TWI647965B - Method and apparatus for narrowband physical downlink control channel decoding - Google Patents

Method and apparatus for narrowband physical downlink control channel decoding Download PDF

Info

Publication number
TWI647965B
TWI647965B TW106143639A TW106143639A TWI647965B TW I647965 B TWI647965 B TW I647965B TW 106143639 A TW106143639 A TW 106143639A TW 106143639 A TW106143639 A TW 106143639A TW I647965 B TWI647965 B TW I647965B
Authority
TW
Taiwan
Prior art keywords
narrowband
control channel
downlink control
pdcch
elements
Prior art date
Application number
TW106143639A
Other languages
Chinese (zh)
Other versions
TW201824911A (en
Inventor
陳柏穎
李修聖
林坤昌
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/379,765 external-priority patent/US10104651B2/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201824911A publication Critical patent/TW201824911A/en
Application granted granted Critical
Publication of TWI647965B publication Critical patent/TWI647965B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

提出了窄帶物聯網(IoT)設備的窄帶實體下行鏈路控制通道(NB-PDCCH)設計。在一個新穎方面,NB-PDCCH跨越傳統實體下行鏈路共用通道(PDSCH)的區域中的第一和第二時隙。複數個實體資源塊(PRB)被分配用於攜帶下行鏈路控制資訊(DCI)的NB-PDCCH傳輸。此外,每個NB-IoT設備可以被配置有用於NB-PDCCH傳輸的nPRB個PRB對(例如,nPRB=1,2,4或8),並且NB-PDCCH傳輸時間間隔(TTI)由nPRB個子訊框構成。NB-PDCCH被編碼並且基於聚合等級佔用複數個窄帶控制通道元素(NCCE)。在優選實施例中,用於NB-PDCCH的每個PRB對佔用兩個NCCE。 A narrowband physical downlink control channel (NB-PDCCH) design for a narrowband Internet of Things (IoT) device is proposed. In one novel aspect, the NB-PDCCH spans the first and second time slots in the region of the legacy physical downlink shared channel (PDSCH). A plurality of physical resource blocks (PRBs) are allocated for NB-PDCCH transmission carrying Downlink Control Information (DCI). Furthermore, each NB-IoT device may be configured with n PRB PRB pairs for NB-PDCCH transmission (eg, n PRB =1, 2, 4 or 8), and the NB-PDCCH transmission time interval (TTI) is n PRB sub-frames. The NB-PDCCH is encoded and occupies a plurality of narrowband control channel elements (NCCEs) based on the aggregation level. In a preferred embodiment, each PRB pair for the NB-PDCCH occupies two NCCEs.

Description

窄帶實體下行鏈路控制通道的解碼方法及設備 Method and device for decoding narrowband entity downlink control channel

本發明的實施例一般涉及實體下行鏈路控制通道(PDCCH),並且更具體地涉及用於窄帶物聯網(NB-IoT)的PDCCH設計。 Embodiments of the present invention generally relate to a Physical Downlink Control Channel (PDCCH), and more particularly to a PDCCH design for a narrowband Internet of Things (NB-IoT).

在3GPP長期演進(LTE)網路中,演進的通用陸地無線電接入網路(E-UTRAN)包括複數個基地台,例如與複數個行動台通訊的演進的節點B(eNB)作為使用者設備(UE)。由於能夠實現對多路徑衰落的魯棒性,更高的頻譜效率和頻寬可擴展性,已經為LTE下行鏈路(DL)無線電接入方案選擇了正交頻分多址(OFDMA)。下行鏈路中的多重存取(multiple access)透過基於其先前通道條件將不同的子帶(即,子載波組,表示為資源塊(RB))分配給各個使用者來實現。在LTE網路中,實體下行鏈路控制通道(PDCCH)用於動態下行鏈路排程。典型地,PDCCH可以被配置為佔用子訊框中的第一個,前兩個或者前三個OFDM符號。 In a 3GPP Long Term Evolution (LTE) network, an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) includes a plurality of base stations, such as an evolved Node B (eNB) communicating with a plurality of mobile stations as user equipment (UE). Orthogonal Frequency Division Multiple Access (OFDMA) has been chosen for LTE downlink (DL) radio access schemes due to its robustness to multipath fading, higher spectral efficiency and bandwidth scalability. Multiple access in the downlink is achieved by allocating different sub-bands (ie, sub-carrier groups, represented as resource blocks (RBs)) to individual users based on their previous channel conditions. In an LTE network, a Physical Downlink Control Channel (PDCCH) is used for dynamic downlink scheduling. Typically, the PDCCH may be configured to occupy the first, first two or first three OFDM symbols in the subframe.

用於LTE的一種有前景的技術是使用多輸入多輸出(MIMO)天線實現空分多工(spatial division multiplexing)來進一步提高頻譜效率增益。在LTE Rel-10中考慮了多使用者MIMO(MU-MIMO)。為了啟用MU-MIMO,必須透過PDCCH向每個UE指示單獨的控制信令。因此,隨著每個子訊框需要被排程的UE的數量的增加,可以預期使用更多的PDCCH傳輸被預期。然而,最大3個符號的PDCCH區域可能不足以容納LTE中UE的增加數量。由於控制通道的容量有限,MIMO的性能會因未優化的MU-MIMO排程而降低。 One promising technique for LTE is to implement spatial division multiplexing using multiple input multiple output (MIMO) antennas to further increase spectral efficiency gain. Multi-user MIMO (MU-MIMO) is considered in LTE Rel-10. In order to enable MU-MIMO, separate control signaling must be indicated to each UE through the PDCCH. Therefore, as each subframe needs to be increased in the number of scheduled UEs, it can be expected that more PDCCH transmissions are expected to be used. However, a PDCCH region of up to 3 symbols may not be sufficient to accommodate the increased number of UEs in LTE. Due to the limited capacity of the control channel, the performance of MIMO is reduced due to unoptimized MU-MIMO scheduling.

LTE-Advanced(LTE-A)系統透過利用部署在異構網路拓撲中的不同組基地台來提高頻譜效率。使用宏,微微,毫微微和中繼基地台的混合,異構網路實現了靈活和低成本的部署,並提供統一的寬頻使用者體驗。在異構網路(HetNet)中,與傳統的同構網路相比,基地台之間的更智慧的資源協調,更好的基地台選擇策略以及用於有效干擾管理的先進技術可以在輸送量和使用者體驗方面提供顯著的收益。例如,協調多點(coordinated multiple points,CoMP)傳輸/接收(也被稱為多BS/網站MIMO)被用於增強LTE-Rel-11中的小區(cell)邊緣UE的性能。CoMP產生類似於上述MU-MIMO情況的控制通道容量問題。 LTE-Advanced (LTE-A) systems increase spectrum efficiency by utilizing different sets of base stations deployed in heterogeneous network topologies. Using a mix of macro, pico, femto and relay base stations, heterogeneous networks enable flexible and low-cost deployments and provide a unified broadband user experience. In heterogeneous networks (HetNet), smarter resource coordination between base stations, better base station selection strategies, and advanced technologies for effective interference management can be delivered compared to traditional homogeneous networks. Significant benefits in terms of volume and user experience. For example, coordinated multiple points (CoMP) transmission/reception (also referred to as multi-BS/site MIMO) is used to enhance the performance of cell edge UEs in LTE-Rel-11. CoMP produces a control channel capacity problem similar to the MU-MIMO case described above.

為了解決控制通道容量問題,已經提出了用於MU-MIMO/CoMP的UE專用下行鏈路排程器。在LTE中,它將PDCCH設計擴展到傳統實體下行鏈路共用通道(PDSCH)中的新的ePDCCH。擁有這個新的實體控制通道的主要好處是能夠更好地支持HetNet,CoMP和MU-MIMO。基於傳統PDSCH區域中的第一和第二時隙中的ePDCCH設計,期望設計ePDCCH支持分散式和局域(localized)傳輸的實體結構以利用分集或波束賦形增益。為了最小化控制開銷,需要增強資源利用增益,並且可能需要在一個實體資源塊(PRB)中複用用於ePDCCH的分散式和局域傳輸的實體資源。 In order to solve the problem of control channel capacity, a UE-specific downlink scheduler for MU-MIMO/CoMP has been proposed. In LTE, it extends the PDCCH design to the new ePDCCH in the legacy physical downlink shared channel (PDSCH). The main benefit of having this new physical control channel is better support for HetNet, CoMP and MU-MIMO. Based on the ePDCCH design in the first and second time slots in the legacy PDSCH region, it is desirable to design the ePDCCH to support the decentralized and localized transmission entity structure to utilize diversity or beamforming gain. In order to minimize control overhead, resource utilization gains need to be enhanced, and physical resources for decentralized and localized transmission of ePDCCH may need to be multiplexed in one physical resource block (PRB).

窄帶物聯網(NB-IoT)是低功率廣域網路(LPWAN)無線電技術標準,其已被開發為使得能夠使用蜂窩通訊帶來連接寬範圍的設備和伺服。NB-IoT是為物聯網(IoT)設計的窄帶無線電技術,是由3GPP標準化的一系列行動物聯網(MIoT)技術之一。用於NB-IoT實體下行控制通道的實體結構需要解決。 The narrowband Internet of Things (NB-IoT) is a low power wide area network (LPWAN) radio technology standard that has been developed to enable the use of cellular communications to connect a wide range of devices and servos. NB-IoT is a narrowband radio technology designed for the Internet of Things (IoT) and is one of a series of Mobile Internet of Things (MIoT) technologies standardized by 3GPP. The physical structure used for the NB-IoT physical downlink control channel needs to be solved.

用於窄帶物聯網(IoT)設備的窄帶實體下行鏈路控制通道(NB-PDCCH)設計被提出。在一個新穎方面,NB-PDCCH跨越傳統實體下行鏈路共用通道(PDSCH)的區域中的第一和第二時隙。複數個實體資源塊(PRB) 被分配用於攜帶下行鏈路控制資訊(DCI)的NB-PDCCH傳輸。此外,每個NB-IoT設備可以被配置有用於NB-PDCCH傳輸的nPRB個PRB對(例如,nPRB=1,2,4或8),並且NB-PDCCH傳輸時間間隔(TTI)由nPRB個子訊框構成。NB-PDCCH被編碼並且基於聚合等級佔用複數個窄帶控制通道元素(NCCE)。在優選實施例中,用於NB-PDCCH的每個PRB對佔用兩個NCCE。 A narrowband physical downlink control channel (NB-PDCCH) design for narrowband Internet of Things (IoT) devices is proposed. In one novel aspect, the NB-PDCCH spans the first and second time slots in the region of the legacy physical downlink shared channel (PDSCH). A plurality of physical resource blocks (PRBs) are allocated for NB-PDCCH transmission carrying Downlink Control Information (DCI). Furthermore, each NB-IoT device may be configured with n PRB PRB pairs for NB-PDCCH transmission (eg, n PRB =1, 2, 4 or 8), and the NB-PDCCH transmission time interval (TTI) is n PRB sub-frames. The NB-PDCCH is encoded and occupies a plurality of narrowband control channel elements (NCCEs) based on the aggregation level. In a preferred embodiment, each PRB pair for the NB-PDCCH occupies two NCCEs.

在一個實施例中,公開了一種透過NB-IoT設備在NB-PDCCH上接收和解碼下行鏈路控制資訊的方法。UE接收控制信號以確定攜帶下行鏈路控制資訊(DCI)的接收到的實體資源塊(PRB)。UE確定PRB內的一組候選窄帶實體下行鏈路控制通道(NB-PDCCH),其中每個NB-PDCCH與用於NB-PDCCH傳輸的一組窄帶控制通道元素(NCCE)相關聯。UE為每個NCCE收集複數個資源元素(RE),其中每個NCCE由基於NCCE至RE的解映射規則的複數個RE組成。UE解碼被映射到收集的RE的下行鏈路控制資訊(DCI)。 In one embodiment, a method of receiving and decoding downlink control information on an NB-PDCCH through an NB-IoT device is disclosed. The UE receives the control signal to determine a received Physical Resource Block (PRB) carrying Downlink Control Information (DCI). The UE determines a set of candidate narrowband physical downlink control channels (NB-PDCCHs) within the PRB, where each NB-PDCCH is associated with a set of narrowband control channel elements (NCCEs) for NB-PDCCH transmission. The UE collects a plurality of resource elements (REs) for each NCCE, where each NCCE consists of a plurality of REs based on NCCE to RE demapping rules. The UE decodes downlink control information (DCI) that is mapped to the collected RE.

在另一實施例中,公開了一種用於NB-IoT設備的透過NB-PDCCH對下行鏈路控制資訊進行編碼和傳輸的方法。網絡設備(例如,伺服基地台)發送控制信號。一組實體資源塊(PRB)被分配以攜帶下行鏈路控制資訊(DCI)。基地台確定PRB內的一組候選窄帶實體下行鏈路控制通道(NB-PDCCH)。每個NB-PDCCH與一組窄帶控制通道元素(NCCE)相關聯以潛在地攜帶DCI。基地台基於RE至NCCE的映射規則將複數個資源元素(RE)映射到每個NCCE。如果DCI是針對UE的,則基地台透過將被發送到UE的一組NCCE來編碼下行鏈路控制資訊。 In another embodiment, a method for encoding and transmitting downlink control information through an NB-PDCCH for an NB-IoT device is disclosed. A network device (eg, a servo base station) sends control signals. A set of physical resource blocks (PRBs) are allocated to carry Downlink Control Information (DCI). The base station determines a set of candidate narrowband physical downlink control channels (NB-PDCCHs) within the PRB. Each NB-PDCCH is associated with a set of narrowband control channel elements (NCCEs) to potentially carry DCI. The base station maps a plurality of resource elements (REs) to each NCCE based on the RE to NCCE mapping rules. If the DCI is for the UE, the base station encodes the downlink control information through a set of NCCEs to be transmitted to the UE.

其他實施例和優點在下面的詳細描述中進行描述。本發明內容不意圖限定本發明。本發明由申請專利範圍限定。 Other embodiments and advantages are described in the detailed description that follows. This summary is not intended to limit the invention. The invention is defined by the scope of the patent application.

100‧‧‧行動通訊網路 100‧‧‧Mobile communication network

101‧‧‧演進型節點B 101‧‧‧Evolved Node B

102、103、104‧‧‧使用者設備 102, 103, 104‧‧‧ User equipment

110‧‧‧窄帶實體下行鏈路控制通道 110‧‧‧Narrowband physical downlink control channel

201‧‧‧基地台 201‧‧‧Base station

202‧‧‧記憶體 202‧‧‧ memory

203‧‧‧處理器 203‧‧‧ processor

204‧‧‧編碼器 204‧‧‧Encoder

205‧‧‧映射模組 205‧‧‧ mapping module

206‧‧‧收發器 206‧‧‧Transceiver

207‧‧‧天線 207‧‧‧Antenna

208‧‧‧控制模組 208‧‧‧Control Module

209‧‧‧程式指令和資料 209‧‧‧Program instructions and information

211‧‧‧使用者設備 211‧‧‧User equipment

212‧‧‧記憶體 212‧‧‧ memory

213‧‧‧處理器 213‧‧‧ processor

214‧‧‧解碼器 214‧‧‧Decoder

215‧‧‧採集器 215‧‧‧ Collector

216‧‧‧收發器 216‧‧‧ transceiver

217‧‧‧天線 217‧‧‧Antenna

218‧‧‧控制模組 218‧‧‧Control Module

219‧‧‧程式指令和資料 219‧‧‧Program instructions and information

901、902、903、904、1001、1002、1003、1004‧‧‧步驟 901, 902, 903, 904, 1001, 1002, 1003, 1004 ‧ ‧ steps

第1圖示出了依據一個新穎方面的利用窄帶實體下行鏈路控制通道(NB-PDCCH)的行動通訊網路。 Figure 1 illustrates a mobile communication network utilizing a narrowband physical downlink control channel (NB-PDCCH) in accordance with one novel aspect.

第2圖示出了依據本發明實施例的基地台和使用者設備的簡化框圖。 Figure 2 shows a simplified block diagram of a base station and user equipment in accordance with an embodiment of the present invention.

第3圖示出了NB-PDCCH和具有局域窄帶資源元素組(NREG)或資源元素(RE)至NCCE映射的窄帶控制通道元素(NCCE)的實體結構的一個示例。 Figure 3 shows an example of the NB-PDCCH and the physical structure of a narrowband control channel element (NCCE) with local narrowband resource element group (NREG) or resource element (RE) to NCCE mapping.

第4圖示出了不同的NB-PDCCH格式的示例,每個NB-PDCCH具有相應的NCCE數量以及相應的RE數量。 Figure 4 shows an example of different NB-PDCCH formats, each NB-PDCCH having a corresponding number of NCCEs and a corresponding number of REs.

第5圖示出了具有兩個PRB的NCCE至NB-PDCCH映射的第一示例。 Figure 5 shows a first example of an NCCE to NB-PDCCH mapping with two PRBs.

第6圖示出了具有四個PRB的NCCE至NB-PDCCH映射的第二示例。 Figure 6 shows a second example of an NCCE to NB-PDCCH mapping with four PRBs.

第7圖示出了用於NB-IoT設備的NB-PDCCH搜索空間的一個示例。 Fig. 7 shows an example of an NB-PDCCH search space for an NB-IoT device.

第8圖示出了基於NB-PDCCH搜索空間的NB-PDCCH盲解碼的一個示例。 Fig. 8 shows an example of NB-PDCCH blind decoding based on the NB-PDCCH search space.

第9圖是依據一個新穎方面的由NB-IoT設備在NB-PDCCH上接收和解碼下行鏈路控制資訊的方法的流程圖。 Figure 9 is a flow diagram of a method of receiving and decoding downlink control information on an NB-PDCCH by an NB-IoT device in accordance with one novel aspect.

第10圖是依據一個新穎方面在NB-IoT設備上透過NB-PDCCH編碼和發送下行鏈路控制資訊的方法的流程圖。 Figure 10 is a flow diagram of a method of encoding and transmitting downlink control information over an NB-PDCCH over a NB-IoT device in accordance with one novel aspect.

現在將詳細參考本發明的一些實施例,其示例在圖式中示出。 Reference will now be made in detail to the preferred embodiments of embodiments

第1圖示出了依據一個新穎方面的利用窄帶實體下行鏈路控制通道(NB-PDCCH)的行動通訊網路100。行動通訊網路100是包括基地台(演進型節點B eNodeB)101和複數個使用者設備UE 102,UE 103和UE 104的OFDM/OFDMA系統。當存在要從eNodeB發送到UE的下行鏈路分組時,每個UE獲得下行鏈路分配,例如實體下行鏈路共用通道(PDSCH)中的一組無線電資源。當UE需要在上行鏈路中向eNodeB發送分組時,UE從eNodeB獲得分配由一組上行鏈路無線電資源組成的實體上行鏈路共用通道(PUSCH)的許可。UE從專門針對該UE的實 體下行鏈路控制通道(PDCCH)獲得下行鏈路或上行鏈路排程資訊。另外,廣播控制資訊也在PDCCH中被發送到小區中的所有UE。由PDCCH攜帶的下行鏈路或上行鏈路排程資訊和廣播控制資訊被稱為下行鏈路控制資訊(DCI)。 1 shows a mobile communication network 100 utilizing a narrowband physical downlink control channel (NB-PDCCH) in accordance with one novel aspect. The mobile communication network 100 is an OFDM/OFDMA system including a base station (evolved Node B eNodeB) 101 and a plurality of user equipments UE 102, UE 103 and UE 104. When there are downlink packets to be transmitted from the eNodeB to the UE, each UE obtains a downlink assignment, such as a set of radio resources in a Physical Downlink Shared Channel (PDSCH). When the UE needs to transmit a packet to the eNodeB in the uplink, the UE obtains a license from the eNodeB to allocate a Physical Uplink Shared Channel (PUSCH) consisting of a set of uplink radio resources. The UE is specific to the UE. The downlink downlink control channel (PDCCH) obtains downlink or uplink scheduling information. In addition, broadcast control information is also transmitted to all UEs in the cell in the PDCCH. The downlink or uplink scheduling information and broadcast control information carried by the PDCCH are referred to as Downlink Control Information (DCI).

在第1圖的示例中,eNodeB 101使用窄帶實體下行鏈路控制通道(NB-PDCCH)110向UE發送DCI。在基於OFDMA下行鏈路的3GPP LTE系統中,無線電資源被劃分成複數個子訊框,其中每個子訊框由兩個時隙組成,並且每個時隙沿時域包含七個OFDMA符號。依據系統頻寬,每個OFDMA符號沿頻域進一步由複數個OFDMA子載波組成。資源網格的基本單元被稱為資源元素(RE),它在頻域佔據一個OFDMA子載波,在時域上佔據一個OFDMA符號。實體資源塊(PRB)佔用一個時隙和十二個子載波,而PRB對佔用兩個連續的時隙。在一個新穎方面,NB-PDCCH 110跨越PRB對的區域中的第一和第二時隙。此外,每個UE可以被配置有用於NB-PDCCH傳輸的nPRB個PRB對(例如,nPRB=1,2,4或8),並且NB-PDCCH傳輸時間間隔(TTI)由nPRB個子訊框構成。在第1圖的示例中,NB-PDCCH 110被編碼並佔用複數個窄帶控制通道元素(NCCE)。RE映射到NCCE,形成攜帶DCI的邏輯單元。 In the example of FIG. 1, the eNodeB 101 transmits a DCI to the UE using a narrowband physical downlink control channel (NB-PDCCH) 110. In an OFDMA downlink-based 3GPP LTE system, radio resources are divided into a plurality of subframes, wherein each subframe consists of two slots, and each slot contains seven OFDMA symbols along the time domain. Depending on the system bandwidth, each OFDMA symbol is further composed of a plurality of OFDMA subcarriers along the frequency domain. The basic unit of the resource grid is called a resource element (RE), which occupies one OFDMA subcarrier in the frequency domain and occupies one OFDMA symbol in the time domain. A physical resource block (PRB) occupies one time slot and twelve subcarriers, while a PRB pair occupies two consecutive time slots. In one novel aspect, NB-PDCCH 110 spans the first and second time slots in the region of the PRB pair. In addition, each UE may be configured with n PRB PRB pairs for NB-PDCCH transmission (eg, n PRB =1, 2, 4, or 8), and NB-PDCCH transmission time interval (TTI) is n PRB sub-messages Frame composition. In the example of FIG. 1, NB-PDCCH 110 is encoded and occupies a plurality of narrowband control channel elements (NCCEs). The RE is mapped to the NCCE to form a logical unit carrying the DCI.

第2圖示出了依據本發明實施例的基地台201和使用者設備211的簡化框圖。對於基地台201,天線207發送和接收無線電信號。與天線耦合的無線電收發器206從天線接收無線電信號,將其轉換成基帶信號並發送到處理器203。無線電收發器206還將來自處理器的接收到的基帶信號轉換成無線電信號並發送至天線207。處理器203處理所接收的基帶信號並且調用不同的功能模組來執行基地台201的特性。記憶體202存儲程式指令和資料209以控制基地台的操作。 Figure 2 shows a simplified block diagram of a base station 201 and user equipment 211 in accordance with an embodiment of the present invention. For base station 201, antenna 207 transmits and receives radio signals. A radio transceiver 206 coupled to the antenna receives a radio signal from the antenna, converts it to a baseband signal, and transmits it to the processor 203. The radio transceiver 206 also converts the received baseband signal from the processor into a radio signal and transmits it to the antenna 207. The processor 203 processes the received baseband signals and invokes different functional modules to perform the characteristics of the base station 201. Memory 202 stores program instructions and data 209 to control the operation of the base station.

使用者設備211中存在類似的配置,其中天線217發射和接收無線電信號。與天線耦合的無線電收發器模組216從天線接收無線電信號,將它們轉換成基帶信號並將它們發送到處理器213。無線電收發器216還將從處理器接收到的 基帶信號轉換成無線電信號,並發送至天線217。處理器213處理所接收的基帶信號並且調用不同的功能模組來執行使用者設備211中的特徵。記憶體212存儲程式指令和資料219以控制使用者設備的操作。 A similar configuration exists in the user device 211 in which the antenna 217 transmits and receives radio signals. The radio transceiver module 216 coupled to the antenna receives radio signals from the antenna, converts them to baseband signals and transmits them to the processor 213. The radio transceiver 216 will also receive from the processor The baseband signal is converted to a radio signal and sent to the antenna 217. The processor 213 processes the received baseband signals and invokes different functional modules to perform the features in the user device 211. The memory 212 stores program instructions and data 219 to control the operation of the user device.

基地台201和使用者設備211還包括若干功能模組以執行本發明的一些實施例。不同的功能模組可以透過軟體,軔體,硬體或其任意組合來實現。當由處理器203和213執行功能模組時(例如,透過執行程式指令和資料209和219),例如允許基地台201編碼和發送下行鏈路控制資訊給使用者設備211,並且允許使用者設備211接收和解碼下行鏈路控制資訊。在一個示例中,基地台201經由控制模組208配置用於NB-PDCCH傳輸的一組無線電資源,並且經由映射模組205將下行鏈路控制資訊映射到配置的資源元素。然後在NB-PDCCH中攜帶的下行鏈路控制資訊經由編碼器204調變並編碼,然後被收發器206經由天線207發射。使用者設備211透過收發器216經由天線217接收下行鏈路控制資訊。使用者設備211經由控制模組218確定用於NB-PDCCH傳輸的經配置的無線電資源,並且經由採集器215收集配置的資源元素。然後,使用者設備211經由解碼器214從收集的資源元素中解調並解碼下行鏈路資訊。 Base station 201 and user equipment 211 also include a number of functional modules to perform some embodiments of the present invention. Different functional modules can be implemented by software, carcass, hardware or any combination thereof. When the functional modules are executed by the processors 203 and 213 (e.g., by executing program instructions and data 209 and 219), for example, the base station 201 is allowed to encode and transmit downlink control information to the user device 211, and the user device is allowed. 211 receives and decodes downlink control information. In one example, base station 201 configures a set of radio resources for NB-PDCCH transmission via control module 208 and maps downlink control information to configured resource elements via mapping module 205. The downlink control information carried in the NB-PDCCH is then modulated and encoded by the encoder 204 and then transmitted by the transceiver 206 via the antenna 207. User equipment 211 receives downlink control information via antenna 217 via transceiver 216. The user equipment 211 determines the configured radio resources for NB-PDCCH transmission via the control module 218 and collects the configured resource elements via the collector 215. The user equipment 211 then demodulates and decodes the downlink information from the collected resource elements via the decoder 214.

NB-PDCCH的實體結構可以是兩層。為了在NB-PDCCH中進行分散式和局域傳輸的更好的分集,定義了兩級實體結構。第一層為窄帶資源元素組(NREG)的實體單元,其中RE組是為每個NREG預定義的。NREG在一個PRB或PRB對內可以是集中一起的或分散的。第二層為窄帶控制通道元素(NCCE)的邏輯單元,其中NREG是由每個NCCE的較高層預定義或配置。依據所需的調變和編碼等級,在複數個聚合的NCCE上發送下行鏈路控制資訊。 The physical structure of the NB-PDCCH may be two layers. In order to perform better diversity of decentralized and localized transmissions in the NB-PDCCH, a two-level entity structure is defined. The first layer is a physical unit of a narrowband resource element group (NREG), where the RE group is predefined for each NREG. The NREG may be grouped together or dispersed within a PRB or PRB pair. The second layer is the logical unit of the Narrowband Control Channel Element (NCCE), where the NREG is predefined or configured by the higher layers of each NCCE. Downlink control information is transmitted on a plurality of aggregated NCCEs depending on the desired modulation and coding level.

在兩層實體結構中,NCCE由在單個PRB或複數個PRB中幾個NREG組成。對於NB-PDCCH的分散式傳輸,NCCE由複數個NREG組成,分佈在散佈整個通道頻率上的複數個不連續的PRB上,使得透過分散式NCCE結構可以最大限度 地利用頻率分集增益。對於NB-PDCCH的局域傳輸,NCCE由複數個均勻分佈在單個PRB中的NREG組成,以便於在一個PRB內部均勻地利用參考信號,以提高通道估計的魯棒性。如果NCCE的NREG位於一個PRB內的局域區域中,則通道估計將嚴重依賴於NREG附近的參考信號,因此如果這些參考信號受到干擾,通道估計性能將大大降低。統一分佈的NREG可以減輕這種影響。 In a two-layer physical structure, the NCCE consists of several NREGs in a single PRB or a plurality of PRBs. For the NB-PDCCH decentralized transmission, the NCCE consists of a plurality of NREGs distributed over a plurality of discrete PRBs spread over the entire channel frequency, so that the distributed NCCE structure can be maximized. The frequency diversity gain is utilized. For local transmission of NB-PDCCH, the NCCE is composed of a plurality of NREGs uniformly distributed in a single PRB, so as to uniformly utilize the reference signal within one PRB to improve the robustness of the channel estimation. If the NREG of the NCCE is located in a local area within a PRB, the channel estimate will be heavily dependent on the reference signal near the NREG, so if these reference signals are interfered, the channel estimation performance will be greatly reduced. A uniformly distributed NREG can mitigate this effect.

為了簡化設計,NB-PDCCH的實體結構也可以是單一層。在單一層實體結構中,NREG的概念被消除。該單一層是窄帶控制通道元素(NCCE)的邏輯單元,其中RE組是由每個NCCE的較高層預定義或配置的。依據所需的調變和編碼等級,在複數個聚合的NCCE上發送下行鏈路控制資訊。 To simplify the design, the physical structure of the NB-PDCCH can also be a single layer. In a single layer entity structure, the concept of NREG is eliminated. The single layer is a logical unit of a narrowband control channel element (NCCE), where the RE group is predefined or configured by a higher layer of each NCCE. Downlink control information is transmitted on a plurality of aggregated NCCEs depending on the desired modulation and coding level.

第3圖示出了NB-PDCCH和窄帶控制通道元素(NCCE)的實體結構的一個示例,本示例中,具有局域NREG和局域NREG/RE到NCCE映射。如第3圖所示,NB-PDCCH被分配在具有複數個資源元素(RE)的一個PRB或PRB對內。RE被分配用於諸如小區特定參考信號(CRS),UE特定參考信號(Demodulation reference signal,DM-RS)和通道狀態資訊參考信號(CSI-RS)的資料或參考信號。NREG是一組實體上連續的RE。在第3圖中,一個NREG由兩個連續的RE組成。例如,用於2TX空間頻率塊編碼(SFBC)的兩個相鄰RE被分組為NREG。此外,一個NCCE由複數個均勻分佈在單個PRB中的NREG組成。例如,1NCCE=36NREGs=72REs。對於單層實體結構,NREG的概念被消除,並且NCCE被直接映射到RE。在優選實施例中,用於NB-PDCCH的每個PRB對佔用兩個NCCE。具體地,將分配的用於NB-PDCCH的PRB沿頻域分成兩部分。屬於下半部分子載波的RE映射到NCCE-0,屬於上半部分子載波的RE映射到NCCE-1。 Figure 3 shows an example of the physical structure of the NB-PDCCH and the narrowband control channel element (NCCE), in this example, with local NREG and local NREG/RE to NCCE mapping. As shown in FIG. 3, the NB-PDCCH is allocated in one PRB or PRB pair having a plurality of resource elements (REs). The RE is allocated for data such as cell-specific reference signals (CRS), UE-specific reference signals (DM-RS), and channel state information reference signals (CSI-RS) or reference signals. NREG is a set of physically consecutive REs. In Figure 3, one NREG consists of two consecutive REs. For example, two adjacent REs for 2TX spatial frequency block coding (SFBC) are grouped into NREGs. In addition, an NCCE consists of a plurality of NREGs uniformly distributed in a single PRB. For example, 1NCCE=36NREGs=72REs. For a single layer entity structure, the concept of NREG is eliminated and the NCCE is mapped directly to the RE. In a preferred embodiment, each PRB pair for the NB-PDCCH occupies two NCCEs. Specifically, the allocated PRB for the NB-PDCCH is divided into two parts along the frequency domain. The REs belonging to the lower half of the subcarriers are mapped to NCCE-0, and the REs belonging to the upper half of the subcarriers are mapped to NCCE-1.

第4圖示出了每個NB-PDCCH具有對應數量的NCCE和每個NB-PDCCH具有對應數量的RE的不同NB-PDCCH格式的示例。UE可以被配置有用於NB-PDCCH傳輸(例如,nPRB=1,2,4或8)的nPRB個RRB對,並且NB-PDCCH 傳輸時間間隔(TTI)由nPRB個子訊框組成。每個NB-PDCCH被編碼並佔用複數個NCCE。如第4圖的表400所示,可以使用許多可能的NB-PDCCH格式。對於NB-PDCCH格式0,每個NB-PDCCH佔用一個NCCE,例如,聚合等級AL=1,每個NB-PDCCH的RE數為72。對於NB-PDCCH格式1,每個NB-PDCCH佔用兩個NCCE,例如聚合等級AL=2,每個NB-PDCCH的RE數量為144個。對於NB-PDCCH格式2,每個NB-PDCCH佔用四個NCCE,例如聚合等級AL=4。對於NB-PDCCH格式3,每個NB-PDCCH佔用八個NCCE,例如,聚合等級AL=8,每個NB-PDCCH的RE數量為576。對於NB-PDCCH格式4,每個NB-PDCCH佔用16個NCCE,例如,聚合等級AL=16,每個NB-PDCCH的RE數量為1152。注意重複數目R進一步為NB-PDCCH TTI重複定義。 Figure 4 shows an example of a different NB-PDCCH format in which each NB-PDCCH has a corresponding number of NCCEs and each NB-PDCCH has a corresponding number of REs. The UE may be configured with n PRB RRB pairs for NB-PDCCH transmission (eg, n PRB =1, 2, 4, or 8), and the NB-PDCCH transmission time interval (TTI) is composed of n PRB subframes . Each NB-PDCCH is encoded and occupies a plurality of NCCEs. As shown in the table 400 of Figure 4, many possible NB-PDCCH formats can be used. For NB-PDCCH format 0, each NB-PDCCH occupies one NCCE, for example, the aggregation level AL=1, and the number of REs per NB-PDCCH is 72. For NB-PDCCH format 1, each NB-PDCCH occupies two NCCEs, for example, an aggregation level of AL=2, and the number of REs per NB-PDCCH is 144. For NB-PDCCH format 2, each NB-PDCCH occupies four NCCEs, for example, aggregation level AL=4. For NB-PDCCH format 3, each NB-PDCCH occupies eight NCCEs, for example, aggregation level AL=8, and the number of REs per NB-PDCCH is 576. For NB-PDCCH format 4, each NB-PDCCH occupies 16 NCCEs, for example, aggregation level AL=16, and the number of REs per NB-PDCCH is 1152. Note that the number of repetitions R is further defined for the NB-PDCCH TTI.

第5圖示出了具有兩個PRB的NCCE到NB-PDCCH映射的第一示例。在第5圖的示例中,UE配置有兩個PRB對,並且NB-PDCCH TTI由兩個子訊框n和n+1組成。對於NB-PDCCH格式1,聚合等級AL=1,表示每個NB-PDCCH佔用一個NCCE,每個NCCE佔用子載波頻域上的一半的子訊框。如第5圖所示,在子訊框n和n+1中總共有四個候選NB-PDCCH(NB-PDCCH-0,NB-PDCCH-1,NB-PDCCH-2和NB-PDCCH-3)陰影區域。對於NB-PDCCH格式2,聚合等級AL=2,即每個NB-PDCCH佔用兩個NCCE,兩個NCCE佔用整個子訊框。如第5圖所示,在子訊框n和n+1中總共有兩個候選NB-PDCCH(NB-PDCCH-0和NB-PDCCH-1),具有不同的陰影區域。 Figure 5 shows a first example of an NCCE to NB-PDCCH mapping with two PRBs. In the example of FIG. 5, the UE is configured with two PRB pairs, and the NB-PDCCH TTI is composed of two subframes n and n+1. For NB-PDCCH format 1, the aggregation level AL=1 indicates that each NB-PDCCH occupies one NCCE, and each NCCE occupies half of the sub-frames in the frequency domain of the sub-carrier. As shown in FIG. 5, there are a total of four candidate NB-PDCCHs (NB-PDCCH-0, NB-PDCCH-1, NB-PDCCH-2, and NB-PDCCH-3) in subframes n and n+1. Shaded area. For NB-PDCCH format 2, the aggregation level is AL=2, that is, each NB-PDCCH occupies two NCCEs, and two NCCEs occupy the entire subframe. As shown in FIG. 5, there are a total of two candidate NB-PDCCHs (NB-PDCCH-0 and NB-PDCCH-1) in subframes n and n+1, which have different shaded areas.

第6圖示出具有四個PRB的NCCE到NB-PDCCH映射的第二示例。在第6圖的例子中,UE配置有四個PRB對,並且NB-PDCCH TTI由四個子訊框n,n+1,n+2和n+3組成。對於NB-PDCCH格式1,聚合等級AL=1,表示每個NB-PDCCH佔用一個NCCE,每個NCCE佔用子載波頻域上的一半的子訊框。在子訊框n和n+1中總共有四個候選NB-PDCCH(NB-PDCCH-0,NB-PDCCH-1,NB-PDCCH-2和 NB-PDCCH-3),如第6圖頂部所示與不同的陰影區域。對於NB-PDCCH格式2,聚合等級AL=2,即每個NB-PDCCH佔用兩個NCCE,兩個NCCE佔用整個子訊框。如圖6底部所示,在子訊框n,n+1,n+2和n中共有具有不同的陰影區域的四個候選NB-PDCCH(NB-PDCCH-0,NB-PDCCH-1,NB-PDCCH-2和NB-PDCCH-3)。 Figure 6 shows a second example of NCCE to NB-PDCCH mapping with four PRBs. In the example of FIG. 6, the UE is configured with four PRB pairs, and the NB-PDCCH TTI is composed of four subframes n, n+1, n+2, and n+3. For NB-PDCCH format 1, the aggregation level AL=1 indicates that each NB-PDCCH occupies one NCCE, and each NCCE occupies half of the sub-frames in the frequency domain of the sub-carrier. There are a total of four candidate NB-PDCCHs (NB-PDCCH-0, NB-PDCCH-1, NB-PDCCH-2 and in subframes n and n+1). NB-PDCCH-3), as shown at the top of Figure 6, with different shaded areas. For NB-PDCCH format 2, the aggregation level is AL=2, that is, each NB-PDCCH occupies two NCCEs, and two NCCEs occupy the entire subframe. As shown at the bottom of FIG. 6, four candidate NB-PDCCHs (NB-PDCCH-0, NB-PDCCH-1, NB) having different shaded areas are shared among the subframes n, n+1, n+2 and n. - PDCCH-2 and NB-PDCCH-3).

為了解碼專門針對UE的NB-PDCCH,UE需要找出其NB-PDCCH在哪裡。在所謂的「盲」解碼過程中,在知道哪個NB-PDCCH是自己的目標之前,UE必須嘗試複數個候選NB-PDCCH。為候選NB-PDCCH分配的無線電資源可以是分佈的或局域的。另外,NB-PDCCH可以構成公共搜索空間(CSS)或UE特定的搜索空間(UESS)。結果,用於不同UE的候選NB-PDCCH的聚合無線電資源可以不同。換句話說,NB-PDCCH可以是UE特定的,並且對於盲解碼是有益的。利用UE特定的NB-PDCCH,可以在不影響下行排程器和上行授權的塊速率的情況下,減少盲解碼候選數量,減少每個UE的搜索空間大小,使得UE可以享受更短的DCI檢測處理時間。 In order to decode the NB-PDCCH specifically for the UE, the UE needs to find out where its NB-PDCCH is. In the so-called "blind" decoding process, the UE must try a plurality of candidate NB-PDCCHs before knowing which NB-PDCCH is its own target. The radio resources allocated for the candidate NB-PDCCH may be distributed or local. In addition, the NB-PDCCH may constitute a Common Search Space (CSS) or a UE-specific Search Space (UESS). As a result, the aggregated radio resources of the candidate NB-PDCCHs for different UEs may be different. In other words, the NB-PDCCH may be UE-specific and beneficial for blind decoding. With the UE-specific NB-PDCCH, the number of blind decoding candidates can be reduced without affecting the block rate of the downlink scheduler and the uplink grant, and the search space size of each UE can be reduced, so that the UE can enjoy shorter DCI detection. Processing time.

第7圖示出了用於NB-IoT設備的NB-PDCCH搜索空間的一個示例。在第7圖的示例中,為候選NB-PDCCH分配的無線電資源構成UE特定的搜索空間。另外,NB-PDCCH是局域類型的,其中局域型NB-PDCCH使用的無線電資源在一個或一組連續的PRB內。UE特定的NB-PDCCH搜索空間可以由一組參數{AL,R,C}來表示。參數AL表示聚合等級,例如每個NB-PDCCH的NCCE數量。如果AL=1,則意味著每個NB-PDCCH佔用半個子訊框。如果AL=2,則意味著每個NB-PDCCH佔用一個子訊框。參數R指示NB-PDCCH TTI重複的重複次數。參數C指示搜索空間中的候選NB-PDCCH的數量。在第7圖中,可以用{2,Rmax/8,8},{2,Rmax/4,4},{2,Rmax/2,2}和{2,Rmax,1}來表示四個可能的搜索空間,其中Rmax>=8,共15次盲解碼。 Fig. 7 shows an example of an NB-PDCCH search space for an NB-IoT device. In the example of FIG. 7, the radio resources allocated for the candidate NB-PDCCH constitute a UE-specific search space. In addition, the NB-PDCCH is of a local type, in which the radio resources used by the local NB-PDCCH are within one or a group of consecutive PRBs. The UE-specific NB-PDCCH search space may be represented by a set of parameters {AL, R, C}. The parameter AL indicates the aggregation level, for example the number of NCCEs per NB-PDCCH. If AL=1, it means that each NB-PDCCH occupies half of the subframe. If AL=2, it means that each NB-PDCCH occupies one subframe. The parameter R indicates the number of repetitions of the NB-PDCCH TTI repetition. The parameter C indicates the number of candidate NB-PDCCHs in the search space. In Fig. 7, four possibilities can be expressed by {2, Rmax/8, 8}, {2, Rmax/4, 4}, {2, Rmax/2, 2} and {2, Rmax, 1}. Search space, where Rmax>=8, a total of 15 blind decoding.

第8圖示出了基於NB-PDCCH搜索空間的NB-PDCCH盲解碼的一個示 例。在第8圖的示例中,UE配置有四個PRB對,並且NB-PDCCH TTI由四個子訊框n,n+1,n+2和n+3組成。首先,UE基於來自基地台的信令來確定被配置用於NB-PDCCH傳輸的PRB或PRB對。信令可以是動態信令(層1信令),半靜態信令(RRC信令),系統資訊或其任何組合。UE解碼信令以確定分配用於NB-PDCCH傳輸的PRB或PRB對。接下來,UE遵循預定義或配置的劃分規則將每個PRB劃分成複數個NCCE,然後確定每個NCCE的邏輯位址。接下來,UE遵循另一個預定義或配置的聚合規則來將複數個NCCE聚合到單個候選NB-PDCCH。因為下行鏈路控制資訊是由基地台在一個或複數個邏輯NCCE上發送,所以UE可以基於NCCE的邏輯位址來解碼下行鏈路控制資訊。 Figure 8 shows an illustration of NB-PDCCH blind decoding based on NB-PDCCH search space example. In the example of FIG. 8, the UE is configured with four PRB pairs, and the NB-PDCCH TTI is composed of four subframes n, n+1, n+2, and n+3. First, the UE determines a PRB or PRB pair configured for NB-PDCCH transmission based on signaling from the base station. The signaling may be dynamic signaling (layer 1 signaling), semi-static signaling (RRC signaling), system information, or any combination thereof. The UE decodes the signaling to determine a PRB or PRB pair allocated for NB-PDCCH transmission. Next, the UE divides each PRB into a plurality of NCCEs according to a predefined or configured partitioning rule, and then determines the logical address of each NCCE. Next, the UE follows another predefined or configured aggregation rule to aggregate a plurality of NCCEs into a single candidate NB-PDCCH. Since the downlink control information is transmitted by the base station on one or more logical NCCEs, the UE can decode the downlink control information based on the logical address of the NCCE.

第9圖是依據一個新穎方面的由NB-IoT設備在NB-PDCCH上接收和解碼下行鏈路控制資訊的方法的流程圖。在步驟901中,UE接收控制信號以確定攜帶下行鏈路控制資訊(DCI)的接收到的實體資源塊(PRB)。在步驟902中,UE確定PRB內的一組候選窄帶實體下行鏈路控制通道(NB-PDCCH),其中每個NB-PDCCH與用於NB-PDCCH傳輸的一組窄帶控制通道元素(NCCE)相關聯。在步驟903中,UE為每個NCCE收集複數個資源元素(RE),其中每個NCCE由基於NCCE到RE解映射規則的複數個資源元素RE組成。最後,在步驟904中,UE解碼被映射到收集的資源元素RE的下行鏈路控制資訊(DCI)。 Figure 9 is a flow diagram of a method of receiving and decoding downlink control information on an NB-PDCCH by an NB-IoT device in accordance with one novel aspect. In step 901, the UE receives a control signal to determine a received Physical Resource Block (PRB) carrying Downlink Control Information (DCI). In step 902, the UE determines a set of candidate narrowband physical downlink control channels (NB-PDCCHs) within the PRB, wherein each NB-PDCCH is associated with a set of narrowband control channel elements (NCCEs) for NB-PDCCH transmission Union. In step 903, the UE collects a plurality of resource elements (REs) for each NCCE, wherein each NCCE consists of a plurality of resource elements RE based on NCCE to RE demapping rules. Finally, in step 904, the UE decodes downlink control information (DCI) that is mapped to the collected resource element RE.

第10圖是依據一個新穎方面在NB-IOT設備上透過NB-PDCCH編碼和發送下行鏈路控制資訊的方法的流程圖。在步驟1001中,網絡設備發送控制信號。分配一組實體資源塊(PRB)以攜帶下行鏈路控制資訊(DCI)。在步驟1002中,基地台確定PRB內的一組候選窄帶實體下行鏈路控制通道(NB-PDCCH)。每個候選NB-PDCCH與一組窄帶控制通道元素(NCCE)相關聯用以潛在地攜帶DCI。在步驟1003中,基地台基於RE到NCCE映射規則將複數個資源元素(RE)映射到每個NCCE。在步驟1004中,如果DCI是針對UE的,則基地台在要傳送給 UE的一組NCCE上編碼DCI。 Figure 10 is a flow diagram of a method of encoding and transmitting downlink control information over an NB-PDCCH over a NB-IOT device in accordance with one novel aspect. In step 1001, the network device sends a control signal. A set of physical resource blocks (PRBs) are allocated to carry Downlink Control Information (DCI). In step 1002, the base station determines a set of candidate narrowband physical downlink control channels (NB-PDCCHs) within the PRB. Each candidate NB-PDCCH is associated with a set of narrowband control channel elements (NCCEs) to potentially carry DCI. In step 1003, the base station maps a plurality of resource elements (REs) to each NCCE based on the RE to NCCE mapping rules. In step 1004, if the DCI is for the UE, the base station is transmitting to The DCI is encoded on a set of NCCEs of the UE.

儘管為了教導目的已經結合某些特定實施例描述了本發明,但是本發明不限於此。因此,可以實踐所描述的實施例的各種特徵的各種修改,改編和組合,而不脫離如申請專利範圍中闡述的本發明的範圍。以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 Although the invention has been described in connection with certain specific embodiments for purposes of teaching, the invention is not limited thereto. Therefore, various modifications, adaptations and combinations of the various features of the described embodiments can be made without departing from the scope of the invention as set forth in the appended claims. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

Claims (17)

一種窄帶實體下行鏈路控制通道的解碼方法,用於窄帶物聯網設備,該窄帶實體下行鏈路控制通道的解碼方法包括:接收一控制信號,透過該控制信號確定接收到的複數個實體資源塊,該複數個實體資源塊攜帶下行鏈路控制資訊;確定該實體資源塊內的一組候選窄帶實體下行鏈路控制通道,其中每個窄帶實體下行鏈路控制通道與用於窄帶實體下行鏈路控制通道傳輸的一組窄帶控制通道元素相關聯;為每個窄帶控制通道元素收集複數個資源元素,其中每個窄帶控制通道元素由基於窄帶控制通道元素到資源元素解映射規則的複數個資源元素組成;其中一個實體資源塊被分配給具有兩個窄帶控制通道元素的窄帶實體下行鏈路控制通道,其中該實體資源塊的一第一窄帶控制通道元素被映射到屬於該實體資源塊的一第一複數個連續子載波的複數個資源元素,並且其中該實體資源塊的一第二窄帶控制通道元素被映射到屬於該實體資源塊的一第二複數個連續子載波的複數個資源元素;以及對映射到所收集的複數個資源元素的下行鏈路控制資訊進行解碼。 A method for decoding a narrowband entity downlink control channel for a narrowband IoT device, the decoding method of the narrowband entity downlink control channel includes: receiving a control signal, and determining, by using the control signal, a plurality of received physical resource blocks And the plurality of physical resource blocks carry downlink control information; determining a set of candidate narrowband physical downlink control channels in the physical resource block, wherein each narrowband entity downlink control channel is used for a narrowband entity downlink A set of narrowband control channel elements transmitted by the control channel are associated; a plurality of resource elements are collected for each narrowband control channel element, wherein each narrowband control channel element consists of a plurality of resource elements based on narrowband control channel elements to resource element demapping rules Composed; one of the physical resource blocks is allocated to a narrowband physical downlink control channel having two narrowband control channel elements, wherein a first narrowband control channel element of the physical resource block is mapped to a first part of the physical resource block a plurality of resource elements of a plurality of consecutive subcarriers, And wherein a second narrowband control channel element of the physical resource block is mapped to a plurality of resource elements of a second plurality of consecutive subcarriers belonging to the physical resource block; and a downlink mapped to the collected plurality of resource elements The link control information is decoded. 如申請專利範圍第1項之窄帶實體下行鏈路控制通道的解碼方法,其中該為每個窄帶控制通道元素收集的資源元素是在一實體上連續的無線電資源塊中除了被分配用於窄帶實體下行鏈路控制通道解調參考信號傳輸的資源元素之外的實體上連續的複數個資源元素。 A method of decoding a narrowband entity downlink control channel according to claim 1, wherein the resource element collected for each narrowband control channel element is allocated in a physical contiguous radio resource block in addition to the narrowband entity The downlink control channel demodulates a plurality of consecutive resource elements on the entity other than the resource elements of the reference signal transmission. 如申請專利範圍第2項之窄帶實體下行鏈路控制通道的解碼方法,其中該窄帶實體下行鏈路控制通道解調參考信號為一小區特定參考信號。 The method for decoding a narrowband entity downlink control channel according to claim 2, wherein the narrowband entity downlink control channel demodulation reference signal is a cell specific reference signal. 如申請專利範圍第1項之窄帶實體下行鏈路控制通道的解碼方法,其中該使用者設備在每個窄帶實體下行鏈路控制通道傳輸的一單個窄帶控制通道 元素中解碼該下行鏈路控制資訊。 A method for decoding a narrowband physical downlink control channel according to claim 1, wherein the user equipment transmits a single narrowband control channel in each narrowband entity downlink control channel. The downlink control information is decoded in the element. 如申請專利範圍第1項之窄帶實體下行鏈路控制通道的解碼方法,其中,該使用者設備在每個窄帶實體下行鏈路控制通道傳輸的複數個窄帶控制通道元素中解碼該下行鏈路控制資訊。 The decoding method of the narrowband entity downlink control channel of claim 1, wherein the user equipment decodes the downlink control in a plurality of narrowband control channel elements transmitted by each narrowband entity downlink control channel News. 如申請專利範圍第1項之窄帶實體下行鏈路控制通道的解碼方法,其中該控制信號為攜帶該下行鏈路控制資訊的該複數個實體資源塊定義一使用者設備搜索空間。 The method for decoding a narrowband entity downlink control channel according to claim 1, wherein the control signal defines a user equipment search space for the plurality of physical resource blocks carrying the downlink control information. 一種使用者設備,包括:一接收器,接收一控制信號以確定接收到的複數個實體資源塊,該複數個實體資源塊在蜂窩網路中攜帶下行鏈路控制資訊;一控制器,確定該實體資源塊內的一組候選窄帶實體下行鏈路控制通道,其中每個窄帶實體下行鏈路控制通道與用於窄帶實體下行鏈路控制通道傳輸的一組窄帶控制通道元素相關聯;一採集器,為每個窄帶控制通道元素收集複數個資源元素,其中每個窄帶控制通道元素由基於窄帶控制通道元素到資源元素解映射規則由複數個資源元素組成;其中,一個實體資源塊被分配給具有兩個窄帶控制通道元素的一個窄帶實體下行鏈路控制通道,其中該實體資源塊的一第一窄帶控制通道元素被映射到屬於該實體資源塊的一第一複數個連續子載波的複數個資源元素,並且其中該實體資源塊的一第二窄帶控制通道元素被映射到屬於該實體資源塊的一第二複數個連續子載波的複數個資源元素;以及一解碼器,解碼映射到所收集複數個資源元素的下行鏈路控制資訊。 A user equipment, comprising: a receiver, receiving a control signal to determine a plurality of received physical resource blocks, the plurality of physical resource blocks carrying downlink control information in a cellular network; a controller determining the a set of candidate narrowband entity downlink control channels within an entity resource block, wherein each narrowband entity downlink control channel is associated with a set of narrowband control channel elements for narrowband physical downlink control channel transmission; a collector Collecting a plurality of resource elements for each narrowband control channel element, wherein each narrowband control channel element is composed of a plurality of resource elements by a narrowband control channel element to a resource element demapping rule; wherein an entity resource block is assigned to have a narrowband physical downlink control channel of two narrowband control channel elements, wherein a first narrowband control channel element of the physical resource block is mapped to a plurality of resources of a first plurality of consecutive subcarriers belonging to the physical resource block An element, and wherein a second narrowband control channel element of the physical resource block is The physical resource blocks belonging to irradiated a second plurality of consecutive subcarriers plurality of resource elements; and a decoder, mapped to a plurality of resource elements of the downlink control information collected. 如申請專利範圍第7項之使用者設備,其中該為每個窄帶控制通道元素收集的複數個資源元素是在一實體上連續的無線電資源塊中除了被分配用於窄帶實體下行鏈路控制通道解調參考信號傳輸的資源元素之外的實體上連續的 資源元素。 The user equipment of claim 7, wherein the plurality of resource elements collected for each narrowband control channel element are in a physical contiguous radio resource block except for being allocated for a narrowband entity downlink control channel Decentralized reference signal transmission of elements other than resource elements consecutive Resource element. 如申請專利範圍第8項之使用者設備,其中該窄帶實體下行鏈路控制通道解調參考信號是一小區特定參考信號。 The user equipment of claim 8, wherein the narrowband entity downlink control channel demodulation reference signal is a cell specific reference signal. 如申請專利範圍第7項之使用者設備,其中該使用者設備在每個窄帶實體下行鏈路控制通道傳輸的一單個窄帶控制通道元素中解碼該下行鏈路控制資訊。 The user equipment of claim 7, wherein the user equipment decodes the downlink control information in a single narrowband control channel element transmitted by each narrowband entity downlink control channel. 如申請專利範圍第7項之使用者設備,其中該使用者設備在每個窄帶實體下行鏈路控制通道傳輸的複數個窄帶控制通道元素中解碼該下行鏈路控制資訊。 The user equipment of claim 7, wherein the user equipment decodes the downlink control information in a plurality of narrowband control channel elements transmitted by each narrowband entity downlink control channel. 如申請專利範圍第7項之使用者設備,其中,該控制信號為攜帶該下行鏈路控制資訊的該複數個實體資源塊定義一使用者設備搜索空間。 The user equipment of claim 7, wherein the control signal defines a user equipment search space for the plurality of physical resource blocks carrying the downlink control information. 一種窄帶實體下行鏈路控制通道的編碼方法,用於網路設備,該窄帶實體下行鏈路控制通道的編碼方法包括:發送一控制信號,其中該網絡設備分配一組實體資源塊以攜帶下行鏈路控制資訊;確定該實體資源塊內的一組候選窄帶實體下行鏈路控制通道,其中每個窄帶實體下行鏈路控制通道與一組窄帶控制通道元素相關聯以潛在地攜帶該下行鏈路控制資訊;基於一資源元素到窄帶控制通道元素的映射規則將複數個資源元素映射到每個窄帶控制通道元素;其中一個實體資源塊被分配給具有兩個窄帶控制通道元素的窄帶實體下行鏈路控制通道,其中該實體資源塊的一第一窄帶控制通道元素被映射到屬於該實體資源塊的一第一複數個連續子載波的資源元素,並且其中該實體資源塊的一第二窄帶控制通道元素被映射到屬於該實體資源塊的一第二複數個連續子載波的資源元素;以及 如果該下行鏈路控制資訊是針對該使用者設備的,則在該一組窄帶控制通道元素上對該下行鏈路控制資訊進行編碼以發送到該使用者設備。 A method for encoding a narrowband entity downlink control channel for a network device, the encoding method of the narrowband entity downlink control channel includes: transmitting a control signal, wherein the network device allocates a set of physical resource blocks to carry a downlink Channel control information; determining a set of candidate narrowband physical downlink control channels within the physical resource block, wherein each narrowband entity downlink control channel is associated with a set of narrowband control channel elements to potentially carry the downlink control Information; mapping a plurality of resource elements to each narrowband control channel element based on a mapping rule of a resource element to a narrowband control channel element; one of the physical resource blocks is assigned to a narrowband entity downlink control having two narrowband control channel elements a channel, wherein a first narrowband control channel element of the physical resource block is mapped to a resource element of a first plurality of consecutive subcarriers belonging to the physical resource block, and wherein a second narrowband control channel element of the physical resource block Is mapped to a second plurality of contigs belonging to the entity resource block Resource element wave; and If the downlink control information is for the user equipment, the downlink control information is encoded on the set of narrowband control channel elements for transmission to the user equipment. 如申請專利範圍第13項之窄帶實體下行鏈路控制通道的編碼方法,其中在每個窄帶實體下行鏈路控制通道傳輸的一單個窄帶控制通道元素中攜帶該下行鏈路控制資訊。 The encoding method of the narrowband entity downlink control channel of claim 13, wherein the downlink control information is carried in a single narrowband control channel element transmitted by each narrowband entity downlink control channel. 如申請專利範圍第13項之窄帶實體下行鏈路控制通道的編碼方法,其中在每個窄帶實體下行鏈路控制通道傳輸的複數個窄帶控制通道元素中攜帶該下行鏈路控制資訊。 The encoding method of the narrowband entity downlink control channel of claim 13, wherein the downlink control information is carried in a plurality of narrowband control channel elements transmitted by each narrowband entity downlink control channel. 如申請專利範圍第13項之窄帶實體下行鏈路控制通道的編碼方法,其中該控制信號為攜帶該下行鏈路控制資訊的該複數個實體資源塊定義使用者設備搜索空間。 The encoding method of the narrowband entity downlink control channel of claim 13, wherein the control signal defines a user equipment search space for the plurality of physical resource blocks carrying the downlink control information. 如申請專利範圍第16項之窄帶實體下行鏈路控制通道的編碼方法,其中該使用者設備搜索空間由窄帶控制通道元素的一聚合等級,用於窄帶實體下行鏈路控制信道傳輸時間間隔重複的重複數目,以及複數個候選窄帶實體下行鏈路控制信道來定義。 The encoding method of the narrowband entity downlink control channel of claim 16, wherein the user equipment search space is an aggregation level of the narrowband control channel element, and is used for narrowband entity downlink control channel transmission time interval repetition. The number of repetitions, as well as a plurality of candidate narrowband entity downlink control channels, are defined.
TW106143639A 2016-12-15 2017-12-13 Method and apparatus for narrowband physical downlink control channel decoding TWI647965B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/379,765 US10104651B2 (en) 2015-12-17 2016-12-15 Physical downlink control channel design for narrow band internet of things
US15/379,765 2016-12-15

Publications (2)

Publication Number Publication Date
TW201824911A TW201824911A (en) 2018-07-01
TWI647965B true TWI647965B (en) 2019-01-11

Family

ID=63640169

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143639A TWI647965B (en) 2016-12-15 2017-12-13 Method and apparatus for narrowband physical downlink control channel decoding

Country Status (1)

Country Link
TW (1) TWI647965B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018469A1 (en) * 2014-08-01 2016-02-04 Intel IP Corporation Pdcch design for narrowband deployment
US20160127097A1 (en) * 2014-10-31 2016-05-05 Qualcomm Incorporated Narrowband control channel decoding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018469A1 (en) * 2014-08-01 2016-02-04 Intel IP Corporation Pdcch design for narrowband deployment
US20160127097A1 (en) * 2014-10-31 2016-05-05 Qualcomm Incorporated Narrowband control channel decoding

Also Published As

Publication number Publication date
TW201824911A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
US10104651B2 (en) Physical downlink control channel design for narrow band internet of things
US11431442B2 (en) Device and method for communicating channel state information reference signal (CSI-RS) in wireless communication system
US9681436B2 (en) Method for search space configuration of enhanced physical downlink control channel
JP6362635B2 (en) Physical structure of extended physical downlink control channel for OFDM / OFDMA system and utilization of reference signal
CN107615858B (en) Device, network and method for virtual (baseband) carrier aggregation broadband LTE
AU2012336398B2 (en) Methods and arrangements for transmitting and receiving downlink control information for mobile wireless communication
JP6219018B2 (en) Radio base station apparatus, user terminal, radio communication system, and radio communication method
US9756622B2 (en) Radio base station, user terminal, radio communication system and radio communication method
EP2797371B1 (en) Method, system and apparatus for flexibly changing the amount of allocated e-pdcch resources
CN103988561B (en) Mobile station apparatus, base station apparatus, communication means and integrated circuit
US20130301562A1 (en) Methods for Resource Multiplexing of Distributed and Localized transmission in Enhanced Physical Downlink Control Channel
US20150117353A1 (en) Blind decoding method, radio base station, user terminal and radio communication system
US9532350B2 (en) Method and system for physical downlink control channel multiplexing
TWI647965B (en) Method and apparatus for narrowband physical downlink control channel decoding