TWI644492B - Pulse controlling apparatus and method for controlling pulses - Google Patents
Pulse controlling apparatus and method for controlling pulses Download PDFInfo
- Publication number
- TWI644492B TWI644492B TW105130292A TW105130292A TWI644492B TW I644492 B TWI644492 B TW I644492B TW 105130292 A TW105130292 A TW 105130292A TW 105130292 A TW105130292 A TW 105130292A TW I644492 B TWI644492 B TW I644492B
- Authority
- TW
- Taiwan
- Prior art keywords
- time
- pulse
- laser pulses
- laser
- modulator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/107—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本發明揭示一種脈衝控制裝置及脈衝控制方法。雷射脈 衝控制裝置包括:脈衝雷射發生器,按照固定的時間間隔產生多個雷射脈衝;光調變器,藉由驅動而選擇性地提取雷射脈衝中的一部分;控制部,隨時間改變施加至光調變器的電訊號而對光調變器的驅動進行控制;以及光放大器,放大所提取的雷射脈衝。 The invention discloses a pulse control device and a pulse control method. Laser vein The impulse control device comprises: a pulsed laser generator that generates a plurality of laser pulses at fixed time intervals; a light modulator that selectively extracts a portion of the laser pulses by driving; the control portion changes over time The drive of the optical modulator is controlled by the electrical signal to the optical modulator; and the optical amplifier is used to amplify the extracted laser pulse.
Description
本發明是有關於一種雷射脈衝控制裝置及雷射脈衝控制方法,且有關於一種藉由對施加至脈衝控制裝置的光調變器的電壓或高頻功率進行調節,選擇性地提取雷射脈衝而產生脈衝串模式(burst mode)的雷射脈衝控制裝置及雷射脈衝控制方法。 The present invention relates to a laser pulse control device and a laser pulse control method, and relates to a method for selectively extracting a laser by adjusting a voltage or a high frequency power applied to a pulse modulator of a pulse control device A laser pulse control device and a laser pulse control method that generate a burst mode in a pulse.
為了加工電子產業等的精密零件,雷射加工技術逐漸發展為超精密化、超高速化、大面積化加工。特別是,為了加工包括半導體、顯示器、太陽電池、下一代高附加/高功能印刷電路板(Printed Circuit Board,PCB)、下一代封裝體產業等的微電子產業領域的零件,超精密加工必不可少。 In order to process precision parts such as the electronics industry, laser processing technology has gradually developed into ultra-precision, ultra-high-speed, and large-area processing. In particular, in order to process parts in the microelectronics industry including semiconductors, displays, solar cells, next-generation printed circuit boards (PCBs), and next-generation package industries, ultra-precision machining must not be performed. less.
為了實現此種微尺寸的超精密加工,亦要求高性能的雷射規格。為了實現微細化的加工,可利用紫外線區域的雷射、或利用脈寬非常短的飛秒脈衝雷射及微微秒脈衝雷射。與此同時,要求雷射束的空間分佈為單一模式的高品質雷射。並且,為了實現高速化及大面積化,要求高重複率、高輸出的脈衝雷射。 In order to achieve such micro-scale ultra-precision machining, high-performance laser specifications are also required. In order to achieve micronization processing, it is possible to use a laser in an ultraviolet region or a femtosecond pulse laser having a very short pulse width and a picosecond pulse laser. At the same time, the spatial distribution of the laser beam is required to be a single mode high quality laser. Further, in order to achieve high speed and large area, a pulse laser having a high repetition rate and a high output is required.
作為使雷射以脈衝形式作動的方法,利用Q開關、鎖模(mode locking)方法。於雷射二極體中,利用直接調變所施加的電流而以脈衝形式的作動方法。 As a method of operating the laser in a pulse form, a Q switch and a mode locking method are used. In the laser diode, a method of directly modulating the applied current is used in a pulsed manner.
先前,為了以脈衝串模式產生雷射脈衝,利用於使用偏光元件對一個脈衝進行分割後,產生路徑差而實現脈衝串模式的方法。然而,於此種方式的情形時,需產生一個脈衝而進行分割,故而雷射脈衝能量有限。並且,另外需要分割雷射束的光學系統,會難以任意地調節脈衝串模式的雷射脈衝數量。 Previously, in order to generate a laser pulse in a burst mode, a method of generating a burst mode by dividing a pulse using a polarizing element to generate a burst mode is realized. However, in the case of this mode, a pulse is required to be divided, and thus the laser pulse energy is limited. Moreover, in addition to the optical system that needs to divide the laser beam, it is difficult to arbitrarily adjust the number of laser pulses in the burst mode.
本發明的一實施例提供一種可藉由隨時間改變施加至光調變器的電訊號而使輸出的雷射脈衝以脈衝串模式進行動作,同時對雷射脈衝的峰值(peak)進行調節的脈衝控制裝置及脈衝控制方法。 An embodiment of the invention provides that the output laser pulse can be operated in a burst mode by changing the electrical signal applied to the optical modulator over time, while adjusting the peak of the laser pulse. Pulse control device and pulse control method.
本發明的一實施例的脈衝控制裝置包括:脈衝雷射發生器,按照固定的時間間隔產生多個雷射脈衝;光調變器,藉由驅動而選擇性地提取雷射脈衝中的一部分;控制部,隨時間改變施加至光調變器的電訊號而對光調變器的驅動進行控制;及光放大器,放大所提取的雷射脈衝。 A pulse control apparatus according to an embodiment of the present invention includes: a pulsed laser generator that generates a plurality of laser pulses at fixed time intervals; and a light modulator that selectively extracts a portion of the laser pulses by driving; The control unit controls the driving of the optical modulator by changing the electrical signal applied to the optical modulator over time; and the optical amplifier amplifies the extracted laser pulse.
光調變器可包括電光調變器(EOM:electro optics modulator)。 The light modulator can include an electro-optical modulator (EOM: electro optics) Modulator).
電訊號可包括電壓,控制部對電光調變器施加隨時間而發生變化的電壓。 The electrical signal can include a voltage, and the control unit applies a voltage to the electro-optic modulator that changes over time.
自光放大器出射的雷射脈衝的輸出可固定或隨時間而發生變化。 The output of the laser pulse emerging from the optical amplifier can be fixed or varied over time.
光調變器可包括聲光調變器(AOM:acoustic optics modulator)。 The light modulator can include an acoustic optics modulator (AOM).
電訊號可包括高頻功率,控制部對聲光調變器施加隨時間而發生變化的高頻功率。 The electrical signal may include high frequency power, and the control unit applies high frequency power that changes with time to the acousto-optic modulator.
自光放大器出射的雷射脈衝的輸出可固定或隨時間而發生變化。 The output of the laser pulse emerging from the optical amplifier can be fixed or varied over time.
本發明的一實施例的脈衝控制方法包括如下步驟:按照固定的時間間隔產生多個雷射脈衝的步驟;藉由驅動光調變器而選擇性地提取雷射脈衝中的一部分的步驟;及放大所提取的雷射脈衝的步驟;且藉由控制部隨時間改變施加至光調變器的電壓或高頻功率而執行提取步驟。 A pulse control method according to an embodiment of the present invention includes the steps of: generating a plurality of laser pulses at fixed time intervals; and selectively extracting a portion of the laser pulses by driving the optical modulator; and The step of amplifying the extracted laser pulse; and performing an extraction step by the control portion changing the voltage applied to the optical modulator or the high frequency power over time.
光調變器可包括藉由施加電壓而驅動的電光調變器,控制部對電光調變器施加隨時間而發生變化的電壓。 The light modulator may include an electro-optic modulator that is driven by applying a voltage, and the control unit applies a voltage that changes with time to the electro-optical modulator.
施加至電光調變器的電壓可隨時間減少或隨時間增加。 The voltage applied to the electro-optic modulator can decrease over time or increase over time.
經放大的雷射脈衝的輸出可固定或隨時間而發生變化。 The output of the amplified laser pulse can be fixed or varied over time.
光調變器可包括藉由施加高頻功率而驅動的聲光調變器,控制部對聲光調變器施加隨時間而發生變化的高頻功率。 The light modulator may include an acousto-optic modulator driven by applying high frequency power, and the control unit applies a high frequency power that changes with time to the acousto-optic modulator.
施加至聲光調變器的高頻功率可隨時間減少或隨時間增加。 The high frequency power applied to the acousto-optic modulator can decrease over time or increase over time.
經放大的雷射脈衝的輸出可固定或隨時間而發生變化。 The output of the amplified laser pulse can be fixed or varied over time.
根據本發明的上述解決課題的手段,可藉由任意地調節施加至光調變器的電訊號而根據欲進行加工的對象物的種類實現各種脈衝串模式,藉此可提高生產性。 According to the above-described means for solving the problem of the present invention, various pulse train patterns can be realized depending on the type of the object to be processed by arbitrarily adjusting the electric signal applied to the optical modulator, whereby productivity can be improved.
並且,與利用光學系統產生雷射脈衝的脈衝串模式的情形相比,可於空間上變簡單。 Moreover, it is spatially simpler than the case of the burst mode in which the laser system generates a laser pulse.
100‧‧‧脈衝控制裝置 100‧‧‧pulse control device
110‧‧‧脈衝雷射發生器 110‧‧‧pulse laser generator
120‧‧‧光調變器 120‧‧‧Light modulator
130‧‧‧控制部 130‧‧‧Control Department
140‧‧‧光放大器 140‧‧‧Optical amplifier
LP‧‧‧雷射脈衝 LP‧‧‧Laser pulse
t1、t2‧‧‧時間間隔 T1, t2‧‧‧ time interval
ts‧‧‧飽和時間 Ts‧‧‧saturated time
圖1是表示為本發明的一實施例的脈衝控制裝置的示意圖。 Fig. 1 is a schematic view showing a pulse control device according to an embodiment of the present invention.
圖2a是表示於連續地對光放大器施加激發能時累積至放大介質的能量與飽和時間的關係的曲線圖。 Fig. 2a is a graph showing the relationship between the energy accumulated to the amplifying medium and the saturation time when the excitation energy is continuously applied to the optical amplifier.
圖2b及圖2c是表示於連續地對光放大器施加激發能來週期性地入射雷射脈衝而放大輸出時累積至光放大器介質的能量、輸入雷射脈衝及輸出雷射脈衝的曲線圖。 2b and 2c are graphs showing the energy accumulated to the optical amplifier medium, the input laser pulse, and the output laser pulse when the excitation energy is continuously applied to the optical amplifier to periodically input the laser pulse to amplify the output.
圖3a至圖3d是表示利用本發明的一實施例的脈衝控制裝置 選擇性地提取雷射脈衝而放大的過程圖。 3a to 3d are diagrams showing a pulse control device using an embodiment of the present invention A process map that selectively extracts laser pulses and amplifies them.
圖4a至圖4d是表示利用本發明的一實施例的脈衝控制裝置選擇性地提取雷射脈衝而放大的過程圖。 4a to 4d are process diagrams showing amplification by selectively extracting a laser pulse by a pulse control device according to an embodiment of the present invention.
圖5a至圖5d是表示利用本發明的一實施例的脈衝控制裝置選擇性地提取雷射脈衝而放大的過程圖。 5a to 5d are process diagrams showing amplification by selectively extracting a laser pulse by a pulse control device according to an embodiment of the present invention.
以下,參照隨附圖式,詳細地對本發明的實施例進行說明,以便在本發明所屬技術領域內具有常識者可容易地實施。然而,本發明能夠以多種不同的形態實施,並不限定於此處所說明的實施例。另外,為了明確地說明本發明,於圖中省略與說明無關的部分,於整篇說明書中,對相似的部分標註相似的符號。 Hereinafter, the embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that they can be easily implemented by those having ordinary knowledge in the technical field to which the present invention pertains. However, the invention can be embodied in many different forms and is not limited to the embodiments described herein. In addition, in order to clearly explain the present invention, the portions that are not related to the description are omitted in the drawings, and the same portions are denoted by the same reference numerals throughout the description.
於整篇說明書中,在記載為某個部分與其他部分“連接”時,不僅包括“直接連接”的情形,而且亦包括於其等中間隔以其他元件而“電連接”的情形。並且,於記載為某個部分“包括”某個構成要素時,若無特別相反的記載,則是指可更包括其他構成要素,而並非是指排除其他構成要素。 Throughout the specification, when a part is "connected" to another part, it includes not only the case of "direct connection" but also the case where it is "electrically connected" by other elements. In addition, when a part is "included" to a certain component, unless otherwise stated, it means that it may include other components, and does not mean that other components are excluded.
圖1是表示為本發明的一實施例的脈衝控制裝置100的示意圖。 FIG. 1 is a schematic diagram showing a pulse control device 100 according to an embodiment of the present invention.
參照圖1,脈衝控制裝置100包括脈衝雷射發生器110、光調變器120、控制部130及光放大器140。 Referring to Fig. 1, a pulse control device 100 includes a pulsed laser generator 110, a light modulator 120, a control unit 130, and an optical amplifier 140.
脈衝雷射發生器110可按照固定的時間間隔連續地產 生多個雷射脈衝LP。此種脈衝雷射發生器110可根據產生雷射的物質的種類而分為氣體雷射發生器、液體雷射發生器、固體雷射發生器等各種雷射發生器。由脈衝雷射發生器110產生的多個雷射脈衝LP間的時間間隔可為100ns以下。 The pulsed laser generator 110 can continuously land at a fixed time interval A plurality of laser pulses LP are generated. The pulsed laser generator 110 can be classified into various laser generators such as a gas laser generator, a liquid laser generator, and a solid laser generator depending on the type of the substance that generates the laser. The time interval between the plurality of laser pulses LP generated by the pulsed laser generator 110 may be 100 ns or less.
光調變器120可發揮選擇性地提取入射於光調變器120的雷射脈衝LP中的一部分的作用。光調變器120可包括電光調變器(EOM:electro optics modulator)及聲光調變器(AOM:acoustic optics modulator)。 The light modulator 120 can function to selectively extract a portion of the laser pulses LP incident on the light modulator 120. The light modulator 120 may include an electro-optical modulator (EOM) and an acoustic optics modulator (AOM).
控制部130可對光調變器120施加電訊號而控制光調變器120的驅動。控制部130於光調變器120為電光調變器的情形時,可施加電壓,於光調變器120為聲光調變器時,可施加高頻功率而控制光調變器120的驅動。 The control unit 130 can control the driving of the optical modulator 120 by applying an electrical signal to the optical modulator 120. When the optical modulator 120 is an electro-optical modulator, the control unit 130 can apply a voltage. When the optical modulator 120 is an acousto-optic modulator, the high-frequency power can be applied to control the driving of the optical modulator 120. .
於光調變器120為電光調變器的情形時,可利用泡克耳斯效應(Pockels effect)選擇性地提取雷射脈衝LP。可於通過電光調變器的雷射束的光路徑上定位有偏光分束器(PBS:polarization beam splitter)(未圖示)。若控制部130對電光調變器施加電壓,則電光調變器介質的折射率發生變化,藉此可改變光的偏光方向。可利用上述方法僅選擇性地提取由脈衝雷射發生器110產生的雷射脈衝LP中的一部分,並且亦可對所提取的雷射脈衝LP的強度進行調節。 In the case where the optical modulator 120 is an electro-optic modulator, the laser pulse LP can be selectively extracted using the Pockels effect. A polarization beam splitter (PBS) (not shown) may be positioned on the light path of the laser beam passing through the electro-optical modulator. When the control unit 130 applies a voltage to the electro-optical modulator, the refractive index of the electro-optical modulator medium changes, whereby the polarization direction of the light can be changed. Only a part of the laser pulses LP generated by the pulsed laser generator 110 can be selectively extracted by the above method, and the intensity of the extracted laser pulses LP can also be adjusted.
例如,偏光分束器可使P型光線通過,使S型光線反射,通過電光調變器的雷射脈衝LP可具有P型偏光方向。因 此,於藉由控制部130而對電光調變器施加電壓前,雷射脈衝LP無法通過偏光分束器。若控制部130對電光調變器施加電壓,則雷射脈衝LP的偏光方向旋轉,可通過偏光分束器。並且,藉由調節電壓的大小,可對雷射脈衝LP的偏光方向的旋轉角度進行調節,藉此亦可對提取的雷射脈衝LP的強度進行調節。 For example, the polarizing beam splitter can pass P-type light to reflect the S-type light, and the laser pulse LP through the electro-optic modulator can have a P-type polarization direction. because Therefore, the laser pulse LP cannot pass through the polarization beam splitter until the voltage is applied to the electro-optical modulator by the control unit 130. When the control unit 130 applies a voltage to the electro-optical modulator, the polarization direction of the laser pulse LP is rotated, and the polarizing beam splitter can be passed. Further, by adjusting the magnitude of the voltage, the rotation angle of the polarization direction of the laser pulse LP can be adjusted, whereby the intensity of the extracted laser pulse LP can also be adjusted.
於光調變器120為聲光調變器的情形時,若控制部130對聲光調變器施加高頻功率,則會因聲光調變器介質的折射率的週期性的變化而產生因繞射光柵引起的光的繞射現象。藉此,入射於聲光調變器的雷射脈衝LP間會產生路徑差,可利用路徑差僅選擇性地提取雷射脈衝LP中的一部分。並且,亦可藉由對施加至聲光調變器的高頻功率大小進行調節而調節提取的雷射脈衝LP的強度。 In the case where the optical modulator 120 is an acousto-optic modulator, if the control unit 130 applies high frequency power to the acousto-optic modulator, a periodic change in the refractive index of the acousto-optic modulator medium is generated. Diffraction of light due to diffraction gratings. Thereby, a path difference is generated between the laser pulses LP incident on the acousto-optic modulator, and only a part of the laser pulses LP can be selectively extracted using the path difference. Moreover, the intensity of the extracted laser pulse LP can also be adjusted by adjusting the magnitude of the high frequency power applied to the acousto-optic modulator.
光放大器140放大藉由光調變器120提取的多個雷射脈衝LP而輸出。若雷射脈衝LP輸入至光放大器140,則可驅逐反轉分佈的能量而放大雷射脈衝LP的能量。之後對累積至光放大器140的放大介質的能量與放大雷射脈衝LP的關係進行敍述。 The optical amplifier 140 amplifies and outputs a plurality of laser pulses LP extracted by the optical modulator 120. If the laser pulse LP is input to the optical amplifier 140, the energy of the laser pulse LP can be amplified by expelling the energy of the reversed distribution. The relationship between the energy of the amplifying medium accumulated to the optical amplifier 140 and the amplified laser pulse LP will be described later.
圖2a是表示於連續地對光放大器140施加激發能時累積至放大介質的能量與飽和時間的關係的曲線圖。 Fig. 2a is a graph showing the relationship between the energy accumulated to the amplifying medium and the saturation time when the excitation energy is continuously applied to the optical amplifier 140.
參照圖2a,於固定時間內、即到達飽和時間ts為止,積蓄的能量持續增加。飽和時間ts根據放大介質而不同,於稀土 類離子的情形時,通常為數微秒(ms:micro second)至數十微秒區域。 Referring to Fig. 2a, the accumulated energy continues to increase during a fixed time, that is, until the saturation time ts. The saturation time ts varies according to the amplifying medium, and the rare earth In the case of a class ion, it is usually in the range of a few microseconds (ms: micro second) to several tens of microseconds.
圖2b及圖2c是表示於連續地對光放大器施加激發能來週期性地入射雷射脈衝LP而放大輸出時累積至光放大器140介質的能量、輸入雷射脈衝LP及輸出雷射脈衝LP的曲線圖。 2b and 2c are diagrams showing the energy accumulated in the medium of the optical amplifier 140, the input laser pulse LP, and the output laser pulse LP when the excitation energy is continuously applied to the optical amplifier to periodically input the laser pulse LP to amplify the output. Graph.
參照圖2b,於在脈衝雷射發生器110產生後藉由光調變器120而選擇性地提取的雷射脈衝LP間的時間間隔t1可大於或等於飽和時間ts。即,於一個雷射脈衝LP輸入至光放大器140後,至輸入下一雷射脈衝LP時為止的時間大於或等於飽和時間ts。於首先輸入的雷射脈衝LP藉由光放大器140放大後,且於輸入下一雷射脈衝LP前,累積於光放大器140的放大介質的能量可成為飽和狀態。因此,亦可充分地放大之後輸入的雷射脈衝LP,藉此首先輸入的雷射脈衝LP與之後輸入的雷射脈衝LP的輸出可相同。 Referring to FIG. 2b, the time interval t1 between the laser pulses LP selectively extracted by the optical modulator 120 after the generation of the pulsed laser generator 110 may be greater than or equal to the saturation time ts. That is, the time until the input of the next laser pulse LP after one laser pulse LP is input to the optical amplifier 140 is greater than or equal to the saturation time ts. After the laser pulse LP input first is amplified by the optical amplifier 140, and before the input of the next laser pulse LP, the energy of the amplifying medium accumulated in the optical amplifier 140 can be saturated. Therefore, the laser pulse LP input thereafter can also be sufficiently amplified, whereby the laser pulse LP input first can be the same as the output of the laser pulse LP input later.
參照圖2c,於在脈衝雷射發生器110產生後藉由光調變器120而選擇性地提取的雷射脈衝LP間的時間間隔t2可小於飽和時間ts。即,於一個雷射脈衝LP輸入至光放大器140後,至輸入下一雷射脈衝LP時為止的時間小於飽和時間ts。於首先輸入的雷射脈衝LP藉由光放大器140放大後,且於輸入下一雷射脈衝LP前,累積於光放大器140的放大介質的能量可為達到飽和狀態前。因此,之後輸入的雷射脈衝LP的放大程度會小於首先輸入的雷射脈衝LP,藉此首先輸入的雷射脈衝LP可具有大 於之後輸入的雷射脈衝LP的輸出值。並且,若輸入能量較低,則放大效率亦下降,因此若具有小於飽和時間ts的時間間隔t2的雷射脈衝LP連續地輸入至光放大器140,則輸出的雷射脈衝LP會表現出逐漸減小的輸出。 Referring to FIG. 2c, the time interval t2 between the laser pulses LP selectively extracted by the optical modulator 120 after the generation of the pulsed laser generator 110 may be less than the saturation time ts. That is, the time until the input of the next laser pulse LP after one laser pulse LP is input to the optical amplifier 140 is less than the saturation time ts. After the first input laser pulse LP is amplified by the optical amplifier 140, and before the input of the next laser pulse LP, the energy of the amplifying medium accumulated in the optical amplifier 140 may be before the saturation state is reached. Therefore, the degree of amplification of the input laser pulse LP afterwards may be smaller than the laser pulse LP input first, whereby the laser pulse LP input first may have a large The output value of the laser pulse LP input afterwards. Further, if the input energy is low, the amplification efficiency also decreases. Therefore, if the laser pulse LP having the time interval t2 smaller than the saturation time ts is continuously input to the optical amplifier 140, the output laser pulse LP exhibits a gradual decrease. Small output.
圖3a至圖3d是表示利用本發明的一實施例的脈衝控制裝置100選擇性地提取雷射脈衝LP而放大的過程圖。 3a to 3d are process diagrams showing amplification by selectively extracting the laser pulse LP by the pulse control device 100 according to an embodiment of the present invention.
參照圖3a,由脈衝雷射發生器110產生的雷射脈衝LP可彼此具有固定的時間間隔。雷射脈衝LP間的時間間隔可為100ns以下,可小於光放大器140的飽和時間ts。 Referring to Figure 3a, the laser pulses LP produced by the pulsed laser generator 110 can have a fixed time interval from each other. The time interval between the laser pulses LP may be 100 ns or less, which may be less than the saturation time ts of the optical amplifier 140.
圖3b是表示藉由控制部130而施加至光調變器120的電壓或高頻功率的曲線圖。參照圖3b,控制部130可隔以固定的時間間隔而對光調變器120施加隨時間保持固定的電壓或高頻功率。 FIG. 3b is a graph showing voltage or high frequency power applied to the optical modulator 120 by the control unit 130. Referring to FIG. 3b, the control unit 130 may apply a fixed voltage or high frequency power to the optical modulator 120 over a fixed time interval.
圖3c是表示藉由光調變器120而選擇性地提取的雷射脈衝LP的圖。已對控制部130施加隨時間保持固定的電壓或高頻功率,因此藉由光調變器120提取的雷射脈衝LP會具有相同的輸出。於未對光調變器120施加電壓或高頻功率的區間內,不會提取雷射脈衝LP。 FIG. 3c is a diagram showing the laser pulse LP selectively extracted by the optical modulator 120. The control unit 130 has been applied with a fixed voltage or high frequency power over time, so the laser pulses LP extracted by the optical modulator 120 will have the same output. The laser pulse LP is not extracted in a section where no voltage or high frequency power is applied to the optical modulator 120.
圖3d是表示於在光調變器120提取後藉由光放大器140而放大的雷射脈衝LP的圖。參照圖3d,屬於同一族群的雷射脈衝LP間的時間間隔可小於光放大器140的飽和時間ts。因此,於首先輸入的雷射脈衝LP藉由光放大器140放大後,且於 輸入下一雷射脈衝LP前,累積於光放大器140的放大介質的能量可為達到飽和狀態前。因此,之後輸入的雷射脈衝LP的放大程度會小於首先輸入的雷射脈衝LP,藉此首先輸入的雷射脈衝LP可具有大於之後輸入的雷射脈衝LP的輸出值。並且,若輸入能量較低,則放大效率亦下降,因此若具有小於飽和時間ts的時間間隔的雷射脈衝LP連續地輸入至光放大器140,則輸出的雷射脈衝LP會表現出逐漸減小的輸出。於未對光調變器120施加電壓或高頻功率的區間內,無輸入至光放大器140的雷射脈衝LP,因此累積於光放大器140的放大介質的能量會再次達到飽和狀態。此時,若對光放大器140輸入具有小於飽和時間ts的時間間隔的雷射脈衝LP,則會再次輸出表現出逐漸減小的輸出的雷射脈衝LP。 FIG. 3d is a diagram showing the laser pulse LP amplified by the optical amplifier 140 after the optical modulator 120 is extracted. Referring to FIG. 3d, the time interval between the laser pulses LP belonging to the same group may be smaller than the saturation time ts of the optical amplifier 140. Therefore, after the laser pulse LP input first is amplified by the optical amplifier 140, and Before the input of the next laser pulse LP, the energy of the amplifying medium accumulated in the optical amplifier 140 may be before the saturation state is reached. Therefore, the degree of amplification of the input laser pulse LP afterwards may be smaller than the laser pulse LP input first, whereby the laser pulse LP input first may have an output value larger than the laser pulse LP input later. Further, if the input energy is low, the amplification efficiency also decreases. Therefore, if the laser pulse LP having a time interval smaller than the saturation time ts is continuously input to the optical amplifier 140, the output laser pulse LP exhibits a gradual decrease. Output. In the section where no voltage or high-frequency power is applied to the optical modulator 120, there is no laser pulse LP input to the optical amplifier 140, and thus the energy of the amplifying medium accumulated in the optical amplifier 140 is again saturated. At this time, if a laser pulse LP having a time interval smaller than the saturation time ts is input to the optical amplifier 140, the laser pulse LP exhibiting a gradually decreasing output is output again.
於藉由控制部130而對光調變器120施加電壓或高頻功率的區間,提取雷射脈衝LP,雷射脈衝LP間的時間間隔可為100ns以下。相反地,於未對光調變器120施加電壓或高頻功率的區間,不輸出雷射脈衝LP,不施加電壓或高頻功率的時間可為數百ns以上。因此,可根據控制部130是否對光調變器120施加電壓或高頻功率而以數百ns以上的時間為週期反覆具有100ns以下的時間間隔的雷射脈衝LP的群組,可將上述情形稱為脈衝串模式。圖4a至圖4d是表示利用本發明的一實施例的脈衝控制裝置100選擇性地提取雷射脈衝LP而放大的過程圖。 The laser pulse LP is extracted in a section where the voltage or high frequency power is applied to the optical modulator 120 by the control unit 130, and the time interval between the laser pulses LP can be 100 ns or less. Conversely, the laser pulse LP is not output in a section where no voltage or high frequency power is applied to the optical modulator 120, and the time during which no voltage or high frequency power is applied may be several hundred ns or more. Therefore, the above-described situation can be repeated depending on whether or not the control unit 130 applies a voltage or a high-frequency power to the optical modulator 120 and repeats a group of laser pulses LP having a time interval of 100 ns or less in a period of several hundred ns or more. It is called burst mode. 4a to 4d are process diagrams showing amplification by selectively extracting the laser pulse LP by the pulse control device 100 according to an embodiment of the present invention.
參照圖4a,由脈衝雷射發生器110產生的雷射脈衝LP 可彼此具有固定的時間間隔。雷射脈衝LP間的時間間隔可為100ns以下,可小於光放大器140的飽和時間ts。 Referring to Figure 4a, the laser pulse LP generated by the pulsed laser generator 110 They can have a fixed time interval from each other. The time interval between the laser pulses LP may be 100 ns or less, which may be less than the saturation time ts of the optical amplifier 140.
圖4b是表示藉由控制部130而施加至光調變器120的電壓或高頻功率的曲線圖。參照圖4b,控制部130可隔以固定的時間間隔而對光調變器120施加隨時間增加的電壓或高頻功率。 4b is a graph showing voltage or high frequency power applied to the optical modulator 120 by the control unit 130. Referring to FIG. 4b, the control portion 130 may apply a voltage or high frequency power that is increased with time to the optical modulator 120 at a fixed time interval.
圖4c是表示藉由光調變器120而選擇性地提取的雷射脈衝LP的圖。已對控制部130施加隨時間增加的電壓或高頻功率,因此藉由光調變器120提取的雷射脈衝LP可具有隨時間增加的輸出。於未對光調變器120施加電壓或高頻功率的區間,不會提取雷射脈衝LP。 FIG. 4c is a diagram showing the laser pulse LP selectively extracted by the optical modulator 120. The voltage or high frequency power that has increased with time has been applied to the control portion 130, and thus the laser pulse LP extracted by the light modulator 120 may have an output that increases with time. The laser pulse LP is not extracted in a section where no voltage or high frequency power is applied to the optical modulator 120.
圖4d是表示於在光調變器120提取後藉由光放大器140而放大的雷射脈衝LP的圖。參照圖4d,屬於同一族群的雷射脈衝LP間的時間間隔可小於光放大器140的飽和時間ts。因此,於首先輸入的雷射脈衝LP藉由光放大器140放大後,且於輸入下一雷射脈衝LP前,累積於光放大器140的放大介質的能量可為達到飽和狀態前。因此,之後輸入的雷射脈衝LP的放大程度會小於首先輸入的雷射脈衝LP。然而,參照圖4c,首先輸入的雷射脈衝LP的輸出表現出小於之後輸入的雷射脈衝LP的輸出的值,因此藉由光放大器140而放大的雷射脈衝LP的輸出可相同。 4d is a diagram showing a laser pulse LP amplified by the optical amplifier 140 after being extracted by the optical modulator 120. Referring to FIG. 4d, the time interval between the laser pulses LP belonging to the same group may be less than the saturation time ts of the optical amplifier 140. Therefore, after the first input laser pulse LP is amplified by the optical amplifier 140, and before the input of the next laser pulse LP, the energy of the amplifying medium accumulated in the optical amplifier 140 can be before the saturation state is reached. Therefore, the degree of amplification of the input laser pulse LP afterwards is smaller than that of the first input laser pulse LP. However, referring to FIG. 4c, the output of the first input laser pulse LP exhibits a value smaller than the output of the laser pulse LP input later, and thus the output of the laser pulse LP amplified by the optical amplifier 140 can be the same.
於藉由控制部130而對光調變器120施加電壓或高頻功率的區間,提取雷射脈衝LP,雷射脈衝LP間的時間間隔可為 100ns以下。相反地,於未對光調變器120施加電壓或高頻功率的區間,不輸出雷射脈衝LP,不施加電壓或高頻功率的時間可為數百ns以上。因此,可根據控制部130是否對光調變器120施加電壓或高頻功率而以數百ns以上時間為週期反覆具有100ns以下的時間間隔的雷射脈衝LP的群組,可將上述情形稱為脈衝串模式。根據上述實施例,可藉由任意地調節施加至光調變器120的電訊號而根據欲進行加工的對象物的種類實現各種脈衝串模式,藉此可提高生產性。並且,與利用光學系統產生雷射脈衝LP的脈衝串模式的情形相比,可於空間上變簡單。 The laser pulse LP is extracted in a section where the voltage or high frequency power is applied to the optical modulator 120 by the control unit 130, and the time interval between the laser pulses LP may be Below 100ns. Conversely, the laser pulse LP is not output in a section where no voltage or high frequency power is applied to the optical modulator 120, and the time during which no voltage or high frequency power is applied may be several hundred ns or more. Therefore, depending on whether the control unit 130 applies a voltage or a high-frequency power to the optical modulator 120, the group of laser pulses LP having a time interval of 100 ns or less is repeated for a period of several hundred ns or longer. In burst mode. According to the above embodiment, various pulse train patterns can be realized depending on the kind of the object to be processed by arbitrarily adjusting the electric signal applied to the optical modulator 120, whereby productivity can be improved. Moreover, it is spatially simpler than the case of generating a burst mode of the laser pulse LP by the optical system.
圖5a至圖5d是表示利用本發明的一實施例的脈衝控制裝置100選擇性地提取雷射脈衝PL而放大的過程圖。 5a to 5d are process diagrams showing amplification by selectively extracting the laser pulse PL by the pulse control device 100 according to an embodiment of the present invention.
參照圖5a,由脈衝雷射發生器110產生的雷射脈衝LP可彼此具有固定的時間間隔。雷射脈衝LP間的時間間隔可為100ns以下,可小於光放大器140的飽和時間ts。 Referring to Figure 5a, the laser pulses LP produced by the pulsed laser generator 110 can have a fixed time interval from each other. The time interval between the laser pulses LP may be 100 ns or less, which may be less than the saturation time ts of the optical amplifier 140.
圖5b是表示藉由控制部130而施加至光調變器120的電壓或高頻功率的曲線圖。參照圖4b,控制部130可隔以固定的時間間隔對光調變器120施加隨時間減少後增加的電壓或高頻功率。 FIG. 5b is a graph showing voltage or high frequency power applied to the optical modulator 120 by the control unit 130. Referring to FIG. 4b, the control unit 130 may apply a voltage or high frequency power that is increased with time after being applied to the optical modulator 120 at a fixed time interval.
圖5c是表示藉由光調變器120而選擇性地提取的雷射脈衝LP的圖。已對控制部130施加隨時間減少後增加的電壓或高頻功率,因此藉由光調變器120而提取的雷射脈衝LP可具有隨時間減少後增加的輸出。於未對光調變器120施加電壓或高頻 功率的區間,不會提取雷射脈衝LP。 FIG. 5c is a diagram showing the laser pulse LP selectively extracted by the optical modulator 120. The voltage or high frequency power that is increased after decreasing with time has been applied to the control portion 130, and thus the laser pulse LP extracted by the light modulator 120 may have an output that increases as time decreases. No voltage or high frequency is applied to the optical modulator 120 The power interval does not extract the laser pulse LP.
圖5d是表示於在光調變器120提取後藉由光放大器140而放大的雷射脈衝LP的圖。參照圖5d,屬於同一族群的雷射脈衝LP間的時間間隔可小於光放大器140的飽和時間ts。因此,於首先輸入的雷射脈衝LP藉由光放大器140放大後,且於輸入下一雷射脈衝LP前,累積於光放大器140的放大介質的能量可為達到飽和狀態前。因此,之後輸入的雷射脈衝LP的放大程度會小於首先輸入的雷射脈衝LP。可藉由對輸入至光調變器120的電壓或高頻功率進行調節而調節通過光調變器120的雷射脈衝LP的輸出減少的區間與增加的區間的形態。藉此,藉由光放大器140而輸出的雷射脈衝LP的輸出的形態可呈減少後增加而左右對稱的形態。 FIG. 5d is a diagram showing the laser pulse LP amplified by the optical amplifier 140 after the optical modulator 120 is extracted. Referring to FIG. 5d, the time interval between the laser pulses LP belonging to the same group may be smaller than the saturation time ts of the optical amplifier 140. Therefore, after the first input laser pulse LP is amplified by the optical amplifier 140, and before the input of the next laser pulse LP, the energy of the amplifying medium accumulated in the optical amplifier 140 can be before the saturation state is reached. Therefore, the degree of amplification of the input laser pulse LP afterwards is smaller than that of the first input laser pulse LP. The section in which the output of the laser pulse LP passing through the optical modulator 120 is reduced and the form of the increased section can be adjusted by adjusting the voltage or the high frequency power input to the optical modulator 120. Thereby, the form of the output of the laser pulse LP outputted by the optical amplifier 140 can be reduced and then increased in a bilaterally symmetrical form.
於藉由控制部130而對光調變器120施加電壓或高頻功率的區間,提取雷射脈衝LP,雷射脈衝LP間的時間間隔可為100ns以下。相反地,於未對光調變器120施加電壓或高頻功率的區間,不輸出雷射脈衝LP,不施加電壓或高頻功率的時間可為數百ns以上。因此,可根據控制部130是否對光調變器120施加電壓或高頻功率而以數百ns以上的時間為週期反覆具有100ns以下的時間間隔的雷射脈衝LP的群組,可將上述情形稱為脈衝串模式。 The laser pulse LP is extracted in a section where the voltage or high frequency power is applied to the optical modulator 120 by the control unit 130, and the time interval between the laser pulses LP can be 100 ns or less. Conversely, the laser pulse LP is not output in a section where no voltage or high frequency power is applied to the optical modulator 120, and the time during which no voltage or high frequency power is applied may be several hundred ns or more. Therefore, the above-described situation can be repeated depending on whether or not the control unit 130 applies a voltage or a high-frequency power to the optical modulator 120 and repeats a group of laser pulses LP having a time interval of 100 ns or less in a period of several hundred ns or more. It is called burst mode.
根據上述實施例,可藉由任意地調節施加至光調變器120的電訊號而根據欲進行加工的對象物的種類實現各種脈衝串 模式,藉此可提高生產性。並且,與利用光學系統產生雷射脈衝LP的脈衝串模式的情形相比,可於空間上變簡單。 According to the above embodiment, various pulse trains can be realized according to the kind of the object to be processed by arbitrarily adjusting the electric signal applied to the optical modulator 120. Mode, which increases productivity. Moreover, it is spatially simpler than the case of generating a burst mode of the laser pulse LP by the optical system.
本發明的上述說明為示例,於本發明所屬技術領域內具有常識者應可理解,可不變更本發明的技術思想或必要特徵而容易地變形為其他具體形態。因此,以上所記述的實施例僅應理解為於所有方面均為示例,並不具有限定性。例如,說明為單一形態的各構成要素可分散實施,相同地,說明為分散形態的構成要素亦能夠以結合的形態實施。 The above description of the present invention is exemplified, and those skilled in the art to which the present invention pertains can be understood, and can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. Therefore, the above described embodiments are to be considered as illustrative only and not limiting. For example, it is explained that each constituent element in a single form can be dispersedly implemented, and the constituent elements in a dispersed form can also be implemented in a combined form.
本發明的範圍相較上述詳細說明而由下文將述的申請專利範圍界定,且應解釋為根據申請專利範圍的含義、範圍及其等同概念導出的所有變更或變形的形態包括於本發明的範圍內。 The scope of the present invention is defined by the scope of the present invention as defined by the appended claims, and the scope of the invention Inside.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160017860A KR101787483B1 (en) | 2016-02-16 | 2016-02-16 | Laser pulse controlling apparatus and method for controlling laser pulses |
??10-2016-0017860 | 2016-02-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201740643A TW201740643A (en) | 2017-11-16 |
TWI644492B true TWI644492B (en) | 2018-12-11 |
Family
ID=59625230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105130292A TWI644492B (en) | 2016-02-16 | 2016-09-20 | Pulse controlling apparatus and method for controlling pulses |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101787483B1 (en) |
CN (1) | CN108780978A (en) |
TW (1) | TWI644492B (en) |
WO (1) | WO2017142155A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102231118B1 (en) * | 2019-04-18 | 2021-03-24 | 김영태 | Laser device based by laser diode |
WO2024057493A1 (en) * | 2022-09-15 | 2024-03-21 | 三菱電機株式会社 | Laser device, laser processing device, learning device, inference device, laser processing system, and laser processing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080203071A1 (en) * | 2003-08-19 | 2008-08-28 | Electro Scientific Industries, Inc. | Link processing using laser pulses with specially tailored power profiles |
US20100177794A1 (en) * | 2009-01-15 | 2010-07-15 | Electro Scientific Industries, Inc. | Pulse temporal programmable ultrafast burst mode laser for micromachining |
TW201250832A (en) * | 2011-06-15 | 2012-12-16 | Applied Materials Inc | Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK4787A (en) | 1986-01-06 | 1987-07-07 | Rank Taylor Hobson Ltd | APPARATUS AND METHOD FOR MEASURING USING POLARIZED MODULATION OF A RADIATED Beam |
US5892357A (en) | 1995-12-08 | 1999-04-06 | Lockheed Martin Idaho Technologies Company | Electro-optic voltage sensor for sensing voltage in an E-field |
US7158553B2 (en) * | 2003-02-14 | 2007-01-02 | Lambda Physik Ag | Master oscillator/power amplifier excimer laser system with pulse energy and pointing control |
KR20100135850A (en) * | 2008-03-31 | 2010-12-27 | 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 | Combining multiple laser beams to form high repetition rate, high average power polarized laser beam |
KR101176447B1 (en) * | 2011-04-28 | 2012-08-30 | 광주과학기술원 | Pulse laser system with flexible burst mode operation and method of flexible burst mode operation |
US8958705B2 (en) * | 2012-01-13 | 2015-02-17 | Esi-Pyrophotonics Lasers Inc. | Methods and systems for a pulsed laser source emitting a predetermined output pulse profile |
WO2013185792A1 (en) * | 2012-06-12 | 2013-12-19 | Photon Energy Gmbh | Short pulse laser with amplifier and adjustable pulse sequence |
DK2789061T3 (en) * | 2013-02-27 | 2017-02-20 | Wavelight Gmbh | WASTE DEVICE AND METHOD FOR LASER PROCESSING A TARGET MATERIAL |
CN103500913B (en) * | 2013-09-30 | 2015-11-25 | 中国科学院高能物理研究所 | Pulse optical fiber and laser pulse generation method |
-
2016
- 2016-02-16 KR KR1020160017860A patent/KR101787483B1/en active IP Right Grant
- 2016-09-12 CN CN201680081531.5A patent/CN108780978A/en active Pending
- 2016-09-12 WO PCT/KR2016/010234 patent/WO2017142155A1/en active Application Filing
- 2016-09-20 TW TW105130292A patent/TWI644492B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080203071A1 (en) * | 2003-08-19 | 2008-08-28 | Electro Scientific Industries, Inc. | Link processing using laser pulses with specially tailored power profiles |
US20100177794A1 (en) * | 2009-01-15 | 2010-07-15 | Electro Scientific Industries, Inc. | Pulse temporal programmable ultrafast burst mode laser for micromachining |
TW201250832A (en) * | 2011-06-15 | 2012-12-16 | Applied Materials Inc | Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch |
Also Published As
Publication number | Publication date |
---|---|
WO2017142155A1 (en) | 2017-08-24 |
KR20170096457A (en) | 2017-08-24 |
CN108780978A (en) | 2018-11-09 |
TW201740643A (en) | 2017-11-16 |
KR101787483B1 (en) | 2017-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7724787B2 (en) | Method and system for tunable pulsed laser source | |
US9450368B2 (en) | Pulse laser device and burst mode using same, and method for controlling a variable burst mode | |
CA2743373C (en) | Device and method for generating bursts of picosecond optical sub-pulses | |
US7813389B2 (en) | Generating laser pulses of prescribed pulse shapes programmed through combination of separate electrical and optical modulators | |
US20120250707A1 (en) | Stabilization of pulsed mode seed lasers | |
US8582614B2 (en) | Laser amplification system and method for generating retrievable laser pulses | |
KR20090058547A (en) | Method and system for a pulsed laser source emitting shaped optical waveforms | |
US9859675B2 (en) | Laser light-source apparatus and laser pulse light generating method | |
TWI640140B (en) | Via-hole drilling in a printed circuit board using a carbon monoxide laser | |
US9680285B2 (en) | Laser light-source apparatus and laser pulse light generating method | |
TWI644492B (en) | Pulse controlling apparatus and method for controlling pulses | |
KR101145683B1 (en) | Method of oscillating burst mode in laser system and apparatus for the same | |
WO2014141973A1 (en) | Pulse laser device | |
CN105591280A (en) | Apparatus and method for generating ultrashort pulse laser | |
JP6931243B2 (en) | Laser light source device and laser pulse light generation method | |
KR101176447B1 (en) | Pulse laser system with flexible burst mode operation and method of flexible burst mode operation | |
US11495934B1 (en) | Tailored laser pulse trains for burst-mode illumination | |
TWI464983B (en) | Ultrafast laser generating system and method thereof | |
KR101262346B1 (en) | Method of flexible burst mode operation of pulse laser system with multiple seed and laser system with flexible burst mode operation | |
KR20160118723A (en) | Apparatus for generating buster mode pulse laser | |
US12126133B2 (en) | Fiber-based high repetition rate femtosecond laser source and laser processing system including the same | |
US20230078875A1 (en) | Fiber-based high repetition rate femtosecond laser source and laser processing system including the same | |
Černe et al. | Femtosecond pulse on demand from hybrid laser system | |
CN115210974A (en) | Laser processing device and laser processing method | |
Raymond et al. | Pulse-train amplification of subnanosecond near-transform-limited KrF laser pulses |