TWI647113B - Sound absorbing material - Google Patents
Sound absorbing material Download PDFInfo
- Publication number
- TWI647113B TWI647113B TW106129964A TW106129964A TWI647113B TW I647113 B TWI647113 B TW I647113B TW 106129964 A TW106129964 A TW 106129964A TW 106129964 A TW106129964 A TW 106129964A TW I647113 B TWI647113 B TW I647113B
- Authority
- TW
- Taiwan
- Prior art keywords
- absorbing material
- sound
- sound absorbing
- channels
- patent application
- Prior art date
Links
- 239000011358 absorbing material Substances 0.000 title claims abstract description 65
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 238000010521 absorption reaction Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 17
- 238000005266 casting Methods 0.000 claims description 12
- 229910010272 inorganic material Inorganic materials 0.000 claims description 11
- 239000011147 inorganic material Substances 0.000 claims description 11
- 229920003169 water-soluble polymer Polymers 0.000 claims description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000005909 Kieselgur Substances 0.000 claims description 3
- 239000002002 slurry Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 238000001816 cooling Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- -1 etc.) Chemical group 0.000 description 1
- 238000013012 foaming technology Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/026—Crosslinking before of after foaming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/048—Elimination of a frozen liquid phase
- C08J2201/0484—Elimination of a frozen liquid phase the liquid phase being aqueous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/05—Open cells, i.e. more than 50% of the pores are open
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2371/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2371/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/26—Silicon- containing compounds
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B2001/8457—Solid slabs or blocks
- E04B2001/8476—Solid slabs or blocks with acoustical cavities, with or without acoustical filling
- E04B2001/848—Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Materials Engineering (AREA)
- Architecture (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Building Environments (AREA)
Abstract
本揭露提供一種吸音材料,包含一聚合物本體,具有相對的一第一端與一第二端、以及複數樹枝狀通道;其中該複數樹枝狀通道連接該第一端並往該第二端的方向延伸,該複數樹枝狀通道彼此之間的平均間距為5微米至50微米,該複數樹枝狀通道的平均寬度為5微米至50微米。 The disclosure provides a sound absorbing material including a polymer body having a first end and a second end opposite to each other, and a plurality of dendritic channels, wherein the plurality of dendritic channels are connected to the first end and face the second end. Extending, the average distance between the plurality of dendritic channels is 5 micrometers to 50 micrometers, and the average width of the plurality of dendritic channels is 5 micrometers to 50 micrometers.
Description
本揭露係有關於一種開孔型的吸音材料。 This disclosure relates to an open-cell type sound absorbing material.
為了改善生活中的回音干擾,一般會在牆上或車體上安裝吸音材料,藉以吸收聲波減少反射量。然而聚合物多孔材料常作為吸音材料使用,但傳統製作方式是採用發泡製程製作,屬於閉孔型的孔洞結構,對於入射聲波較不易在吸音材料內部產生多次反射效果,以至於吸音效果有限。此外,傳統發泡製程需使用發泡劑或二氧化碳等氣體,易造成環境汙染。 In order to improve echo interference in life, sound-absorbing materials are usually installed on the wall or on the car body to absorb sound waves and reduce the amount of reflection. However, polymer porous materials are often used as sound-absorbing materials, but the traditional manufacturing method is made by a foaming process, which is a closed-cell pore structure. It is less likely for incident sound waves to have multiple reflection effects inside the sound-absorbing material, so that the sound-absorbing effect is limited . In addition, the traditional foaming process requires the use of gases such as foaming agents or carbon dioxide, which is likely to cause environmental pollution.
因此,開發一種開孔型的吸音材料是目前亟待解決的問題。 Therefore, the development of an open-cell sound-absorbing material is an urgent problem to be solved at present.
本揭露提供一開孔型的吸音材料,可以有效提升吸音效果,同時不需要採用發泡劑或氣體來製作孔洞結構。 The disclosure provides an open-cell sound-absorbing material, which can effectively improve the sound-absorbing effect, and does not need to use a foaming agent or a gas to make the hole structure.
本揭露一實施例提供之吸音材料,包含一聚合物本體,具有相對的一第一端與一第二端、以及複數樹枝狀通道。該複數樹枝狀通道連接該第一端並往該第二端的方向延伸,該複數樹枝狀通道彼此之間的平均間距為5微米至 50微米,該複數樹枝狀通道的平均寬度為5微米至50微米。 The sound-absorbing material provided by an embodiment of the present disclosure includes a polymer body having a first end and a second end opposite to each other, and a plurality of dendritic channels. The plurality of dendritic channels are connected to the first end and extend toward the second end. The average distance between the plurality of dendritic channels is 5 micrometers to 50 micrometers, the average width of the plurality of dendritic channels is 5 micrometers to 50 micrometers.
為讓本揭露之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下。 In order to make the above-mentioned objects, features, and advantages of this disclosure more comprehensible, a preferred embodiment is given below, and the accompanying drawings are described in detail below.
10‧‧‧吸音材料 10‧‧‧ Sound-absorbing material
100‧‧‧聚合物本體 100‧‧‧ polymer body
101‧‧‧第一端 101‧‧‧ the first end
102‧‧‧第二端 102‧‧‧ the second end
103、103’、103’’‧‧‧樹枝狀通道 103, 103 ’, 103’’‧‧‧ dendritic channels
1031‧‧‧主通道 1031‧‧‧Main channel
1032‧‧‧側通道 1032‧‧‧ side access
20‧‧‧冷凍鑄造系統(freeze casting system) 20‧‧‧freeze casting system
201‧‧‧鐵氟龍模具(PTFE mould) 201‧‧‧ Teflon mould (PTFE mould)
202‧‧‧冷卻銅棒(copper cold finger) 202‧‧‧copper cold finger
203‧‧‧液態氮槽(liquid nitrogen bath) 203‧‧‧liquid nitrogen bath
204‧‧‧樣品區(sample area) 204‧‧‧sample area
205‧‧‧溫度控制器(temperature controller) 205‧‧‧temperature controller
206‧‧‧加熱線圈(heating coil) 206‧‧‧Heating coil
A、B‧‧‧中心軸(central axis) A, B‧‧‧central axis
E1、E2‧‧‧位置(location) E1, E2‧‧‧location
S‧‧‧間距 S‧‧‧Pitch
W‧‧‧寬度 W‧‧‧Width
X‧‧‧成孔方向(pore-growth direction) X‧‧‧pore-growth direction
Y‧‧‧厚度 Y‧‧‧thickness
θ‧‧‧夾角 θ‧‧‧ angle
第1圖是本揭露一實施例之吸音材料的示意圖。 FIG. 1 is a schematic diagram of a sound absorbing material according to an embodiment of the disclosure.
第2圖是一冷凍鑄造系統的示意圖。 Figure 2 is a schematic diagram of a freeze casting system.
第3圖是本揭露之實施例1所製得的吸音材料的剖面SEM圖。 FIG. 3 is a cross-sectional SEM image of the sound absorbing material prepared in Example 1 of the present disclosure.
第4圖是第3圖的局部放大圖。 FIG. 4 is a partially enlarged view of FIG. 3.
第5圖是本揭露之實施例1製得的吸音材料與比較例1吸音棉對於不同頻率的吸音係數的比較圖。 FIG. 5 is a comparison diagram of sound absorption coefficients for different frequencies of the sound absorbing material prepared in Example 1 of the present disclosure and the sound absorption cotton of Comparative Example 1. FIG.
第6圖是本揭露之實施例2製得的吸音材料與比較例1吸音棉對於不同頻率的吸音係數的比較圖。 FIG. 6 is a comparison diagram of sound absorption coefficients for different frequencies of the sound absorbing material prepared in Example 2 of the present disclosure and the sound absorption cotton of Comparative Example 1. FIG.
本揭露提供一種具有開孔結構的吸音材料,相較於傳統發泡技術,本揭露之吸音材料採用冷凍鑄造法製作孔洞,利用聚合物溶液內之水溶劑在低溫時形成冰晶,再透過低溫降壓方式移除冰晶,以獲得具有連續式開孔的吸音材料,可以讓入射聲波在材料內部產生多次反射,使得吸音特性大幅提升。 This disclosure provides a sound-absorbing material with an open-cell structure. Compared with traditional foaming technology, the sound-absorbing material of this disclosure uses the freeze-casting method to make holes. The water solvent in the polymer solution forms ice crystals at low temperatures, and then lowers through the low temperature. The ice crystals are removed by pressing to obtain a sound absorbing material with continuous openings, which can cause incident sound waves to be reflected multiple times inside the material, which greatly improves the sound absorption characteristics.
第1圖為本揭露一實施例之吸音材料的示意圖。如第1圖所示,本揭露提供一種吸音材料10,包含一聚合物本 體100,聚合物本體100具有相對的一第一端101與一第二端102、以及複數樹枝狀通道103、103’、103’’。這些樹枝狀通道103、103’、103’’形成於聚合物本體100內部,連接第一端101並往第二端102的方向延伸,以形成連續式開孔結構且彼此之間具有方向性。本揭露所提及聚合物本體100的第一端101係指供聲波進入的入射端或吸收面;本揭露所提及聚合物本體100的第二端102係指與第一端101有一明確距離的表面,可以平行或者不平行於第一端101;本揭露所提及這些樹枝狀通道103連接第一端101係指在聚合物本體100的第一端101形成複數開孔,以供聲波進入。 FIG. 1 is a schematic diagram of a sound absorbing material according to an embodiment of the disclosure. As shown in FIG. 1, the present disclosure provides a sound absorbing material 10 including a polymer substrate. The body 100 and the polymer body 100 have a first end 101 and a second end 102 opposite to each other, and a plurality of dendritic channels 103, 103 ', 103' '. These dendritic channels 103, 103 ', 103' 'are formed inside the polymer body 100, and are connected to the first end 101 and extend in the direction of the second end 102 to form a continuous open-cell structure with directivity between each other. The first end 101 of the polymer body 100 mentioned in this disclosure refers to the incident end or absorption surface for sound waves to enter; the second end 102 of the polymer body 100 mentioned in this disclosure refers to a clear distance from the first end 101 The surface may be parallel or non-parallel to the first end 101; the connection of the dendritic channels 103 to the first end 101 mentioned in the present disclosure means that a plurality of openings are formed in the first end 101 of the polymer body 100 for the sound waves to enter .
在一實施例中,全部或部分的樹枝狀通道103、103’、103’’可以直接連通於聚合物本體100的第一端101與第二端102之間(未圖示);或者是部分樹枝狀通道103、103’、103’’以串聯方式形成一較長的樹枝狀通道(未圖示)連通於聚合物本體100的第一端101與第二端102之間。在一實施例中,當樹枝狀通道103、103’、103’’連通於聚合物本體100的第一端101與第二端102之間時,在第一端101與第二端102會分別形成複數開孔。在一實施例中,每一樹枝狀通道103、103’、103’’的延伸方向大致係從第一端101往第二端102延伸,且相對於第一端101往第二端102的最短距離的方向具有低於45度的方向差異。本揭露之吸音材料10只要能讓入射聲波從聚合物本體100的第一端101進入這些樹枝狀通道103、 103’、103’並且能夠產生內部反射,並不以此為限。 In an embodiment, all or part of the dendritic channels 103, 103 ′, 103 ″ may be directly connected between the first end 101 and the second end 102 of the polymer body 100 (not shown); or part of The dendritic channels 103, 103 ′, and 103 ″ form a longer dendritic channel (not shown) connected in series between the first end 101 and the second end 102 of the polymer body 100. In one embodiment, when the dendritic channels 103, 103 ′, and 103 ″ are connected between the first end 101 and the second end 102 of the polymer body 100, the first end 101 and the second end 102 are respectively separated from each other. A plurality of openings are formed. In an embodiment, the extending direction of each of the dendritic channels 103, 103 ′, and 103 ″ extends from the first end 101 to the second end 102, and is the shortest relative to the first end 101 to the second end 102. The direction of the distance has a directional difference below 45 degrees. As long as the sound absorbing material 10 of the present disclosure allows incident sound waves to enter these dendritic channels 103 from the first end 101 of the polymer body 100, 103 ', 103' and can generate internal reflections, but not limited to this.
如第1圖所示,這些樹枝狀通道103、103’、103’’彼此之間具有一間距S,其中每一間距S可獨立地為相同或不同,平均的間距S可為5微米至50微米,例如10微米至30微米,當間距S過大時,可能造成孔隙率下降而降低吸音效果;當間距S過小時,可能會產生視覺穿透且結構強度不足。在一實施例中,每一樹枝狀通道103、103’、103’’本身具有一寬度W,其中每一寬度W可獨立地為相同或不同,平均的寬度W可為5微米至50微米,例如10微米至30微米,當寬度W過大時,可能產生視覺穿透且結構強度不足;當寬度W過小時,可能造成吸音材料孔隙率下降而降低吸音效果。本揭露所提及樹枝狀通道103、103’、103’’彼此之間的間距S係指這些樹枝狀通道103、103’、103’’的主通道之間的壁厚或距離,本揭露所提及樹枝狀通道103、103’、103’’的寬度W係指每一樹枝狀通道103、103’、103’’中主通道垂直於主通道中心軸A方向的大小或孔徑。 As shown in FIG. 1, the dendritic channels 103, 103 ′, and 103 ″ have a distance S from each other, wherein each distance S can be independently the same or different, and the average distance S can be 5 μm to 50 μm. Micron, for example, 10 μm to 30 μm, when the distance S is too large, it may cause a decrease in porosity and reduce the sound absorption effect; when the distance S is too small, it may cause visual penetration and insufficient structural strength. In an embodiment, each of the dendritic channels 103, 103 ', and 103 "has a width W, wherein each width W may be independently the same or different, and the average width W may be 5 micrometers to 50 micrometers. For example, 10 micrometers to 30 micrometers, when the width W is too large, visual penetration and structural strength may be insufficient; when the width W is too small, the porosity of the sound-absorbing material may be reduced and the sound-absorbing effect may be reduced. The distance S between the dendritic channels 103, 103 ', 103' 'mentioned in this disclosure refers to the wall thickness or distance between the main channels of these dendritic channels 103, 103', 103 ''. The width W of the dendritic channels 103, 103 ', 103' 'refers to the size or aperture of the main channel in each dendritic channel 103, 103', 103 '' perpendicular to the central axis A of the main channel.
如第1圖所示,每一樹枝狀通道103、103’、103’’包含一主通道1031以及複數側通道1032。主通道1031連接聚合物本體100的第一端101且往第二端102的方向延伸,其中每一主通道1031具有接近一致的方向,與鄰近的主通道1031彼此呈平行排列(角度誤差小於10度)。這些側通道1032形成於主通道1031的周圍且連通主通道1031,且該複數側通道1032係自該主通道1031往該第二 端102的方向延伸。在一實施例中,這些側通道1032與主通道1031呈一夾角θ,其中每一夾角θ可獨立地為相同或不同,平均夾角θ為10度至90度,例如30度至80度。本揭露所提及的夾角θ係指主通道1031之中心軸A與側通道1032之中心軸B之間的角度,如第1圖所示。 As shown in Fig. 1, each of the dendritic channels 103, 103 ', 103' 'includes a main channel 1031 and a plurality of side channels 1032. The main channel 1031 is connected to the first end 101 of the polymer body 100 and extends toward the second end 102. Each of the main channels 1031 has a nearly consistent direction and is parallel to each other with the adjacent main channel 1031 (the angle error is less than 10). degree). The side channels 1032 are formed around the main channel 1031 and communicate with the main channel 1031. The plurality of side channels 1032 are from the main channel 1031 to the second channel. The direction of the end 102 extends. In an embodiment, the side channels 1032 and the main channel 1031 form an included angle θ, wherein each included angle θ can be the same or different, and the average included angle θ is 10 degrees to 90 degrees, such as 30 degrees to 80 degrees. The included angle θ mentioned in this disclosure refers to the angle between the central axis A of the main channel 1031 and the central axis B of the side channel 1032, as shown in FIG. 1.
在一實施例,這些主通道1031彼此之間具有一間距S,其中每一間距S可獨立地為不同或相同,平均的間距S可為5微米至50微米,例如10微米至30微米。在一實施例中,每一主通道1031本身具有一寬度W,其中每一寬度W可獨立地為不同或相同,平均的寬度W可為5微米至50微米,例如10微米至30微米。在一實施例中,每一側通道1032可為一片狀結構或一柱狀結構,每一側通道1032具有一厚度Y,其中每一厚度Y可獨立地為相同或不同,側通道1032的平均厚度Y可為3微米至20微米,例如5微米至10微米。一般而言,側通道1032的厚度Y小於等於主通道1031的寬度W。本揭露所提及主通道1031的寬度W係指主通道垂直於中心軸A方向的大小或孔徑。本揭露所提及側通道1032的厚度Y係指側通道1032連接至主通道1031之處的接觸高度,其中接觸高度係與主通道1031之中心軸A方向平行的距離。 In one embodiment, the main channels 1031 have a distance S from each other. Each of the distances S can be different or the same. The average distance S can be 5 μm to 50 μm, such as 10 μm to 30 μm. In one embodiment, each main channel 1031 has a width W, wherein each width W can be different or the same, and the average width W can be 5 to 50 microns, such as 10 to 30 microns. In an embodiment, each side channel 1032 may be a sheet-like structure or a columnar structure, and each side channel 1032 has a thickness Y, wherein each thickness Y may be independently the same or different. The average thickness Y may be 3 to 20 microns, such as 5 to 10 microns. Generally, the thickness Y of the side channel 1032 is less than or equal to the width W of the main channel 1031. The width W of the main channel 1031 mentioned in this disclosure refers to the size or aperture of the main channel perpendicular to the central axis A direction. The thickness Y of the side channel 1032 mentioned in this disclosure refers to the contact height where the side channel 1032 is connected to the main channel 1031, wherein the contact height is a distance parallel to the direction of the central axis A of the main channel 1031.
在一實施例中,每一樹枝狀通道103、103’、103’’可為層狀結構、柱狀結構或其組合。本揭露所提及層狀結構或柱狀結構係指透過冷凍鑄造法中冰晶所形成的結構,可透過控制冷卻溫度或冷卻速度來調整其結構。在一實施 例中,這些樹枝狀通道103、103’、103’’係透過冷凍鑄造法所形成。本揭露所提及層狀結構或片狀結構係指物體在厚度方向的尺寸小於其他兩個維度的尺寸,例如小於5倍、10倍或50倍。 In one embodiment, each of the dendritic channels 103, 103 ', 103' 'can be a layered structure, a columnar structure, or a combination thereof. The layered structure or columnar structure mentioned in this disclosure refers to the structure formed by ice crystals in the freeze casting method, and the structure can be adjusted by controlling the cooling temperature or the cooling rate. In one implementation In the example, these dendritic channels 103, 103 ', 103' 'are formed by a freeze casting method. The layered structure or sheet structure mentioned in this disclosure means that the size of the object in the thickness direction is smaller than that of the other two dimensions, such as less than 5 times, 10 times, or 50 times.
在一實施例中,聚合物本體100係由水溶性聚合物所形成。在另一實施例中,聚合物本體100包含一90wt%以上的水溶性聚合物,其中水溶性聚合物可舉例為聚乙烯醇(Polyvinyl Alcohol,PVA)或聚乙二醇(Polyethylene glycol,PEG),聚乙烯醇的重均分子量(Mw)可為3000至25000,聚乙二醇的重均分子量(Mw)可為300至6000。本揭露所提及水溶性聚合物係指能夠相容於水的聚合物材料,聚合物材料本身具有大量的親水基團,例如陽離子基團(叔胺基或季胺基等)、陰離子基團(羧酸基、磺酸基、磷酸基或硫酸基等)或極性非離子基團(羥基、醚基、胺基或醯胺基等)。 In one embodiment, the polymer body 100 is formed of a water-soluble polymer. In another embodiment, the polymer body 100 comprises more than 90% by weight of a water-soluble polymer, and the water-soluble polymer may be exemplified by Polyvinyl Alcohol (PVA) or Polyethylene glycol (PEG). The weight average molecular weight (Mw) of polyvinyl alcohol may be 3000 to 25000, and the weight average molecular weight (Mw) of polyethylene glycol may be 300 to 6000. The water-soluble polymer mentioned in this disclosure refers to a polymer material that is compatible with water. The polymer material itself has a large number of hydrophilic groups, such as cationic groups (tertiary or quaternary amine groups, etc.), anionic groups (Carboxylic acid group, sulfonic acid group, phosphate group or sulfuric acid group, etc.) or polar nonionic group (hydroxyl, ether, amine or amido group, etc.).
在一實施例中,聚合物本體100除了包含水溶性聚合物外,還可包含一小於10wt%的無機材料,其中無機材料可為一具有高比表面積(high specific surface area)的多孔材料,可舉例為矽藻土(diatomite)或活性碳(Active carbon),得以產生更多孔洞,使本揭露的吸音材料的吸音效果更好。當無機材料的比重過大時,可能造成樹枝狀通道數量減少,以及開孔率不佳而降低吸音效果;當無機材料的比重過小時,可能無法有效提高吸音效果。在一實施例中,聚合物本體100可由94wt%以上的水溶性聚合物與一小於6wt%的無機材料所組成。在一實施例中,無機材料的平均 粒徑為5微米至40微米。在一實施例中,無機材料除了存在於聚合物本體內以外,其一部分還可暴露於樹枝狀通道的表面,以產生更多孔隙。 In one embodiment, in addition to the water-soluble polymer, the polymer body 100 may also include an inorganic material of less than 10% by weight. The inorganic material may be a porous material having a high specific surface area. For example, diatomite or active carbon can generate more holes, which makes the sound-absorbing material of the present disclosure better in sound absorption. When the specific gravity of the inorganic material is too large, it may cause the number of dendritic channels to decrease, and the porosity may be poor to reduce the sound absorption effect; when the specific gravity of the inorganic material is too small, the sound absorption effect may not be effectively improved. In one embodiment, the polymer body 100 may be composed of more than 94% by weight of a water-soluble polymer and less than 6% by weight of an inorganic material. In one embodiment, the average of the inorganic materials The particle size is 5 to 40 microns. In one embodiment, in addition to being present in the polymer body, a portion of the inorganic material may be exposed on the surface of the dendritic channels to create more pores.
在一實施例中,本揭露之吸音材料的密度為300kg/m3至400kg/m3,當密度過大時,可能造成過重且吸音效果不佳;當密度過小時,可能造成吸音材料結構強度不足。本揭露所提及密度係指聚合物本體(包含複數樹枝狀通道)的整體密度。在一實施例中,本揭露之吸音材料的孔隙率為60%至80%,當孔隙率過大時,可能造成吸音材料易塌陷或視覺穿透;當孔隙率過小時,可能造成吸音效果不佳。本揭露所提及孔隙率係指以密度差異比例方法所測定的孔隙率。 In one embodiment, the density of the sound-absorbing material disclosed in this disclosure is 300kg / m 3 to 400kg / m 3. When the density is too large, it may cause excessive weight and poor sound absorption effect; when the density is too small, it may cause insufficient structural strength of the sound-absorbing material . The density mentioned in this disclosure refers to the overall density of the polymer body (including a plurality of dendritic channels). In one embodiment, the porosity of the sound-absorbing material disclosed herein is 60% to 80%. When the porosity is too large, the sound-absorbing material may easily collapse or visually penetrate; when the porosity is too small, the sound-absorbing effect may be poor. . The porosity mentioned in this disclosure refers to the porosity measured by the density difference ratio method.
在一實施例中,本揭露之吸音材料依JIS A1405方法測量在500Hz的吸音係數為0.6以上,在1000Hz的吸音係數為0.55以上,在2000Hz的吸音係數為0.5以上。在一實施例中,本揭露之吸音材料依JIS A1405方法測量在500Hz的吸音係數為0.85以上,在1000Hz的吸音係數為0.8以上,在2000Hz的吸音係數為0.7以上。本揭露所提及JIS A1405方法係指以管內法進行垂直入射吸音率的測量方法。 In one embodiment, the sound absorbing material disclosed in this disclosure is measured according to the JIS A1405 method to have a sound absorption coefficient at 500 Hz of 0.6 or more, a sound absorption coefficient at 1000 Hz of 0.55 or more, and a sound absorption coefficient at 2000 Hz of 0.5 or more. In one embodiment, the sound absorbing material of the present disclosure measured in accordance with JIS A1405 method has a sound absorption coefficient of 0.85 or more at 500 Hz, a sound absorption coefficient of 1000 or more at 0.8, and a sound absorption coefficient of 2000 or more at 0.7. The JIS A1405 method mentioned in this disclosure refers to a method of measuring the sound absorption rate of vertical incidence by the in-tube method.
本揭露之吸音材料可透過冷凍鑄造法所製作,第2圖是一冷凍鑄造系統20的示意圖。如第2圖所示,冷凍鑄造系統20包含有鐵氟龍模具201、冷卻銅棒202、液態氮槽203、溫度控制器205以及加熱線圈206。鐵氟龍模具201 內具有一樣品區204,以供置放本揭露之吸音材料的製備漿料;冷卻銅棒202連接於樣品區204與液態氮槽203之間;液態氮槽203內供液態氮置放,透過冷卻銅棒202對樣品區204內的漿料進行冷卻;加熱線圈206環繞於冷卻銅棒202的外部,連接溫度控制器205,藉以控制冷卻溫度及冷卻速率。本揭露之冷凍鑄造系統20屬於單側控溫,也可以採用雙側控溫,並不以此為限。 The sound absorbing material disclosed in this disclosure can be made by a freeze casting method. FIG. 2 is a schematic diagram of a freeze casting system 20. As shown in FIG. 2, the freeze casting system 20 includes a Teflon mold 201, a cooling copper rod 202, a liquid nitrogen tank 203, a temperature controller 205, and a heating coil 206. Teflon mould 201 A sample area 204 is provided therein for placing the preparation slurry of the sound-absorbing material disclosed herein; a cooling copper rod 202 is connected between the sample area 204 and the liquid nitrogen tank 203; the liquid nitrogen tank 203 is used for liquid nitrogen placement and transmission The cooling copper rod 202 cools the slurry in the sample area 204; the heating coil 206 surrounds the outside of the cooling copper rod 202 and is connected to a temperature controller 205 to control the cooling temperature and the cooling rate. The refrigerated casting system 20 disclosed in the present disclosure is a one-sided temperature control, and a two-sided temperature control may also be adopted, without being limited thereto.
本揭露之吸音材料的製作方法如下,首先將一漿料倒入樣品區204內,其中漿料至少包含水溶性聚合物以及水,在一些實施例中,漿料還包含無機材料,水溶性聚合物與無機材料的詳細說明如上面所述,其中水佔整體漿料的比例為60wt%至80wt%;接著將液態氮加入液態氮槽203中,透過溫度控制器205及加熱線圈206控制冷卻條件,使漿料中的水進行定向冷卻,以形成具有方向性的冰晶結構;當樣品區204內的漿料固化成一坯體後,透過快速減壓方式將坯體內的冰晶氣化移除並且乾燥,最後獲得本揭露具有連續式開孔結構的之吸音材料。在一實施例中,乾燥後還可以透過加熱方式或於漿料中再多添加交聯劑使其能夠產生交聯,以增加吸音材料的機械強度。在一實施例中,製作完成的吸音材料可進一步裁切,形成複數吸音材料,其中裁切表面會露出樹枝狀通道,以作為吸音入射端(聚合物本體的第一端)。在一實施例中,吸音材料以垂直於樹枝狀通道的延伸方向進行裁切。上述的製作方法僅作為一示範例,本揭露之吸音材料的製作方法不限於 此。 The manufacturing method of the sound-absorbing material disclosed in the present disclosure is as follows. First, a slurry is poured into the sample area 204, wherein the slurry includes at least a water-soluble polymer and water. In some embodiments, the slurry further includes an inorganic material and a water-soluble polymer. The detailed description of the materials and inorganic materials is as described above, in which the proportion of water to the overall slurry is 60wt% to 80wt%; then liquid nitrogen is added to the liquid nitrogen tank 203, and the cooling conditions are controlled through the temperature controller 205 and the heating coil 206 The directional cooling of the water in the slurry to form a directional ice crystal structure; after the slurry in the sample area 204 is solidified into a green body, the ice crystals in the green body are removed by gasification and dried by rapid decompression. Finally, a sound-absorbing material with a continuous opening structure according to the present disclosure is obtained. In one embodiment, after drying, a cross-linking agent can be added to the slurry through heating or added to the paste so that it can generate cross-linking to increase the mechanical strength of the sound-absorbing material. In one embodiment, the completed sound-absorbing material can be further cut to form a plurality of sound-absorbing materials, wherein the cut surface will expose a dendritic channel as a sound-absorbing incident end (the first end of the polymer body). In one embodiment, the sound absorbing material is cut in a direction perpendicular to the extension direction of the dendritic channel. The above manufacturing method is only an example, and the manufacturing method of the sound absorbing material disclosed in this disclosure is not limited to this.
先將2.4公克的PVA聚合物粉體(購置於Polysciences公司,Mw=6000,80%水解度)與21.6公克水混合形成漿料(水佔90wt%),接下來把漿料置放於冷凍鑄造系統的模具(直徑:2公分、高度:2公分)內,於模具底部提供10℃/min的冷卻速率從室溫25℃降溫至-5℃,並維持3分鐘使漿料固化,再以低溫低壓冷凍乾燥方法(溫度:-80℃、壓力:80mTorr、時間:5分鐘)移除冰晶,再使其於溫度150℃下交聯即完成。實施例1所製得的吸音材料的密度為380kg/m3,孔隙率為70%。 First, 2.4 grams of PVA polymer powder (purchased from Polysciences, Mw = 6000, 80% degree of hydrolysis) was mixed with 21.6 grams of water to form a slurry (water 90% by weight), and then the slurry was placed in a freeze-casting In the system's mold (diameter: 2 cm, height: 2 cm), a cooling rate of 10 ° C / min is provided at the bottom of the mold from room temperature 25 ° C to -5 ° C, and the slurry is solidified for 3 minutes, and then at low temperature The low-pressure freeze-drying method (temperature: -80 ° C, pressure: 80mTorr, time: 5 minutes) removes the ice crystals, and then cross-links them at a temperature of 150 ° C to complete. The density of the sound absorbing material obtained in Example 1 was 380 kg / m 3 , and the porosity was 70%.
第3圖是本揭露之實施例1所製得的吸音材料的剖面SEM圖。如第3圖所示,位置E1是鄰近聚合物本體的第一端位置,位置E2是鄰近聚合物本體的第二端位置,可以觀察到這些樹枝狀通道彼此呈現層狀排列,其中每一樹枝狀通道的成孔方向(延伸方向)X係從位置E1往位置E2的方向延伸。 FIG. 3 is a cross-sectional SEM image of the sound absorbing material prepared in Example 1 of the present disclosure. As shown in Figure 3, position E1 is the first end position adjacent to the polymer body, and position E2 is the second end position adjacent to the polymer body. It can be observed that these dendritic channels are layered to each other, where each branch The hole-forming direction (extending direction) X of the channel is extended from the position E1 to the position E2.
第4圖是第3圖的局部放大圖,可以觀察到每一樹枝狀通道包含有主通道及複數側通道,其中這些主通道與鄰近的主通道彼此呈現平行排列,都具有接近一致的成孔方向X。從第4圖可知,主通道的平均寬度W為21微米,平均間距S為9微米。 Figure 4 is a partial enlarged view of Figure 3. It can be observed that each dendritic channel includes a main channel and a plurality of side channels, where these main channels and adjacent main channels are arranged in parallel with each other, and they have nearly uniform hole formation Direction X. As can be seen from FIG. 4, the average width W of the main channel is 21 μm, and the average pitch S is 9 μm.
先將2.4公克的PVA聚合物粉體(購置於Polysciences公司,Mw=6000,80%水解度)、0.13公克的矽藻土(廠牌、型號)與22.77公克的水混合形成漿料(水佔90wt%),接下來把漿料置放於冷凍鑄造系統的模具(直徑:2公分、高度:2公分)內,於模具底部提供10℃/min的冷卻速率從室溫25℃降溫至-5℃,並維持3分鐘使漿料固化,再以低溫低壓冷凍乾燥方法(溫度:-80℃、壓力:80mTorr、時間:5分鐘)移除冰晶,再使其於溫度150℃下交聯即完成。實施例2所製得的吸音材料的密度為320kg/m3,孔隙率為75%。 First, 2.4 grams of PVA polymer powder (purchased from Polysciences, Mw = 6000, 80% degree of hydrolysis), 0.13 grams of diatomaceous earth (brand, model) and 22.77 grams of water were mixed to form a slurry (water accounts for 90wt%), then put the slurry in the mold (diameter: 2 cm, height: 2 cm) of the freezing casting system, and provide a cooling rate of 10 ° C / min at the bottom of the mold from room temperature 25 ° C to -5 ℃, and maintain for 3 minutes to solidify the slurry, and then use low temperature and low pressure freeze-drying method (temperature: -80 ℃, pressure: 80mTorr, time: 5 minutes) to remove the ice crystals, and then cross-linking at 150 ℃ to complete . The density of the sound absorbing material obtained in Example 2 was 320 kg / m 3 , and the porosity was 75%.
採用購自安達興業有限公司的吸音棉(PU)。 Acoustic cotton (PU) purchased from Anda Industrial Co., Ltd. was used.
將實施例1、實施例2及比較例1之吸音材料依據JIS A1405方法(使用Bruel & Kjaer公司的4206-T型聲學阻抗管、4187型的1/4吋麥克風和TL軟體)來進行吸音測試,導入頻率範圍從300Hz至6000Hz的聲波並以TL軟體計算各頻率下的吸音係數,測試結果如第5圖及的6圖。 The sound absorbing materials of Example 1, Example 2 and Comparative Example 1 were tested for sound absorption in accordance with JIS A1405 method (using 4206-T acoustic impedance tube of Bruel & Kjaer company, 4187 1 / 4-inch microphone and TL software). , Import sound waves with a frequency range from 300Hz to 6000Hz and calculate the sound absorption coefficient at each frequency with TL software. The test results are shown in Figure 5 and Figure 6.
第5圖是本揭露之實施例1製得的吸音材料與比較例1吸音棉對於不同頻率的吸音係數的比較圖。如第5圖所示,相關於比較例1之吸音材料,可以觀察到本揭露實施例1之吸音材料在中高頻(1000Hz~2000Hz)及低頻(500Hz~1000Hz)的吸音特性都有更好地吸音效果。 FIG. 5 is a comparison diagram of sound absorption coefficients for different frequencies of the sound absorbing material prepared in Example 1 of the present disclosure and the sound absorption cotton of Comparative Example 1. FIG. As shown in FIG. 5, regarding the sound absorbing material of Comparative Example 1, it can be observed that the sound absorbing characteristics of the sound absorbing material of Example 1 of the present disclosure have better sound absorption characteristics at medium and high frequencies (1000 Hz to 2000 Hz) and low frequencies (500 Hz to 1000 Hz). Sound absorption effect.
第6圖是本揭露之實施例2製得的吸音材料與比較例 1吸音棉對於不同頻率的吸音係數的比較圖。如第6圖所示,可以觀察到本揭露實施例2之吸音材料在所有頻段(500Hz~4000Hz)的吸音特性都遠高於比較例1之吸音材料。因此,添加微量的無機材料之吸音材料確實可以幫助提升整體的吸音效果。 FIG. 6 is a sound absorbing material and a comparative example prepared in Example 2 of the present disclosure 1 Comparison chart of sound absorption coefficient of sound absorption cotton for different frequencies. As shown in FIG. 6, it can be observed that the sound absorbing properties of the sound absorbing material of Example 2 in this disclosure in all frequency bands (500 Hz to 4000 Hz) are much higher than the sound absorbing material of Comparative Example 1. Therefore, adding a trace amount of inorganic sound-absorbing material can indeed help improve the overall sound-absorbing effect.
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above with several preferred embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make any changes without departing from the spirit and scope of the present invention. And retouching, so the scope of protection of the present invention shall be determined by the scope of the attached patent application.
Claims (14)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106129964A TWI647113B (en) | 2017-09-01 | 2017-09-01 | Sound absorbing material |
US15/853,826 US20190071868A1 (en) | 2017-09-01 | 2017-12-24 | Sound absorbing material |
CN201810004195.5A CN109422986B (en) | 2017-09-01 | 2018-01-02 | Sound absorbing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106129964A TWI647113B (en) | 2017-09-01 | 2017-09-01 | Sound absorbing material |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI647113B true TWI647113B (en) | 2019-01-11 |
TW201912397A TW201912397A (en) | 2019-04-01 |
Family
ID=65514413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106129964A TWI647113B (en) | 2017-09-01 | 2017-09-01 | Sound absorbing material |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190071868A1 (en) |
CN (1) | CN109422986B (en) |
TW (1) | TWI647113B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113202199A (en) * | 2021-04-19 | 2021-08-03 | 黄山学院 | Designable combined hole sound absorption material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW317959U (en) * | 1996-09-20 | 1997-10-11 | Ming-Yi Chen | Ventilation acoustic panel structure |
CN1735509A (en) * | 2002-11-18 | 2006-02-15 | 卡库斯蒂克斯技术中心股份有限公司 | Soundproof thermal shield |
JP2012166659A (en) * | 2011-02-14 | 2012-09-06 | Toyota Motor Corp | Vehicle sound absorption structure |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE568617A (en) * | 1957-06-18 | 1900-01-01 | ||
US4753761A (en) * | 1986-11-10 | 1988-06-28 | Agency Of Industrial Science & Technology | Method for production of expansible macromolecular material and porous macromolecular membrane |
US8293010B2 (en) * | 2009-02-26 | 2012-10-23 | Corning Incorporated | Templated growth of porous or non-porous castings |
US20100303520A1 (en) * | 2009-05-28 | 2010-12-02 | Canon Kabushiki Kaisha | Resin composition, lamination film containing the same, and image forming apparatus that uses lamination film as component |
US9066997B2 (en) * | 2010-06-02 | 2015-06-30 | The Regents Of The University Of Michigan | Scaffolds and methods of forming the same |
US8877498B2 (en) * | 2010-12-01 | 2014-11-04 | Drexel University | Porous polymer scaffolds for neural tissue engineering and methods of producing the same |
US20140158020A1 (en) * | 2011-02-07 | 2014-06-12 | The Trustees Of Dartmouth College | Ice-Tempered Hybrid Materials |
US10315246B2 (en) * | 2011-02-07 | 2019-06-11 | The Trustees Of Dartmouth College | System and method for nuclear reactor fuel having freeze-cast matrix impregnated with nucleotide-rich material |
JP2016526959A (en) * | 2013-06-12 | 2016-09-08 | キンバリー クラーク ワールドワイド インコーポレイテッド | Absorbent article containing porous polyolefin film |
US20150001753A1 (en) * | 2013-06-27 | 2015-01-01 | Saint-Gobain Ceramics & Plastics, Inc. | Porous articles, methods, and apparatuses for forming same |
KR102358824B1 (en) * | 2014-01-29 | 2022-02-07 | 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. | Porous nanocrystalline cellulose structures |
CN103895285B (en) * | 2014-02-28 | 2015-10-28 | 吉林大学 | High strength stratiform Al based ceramic metal composite and preparation method thereof |
US9290274B2 (en) * | 2014-06-02 | 2016-03-22 | Mra Systems, Inc. | Acoustically attenuating sandwich panel constructions |
US9909471B2 (en) * | 2014-07-21 | 2018-03-06 | United Technologies Corporation | Noise attenuating acoustic panel |
CN104371141A (en) * | 2014-11-21 | 2015-02-25 | 南京林业大学 | Method for preparing nano-crystalline cellulose enhanced polyvinyl alcohol foam material with oriented porous structure |
-
2017
- 2017-09-01 TW TW106129964A patent/TWI647113B/en active
- 2017-12-24 US US15/853,826 patent/US20190071868A1/en not_active Abandoned
-
2018
- 2018-01-02 CN CN201810004195.5A patent/CN109422986B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW317959U (en) * | 1996-09-20 | 1997-10-11 | Ming-Yi Chen | Ventilation acoustic panel structure |
CN1735509A (en) * | 2002-11-18 | 2006-02-15 | 卡库斯蒂克斯技术中心股份有限公司 | Soundproof thermal shield |
JP2012166659A (en) * | 2011-02-14 | 2012-09-06 | Toyota Motor Corp | Vehicle sound absorption structure |
Also Published As
Publication number | Publication date |
---|---|
US20190071868A1 (en) | 2019-03-07 |
CN109422986A (en) | 2019-03-05 |
CN109422986B (en) | 2021-10-26 |
TW201912397A (en) | 2019-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI758264B (en) | Waterproof sound-transmitting membrane, waterproof sound-transmitting material and electronic equipment | |
Avossa et al. | Light electrospun polyvinylpyrrolidone blanket for low frequencies sound absorption | |
TWI647113B (en) | Sound absorbing material | |
CN111217922A (en) | Porous nanocrystalline cellulose structures | |
JP2020512436A (en) | Graphene-containing composition / material with acoustic effect and method of making | |
Wu et al. | Acoustic absorbers at low frequency based on split-tube metamaterials | |
CN110447065B (en) | Sound absorbing material | |
WO2020218591A1 (en) | Waterproof film, and waterproof member and electronic device provided with same | |
CN113345398A (en) | Full-band sound absorption structure based on microporous film and miniature acoustic black hole structure | |
CN103945302B (en) | Active unidirectional acoustic propagation device and the method for realizing unidirectional acoustic propagation | |
CN109707060B (en) | Continuous divergent gradient open-pore double-porosity sound absorption device and application thereof | |
CN205158899U (en) | Combination perforated plate | |
CN201796596U (en) | Micropunch plate with fibers penetrating into micropores | |
CN103694669A (en) | Porous nano-material and sound attenuator based on porous nano-material | |
CN101916563A (en) | Micro perforated panel with fibers passing through micropores and preparation method thereof | |
Cai et al. | Insulation properties of the monolithic and flexible aerogels prepared at ambient pressure | |
JPH09226035A (en) | Sound insulating board and its manufacture | |
JPH10121598A (en) | Sound absorption material and its manufacture | |
CN115353698B (en) | Polyvinylidene fluoride composite foam sound absorption material and preparation method and application thereof | |
CN116959396B (en) | Perforated alloy sound absorption and reflection multilayer alloy plate and preparation process thereof | |
KR20230167662A (en) | Micro patterned auxetic foams and metho for manufacturing micro patterned auxetic foams | |
CN109741725A (en) | A kind of acoustic metamaterial and its micro-processing method with broad band low frequency silencing function | |
WO2020100974A1 (en) | Sound-absorbing material | |
US20190358871A1 (en) | Method of producing vibration damping and sound absorbing foam | |
TWI565766B (en) | Method of? preparing insulation coating |