TWI647260B - High Permselectivity of PVA/GA/CS-M+Membrane for Dehydration of Organic Solvent - Google Patents
High Permselectivity of PVA/GA/CS-M+Membrane for Dehydration of Organic Solvent Download PDFInfo
- Publication number
- TWI647260B TWI647260B TW106136160A TW106136160A TWI647260B TW I647260 B TWI647260 B TW I647260B TW 106136160 A TW106136160 A TW 106136160A TW 106136160 A TW106136160 A TW 106136160A TW I647260 B TWI647260 B TW I647260B
- Authority
- TW
- Taiwan
- Prior art keywords
- pva
- sup
- pervaporation
- film
- pervaporation film
- Prior art date
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
以Ag +、Cu 2+、Fe 3+等重金屬離子 (M +) 螯合CS (殼聚醣) 作為前體,與PVA (聚乙烯醇) 進行混摻,再加入GA (戊二醛) 作為交聯劑,可形成具有高機械強度、熱穩定性且對有機溶液的脫水可表現出優異的透過性和選擇性的PVA/GA/CS-M + 滲透蒸發薄膜。 Heavy metal ions (M + ) such as Ag + , Cu 2+ , Fe 3+ are used to chelate CS (chitosan) as a precursor, mixed with PVA (polyvinyl alcohol), and then added with GA (glutaraldehyde). The crosslinking agent can form a PVA/GA/CS-M + pervaporation film which has high mechanical strength, thermal stability and exhibits excellent permeability and selectivity for dehydration of an organic solution.
Description
本發明是有關於一種滲透蒸發薄膜,特別是指一種用於有機溶液脫水之高透過和高選擇性的滲透蒸發薄膜及其製備方法。The present invention relates to a pervaporation film, and more particularly to a permeation evaporation film for high permeability and high selectivity for dehydration of an organic solution and a preparation method thereof.
異丙醇 (Isopropanol, IPA) 係用於生產丙酮、異丙酯、異丙胺等原料,也廣泛用於製藥、農藥、化妝品、塑料、香料、塗料等,及作為半導體中的清潔劑和油、樹膠、蠟和化妝品等之溶劑。乙醇 (Ethanol, EtOH) 可用來製造醋酸、乙醛、乙醚、乙酸乙酯、乙胺等,也是製取醫藥、化妝品、染料、塗料、洗滌劑、飲料、香精、車用燃料等產品的原料。丙酮 (Acetone) 除用於製造雙酚A、甲基丙烯酸甲酯、丙酮氰醇、甲基異丁基酮等產品外,亦可應用於醫藥、化妝品、建材、油漆、塑膠、纖維、火藥、樹脂、橡膠、照相軟片等方面。有機溶劑的再使用明顯地有助於經濟優勢和環境保護,致使有機溶劑的脫水在薄膜技術之發展尤其重要。利用滲透蒸發薄膜來分離醇/水混合物比傳統的蒸餾方法更優越,因為它可以克服醇/水的共沸現象。特別是,由於不需要在高溫下操作,所以滲透蒸發薄膜分離是節能的有效工藝。Isopropanol (IPA) is used in the production of acetone, isopropyl ester, isopropylamine and other raw materials. It is also widely used in pharmaceuticals, pesticides, cosmetics, plastics, perfumes, coatings, etc., and as a cleaning agent and oil in semiconductors. Solvents such as gums, waxes and cosmetics. Ethanol (Ethol, EtOH) can be used to make acetic acid, acetaldehyde, ether, ethyl acetate, ethylamine, etc. It is also a raw material for the production of medicines, cosmetics, dyes, paints, detergents, beverages, flavors, and fuels for vehicles. Acetone (Acetone) can be used in the manufacture of bisphenol A, methyl methacrylate, acetone cyanohydrin, methyl isobutyl ketone, etc., as well as pharmaceuticals, cosmetics, building materials, paints, plastics, fibers, gunpowder, Resin, rubber, photographic film, etc. The reuse of organic solvents clearly contributes to economic advantages and environmental protection, and dehydration of organic solvents is particularly important in the development of thin film technology. The use of a pervaporation membrane to separate the alcohol/water mixture is superior to conventional distillation methods because it overcomes the azeotropy of the alcohol/water. In particular, pervaporation membrane separation is an efficient process for energy saving since it does not require operation at high temperatures.
溶解-擴散模型無疑地已被接受用以描述在滲透蒸發薄膜技術上的傳輸現象。所述薄膜之結構可以極大地影響溶液的溶解-擴散行為,從而影響傳輸效能。The dissolution-diffusion model has undoubtedly been accepted to describe the transport phenomena in pervaporation membrane technology. The structure of the film can greatly affect the dissolution-diffusion behavior of the solution, thereby affecting the transmission efficiency.
Lu等提出了在滲透蒸發過程中薄膜的水合表現為包括吸附-解吸附平衡的動態過程。由於親水性的薄膜可以使水易於被吸收-擴散,故能增進傳輸效能。因此,親水膜的吸水性能成為滲透蒸發分離薄膜設計的關鍵因素。Lu et al. proposed a hydration of the film during pervaporation as a dynamic process involving adsorption-desorption equilibrium. Since the hydrophilic film can make the water easy to be absorbed-diffused, the transfer efficiency can be improved. Therefore, the water absorption property of the hydrophilic membrane becomes a key factor in the design of the pervaporation separation membrane.
PVA 是具有良好成膜性和耐化學性的高親水性聚合物,成為一種用於滲透蒸發脫水的優選材料。然而,由於其羥基的存在,使得其在含水溶夜中之溶脹現象難以被掩蓋。通過引入交聯劑,PVA基膜的分子間結構可以增強聚合物鏈之間的較強的共價鍵形成,而不是較弱的氫鍵,進而提高了機械強度,並大大地提高了穩定性。所述滲透蒸發試驗是用以評價薄膜的滲透蒸發分離效能,並根據接觸角、膨脹程度、機械性能和熱穩定性來測量所製得的薄膜之物理化學性質。然而交聯劑雖可使膜的結構較為穩定,但其會消耗高分子鏈的親水基團,習知透過交聯劑可對PVA基質形成較穩定的膜結構,也會在水滲透方面帶來負面影響,原因在於交聯劑的形成會在PVA聚合物中消耗羥基。因此,如何改良滲透蒸發薄膜,使其能用於有機溶液的脫水,而能有效地促進水的透過率,不喪失其選擇性,實乃當下亟需解決之課題。PVA is a highly hydrophilic polymer with good film forming properties and chemical resistance, and is a preferred material for pervaporation dehydration. However, due to the presence of its hydroxyl group, its swelling phenomenon in aqueous nighttime is difficult to be masked. By introducing a crosslinking agent, the intermolecular structure of the PVA-based film can enhance the formation of strong covalent bonds between the polymer chains, rather than weaker hydrogen bonds, thereby increasing mechanical strength and greatly improving stability. . The pervaporation test is used to evaluate the pervaporation separation efficiency of the film, and the physical and chemical properties of the obtained film are measured according to the contact angle, the degree of expansion, the mechanical properties, and the thermal stability. However, although the cross-linking agent can make the structure of the membrane relatively stable, it will consume the hydrophilic group of the polymer chain. It is known that the cross-linking agent can form a relatively stable membrane structure for the PVA matrix, and also brings about water penetration. The negative effect is that the formation of the crosslinker will consume hydroxyl groups in the PVA polymer. Therefore, how to improve the pervaporation film so that it can be used for dehydration of an organic solution can effectively promote the water transmittance without losing its selectivity, which is an urgent problem to be solved.
本發明之目的在提供一種用於有機溶液脫水之高透過和高選擇性的滲透蒸發薄膜及其製備方法,其能有效地促進水的透過率,而不喪失其選擇性。SUMMARY OF THE INVENTION An object of the present invention is to provide a permeation evaporation film for high permeability and high selectivity for dehydration of an organic solution and a preparation method thereof, which can effectively promote water transmittance without losing its selectivity.
為達到前述目的,本發明用於有機溶液脫水之高透過和高選擇性的滲透蒸發薄膜製備方法,其包括下列步驟:準備材料:準備聚乙烯醇 (PVA) (Mw∼125,000)、殼聚醣 (CS) (Mw~30,000)、25重量百分比之戊二醛 (GA)及99重量百分比之異丙醇 、乙醇和丙酮;將5g CS溶於45g去離子水中,室溫攪拌8小時,用以形成一溶液;分別將不同重量的硝酸銀 、硝酸銅、硝酸鐵等重金屬鹽類 加入到該溶液中,用以形成液體A,並繼續攪拌;將5g PVA溶於45g去離子水中,在70℃條件下攪拌24小時,形成液體B,並將液體A及B充分混合並攪拌2小時,進而形成混合溶液C;之後將該混合溶液C倒入聚乙烯材質的培養皿中,並加入戊二醛在烘箱中以一指定溫度乾燥1天,形成該PVA/GA/CS-M +滲透蒸發薄膜。 In order to achieve the foregoing object, the present invention is a high permeability and high selectivity pervaporation film preparation method for dehydration of an organic solution, which comprises the following steps: preparing a material: preparing polyvinyl alcohol (PVA) (Mw ∼ 125,000), chitosan (CS) (Mw ~ 30,000), 25 weight percent glutaraldehyde (GA) and 99 weight percent isopropanol, ethanol and acetone; 5 g of CS dissolved in 45 g of deionized water, stirred at room temperature for 8 hours, used Forming a solution; adding different weights of heavy metal salts such as silver nitrate, copper nitrate, iron nitrate, etc. to the solution to form liquid A, and continuing to stir; dissolving 5 g of PVA in 45 g of deionized water at 70 ° C After stirring for 24 hours, liquid B was formed, and liquids A and B were thoroughly mixed and stirred for 2 hours to form a mixed solution C; then the mixed solution C was poured into a polyethylene petri dish, and glutaraldehyde was added thereto. The PVA/GA/CS-M + pervaporation film was formed by drying in a oven at a specified temperature for 1 day.
依據本發明之一具體實施,該一單位重量為5g,該九單位重量為45g。According to one embodiment of the invention, the unit weight is 5 g and the nine unit weight is 45 g.
依據本發明之另一具體實施,該殼聚醣 (CS) 溶於離子水的室溫攪拌時間為8小時,該聚乙烯醇 (PVA) 溶於去離子水的攪拌時間為24小時。According to another embodiment of the present invention, the chitosan (CS) is dissolved in ionic water at room temperature for 8 hours, and the polyvinyl alcohol (PVA) is dissolved in deionized water for 24 hours.
依據本發明之另一具體實施,該烘箱之指定溫度40℃。According to another embodiment of the invention, the oven has a specified temperature of 40 °C.
依據本發明之製備方法形成滲透蒸發薄膜。A pervaporation film is formed in accordance with the preparation method of the present invention.
本發明揭露一種用於有機溶液脫水之高透過性和高選擇性的滲透蒸發薄膜及其製備方法,所述製備方法係包括:The invention discloses a high permeability and high selectivity pervaporation film for dehydration of an organic solution and a preparation method thereof, the preparation method comprising:
準備材料:聚乙烯醇(PVA)(Mw~125,000),殼聚醣 (CS)(Mw~30,000),25%重量之戊二醛 (GA),及99%之異丙醇(IPA)、乙醇 (EtOH) 和丙酮 (Acetone)。所有的化學試劑均為試藥級,且不需進一步純化。Preparation materials: polyvinyl alcohol (PVA) (Mw ~ 125,000), chitosan (CS) (Mw ~ 30,000), 25% by weight of glutaraldehyde (GA), and 99% of isopropanol (IPA), ethanol (EtOH) and acetone (Acetone). All chemical reagents are reagent grade and require no further purification.
製備過程:將5g 的CS溶於45g去離子水中,室溫攪拌7~10小時,尤以8小時為佳,然後分別將不同重量的銀、銅、鐵離子,亦即硝酸鹽類,加入到前一溶液中,形成液體A,並繼續攪拌,換言之,液體A之CS和去離子水的重量比為1:9。將5g PVA溶於45g去離子水中,在70℃條件下攪拌20~24小時,尤以24小時為佳,形成液體B,換言之,液體B之PVA和去離子水的重量比為1:9。液體A及B充分混合並攪拌2小時而形成混合溶液C。然後將混合溶液C倒入由聚乙烯製成的培養皿中在烘箱中以40℃之指定溫度乾燥1天,並加入戊二醛形成PVA/GA/CS-M +(M +表示重金屬離子) 滲透蒸發薄膜,其中該烘箱之溫度不宜過高或過低,以免影響本發明物的形成。 Preparation process: 5 g of CS is dissolved in 45 g of deionized water, stirred at room temperature for 7 to 10 hours, especially for 8 hours, and then different weights of silver, copper, iron ions, that is, nitrates are added respectively. In the former solution, liquid A was formed and stirring was continued, in other words, the weight ratio of CS to deionized water of liquid A was 1:9. 5 g of PVA is dissolved in 45 g of deionized water and stirred at 70 ° C for 20 to 24 hours, especially 24 hours, to form liquid B, in other words, the weight ratio of liquid B to PVA and deionized water is 1:9. The liquids A and B were thoroughly mixed and stirred for 2 hours to form a mixed solution C. Then, the mixed solution C was poured into a petri dish made of polyethylene, dried in an oven at a specified temperature of 40 ° C for 1 day, and glutaraldehyde was added to form PVA/GA/CS-M + (M + represents heavy metal ions). The pervaporation film, wherein the temperature of the oven is not too high or too low, so as not to affect the formation of the present invention.
本發明所製得的滲透蒸發薄膜會進行接觸角、溶脹度、機械性能和熱穩定性等測量。此外,本發明之滲透蒸發薄膜經傅立葉轉換紅外光譜 (FTIR) 分析可分別識別本發明物的官能基團,其說明如下所述。The pervaporation film produced by the present invention measures the contact angle, the degree of swelling, the mechanical properties and the thermal stability. Further, the pervaporation film of the present invention can respectively recognize the functional groups of the present invention by Fourier transform infrared spectroscopy (FTIR) analysis, which is explained below.
傅立葉轉換紅外光譜(FTIR):該滲透蒸發薄膜的官能基團和它們的相互作用的鑒定係透過FTIR光譜 (Perkin-Elmer spectrometer, FTS-1000) 來表現。在波長區450-4000 cm -1紅外光譜區中測量。 Fourier transform infrared spectroscopy (FTIR): The functional groups of the pervaporation film and the identification of their interactions were expressed by FTIR spectroscopy (Perkin-Elmer spectrometer, FTS-1000). Measured in the infrared region of the wavelength region 450-4000 cm -1 .
熱重分析(TGA, Thermogravimetric analysis):在充氧環境下,掃描速率為10℃/min的掃描速率下,利用Perkin-Elmer Pyis-17GA進行TGA測試,測試溫度範圍為25-800℃。Thermogravimetric analysis (TGA, Thermogravimetric analysis): TGA test was performed using Perkin-Elmer Pyis-17GA at a scan rate of 10 °C/min under an oxygenation environment at a temperature range of 25-800 °C.
掃描電子顯微鏡和能量色散譜法(SEM & EDS):採用掃描電子顯微鏡進行觀察薄膜表面形態,和用於研究組成的能量色散譜。Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM & EDS): Scanning electron microscopy was used to observe the surface morphology of the film and to study the energy dispersion spectrum of the composition.
原子力顯微鏡用於檢測薄膜的粗糙度及微觀表面結構。Atomic force microscopy is used to detect the roughness and microscopic surface structure of the film.
接觸角:試樣表面藉由接觸角分析儀(FTA125接觸角分析儀)表現出滲透蒸發薄膜之化學和物理性質的特徵。水的接觸角通過將蒸餾水滴放置在滲透蒸發薄膜表面來進行。Contact angle: The surface of the sample exhibited characteristics of the chemical and physical properties of the pervaporation film by a contact angle analyzer (FTA125 contact angle analyzer). The contact angle of water is carried out by placing distilled water droplets on the surface of the pervaporation film.
溶脹度:將製得的本發明物切成2cm×2cm樣品,置於精密天平(Ab304-S/FACT)中以獲得其重量(Wd,乾膜的重量),將乾膜放入100g各種比例的水/異丙醇混合物中分別保持24小時後,再以精密天平獲得濕膜的重量(Ws)。通過下式(1)計算膜的溶脹度: DS (%) ) 100% (1) Swelling degree: The obtained inventive product was cut into a 2 cm × 2 cm sample, placed in a precision balance (Ab304-S/FACT) to obtain its weight (Wd, dry film weight), and the dry film was placed in various ratios of 100 g. After maintaining the water/isopropanol mixture for 24 hours, the weight (Ws) of the wet film was obtained with a precision balance. The degree of swelling of the film is calculated by the following formula (1): DS (%) ) 100% (1)
滲透蒸發實驗:在如上所述的設備中進行滲透蒸發脫水測量。藉由水銀壓力計測量進料區壓力,並利用真空泵將壓力維持在約2托耳 (torr) 的真空度,與進料混合物接觸的有效面積為約7cm 2,及通過電控溫度計將混合物的進料溫度保持在30℃。以折射計(RX-5000α)測量透過物的組成。本發明物的滲透蒸發分離效能根據透過量和分離因數(α sep)來評估。 (2) (3) Pervaporation experiment: Pervaporation dehydration measurements were carried out in the apparatus as described above. The feed zone pressure was measured by a mercury pressure gauge and the pressure was maintained at a vacuum of about 2 torr using a vacuum pump, the effective area in contact with the feed mixture was about 7 cm 2 , and the mixture was passed through an electronically controlled thermometer. The feed temperature was maintained at 30 °C. The composition of the permeate was measured with a refractometer (RX-5000α). The pervaporation separation efficiency of the present invention was evaluated based on the amount of permeation and the separation factor (α sep ). (2) (3)
其中W是透過物的質量 (kg),A是滲透蒸發薄膜的有效面積(m 2),t是透過的時間(h),P w和P IPA、P EtOH、P Acetone分別為透過端水和異丙醇、乙醇、丙酮等的質量百分比。F w、F IPA、F EtOH、F Acetone分別為進料中水、異丙醇、乙醇、丙酮等的質量百分比。由前述各項實驗所得結果,可由以下分析進一步說明。 Where W is the mass of the permeate (kg), A is the effective area (m 2 ) of the pervaporation film, t is the time (h) of the permeation, P w and P IPA , P EtOH , P Acetone are the permeate water and Percentage by mass of isopropanol, ethanol, acetone, and the like. F w , F IPA , F EtOH , and F Acetone are the mass percentages of water, isopropanol, ethanol, acetone, etc. in the feed, respectively. The results obtained from the foregoing experiments can be further explained by the following analysis.
FTIR分析:圖1顯示包括PVA (a), CS (b), PVA/CS (c), PVA/CS-Ag +(d) 及PVA/GA/CS-Ag +(e) 滲透蒸發薄膜之FT-IR光譜圖,其中在3100-3500cm -1處呈現寬廣的吸收帶歸因於-OH的伸縮振動。在2833,1324和843 cm -1的峰分別對應的是C-H的拉伸和C-H的彎曲。在1086,1415,1719cm -1的峰可以被鑒定為-C-O基團。在殼聚醣的圖譜中,1570-1655cm -1的特徵吸收帶歸因於醯胺I,II和 -C=O基團。1077,1320和1154cm -1的峰分別代表C-O-N的伸縮和醣苷基團。PVA/GA/CS-Ag +的1719 cm -1處之峰小於(a)、(c)和(d)相同位置之峰,其表示GA與薄膜之間具有相互作用。因此可判斷在PVA/GA/CS-Ag +薄膜中有乙縮醛(C-O-C)鍵的形成。 FTIR analysis: Figure 1 shows FT including PVA (a), CS (b), PVA/CS (c), PVA/CS-Ag + (d) and PVA/GA/CS-Ag + (e) pervaporation films -IR spectrum, in which a broad absorption band at 3100-3500 cm -1 is attributed to the stretching vibration of -OH. The peaks at 2833, 1324 and 843 cm -1 correspond to the stretching of CH and the bending of CH, respectively. The peak at 1086, 1415, 1719 cm -1 can be identified as a -CO group. In the chitosan map, the characteristic absorption band of 1570-1655 cm -1 is attributed to the indoleamine I, II and -C=O groups. The peaks of 1077, 1320 and 1154 cm -1 represent the stretching and glycosidic groups of CON, respectively. The peak at 1719 cm -1 of PVA/GA/CS-Ag + is smaller than the peak at the same position of (a), (c), and (d), which indicates that there is an interaction between GA and the film. Therefore, it was judged that the formation of an acetal (COC) bond was observed in the PVA/GA/CS-Ag + film.
TGA分析:PVA、CS、PVA/CS、PVA/CS-Ag +和PVA/GA/CS-Ag +的熱重分析圖譜係如圖2所示。其證明銀離子的導入 (曲線d ) 可大幅增加薄膜的耐熱性,使用戊二醛的交聯作用 (曲線e ),更能發揮薄膜最佳的熱穩定性。 TGA analysis: Thermogravimetric analysis of PVA, CS, PVA/CS, PVA/CS-Ag + and PVA/GA/CS-Ag + is shown in Figure 2. It proves that the introduction of silver ions (curve d) can greatly increase the heat resistance of the film, and the crosslinking effect (curve e) of glutaraldehyde can be used to better exert the optimum thermal stability of the film.
SEM形態&元素分析:觀察圖15a~h、圖16a~e及圖17a~e,當加入較高含量的銀離子、銅離子或鐵離子時,所獲得的滲透蒸發薄膜已無PVA與CS混合造成的團塊現象,同時具有較粗糙的網狀結構,其顯示以Ag +、Cu 2+、Fe 3+等重金屬離子螯合的CS的存在可促進PVA/GA/CS-M +滲透蒸發薄膜的分子間相互作用,從而提高其相容性。 SEM Morphology & Elemental Analysis: Observe Figure 15a~h, Figure 16a~e and Figure 17a~e. When a higher content of silver ions, copper ions or iron ions is added, the obtained pervaporation film has no PVA and CS mixed. The resulting agglomerate phenomenon has a coarser network structure, which indicates that the presence of CS chelated by heavy metal ions such as Ag + , Cu 2+ , Fe 3+ promotes PVA/GA/CS-M + pervaporation film The intermolecular interactions thus increase their compatibility.
AFM原子力顯微鏡分析: 觀察圖18與圖19a~c可知純PVA薄膜表面較為平整,當混加入愈多CS時,會造成較大的團塊。由圖20a~c、圖21a~c及圖22a~c可發現,隨著Ag +、Cu 2+、Fe 3+等重金屬離子的增加,薄膜表面的團塊逐漸變小,薄膜表面的粗糙度也逐漸增加,與SEM的測試結果相符合。 AFM Atomic Force Microscopy Analysis: Looking at Figure 18 and Figures 19a-c, the surface of the pure PVA film is relatively flat. When more CS is added, it will cause larger agglomerates. It can be seen from Fig. 20a~c, Fig. 21a~c and Fig. 22a~c that as the heavy metal ions such as Ag + , Cu 2+ and Fe 3+ increase, the agglomerates on the surface of the film become smaller and the surface roughness of the film It has also gradually increased, in line with the SEM test results.
接觸角研究:測量不同含量Ag +的PVA/GA/CS-Ag +滲透蒸發薄膜的水接觸角。觀察結果如圖3所示,顯示接觸角隨著銀離子含量增加而降低。此因銀離子具有高極性,因此在其存在下,PVA/GA/CS-Ag +滲透蒸發薄膜具有較高的親水性。 Contact Angle Study: Water contact angles of PVA/GA/CS-Ag + pervaporation films with different levels of Ag + were measured. The observation results are shown in Fig. 3, showing that the contact angle decreases as the silver ion content increases. This silver ion has a high polarity, so in its presence, the PVA/GA/CS-Ag + pervaporation film has high hydrophilicity.
溶脹度:在本發明中,將與Ag +、Cu 2+、Fe 3+等經重金屬離子螯合的殼聚醣與PVA共混,然後以戊二醛交聯反應形成用於有機水溶液脫水的滲透蒸發薄膜。一般而言,交聯劑可用於防止聚合物基質因吸水而溶脹,但此會導致親水性質的降低,而降低脫水處理的通量。由於殼聚醣其存在於氨基氮中的未共用電子對,其可藉由螯合而能夠吸附重金屬離子,使膜之極性提升而大為增加薄膜的吸水性。圖4為水/異丙醇混合物中水濃度對不同含量Ag +的PVA/GA/CS-Ag +膜溶脹度的影響,結果顯示,較高銀離子含量的PVA/GA/CS-Ag +滲透蒸發薄膜和使用較高的水/異丙醇比之水溶液,滲透蒸發薄膜反映出較高程度的膨脹百分比。本發明發現以Ag +、Cu 2+、Fe 3+等重金屬離子螯合的CS的存在可促進PVA/GA/CS-M +滲透蒸發薄膜的分子間相互作用,從而得到較好的相容性之聚合物基體,使其能夠在水/有機溶劑的混合物中吸收更多的水,而使其自身膨脹而不損失其網狀結構。 Swelling degree: In the present invention, chitosan chelated with heavy metal ions such as Ag + , Cu 2+ , Fe 3+ is blended with PVA, and then cross-linked with glutaraldehyde to form a dehydration for organic aqueous solution. Pervaporation film. In general, crosslinkers can be used to prevent the polymer matrix from swelling due to water absorption, but this can result in a decrease in hydrophilic properties and a reduced flux of dehydration treatment. Due to the unshared electron pair of chitosan present in the amino nitrogen, it can adsorb heavy metal ions by chelation, and the polarity of the film is increased to greatly increase the water absorption of the film. Figure 4 shows the effect of water concentration in water/isopropanol mixture on the swelling degree of PVA/GA/CS-Ag + film with different contents of Ag + . The results show that PVA/GA/CS-Ag + penetration of higher silver ion content Evaporating the film and using a higher water/isopropanol ratio aqueous solution, the pervaporation film reflects a higher degree of expansion. The present inventors have found that the presence of CS chelated by heavy metal ions such as Ag + , Cu 2+ , Fe 3+ promotes the intermolecular interaction of PVA/GA/CS-M + pervaporation films, thereby obtaining better compatibility. The polymer matrix is capable of absorbing more water in a mixture of water/organic solvents while expanding itself without losing its network structure.
具有不同含量銀離子的PVA/GA/CS-Ag +薄膜滲之滲透蒸發脫水效能:在30℃下,利用與不同含量的銀離子螯合的PVA/GA/CS-Ag +薄膜進行水/異丙醇溶液的滲透蒸發脫水過程。結果顯示,銀離子螯合越多的膜,呈現的透過率越高。此因銀離子的添加,造成了極性的增加。將圖4和圖5相比,發現兩者的結果是相似的。在圖4中,溶脹程度的提升 ,主要歸因於水含量的增加;然而,銀離子的螯合也能促進該效應。同樣地,進料中更多的水含量可帶來更高的透過量,提高銀離子的含量,亦大幅地提高了透過量 (如圖5)。我們可以得到結論,即螯合在CS分子上的銀離子特別顯示對於異丙醇溶液在低水含量進料中之脫水的重要性,其重要性也反映於圖6所示之非常高的水透過濃度。無論引入多少銀離子來製備PVA/GA/CS-Ag +滲透蒸發薄膜,透過端水濃度均可達到99.99%,其中銀離子濃度為1.171×10 -1mol.,水透過量甚至可達2 kg/m 2h。 Pervaporation dehydration efficiency of PVA/GA/CS-Ag + film with different content of silver ions: water/different at 30 °C using PVA/GA/CS-Ag + film chelated with different content of silver ions Pervaporation dehydration process of propanol solution. The results show that the more the silver ions chelate, the higher the transmittance. This increase in polarity due to the addition of silver ions. Comparing Figure 4 with Figure 5, the results were found to be similar. In Figure 4, the increase in swelling is mainly due to an increase in water content; however, chelation of silver ions can also promote this effect. Similarly, more water content in the feed results in higher permeate, increased silver ion content, and a significant increase in permeate (Figure 5). We can conclude that the silver ions chelated on the CS molecule show the importance of dehydration of the isopropanol solution in the low water content feed, and the importance is also reflected in the very high water shown in Figure 6. Through concentration. No matter how many silver ions are introduced to prepare PVA/GA/CS-Ag + pervaporation film, the concentration of the permeate water can reach 99.99%, the silver ion concentration is 1.171×10 -1 mol., and the water permeation can reach 2 kg. /m 2 h.
本發明與習知資料的比較:使用以PVA為基質之滲透蒸發薄膜,用於異丙醇溶液的脫水,其在30℃下以10重量百分比的進料,結果如表1所示。一般而言,當選擇比增加時,透過量呈現降低。本發明利用GA作為交聯劑,以Ag +、Cu 2+、Fe 3+等重金屬離子螯合CS為前體,對於選擇比和透過量都有很大的改善。以銀離子含量為1.17×10 -1mol.,進料10重量% 的水,可達到具有高達89991的分離因數之高分離效能。 Comparison of the present invention with conventional data: a PVA-based pervaporation film was used for dehydration of an isopropanol solution at 10 ° C at 10 ° C. The results are shown in Table 1. In general, when the selection ratio is increased, the amount of transmission is lowered. The invention utilizes GA as a crosslinking agent, and sequesters CS as a precursor by heavy metal ions such as Ag + , Cu 2+ and Fe 3+ , which greatly improves the selection ratio and the permeation amount. With a silver ion content of 1.17 × 10 -1 mol., 10% by weight of water is fed, and a high separation efficiency with a separation factor of up to 89,991 can be achieved.
表1:對用於異丙醇脫水之習知文獻中報導的改質PVA滲透蒸發薄膜的分離效能之研究比較。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 滲透蒸發薄膜 </td><td> 溫度 .(℃) </td><td> 進料水 百分比 % </td><td> 通量 (Kg/m<sup>2</sup>h) </td><td> 分離因素 </td><td> 備註 </td><td> </td><td> </td></tr><tr><td> PVA-Gelatin (M-1) PVA- Gelatin (M-2) PVA- Gelatin (M-3) PVA- Gelatin (M-4) PVA-CA PVA/AA PVA-USF PVA-20/CS/USF PVA-40/CS/USF PVA-60/CS/USF PVA/GA PVA-NaAlg (25:75)/GA PVA-NaAlg (50:50)/GA PVA-NaAlg (75:25)/GA PVA/GA/CS-Ag<sup>+</sup>(2.4x10<sup>-2</sup>mol) PVA/GA/CS-Ag<sup>+</sup>(4.7x10<sup>-2</sup>mol) PVA/GA/CS-Ag<sup>+</sup> (7.1 x10<sup>-2</sup>mol) PVA/GA/CS-Ag<sup>+</sup>(9.4 x10<sup>-2</sup>mol) PVA/GA/CS-Ag<sup>+</sup>(1.17 x10<sup>-1</sup>mol) </td><td> 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 </td><td> 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </td><td> 0.0319 0.0292 0.0352 0.0439 0.053 0.2 0.095 0.113 0.149 0.214 0.04 0.023 0.033 0.039 0.62 0.76 0.96 1.44 1.97 </td><td> 1160 1791 929 848 291 300 77 17991 8562 6419 21 195 119 91 89991 89991 89991 89991 89991 </td><td> 習知 習知 習知 習知 習知 習知 習知 習知 習知 習知 習知 習知 習知 習知 本案 本案 本案 本案 本案 </td><td> </td><td> </td></tr><tr height="0"><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></TBODY></TABLE>PVA,聚(乙烯醇);CA,檸檬酸;AA,醯胺酸;USF,尿素甲醛/硫酸;CS,殼聚醣;GA,戊二醛;NaAlg,海藻酸鈉 Table 1: Comparison of studies on the separation efficiency of modified PVA pervaporation films reported in the conventional literature for the dehydration of isopropanol. <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Pervaporation film</td><td> Temperature.(°C) </td><td >% of feed water </td><td> Flux (Kg/m<sup>2</sup>h) </td><td> Separation factor</td><td> Remarks</td> <td> </td><td> </td></tr><tr><td> PVA-Gelatin (M-1) PVA- Gelatin (M-2) PVA- Gelatin (M-3) PVA- Gelatin (M-4) PVA-CA PVA/AA PVA-USF PVA-20/CS/USF PVA-40/CS/USF PVA-60/CS/USF PVA/GA PVA-NaAlg (25:75)/GA PVA -NaAlg (50:50)/GA PVA-NaAlg (75:25)/GA PVA/GA/CS-Ag<sup>+</sup>(2.4x10<sup>-2</sup>mol) PVA/ GA/CS-Ag<sup>+</sup>(4.7x10<sup>-2</sup>mol) PVA/GA/CS-Ag<sup>+</sup> (7.1 x10<sup>-2 </sup>mol) PVA/GA/CS-Ag<sup>+</sup>(9.4 x10<sup>-2</sup>mol) PVA/GA/CS-Ag<sup>+</sup> (1.17 x10<sup>-1</sup>mol) </td><td> 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 </td><td> 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 </td><td> 0.0319 0.0292 0.0352 0.0439 0.053 0.2 0.095 0.113 0.149 0.214 0.04 0.023 0.033 0.039 0.62 0.76 0.96 1.44 1.97 </td><td> 1160 179 1 929 848 291 300 77 17991 8562 6419 21 195 119 91 89991 89991 89991 89991 89991 </td><td> 知 知 知 知 知 习 习 习 习 习 习 习 习 习Knowing the case, the case, the case, the case </td><td> </td><td> </td></tr><tr height="0"><td></td><td></ Td><td></td><td></td><td></td><td></td><td></td><td></td><td></td ><td></td></tr></TBODY></TABLE>PVA, poly(vinyl alcohol); CA, citric acid; AA, proline; USF, urea formaldehyde/sulfuric acid; CS, shell poly Sugar; GA, glutaraldehyde; NaAlg, sodium alginate
特別說明的是,依據前述本發明滲透蒸發薄膜製備過程之方法,其中銀離子可替換為銅離子、鐵離子或其他重金屬離子,其餘方法相同,進而可形成PVA/GA/CS-Cu 2+或 PVA/GA/CS-Fe 3+(以PVA/GA/CS-M +表示,其中M +表示重金屬離子) 滲透蒸發薄膜,其物理特性如拉伸強度說明如下: Specifically, according to the foregoing method for preparing a pervaporation film of the present invention, the silver ions may be replaced by copper ions, iron ions or other heavy metal ions, and the other methods are the same, thereby forming PVA/GA/CS-Cu 2+ or PVA/GA/CS-Fe 3+ (expressed as PVA/GA/CS-M + , where M + represents heavy metal ions) Pervaporation film, the physical properties such as tensile strength are as follows:
拉伸强度:根據拉伸強度的量度來評價PVA/CS, PVA/CS-Ag +, PVA/GA/CS-Ag +, PVA/GA/CS-Cu 2+及PVA/GA/CS-Fe 3+滲透蒸發薄膜的力學性能,其測試資料列於表2中。當殼聚醣共混於PVA中時,幾乎能加倍提高拉伸強度,顯示PVA與CS相容性好,且之間存在強大的相互作用。當引入Ag +於膜中,可大幅增加膜的拉伸強度,即使在不添加交聯劑的情況下,經Ag +螯合的CS與PVA的分子間具有不可忽視的相互作用力,此有助於相容性更佳的聚合物基體之形成。螯合Ag +的CS除可大為提高有機水溶夜的分離效能之外,亦可提高聚合物基體的機械強度。這可以透過PVA/GA/CS與PVA/GA/CS-Ag +滲透蒸發薄膜的比較來闡明,其中銀離子的引入可大為提高拉伸強度達64.7%,顯示與Ag +螯合的CS與PVA之間的強相互作用,此亦可反映耐熱性質的改善。另外由表2的數據可看出添加銅離子及鐵離子亦顯示產生類似添加銀離子的結果與特性。 Tensile strength: PVA/CS, PVA/CS-Ag + , PVA/GA/CS-Ag + , PVA/GA/CS-Cu 2+ and PVA/GA/CS-Fe 3 were evaluated according to the measure of tensile strength. + Mechanical properties of the pervaporation film, the test data of which are listed in Table 2. When chitosan is blended in PVA, the tensile strength can be almost doubled, showing that PVA has good compatibility with CS, and there is a strong interaction between them. When Ag + is introduced into the film, the tensile strength of the film can be greatly increased. Even without the addition of a crosslinking agent, the Ag + chelated CS and PVA molecules have a non-negligible interaction force. Helps the formation of a more compatible polymer matrix. The addition of CS to chelate Ag + can greatly improve the separation efficiency of organic water-soluble nights, and can also improve the mechanical strength of the polymer matrix. This can be clarified by comparing PVA/GA/CS with PVA/GA/CS-Ag + pervaporation film, in which the introduction of silver ions can greatly increase the tensile strength by 64.7%, showing CS and chelation with Ag + A strong interaction between PVAs, which also reflects an improvement in heat resistance properties. In addition, it can be seen from the data in Table 2 that the addition of copper ions and iron ions also showed results and characteristics similar to the addition of silver ions.
表2:滲透蒸發薄膜的拉伸強度和拉伸伸長率 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 滲透蒸發薄膜 </td><td> 拉伸強度 ( Mpa ) </td><td> 拉伸率 ( % ) </td></tr><tr><td> Pure PVA </td><td> 9 ± 2 </td><td> 166 ± 22 </td></tr><tr><td> PVA /CS </td><td> 17 ± 1 </td><td> 141 ± 10 </td></tr><tr><td> PVA /GA/CS </td><td> 17 ± 2 </td><td> 102 ± 17 </td></tr><tr><td> PVA /CS-Ag<sup>+</sup>(1.17 x10<sup>-1</sup>mol. Ag<sup>+</sup>) </td><td> 130 ± 3 </td><td> 87 ± 14 </td></tr><tr><td> PVA/GA/CS-Ag<sup>+</sup> (2.4 x10<sup>-2</sup>mol. Ag<sup>+</sup>) </td><td> 90 ± 2 </td><td> 94 ± 17 </td></tr><tr><td> PVA/GA/CS-Ag<sup>+</sup> (4.7 x10<sup>-2</sup>mol. Ag<sup>+</sup>) </td><td> 92 ± 3 </td><td> 94 ± 14 </td></tr><tr><td> PVA/GA/CS-Ag<sup>+</sup> (7.1 x10<sup>-2</sup>mol. Ag<sup>+</sup>) </td><td> 110 ± 2 </td><td> 91 ± 15 </td></tr><tr><td> PVA/GA/CS-Ag<sup>+</sup> (9.4 x10<sup>-2</sup>mol. Ag<sup>+</sup>) </td><td> 145 ± 4 </td><td> 89 ± 11 </td></tr><tr><td> PVA/GA/CS-Ag<sup>+</sup> (1.17 x10<sup>-1</sup>mol. Ag<sup>+</sup>) </td><td> 150 ± 3 </td><td> 89 ± 13 </td></tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (1.9 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 78 ± 3 </td><td> 60 ± 13 </td></tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (3.7 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 82 ± 3 </td><td> 54 ± 9 </td></tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (5.6 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 90 ± 4 </td><td> 50 ± 10 </td></tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (7.5 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 94 ± 2 </td><td> 48 ± 16 </td></tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (9.3 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 115 ± 5 </td><td> 45 ± 12 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (1 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 70 ± 5 </td><td> 72 ± 10 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (2 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 83 ± 2 </td><td> 71 ± 6 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (3 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 98 ± 1 </td><td> 68 ± 11 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (4 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 110 ± 3 </td><td> 50 ± 9 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (5 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 120 ± 4 </td><td> 39 ± 13 </td></tr></TBODY></TABLE>Table 2: Tensile strength and tensile elongation of pervaporation films <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Pervaporation film</td><td> Tensile strength (Mpa) </td>< Td> stretch rate ( % ) </td></tr><tr><td> Pure PVA </td><td> 9 ± 2 </td><td> 166 ± 22 </td></ Tr><tr><td> PVA /CS </td><td> 17 ± 1 </td><td> 141 ± 10 </td></tr><tr><td> PVA /GA/CS </td><td> 17 ± 2 </td><td> 102 ± 17 </td></tr><tr><td> PVA /CS-Ag<sup>+</sup>(1.17 x10 <sup>-1</sup>mol. Ag<sup>+</sup>) </td><td> 130 ± 3 </td><td> 87 ± 14 </td></tr>< Tr><td> PVA/GA/CS-Ag<sup>+</sup> (2.4 x10<sup>-2</sup>mol. Ag<sup>+</sup>) </td><td > 90 ± 2 </td><td> 94 ± 17 </td></tr><tr><td> PVA/GA/CS-Ag<sup>+</sup> (4.7 x10<sup>- 2</sup>mol. Ag<sup>+</sup>) </td><td> 92 ± 3 </td><td> 94 ± 14 </td></tr><tr><td > PVA/GA/CS-Ag<sup>+</sup> (7.1 x10<sup>-2</sup>mol. Ag<sup>+</sup>) </td><td> 110 ± 2 </td><td> 91 ± 15 </td></tr><tr><td> PVA/GA/CS-Ag<sup>+</sup> (9.4 x10<sup>-2</sup >mol. Ag<sup>+</sup>) </td><td> 145 ± 4 </td><td> 89 ± 11 </td></tr><tr><td> PVA/GA /CS-Ag<sup>+</sup > (1.17 x10<sup>-1</sup>mol. Ag<sup>+</sup>) </td><td> 150 ± 3 </td><td> 89 ± 13 </td>< /tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (1.9 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 78 ± 3 </td><td> 60 ± 13 </td></tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (3.7 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 82 ± 3 </td><td> 54 ± 9 </td>< /tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (5.6 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 90 ± 4 </td><td> 50 ± 10 </td></tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (7.5 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 94 ± 2 </td><td> 48 ± 16 </td>< /tr><tr><td> PVA/GA/CS-Cu<sup>2+</sup> (9.3 x10<sup>-2</sup>mol. Cu<sup>2+</sup>) </td><td> 115 ± 5 </td><td> 45 ± 12 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (1 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 70 ± 5 </td><td> 72 ± 10 </td>< /tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (2 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 83 ± 2 </td><td> 71 ± 6 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (3 X10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 98 ± 1 </td><td> 68 ± 11 </td></tr ><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (4 x10<sup>-2</sup>mol. Fe<sup>3+</sup>) </ Td><td> 110 ± 3 </td><td> 50 ± 9 </td></tr><tr><td> PVA/GA/CS-Fe<sup>3+</sup> (5 X10<sup>-2</sup>mol. Fe<sup>3+</sup>) </td><td> 120 ± 4 </td><td> 39 ± 13 </td></tr ></TBODY></TABLE>
而在滲透蒸發實驗方面來評價PVA/CS、PVA/CS-Ag +、 PVA/GA/CS-Ag +、PVA/GA/CS-Cu 2+及PVA/GA/CS-Fe 3+薄膜,其可分別由圖5 - 8之各項實驗結果證明,Cu 2+、Fe 3+的添加與加入Ag +一樣能有效地促進水的透過量,而不喪失其選擇性。此外,本發明之滲透蒸發薄膜除了適用於異丙醇水溶液,亦可用於乙醇水溶液和丙酮水溶液的脫水,其可由圖9 - 14之實驗結果說明。此也顯示出對於眾多的有機溶液之脫水皆具應用的廣泛性。 In the pervaporation experiment, PVA/CS, PVA/CS-Ag + , PVA/GA/CS-Ag + , PVA/GA/CS-Cu 2+ and PVA/GA/CS-Fe 3+ films were evaluated. The experimental results of Fig. 5-8 can be respectively proved that the addition of Cu 2+ and Fe 3+ can effectively promote the water permeation amount without losing the selectivity as with the addition of Ag + . Further, the pervaporation film of the present invention can be used for dehydration of an aqueous ethanol solution and an aqueous acetone solution, in addition to an aqueous solution of isopropanol, which can be illustrated by the experimental results of Figs. This also shows a wide range of applications for the dehydration of numerous organic solutions.
綜上所述,本發明以GA為交聯劑,及銀離子、銅離子和鐵離子等分別螯合於CS為前體,與PVA共混,可以成功製備PVA/GA/CS-Ag +、PVA/GA/CS-Cu 2+和PVA/GA/CS-Fe 3+等滲透蒸發薄膜。本發明用於有機溶液的脫水,具有良好的力學性能和耐熱性。本發明在30℃下供入有機溶液,利用銀離子、銅離子、鐵離子等引入形成滲透蒸發薄膜,能有效地促進水的滲透速率,而不喪失其選擇性。舉例來說,本發明以Ag +含量為1.171×10 -1mol.的膜,經檢測得知,在30℃下,對於濃度為90重量百分比的高濃度異丙醇溶液的脫水,可以實現具有高達89991的分離因數,及高達2 kgm 2h的透過量; 而習知技術在同樣情況下採用以PVA為基質的滲透蒸發薄膜,其結果如表1所示,一般而言,當透過量增加時,選擇性呈現降低,由此可知本發明的優異處。特別地,本發明也顯示了在較低的水含量下進料之脫水的有效性,有利於大規模的純化應用。 In summary, the present invention uses GA as a crosslinking agent, and silver ions, copper ions and iron ions are respectively chelated to CS as a precursor, and blended with PVA, can successfully prepare PVA/GA/CS-Ag + , Pervaporation films such as PVA/GA/CS-Cu 2+ and PVA/GA/CS-Fe 3+ . The invention is used for dehydration of organic solutions, and has good mechanical properties and heat resistance. The present invention is supplied with an organic solution at 30 ° C, and is introduced into a pervaporation film by using silver ions, copper ions, iron ions or the like, and can effectively promote the permeation rate of water without losing its selectivity. For example, the present invention has a film having an Ag + content of 1.171×10 -1 mol., and it is found that at 30° C., dehydration of a high concentration isopropanol solution having a concentration of 90% by weight can be achieved. a separation factor of up to 89,991 and a transmission of up to 2 kgm 2 h; whereas the prior art uses a PVA-based pervaporation film in the same situation, the results of which are shown in Table 1, in general, when the transmission is increased At the time, the selectivity is lowered, and thus the advantages of the present invention are known. In particular, the present invention also shows the effectiveness of dewatering of the feed at lower water levels, facilitating large scale purification applications.
上述詳細說明為針對本發明一種較佳之可行實施例說明而已,惟該實施例並非用以限定本發明之申請專利範圍,凡其它未脫離本發明所揭示之技藝精神下所完成之均等變化與修飾變更,均應包含於本發明所涵蓋之專利範圍中。The above detailed description is intended to be illustrative of a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, and other equivalents and modifications may be made without departing from the spirit of the invention. Changes are intended to be included in the scope of the patents covered by the present invention.
無no
圖1顯示 (a) 純PVA,(b) 純CS,(c) PVA/CS,(d) PVA/CS-Ag +(Ag +: 1.17 x 10 -1mol.) 及 (e) PVA/GA/CS-Ag +(Ag +: 1.17 x10 -1mol.) 的FTIR光譜圖。 圖2為包含 (a) 純PVA, (b) 純殼聚醣, (c) PVA/CS, (d) PVA/CS- Ag +(Ag +: 1.17 x10 -1mol.) , (e) PVA/GA/CS-Ag +(Ag +: 1.17 x10 -1mol.) 之TGA圖。 圖3顯示具有不同含量Ag +的PVA/GA/CS-Ag +滲透蒸發薄膜的接觸角。 圖4為水/異丙醇混合物中水濃度對不同Ag +含量的PVA/GA/CS-Ag +膜溶脹度的影響。 圖5為在30℃下具有不同含量Ag +的PVA/GA/CS-Ag +滲透蒸發薄膜,於各種水/異丙醇混合物的透過量。 圖6顯示透過PVA/GA/CS-Ag +滲透蒸發薄膜在30℃ (90重量百分比進料異丙醇濃度)下,Ag +含量對水/異丙醇混合物的滲透蒸發效能影響。 圖7為在30℃下具有不同含量Cu 2+的PVA/GA/CS-Cu 2+滲透蒸發薄膜,於各種水/異丙醇混合物的透過量。 圖8為在30℃下具有不同含量Fe 3+的PVA/GA/CS-Fe 3+滲透蒸發薄膜,於各種水/異丙醇混合物的透過量。 圖9為在30℃下具有不同含量Ag +的PVA/GA/CS-Ag +滲透蒸發薄膜,於各種水/乙醇混合物的透過量。 圖10為在30℃下具有不同含量Ag +的PVA/GA/CS-Ag +滲透蒸發薄膜,於各種水/丙酮混合物的透過量。 圖11為在30℃下具有不同含量Cu 2+的PVA/GA/CS-Cu 2+滲透蒸發薄膜,於各種水/乙醇混合物的透過量。 圖12為在30℃下具有不同含量Cu 2+的PVA/GA/CS-Cu 2+滲透蒸發薄膜,於各種水/丙酮混合物的透過量。 圖13為在30℃下具有不同含量Fe 3+的PVA/GA/CS-Fe 3+滲透蒸發薄膜,於各種水/乙醇混合物的透過量。 圖14為在30℃下具有不同含量Fe 3+的PVA/GA/CS-Fe 3+滲透蒸發薄膜,於各種水/丙酮混合物的透過量。 圖15a~h為包括 (a) 純PVA, (b) PVA/CS, (c) PVA/GA/CS-Ag +(Ag +: 2.4x10 -2mol.), (d) PVA/GA/CS-Ag +(Ag +: 4.7x10 -2mol.), (e) PVA/GA/CS-Ag +( Ag +: 7.1 x10 -2mol.), (f) PVA/GA/CS-Ag +(Ag +: 9.4 x10 -2mol.), (g) PVA/GA/CS-Ag +(Ag +: 1.17 x10 -1mol.) 薄膜 之SEM 圖 和 (h) EDS圖 (Ag +: 1.17 x10 -1mol.)。 圖16a~e為包括(a) PVA/GA/CS-Cu 2+(1.9 x10 -2mol. Cu 2+), (b) PVA/GA/CS-Cu 2+(3.7 x10 -2mol. Cu 2+), (c) PVA/GA/CS-Cu 2+(5.6 x10 -2mol. Cu 2+), (d) PVA/GA/CS-Cu 2+(7.5 x10 -2mol. Cu 2+) 及 (e) PVA/GA/CS-Cu 2+(9.3 x10 -2mol. Cu 2+)薄膜之SEM圖。 圖17a~e為包括(a) PVA/GA/CS-Fe 3+(1 x10 -2mol. Fe 3+), (b) PVA/GA/CS-Fe 3+(2 x10 -2mol. Fe 3+), (c) PVA/GA/CS-Fe 3+(3 x10 -2mol. Fe 3+), (d) PVA/GA/CS-Fe 3+(4 x10 -2mol. Fe 3+) 及 (e) PVA/GA/CS-Fe 3+(5 x10 -2mol. Fe 3+) 薄膜之SEM圖。 圖18a-1~a-2為 純PVA薄膜之AFM圖。 圖19a~c 為包括 (a-1~a-2) CS/PVA比值為1/5 , (b-1~b-2) CS/PVA比值為3/5 , (c-1~c-2) CS/PVA比值為5/5之不同 CS/PVA重量比薄膜之AFM圖。 圖20a~c 為包括 (a-1~a-2) Ag +: 2.4x10 -2mol. , (b-1~b-2) Ag +: 7.1 x10 -2mol. , (c-1~c-2) Ag +: 1.17 x10 -1mol. 不同Ag +添加量的PVA/GA/CS-Ag +薄膜之AFM圖。 圖21a~c 為包括 (a-1~a-2) Cu 2+: 1.9 x10 -2mol. Cu 2+, (b-1~b-2) Cu 2+: 5.6 x10 -2mol. Cu 2+, (c-1~c-2) Cu 2+: 9.3 x10 -2mol. 不同Cu 2+添加量的PVA/GA/CS-Cu 2+薄膜之AFM圖。 圖22a~c 為包括 (a-1~a-2) Fe 3+: 1 x10 -2mol. , (b-1~b-2) Fe 3+: 3 x10 -2mol. , (c-1~c-2) Fe 3+: 5 x10 -2mol. 不同Fe 3+添加量的PVA/GA/CS-Fe 3+薄膜之AFM圖。 Figure 1 shows (a) pure PVA, (b) pure CS, (c) PVA/CS, (d) PVA/CS-Ag + (Ag + : 1.17 x 10 -1 mol.) and (e) PVA/GA FTIR spectrum of /CS-Ag + (Ag + : 1.17 x10 -1 mol.). Figure 2 contains (a) pure PVA, (b) pure chitosan, (c) PVA/CS, (d) PVA/CS-Ag + (Ag + : 1.17 x10 -1 mol.) , (e) PVA TGA map of /GA/CS-Ag + (Ag + : 1.17 x10 -1 mol.). Figure 3 shows the contact angles of PVA/GA/CS-Ag + pervaporation films with different contents of Ag + . Figure 4 shows the effect of water concentration in a water/isopropanol mixture on the degree of swelling of PVA/GA/CS-Ag + films with different Ag + contents. Figure 5 is a graph showing the permeation of a PVA/GA/CS-Ag + pervaporation film having different contents of Ag + at 30 ° C in various water/isopropanol mixtures. Figure 6 shows the effect of Ag + content on the pervaporation performance of a water/isopropanol mixture at 30 ° C (90 wt% feed isopropanol concentration) through a PVA/GA/CS-Ag + pervaporation film. Figure 7 is a graph showing the amount of PVA/GA/CS-Cu 2+ pervaporation film having different contents of Cu 2+ at 30 ° C in various water/isopropanol mixtures. Figure 8 is a graph showing the permeation of a PVA/GA/CS-Fe 3+ pervaporation film having different contents of Fe 3+ at 30 ° C in various water/isopropanol mixtures. Figure 9 is a graph showing the permeation of PVA/GA/CS-Ag + pervaporation films with different contents of Ag + at 30 ° C in various water/ethanol mixtures. Figure 10 is a graph showing the permeation of PVA/GA/CS-Ag + pervaporation films with different contents of Ag + at 30 ° C in various water/acetone mixtures. Figure 11 shows the permeation of PVA/GA/CS-Cu 2+ pervaporation films with different contents of Cu 2+ at 30 ° C in various water/ethanol mixtures. Figure 12 is a graph showing the amount of PVA/GA/CS-Cu 2+ pervaporation film having different contents of Cu 2+ at 30 ° C in various water/acetone mixtures. Figure 13 is a graph showing the permeation of PVA/GA/CS-Fe 3+ pervaporation films with different contents of Fe 3+ at 30 ° C in various water/ethanol mixtures. Figure 14 is a graph showing the permeation of PVA/GA/CS-Fe 3+ pervaporation films with different contents of Fe 3+ at 30 ° C in various water/acetone mixtures. Figures 15a-h include (a) pure PVA, (b) PVA/CS, (c) PVA/GA/CS-Ag + (Ag + : 2.4x10 -2 mol.), (d) PVA/GA/CS -Ag + (Ag + : 4.7x10 -2 mol.), (e) PVA/GA/CS-Ag + (Ag + : 7.1 x10 -2 mol.), (f) PVA/GA/CS-Ag + ( Ag + : 9.4 x10 -2 mol.), (g) SEM image of PVA/GA/CS-Ag + (Ag + : 1.17 x10 -1 mol.) film and (h) EDS chart (Ag + : 1.17 x10 - 1 mol.). Figures 16a-e include (a) PVA/GA/CS-Cu 2+ (1.9 x 10 -2 mol. Cu 2+ ), (b) PVA/GA/CS-Cu 2+ (3.7 x 10 -2 mol. Cu 2+ ), (c) PVA/GA/CS-Cu 2+ (5.6 x10 -2 mol. Cu 2+ ), (d) PVA/GA/CS-Cu 2+ (7.5 x 10 -2 mol. Cu 2+ ) And (e) SEM images of PVA/GA/CS-Cu 2+ (9.3 x 10 -2 mol. Cu 2+ ) films. Figures 17a-e include (a) PVA/GA/CS-Fe 3+ (1 x 10 -2 mol. Fe 3+ ), (b) PVA/GA/CS-Fe 3+ (2 x 10 -2 mol. Fe 3+ ), (c) PVA/GA/CS-Fe 3+ (3 x10 -2 mol. Fe 3+ ), (d) PVA/GA/CS-Fe 3+ (4 x10 -2 mol. Fe 3+ And (e) SEM images of PVA/GA/CS-Fe 3+ (5 x 10 -2 mol. Fe 3+ ) films. Figures 18a-1 to a-2 are AFM images of a pure PVA film. Figures 19a~c include (a-1~a-2) CS/PVA ratio of 1/5, (b-1~b-2) CS/PVA ratio of 3/5, (c-1~c-2) The AFM map of the different CS/PVA weight ratio films with a CS/PVA ratio of 5/5. 20a~c include (a-1~a-2) Ag + : 2.4x10 -2 mol. , (b-1~b-2) Ag + : 7.1 x10 -2 mol. , (c-1~c -2) Ag + : 1.17 x10 -1 mol. AFM pattern of PVA/GA/CS-Ag + film with different Ag + addition amount. Figure 21a~c includes (a-1~a-2) Cu 2+ : 1.9 x10 -2 mol. Cu 2+ , (b-1~b-2) Cu 2+ : 5.6 x10 -2 mol. Cu 2 + , (c-1~c-2) Cu 2+ : 9.3 x10 -2 mol. AFM pattern of PVA/GA/CS-Cu 2+ film with different Cu 2+ addition amount. Figures 22a~c include (a-1~a-2) Fe 3+ : 1 x10 -2 mol. , (b-1~b-2) Fe 3+ : 3 x10 -2 mol. , (c-1 ~c-2) Fe 3+ : 5 x10 -2 mol. AFM pattern of PVA/GA/CS-Fe 3+ film with different Fe 3+ addition amount.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106136160A TWI647260B (en) | 2017-10-20 | 2017-10-20 | High Permselectivity of PVA/GA/CS-M+Membrane for Dehydration of Organic Solvent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106136160A TWI647260B (en) | 2017-10-20 | 2017-10-20 | High Permselectivity of PVA/GA/CS-M+Membrane for Dehydration of Organic Solvent |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI647260B true TWI647260B (en) | 2019-01-11 |
TW201917151A TW201917151A (en) | 2019-05-01 |
Family
ID=65804122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106136160A TWI647260B (en) | 2017-10-20 | 2017-10-20 | High Permselectivity of PVA/GA/CS-M+Membrane for Dehydration of Organic Solvent |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI647260B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116082698A (en) * | 2022-07-25 | 2023-05-09 | 浙江海洋大学 | Hydrogel-based sponge solar seawater desalination material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103193998A (en) * | 2013-04-15 | 2013-07-10 | 西北师范大学 | Preparation method of chitosan-palygorskite-polyving akohol ternary composite medicine sustained-release diaphragm |
CN105646924A (en) * | 2016-03-29 | 2016-06-08 | 郑州大学 | Monovalent anion selective ion exchange membrane and preparation method thereof |
-
2017
- 2017-10-20 TW TW106136160A patent/TWI647260B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103193998A (en) * | 2013-04-15 | 2013-07-10 | 西北师范大学 | Preparation method of chitosan-palygorskite-polyving akohol ternary composite medicine sustained-release diaphragm |
CN105646924A (en) * | 2016-03-29 | 2016-06-08 | 郑州大学 | Monovalent anion selective ion exchange membrane and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116082698A (en) * | 2022-07-25 | 2023-05-09 | 浙江海洋大学 | Hydrogel-based sponge solar seawater desalination material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201917151A (en) | 2019-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | High permselectivity of networked PVA/GA/CS-Ag+-membrane for dehydration of Isopropanol | |
Lin et al. | Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes | |
Varghese et al. | Synthesis, characterization and pervaporation performance of chitosan-g-polyaniline membranes for the dehydration of isopropanol | |
Dudek et al. | New type of alginate/chitosan microparticle membranes for highly efficient pervaporative dehydration of ethanol | |
Inui et al. | Permeation and separation of a benzene/cyclohexane mixture through benzoylchitosan membranes | |
Lin et al. | New chitosan/Konjac glucomannan blending membrane for application in pervaporation dehydration of caprolactam solution | |
Wu et al. | Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration | |
Singha et al. | Dehydration of 1, 4-dioxane by pervaporation using filled and crosslinked polyvinyl alcohol membrane | |
Wang et al. | Preparation and characterization of chitosan-poly (vinyl alcohol)/polyvinylidene fluoride hollow fiber composite membranes for pervaporation dehydration of isopropanol | |
CN112588118B (en) | Pervaporation membrane for separating N, N-dimethylformamide aqueous solution and preparation method thereof | |
Marques et al. | Comparing homogeneous and heterogeneous routes for ionic crosslinking of chitosan membranes | |
TWI647260B (en) | High Permselectivity of PVA/GA/CS-M+Membrane for Dehydration of Organic Solvent | |
Weng et al. | Preparation and characterization of cellulose nanofiltration membrane through hydrolysis followed by carboxymethylation | |
CN110917910B (en) | Preparation method of rigid MOF composite membrane for nanofiltration of organic dye | |
Gupta et al. | Mixed Matrix PVA-GO-TiO 2 Membranes for the Dehydration of Isopropyl Alcohol by Pervaporation | |
Zhang et al. | Pervaporation separation of N, N-dimethylformamide/water using poly (vinyl alcohol) based mixed matrix membranes | |
WO2019090470A1 (en) | Highly permeable and highly selective pva/ga/cs-m+ pervaporation film for dehydration of organic solutions | |
Jo et al. | Strategies to overcome the limitations of cross-linked hydrophilic PVA membranes; carboxy methyl cellulose blending for epichlorohydrin-isopropanol-water pervaporation dehydration | |
US20200129932A1 (en) | High permselectivity of pva/ga/cs-m+ membrane for dehydration of organic solvent and preparation method thereof | |
Lokesh et al. | Novel nanocomposite membranes of sodium alginate filled with polyaniline-coated titanium dioxide for dehydration of 1, 4-dioxane/water mixtures | |
Alla et al. | Pervaporation Separation of Tetrahydrofuran/Water Azeotropic Mixtures using Phosphorylated Blend Membranes | |
Reddy et al. | Dehydration of 1, 4-dioxane by pervaporation using crosslinked calcium alginate-chitosan blend membranes | |
Li et al. | Chitosan/poly (vinyl alcohol)/graphene oxide mixed matrix membrane for the pervaporation dehydration of ethylene glycol | |
CN111514765A (en) | Preparation method of MIL-101(Fe) -doped straw-based cellulose acetate composite membrane | |
Wang et al. | Effect of different concentrations of spraying chitosan solution on structure and properties of PVDF porous membrane |