system. The control method includes the following steps. In step S910, the sum total power factor of the second alternating current power source and the power consumption is measured through the measuring device. Next, in step S920, the controller controls the inverter according to the target power factor of the first alternating current power source to adjust the second alternating current power source, so that the sum power factor is greater than or equal to the target power factor. For details of the steps S910 and S920, reference may be made to the teachings in the foregoing embodiments, and details are not described herein again.

綜上所述,本發明的實施例的電力系統及其功率因數控制方法,可通過量測器量測第二交流電源與電源消耗的總和功率因數,並且通過控制器依據第一交流電源的目標功率因數控制逆變器以調整第二交流電源,致使總和功率因數大於等於目標功率因數,因此可以使得原有電力系統的目標功率因數的所受到的影響被降低。 In summary, the power system and the power factor control method thereof according to the embodiment of the present invention can measure the sum power factor of the second AC power source and the power consumption through the measuring device, and pass the controller according to the target of the first AC power source. The power factor controls the inverter to adjust the second AC power source such that the sum power factor is greater than or equal to the target power factor, so that the influence of the target power factor of the original power system can be reduced.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

Claims (15)

一種電力系統,包括:一交流電力網路,用以提供一第一交流電源;一綠能發電裝置,提供一綠能電源;一逆變器,耦接該綠能發電裝置,用以將該綠能電源轉換為一第二交流電源;一負載端,用以提供一電源消耗;一量測器,耦接於該逆變器、該負載端與該交流電力網路之間,用以量測該第二交流電源與該電源消耗的一總和功率因數;以及一控制器,耦接該量測器及該逆變器,以依據該第一交流電源的一目標功率因數控制該逆變器以調整該第二交流電源,致使該總和功率因數大於等於該目標功率因數,其中該控制器判斷該第二交流電源與該電源消耗為一買電狀態或一賣電狀態,當該第二交流電源與該電源消耗為該賣電狀態時,該控制器判斷該第二交流電源與該電源消耗的一總和功因角為一正值或一負值。 An electric power system comprising: an alternating current power network for providing a first alternating current power source; a green power generating device for providing a green energy source; and an inverter coupled to the green power generating device for the green The power source is converted into a second AC power source; a load end is used to provide a power consumption; a measuring device is coupled between the inverter, the load end and the AC power network for measuring the power a second AC power source and a sum total power factor consumed by the power source; and a controller coupled to the meter and the inverter to control the inverter to adjust according to a target power factor of the first AC power source The second AC power source causes the sum power factor to be greater than or equal to the target power factor, wherein the controller determines that the second AC power source and the power source are in a power-on state or a power-selling state, when the second AC power source is When the power consumption is in the power selling state, the controller determines that the sum of the power consumption of the second AC power source and the power source is a positive value or a negative value. 如申請專利範圍第1項所述的電力系統,其中當該總和功因角為該正值時,該控制器控制該逆變器增加該第二交流電源的一無功功率,當該總和功因角為該負值時,控制該逆變器減少該第二交流電源的該無功功率。 The power system of claim 1, wherein the controller controls the inverter to increase a reactive power of the second alternating current power source when the total power factor is the positive value, when the total power is When the angle is the negative value, the inverter is controlled to reduce the reactive power of the second alternating current power source. 如申請專利範圍第2項所述的電力系統,其中當該第二交流電源與該電源消耗為該買電狀態時,該控制器判斷該總和功率因數是否大於等於該目標功率因數,當該總和功率因數小於該目標功率因數時,該控制器判斷該總和功因角為該正值或該負值。 The power system of claim 2, wherein when the second AC power source and the power source are in the power-on state, the controller determines whether the sum power factor is greater than or equal to the target power factor, when the sum When the power factor is less than the target power factor, the controller determines whether the sum power factor is the positive value or the negative value. 如申請專利範圍第3項所述的電力系統,其中當該總和功率因數大於等於該目標功率因數時,該控制器控制該逆變器使該逆變器的一功率因數往1.0修正。 The power system of claim 3, wherein when the sum power factor is greater than or equal to the target power factor, the controller controls the inverter to correct a power factor of the inverter to 1.0. 如申請專利範圍第2項所述的電力系統,更包括一儲能設備,耦接該綠能發電裝置及該控制器,以受控於該控制器利用該綠能電源進行充電或進行放電,其中當該第二交流電源與該電源消耗為該買電狀態時,該控制器判斷該總和功率因數是否大於等於該目標功率因數,以判斷該儲能設備為進行充電或進行放電。 The power system of claim 2, further comprising an energy storage device coupled to the green power generation device and the controller to be controlled by the controller to charge or discharge the green energy source, When the second AC power source and the power source are in the power-on state, the controller determines whether the sum power factor is greater than or equal to the target power factor to determine that the energy storage device is charging or discharging. 如申請專利範圍第5項所述的電力系統,其中當該總和功率因數小於該目標功率因數時,該控制器判斷該儲能設備是否達到一最大充電功率,並且當該儲能設備未達到該最大充電功率時,該控制器控制該儲能設備增加一充電功率。 The power system of claim 5, wherein when the sum power factor is less than the target power factor, the controller determines whether the energy storage device reaches a maximum charging power, and when the energy storage device does not reach the The controller controls the energy storage device to increase a charging power when the charging power is maximum. 如申請專利範圍第6項所述的電力系統,其中當該儲能設備達到該最大充電功率時,該控制器判斷該總和功因角為該正值或該負值。 The power system of claim 6, wherein when the energy storage device reaches the maximum charging power, the controller determines whether the total power factor is the positive value or the negative value. 如申請專利範圍第5項所述的電力系統,其中當該總和功率因數大於等於該目標功率因數時,該控制器判斷該逆變器是否輸出該無功功率,當該逆變器未輸出該無功功率時,該控制器控制該儲能設備減少一充電功率。 The power system of claim 5, wherein when the sum power factor is greater than or equal to the target power factor, the controller determines whether the inverter outputs the reactive power, when the inverter does not output the The controller controls the energy storage device to reduce a charging power when reactive power is used. 如申請專利範圍第8項所述的電力系統,其中當該逆變器輸出該無功功率時,該控制器控制該逆變器使該逆變器的一功率因數往1.0修正。 The power system of claim 8, wherein when the inverter outputs the reactive power, the controller controls the inverter to correct a power factor of the inverter to 1.0. 一種電力系統的功率因數控制方法,其中該電力系統透過一逆變器將一綠能發電裝置提供的一綠能電源轉換為一第二交流電源,以傳送至一負載端及提供一第一交流電源的一交流電力網路,該功率因數控制方法包括:透過一量測器量測該第二交流電源與一電源消耗的一總和功率因數;透過一控制器依據該第一交流電源的一目標功率因數控制該逆變器以調整該第二交流電源,致使該總和功率因數大於等於該目標功率因數;以及透過該控制器判斷該第二交流電源與該電源消耗為一買電狀態或一賣電狀態,其中當該第二交流電源與該電源消耗為該賣電狀態時,透過該控制器判斷該第二交流電源與該電源消耗的一總和功因角為一正值或一負值。 A power factor control method for a power system, wherein the power system converts a green power source provided by a green power generation device into a second AC power source through an inverter to transmit to a load terminal and provide a first communication An AC power network of the power supply, the power factor control method includes: measuring, by a measuring device, a total power factor consumed by the second AC power source and a power source; and transmitting, by a controller, a target power of the first AC power source Controlling the inverter to adjust the second AC power source, such that the sum power factor is greater than or equal to the target power factor; and determining, by the controller, that the second AC power source and the power source are in a state of buying power or selling power a state, wherein when the second AC power source and the power source are consumed in the power selling state, the controller determines that a sum of the power consumption angles of the second AC power source and the power source is a positive value or a negative value. 如申請專利範圍第10項所述的功率因數控制方法,透過該控制器判斷該第二交流電源與該電源消耗的該總和功因角為該正值或該負值的步驟包括:當該總和功因角為該正值時,透過該控制器控制該逆變器增加該第二交流電源的一無功功率;以及當該總和功因角為該負值時,控制該逆變器減少該第二交流電源的該無功功率。 The power factor control method according to claim 10, wherein the step of determining, by the controller, the total AC power consumption angle of the second AC power source and the power source is the positive value or the negative value comprises: when the sum When the power factor angle is the positive value, the inverter is controlled by the controller to increase a reactive power of the second alternating current power source; and when the sum power angle is the negative value, controlling the inverter to reduce the The reactive power of the second alternating current power source. 如申請專利範圍第10項所述的功率因數控制方法,其中透過該控制器判斷該第二交流電源與該電源消耗為該買電狀態或該賣電狀態的步驟包括:當該第二交流電源與該電源消耗為該買電狀態時,透過該控制器判斷該總和功率因數是否大於等於該目標功率因數;當該總和功率因數小於該目標功率因數時,該控制器判斷該總和功因角為該正值或該負值;以及當該總和功率因數大於等於該目標功率因數時,透過該控制器控制該逆變器使該逆變器的一功率因數往1.0修正。 The power factor control method according to claim 10, wherein the step of determining, by the controller, the second AC power source and the power consumption as the power-on state or the power-selling state comprises: when the second AC power source And when the power consumption is in the power-on state, the controller determines whether the sum power factor is greater than or equal to the target power factor; when the sum power factor is less than the target power factor, the controller determines that the sum power factor is The positive value or the negative value; and when the sum power factor is greater than or equal to the target power factor, the inverter is controlled by the controller to correct a power factor of the inverter to 1.0. 如申請專利範圍第10項所述的功率因數控制方法,其中透過該控制器判斷該第二交流電源與該電源消耗為該買電狀態或該賣電狀態的步驟包括: 當該第二交流電源與該電源消耗為該買電狀態時,透過該控制器判斷該總和功率因數是否大於等於該目標功率因數,以判斷一儲能設備為進行充電或進行放電。 The power factor control method according to claim 10, wherein the step of determining, by the controller, the second AC power source and the power consumption as the power-on state or the power-selling state comprises: When the second AC power source and the power source are in the power-on state, the controller determines whether the sum power factor is greater than or equal to the target power factor to determine whether an energy storage device is charging or discharging. 如申請專利範圍第13項所述的功率因數控制方法,其中判斷該儲能設備為進行充電或進行放電的步驟包括:當該總和功率因數小於該目標功率因數時,透過該控制器判斷該儲能設備是否達到一最大充電功率;當該儲能設備未達到該最大充電功率時,透過該控制器控制該儲能設備增加一充電功率;以及當該儲能設備達到該最大充電功率時,透過該控制器判斷該總和功因角為該正值或該負值。 The power factor control method of claim 13, wherein the step of determining that the energy storage device is charging or discharging comprises: determining, by the controller, the storage when the sum power factor is less than the target power factor Whether the device reaches a maximum charging power; when the energy storage device does not reach the maximum charging power, the energy storage device is controlled to increase a charging power through the controller; and when the energy storage device reaches the maximum charging power, The controller determines whether the sum function angle is the positive value or the negative value. 如申請專利範圍第13項所述的功率因數控制方法,其中判斷該儲能設備為進行充電或進行放電的步驟包括:當該總和功率因數大於等於該目標功率因數時,透過該控制器判斷該逆變器是否輸出該第二交流電源的一無功功率;當該逆變器未輸出該無功功率時,透過該控制器控制該儲能設備減少一充電功率;以及當該逆變器輸出該無功功率時,透過該控制器控制該逆變器使該逆變器的一功率因數往1.0修正。 The power factor control method of claim 13, wherein the step of determining that the energy storage device is charging or discharging comprises: determining, by the controller, when the sum power factor is greater than or equal to the target power factor Whether the inverter outputs a reactive power of the second alternating current power source; when the inverter does not output the reactive power, the energy storage device is controlled by the controller to reduce a charging power; and when the inverter outputs In the reactive power, the inverter is controlled by the controller to correct a power factor of the inverter to 1.0.
TW107100836A 2018-01-09 2018-01-09 Power system and power factor control method thereof TWI648934B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107100836A TWI648934B (en) 2018-01-09 2018-01-09 Power system and power factor control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107100836A TWI648934B (en) 2018-01-09 2018-01-09 Power system and power factor control method thereof

Publications (2)

Publication Number Publication Date
TWI648934B true TWI648934B (en) 2019-01-21
TW201931718A TW201931718A (en) 2019-08-01

Family

ID=65803926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107100836A TWI648934B (en) 2018-01-09 2018-01-09 Power system and power factor control method thereof

Country Status (1)

Country Link
TW (1) TWI648934B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074970A (en) * 2009-11-19 2011-05-25 三星Sdi株式会社 Energy management system and grid-connected energy storage system including the energy management system
CN102388522A (en) * 2009-02-19 2012-03-21 艾克斯兰能源技术公司 Power transfer management for local power sources of a grid-tied load
US20140306526A1 (en) * 2013-03-05 2014-10-16 General Electric Company Power converter and methods for increasing power delivery of soft alternating current power source
TW201703380A (en) * 2015-04-15 2017-01-16 陽光電機私人有限公司 Method and system for operating a plurality of photovoltaic (PV) generating facilities connected to an electrical power grid network
CN206211536U (en) * 2016-10-11 2017-05-31 耿天侃 Distributed power source power network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388522A (en) * 2009-02-19 2012-03-21 艾克斯兰能源技术公司 Power transfer management for local power sources of a grid-tied load
CN102074970A (en) * 2009-11-19 2011-05-25 三星Sdi株式会社 Energy management system and grid-connected energy storage system including the energy management system
US20140306526A1 (en) * 2013-03-05 2014-10-16 General Electric Company Power converter and methods for increasing power delivery of soft alternating current power source
TW201703380A (en) * 2015-04-15 2017-01-16 陽光電機私人有限公司 Method and system for operating a plurality of photovoltaic (PV) generating facilities connected to an electrical power grid network
CN206211536U (en) * 2016-10-11 2017-05-31 耿天侃 Distributed power source power network

Also Published As

Publication number Publication date
TW201931718A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US20130116844A1 (en) Grid load synchronization device and method
US20140176051A1 (en) Charging system, charging apparatus, and charging method
US20140379152A1 (en) Coordinated control method of generator and svc for improving power throughput and controller thereof
JP2015167461A (en) Control method for photovoltaic power generation system
JP6457855B2 (en) Reactive power cooperative control device and power control system
JP6903882B2 (en) Controls, control methods, and programs
JP2016025746A (en) Power storage system, power converter, autonomous operation system, and control method for power storage system
TWI648934B (en) Power system and power factor control method thereof
TWI665841B (en) Control method for natural energy power generation system, ineffective power controller, or natural energy power generation system
CN105006831A (en) Method for controlling AC-side voltage of flexible DC power distribution network through cooperation between energy storage system and converter station
JP2015132988A (en) power conditioner system
JP6768571B2 (en) Power controller, method and power generation system
JP4417238B2 (en) Distributed power supply system and distributed power supply system control method
JP6474017B2 (en) Frequency control method and frequency control system in power system
JP6519783B2 (en) Autonomous distributed voltage control system
JP4904597B2 (en) Power storage facility determination method and power storage facility determination program
JP2019062639A (en) Controller, control method, and control program
US9887593B2 (en) Non-contact type power transmitting apparatus, non-contact type power receiving apparatus, and non-contact type power transceiving apparatus
CN110932371A (en) Wireless charging transmitter, control method and resonant wireless charging system
US10355486B2 (en) Method of controlling an electrical production station
KR101155044B1 (en) Small-sized wind power generating power apparatus and control method thereby
WO2013099957A1 (en) Power conversion apparatus
JP7194769B2 (en) Fuel cell energy supply system and energy adjustment method based thereon
JP6652438B2 (en) Reactive power cooperative control system
WO2023001140A1 (en) Grid-connected operation control method and apparatus for fuel cell combined heat and power system