TWI642904B - Measurement system, control device and measurement method - Google Patents

Measurement system, control device and measurement method Download PDF

Info

Publication number
TWI642904B
TWI642904B TW106144356A TW106144356A TWI642904B TW I642904 B TWI642904 B TW I642904B TW 106144356 A TW106144356 A TW 106144356A TW 106144356 A TW106144356 A TW 106144356A TW I642904 B TWI642904 B TW I642904B
Authority
TW
Taiwan
Prior art keywords
information
measurement
time
timer
timing
Prior art date
Application number
TW106144356A
Other languages
Chinese (zh)
Other versions
TW201835529A (en
Inventor
鈴木祐太
椹木洋
近藤智則
金谷義宏
Original Assignee
日商歐姆龍股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商歐姆龍股份有限公司 filed Critical 日商歐姆龍股份有限公司
Publication of TW201835529A publication Critical patent/TW201835529A/en
Application granted granted Critical
Publication of TWI642904B publication Critical patent/TWI642904B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/02Digital computers in general; Data processing equipment in general manually operated with input through keyboard and computation using a built-in program, e.g. pocket calculators
    • G06F15/025Digital computers in general; Data processing equipment in general manually operated with input through keyboard and computation using a built-in program, e.g. pocket calculators adapted to a specific application
    • G06F15/0275Digital computers in general; Data processing equipment in general manually operated with input through keyboard and computation using a built-in program, e.g. pocket calculators adapted to a specific application for measuring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7807System on chip, i.e. computer system on a single chip; System in package, i.e. computer system on one or more chips in a single package
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一種測量系統、控制裝置及測量方法。驅動裝置將表示測量對象的位置的資訊與來自計時器的時刻資訊相關聯,並作為第1資訊而輸出,來自計時器的時刻資訊表示獲取表示位置的資訊的時機。測量裝置將通過對測量對象進行測量而獲取的測量資訊與表示獲取測量資訊的時機的來自計時器的時刻資訊相關聯,並作為第2資訊而輸出。測量系統包括資訊生成部件,資訊生成部件基於一個或多個第1資訊,算出與第2資訊中所含的時刻資訊相關聯的位置,並且基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示測量對象的形狀的資訊。A measurement system, a control device and a measurement method. The driving device correlates the information indicating the position of the measurement target with the time information from the timer and outputs it as the first information. The time information from the timer indicates the timing of acquiring the information indicating the position. The measurement device correlates the measurement information acquired by measuring the measurement object with the time information from the timer indicating the timing of acquiring the measurement information, and outputs it as the second information. The measurement system includes an information generation component that calculates a position associated with the time information included in the second information based on one or more first information, and based on the calculated position associated with the shared time information. In combination with the measurement information, information indicating the shape of the measurement object is generated.

Description

測量系統、控制裝置及測量方法Measurement system, control device and measurement method

本發明是有關於一種測量系統、控制裝置及測量方法,所述測量系統包含對測量對象進行測量的測量裝置及使測量裝置與測量對象之間的相對位置關係發生變化的驅動裝置。 The invention relates to a measurement system, a control device, and a measurement method. The measurement system includes a measurement device that measures a measurement object and a driving device that changes a relative position relationship between the measurement device and the measurement object.

隨著近年來的資訊和通信技術(Information and Communication Technology,ICT)的進步,提出在生產現場也將控制裝置與各種測量裝置經由網路(network)等而統合的系統。 With the advancement of information and communication technology (ICT) in recent years, a system is proposed in which a control device and various measurement devices are integrated at a production site via a network or the like.

在用於此種系統的網路中,包含控制裝置及測量裝置的各設備(device)具有經彼此同步的計時器(timer),基於由此種經彼此同步的計時器所管理的時機(timing),來保證固定週期的資料通信。例如,日本專利特開2009-157913號公報(專利文獻1)揭示了一種結構,其即使在包含具備納秒(ns)級(order)計時功能的計時部件的單元間,也能夠以相對較短時間進行時間同步而不會對控制造成影響。 In a network used for such a system, each device including a control device and a measurement device has a timer synchronized with each other, and is based on timing managed by such synchronized timers. ) To ensure fixed-cycle data communication. For example, Japanese Patent Application Laid-Open No. 2009-157913 (Patent Document 1) discloses a structure that enables a relatively short time even between units including a timing component having a nanosecond (ns) timing function. Time is time synchronized without affecting control.

[現有技術文獻] [Prior Art Literature]

[專利文獻] [Patent Literature]

專利文獻1:日本專利特開2009-157913號公報 Patent Document 1: Japanese Patent Laid-Open No. 2009-157913

所述日本專利特開2009-157913號公報(專利文獻1)雖揭示了在連接於網路的設備間維持計時器同步的技術,但對於彙集由各設備所獲取的資料的、作為系統整體的處理未作任何啟示。 The Japanese Patent Application Laid-Open No. 2009-157913 (Patent Document 1) discloses a technique for maintaining timer synchronization between devices connected to a network. The treatment did not make any revelation.

本發明的一個目的在於提供一種測量系統,即使針對測量對象的測量裝置、與使測量裝置與測量對象之間的相對位置關係發生變化的驅動裝置未直接連接,也能夠高精度地生成表示測量對象的形狀的資訊。 An object of the present invention is to provide a measurement system capable of generating and displaying a measurement object with high accuracy even if a measurement device for a measurement target and a driving device that changes a relative position relationship between the measurement device and the measurement target are not directly connected. Of shape information.

本發明的一方面的測量系統包括:測量裝置,對測量對象進行測量;以及驅動裝置,使測量裝置與測量對象之間的相對位置關係發生變化。測量裝置及驅動裝置分別具有經同步的計時器。驅動裝置將表示測量對象的位置的資訊、與來自計時器的時刻資訊相關聯,並作為第1資訊而輸出,所述來自計時器的時刻資訊表示獲取表示所述位置的資訊的時機。測量裝置將通過對測量對象進行測量而獲取的測量資訊、與表示獲取所述測量資訊的時機的來自計時器的時刻資訊相關聯,並作為第2資訊而輸出。測量系統包括資訊生成部件,所述資訊生成部件基於一個或多個第1資訊,算出與第2資訊中所含的時刻資訊相關聯的位置,並且基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示測量對象的形狀的資訊。 A measurement system according to an aspect of the present invention includes: a measurement device that measures a measurement object; and a driving device that changes a relative position relationship between the measurement device and the measurement object. The measuring device and the driving device each have a synchronized timer. The driving device correlates the information indicating the position of the measurement target with the time information from the timer, and outputs the first information as the first information. The time information from the timer indicates the timing of acquiring the information indicating the position. The measurement device correlates the measurement information acquired by measuring the measurement object with the time information from the timer indicating the timing of acquiring the measurement information, and outputs it as the second information. The measurement system includes an information generation component that calculates a position associated with the time information contained in the second information based on one or more first information, and based on the calculated information associated with the shared time information. The combination of the position of the and measurement information generates information representing the shape of the measurement object.

優選的是,第1資訊還包括表示測量對象的加速度的資訊及表示速度的資訊,資訊生成部件基於算出對象時刻之前的時 刻的、測量對象的加速度及速度,來算出所述算出對象時刻的位置。 Preferably, the first information further includes information indicating the acceleration of the measurement target and information indicating the speed, and the information generating means calculates the time based on the time before the target time. The measured acceleration and velocity of the measurement target are calculated to calculate the position of the calculation target time.

優選的是,資訊生成部件對與處於算出對象時刻附近的時刻相關聯的多個第1資訊中所含的表示位置的資訊進行插值,從而算出所述算出對象時刻的位置。 Preferably, the information generation means calculates the position of the calculation target time by interpolating the information indicating the position included in the plurality of first information associated with the time near the calculation target time.

優選的是,測量裝置及驅動裝置經由經時機同步的網路而連接。 Preferably, the measurement device and the driving device are connected via a timing-synchronized network.

優選的是,測量系統還包括:通信主機(master),對網路上的資料通信及計時器的同步進行管理。資訊生成部件設於通信主機中。 Preferably, the measurement system further includes: a communication master (master), which manages data communication on the network and synchronization of timers. The information generating unit is provided in the communication host.

優選的是,測量裝置構成為,對測量對象照射測量光,並且接收來自測量對象的反射光,以對測量對象的特性值進行測量。第2資訊包含表示從測量光的照射開始直至照射完成為止的期間內的任意時機的時刻資訊。 Preferably, the measurement device is configured to irradiate the measurement target with measurement light and receive reflected light from the measurement target to measure a characteristic value of the measurement target. The second information includes time information indicating an arbitrary timing during the period from the irradiation of the measurement light to the completion of the irradiation.

優選的是,驅動裝置輸出第1資訊的時機、與測量裝置輸出第2資訊的時機互不相同。 Preferably, the timing at which the driving device outputs the first information and the timing at which the measuring device outputs the second information are different from each other.

本發明的另一方面的測量裝置包括:網路控制器,對測量裝置與驅動裝置進行網路連接,所述測量裝置對測量對象進行測量,所述驅動裝置使測量裝置與測量對象之間的相對位置關係發生變化;以及計時器,在測量裝置的計時器及驅動裝置的計時器之間經同步。驅動裝置將表示測量對象的位置的資訊、與來自計時器的時刻資訊相關聯,並作為第1資訊而輸出,所述來自計 時器的時刻資訊表示獲取表示所述位置的資訊的時機。測量裝置將通過對測量對象進行測量而獲取的測量資訊、與表示獲取所述測量資訊的時機的來自計時器的時刻資訊相關聯,並作為第2資訊而輸出。控制裝置包括資訊生成部件,所述資訊生成部件基於一個或多個第1資訊,算出與第2資訊中所含的時刻資訊相關聯的位置,並且基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示測量對象的形狀的資訊。 A measurement device according to another aspect of the present invention includes a network controller that performs a network connection between the measurement device and a driving device, the measurement device measures a measurement object, and the driving device enables a The relative positional relationship is changed; and the timer is synchronized between the timer of the measuring device and the timer of the driving device. The driving device correlates the information indicating the position of the measurement target and the time information from the timer, and outputs the information as the first information. The time information of the timer indicates the timing of obtaining information indicating the location. The measurement device correlates the measurement information acquired by measuring the measurement object with the time information from the timer indicating the timing of acquiring the measurement information, and outputs it as the second information. The control device includes an information generating unit that calculates a position associated with the time information contained in the second information based on one or more first information, and calculates a position based on the calculated time associated with the shared time information. The combination of the position of the and measurement information generates information representing the shape of the measurement object.

根據本發明的又一方面,提供一種測量方法,其是測量系統中的測量方法,所述測量系統包括測量裝置與驅動裝置,所述測量裝置對測量對象進行測量,所述驅動裝置使測量裝置與測量對象之間的相對位置關係發生變化。測量裝置及驅動裝置分別具有經同步的計時器。測量方法包括下述步驟:驅動裝置將表示測量對象的位置的資訊、與來自計時器的時刻資訊相關聯,並作為第1資訊而輸出,所述來自計時器的時刻資訊表示獲取表示所述位置的資訊的時機;測量裝置將通過對測量對象進行測量而獲取的測量資訊、與表示獲取所述測量資訊的時機的來自計時器的時刻資訊相關聯,並作為第2資訊而輸出;基於一個或多個第1資訊,算出與第2資訊中所含的時刻資訊相關聯的位置;以及基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示測量對象的形狀的資訊。 According to another aspect of the present invention, there is provided a measurement method, which is a measurement method in a measurement system, the measurement system includes a measurement device and a driving device, the measurement device measures a measurement object, and the driving device makes the measurement device The relative positional relationship with the measurement object changes. The measuring device and the driving device each have a synchronized timer. The measurement method includes the following steps: the drive device correlates information indicating the position of the measurement object with time information from a timer, and outputs the information as first information. The time information from the timer indicates acquiring and indicating the position. Timing of the information; the measurement device correlates the measurement information acquired by measuring the measurement object with the time information from the timer indicating the timing of acquiring the measurement information and outputs it as the second information; based on one or A plurality of first information to calculate a position associated with the time information included in the second information; and based on a combination of the calculated position and the measurement information associated with the shared time information, generating a shape indicating the shape of the measurement object Information.

本發明的測量系統即使針對測量對象的測量裝置、與使 測量裝置與測量對象之間的相對位置關係發生變化的驅動裝置未直接連接,也能夠高精度地生成表示測量對象的形狀的資訊。 The measurement system of the present invention is not limited The driving device that changes the relative positional relationship between the measurement device and the measurement object is not directly connected, and it is possible to accurately generate information indicating the shape of the measurement object.

1‧‧‧測量系統 1‧‧‧ measurement system

2‧‧‧檢查裝置 2‧‧‧Inspection device

4‧‧‧基部 4‧‧‧ base

6‧‧‧載台 6‧‧‧ carrier

10‧‧‧馬達 10‧‧‧ Motor

12‧‧‧編碼器 12‧‧‧ Encoder

14‧‧‧滾珠螺桿 14‧‧‧ball screw

20‧‧‧現場網路 20‧‧‧Live Network

100‧‧‧控制裝置 100‧‧‧control device

102、202、302‧‧‧計時器 102, 202, 302‧‧‧ Timer

104‧‧‧處理器 104‧‧‧Processor

106‧‧‧主記憶體 106‧‧‧Main memory

108‧‧‧快閃記憶體 108‧‧‧Flash memory

110‧‧‧系統程式 110‧‧‧System Program

112‧‧‧使用者程式 112‧‧‧User Program

112A‧‧‧序列程式 112A‧‧‧Sequence program

112B‧‧‧運動程式 112B‧‧‧ Exercise Program

112C‧‧‧形狀資訊生成程式 112C‧‧‧Shape Information Generation Program

114‧‧‧晶片組 114‧‧‧chipset

116‧‧‧網路控制器 116‧‧‧Network Controller

118‧‧‧存儲卡介面 118‧‧‧Memory Card Interface

120‧‧‧存儲卡 120‧‧‧Memory Card

122‧‧‧內部匯流排控制器 122‧‧‧ Internal Bus Controller

124、204、304‧‧‧現場網路控制器 124, 204, 304‧‧‧ Field Network Controller

125‧‧‧同步管理功能 125‧‧‧Synchronous management function

126‧‧‧I/O單元 126‧‧‧I / O unit

128‧‧‧內部匯流排 128‧‧‧ Internal Bus

200‧‧‧驅動單元 200‧‧‧Drive unit

206‧‧‧驅動控制器 206‧‧‧Drive Controller

208‧‧‧主電路 208‧‧‧Main circuit

210‧‧‧脈衝計數器 210‧‧‧Pulse counter

300‧‧‧測量裝置 300‧‧‧ measuring device

306‧‧‧攝像控制器 306‧‧‧ Camera Controller

308‧‧‧資料處理部 308‧‧‧Data Processing Department

310‧‧‧感測器頭 310‧‧‧Sensor head

312‧‧‧發光源 312‧‧‧light source

314‧‧‧受光元件 314‧‧‧Light receiving element

316‧‧‧鏡頭 316‧‧‧ lens

400、410‧‧‧表 400, 410‧‧‧

402、412‧‧‧時刻資訊 402, 412‧‧‧Time information

404、408、414‧‧‧動作資訊 404, 408, 414‧‧‧‧ Action Information

406、416‧‧‧測量資訊 406, 416‧‧‧Measurement Information

420‧‧‧形狀資訊 420‧‧‧ Shape Information

424、426‧‧‧時間變化 424, 426‧‧‧ Time change

As1~As4‧‧‧加速度 As1 ~ As4‧‧‧Acceleration

Dz1~Dz4‧‧‧測量值 Dz1 ~ Dz4‧‧‧Measured value

S1~S4、S(TZ1)~S(TZ4)‧‧‧位置 S1 ~ S4, S (TZ1) ~ S (TZ4) ‧‧‧Position

S100~S116、S200~S208、S300~S310‧‧‧步驟 S100 ~ S116, S200 ~ S208, S300 ~ S310‧‧‧step

SQ100~SQ140‧‧‧序列 SQ100 ~ SQ140‧‧‧Sequence

Ts‧‧‧測量週期 Ts‧‧‧Measurement period

TS1~T16‧‧‧動作時刻 TS1 ~ T16‧‧‧‧Moment of action

t1~t12‧‧‧時間 t1 ~ t12‧‧‧‧time

Texp‧‧‧攝像長度 Texp‧‧‧ camera length

TZ1~TZ5、TZ'1、TZ'2、TZ'3、TZ"1、TZ"2、TZ"3‧‧‧測量時刻 TZ1 ~ TZ5, TZ'1, TZ'2, TZ'3, TZ "1, TZ" 2, TZ "3‧‧‧Measurement time

Vs1~Vs4、Vs(TZ2)‧‧‧速度 Vs1 ~ Vs4, Vs (TZ2) ‧‧‧Speed

W‧‧‧工件 W‧‧‧ Workpiece

△TS、△TZ‧‧‧時間間隔 △ TS, △ TZ‧‧‧Time interval

△VS‧‧‧速度變化 △ VS‧‧‧Speed change

圖1是表示本實施方式的測量系統的整體結構例的示意圖。 FIG. 1 is a schematic diagram showing an overall configuration example of a measurement system according to the present embodiment.

圖2是表示構成本實施方式的測量系統的控制裝置的硬體結構例的示意圖。 FIG. 2 is a schematic diagram showing an example of a hardware configuration of a control device constituting the measurement system of the present embodiment.

圖3是表示構成本實施方式的測量系統的驅動單元的硬體結構例的示意圖。 FIG. 3 is a schematic diagram showing an example of a hardware configuration of a drive unit constituting the measurement system of the present embodiment.

圖4是表示構成本實施方式的測量系統的測量裝置的硬體結構例的示意圖。 FIG. 4 is a schematic diagram showing an example of a hardware configuration of a measurement device constituting the measurement system of the present embodiment.

圖5是用於說明本實施方式的測量系統中的驅動單元及測量裝置的動作時機的圖。 FIG. 5 is a diagram for explaining operation timings of the drive unit and the measurement device in the measurement system according to the present embodiment.

圖6是用於說明本實施方式的測量系統中的形狀資訊的生成處理的圖。 FIG. 6 is a diagram for explaining a process of generating shape information in the measurement system according to the present embodiment.

圖7是用於說明本實施方式的測量系統中的形狀資訊的生成處理的圖。 FIG. 7 is a diagram for explaining a process of generating shape information in the measurement system according to the present embodiment.

圖8是表示在本實施方式的測量系統中所執行的處理流程的序列圖。 FIG. 8 is a sequence diagram showing a flow of processing executed in the measurement system of the present embodiment.

圖9是表示構成本實施方式的測量系統的驅動單元中的處理流程的流程圖。 FIG. 9 is a flowchart showing a processing flow in a drive unit constituting the measurement system of the present embodiment.

圖10是表示構成本實施方式的測量系統的測量裝置中的處 理流程的流程圖。 FIG. 10 is a diagram showing a process in a measurement device constituting the measurement system of the present embodiment. Process flow chart.

圖11是用於說明本實施方式的測量系統中的資訊的交換及處理的圖。 FIG. 11 is a diagram for explaining exchange and processing of information in the measurement system according to the present embodiment.

圖12(A)及圖12(B)是用於說明基於加速度及速度的、動作資訊的插值處理的圖。 12 (A) and 12 (B) are diagrams for explaining interpolation processing of motion information based on acceleration and speed.

圖13是用於說明基於附近的動作資訊的、動作資訊的插值處理的圖。 FIG. 13 is a diagram for explaining interpolation processing of motion information based on nearby motion information.

圖14是用於說明構成本實施方式的測量系統的測量裝置中的曝光時間的動態決定處理的圖。 FIG. 14 is a diagram for explaining a dynamic determination process of an exposure time in the measurement device constituting the measurement system of the present embodiment.

圖15(A)至圖15(C)是用於說明在構成本實施方式的測量系統的測量裝置中動態地決定曝光時間時的影響的圖。 15 (A) to 15 (C) are diagrams for explaining the effect when the exposure time is dynamically determined in the measurement device constituting the measurement system of the present embodiment.

圖16是表示本實施方式的測量系統中的形狀資訊的生成流程的流程圖。 FIG. 16 is a flowchart showing a flow of generating shape information in the measurement system according to the present embodiment.

對於本發明的實施方式,參照附圖來進行詳細說明。另外,對於圖中相同或相當的部分,標註相同的符號並不再重複其說明。 Embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same or equivalent parts in the drawings are marked with the same symbols and their descriptions will not be repeated.

<A.測量系統的整體結構例> <A. Example of overall configuration of measurement system>

首先,對本實施方式的測量系統1的整體結構例進行說明。圖1是表示本實施方式的測量系統1的整體結構例的示意圖。 First, an overall configuration example of the measurement system 1 according to the present embodiment will be described. FIG. 1 is a schematic diagram showing an overall configuration example of a measurement system 1 according to this embodiment.

參照圖1,作為一例,本實施方式的測量系統1通過對相對於配置在檢查裝置2上的測量對象(以下也稱作“工件W”) 上的多個測量點的距離進行光學測量,從而輸出表示工件W的表面形狀的形狀資訊。 Referring to FIG. 1, as an example, the measurement system 1 according to the present embodiment is adapted to measure a measurement target (hereinafter also referred to as “workpiece W”) disposed on the inspection device 2. The distances between the plurality of measurement points are optically measured, and shape information indicating the surface shape of the workpiece W is output.

本說明書中,“形狀資訊”是表示測量對象(工件W)的形狀的資訊,為包含對測量對象設定的任意位置、與關於此位置的測量點的對應關係的概念。 In the present specification, the “shape information” is information indicating the shape of a measurement target (workpiece W), and is a concept including an arbitrary position set for the measurement target and a correspondence relationship with a measurement point about the position.

更具體而言,測量系統1包括控制裝置100、經由現場網路20而與控制裝置100連接的驅動單元200及測量裝置300,以作為主要的構成要素。測量裝置300對作為測量對象的工件W進行測量。 More specifically, the measurement system 1 includes a control device 100, a drive unit 200 connected to the control device 100 via a field network 20, and a measurement device 300 as main constituent elements. The measurement device 300 measures the workpiece W as a measurement target.

典型的是,現場網路20採用進行保證資料到達時間的固定週期通信的網路。作為此種進行固定週期通信的網路,可採用EtherCAT(注冊商標)等。 Typically, the field network 20 is a network that performs fixed-cycle communication that guarantees data arrival time. As such a network for performing fixed-cycle communication, EtherCAT (registered trademark) or the like can be used.

作為一例,控制裝置100作為現場網路20中的通信主機發揮功能。通信主機在連接於現場網路20的設備間管理計時器的同步,並且對預定資料收發等的時機的通信調度(schedule)進行管理。即,作為通信主機的控制裝置100對現場網路20上的資料通信及計時器的同步進行管理。 As an example, the control device 100 functions as a communication host in the field network 20. The communication host manages the synchronization of the timer among the devices connected to the field network 20, and manages the communication schedule of timings such as sending and receiving of scheduled data. That is, the control device 100 as a communication host manages data communication on the field network 20 and synchronization of a timer.

驅動單元200及測量裝置300作為按照來自通信主機的指示而在現場網路20上收發資料的通信從機(slave)發揮功能。 The drive unit 200 and the measurement device 300 function as a communication slave that transmits and receives data on the field network 20 in accordance with an instruction from the communication host.

更具體而言,控制裝置100具有計時器102,驅動單元200具有計時器202,測量裝置300具有計時器302。控制裝置100的計時器102產生參考(reference)時鐘等同步信號,由此,其他 計時器202、302與計時器102同步。因此,在連接於現場網路20的設備間,能夠以共同的時刻來管理資料的收發時機。 More specifically, the control device 100 has a timer 102, the drive unit 200 has a timer 202, and the measurement device 300 has a timer 302. The timer 102 of the control device 100 generates a synchronization signal such as a reference clock. The timers 202 and 302 are synchronized with the timer 102. Therefore, the timing of data transmission and reception can be managed at a common time among the devices connected to the field network 20.

如此,驅動單元200及測量裝置300分別具有經同步的計時器。驅動單元200及測量裝置300經由經時機同步的網路即現場網路20而連接,由此能夠使各個計時器間同步。 As such, the drive unit 200 and the measurement device 300 each have a synchronized timer. The drive unit 200 and the measurement device 300 are connected via a field network 20 which is a timing-synchronized network, so that the timers can be synchronized.

本說明書中,“時刻”是指確定時間流動中的某一點的資訊,除了以時分秒等預定的通常含義的時刻以外,例如還可包含現場網路內共同利用的計時器值或計數器值。“時刻”基本上由各設備所具有的計時器來管理。而且,“時刻資訊”除了“時刻”其自身以外,還包含用於確定“時刻”的資訊(例如,以某些方法對“時刻”進行編碼(encoding)所得的結果、或從某基準時刻計起的經過時間等)。 In this specification, "time" refers to the information that determines a certain point in the flow of time. In addition to the time with predetermined general meanings such as hours, minutes, and seconds, for example, it can also include timer values or counter values commonly used in the field network . The "time" is basically managed by a timer provided in each device. In addition, the "time information" includes information for determining the "time" in addition to the "time" itself (for example, a result obtained by encoding the "time" in some method, or counting from a reference time) Elapsed time since, etc.).

一般而言,在主機-從機型固定週期網路中,只要任一個以上的設備作為對計時器彼此的同步進行管理的通信主機發揮功能即可。此通信主機未必需要為控制裝置100,例如也可由驅動單元200及測量裝置300中的任一者作為通信主機發揮功能。 Generally, in a master-slave fixed-cycle network, as long as any one or more devices function as a communication master that manages synchronization of timers with each other. This communication host does not necessarily need to be the control device 100, and for example, any one of the drive unit 200 and the measurement device 300 may function as the communication host.

控制裝置100為任意電腦,典型的是,也可作為可程式設計邏輯控制器(Programmable Logic Controller,PLC)(可程式設計控制器)而具現化。控制裝置100對經由現場網路20而連接的驅動單元200給予動作指令,並且接收來自驅動單元200的資訊(包含動作資訊及時刻資訊)。而且,控制裝置100對測量裝置300給予測量指令,並且接收來自測量裝置300的資訊(包含測量 資訊及時刻資訊)。控制裝置100對來自驅動單元200及測量裝置300的各回饋(feedback)回應進行統合,生成關於工件W的形狀資訊。對於所述生成關於工件W的形狀資訊的處理,將在後文詳述。 The control device 100 is an arbitrary computer, and is typically realized as a programmable logic controller (PLC) (programmable controller). The control device 100 gives an operation instruction to the driving unit 200 connected via the field network 20 and receives information (including operation information and time information) from the driving unit 200. Further, the control device 100 gives a measurement instruction to the measurement device 300, and receives information (including measurement) from the measurement device 300 Information and time information). The control device 100 integrates each feedback response from the drive unit 200 and the measurement device 300 to generate shape information about the workpiece W. The process of generating the shape information about the workpiece W will be described in detail later.

另外,控制裝置100既可基於所生成的工件W的形狀資訊來執行某些控制運算,也可將所生成的工件W的形狀資訊發送至製造執行系統(Manufacturing Execution System,MES)等上位裝置。 In addition, the control device 100 may perform certain control operations based on the generated shape information of the workpiece W, or may send the generated shape information of the workpiece W to a higher-level device such as a Manufacturing Execution System (MES).

驅動單元200相當於使測量裝置300、與作為測量對象的工件W之間的相對位置關係發生變化的驅動裝置。更具體而言,驅動單元200驅動馬達10,所述馬達10使載置有工件W的檢查裝置2運轉。例如,驅動單元200包含伺服驅動器(servo driver)或逆變器單元(inverter unit)等。驅動單元200依照來自控制裝置100的動作指令,而給予用於驅動馬達10的交流電力或脈衝電力,並且獲取馬達10的動作狀態(例如旋轉位置(相位角)、旋轉速度、旋轉加速度、扭矩(torque)等),並將經指定的資訊作為動作資訊而發送至控制裝置100。另外,若在馬達10中安裝有編碼器(參照圖3所示的編碼器12),則將來自所述編碼器的輸出信號輸入至驅動單元200。 The driving unit 200 corresponds to a driving device that changes the relative positional relationship between the measurement device 300 and the workpiece W as a measurement target. More specifically, the drive unit 200 drives a motor 10 that operates the inspection device 2 on which the workpiece W is placed. For example, the drive unit 200 includes a servo driver or an inverter unit. The driving unit 200 gives AC power or pulse power for driving the motor 10 in accordance with an operation instruction from the control device 100, and acquires an operation state of the motor 10 (for example, rotation position (phase angle), rotation speed, rotation acceleration, torque ( torque), etc.), and sends the designated information to the control device 100 as motion information. When an encoder is mounted in the motor 10 (refer to the encoder 12 shown in FIG. 3), an output signal from the encoder is input to the drive unit 200.

馬達10通過進行旋轉驅動,使構成檢查裝置2的載台6的位置發生變化。例如,載台6可移動地配置於基部4上,並且載台6與滾珠螺桿14卡合。馬達10經由減速機而與滾珠螺桿14 機械結合,馬達10的旋轉運動被給予至滾珠螺桿14。通過滾珠螺桿14的旋轉,滾珠螺桿14與載台6的相對位置關係將沿滾珠螺桿14的延伸方向發生變化。 The motor 10 rotates to change the position of the stage 6 constituting the inspection device 2. For example, the stage 6 is movably arranged on the base 4, and the stage 6 is engaged with the ball screw 14. The motor 10 communicates with the ball screw 14 via a reduction gear Mechanically, the rotary motion of the motor 10 is given to the ball screw 14. As the ball screw 14 rotates, the relative positional relationship between the ball screw 14 and the stage 6 changes along the extending direction of the ball screw 14.

即,通過從控制裝置100對驅動單元200給予動作指令,從而檢查裝置2的載台6的位置將發生變化,也使配置於載台6上的工件W的位置發生變化。 That is, by giving an operation command to the drive unit 200 from the control device 100, the position of the stage 6 of the inspection device 2 changes, and the position of the workpiece W disposed on the stage 6 also changes.

測量裝置300相當於對關於工件W的位移進行測量的測量單元。本實施方式中,作為關於工件W的位移,設想為從與測量裝置300電性或光學連接的感測器頭310直至工件W表面上的測量點為止的距離。例如,測量裝置300也可使用對直至工件W表面上的測量點為止的距離進行光學測量的光學式位移感測器。具體而言,測量裝置300從感測器頭310對工件W照射測量光,並接收此光被工件W反射而產生的光,從而對直至工件W表面上的測量點為止的距離進行測量。作為一例,也可使用三角測距式光學位移感測器或同軸共焦式光學位移感測器。 The measurement device 300 corresponds to a measurement unit that measures the displacement of the workpiece W. In this embodiment, as the displacement of the workpiece W, the distance from the sensor head 310 electrically or optically connected to the measurement device 300 to a measurement point on the surface of the workpiece W is assumed. For example, the measurement device 300 may use an optical displacement sensor that optically measures a distance to a measurement point on the surface of the workpiece W. Specifically, the measurement device 300 irradiates the workpiece W with measurement light from the sensor head 310 and receives light generated by the light reflected by the workpiece W, thereby measuring a distance to a measurement point on the surface of the workpiece W. As an example, a triangular ranging optical displacement sensor or a coaxial confocal optical displacement sensor may be used.

測量裝置300對工件W照射測量光,並且接收來自工件W的反射光以測量工件W的特性值。更具體而言,測量裝置300依照來自控制裝置100的測量指令,對測量時機(例如照射至工件W的測量光的強度或時機)進行調整,並且將包含根據所接收的反射光而算出的測量結果的測量資訊發送至控制裝置100。 The measurement device 300 irradiates the workpiece W with measurement light, and receives reflected light from the workpiece W to measure a characteristic value of the workpiece W. More specifically, the measurement device 300 adjusts the measurement timing (for example, the intensity or timing of the measurement light irradiated to the workpiece W) in accordance with a measurement instruction from the control device 100, and will include a measurement calculated from the received reflected light The resulting measurement information is transmitted to the control device 100.

另外,也可通過對產生光的光源的點亮時間及點亮時機進行控制,或者,對接收來自工件W的反射光的攝像元件的曝光 時間及曝光時機進行控制,來調整對工件W照射的測量光的強度及時機。 In addition, it is also possible to control the lighting time and lighting timing of the light source that generates light, or to expose the imaging element that receives the reflected light from the workpiece W The time and exposure timing are controlled to adjust the intensity and timing of the measurement light irradiated to the workpiece W.

本實施方式的測量系統1中,在從驅動單元200發送至控制裝置100的動作資訊中,附加有與所述動作資訊相關聯的時刻資訊。所述時刻資訊表示獲取相關聯的動作資訊的時機等。如此,驅動單元200將表示工件W的位置的資訊、與來自計時器的時刻資訊相關聯,並作為動作資訊(第1資訊)而輸出,所述來自計時器的時刻資訊表示獲取表示所述位置的資訊的時機。 In the measurement system 1 according to the present embodiment, time information related to the operation information is added to the operation information transmitted from the drive unit 200 to the control device 100. The time information indicates the timing and the like for obtaining associated action information. In this way, the drive unit 200 associates the information indicating the position of the workpiece W with the time information from the timer, and outputs it as the action information (the first information). The time information from the timer indicates that the position is acquired. Timing of information.

本說明書中,“表示測量對象(工件W)的位置的資訊”除了表示工件W自身的位置的資訊以外,還包含表示與工件W機械連接的檢查裝置2或馬達10等的位置的資訊。即,“表示測量對象(工件W)的位置的資訊”包含能夠直接或間接確定工件W的位置的任意資訊。而且,這些資訊的維數也可為任意。進而,“表示測量對象(工件W)的速度的資訊”及“表示測量對象(工件W)的加速度的資訊”也同樣。 In this specification, “information indicating the position of the measurement target (workpiece W)” includes information indicating the position of the inspection device 2 or the motor 10 that is mechanically connected to the workpiece W in addition to the information indicating the position of the workpiece W itself. That is, the "information indicating the position of the measurement target (workpiece W)" includes any information that can directly or indirectly determine the position of the workpiece W. Moreover, the dimension of this information can be arbitrary. The same applies to "information indicating the speed of the measurement target (workpiece W)" and "information indicating the acceleration of the measurement target (workpiece W)".

同樣,在從測量裝置300發送至控制裝置100的測量資訊中,附加有與所述測量資訊相關聯的時刻資訊。所述時刻資訊例如表示獲取相關聯的測量資訊的時機、或者照射用於獲取相關聯的測量資訊的測量光的時機等。如此,測量裝置300將通過測量工件W而獲取的測量資訊、與表示獲取所述測量資訊的時機的來自計時器的時刻資訊相關聯,並作為測量資訊(第2資訊)而輸出。 Similarly, to the measurement information transmitted from the measurement device 300 to the control device 100, time information associated with the measurement information is added. The time information indicates, for example, a timing at which the associated measurement information is acquired, or a timing at which the measurement light used to acquire the associated measurement information is irradiated. In this way, the measurement device 300 correlates the measurement information acquired by measuring the workpiece W with the time information from the timer indicating the timing of acquiring the measurement information, and outputs the measurement information (second information).

控制裝置100使用與動作資訊及測量資訊各自相關聯的時刻資訊,對動作資訊及測量資訊之間的時間關係進行調整,從而生成工件W的形狀資訊。更具體而言,控制裝置100基於一個或多個動作資訊(第1資訊),算出與測量資訊(第2資訊)中所含的時刻資訊相關聯的位置,並且基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示工件W的形狀的資訊(形狀資訊)。 The control device 100 adjusts the time relationship between the motion information and the measurement information using the time information associated with each of the motion information and the measurement information to generate the shape information of the workpiece W. More specifically, the control device 100 calculates a position associated with the time information included in the measurement information (the second information) based on one or more pieces of action information (the first information), and associates it with the shared time information based on The combination of the calculated position and the measurement information generates information (shape information) indicating the shape of the workpiece W.

<B.構成測量系統的各裝置的硬體結構例> <B. Example of hardware configuration of each device constituting the measurement system>

接下來,對構成本實施方式的測量系統1的各裝置的硬體結構例進行說明。 Next, an example of a hardware configuration of each device constituting the measurement system 1 according to the present embodiment will be described.

(b1:控制裝置) (b1: Control device)

圖2是表示構成本實施方式的測量系統1的控制裝置100的硬體結構例的示意圖。參照圖2,控制裝置100除了對現場網路20中的通信時機等進行管理的計時器102以外,還包含處理器(processor)104、主記憶體(main memory)106、快閃記憶體(flash memory)108、晶片組(chip set)114、網路控制器(network controller)116、存儲卡介面(memory card interface)118、內部匯流排控制器122及現場網路控制器124。 FIG. 2 is a schematic diagram showing an example of a hardware configuration of the control device 100 constituting the measurement system 1 according to the present embodiment. Referring to FIG. 2, the control device 100 includes a processor 104, a main memory 106, and a flash memory in addition to a timer 102 that manages communication timing and the like in the field network 20. memory 108, chip set 114, network controller 116, memory card interface 118, internal bus controller 122, and field network controller 124.

處理器104包含中央處理器(Central Processing Unit,CPU)或微處理器(Micro Processing Unit,MPU)等,通過讀出保存在快閃記憶體108中的各種程式並在主記憶體106中展開而執行,從而實現與控制對象相應的控制及如後所述的各種處理。 The processor 104 includes a Central Processing Unit (CPU) or a Micro Processing Unit (MPU), etc., and reads out various programs stored in the flash memory 108 and expands them in the main memory 106. It executes to achieve the control corresponding to the control target and various processes described later.

在快閃記憶體108中,除了用於提供作為控制裝置100的基本功能的系統程式(system program)110以外,還保存有在控制裝置100中執行的使用者程式(user program)112。 In the flash memory 108, in addition to a system program 110 for providing basic functions of the control device 100, a user program 112 executed in the control device 100 is also stored.

系統程式110是用於執行在控制裝置100中執行使用者程式112所需的處理的命令群。 The system program 110 is a command group for executing processing required to execute the user program 112 in the control device 100.

使用者程式112是根據控制對象等任意製作的命令群,例如包含序列程式(sequence program)112A、運動程式(motion program)112B及形狀資訊生成程式112C。 The user program 112 is a command group arbitrarily created according to a control object or the like, and includes, for example, a sequence program 112A, a motion program 112B, and a shape information generation program 112C.

晶片組114通過控制處理器104與各設備,來實現作為控制裝置100整體的處理。 The chipset 114 controls the processor 104 and each device to implement processing as a whole of the control device 100.

網路控制器116經由上位網路而與上位裝置等之間交換資料。 The network controller 116 exchanges data with a higher-level device and the like via a higher-level network.

存儲卡介面118是可裝卸非易失性存儲介質的一例即存儲卡120地構成,可對存儲卡120寫入資料,並從存儲卡120讀出各種資料。 The memory card interface 118 is a memory card 120 that is an example of a non-volatile storage medium that can be attached and detached. Data can be written to the memory card 120 and various data can be read from the memory card 120.

內部匯流排控制器122是與安裝於控制裝置100的輸入輸出(Input/Output,I/O)單元126之間經由內部匯流排128來交換資料的介面。 The internal bus controller 122 is an interface that exchanges data with an input / output (I / O) unit 126 installed in the control device 100 via an internal bus 128.

現場網路控制器124是在與包含驅動單元200及測量裝置300的其他裝置之間進行網路連接,並經由現場網路20來交換資料的介面。現場網路控制器124包含同步管理功能125,以起到作為現場網路20中的通信主機的功能。 The field network controller 124 is an interface for performing a network connection with other devices including the drive unit 200 and the measurement device 300 and exchanging data via the field network 20. The field network controller 124 includes a synchronization management function 125 to function as a communication host in the field network 20.

同步管理功能125基於來自連接於現場網路20的各設備的時刻(典型的是各設備具有的計時器所輸出的計數器值)與來自計時器102的時刻,算出設備間的時刻偏移,並將修正了所述時刻偏移後的同步信號輸出至各設備。如此,同步管理功能125使計時器102在驅動單元200的計時器及測量裝置300的計時器之間同步。 The synchronization management function 125 calculates a time offset between devices based on the time from each device connected to the field network 20 (typically, a counter value output from a timer provided by each device) and the time from the timer 102, The synchronization signal after the time offset is corrected is output to each device. As such, the synchronization management function 125 synchronizes the timer 102 between the timer of the drive unit 200 and the timer of the measurement device 300.

圖2中,表示了通過處理器104執行程式來提供所需功能的結構例,但這些所提供的功能的一部分或全部也可使用專用的硬連線(hard wired)電路(例如專用積體電路(Application Specific Integrated Circuit,ASIC)或現場可程式設計閘陣列(Field-Programmable Gate Array,FPGA)等)來實現(implement)。或者,對於控制裝置100的主要部分,也可使用依照通用的體系結構(architecture)的硬體(例如將通用電腦(computer)作為基礎(base)的產業用控制器)來實現。此時,也可使用虛擬技術並列地執行用途不同的多個作業系統(Operating System,OS),並且在各OS上執行所需的應用程式。 In FIG. 2, a configuration example is shown in which a processor 104 executes a program to provide a required function. However, some or all of the functions provided may also use a dedicated hard wired circuit (such as a dedicated integrated circuit). (Application Specific Integrated Circuit, ASIC) or Field-Programmable Gate Array (FPGA), etc.) to implement. Alternatively, the main part of the control device 100 may be implemented using hardware conforming to a general-purpose architecture (for example, an industrial controller using a general-purpose computer as a base). At this time, a plurality of operating systems (OS) having different uses may be executed in parallel using a virtual technology, and a desired application may be executed on each OS.

(b2:驅動單元200) (b2: drive unit 200)

圖3是表示構成本實施方式的測量系統1的驅動單元200的硬體結構例的示意圖。參照圖3,驅動單元200包含現場網路控制器204、驅動控制器206、主電路208及脈衝計數器210,所述現場網路控制器204包含對現場網路20中的通信時機等進行管理的計時器202。 FIG. 3 is a schematic diagram showing an example of a hardware configuration of a drive unit 200 constituting the measurement system 1 according to the present embodiment. 3, the drive unit 200 includes a field network controller 204, a drive controller 206, a main circuit 208, and a pulse counter 210, and the field network controller 204 includes a management unit for managing communication timing and the like in the field network 20. Timer 202.

現場網路控制器204是經由現場網路20來與包含控制裝置100及測量裝置300的其他裝置之間交換資料的介面。 The field network controller 204 is an interface for exchanging data with other devices including the control device 100 and the measurement device 300 via the field network 20.

驅動控制器206根據來自控制裝置100的動作指令,依照預定的運算邏輯(logic)來生成指令值。更具體而言,驅動控制器206具有將位置控制迴圈(loop)、速度控制迴圈、扭矩控制迴圈等必要的控制迴圈組合而成的控制運算邏輯。驅動控制器206根據由脈衝計數器210所計數的計數值等,來算出作為對象的馬達10的動作狀態,並輸出至控制裝置100。 The drive controller 206 generates a command value in accordance with a predetermined operation logic according to an operation command from the control device 100. More specifically, the drive controller 206 includes control operation logic that combines necessary control loops such as a position control loop, a speed control loop, and a torque control loop. The drive controller 206 calculates the operation state of the target motor 10 based on the count value counted by the pulse counter 210 and the like, and outputs the calculated state to the control device 100.

驅動控制器206除了通過使處理器執行程式來實現必要的處理及功能的軟體實現(software implementation)以外,也可通過使用ASIC或FPGA等硬連線(hard wired)電路來實現必要的處理及功能的硬體實現(hardware implementation)而實現。 In addition to the software implementation of the drive controller 206 that enables the processor to execute programs to achieve the necessary processing and functions, the required processing and functions can also be achieved by using hard wired circuits such as ASICs or FPGAs. Hardware implementation (hardware implementation).

主電路208例如包含轉換器(converter)電路及逆變器電路而構成,根據來自驅動控制器206的指令,生成預定的電流波形或電壓波形,並給予至所連接的馬達10。 The main circuit 208 includes, for example, a converter circuit and an inverter circuit, and generates a predetermined current waveform or voltage waveform based on a command from the drive controller 206 and supplies the predetermined current waveform or voltage waveform to the connected motor 10.

脈衝計數器210對來自安裝於馬達10的編碼器12的脈衝信號進行計數,並將此計數值輸出至驅動控制器206。 The pulse counter 210 counts pulse signals from the encoder 12 mounted on the motor 10 and outputs the count value to the drive controller 206.

另外,主電路208及脈衝計數器210等也可根據作為驅動對象的馬達10的電氣特性或機械特性而適當變更。 In addition, the main circuit 208, the pulse counter 210, and the like may be appropriately changed depending on the electrical characteristics or mechanical characteristics of the motor 10 as a drive target.

(b3:測量裝置300) (b3: Measurement device 300)

圖4是表示構成本實施方式的測量系統1的測量裝置300的硬體結構例的示意圖。參照圖4,測量裝置300包含現場網路控制 器304、攝像控制器306及資料處理部308,所述現場網路控制器304包含對現場網路20中的通信時機等進行管理的計時器302。 FIG. 4 is a schematic diagram showing an example of a hardware configuration of a measurement device 300 constituting the measurement system 1 of the present embodiment. Referring to FIG. 4, the measurement device 300 includes a field network control Controller 304, camera controller 306, and data processing unit 308, the field network controller 304 includes a timer 302 that manages communication timing and the like in the field network 20.

現場網路控制器304是經由現場網路20來與包含控制裝置100及驅動單元200的其他裝置之間交換資料的介面。 The field network controller 304 is an interface for exchanging data with other devices including the control device 100 and the drive unit 200 via the field network 20.

攝像控制器306根據來自控制裝置100的動作指令,對感測器頭310給予照射指令。資料處理部308基於來自感測器頭310的受光信號,算出直至工件W表面上的測量點為止的距離。 The imaging controller 306 gives an irradiation instruction to the sensor head 310 based on an operation instruction from the control device 100. The data processing unit 308 calculates a distance to a measurement point on the surface of the workpiece W based on a light reception signal from the sensor head 310.

連接於測量裝置300的感測器頭310包含發光源312、受光元件314及鏡頭(lens)316。 The sensor head 310 connected to the measurement device 300 includes a light emitting source 312, a light receiving element 314, and a lens 316.

發光源312是依照來自攝像控制器306的指令而受到驅動,以產生預定的光的光源,例如包含白色發光二極體(Light Emitting Diode,LED)或半導體雷射器(laser)等。 The light emitting source 312 is a light source that is driven to generate a predetermined light in accordance with an instruction from the camera controller 306, and includes, for example, a white light emitting diode (LED) or a semiconductor laser.

受光元件314是接收來自作為對象的工件W的反射光,並將此受光信號輸出至資料處理部308的元件,例如包含一維配置的受光元件(線感測器(line sensor))或二維配置的受光元件(電荷耦合器件(Charge Coupled Device,CCD)等)。 The light-receiving element 314 is an element that receives reflected light from the target workpiece W and outputs the light-receiving signal to the data processing unit 308. For example, the light-receiving element 314 includes a light-receiving element (line sensor) or a two-dimensional arrangement. Configured light receiving elements (Charge Coupled Device (CCD), etc.).

鏡頭316是對從感測器頭310照射的測量光及從工件W反射的光的焦點位置等進行調整的光學系統。 The lens 316 is an optical system that adjusts the focal position of the measurement light radiated from the sensor head 310 and the light reflected from the workpiece W, and the like.

另外,感測器頭310的光學結構及電氣結構是根據測量原理來適當設計,因此並不限定於圖4所示的結構。 In addition, the optical structure and electrical structure of the sensor head 310 are appropriately designed based on the measurement principle, and therefore are not limited to the structure shown in FIG. 4.

<C.形狀資訊生成處理> <C. Shape information generation processing>

接下來,對在本實施方式的測量系統1中執行的形狀資訊生 成處理進行說明。 Next, the shape information generation performed in the measurement system 1 of the present embodiment is performed. The processing will be described.

圖5是用於說明本實施方式的測量系統1中的驅動單元200及測量裝置300的動作時機的圖。參照圖5,驅動單元200及測量裝置300以與各自的特性相應的週期來執行處理。因此,驅動單元200根據動作指令來控制對馬達10的動作的時機及週期,與測量裝置300對相對於工件W的距離進行測量的時機及週期並不一致。 FIG. 5 is a diagram for explaining operation timings of the drive unit 200 and the measurement device 300 in the measurement system 1 according to the present embodiment. Referring to FIG. 5, the drive unit 200 and the measurement device 300 execute processes at a cycle corresponding to their respective characteristics. Therefore, the driving unit 200 controls the timing and period of the operation of the motor 10 according to the operation command, and is different from the timing and period of the measurement device 300 measuring the distance to the workpiece W.

圖5所示的示例中,驅動單元200在動作時刻TS1、TS2、…(時間間隔△TS)進行控制,並且輸出動作資訊。與此相對,測量裝置300在測量時刻TZ1、TZ2、…(時間間隔△TZ)進行對工件W的測量處理(距離測量)。另外,由測量裝置300所測量的距離,相對於根據從攝像開始直至攝像完成為止的攝像資料中的光學特性所算出的值,因此對於所獲取的測量資訊,也可關聯有表示用於進行所述測量資訊的攝像完成的時機的時刻。 In the example shown in FIG. 5, the drive unit 200 performs control at operation timings TS1, TS2, ... (time interval ΔTS), and outputs operation information. In contrast, the measurement device 300 performs a measurement process (distance measurement) on the workpiece W at the measurement timings TZ1, TZ2, ... (time interval ΔTZ). In addition, the distance measured by the measurement device 300 is relative to the value calculated from the optical characteristics in the imaging data from the start of imaging to the completion of imaging. Therefore, the acquired measurement information may be associated with an indication for performing the measurement. The timing of when the imaging of the measurement information is completed is described.

表示工件W的表面形狀的形狀資訊(即輪廓(profile))是表示感測器頭310與工件W之間的相對位置關係、與在此相對位置關係下所測量的相對於工件W的距離的關係,相對位置關係及距離均應在同時刻獲取。 The shape information (i.e., the profile) indicating the surface shape of the workpiece W is the relative positional relationship between the sensor head 310 and the workpiece W, and the distance from the workpiece W measured under the relative positional relationship. Relationships, relative positional relationships, and distances should all be obtained at the same time.

如圖5所示,驅動單元200及測量裝置300並非彼此同步地進行控制及測量,因此並非在共同的時機同時輸出動作資訊及測量資訊。即,驅動單元200輸出動作資訊的時機與測量裝置300輸出測量資訊的時機有時互不相同。 As shown in FIG. 5, the driving unit 200 and the measurement device 300 do not perform control and measurement in synchronization with each other, and therefore do not output motion information and measurement information at the same time. That is, the timing at which the drive unit 200 outputs operation information and the timing at which the measurement device 300 outputs measurement information may be different from each other.

本實施方式的測量系統1中,控制裝置100、驅動單元200及測量裝置300具有彼此同步的計時器,因此可視為各個設備所輸出的時刻資訊的時間軸為共用化。因此,從驅動單元200將時刻資訊關聯於動作資訊而輸出,並且,從測量裝置300將時刻資訊關聯於測量資訊而輸出。並且,控制裝置100以時刻資訊為基準,使來自驅動單元200的動作資訊與來自測量裝置300的測量資訊的時機匹配,由此來生成關於工件W的形狀資訊。 In the measurement system 1 of the present embodiment, since the control device 100, the drive unit 200, and the measurement device 300 have timers synchronized with each other, the time axis of the time information output by each device can be regarded as shared. Therefore, the slave drive unit 200 outputs the time information in association with the motion information, and the slave device 300 outputs the time information in association with the measurement information. In addition, the control device 100 uses the time information as a reference to match the timing of the operation information from the drive unit 200 and the measurement information from the measurement device 300 to generate shape information about the workpiece W.

圖6及圖7是用於說明本實施方式的測量系統1中的形狀資訊的生成處理的圖。 FIG. 6 and FIG. 7 are diagrams for explaining a process of generating shape information in the measurement system 1 according to the present embodiment.

參照圖6,基於來自驅動單元200的資訊(動作資訊及時刻資訊)與來自測量裝置300的資訊(測量資訊及時刻資訊),以各自的時刻資訊為基準,生成將動作資訊及測量資訊依時間序列排列而成的表400。即,控制裝置100將從驅動單元200及測量裝置300獲取的動作資訊、測量資訊、時刻資訊依時間序列而製成表。 Referring to FIG. 6, based on the information (motion information and time information) from the drive unit 200 and the information (measurement information and time information) from the measurement device 300, the motion information and measurement information are generated according to time based on the respective time information. The table 400 is arranged in sequence. That is, the control device 100 makes a table of the motion information, measurement information, and time information acquired from the drive unit 200 and the measurement device 300 in time series.

更具體而言,表400是由包含動作資訊404、測量資訊406與時刻資訊402的記錄(record)構成。 More specifically, the table 400 is composed of a record including action information 404, measurement information 406, and time information 402.

如圖6的表400所示,來自驅動單元200的動作資訊404與來自測量裝置300的測量資訊406並不限於在同一時刻獲取,因此在本實施方式中,通過對任一資訊進行插值或推定,從而決定同一時刻的動作資訊404及測量資訊406的組合。 As shown in table 400 of FIG. 6, the action information 404 from the drive unit 200 and the measurement information 406 from the measurement device 300 are not limited to being acquired at the same time. Therefore, in this embodiment, any information is interpolated or estimated. To determine the combination of action information 404 and measurement information 406 at the same time.

圖6所示的示例中,通過對動作資訊404進行插值,從 而算出獲取測量資訊406的時刻的動作資訊。此處,動作資訊除了各時刻的位置以外,還可包含表示工件W的加速度的資訊及表示速度的資訊。通過使用此種速度及加速度的資訊,能夠算出指定時刻的位置。 In the example shown in FIG. 6, by interpolating the action information 404, from Then, the operation information at the time when the measurement information 406 is acquired is calculated. Here, the motion information may include information indicating acceleration of the workpiece W and information indicating speed in addition to the position at each time. By using such speed and acceleration information, the position at a specified time can be calculated.

更具體而言,在圖6的表400中,與測量時刻TZ1的測量資訊1相關聯的動作資訊408(動作資訊12)是通過使用鄰接的動作時刻TS1的動作資訊1和鄰接的動作時刻TS2的動作資訊2進行插值而算出。如此,控制裝置100通過基於鄰接的動作資訊進行插值,來決定與由測量裝置300所輸出的測量資訊的測量時刻相關聯的動作資訊。 More specifically, in the table 400 of FIG. 6, the action information 408 (action information 12) associated with the measurement information 1 at the measurement time TZ1 is by using the action information 1 of the neighboring action time TS1 and the neighboring action time TS2. Interpolate the motion information 2. In this way, the control device 100 performs interpolation based on the adjacent operation information to determine the operation information related to the measurement time of the measurement information output by the measurement device 300.

通過對與測量資訊相關聯的各測量時刻進行此種插值處理,從而生成圖6所示的與時間序列相關聯的表410。表410是由包含動作資訊414、測量資訊416與時刻資訊412的記錄所構成。當基於構成表410的各表,將動作資訊414中所含的位置與測量資訊416相關聯地予以描繪時,輸出圖6所示的形狀資訊420。 By performing such interpolation processing on each measurement time associated with the measurement information, a table 410 related to a time series is generated as shown in FIG. 6. The table 410 is composed of a record including action information 414, measurement information 416, and time information 412. When the positions included in the action information 414 and the measurement information 416 are plotted in association with each of the tables constituting the table 410, the shape information 420 shown in FIG. 6 is output.

為了便於說明,對使用表的處理例進行了說明,但並不限於此,只要使用任意的資料處理技術來實現即可。即,只要通過生成與共用時刻相關聯的動作資訊及測量資訊的組合來生成形狀資訊,則也可採用任何處理。 For convenience of explanation, a processing example using a table has been described, but it is not limited to this, as long as it is implemented using any data processing technology. That is, as long as the shape information is generated by generating a combination of motion information and measurement information associated with the shared time, any processing may be adopted.

圖6所示的形狀資訊的生成處理只要能夠實質上實現圖7所示的處理即可。圖7中,表示動作資訊相對於時刻資訊的變化的、動作資訊的時間變化424,與表示測量資訊相對於時刻資訊的 變化的、測量資訊的時間變化426被整理於共用的時刻資訊的座標。進而,對於動作資訊的時間變化424,關於實際上未獲取動作資訊的時刻的動作資訊也通過插值處理來推定。對這兩個時間變化進行統合併去除時刻資訊,由此,能夠生成表示測量資訊相對於動作資訊的變化的形狀資訊420。 The process of generating the shape information shown in FIG. 6 is only required to substantially realize the process shown in FIG. 7. In FIG. 7, the time change 424 of the movement information and the change of the movement information with respect to the time information and the time change of the movement information with respect to the time information are shown. The time change 426 of the measured and measured information is arranged at the coordinates of the shared time information. Furthermore, regarding the temporal change 424 of the motion information, the motion information at the time when the motion information is not actually acquired is also estimated by interpolation processing. The two time changes are combined to remove the time information, and thus shape information 420 indicating the change of the measurement information with respect to the motion information can be generated.

另外,所述的圖6及圖7所示的生成處理典型的是在控制裝置100中執行,但並不限於此,也可由驅動單元200或測量裝置300來執行。 In addition, the generation processing shown in FIGS. 6 and 7 is typically executed by the control device 100, but is not limited thereto, and may be executed by the drive unit 200 or the measurement device 300.

<D.處理流程> <D. Processing flow>

接下來,對本實施方式的測量系統1中的處理流程進行說明。 Next, a processing flow in the measurement system 1 according to the present embodiment will be described.

(d1:整體處理序列) (d1: overall processing sequence)

圖8是表示在本實施方式的測量系統1中執行的處理流程的序列圖。在圖8所示的序列圖中,著眼於在控制裝置100的處理器104及現場網路控制器124、驅動單元200的現場網路控制器204及驅動控制器206、與測量裝置300的現場網路控制器304、攝像控制器306及資料處理部308之間所執行的處理。 FIG. 8 is a sequence diagram showing a processing flow executed in the measurement system 1 according to the present embodiment. In the sequence diagram shown in FIG. 8, attention is paid to the field of the processor 104 and the field network controller 124 of the control device 100, the field network controller 204 and the drive controller 206 of the drive unit 200, and the field of the measurement device 300. Processing executed between the network controller 304, the camera controller 306, and the data processing unit 308.

如上所述,在連接於現場網路20的設備間進行了時機同步,作為一例,所述時機同步是由控制裝置100的現場網路控制器124進行管理。具體而言,控制裝置100的現場網路控制器124基於在現場網路20上依序傳輸的幀(frame)中所含的來自各設備(通信從機)的時刻(各通信從機所管理的計時器所輸出的計數值),算出各設備中的時機偏移量(時刻偏移量)(序列 SQ100),並將用於對所算出的時機偏移量進行修正的同步信號發送至各個設備(序列SQ102)。各設備(通信從機)根據來自控制裝置100的現場網路控制器124的同步信號,對所管理的計時器進行修正。所述同步信號指定時刻偏移修正後的時刻。 As described above, timing synchronization is performed between the devices connected to the field network 20. As an example, the timing synchronization is managed by the field network controller 124 of the control device 100. Specifically, the field network controller 124 of the control device 100 is based on the time from each device (communication slave) contained in the frames sequentially transmitted on the field network 20 (managed by each communication slave). The count value output by the timer) to calculate the timing offset (time offset) in each device (sequence SQ100), and sends a synchronization signal for correcting the calculated timing offset to each device (sequence SQ102). Each device (communication slave) corrects the managed timer based on a synchronization signal from the field network controller 124 of the control device 100. The synchronization signal specifies a time after the time offset is corrected.

另外,序列SQ100及序列SQ102的處理也可獨立於其他處理而在每個預定週期或在每個預定事件(event)時執行。 In addition, the processes of the sequence SQ100 and the sequence SQ102 may also be executed independently of other processes at each predetermined cycle or at each predetermined event.

作為驅動單元200中的對馬達10的控制動作,驅動單元200的驅動控制器206根據預先給予的動作指令來執行控制處理(序列SQ110)。此時,驅動控制器206基於控制處理的執行結果等來獲取動作資訊。進而,驅動控制器206從現場網路控制器204(計時器202)獲取與控制處理的執行時機相關聯的時刻資訊(序列SQ112)。 As a control action for the motor 10 in the drive unit 200, the drive controller 206 of the drive unit 200 performs a control process according to a motion command given in advance (sequence SQ110). At this time, the drive controller 206 acquires action information based on the execution result of the control process and the like. Further, the drive controller 206 acquires time information related to the execution timing of the control process from the field network controller 204 (timer 202) (sequence SQ112).

然後,驅動控制器206將所獲取的動作資訊經由現場網路控制器204而發送至控制裝置100(序列SQ114),並且將相關聯的時刻資訊經由現場網路控制器204而發送至控制裝置100(序列SQ116)。從驅動單元200發送的動作資訊及相關聯的時刻資訊被保存在控制裝置100的處理器104可存取(access)的主記憶體106等中。 Then, the drive controller 206 sends the acquired action information to the control device 100 via the field network controller 204 (sequence SQ114), and sends the associated time information to the control device 100 via the field network controller 204. (Sequence SQ116). The operation information and associated time information transmitted from the drive unit 200 are stored in a main memory 106 and the like accessible to the processor 104 of the control device 100.

作為測量裝置300中的對工件W的測量處理,測量裝置300的資料處理部308對攝像控制器306通知時刻資訊的獲取時機,所述時刻資訊的獲取時機表示在攝像期間(曝光期間)內的哪個時機獲取時刻資訊(序列SQ120)。繼而,攝像控制器306 根據預先指定的攝像條件等,開始攝像處理(序列SQ122)。進而,攝像控制器306根據時刻資訊的獲取時機,在攝像期間內從現場網路控制器304(計時器302)獲取相關聯的時刻資訊(序列SQ124)。然後,攝像控制器306將從攝像元件輸出的攝像信號輸出至資料處理部308(序列SQ126),並且輸出相關聯的時刻資訊(序列SQ128)。 As a measurement process for the workpiece W in the measurement device 300, the data processing section 308 of the measurement device 300 notifies the camera controller 306 of the acquisition timing of the time information, which indicates the acquisition timing of the time information during the imaging period (exposure period). When to get the time information (sequence SQ120). Then, the camera controller 306 The imaging process is started based on the imaging conditions and the like specified in advance (sequence SQ122). Further, the camera controller 306 acquires the associated time information from the live network controller 304 (timer 302) during the imaging period based on the acquisition timing of the time information (sequence SQ124). Then, the imaging controller 306 outputs the imaging signal output from the imaging element to the data processing section 308 (sequence SQ126), and outputs associated time information (sequence SQ128).

資料處理部308基於來自攝像控制器306的攝像信號來執行測量處理而生成測量資訊(序列SQ130)。然後,資料處理部308將所生成的測量資訊經由現場網路控制器304而發送至控制裝置100(序列SQ132),並且將相關聯的時刻資訊經由現場網路控制器304而發送至控制裝置100(序列SQ134)。從測量裝置300發送的測量資訊及相關聯的時刻資訊被保存在控制裝置100的處理器104可存取的主記憶體106等中。 The data processing unit 308 performs measurement processing based on an imaging signal from the imaging controller 306 to generate measurement information (sequence SQ130). Then, the data processing unit 308 sends the generated measurement information to the control device 100 via the field network controller 304 (sequence SQ132), and sends the associated time information to the control device 100 via the field network controller 304. (Sequence SQ134). The measurement information and associated time information transmitted from the measurement device 300 are stored in a main memory 106 and the like accessible to the processor 104 of the control device 100.

圖8所示的對馬達10的控制動作(序列SQ110~SQ116)及對工件W的測量處理(序列SQ120~SQ134)反復進行預定次數。當對工件W的一連串測量處理完成時,控制裝置100的處理器104基於所保存的動作資訊、測量處理、時刻資訊來生成形狀資訊(序列SQ140)。 The control operation (sequences SQ110 to SQ116) and the measurement processing (sequence SQ120 to SQ134) of the motor 10 shown in FIG. 8 are repeated a predetermined number of times. When a series of measurement processing on the workpiece W is completed, the processor 104 of the control device 100 generates shape information based on the saved motion information, measurement processing, and time information (sequence SQ140).

對每個工件W反復進行如上所述的一連串處理。 The series of processes described above is repeatedly performed for each work W.

(d2:驅動單元200中的處理流程) (d2: Processing flow in the drive unit 200)

接下來,對構成本實施方式的測量系統1的驅動單元200中的處理流程進行說明。圖9是表示構成本實施方式的測量系統1 的驅動單元200中的處理流程的流程圖。 Next, a processing flow in the drive unit 200 constituting the measurement system 1 of the present embodiment will be described. FIG. 9 shows a measurement system 1 constituting the present embodiment. A flowchart of a processing flow in the driving unit 200 of the.

參照圖9,驅動單元200在收到同步信號時(步驟S200),執行對時刻偏移進行修正的處理(步驟S202)。 Referring to FIG. 9, when the driving unit 200 receives a synchronization signal (step S200), it executes a process of correcting the time offset (step S202).

而且,驅動單元200執行根據對馬達10的控制動作等來決定動作資訊的處理(步驟S204)及決定相關聯的時刻資訊的處理(步驟S206)。然後,驅動單元200輸出所決定的動作資訊及時刻資訊(步驟S208)。包含這些相關聯的動作資訊及時刻資訊的輸出記錄被保存至控制裝置100。 Then, the drive unit 200 executes a process of determining operation information based on a control operation on the motor 10 (step S204) and a process of determining associated time information (step S206). Then, the driving unit 200 outputs the determined operation information and time information (step S208). An output record containing these associated action information and time information is saved to the control device 100.

(d3:測量裝置300中的處理流程) (d3: Processing flow in the measurement device 300)

接下來,對構成本實施方式的測量系統1的測量裝置300中的處理流程進行說明。圖10是表示構成本實施方式的測量系統1的測量裝置300中的處理流程的流程圖。 Next, a processing flow in the measurement device 300 constituting the measurement system 1 of the present embodiment will be described. FIG. 10 is a flowchart showing a processing flow in the measurement device 300 constituting the measurement system 1 according to the present embodiment.

參照圖10,測量裝置300在收到同步信號時(步驟S300),執行對時刻偏移進行修正的處理(步驟S302)。 Referring to FIG. 10, when the measurement device 300 receives a synchronization signal (step S300), it executes a process of correcting the time offset (step S302).

而且,測量裝置300執行對工件W的測量光照射等攝像處理(步驟S304),並執行基於此攝像結果來決定測量資訊的處理(步驟S306)及決定相關聯的時刻資訊的處理(步驟S308)。然後,測量裝置300輸出所決定的測量資訊及時刻資訊(步驟S310)。包含這些相關聯的測量資訊及時刻資訊的輸出記錄被保存至控制裝置100。 Then, the measurement device 300 performs imaging processing such as measurement light irradiation of the workpiece W (step S304), and performs processing for determining measurement information based on the imaging result (step S306) and processing for determining associated time information (step S308) . Then, the measurement device 300 outputs the determined measurement information and time information (step S310). An output record containing these associated measurement information and time information is saved to the control device 100.

<E.動作資訊的插值處理> <E. Interpolation Processing of Action Information>

接下來,關於本實施方式的測量系統1中的動作資訊的 插值處理,說明若干實現例。 Next, regarding the operation information in the measurement system 1 of the present embodiment, Interpolation processing, explaining several implementation examples.

圖11是用於說明本實施方式的測量系統1中的資訊的交換及處理的圖。為了便於說明,圖11中表示驅動單元200及測量裝置300以同一控制週期(cycle)來循環(cyclic)執行處理的示例,但並不限於此,也可分別以固有的控制週期來執行處理。進而,也可為每個特定事件等的非週期處理。 FIG. 11 is a diagram for explaining information exchange and processing in the measurement system 1 according to the present embodiment. For convenience of explanation, FIG. 11 shows an example in which the drive unit 200 and the measurement device 300 perform processing cyclically in the same control cycle, but the invention is not limited to this, and the processing may be performed in each of the inherent control cycles. Furthermore, acyclic processing may be performed for each specific event.

在圖11所示的示例中,驅動單元200輸出與各動作時刻TSx相關聯的位置Sx、速度Vsx、加速度Asx(其中,x表示索引(index)編號),以作為動作資訊。而且,測量裝置300輸出與各測量時刻TZx相關聯的測量值Dzx(其中,x表示索引編號),以作為測量資訊。 In the example shown in FIG. 11, the driving unit 200 outputs a position Sx, a speed Vsx, and an acceleration Asx (where x represents an index number) associated with each operation time TSx as the operation information. Furthermore, the measurement device 300 outputs measurement values Dzx (where x represents an index number) associated with each measurement time TZx as measurement information.

(e1:插值處理之1) (e1: Part 1 of the interpolation process)

本實施方式的測量系統1中,動作資訊是來自馬達10的資訊,所述馬達10是由驅動單元200進行旋轉驅動。若考慮此種受到旋轉驅動的機械系統的特性,可認為,只要在充分短的時間內,則速度相對於時間呈線性變化。即,若將在之前的動作時刻獲取的加速度視為固定,則欲推定動作資訊的測量時刻的速度可通過對之前的動作時刻的速度加減將加速度乘以經過時間所得的速度變化而算出。 In the measurement system 1 of the present embodiment, the operation information is information from a motor 10 that is rotationally driven by a drive unit 200. Considering the characteristics of such a mechanical system subjected to a rotary drive, it is considered that the speed changes linearly with respect to time as long as the time is sufficiently short. That is, if the acceleration obtained at the previous operation time is regarded as fixed, the speed at the measurement time of the operation information to be estimated can be calculated by adding and subtracting the speed at the previous operation time and multiplying the acceleration by the elapsed time.

即,由於之前的動作時刻的速度為已知,且推定對象的測量時刻的速度可推定,因此可根據兩個速度的關係來算出推定對象的位置。 That is, since the speed at the previous operation time is known and the speed at the measurement time of the estimation target can be estimated, the position of the estimation target can be calculated based on the relationship between the two speeds.

圖12(A)及圖12(B)是用於對基於加速度及速度的動作資訊的插值處理進行說明的圖。圖12(A)及圖12(B)是以推定圖11所示的測量時刻TZ2的位置S(TZ2)的情況為例進行說明。 FIG. 12 (A) and FIG. 12 (B) are diagrams for explaining interpolation processing based on acceleration and speed motion information. 12 (A) and 12 (B) are described by taking a case where the position S (TZ2) of the measurement time TZ2 shown in FIG. 11 is estimated as an example.

參照圖12(A),作為動作時刻TS1的動作資訊,假設獲取了速度Vs1及加速度As1。從動作時刻TS1直至推定對象的測量時刻TZ2為止的期間視為維持加速度As1,測量時刻TZ2的速度Vs(TZ2)可如以下般算出。 12 (A), it is assumed that the speed Vs1 and the acceleration As1 are acquired as the operation information of the operation time TS1. The period from the operation time TS1 to the estimation target measurement time TZ2 is regarded as the maintaining acceleration As1, and the speed Vs (TZ2) at the measurement time TZ2 can be calculated as follows.

Vs(TZ2)=Vs1+△Vs=Vs1+As1×(TZ2-TS1) Vs (TZ2) = Vs1 + △ Vs = Vs1 + As1 × (TZ2-TS1)

參照圖12(B),由於動作時刻TS1的位置為位置S1,因此若考慮所述的速度變化,則將位置S1加上從動作時刻TS1直至測量時刻TZ2為止的移動距離所得的、測量時刻TZ2的位置S(TZ2)可如以下般算出。 Referring to FIG. 12 (B), since the position of the operation time TS1 is the position S1, considering the speed change described above, the position S1 is added to the movement distance from the operation time TS1 to the measurement time TZ2 to obtain the measurement time TZ2. The position S (TZ2) can be calculated as follows.

S(TZ2)=[{Vs1+As1×(TZ2-TS1)}2-Vs12]/2×As1 S (TZ2) = [(Vs1 + As1 × (TZ2-TS1)} 2-Vs12] / 2 × As1

如上所述,也可基於算出對象時刻之前的時刻的、工件W的加速度及速度,來算出所述算出對象時刻的位置。 As described above, the position of the calculation target time may be calculated based on the acceleration and speed of the workpiece W at a time before the calculation target time.

(e2:插值處理之2) (e2: Interpolation processing 2)

本實施方式的測量系統1中,能夠週期性地獲取動作資訊,因此通過使用時間序列的動作資訊中的、處於推定對象的測量時刻附近的動作資訊來進行插值處理,能夠推定對象測量時刻的位置。 In the measurement system 1 of the present embodiment, motion information can be acquired periodically. Therefore, by performing interpolation processing using motion information in the time-series motion information that is near the measurement time of the estimated object, it is possible to estimate the position of the measurement time of the object. .

圖13是用於說明基於附近的動作資訊的、動作資訊的 插值處理的圖。參照圖13,例如假設動作時刻TS1、TS2、TS3的位置分別為位置S1、S2、S3。例如,以推定處於動作時刻TS2與動作時刻TS3之間的測量時刻TZ2的位置S(TZ2)的情況為例進行說明。 FIG. 13 is a diagram for explaining motion information based on nearby motion information. Interpolated graph. Referring to FIG. 13, for example, it is assumed that the positions of the operation timings TS1, TS2, and TS3 are positions S1, S2, and S3, respectively. For example, a case where the position S (TZ2) at the measurement time TZ2 between the operation time TS2 and the operation time TS3 is estimated is described as an example.

此時,例如使用動作時刻TS1、TS2、TS3的位置S1、S2、S3的資訊來決定插值式,可基於所述決定的插值式來推定位置S(TZ2)。 At this time, for example, the information of the positions S1, S2, and S3 of the operation times TS1, TS2, and TS3 is used to determine the interpolation formula, and the position S (TZ2) can be estimated based on the determined interpolation formula.

作為插值式,可採用公知的插值方式。作為此種公知的插值方式,已知有一次插值、拉格朗日(lagrange)插值、樣條(spline)插值等。例如,若使用處於測量時刻TZ2附近的動作時刻TS1、TS2、TS3的動作資訊,並適用拉格朗日插值,則位置S(TZ2)可如以下般推定。 As the interpolation formula, a known interpolation method can be used. As such a known interpolation method, one-time interpolation, lagrange interpolation, spline interpolation, and the like are known. For example, if the operation information TS1, TS2, TS3 near the measurement time TZ2 is used, and Lagrange interpolation is applied, the position S (TZ2) can be estimated as follows.

S(TZ2)=S1×(TZ2-T2)(TZ2-TS3)/(TS1-TS2)(TS1-TS3)+S2×(TZ2-T1)(TZ2-TS3)/(TS2-TS1)(TS2-TS3)+S3×(TZ2-T1)(TZ2-TS2)/(TS3-TS1)(TS3-TS2) S (TZ2) = S1 × (TZ2-T2) (TZ2-TS3) / (TS1-TS2) (TS1-TS3) + S2 × (TZ2-T1) (TZ2-TS3) / (TS2-TS1) (TS2- TS3) + S3 × (TZ2-T1) (TZ2-TS2) / (TS3-TS1) (TS3-TS2)

另外,為了便於說明,例示了使用處於推定對象的測量時刻TZ2附近的三個動作資訊的插值式,但用於插值的動作資訊的數量並無特別限定,只要適當選擇與狀況相應的數量即可。 In addition, for convenience of explanation, an interpolation formula using three pieces of motion information in the vicinity of the estimated measurement time TZ2 is exemplified, but the number of motion information used for interpolation is not particularly limited, as long as the number corresponding to the situation is appropriately selected .

如上所述,也可對與處於算出對象的時刻附近的時刻相關聯的多個動作資訊(第1資訊)中所含的表示位置的資訊進行插值,從而算出所述算出對象的時刻的位置。 As described above, it is also possible to calculate the position of the time of the calculation target by interpolating the information indicating the position contained in the plurality of motion information (first information) associated with the time near the time of the calculation target.

(e3:補充) (e3: supplementary)

在本實施方式的測量系統1中,動作資訊和相關聯的時刻資訊(動作時刻)被發送至控制裝置100,因此可確定與各動作資訊相關聯的時機。但是,當驅動單元200中的控制動作是在現場網路20上管理的預定的每個控制週期循環執行時,即使在從驅動單元200僅接收動作資訊的情況下,也能夠算出與各動作資訊相關聯的時刻資訊(動作時刻)。因此,若連成為推定對象的測量時刻也能夠確定,則對於所述測量時刻的動作資訊(位置)也能夠利用所述的任一方法來推定。 In the measurement system 1 of the present embodiment, the motion information and the associated time information (motion time) are transmitted to the control device 100, and thus the timing associated with each motion information can be determined. However, when the control action in the drive unit 200 is executed cyclically at every predetermined control cycle managed on the field network 20, even when only the action information is received from the drive unit 200, it can be calculated with each action information. Associated time information (action time). Therefore, even if the measurement time to be the estimation target can be determined, the motion information (position) at the measurement time can also be estimated using any of the methods described above.

所述說明中,表示了驅動單元200週期性地執行控制動作,且與所述控制動作同步地也週期性地發送動作資訊的示例,但未必需要此種週期性的控制動作。只要至少將動作資訊與相關聯的時刻資訊(動作時刻)發送至控制裝置100,便可通過所述的任一方法來推定作為對象的測量時刻的動作資訊(位置)。 In the description, an example is shown in which the drive unit 200 periodically executes a control action and also periodically transmits action information in synchronization with the control action, but such a periodic control action is not necessarily required. As long as the motion information and the associated time information (motion time) are transmitted to the control device 100, the motion information (position) as the measurement time to be the target can be estimated by any of the methods described above.

而且,圖11表示驅動單元200及測量裝置300均在每個預定週期循環執行處理的示例,但並不限於此,即使在兩者或一者以不同的週期執行處理,或者按照事件來執行處理的情況下,通過如上所述的方法,也能夠推定動作資訊(位置)。即,本實施方式的測量系統1中,連接於現場網路20的各設備具有經時機同步的計時器,因此通過使用來自此種經時機同步的計時器的時刻資訊,即使為各個設備以獨自的週期來發送資訊的形態,也能夠在通信主機(控制裝置100)等中以時刻為基準來彙集這些資訊。 Moreover, FIG. 11 shows an example in which the drive unit 200 and the measurement device 300 execute processing cyclically at every predetermined cycle, but it is not limited to this, even if the processing is performed at different cycles at either or both, or the processing is performed according to events In the case of the method, the motion information (position) can also be estimated by the method described above. That is, in the measurement system 1 according to the present embodiment, each device connected to the field network 20 has a time-synchronized timer. Therefore, by using the time information from such a time-synchronized timer, even for each device independently In a form where information is transmitted at a periodic interval, the information can also be collected by the communication host (control device 100) and the like based on the time.

所述說明中,對下述示例進行了說明,即,對驅動單元200所輸出的動作資訊(位置)進行插值,以推定與各個測量時刻相關聯的動作資訊(位置),但也可相反。即,也可對測量裝置300所輸出的測量資訊進行插值,以推定與各個動作時刻相關聯的測量資訊。 In the description, an example has been described in which the motion information (position) output by the drive unit 200 is interpolated to estimate the motion information (position) associated with each measurement time, but the reverse is also possible. That is, the measurement information output by the measurement device 300 may be interpolated to estimate the measurement information associated with each operation time.

<F.曝光時間的動態決定> <F. Dynamic determination of exposure time>

在構成本實施方式的測量系統1的測量裝置300中,有時會安裝動態決定攝像長度(曝光時間)的功能。此種情況下,測量裝置300實際測量的工件W表面上的測量點也將發生變動,因此對於與測量資訊相關聯的時刻資訊,也必須根據動態決定的攝像時間來進行修正。 In the measurement device 300 constituting the measurement system 1 of the present embodiment, a function for dynamically determining the imaging length (exposure time) may be installed. In this case, the measurement points on the surface of the workpiece W actually measured by the measurement device 300 will also change. Therefore, the time information associated with the measurement information must also be corrected based on the imaging time determined dynamically.

圖14是用於說明構成本實施方式的測量系統1的測量裝置300中的曝光時間的動態決定處理的圖。參照圖14,例如假設在預定的每個測量週期Ts反復執行對工件W的測量處理。此時,假設在遍及某攝像長度Texp而執行攝像處理後,通過對由此攝像處理獲得的攝像信號的資料處理,而獲得某些處理結果。基於所獲得的處理結果,可判斷曝光的過或不足。並且,當判斷為曝光不足時,設定比先前的攝像長度長的攝像長度來執行下個攝像處理。另一方面,當判斷為曝光過剩時,則設定比先前的攝像長度短的攝像長度來執行下個攝像處理。 FIG. 14 is a diagram for explaining a dynamic determination process of an exposure time in the measurement device 300 constituting the measurement system 1 of the present embodiment. Referring to FIG. 14, for example, it is assumed that the measurement processing of the workpiece W is repeatedly performed at each predetermined measurement period Ts. At this time, it is assumed that after performing imaging processing throughout a certain imaging length Texp, certain processing results are obtained by processing the data of the imaging signals obtained by the imaging processing. Based on the obtained processing results, it can be judged whether the exposure is over or under. When it is determined that the exposure is insufficient, an imaging length longer than the previous imaging length is set to execute the next imaging process. On the other hand, when it is determined that the exposure is excessive, an imaging length shorter than the previous imaging length is set to execute the next imaging process.

如此,也可基於通過先前的攝像處理所獲得的處理結果,來動態地決定後續的攝像處理的攝像長度(即,曝光時間)。 此種對攝像長度(曝光時間)的自動調整是在預先設定的最大攝像長度範圍內執行。換言之,攝像長度將變動預先設定的最大長度量。 As such, the imaging length (ie, exposure time) of the subsequent imaging process may be dynamically determined based on the processing result obtained by the previous imaging process. This automatic adjustment of the imaging length (exposure time) is performed within a preset maximum imaging length range. In other words, the imaging length will vary by a preset maximum length.

圖15(A)至圖15(C)是用於說明在構成本實施方式的測量系統1的測量裝置300中動態地決定曝光時間時的影響的圖。圖15(A)~圖15(C)表示配置有工件W的載台6從紙面左側朝紙面右側移動的狀態。伴隨此種工件W的移動,工件W與感測器頭310的相對位置關係將隨時間發生變化。因此,通過攝像長度(曝光時間)發生變化,被照射測量光的工件W的表面上的位置也將發生變化。 15 (A) to 15 (C) are diagrams for explaining the influence when the exposure time is dynamically determined in the measurement device 300 constituting the measurement system 1 of the present embodiment. 15 (A) to 15 (C) show a state in which the stage 6 on which the workpiece W is arranged is moved from the left side of the paper surface to the right side of the paper surface. With such movement of the workpiece W, the relative positional relationship between the workpiece W and the sensor head 310 will change with time. Therefore, as the imaging length (exposure time) changes, the position on the surface of the workpiece W irradiated with the measurement light also changes.

作為一例,如圖15(A)所示,在攝像長度Texp相對較短的情況下,測量光照射至工件W的紙面靠右處。另一方面,如圖15(C)所示,在攝像長度Texp相對較長的情況下,測量光照射至工件W的紙面靠左處。而且,如圖15(B)所示,在攝像長度Texp為標準長度的情況下,測量光照射至兩者的中間位置。 As an example, as shown in FIG. 15 (A), when the imaging length Texp is relatively short, the measurement light is irradiated to the right of the paper surface of the workpiece W. On the other hand, as shown in FIG. 15 (C), when the imaging length Texp is relatively long, the measurement light is irradiated to the left of the paper surface of the workpiece W. Further, as shown in FIG. 15 (B), when the imaging length Texp is a standard length, the measurement light is irradiated to an intermediate position between the two.

必須適當地反映此種測量光的照射位置的變動,以生成正確的形狀資訊。 Changes in the irradiation position of such measurement light must be appropriately reflected to generate correct shape information.

再次參照圖14,作為來自測量裝置300的測量資訊,包含測量值(所述示例中,為直至工件W的表面為止的距離),而且,作為與所述測量資訊相關聯的時刻資訊,例如也可包含表示測量週期Ts的開始時機的測量時刻TZ1與攝像長度Texp。控制裝置100也可通過利用攝像長度Texp來修正來自測量裝置300的 時刻資訊中所含的測量時刻TZ1,從而算出原本的測量時刻。此時,作為工件W的表面上的測量點,成為與測量時刻TZ'1、TZ'2、TZ'3…的時機相關聯的位置。 Referring again to FIG. 14, the measurement information from the measurement device 300 includes measurement values (in the example, the distance to the surface of the workpiece W), and as the time information associated with the measurement information, for example, also It may include the measurement time TZ1 and the imaging length Texp, which indicate the start timing of the measurement period Ts. The control device 100 can also correct the The measurement time TZ1 included in the time information is used to calculate the original measurement time. At this time, the measurement points on the surface of the workpiece W are positions associated with the timings of the measurement times TZ'1, TZ'2, TZ'3,....

而且,根據應用程式,也有時優選將與攝像期間的中心相關聯的位置設為測量點。此時,通過利用攝像長度Texp來修正來自測量裝置300的時刻資訊中所含的測量時刻TZ1的1/2,從而能夠算出測量時刻TZ"1、TZ"2、TZ"3…。 In addition, depending on the application, it may be preferable to set a position associated with the center during imaging as the measurement point. At this time, by using the imaging length Texp to correct 1/2 of the measurement time TZ1 included in the time information from the measurement device 300, the measurement time TZ "1, TZ" 2, TZ "3, etc. can be calculated.

進而,所述說明中,對發送表示測量週期Ts的開始時機的測量時刻TZ1及攝像長度Texp的示例進行了說明,但也可在測量裝置300側算出測量時刻TZ'1、TZ'2、TZ'3…或測量時刻TZ"1、TZ"2、TZ"3…,並作為時刻資訊而發送至控制裝置100。 Furthermore, in the above description, an example has been described in which the measurement time TZ1 and the imaging length Texp, which indicate the start timing of the measurement period Ts, are transmitted. However, the measurement time TZ'1, TZ'2, and TZ may be calculated on the measurement device 300 '3 ... or measurement time TZ "1, TZ" 2, TZ "3 ..., and sends it to the control device 100 as time information.

如此,測量裝置300獲取測量資訊的時刻資訊包含表示從測量光的照射開始直至照射完成為止的期間內的任意時機的時刻資訊。即,測量裝置300獲取測量資訊的時刻資訊也可為與測量光的照射開始時對應的時機、測量光的照射期間內的任意時機、與測量光的照射完成時對應的時機中的任一個。 In this way, the time information at which the measurement device 300 acquires the measurement information includes time information indicating an arbitrary time period from the start of irradiation of the measurement light to the completion of the irradiation. That is, the time information at which the measurement device 300 acquires the measurement information may be any one of a timing corresponding to when the measurement light is irradiated, an arbitrary timing during the measurement light irradiation period, and a timing corresponding to the time when the measurement light irradiation is completed.

在測量裝置300中安裝有動態地決定攝像長度(曝光時間)的功能的情況下,優選的是,獲取與此攝像長度(曝光時間)相關聯的測量時刻,並將此獲取的測量時刻通知給控制裝置100。此時,對於以何種資料格式來將測量時刻通知給控制裝置100,可採用任意方法。 When a function of dynamically determining the imaging length (exposure time) is installed in the measurement device 300, it is preferable to acquire a measurement time associated with the imaging length (exposure time) and notify the acquired measurement time to Control device 100. At this time, an arbitrary method may be adopted as to which data format is used to notify the control device 100 of the measurement time.

<G.形狀資訊生成的處理流程> <G. Processing flow for shape information generation>

接下來,對與形狀資訊的生成相關的處理流程進行說明。 Next, a processing flow related to generation of shape information will be described.

圖16是表示本實施方式的測量系統1中的形狀資訊的生成流程的流程圖。圖16所示的各步驟典型的是通過控制裝置100的處理器104執行程式而實現。 FIG. 16 is a flowchart showing a flow of generating shape information in the measurement system 1 according to the present embodiment. Each step shown in FIG. 16 is typically implemented by a program executed by the processor 104 of the control device 100.

參照圖16,控制裝置100在收到來自驅動單元200的資訊(動作資訊及相關聯的時刻資訊)時(步驟S100中為是(YES)),將時刻資訊作為關鍵字(key)來保存所接收的資訊(步驟S102)。若非如此(步驟S100中為否(NO)),則跳過(skip)步驟S102的處理。 Referring to FIG. 16, when the control device 100 receives information (action information and associated time information) from the driving unit 200 (YES in step S100), the time information is saved as a key. The received information (step S102). If not (NO in step S100), the processing of step S102 is skipped.

當收到來自測量裝置300的資訊(測量資訊及相關聯的時刻資訊)時(步驟S104中為是),將時刻資訊作為關鍵字來保存所接收的資訊(步驟S106)。若非如此(步驟S104中為否),則跳過步驟S106的處理。 When the information (measurement information and associated time information) is received from the measurement device 300 (YES in step S104), the received information is saved using the time information as a keyword (step S106). If not (NO in step S104), the processing of step S106 is skipped.

繼而,當收到形狀資訊的生成指示時(步驟S108中為是),控制裝置100確定所保存的來自測量裝置300的資訊中所含的與測量資訊相關聯的時刻資訊(步驟S110),並使用所保存的來自驅動單元200的資訊,來算出與所述已確定的時刻資訊相關聯的動作資訊(位置)(步驟S112)。通過步驟S110及步驟S112的處理,可決定與某時刻資訊相關聯的、測量資訊及動作資訊(位置)的組合。若未收到資訊的生成指示時(步驟S108中為否),則重複步驟S100以下的處理。 Then, when the shape information generation instruction is received (YES in step S108), the control device 100 determines the time information associated with the measurement information contained in the saved information from the measurement device 300 (step S110), and The stored information from the drive unit 200 is used to calculate motion information (position) associated with the determined time information (step S112). Through the processing of steps S110 and S112, a combination of measurement information and motion information (position) associated with the information at a certain time can be determined. If the information generation instruction is not received (NO in step S108), the processing from step S100 is repeated.

然後,控制裝置100判斷是否已對所保存的來自測量裝 置300的資訊中所含的所有時刻資訊決定了測量資訊及動作資訊(位置)的組合(步驟S114)。若存在尚決定測量資訊及動作資訊(位置)的組合的時刻資訊(步驟S114中為否),則重複步驟S110以下的處理。 Then, the control device 100 determines whether the All the time information included in the information of the setting 300 determines the combination of the measurement information and the motion information (position) (step S114). If there is time information for which a combination of measurement information and motion information (position) has been determined (NO in step S114), the processing from step S110 is repeated.

另一方面,若已對所有時刻資訊決定了測量資訊及動作資訊(位置)的組合(步驟S114中為是),則基於測量資訊及動作資訊(位置)的組合來生成測量資訊(步驟S116)。然後,處理結束。 On the other hand, if the combination of measurement information and motion information (position) has been determined for all time information (YES in step S114), measurement information is generated based on the combination of measurement information and motion information (position) (step S116) . Then, the process ends.

<H.變形例> <H. Modifications>

本實施方式的測量系統1中,對控制裝置100從驅動單元200及測量裝置300獲取資訊而生成形狀資訊的結構例進行了說明,但也可由驅動單元200及測量裝置300中的任一者來生成形狀資訊。即,對將生成形狀資訊的功能設於現場網路20的通信主機的結構進行了例示,但也可配置在其他設備上。 In the measurement system 1 of the present embodiment, a configuration example in which the control device 100 acquires information from the drive unit 200 and the measurement device 300 to generate shape information has been described, but it may be performed by either the drive unit 200 or the measurement device 300. Generate shape information. That is, the configuration of the communication host provided with the function of generating shape information on the field network 20 is exemplified, but it may be arranged on another device.

本實施方式的測量系統1中,表示了驅動單元200及測量裝置300連接於單一的現場網路20的示例,但也可分別連接於不同的現場網路。例如設想下述結構:控制裝置對於兩個現場網路分別作為通信主機發揮功能,且在控制裝置內,關於各個現場網路的計時器經同步。此種結構中,即使是不同的現場網路彼此間也能夠實現時機同步,因此無須使現場網路共用化。 The measurement system 1 of the present embodiment shows an example in which the drive unit 200 and the measurement device 300 are connected to a single field network 20, but may be connected to different field networks. For example, imagine a configuration in which the control device functions as a communication host for two field networks, and the timers for the respective field networks are synchronized in the control device. In this structure, even different field networks can realize timing synchronization with each other, so there is no need to share field networks.

本實施方式的測量系統1中,表示了驅動單元200及測量裝置300分別配置有各一個的結構例,但並不限於此,也可配 置多個驅動單元200及測量裝置300。例如,也可在採用具有二自由度的XY載台作為載台6的同時,為了驅動沿各個軸配置的各個馬達10,而配置兩個驅動單元200。在此情況下,由於彼此的設備經時機同步,因此能夠使從各個設備獲取的資訊彙集在同一時間軸上。 The measurement system 1 of the present embodiment shows a configuration example in which each of the drive unit 200 and the measurement device 300 is arranged, but it is not limited to this, and may be configured A plurality of driving units 200 and measuring devices 300 are provided. For example, two drive units 200 may be arranged in order to drive each motor 10 arranged along each axis while using an XY stage having two degrees of freedom as the stage 6. In this case, since the devices of each other are synchronized over time, the information obtained from each device can be brought together on the same timeline.

本實施方式的測量系統1中,與以同一時間軸來定義的時刻資訊相關聯的動作資訊(位置)及測量資訊能夠收集時間序列資料,因此當發生了某些異常或事件時,只要能夠獲取其發生的時刻資訊,便能夠確定此時機的資訊,從而有助於探明原因。 In the measurement system 1 according to this embodiment, the time information can be collected by the action information (position) and measurement information associated with the time information defined on the same time axis. Therefore, when certain abnormalities or events occur, as long as they can be obtained When it happens, information about the moment can help determine the cause.

<I.優點> <I. Advantages>

本實施方式的測量系統中,針對測量對象的測量裝置、和使測量裝置與測量對象之間的相對位置關係發生變化的驅動裝置分別具有經同步的計時器,在來自測量裝置的測量資訊及來自驅動裝置的動作資訊中,賦予有從各個計時器輸出的時刻資訊。通過以此時刻資訊為基準來使測量資訊及動作資訊彼此相關聯,從而即使各個裝置未直接連接,也能夠高精度地生成表示測量對象的形狀的資訊。 In the measurement system according to this embodiment, the measurement device for the measurement target and the driving device for changing the relative positional relationship between the measurement device and the measurement target each have a synchronized timer. The operation information of the drive device is provided with time information output from each timer. By correlating the measurement information and the motion information with this time information as a reference, it is possible to generate information representing the shape of the measurement target with high accuracy even if the devices are not directly connected.

應認為,此次揭示的實施方式在所有方面僅為例示,並非限制者。本發明的範圍是由專利申請範圍而非所述說明所示,且意圖包含與專利申請範圍均等的含義及範圍內的所有變更。 It should be understood that the embodiments disclosed this time are merely examples in all respects and are not restrictive. The scope of the present invention is shown by the scope of the patent application rather than the description, and is intended to include any modifications within the meaning and scope equivalent to the scope of the patent application.

Claims (9)

一種測量系統,包括: 測量裝置,對測量對象進行測量;以及 驅動裝置,使所述測量裝置與所述測量對象之間的相對位置關係發生變化, 所述測量裝置及所述驅動裝置分別具有經同步的計時器, 所述驅動裝置將表示所述測量對象的位置的資訊、與來自所述驅動裝置的計時器的時刻資訊相關聯,並作為第1資訊而輸出,來自所述驅動裝置的計時器的時刻資訊表示獲取表示所述位置的資訊的時機, 所述測量裝置將通過對所述測量對象進行測量而獲取的測量資訊、與表示獲取所述測量資訊的時機的來自所述測量裝置的計時器的時刻資訊相關聯,並作為第2資訊而輸出, 所述測量系統包括資訊生成部件,所述資訊生成部件基於一個或多個所述第1資訊,算出與所述第2資訊中所含的時刻資訊相關聯的位置,並且基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示所述測量對象的形狀的資訊。A measurement system includes: a measurement device that measures a measurement object; and a driving device that changes a relative position relationship between the measurement device and the measurement object, and the measurement device and the driving device each have a A synchronized timer, the driving device correlates information indicating the position of the measurement object with the time information from the timer of the driving device, and outputs the information as the first information, the timing from the driving device The time information of the device indicates the timing of acquiring the information indicating the position, the measurement device will obtain the measurement information obtained by measuring the measurement object, and the measurement information from the measurement device indicates the timing of acquiring the measurement information. The time information of the timer is associated and output as second information. The measurement system includes an information generating component that calculates the information related to the second information based on one or more of the first information. Location with associated time information, and based on calculated location associated with shared time information In combination with the measurement information, information indicating the shape of the measurement object is generated. 如申請專利範圍第1項所述的測量系統,其中 所述第1資訊還包括表示所述測量對象的加速度的資訊及表示速度的資訊, 所述資訊生成部件基於算出對象時刻之前的時刻的、所述測量對象的加速度及速度,來算出所述算出對象時刻的位置。The measurement system according to item 1 of the scope of patent application, wherein the first information further includes information indicating acceleration of the measurement target and information indicating speed, and the information generating unit calculates a time based on a time before the time of the target, The acceleration and speed of the measurement target are used to calculate the position of the calculation target time. 如申請專利範圍第1項所述的測量系統,其中 所述資訊生成部件對與處於算出對象時刻附近的時刻相關聯的多個所述第1資訊中所含的表示位置的資訊進行插值,從而算出所述算出對象時刻的位置。The measurement system according to item 1 of the scope of patent application, wherein the information generating means interpolates information indicating a position contained in a plurality of the first information associated with a time near a calculation target time, thereby The position of the calculation target time is calculated. 如申請專利範圍第1項所述的測量系統,其中 所述測量裝置及所述驅動裝置經由經時機同步的網路而連接。The measuring system according to item 1 of the scope of patent application, wherein the measuring device and the driving device are connected via a timing-synchronized network. 如申請專利範圍第4項所述的測量系統,其中 通信主機,對所述網路上的資料通信及計時器的同步進行管理, 所述資訊生成部件設於所述通信主機中。The measurement system according to item 4 of the scope of patent application, wherein the communication host manages the data communication on the network and the synchronization of the timer, and the information generating component is provided in the communication host. 如申請專利範圍第1項至第5項中任一項所述的測量系統,其中 所述測量裝置構成為,對所述測量對象照射測量光,並且接收來自所述測量對象的反射光,以對所述測量對象的特性值進行測量, 所述第2資訊包含表示從所述測量光的照射開始直至照射完成為止的期間內的一個時機的時刻資訊。The measurement system according to any one of claims 1 to 5, wherein the measurement device is configured to irradiate the measurement object with measurement light and receive reflected light from the measurement object to Measuring the characteristic value of the measurement object, and the second information includes time information indicating a timing within a period from the irradiation of the measurement light to the completion of the irradiation. 如申請專利範圍第1項至第5項中任一項所述的測量系統,其中 所述驅動裝置輸出所述第1資訊的時機、與所述測量裝置輸出所述第2資訊的時機互不相同。The measurement system according to any one of claims 1 to 5, wherein the timing at which the driving device outputs the first information is different from the timing at which the measuring device outputs the second information. the same. 一種控制裝置,包括: 網路控制器,對測量裝置與驅動裝置進行網路連接,所述測量裝置對測量對象進行測量,所述驅動裝置使所述測量裝置與所述測量對象之間的相對位置關係發生變化;以及 計時器,在所述測量裝置的計時器及所述驅動裝置的計時器之間經同步, 所述驅動裝置將表示所述測量對象的位置的資訊、與來自所述驅動裝置的計時器的時刻資訊相關聯,並作為第1資訊而輸出,來自所述驅動裝置的計時器的時刻資訊表示獲取表示所述位置的資訊的時機, 所述測量裝置將通過對所述測量對象進行測量而獲取的測量資訊、與表示獲取所述測量資訊的時機的來自所述測量裝置的計時器的時刻資訊相關聯,並作為第2資訊而輸出, 所述控制裝置還包括資訊生成部件,所述資訊生成部件基於一個或多個所述第1資訊,算出與所述第2資訊中所含的時刻資訊相關聯的位置,並且基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示所述測量對象的形狀的資訊。A control device includes: a network controller that performs a network connection between a measurement device and a driving device, the measurement device measures a measurement object, and the driving device makes a relative between the measurement device and the measurement object The positional relationship is changed; and a timer synchronized between the timer of the measuring device and the timer of the driving device, the driving device synchronizing information indicating the position of the measurement object with information from the driving device The time information of the timer of the device is associated and output as the first information. The time information of the timer from the driving device indicates the timing of acquiring the information indicating the position, and the measuring device The measurement information obtained by the subject performing measurement is associated with the time information from the timer of the measurement device indicating the timing of acquiring the measurement information, and is output as the second information. The control device further includes an information generating unit , The information generating unit calculates a time difference from the second information based on one or more of the first information. Associated with the location, and based on the calculated moment in combination with the common information associated with the measured position information, generates the information of the measured shape of the object. 一種測量方法,是測量系統中的測量方法,所述測量系統包括測量裝置與驅動裝置,所述測量裝置對測量對象進行測量,所述驅動裝置使所述測量裝置與所述測量對象之間的相對位置關係發生變化,所述測量方法包括: 所述測量裝置及所述驅動裝置分別具有經同步的計時器,且所述測量方法包括下述步驟: 所述驅動裝置將表示所述測量對象的位置的資訊、與來自所述驅動裝置的計時器的時刻資訊相關聯,並作為第1資訊而輸出,來自所述驅動裝置的計時器的時刻資訊表示獲取表示所述位置的資訊的時機; 所述測量裝置將通過對所述測量對象進行測量而獲取的測量資訊、與表示獲取所述測量資訊的時機的來自所述測量裝置的計時器的時刻資訊相關聯,並作為第2資訊而輸出; 基於一個或多個所述第1資訊,算出與所述第2資訊中所含的時刻資訊相關聯的位置;以及 基於與共用的時刻資訊相關聯的、所算出的位置與測量資訊的組合,生成表示所述測量對象的形狀的資訊。A measurement method is a measurement method in a measurement system. The measurement system includes a measurement device and a driving device, the measurement device measures a measurement object, and the driving device causes a measurement between the measurement device and the measurement object. The relative position relationship changes, and the measuring method includes: the measuring device and the driving device each have synchronized timers, and the measuring method includes the following steps: the driving device will indicate the The position information is associated with the time information from the timer of the driving device, and is output as the first information. The time information from the timer of the driving device indicates the timing of acquiring the information indicating the position; The measurement device associates measurement information acquired by measuring the measurement object with time information from a timer of the measurement device indicating a timing of acquiring the measurement information, and outputs the information as second information; Based on one or more of the first information, calculate a correlation with the time information contained in the second information Position; and based on the common time information associated with the combination of the calculated position of the measurement information, generates information about the shape of the object measured.
TW106144356A 2017-03-15 2017-12-18 Measurement system, control device and measurement method TWI642904B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049486A JP7009751B2 (en) 2017-03-15 2017-03-15 Measurement system, control device, measurement method
JP2017-049486 2017-03-15

Publications (2)

Publication Number Publication Date
TW201835529A TW201835529A (en) 2018-10-01
TWI642904B true TWI642904B (en) 2018-12-01

Family

ID=63681846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106144356A TWI642904B (en) 2017-03-15 2017-12-18 Measurement system, control device and measurement method

Country Status (4)

Country Link
JP (1) JP7009751B2 (en)
KR (1) KR102049291B1 (en)
CN (1) CN108627118B (en)
TW (1) TWI642904B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785937B (en) * 2021-12-17 2022-12-01 台灣麗偉電腦機械股份有限公司 Composite workpiece measuring table

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135210A (en) * 1990-09-27 1992-05-08 Fanuc Ltd Synchronizing signal generator
JP2001027904A (en) * 1999-05-11 2001-01-30 Fanuc Ltd Numerical control system
JP2007213474A (en) * 2006-02-13 2007-08-23 Yaskawa Electric Corp Motion control system
TWI498688B (en) * 2013-06-25 2015-09-01 Mitsubishi Electric Corp Programmable controller
TWI571712B (en) * 2015-10-29 2017-02-21 行政院原子能委員會核能研究所 Multiple modular redundant fault tolerant control system and synchronization method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620965Y2 (en) * 1990-09-28 1994-06-01 株式会社ミツトヨ CMM
JPH07198542A (en) * 1993-12-28 1995-08-01 Mitsubishi Materials Corp Can lid opening inspection device
JPH0894336A (en) * 1994-09-28 1996-04-12 Sumitomo Metal Mining Co Ltd Thin-plate inspection device and method
JPH0914943A (en) * 1995-06-29 1997-01-17 Mitsubishi Heavy Ind Ltd Road surface condition measuring device
US6507036B1 (en) * 1999-06-01 2003-01-14 National Research Council Of Canada Three dimensional optical scanning
FI20012204A0 (en) 2001-11-13 2001-11-13 Mapvision Oy Combining point clouds
KR100983748B1 (en) * 2002-05-02 2010-09-24 오르보테크 엘티디. System and method for manufacturing printed circuit boards using non-uniformly modified images
JP4032421B2 (en) 2003-02-25 2008-01-16 横河電機株式会社 Measurement data synchronization system
JP5141972B2 (en) 2007-12-07 2013-02-13 オムロン株式会社 Industrial controller
JP2009294128A (en) 2008-06-06 2009-12-17 Visuatool Inc Three-dimensional measuring system, measuring terminal, measuring method of three-dimensional shape, and total station
JP5349122B2 (en) * 2009-04-14 2013-11-20 株式会社ミツトヨ Synchronous moving device and image measuring device
JP5316563B2 (en) * 2011-02-15 2013-10-16 オムロン株式会社 Image processing apparatus and image processing system
CN202092624U (en) * 2011-04-28 2011-12-28 昆山双虎电子科技有限公司 Three-dimensional measuring device with high through capability
CN102937419B (en) * 2011-05-04 2015-05-27 常州工学院 Cam profile detection system based on direct driving motor
JP2013069054A (en) 2011-09-21 2013-04-18 Fuji Xerox Co Ltd Information processing device, program, and image forming device
CA2854274C (en) * 2011-11-09 2015-10-13 Hitachi, Ltd. Autonomous travel system
CN102749041B (en) * 2012-07-13 2014-10-08 合肥工业大学 Propeller type surface contour error measurement instrument and method
JP6094196B2 (en) * 2012-12-14 2017-03-15 オムロン株式会社 Information processing apparatus, information processing program, and information processing method
KR101726743B1 (en) * 2013-01-08 2017-04-13 후지 덴키 가부시키가이샤 Control system, master programmable controller, slave programmable controller, and control method
WO2015162763A1 (en) 2014-04-24 2015-10-29 三菱電機株式会社 Network system
JP5976886B1 (en) 2015-06-10 2016-08-24 東芝エレベータ株式会社 Elevator hoistway shape information generation system, hoistway shape information generation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135210A (en) * 1990-09-27 1992-05-08 Fanuc Ltd Synchronizing signal generator
JP2001027904A (en) * 1999-05-11 2001-01-30 Fanuc Ltd Numerical control system
JP2007213474A (en) * 2006-02-13 2007-08-23 Yaskawa Electric Corp Motion control system
TWI498688B (en) * 2013-06-25 2015-09-01 Mitsubishi Electric Corp Programmable controller
TWI571712B (en) * 2015-10-29 2017-02-21 行政院原子能委員會核能研究所 Multiple modular redundant fault tolerant control system and synchronization method thereof

Also Published As

Publication number Publication date
CN108627118B (en) 2020-06-23
KR20180105562A (en) 2018-09-28
KR102049291B1 (en) 2019-11-27
JP2018152005A (en) 2018-09-27
TW201835529A (en) 2018-10-01
JP7009751B2 (en) 2022-01-26
CN108627118A (en) 2018-10-09

Similar Documents

Publication Publication Date Title
TWI705228B (en) Measurement system and method thereof
EP3372953A1 (en) Measurement device, processing device, and article manufacturing method
CN107705282B (en) Information processing system, information processing apparatus, position specifying method, and recording medium
JP6463495B2 (en) Global clock determination method and structure between systems
JP6728842B2 (en) Optical measuring device
KR101988103B1 (en) Optical measuring apparatus
CN101292359A (en) Apparatus for and method of measuring image
TWI642904B (en) Measurement system, control device and measurement method
CN102645160B (en) Image measuring apparatus
JP5661953B1 (en) Programmable controller
TWI630369B (en) Optical displacement sensor and system including the same
CN111629862B (en) Machining system, shape measuring probe, shape calculating device, and storage medium
JP2022118932A (en) Control system, communication device and control method
CN117579927A (en) Optical measuring device with multiple industrial cameras
JPWO2014136230A1 (en) Distributed control apparatus and control method
KR20220022441A (en) Location specifying device, control method of the location specifying device, information processing program and recording medium