TWI647058B - Processing system and method for automatic tool change - Google Patents
Processing system and method for automatic tool change Download PDFInfo
- Publication number
- TWI647058B TWI647058B TW106142733A TW106142733A TWI647058B TW I647058 B TWI647058 B TW I647058B TW 106142733 A TW106142733 A TW 106142733A TW 106142733 A TW106142733 A TW 106142733A TW I647058 B TWI647058 B TW I647058B
- Authority
- TW
- Taiwan
- Prior art keywords
- tool
- lathe
- mode
- milling
- parameter
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P13/00—Making metal objects by operations essentially involving machining but not covered by a single other subclass
- B23P13/02—Making metal objects by operations essentially involving machining but not covered by a single other subclass in which only the machining operations are important
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
Abstract
一種隨刀具自動更換的加工系統,其中加工系統包含:參數設定 單元用於設定工作指令;內部控制單元用於設定內部資訊;刀庫具有車床刀具及/或銑床刀具的模式,其中車床刀具及/或銑床刀具的模式之內部分別配置有多把刀具,且每一把刀具分別具有刀號;以及控制器根據內部資訊、工作指令與每一把刀具所對應的刀號則分別進行比對進而獲得比對結果,控制器根據比對結果將車床刀具或銑床刀具的模式進行切換;以及監視畫面單元,用以監控刀具的切換狀況,監視畫面單元同時根據所切換的車床刀具或銑床刀具的模式,將切換狀況於監視畫面單元上顯示。 A machining system automatically changed with a tool, wherein the machining system includes: parameter setting The unit is used to set work instructions; the internal control unit is used to set internal information; the tool magazine has the mode of lathe tools and / or milling machine tools, where the mode of the lathe tool and / or milling tool is respectively equipped with multiple tools, and each A tool has a tool number; and the controller compares the tool number corresponding to each tool according to internal information, work instructions, and the comparison result, and the controller compares the lathe tool or milling tool with the comparison result. And the monitoring screen unit is used to monitor the switching status of the tool, and the monitoring screen unit simultaneously displays the switching status on the monitoring screen unit according to the mode of the lathe tool or milling tool being switched.
Description
本發明提供一種加工系統,特別指一種隨著刀具自動更換的加工系統其及加工方法。 The present invention provides a processing system, and particularly relates to a processing system that automatically changes with a tool and a processing method thereof.
現有的車床之操作及加工方式與銑床差異甚大,例如:車床是Z-X平面來加工,銑床則是X-Y平面來加工,另外車床的編程習慣是以軸向的軸向的直徑軸編程方式而銑床則是用軸向的半徑軸編程方式進行編程等這些差異,因此當車床與銑床兩者要並存在同一種操作環境底下時,勢必要作一些的切換才能合宜的使用。目前的複合加工機會根據刀具的樣式及加工工藝,在加工程式中進行車床與銑床的環境切換,使用者除須選擇刀具外,還需重新選擇座標平面的狀態,且適時的切換軸向的直徑軸與軸向的半徑軸的狀態,以及車床與銑床的標準機能碼(G-CODE)與輔助機能碼(M-CODE)的狀態也必須進行切換,因此使用者在編程時要很小心的檢查每把刀具的狀態,少了一種狀態就很有可能造成尺寸上的偏差或是加工不良,更有可能會造成撞機。 The operation and processing methods of existing lathes are very different from those of milling machines. For example: the lathe is processed on the ZX plane, the milling machine is processed on the XY plane. In addition, the programming habit of the lathe is the axial diameter axis programming method and the milling machine is These differences are programmed using the axial radial axis programming method. Therefore, when both the lathe and the milling machine must coexist under the same operating environment, it is necessary to make some switches to use them properly. The current composite machining opportunities are based on the style and processing technology of the tool, and the environment of the lathe and milling machine is switched in the processing program. In addition to the tool, the user must re-select the state of the coordinate plane and switch the axial diameter in a timely manner. The state of the axis and the radial axis, as well as the state of the standard function code (G-CODE) and auxiliary function code (M-CODE) of the lathe and milling machine must also be switched, so the user should carefully check when programming The state of each tool, if one state is missing, is likely to cause dimensional deviation or poor processing, and more likely to cause collision.
目前在車床與銑床的環境切換的作法編程的友善性和確保加工的正確性,是利用額外增加M-CODE參數來相對應車床與銑床的座標平面或是軸向的直徑軸與軸向的半徑軸進行轉換,這個作法雖然減少了切換時錯誤發生 性,不過在檢查時還是依然要小心翼翼的確保指令格式有沒有問題或是指令設定錯誤等情況。另外,又或者是將車床與銑床有重疊且功能不一樣的G-CODE參數,則分別在G-CODE參數的機碼前多加一組數字將其錯開避免混淆,車床與銑床的G73指令的兩者G-CODE參數的功能差距甚大,例如:銑床的G-CODE參數中其機碼G73指令是高速啄式鑽孔循環,而車床的G-CODE參數中其機碼G73指令則是橫向(外徑)粗車削循環,因此兩者的G73是完全不一樣的定義,也就意謂著兩者所要動作的方式是不一樣,所以將車床的G73指令功能變成G173指令這樣的做法以此類推,然而,對使用者來說,確實能避免錯誤使用G-CODE參數的疑慮,但是在編程上卻是改變原本所熟悉的指令位置,在檢查程式的時候依然要多加小心,若是使用電腦輔助設計及製造(CAD/CAM)編程,還要根據所改變的指令位置進行相關的調整,若終端客戶不熟悉後處理的建構方式,那又會是一筆不小的花費。 At present, the friendliness of programming in the environment of lathe and milling machine switching and ensuring the correctness of the process is to use additional M-CODE parameters to correspond to the coordinate plane of the lathe and milling machine or the axial diameter axis and axial radius. Axis conversion, although this method reduces the occurrence of errors during switching However, it is still necessary to carefully ensure that there are no problems with the instruction format or the instruction setting is wrong during the inspection. In addition, or if the G-CODE parameters of the lathe and milling machine overlap and have different functions, add a group of numbers before the code of the G-CODE parameter to stagger them to avoid confusion. The G-CODE parameter has a very large function gap. For example, the G-CODE parameter of the milling machine's G73 instruction is a high-speed peck drilling cycle, while the G-CODE parameter of the lathe's G73 instruction is horizontal (outside Diameter) rough turning cycle, so the G73 of the two is completely different in definition, which means that the way they want to act is different, so the method of turning the G73 command function of the lathe into the G173 command, and so on. However, for the user, it is indeed possible to avoid the doubt of using G-CODE parameters by mistake, but the programming is to change the familiar command position, and still be careful when checking the program. If you use computer-aided design and Manufacturing (CAD / CAM) programming, and related adjustments according to the changed instruction position. If the end customer is not familiar with the post-processing construction method, it will be a considerable cost.
為了解決上述需求,本發明主要的目的是利用補償表的方式判斷刀具在加工系統中是屬於車床刀具模式或是銑床刀具模式,可有效提升車床刀具模式或是銑床刀具模式的切換速度與精確度,並確保系統切換結果的可靠度。 In order to solve the above requirements, the main purpose of the present invention is to use a compensation table to determine whether the tool belongs to the lathe tool mode or the milling tool mode in the processing system, which can effectively improve the switching speed and accuracy of the lathe tool mode or the milling tool mode. And ensure the reliability of system switching results.
本發明的另一目的在於利用隨著刀具可自動更換的加工系統可以減少客戶原本的編程習慣,進而減少程式錯誤的機率,對加工的結果影響也會減少。 Another object of the present invention is to use a machining system that can be automatically changed with the tool, which can reduce the customer's original programming habits, thereby reducing the probability of programming errors, and reducing the impact on the machining results.
本發明的再一目的是在加工時只需下工作指令後就能夠進行車床刀具模式或是銑床刀具模式的切換,因此使用者只需要指定刀具之刀號,則加工系統會自動切換加工環境,讓使用者可以輕易地進行操作及加工。 Another object of the present invention is to switch between a lathe tool mode or a milling tool mode only after issuing a work instruction during processing. Therefore, the user only needs to specify the tool number of the tool, and the processing system automatically switches the processing environment. Allows users to easily operate and process.
根據上述目的,本發明提供一種隨刀具自動更換的加工系統,其中加工系統包含:參數設定單元用於設定工作指令;內部控制單元用於設定內部資訊;刀庫具有車床刀具及/或銑床刀具的模式,其中車床刀具及/或銑床刀具的模式之內部分別配置有多把刀具,且每一把刀具分別具有刀號;以及控制器根據內部資訊、工作指令與每一把刀具所對應的刀號則分別進行比對進而獲得比對結果,控制器根據比對結果將車床刀具或銑床刀具的模式進行切換;以及監視畫面單元,用以監控刀具的切換狀況,監視畫面單元同時根據所切換的車床刀具或銑床刀具的模式,將切換狀況於監視畫面單元上顯示。 According to the above object, the present invention provides a machining system that is automatically changed with a tool, wherein the machining system includes: a parameter setting unit for setting work instructions; an internal control unit for setting internal information; a tool magazine having a lathe tool and / or a milling machine tool. Mode, in which multiple tools are configured inside the lathe tool and / or milling tool mode, and each tool has a tool number; and the controller according to internal information, work instructions and the tool number corresponding to each tool Then, the comparison is performed to obtain the comparison result, and the controller switches the mode of the lathe tool or the milling tool according to the comparison result; and the monitoring screen unit is used to monitor the switching status of the tool, and the monitoring screen unit is simultaneously based on the switched lathe. The mode of the tool or milling tool is switched on the monitor screen unit and displayed.
根據上述目的及加工系統,本發明還揭露一種隨刀具自動更換的加工方法,其中加工方法包括:設定工作指令;設定內部資訊,其中內部資訊是根據刀庫內具有車床刀具或銑床刀具的模式中車床刀具或銑床刀具分別配置多把刀具,而每一把刀具分別具有刀號進行設定;以及內部資訊、工作指令與刀號則分別進行比對,比對之後進行車床刀具或銑床刀具的模式切換;根據所切換的車床刀具或銑床刀具的模式顯示切換狀況的畫面。 According to the above purpose and processing system, the present invention also discloses a processing method for automatic replacement with a tool, wherein the processing method includes: setting a work instruction; setting internal information, wherein the internal information is based on a mode of a lathe tool or a milling machine tool in a tool magazine Lathe tools or milling tools are equipped with multiple tools, and each tool has a tool number to set; and internal information, work instructions and tool numbers are compared, and the mode of the lathe tool or milling tool is switched after the comparison. ; Display the screen of the switching status according to the mode of the lathe tool or milling tool being switched.
綜合上述,本發明提供了一種刀具自動更換加工環境設定的系統與方法,透過補償表的方式判斷刀具是屬於車床或是銑床系統,進而更換G-CODE參數、M-CODE參數、座標平面參數、軸向的直徑軸與軸向的半徑軸有關於操作及加工方面的環境,方便使用者使用且減少問題發生,以及期望能夠減少使用者原本的編程習慣,進而減少程式錯誤的機率,對加工的 結果引響也會變少很多,並有效提升車床或是銑床系統的切換速度與精度,並確保系統切換結果的可靠度。 To sum up, the present invention provides a system and method for automatically changing the setting of a machining environment. The method determines whether the tool belongs to a lathe or a milling machine system by means of a compensation table, and then replaces G-CODE parameters, M-CODE parameters, coordinate plane parameters, The axial diameter axis and the axial radial axis are related to the operation and processing environment, which is convenient for users and reduces the occurrence of problems. It is expected that the original programming habits of users can be reduced, thereby reducing the probability of programming errors. As a result, the response will be much less, and it will effectively improve the switching speed and accuracy of the lathe or milling machine system, and ensure the reliability of the system switching result.
1‧‧‧控制器 1‧‧‧controller
2‧‧‧內部控制單元 2‧‧‧ Internal Control Unit
3‧‧‧參數設定單元 3‧‧‧Parameter setting unit
4‧‧‧監視畫面單元 4‧‧‧ monitor screen unit
5‧‧‧刀庫 5‧‧‧tool magazine
6‧‧‧車床刀具 6‧‧‧ lathe cutter
7‧‧‧銑床刀具 7‧‧‧milling tool
S01~S09‧‧‧刀具自動更換的加工方法流程 S01 ~ S09‧‧‧Machining method flow of automatic tool change
圖1為根據本發明的刀具自動更換的加工系統示意圖。 FIG. 1 is a schematic diagram of a machining system for automatic tool change according to the present invention.
圖2為根據本發明的刀具自動更換的加工方法示意圖。 FIG. 2 is a schematic diagram of a machining method for automatic tool replacement according to the present invention.
本發明之優點及特徵以及達到其方法將參照例示性實施例及附圖進行更詳細的描述而更容易理解。然而,本發明可以不同形式來實現且不應被理解僅限於此處所陳述的實施例。相反地,對所屬技術領域具有通常知識者而言,所提供的此些實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇。 The advantages and features of the present invention and the method for achieving the same will be described in more detail with reference to exemplary embodiments and accompanying drawings to make it easier to understand. The invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. On the contrary, for those having ordinary knowledge in the technical field, the embodiments provided will make the disclosure more thoroughly, comprehensively and completely convey the scope of the present invention.
請參考圖1所示,為本發明一較佳實施例之刀具自動更換的加工系統示意圖,其中加工系統主要包含控制器1、內部控制單元2、參數設定單元3、監視畫面單元4與刀庫5所組成;刀庫5又包含了車床刀具6與銑床刀具7的模式,其中車床刀具6內具有多把刀具61~6m,且每一把刀具61~6m有對應的刀號為611~61m的固定刀號,其中m為正整數,同樣的,銑床刀具7內配置多把刀具71~7n,而每一把刀具71~7n具有對應的刀號711~71n的固定刀號,其中n為正整數;另外,在另一較佳實施例中,車床刀具6與銑床刀具7的模式中其車床刀具6的每一把 刀具61~6m與銑床刀具7的每一把刀具71~7m所對應的刀號也可為非固定刀號。 Please refer to FIG. 1, which is a schematic diagram of a machining system for automatic tool replacement according to a preferred embodiment of the present invention. The machining system mainly includes a controller 1, an internal control unit 2, a parameter setting unit 3, a monitoring screen unit 4, and a tool magazine. 5; the tool magazine 5 also contains the lathe tool 6 and the milling tool 7 mode, where the lathe tool 6 has multiple tools 61 ~ 6m, and each tool 61 ~ 6m has a corresponding tool number 611 ~ 61m Fixed tool number, where m is a positive integer. Similarly, milling tool 7 is equipped with multiple tools 71 ~ 7n, and each tool 71 ~ 7n has a corresponding fixed tool number 711 ~ 71n, where n is Positive integer; In addition, in another preferred embodiment, each of the lathe tool 6 and the milling tool 7 in the mode The tool numbers corresponding to each of the tools 71 to 7m of the tools 61 to 6m and the milling tool 7 may be non-fixed tool numbers.
請參數設定單元3是針對車床刀具6與銑床刀具7的模式之內部的每一把刀具61~6m或71~7n所對應的刀號611~61m或711~71n來設定工作指令,舉例來說,當刀庫5中的車床刀具6與銑床刀具7分別具有八把刀具時,則車床刀具6中的刀具61對應的刀號為611,刀具62對應的刀號為612依此類推八把刀具分別為61、62、63、64、65、66、67及68,則對應的刀號為611、612、613至618;銑床刀具7中的刀具71對應的刀號為711依此類推八把刀具分別為71、72、73、74、75、76、77及78,則對應的刀號為711、712、713至718。因此當使用者利用參數設定單元3對車床刀具6與銑床刀具7設定工作指令時,例如使用者要對加工系統中的車床刀具6或銑床刀具7進行模式切換時,可以將車床刀具6中的刀號為611至618的刀具61至68或銑床刀具7中的刀號為711至718的刀具71至78的其中一把刀具之刀號設定為工作指令;在另一較佳實施例中,在參數設定單元3是針對各刀號設定車床刀具6與銑床刀具7的模式之內部的每一把刀具61~6m或71~7n所對應的非固定刀號來設定工作指令,舉例來說,當刀庫5中的車床刀具6與銑床刀具7分別具有八把刀具時,則車床刀具6中的刀具61對應的刀號為612,刀具62對應的刀號為614,依此類推八把刀具分別對應的刀號為非固定會依據刀具數目呈遞增數,而銑床刀具7中的刀具71對應的刀號為712,刀具72對應的刀號為715,依此類推八把刀具分別對應的刀號為非固定會依據刀具數目呈遞增數,因此當使用者利用參數設定單元3對車床刀具6與銑床刀具7設定工作指令時,例如使用者要對加工系統中的車床刀具6或銑床刀具7進行模式切換時,可以將車床刀具 6中刀具61至68的所對應的非固定刀號或銑床刀具7中刀具71至78所對應的非固定刀號其中一把刀具之刀號設定為工作指令。 The parameter setting unit 3 is to set the work instruction for each tool 61 ~ 6m or 71 ~ 7n corresponding to the tool number 611 ~ 61m or 711 ~ 71n in the mode of the lathe tool 6 and the milling tool 7. When the lathe tool 6 and the milling tool 7 in the tool magazine 5 each have eight tools, the tool number corresponding to the tool 61 in the lathe tool 6 is 611, the tool number corresponding to the tool 62 is 612, and so on. Respectively 61, 62, 63, 64, 65, 66, 67 and 68, the corresponding tool numbers are 611, 612, 613 to 618; the corresponding tool number of tool 71 in milling tool 7 is 711 and so on The cutters are 71, 72, 73, 74, 75, 76, 77, and 78, and the corresponding cutter numbers are 711, 712, 713 to 718. Therefore, when the user uses the parameter setting unit 3 to set work instructions for the lathe tool 6 and the milling tool 7, for example, when the user wants to switch the mode of the lathe tool 6 or the milling tool 7 in the processing system, the The tool number of one of the tools 61 to 68 with the tool numbers 611 to 618 or the tools 71 to 78 of the milling machine tool 7 with the tool numbers 711 to 718 is set as the work instruction. In another preferred embodiment, In the parameter setting unit 3, a work instruction is set for each tool number corresponding to each tool 61 ~ 6m or 71 ~ 7n in the mode of the lathe tool 6 and milling tool 7 for each tool number. For example, When the lathe tool 6 and the milling tool 7 in the tool magazine 5 each have eight tools, the tool number corresponding to the tool 61 in the lathe tool 6 is 612, the tool number corresponding to the tool 62 is 614, and so on. If the corresponding tool number is non-fixed, it will increase according to the number of tools, while the tool number 71 of the milling tool 7 is 712, the tool number of the tool 72 is 715, and so on. The number is not fixed according to the number of tools The number is increasing, so when the user uses the parameter setting unit 3 to set work instructions for the lathe tool 6 and the milling tool 7, for example, when the user wants to switch the mode of the lathe tool 6 or the milling tool 7 in the processing system, the lathe can be turned Cutter The non-fixed tool number corresponding to the tools 61 to 68 in 6 or the non-fixed tool number corresponding to the tools 71 to 78 in the milling tool 7 is set as the work instruction.
刀具自動更換的加工系統的內部控制單元2是用於設定車床刀具6與銑床刀具7的模式之內部的多把刀具中每把刀具的刀長補償、刀徑補償與刀尖方向補償等參數設定的補償表之內部資訊,其中參數設定的補償表之內部資訊的設定是在車床刀具6與銑床刀具7的模式設置於刀庫5時才透過內部控制單元2進行刀長補償、刀徑補償與刀尖方向補償等參數設定;刀長補償的設定是根據車床刀具6與銑床刀具7的模式之內部的多把刀具中每一把刀具之刀的長度,因為每一把刀具之刀的長度不同,因此會依照車床刀具6與銑床刀具7的模式所設定刀長的方式不同而進行分別設定,在車床刀具6之刀長的設定方式是依照每一把刀具的長度在機台上的某一基準點所對應的各軸向長度不同,故會依據機台的各軸向進行長度設定,例如:一般的三軸車床為例,會對刀的X軸刀長、Y軸刀長與Z軸刀長分別進行設定,另外,銑床刀具7之刀長的設定方式是依照每一把刀具的長度不同根據量測的結果將數值設定於各刀號上;刀徑補償的設定是根據車床刀具6與銑床刀具7的模式之內部的多把刀具中每一把刀具的刀尖半徑進行設定,因每一把刀具的刀尖半徑並不相同,其中刀尖半徑的刀尖處存在圓角,當進行端面、外徑、內徑等與軸線平行或垂直的表面加工時較不會產生誤差,但在進行倒角、錐面及圓弧切削時,則會產生少切或過切現象,因此刀徑補償的設定方面要進行每一把刀具的刀尖半徑進行設定。 The internal control unit 2 of the machining system for automatic tool change is used to set parameters such as the tool length compensation, tool radius compensation, and tool nose direction compensation for each of the multiple tools in the mode of the lathe tool 6 and the milling tool 7 The internal information of the compensation table is set. The internal information of the parameter setting compensation table is set only when the mode of the lathe tool 6 and the milling tool 7 is set in the tool magazine 5. The internal control unit 2 performs tool length compensation, tool radius compensation and Setting of parameters such as tool tip direction compensation; the setting of tool length compensation is based on the length of each of the multiple tools in the mode of lathe tool 6 and milling tool 7 because the length of each tool is different Therefore, it will be set separately according to the different setting of the tool length in the mode of the lathe tool 6 and the milling tool 7. The setting method of the tool length in the lathe tool 6 is based on the length of each tool on the machine. The length of each axis corresponding to the reference point is different, so the length is set according to each axis of the machine. For example, a general three-axis lathe is used as an example. The length of the tool and the length of the Z axis are set separately. In addition, the setting method of the tool length of the milling tool 7 is to set the value on each tool number according to the measurement result; the setting of the tool radius compensation is Set according to the tool nose radius of each of the multiple tools in the mode of lathe tool 6 and milling tool 7, because the tool nose radius of each tool is not the same, where the tool nose radius exists Rounded corners, which are less likely to produce errors when machining surfaces that are parallel or perpendicular to the axis, such as end faces, outer diameters, and inner diameters. However, when chamfered, tapered, and arc-cut, less or overcutting occurs. Phenomenon, the setting of tool radius compensation must be set for each tool's tip radius.
而在刀尖方向補償的設定方面,刀具之刀尖通常為圓弧狀,因刀尖是承受切削力以及切削力之部分,刀具通常作成小而圓之鼻端可增加刀尖之強度,改善加工表面之粗糙度,並可延長刀具之壽命, 但在刀尖方向補償的設定方面時,為了實際作業之方便,通常將刀具假想為一尖點,所以此尖點稱為假想刀尖,以及在刀尖方向補償的設定是根據G-CODE參數中其機碼有G41指令與G42指令的刀徑方向的補正,而G41指令為將刀具偏移到要切削工件輪廓起點的左邊,以及G42指令為將刀具偏移到要切削工件輪廓起點的右邊,因此刀尖方向補償的設定根據G41與G42的指令來設定每一把刀具在加工時刀具的方向,因此每一把刀具在加工時刀具的方向所對應的刀號之假想刀尖的編號設定為0號~9號。 In terms of setting the tool nose direction compensation, the tool nose is usually circular. Because the tool nose is the part that bears cutting force and cutting force, the tool is usually made small and the round nose can increase the strength of the tool nose and improve The roughness of the machined surface can extend the life of the tool, However, in the setting of the tool nose direction compensation, for the convenience of actual operation, the tool is usually assumed to be a sharp point, so this sharp point is called an imaginary tool nose, and the setting of the tool nose direction compensation is based on the G-CODE parameter. Its code includes the correction of the tool diameter direction of the G41 and G42 commands, and the G41 command shifts the tool to the left of the starting point of the contour of the workpiece to be cut, and the G42 command shifts the tool to the right of the starting point of the contour of the workpiece to be cut. Therefore, the setting of the tool nose direction compensation is based on the instructions of G41 and G42 to set the tool direction of each tool during processing, so the imaginary tool nose number setting of the tool number corresponding to the tool direction of each tool during processing is set. No. 0 ~ 9.
在一較佳實施例中,當某一把刀具的刀號為假想刀尖的編號為0號時,是在車床刀具6與銑床刀具7的模式中因為銑床刀具7的模式在加工時不需要特別指定刀具方向所以在設定上編號為0號時是為銑床刀具7的模式;而某一把刀具的刀號為假想刀尖的編號為9號時,因編號9號與0號是相同方向,但是車床刀具6與銑床刀具7的模式中因為車床刀具6的模式有時候還是會使用到不需要特別指定刀具方向的刀具進行加工,例如,使用刀具加工時要用車床模式的G-CODE參數時,但是會與銑床刀具7的模式的G-CODE參數互相衝突,所以在這時的刀尖方向補償的設定會將設為編號9號與在銑床刀具7的模式所設定的0號有所差別,這樣可以作判別選擇車床刀具的模式;而某一把刀具的刀號為假想刀尖的編號為1~8號中其中任一編號時,在車床刀具6與銑床刀具7的模式中因為車床刀具6的模式在加工時需要特別指定刀具方向所以在設定上其編號為1~8號時是為車床刀具6的模式,其中假想刀尖的編號為1~8號中其中任一編號時,每個編號的方向設定是根據車床刀具6的模式設置於刀庫5時,每一把刀具對於切削工件的位置所進行設定的方向。 In a preferred embodiment, when the number of a certain tool is the number of an imaginary tool tip, it is in the mode of the lathe tool 6 and the milling tool 7 because the mode of the milling tool 7 is not required during processing. The direction of the tool is specifically specified, so when the number is set to 0, it is the mode of milling tool 7. When the number of a certain tool is the number of the imaginary tip, the number is 9 because the number 9 and 0 are the same direction. However, in the mode of lathe tool 6 and milling tool 7, because the mode of lathe tool 6 sometimes still uses a tool that does not need to specify the tool direction for processing, for example, when using a tool, the G-CODE parameter of the lathe mode is used. , But it will conflict with the G-CODE parameter of the milling tool 7 mode, so the setting of the tool nose direction compensation at this time will be set to the number 9 and the 0 set in the milling tool 7 mode. In this way, the mode of selecting the lathe tool can be judged; and when the number of a certain tool is the number of the imaginary tip 1 to 8, the lathe tool 6 and the milling tool 7 mode because of the lathe Cutter 6 The mode needs to specify the tool direction during processing, so when it is set to No. 1 ~ 8, it is the mode of lathe tool 6, where the number of the imaginary tool tip is any of 1 ~ 8, each number The direction setting is based on the mode of the lathe tool 6 when it is set in the tool magazine 5, and each tool sets the direction of the position of the cutting workpiece.
請繼續參考圖1,其控制器1是根據參數設定單元3設定車床刀具6與銑床刀具7的模式之內部的某一把刀具對應的刀號的工作指令、刀庫5中某一把刀具對應的刀號以及內部控制單元2設定車床刀具6與銑床刀具7的模式之內部的多把刀具中的每一把刀具的刀長補償、刀徑補償與刀尖方向補償等參數設定的補償表之內部資訊中所設定的參數,進而對某一把刀具對應的刀號、工作指令與內部資訊進行比對來獲得比對結果,其比對方式是根據補償表之內部資訊中的刀尖方向補償進行判斷,例如:使用者在參數設定單元3中設定其工作指令,且工作指令設定為刀號為611,而刀號為611則為車床刀具6的模式中的刀具61,而控制器1根據刀具61的刀號為611與假想刀尖的編號為1~9進行比對進而產生比對結果,其控制器1根據比對結果若為假想刀尖的編號為1時,則加工系統中的車床刀具6與銑床刀具7的模式進而切換為車床刀具6模式;又或者使用者在參數設定單元3中設定其工作指令,且工作指令設定為刀號為711,而刀號為711則為銑床刀具7的模式中的刀具71,而控制器1根據刀具71的刀號為711與假想刀尖的編號為1~9進行比對進而產生比對結果,其控制器1根據比對結果若為假想刀尖的編號為0時,則加工系統中的車床刀具6與銑床刀具7的模式進而切換為銑床刀具7模式;因此控制器1是根據每一把刀具所對應的刀號的工作指令與假想刀尖的編號進行比對進而獲得比對結果,而控制器1根據比對結果在加工系統中的車床刀具6與銑床刀具7的模式進行模式切換。 Please continue to refer to FIG. 1. The controller 1 is a work instruction for setting a tool number corresponding to a certain tool in the mode of the lathe tool 6 and the milling tool 7 according to the parameter setting unit 3, and a tool corresponding to a tool in the magazine 5. And the internal control unit 2 set the compensation table for the parameter settings of the tool length compensation, tool radius compensation, and tool nose direction compensation for each of the multiple tools in the mode of the lathe tool 6 and the milling tool 7 The parameters set in the internal information, and then compare the corresponding tool number, work instruction and internal information of a certain tool to obtain the comparison result. The comparison method is based on the tool nose direction compensation in the internal information of the compensation table. Make a judgment, for example, the user sets his work instruction in the parameter setting unit 3, and the work instruction is set to the tool number 611, and the tool number 611 is the tool 61 in the mode of the lathe tool 6, and the controller 1 is based on The tool number of the tool 61 is 611 and the number of the virtual tool tip is 1-9. The comparison result is generated. When the comparison result of the controller 1 is the number of the virtual tool tip is 1, the car The mode of tool 6 and milling tool 7 is further switched to lathe tool 6 mode; or the user sets its work instruction in parameter setting unit 3, and the work instruction is set to tool number 711, and the tool number is 711 for the milling tool The tool 71 in the 7 mode, and the controller 1 compares the tool 71 with the tool number 711 and the imaginary tool tip numbers 1 ~ 9 to generate a comparison result. The controller 1 according to the comparison result is imaginary. When the number of the tool tip is 0, the mode of the lathe tool 6 and the milling tool 7 in the processing system is further switched to the milling tool 7 mode; therefore, the controller 1 is based on the work instruction and imaginary of the tool number corresponding to each tool. The numbers of the tool tips are compared to obtain a comparison result, and the controller 1 switches the mode of the lathe tool 6 and the milling tool 7 in the processing system according to the comparison result.
在另一較佳實施例中,控制器1根據比對結果在加工系統中的車床刀具6與銑床刀具7的模式切換進行切換,並透過監視畫面單元4用以監控車床刀具6與銑床刀具7的模式之切換狀況,以及監視畫面單元4根 據所切換的車床刀具6或銑床刀具7的模式,進而將切換狀況於監視畫面單元4上顯示;監視畫面單元4顯示的切換狀況包含了G-CODE參數、M-CODE參數、軸向的直徑軸與軸向的半徑軸之參數與座標平面參數,而切換狀況的參數會根據控制器1所選擇的車床刀具6與銑床刀具7的其中一模式進行參數切換並將切換後的參數利用監視畫面單元4進行顯示;在車床刀具6與銑床刀具7的模式所使用的G-CODE參數與M-CODE參數並不相同,因此控制器1會根據車床刀具6與銑床刀具7的其中一模式進行切換,並且分別對G-CODE參數與M-CODE參數進行分類,例如:在車床刀具6的模式中其G-CODE參數中其機碼G73指令是橫向(外徑)粗車切削循環,主要是用在切削工件外徑用的,而在銑床刀具7的模式中其G-CODE參數中其機碼G73指令是高速啄式鑽孔循環,用來鑽孔工件用的,因此控制器1會根據車床刀具6與銑床刀具7的模式中所使用的G-CODE參數進行分類,另外在車床刀具6的模式中其M-CODE參數中其機碼M03指令、M04指令與M05指令,而M03指令為主軸正轉、M04指令為主軸反轉與M05指令為主軸停止,此時車床刀具6的模式中所轉動的主軸是夾持工件主軸,而此時銑床刀具7的模式中所轉動的主軸是刀具主軸,因此車床刀具6與銑床刀具7的模式所要轉動的主軸是不同的,因此控制器1會根據車床刀具6與銑床刀具7的模式中所使用的M-CODE參數進行分類。 In another preferred embodiment, the controller 1 switches the mode of the lathe tool 6 and the milling tool 7 in the processing system according to the comparison result, and monitors the lathe tool 6 and the milling tool 7 through the monitoring screen unit 4 Mode switching status, and 4 monitor screen units According to the mode of the lathe tool 6 or milling tool 7, the switching status is displayed on the monitoring screen unit 4; the switching status displayed on the monitoring screen unit 4 includes G-CODE parameters, M-CODE parameters, and the diameter of the axis. The parameters of the axis and the radial axis of the axis and the coordinate plane parameters, and the parameters of the switching status will be switched according to one of the modes of the lathe tool 6 and the milling tool 7 selected by the controller 1 and the switched parameters will be monitored using the monitoring screen. Unit 4 displays; G-CODE parameters and M-CODE parameters used in the mode of lathe tool 6 and milling tool 7 are not the same, so the controller 1 will switch according to one of the modes of lathe tool 6 and milling tool 7. , And classify G-CODE parameters and M-CODE parameters respectively, for example: in the G-CODE parameter of the lathe tool 6, its machine code G73 instruction is a horizontal (outer diameter) rough turning cutting cycle, mainly used It is used for cutting the outer diameter of the workpiece, and its G-CODE parameter in the G-CODE parameter of the milling tool 7 mode is a high-speed peck drilling cycle for drilling the workpiece. Therefore, the controller 1 will Tool 6 It is classified with the G-CODE parameter used in the milling tool 7 mode, and in the M-CODE parameter of the lathe tool 6 mode, its machine codes M03, M04, and M05 are used, and M03 is the forward rotation of the spindle. The M04 command is the spindle reversal and the M05 command is the spindle stop. At this time, the spindle rotated in the mode of the lathe tool 6 is the workpiece spindle, and the spindle rotated in the mode of the milling tool 7 is the tool spindle, so The lathe tool 6 and the milling tool 7 have different spindles to rotate, so the controller 1 will classify according to the M-CODE parameters used in the mode of the lathe tool 6 and the milling tool 7.
在一較佳實施例中,在車床刀具6與銑床刀具7的模式所使用的軸向的直徑軸與軸向的半徑軸之參數並不相同,其中在車床刀具6與銑床刀具7的模式中,其兩者的軸向編輯方式也是不相同的,在車床刀具6的模式是工件迴轉進行切削,所以加工後的成品大多是圓形且對稱的工件,因此在工程圖上是直接標註為軸向的直徑軸,且為了在編輯的方便也會使用軸向的直徑軸的方式進行編輯,而座標系也是顯示軸向的直徑軸,而銑床 刀具7的模式在加工後的成品大多都是不規則形體,所以不管是在編輯或是座標系的顯示皆為軸向的半徑軸;所以在車床刀具6與銑床刀具7的模式且換過程中,對於車床刀具6的模式會將座標系切換成軸向的直徑軸顯示,其中車床刀具6的模式下會將X軸、Y軸自動調整為軸向的直徑軸模式,Z軸則維持軸向的半徑軸模式,而銑床刀具7的模式時將座標系則全部軸向改為軸向的半徑軸模式。 In a preferred embodiment, the parameters of the axial diameter axis and the axial radial axis used in the mode of the lathe tool 6 and the milling tool 7 are not the same. In the mode of the lathe tool 6 and the milling tool 7, the parameters are different. The axial editing methods of the two are also different. In the mode of the lathe tool 6, the workpiece is rotated for cutting, so the finished products after processing are mostly circular and symmetrical workpieces, so they are directly labeled as axes on the engineering drawing. Orientation of the diameter axis, and for the convenience of editing, the axial diameter axis is also used for editing. The coordinate system also shows the axial diameter axis, and the milling machine Most of the finished products of the cutter 7 mode are irregular shapes, so whether it is in editing or coordinate system display, it is an axial radial axis; therefore, in the mode of the lathe tool 6 and the milling tool 7 and changing process For the lathe tool 6 mode, the coordinate system will be switched to the axial diameter axis display. Among them, the lathe tool 6 mode will automatically adjust the X axis and Y axis to the axial diameter axis mode, and the Z axis will maintain the axial direction. Mode of the radial axis, and in the mode of the milling tool 7, the coordinate system is changed from the axial direction to the axial radial axis mode.
在另一較佳實施例中,在車床刀具6與銑床刀具7的模式所使用的座標平面參數並不相同,其中車床刀具6與銑床刀具7的模式上其結構以及加工方式也並不相同,在使用G-CODE參數中其機碼當使用到圓弧指令(G02/G03)、極座標命令(G15/G16)或是加工循環指令(G81~G84)時,必須先用G17指令或者是G18指令來設定其切削平面,告知控制器1加工平面來確認加工的深度進給軸向,而在車床刀具6的模式中是使用G18指令為主,銑床刀具7的模式則是G17指令為主,因此在車床刀具6與銑床刀具7的模式做切換時其切削平面所使用的G-CODE參數也會跟著不一樣。 In another preferred embodiment, the coordinate plane parameters used in the mode of the lathe tool 6 and the milling tool 7 are different, and the structure and processing method of the lathe tool 6 and the milling tool 7 are also different. When using G-CODE parameters with its machine code when using arc command (G02 / G03), polar coordinate command (G15 / G16) or machining cycle command (G81 ~ G84), you must first use G17 or G18 command Set the cutting plane and inform the controller 1 of the machining plane to confirm the machining depth feed axis. In the mode of the lathe tool 6, the G18 command is mainly used, and the mode of the milling tool 7 is the G17 command, so When the mode of the lathe tool 6 and the milling tool 7 is switched, the G-CODE parameters used by the cutting plane will also be different.
接著,請參考圖2所示,為本發明另一較佳實施例之刀具自動更換的加工方法示意圖,圖2是根據圖1刀具的刀具自動更換的加工系統示意圖進一步說明刀具自動更換的加工方法之流程。首先步驟S01,使用者透過參數設定單元3設定工作指令,例如:其工作指令的設定為車床刀具6與銑床刀具7的模式之內部中的某一把刀具的刀號。接著步驟S02~S05,控制器1會根據所設定的某一把刀具的刀號與假想刀尖的編號是否為編號9進行比對,若比對結果為某一把刀具的刀號為編號9時則直接進入步驟S05,並進行車床刀具6與銑床刀具7的模式進行模式切換,若比對結果為某一把刀具的刀號不是編號9時,則進入步驟S03,並接 著,控制器1會繼續判斷所設定的某一把刀具的刀號與假想刀尖的編號是否為編號1~8進行比對,若比對結果某一把刀具的刀號為編號1~8時則直接進入步驟S05,進行車床刀具6與銑床刀具7的模式進行模式切換,若比對結果某一把刀具的刀號不是編號1~8時,則進入步驟S04,進行車床刀具6與銑床刀具7的模式進行模式切換。 Next, please refer to FIG. 2, which is a schematic diagram of a processing method for automatic tool replacement according to another preferred embodiment of the present invention. FIG. 2 is a schematic diagram of a processing system for automatic tool replacement of the tool according to FIG. The process. First, in step S01, the user sets a work instruction through the parameter setting unit 3. For example, the work instruction is set to a tool number of a certain tool within the mode of the lathe tool 6 and the milling tool 7. Following steps S02 ~ S05, the controller 1 compares the set number of a certain tool with the number of the imaginary tool tip as number 9; if the comparison result is the number of a certain tool as number 9 Then, it directly goes to step S05, and switches the mode of the lathe tool 6 and the milling tool 7, if the comparison result is that the number of a certain tool is not number 9, then it goes to step S03, and connects Then, the controller 1 will continue to judge whether the preset tool number of a certain tool is compared with the number of the imaginary tool tip as numbers 1 ~ 8, and if the comparison result is that the number of a certain tool is number 1 ~ 8 Then, it directly proceeds to step S05, and switches the mode of the lathe tool 6 and the milling tool 7. If the comparison result of a certain tool is not the number 1 ~ 8, it proceeds to step S04, and the lathe tool 6 and the milling machine are performed. The mode of the tool 7 is switched.
在接著步驟S06~S09,控制器1根據比對結果在加工系統中的車床刀具6與銑床刀具7的模式進行切換,並透過監視畫面單元4用來監控車床刀具6與銑床刀具7的模式之切換狀況,以及監視畫面單元4根據所切換的車床刀具6或銑床刀具7的模式,進而將切換狀況於監視畫面單元4上顯示其G-CODE參數、M-CODE參數、軸向的直徑軸與軸向的半徑軸之參數與座標平面參數等切換參數;在步驟S08中,此時控制器1會根據切換狀況進行G-CODE參數、M-CODE參數、軸向的直徑軸與軸向的半徑軸之參數與座標平面參數等參數進行判斷是否切換成功,其判斷方式是將每個參數的切換過程進行紀錄並最後在確認每一個參數的切換是否都成功,例如:控制器1根據比對結果在加工系統中的車床刀具6與銑床刀具7的模式切換為車床刀具6的模式時,其監控畫面單元會分別將G-CODE參數、M-CODE參數、軸向的直徑軸與軸向的半徑軸之參數與座標平面參數進行切換,而每一個參數切換若為成功則控制器1會紀錄為成功,當其中一個參數切換失敗則控制器1會紀錄為失敗,因此當所有參數切換完成之後,控制器1會根據所記錄的成功或失敗進行判斷,若是其中有一個參數切換的紀錄為失敗,其控制器1直接會重新進入步驟S06再次進行刀庫5內的車床刀具6與銑床刀具7的模式進行切換,若所有參數切換的紀錄都成功,則代表刀庫5內的車床刀具6與銑床刀具7的模式切換為其中一個模式已完成,其接著進行後續的加工。 In the following steps S06 ~ S09, the controller 1 switches the mode of the lathe tool 6 and the milling tool 7 in the processing system according to the comparison result, and monitors the mode of the lathe tool 6 and the milling tool 7 through the monitoring screen unit 4 Switching status, and the monitoring screen unit 4 displays the G-CODE parameter, M-CODE parameter, axial diameter axis and axis diameter of the switching screen status on the monitoring screen unit 4 according to the mode of the lathe tool 6 or milling tool 7 being switched. The parameters of the axial radius axis and the coordinate plane parameters are switched; in step S08, the controller 1 will perform G-CODE parameters, M-CODE parameters, the diameter axis of the axis, and the radius of the axis according to the switching status. The parameters of the axis and the parameters of the coordinate plane are used to determine whether the switching is successful. The judgment method is to record the switching process of each parameter and finally confirm whether the switching of each parameter is successful. For example: controller 1 according to the comparison result When the mode of lathe tool 6 and milling tool 7 in the processing system is switched to the mode of lathe tool 6, its monitoring screen unit will set the G-CODE parameter, M-CODE parameter, axis The parameters of the diameter axis and the axis of the radial axis are switched with the parameters of the coordinate plane, and if each parameter switch is successful, the controller 1 will record as a success. When one of the parameter switches fails, the controller 1 will record as a failure. Therefore, after all the parameter switching is completed, the controller 1 will judge according to the recorded success or failure. If one of the parameter switching records is a failure, the controller 1 will directly re-enter step S06 and execute the tool magazine 5 again. The mode of the lathe tool 6 and the milling tool 7 is switched. If all the parameter switching records are successful, it means that the mode of the lathe tool 6 and the milling tool 7 in the tool magazine 5 is switched to one of the modes has been completed, and then the follow-up is performed. Processing.
上述所述者僅為本專利之較佳實施例,舉凡依本專利精神所作之等效修飾或變化,依照相同概念所提出之裝置的結構與功效,皆應仍屬本專利涵蓋之範圍內。 The above is only a preferred embodiment of this patent. For example, any equivalent modification or change made according to the spirit of this patent, and the structure and effect of the device proposed according to the same concept, should still fall within the scope of this patent.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106142733A TWI647058B (en) | 2017-12-06 | 2017-12-06 | Processing system and method for automatic tool change |
CN201811166619.4A CN109366095B (en) | 2017-12-06 | 2018-10-08 | Machining system capable of being automatically replaced along with cutter and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106142733A TWI647058B (en) | 2017-12-06 | 2017-12-06 | Processing system and method for automatic tool change |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI647058B true TWI647058B (en) | 2019-01-11 |
TW201924847A TW201924847A (en) | 2019-07-01 |
Family
ID=65403707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106142733A TWI647058B (en) | 2017-12-06 | 2017-12-06 | Processing system and method for automatic tool change |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109366095B (en) |
TW (1) | TWI647058B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111702533A (en) * | 2020-06-08 | 2020-09-25 | 苏州市联佳精密机械有限公司 | Intelligent processing method and system for improving aviation product processing |
CN112269352B (en) * | 2020-10-23 | 2022-03-01 | 新代科技(苏州)有限公司 | Cutting machine control system and control method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1675024A (en) * | 2002-08-20 | 2005-09-28 | 西铁城时计株式会社 | Method and device for controlling tool selecting operation of turret tool post |
CN1923455A (en) * | 2006-09-26 | 2007-03-07 | 沈阳数控机床有限责任公司 | Large-scale boring drilling knife tool automatic exchange apparatus of turn-milling combined machining center |
TW201012590A (en) * | 2008-09-19 | 2010-04-01 | Foxnum Technology Co Ltd | Abrasion compensation system and method of cutting tool |
CN202540003U (en) * | 2011-12-31 | 2012-11-21 | 上海三一精机有限公司 | Tool magazine centralized management system for automatic production line |
TWM446053U (en) * | 2012-08-09 | 2013-02-01 | Kunshiman Prec Tec Co Ltd | Human-machine interface of a processing machine |
TW201427781A (en) * | 2013-01-04 | 2014-07-16 | Factory Automation Technology | Milling complex processing machine and the encoding method of its cutting tools |
TWM543137U (en) * | 2017-02-16 | 2017-06-11 | 新代科技股份有限公司 | Tool servo control system |
TWM558682U (en) * | 2017-12-06 | 2018-04-21 | 新代科技股份有限公司 | Automatic tool changing system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61265240A (en) * | 1985-05-18 | 1986-11-25 | Fanuc Ltd | Editing of nc program for 4-axis lathe |
JPH03136747A (en) * | 1989-10-18 | 1991-06-11 | Hitachi Constr Mach Co Ltd | Profile controller in work corner part |
JP2005088162A (en) * | 2003-09-19 | 2005-04-07 | Yamazaki Mazak Corp | Machining center |
FR3011758B1 (en) * | 2013-10-14 | 2016-01-01 | Ct Tech De L Ind Du Decolletage | METHOD FOR DETERMINING THE CUTTING CONDITIONS OF A MACHINE TOOL AND PROCESSING UNIT FOR IMPLEMENTING THE METHOD |
TWI542440B (en) * | 2015-02-10 | 2016-07-21 | Tool automatic exchange and correction device | |
CN105750971B (en) * | 2016-05-10 | 2018-03-20 | 苏州新代数控设备有限公司 | Numerical control system and its numerical control method with tool changing function |
-
2017
- 2017-12-06 TW TW106142733A patent/TWI647058B/en active
-
2018
- 2018-10-08 CN CN201811166619.4A patent/CN109366095B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1675024A (en) * | 2002-08-20 | 2005-09-28 | 西铁城时计株式会社 | Method and device for controlling tool selecting operation of turret tool post |
CN1923455A (en) * | 2006-09-26 | 2007-03-07 | 沈阳数控机床有限责任公司 | Large-scale boring drilling knife tool automatic exchange apparatus of turn-milling combined machining center |
TW201012590A (en) * | 2008-09-19 | 2010-04-01 | Foxnum Technology Co Ltd | Abrasion compensation system and method of cutting tool |
CN202540003U (en) * | 2011-12-31 | 2012-11-21 | 上海三一精机有限公司 | Tool magazine centralized management system for automatic production line |
TWM446053U (en) * | 2012-08-09 | 2013-02-01 | Kunshiman Prec Tec Co Ltd | Human-machine interface of a processing machine |
TW201427781A (en) * | 2013-01-04 | 2014-07-16 | Factory Automation Technology | Milling complex processing machine and the encoding method of its cutting tools |
TWM543137U (en) * | 2017-02-16 | 2017-06-11 | 新代科技股份有限公司 | Tool servo control system |
TWM558682U (en) * | 2017-12-06 | 2018-04-21 | 新代科技股份有限公司 | Automatic tool changing system |
Also Published As
Publication number | Publication date |
---|---|
CN109366095A (en) | 2019-02-22 |
CN109366095B (en) | 2020-04-17 |
TW201924847A (en) | 2019-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7847506B2 (en) | Machine tool controller | |
US9229443B2 (en) | Numerical control machine tool | |
JP4011372B2 (en) | Machining program check method and check apparatus for numerically controlled machine tool, and numerically controlled machine tool provided with the same | |
US8688257B2 (en) | Programming apparatus | |
US7058473B2 (en) | Method and device for generation of machining program | |
US20110257778A1 (en) | Method and device for simulating nc working machine | |
KR860002004B1 (en) | The processing method for numerical control | |
CN101796463A (en) | NC program generating device and NC program generating method | |
JP2008027045A (en) | Numerical control apparatus provided with interference checking function | |
JP6684549B2 (en) | Numerical control device for machine tool, machine tool, machine tool control method and program | |
US20170269571A1 (en) | Method for machining a workpiece in a machine tool with optimized machining time | |
TWI647058B (en) | Processing system and method for automatic tool change | |
KR20170067700A (en) | Method of controlling a gear cutting machine and gear cutting machine | |
JP2001328002A (en) | Machine tool | |
JP2018202560A (en) | Machine tool | |
JPWO2017086238A1 (en) | Machine tool and machining method by machine tool | |
JP2011237880A (en) | Controller of machine tool equipped with tool change position automatic determination function | |
US20190202017A1 (en) | Selecting device, selecting method, and program | |
TWM558682U (en) | Automatic tool changing system | |
CN110632891B (en) | Numerical controller | |
US20230280707A1 (en) | Numerical controller, manufacturing machine, and method of controlling manufacturing machine | |
JP2000035815A (en) | Numerically controlled machine tool | |
JP4286940B2 (en) | NC machining program creation method and apparatus for machine tools | |
JP7401665B2 (en) | Numerical control device and control method | |
JP7111931B1 (en) | Numerical controller |