TWI642225B - Battery electrode structures for high mass loadings of high capacity active materials - Google Patents

Battery electrode structures for high mass loadings of high capacity active materials Download PDF

Info

Publication number
TWI642225B
TWI642225B TW105142724A TW105142724A TWI642225B TW I642225 B TWI642225 B TW I642225B TW 105142724 A TW105142724 A TW 105142724A TW 105142724 A TW105142724 A TW 105142724A TW I642225 B TWI642225 B TW I642225B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
template
active material
telluride
Prior art date
Application number
TW105142724A
Other languages
Chinese (zh)
Other versions
TW201725775A (en
Inventor
劉祖琴
韓松
席恩E 羅維尼斯
Original Assignee
美商安普雷斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商安普雷斯公司 filed Critical 美商安普雷斯公司
Publication of TW201725775A publication Critical patent/TW201725775A/en
Application granted granted Critical
Publication of TWI642225B publication Critical patent/TWI642225B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

提供維持電極中的高電容活性材料之高質量負載(亦即,每單位面積大的量)而不使其循環效能劣化之電池組電極結構。此等質量負載等級對應於適合於商用電極的每電極單位面積之電容,即使將該等活性材料保持為薄且通常低於其破裂極限亦如此。一電池組電極結構可包括多個模板層。一初始模板層可包括附著至一基板且具有一受控密度的奈米結構。可使用設置於例如一實質上惰性基板上之一受控厚度源材料層來形成此初始層。額外一或多個模板層接著形成於該初始層上,從而導致具有諸如一表面積、厚度及孔隙率之特定特性的一多層模板結構。接著用一高電容活性材料塗佈該多層模板結構。 A battery electrode structure that maintains a high-quality load of a high-capacitance active material in an electrode (that is, a large amount per unit area) without deteriorating its cycle efficiency is provided. These mass loading levels correspond to capacitances per unit area per electrode suitable for commercial electrodes, even if the active materials are kept thin and generally below their cracking limit. A battery pack electrode structure can include a plurality of template layers. An initial template layer can include a nanostructure attached to a substrate and having a controlled density. This initial layer can be formed using a layer of controlled thickness source material disposed on, for example, a substantially inert substrate. An additional one or more template layers are then formed on the initial layer resulting in a multilayer template structure having specific characteristics such as surface area, thickness, and porosity. The multilayer template structure is then coated with a high capacitance active material.

Description

高電容活性材料的高質量負載之電池組電極結構 High-capacity battery pack electrode structure with high capacitance active material

對相關申請案之交叉參考 Cross-reference to related applications

本申請案依據35 U.S.C.§ 119(e)主張2010年10月22日申請之題為「BATTERY ELECTRODE STRUCTURES FOR HIGH MASS LOADINGS OF HIGH CAPACITY ACTIVE MATERIALS」的美國臨時專利申請案第61/406,047號(代理人案號AMPRP017P)之權利,該申請案以引用的方式全部併入本文中。 U.S. Provisional Patent Application Serial No. 61/406,047, entitled "BATTERY ELECTRODE STRUCTURES FOR HIGH MASS LOADINGS OF HIGH CAPACITY ACTIVE MATERIALS", filed on October 22, 2010, which is hereby incorporated by reference. The title of AMPRP 017 P) is hereby incorporated by reference in its entirety.

本申請案亦為2011年3月2日申請之題為「TEMPLATE ELECTRODE STRUCTURES FOR DEPOSITING ACTIVE MATERIALS」的美國專利申請案第13/039,031號(代理人案號AMPRP012US)之部分接續申請案,該專利申請案為2010年3月3日申請之題為「ELECTROCHEMICALLY ACTIVE STRUCTURES CONTAINING SILICIDES」的美國臨時專利申請案第61/310,183號(代理人案號AMPRP012PUS)之非臨時案,該臨時專利申請案針對所有目的以引用的方式全部併入本文中。 This application is also a part of the continuation application of U.S. Patent Application Serial No. 13/039,031 (Attorney Docket No. AMPRP012US), entitled "TEMPLATE ELECTRODE STRUCTURES FOR DEPOSITING ACTIVE MATERIALS", filed on March 2, 2011, which is hereby incorporated by reference. The non-provisional case of US Provisional Patent Application No. 61/310,183 (Attorney Docket No. AMPRP012PUS), entitled "ELECTROCHEMICALLY ACTIVE STRUCTURES CONTAINING SILICIDES", filed on March 3, 2010, for all purposes All of these are incorporated herein by reference.

本申請案亦為2011年3月22日申請之題為「INTERCONNECTING ELECTROCHEMICALLY ACTIVE MATERIAL NANOSTRUCTURES」的美國專利申請案第13/069,212號(代理人案號AMPRP011US)之部分接續申請案,該專利申請案為2010年3月22日申請之題為 「INTERCONNECTING ACTIVE MATERIAL NANOSTRUCTURES」的美國臨時專利申請案第61/316,104號(代理人案號AMPRP011PUS)之非臨時案,該臨時專利申請案針對所有目的以引用的方式全部併入本文中。 This application is also a continuation-in-part application of U.S. Patent Application Serial No. 13/069,212 (Attorney Docket No. AMPRP011US), filed on March 22, 2011, entitled "INTERCONNECTING ELECTROCHEMICALLY ACTIVE MATERIAL NANOSTRUCTURES" The application dated March 22, 2010 is A non-provisional provision of U.S. Provisional Patent Application Serial No. 61/316,104 (Attorney Docket No. AMPRP011PUS), which is incorporated herein by reference in its entirety for all purposes.

本申請案亦為2011年5月24日申請之題為「MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES」的美國專利申請案第13/114,413號(代理人案號AMPRP014US)之部分接續申請案,該專利申請案為2010年5月24日申請之題為「MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES」的美國臨時專利申請案第61/347,614號(代理人案號AMPRP014P)之非臨時案。 This application is also a part of the continuation application of U.S. Patent Application Serial No. 13/114,413 (Attorney Docket No. AMPRP014US), entitled "MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES", filed on May 24, 2011, which is hereby incorporated by reference. The non-provisional case of US Provisional Patent Application No. 61/347,614 (Attorney Docket No. AMPRP014P), entitled "MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES", filed on May 24, 2010.

以上列舉之所有專利申請案皆針對所有目的以引用的方式全部併入本文中。 All of the patent applications listed above are hereby incorporated by reference in their entirety for all purposes.

高電容電化學活性材料對於電池組應用非常合乎需要。然而,此等材料在電池組循環期間展現相當大的體積改變,例如,在鋰化期間之膨脹及在去鋰化期間之收縮。舉例而言,矽在至約4200mAh/g之其理論電容或Li4.4Si結構之鋰化期間膨脹400%之多。此量值之體積改變造成活性材料結構之粉碎、電連接之失去及電容衰退。 High capacitance electrochemically active materials are highly desirable for battery pack applications. However, such materials exhibit substantial volume changes during battery cycle, such as expansion during lithiation and shrinkage during delithiation. For example, germanium expands by as much as 400% during the lithiation of its theoretical capacitance or Li 4.4 Si structure to about 4200 mAh/g. The volume change of this magnitude causes comminution of the active material structure, loss of electrical connection, and capacitance degradation.

將高電容材料作為奈米結構提供可解決此等問題中之一些。奈米結構具有至少一奈米級尺寸,且沿著此尺寸之膨脹-收縮傾向於比沿著較大側及尺寸之膨脹-收縮的破壞性小。因而,奈米結構可在電池組循環期間保持實質上完整。然而,將多個奈米結構整合成具有足夠活性材料負載之電池組電極層係困難的。此整合涉及建立及維持此等奈米結構與集電器之間的電互連,及在許多循環上在集電器或一些其 他基板上提供對此等奈米結構之機械支撐。另外,較小的奈米結構在某些電極設計中常不提供足夠量的高電容活性材料。舉例而言,若保持奈米膜比高電容活性材料之典型破裂極限薄,則將奈米膜沈積至習知平基板上不提供足夠的活性材料負載。此外,經提議用於製造奈米結構之許多製程緩慢且常涉及昂貴的材料。舉例而言,自大塊粒子蝕刻矽奈米線使用銀催化劑及昂貴的蝕刻溶液。生長長的結晶矽結構亦可為相對慢的製程,且可涉及昂貴的催化劑,諸如,金。 Providing a high-capacitance material as a nanostructure can solve some of these problems. The nanostructure has a size of at least one nanometer, and the expansion-contraction along this dimension tends to be less destructive than the expansion-contraction along the larger side and size. Thus, the nanostructure can remain substantially intact during the battery cycle. However, it is difficult to integrate multiple nanostructures into a battery electrode layer with sufficient active material loading. This integration involves establishing and maintaining electrical interconnections between such nanostructures and current collectors, and in many cycles on current collectors or some of them Mechanical support for these nanostructures is provided on his substrate. In addition, smaller nanostructures often do not provide a sufficient amount of high capacitance active material in certain electrode designs. For example, if the nano film is kept thinner than the typical cracking limit of the high capacitance active material, depositing the nano film onto the conventional flat substrate does not provide sufficient active material loading. In addition, many of the processes proposed for making nanostructures are slow and often involve expensive materials. For example, silver catalysts and expensive etching solutions are used to etch nanowires from bulk particles. The growing long crystalline germanium structure can also be a relatively slow process and can involve expensive catalysts such as gold.

提供維持電極中的高電容活性材料之高質量負載(亦即,每單位面積大的量)而不使其循環效能劣化之電池組電極結構。此等質量負載等級對應於適合於商用電極的每電極單位面積之電容,即使將活性材料保持為薄且通常低於其破裂極限亦如此。電池組電極結構可包括多個模板層。初始模板層可包括附著至基板且具有受控密度的奈米結構。可使用設置於(例如)實質上惰性基板上之受控厚度源材料層來形成此初始層。額外一或多個模板層接著形成於初始層上,從而導致具有特定特性(諸如,表面積、厚度及孔隙率)之多層模板結構。接著用高電容活性材料塗佈多層模板結構。 A battery electrode structure that maintains a high-quality load of a high-capacitance active material in an electrode (that is, a large amount per unit area) without deteriorating its cycle efficiency is provided. These mass loading levels correspond to the capacitance per unit area of the electrode suitable for commercial electrodes, even if the active material is kept thin and typically below its cracking limit. The battery electrode structure can include a plurality of template layers. The initial template layer can include a nanostructure attached to the substrate and having a controlled density. This initial layer can be formed using a layer of controlled thickness source material disposed on, for example, a substantially inert substrate. An additional one or more template layers are then formed on the initial layer resulting in a multilayer template structure having specific characteristics such as surface area, thickness, and porosity. The multilayer template structure is then coated with a high capacitance active material.

在某些實施例中,一種電極材料包括一導電層、定位於該導電層上的第一奈米結構之一層及定位於該等第一奈米結構之該層上的第二奈米結構之一層。該等第一奈米結構包括一或多種金屬矽化物。該電極材料亦包括覆蓋該等第一奈米結構之至少一部分及該等第二奈米結構的電極活性材料之一塗層。可包括於該等第一奈米結構中的金屬矽化物之實例包括矽化鎳、矽化鈷、矽化銅、矽化銀、矽化鉻、矽化鈦、矽化鋁、矽化鋅及矽化鐵。金屬矽化物之更特定實例包括Ni2Si、NiSi、NiSi2,及其組合。該導電層可包括不鏽鋼。電極活性材料之實例包括結晶矽、非晶矽、氧化矽、氮氧化矽、含錫材料、含 鍺材料及含碳材料。 In some embodiments, an electrode material includes a conductive layer, a layer of a first nanostructure positioned on the conductive layer, and a second nanostructure positioned on the layer of the first nanostructure layer. The first nanostructures comprise one or more metal halides. The electrode material also includes a coating of one of the electrode active materials covering at least a portion of the first nanostructures and the second nanostructures. Examples of metal halides that may be included in the first nanostructures include nickel telluride, cobalt telluride, copper telluride, silver telluride, chromium telluride, titanium telluride, aluminum telluride, zinc telluride, and iron telluride. More specific examples of the metal telluride include Ni 2 Si, NiSi, NiSi 2 , and combinations thereof. The conductive layer can comprise stainless steel. Examples of the electrode active material include crystalline cerium, amorphous cerium, cerium oxide, cerium oxynitride, tin-containing material, cerium-containing material, and carbon-containing material.

在某些實施例中,該等第一奈米結構之該層包括紮根至該導電層之多個奈米線。該電極材料可具有在約30%與50%之間的孔隙率。該電極活性材料之該塗層可包括多個層。此等多個層中之至少一些可具有不同孔隙率。舉例而言,多個層可包括一內層及一外層。該內層可具有比該外層低之一孔隙率。該多個層可包括具有不同氫濃度或(更通常地)不同組合物之至少一些層。在某些實施例中,該多個層中之至少一些具有不同形態。在某些實施例中,該電極活性材料之該塗層定位於該等第一奈米結構之該層之至少一部分與該等第二奈米結構之該層之間。該等第二奈米結構之一層可包括碳奈米纖維及/或多維金屬矽化物結構。多維金屬矽化物結構可包括複數個金屬矽化物奈米線附著至的支撐結構。 In some embodiments, the layer of the first nanostructures comprises a plurality of nanowires rooted to the conductive layer. The electrode material can have a porosity of between about 30% and 50%. The coating of the electrode active material may comprise a plurality of layers. At least some of the plurality of layers may have different porosities. For example, the plurality of layers can include an inner layer and an outer layer. The inner layer can have a porosity that is lower than the outer layer. The plurality of layers can include at least some layers having different hydrogen concentrations or (more typically) different compositions. In some embodiments, at least some of the plurality of layers have different morphology. In some embodiments, the coating of the electrode active material is positioned between at least a portion of the layer of the first nanostructures and the layer of the second nanostructures. One of the layers of the second nanostructures may comprise carbon nanofibers and/or multi-dimensional metal telluride structures. The multi-dimensional metal telluride structure can include a support structure to which a plurality of metal halide nanowires are attached.

提供一種電極總成,該電極總成包括:一傳導基板,其用於在一電極活性材料與電池組接線端子之間傳導電流;及一電極材料。該電極材料又包括附著至該傳導基板的第一奈米結構之一層。該等第一奈米結構包括一或多種金屬矽化物。該電極材料亦包括定位於該等第一奈米結構之該層上的第二奈米結構之一層及覆蓋該等第一奈米結構之至少一部分及該等第二奈米結構的該電極活性材料之一塗層。該等第一奈米結構及該等第二奈米結構可提供該電極活性材料與該傳導基板之間的電子連通。 An electrode assembly is provided, the electrode assembly comprising: a conductive substrate for conducting current between an electrode active material and a battery terminal; and an electrode material. The electrode material in turn includes a layer of a first nanostructure attached to the conductive substrate. The first nanostructures comprise one or more metal halides. The electrode material also includes a layer of a second nanostructure positioned on the layer of the first nanostructures and covering at least a portion of the first nanostructures and the electrode activity of the second nanostructures One of the materials is coated. The first nanostructures and the second nanostructures provide electrical communication between the electrode active material and the conductive substrate.

亦提供一種電化學電池,其包括一第一電極、一第二電極及一電解質,該電解質提供該第一電極與該第二電極之間的離子連通。該第一電極可包括一導電層、定位於該導電層上的第一奈米結構之一層、定位於該等第一奈米結構之該層上的第二奈米結構之一層及覆蓋該等第一奈米結構之至少一部分及該等第二奈米結構的電極活性材料之一塗層。該等第一奈米結構可包括一或多種金屬矽化物。 There is also provided an electrochemical cell comprising a first electrode, a second electrode and an electrolyte, the electrolyte providing ionic communication between the first electrode and the second electrode. The first electrode may include a conductive layer, a layer of a first nanostructure positioned on the conductive layer, a layer of a second nanostructure positioned on the layer of the first nanostructure, and covering the layer Coating at least a portion of the first nanostructure and one of the electrode active materials of the second nanostructure. The first nanostructures can include one or more metal halides.

亦提供一種製造一電極之方法。該方法可涉及接收具有一基底材料之基板及形成具有一受控厚度的源材料層。該源材料層可包括與該基底材料不同之金屬。該方法可繼續進行形成多個模板奈米結構,該等模板奈米結構具有藉由使該金屬與含矽前驅物發生化學反應而附著至該基底材料之金屬矽化物。該方法可接著繼續進行在該等模板奈米結構上形成電化學活性材料之一塗層。該電化學活性材料經組態以在循環期間獲取及釋放鋰離子。多個模板奈米結構促進至及自該電化學活性材料的電流之傳導。在某些實施例中,形成該電化學活性材料之該塗層涉及使用熱化學氣相沈積形成該塗層之一第一部分及使用電漿增強型化學氣相沈積形成該塗層之一第二部分。該方法亦可涉及使用下列技術中之一或多者控制該電化學活性材料之該塗層之孔隙率:摻雜、蝕刻、離子植入及退火。在某些實施例中,形成該電化學活性材料之該塗層涉及多步驟熱化學氣相沈積。 A method of making an electrode is also provided. The method can involve receiving a substrate having a substrate material and forming a source material layer having a controlled thickness. The source material layer can comprise a different metal than the substrate material. The method can continue to form a plurality of template nanostructures having metal halides attached to the substrate material by chemically reacting the metal with the hafnium-containing precursor. The method can then proceed to form a coating of one of the electrochemically active materials on the template nanostructures. The electrochemically active material is configured to acquire and release lithium ions during cycling. A plurality of template nanostructures promote conduction to and from the electrochemically active material. In certain embodiments, forming the coating of the electrochemically active material involves forming a first portion of the coating using thermal chemical vapor deposition and forming one of the coatings using plasma enhanced chemical vapor deposition. section. The method can also involve controlling the porosity of the coating of the electrochemically active material using one or more of the following techniques: doping, etching, ion implantation, and annealing. In certain embodiments, the coating forming the electrochemically active material involves multi-step thermal chemical vapor deposition.

以下參看諸圖進一步描述此等及其他實施例。 These and other embodiments are further described below with reference to the drawings.

100‧‧‧基板 100‧‧‧Substrate

102‧‧‧基底層 102‧‧‧ basal layer

104‧‧‧源層 104‧‧‧ source layer

106‧‧‧殘餘源層 106‧‧‧Residual source layer

108‧‧‧中間模板結構 108‧‧‧Intermediate template structure

110‧‧‧模板結構 110‧‧‧Template structure

112‧‧‧模板層 112‧‧‧Template layer

315‧‧‧奈米結構 315‧‧N. nanostructure

320‧‧‧單層模板/初始模板層 320‧‧‧Single layer template/initial template layer

340‧‧‧高電容活性材料 340‧‧‧High capacitance active materials

360‧‧‧第二模板層 360‧‧‧Second template layer

370‧‧‧初始模板層 370‧‧‧Initial template layer

380‧‧‧額外模板層 380‧‧‧Additional template layer

400‧‧‧用於製造電極層之方法 400‧‧‧Methods for making electrode layers

500‧‧‧部分組裝之電化學電池 500‧‧‧Partially assembled electrochemical cells

502‧‧‧正電極活性層 502‧‧‧ positive electrode active layer

502a‧‧‧正電極活性層 502a‧‧‧ positive electrode active layer

502b‧‧‧正電極活性層 502b‧‧‧ positive electrode active layer

503‧‧‧正集電器 503‧‧‧ Positive Collector

504‧‧‧負電極活性層 504‧‧‧Negative electrode active layer

504a‧‧‧負電極活性層 504a‧‧‧Negative electrode active layer

504b‧‧‧負電極活性層 504b‧‧‧Negative electrode active layer

505‧‧‧負集電器 505‧‧‧negative collector

506‧‧‧分離器 506‧‧‧Separator

506a‧‧‧分離器 506a‧‧‧Separator

506b‧‧‧分離器 506b‧‧‧Separator

600‧‧‧卷式電池 600‧‧‧roll battery

602‧‧‧罩 602‧‧ hood

604‧‧‧負電極 604‧‧‧negative electrode

606‧‧‧正電極 606‧‧‧ positive electrode

608‧‧‧心軸 608‧‧‧ mandrel

612‧‧‧正短小突出部 612‧‧‧ Short and small protrusions

614‧‧‧負短小突出部 614‧‧‧negative short projections

700‧‧‧卷式電池 700‧‧‧roll battery

702‧‧‧矩形稜柱形罩 702‧‧‧Rectangular prismatic cover

704‧‧‧正電極 704‧‧‧ positive electrode

706‧‧‧負電極 706‧‧‧Negative electrode

801a‧‧‧電池 801a‧‧‧Battery

801b‧‧‧電池 801b‧‧‧Battery

801c‧‧‧電池 801c‧‧‧Battery

801d‧‧‧電池 801d‧‧‧Battery

801e‧‧‧電池 801e‧‧‧Battery

802‧‧‧正集電器 802‧‧‧ Positive Collector

803a‧‧‧正電極 803a‧‧‧ positive electrode

803b‧‧‧正電極 803b‧‧‧ positive electrode

804‧‧‧負集電器 804‧‧‧negative collector

805a‧‧‧負電極 805a‧‧‧negative electrode

805b‧‧‧負電極 805b‧‧‧negative electrode

806a‧‧‧分離器 806a‧‧‧Separator

806b‧‧‧分離器 806b‧‧‧Separator

902‧‧‧螺旋捲繞式正電極 902‧‧‧Spiral wound positive electrode

904‧‧‧負電極 904‧‧‧Negative electrode

906‧‧‧分離器 906‧‧‧Separator

908‧‧‧短小突出部 908‧‧‧Short protrusion

910‧‧‧短小突出部 910‧‧‧ Short protrusions

912‧‧‧蓋 912‧‧‧ Cover

914‧‧‧絕緣密封墊 914‧‧‧Insulated gasket

916‧‧‧電池罩 916‧‧‧ battery cover

918‧‧‧蓋 918‧‧‧ Cover

920‧‧‧密封墊 920‧‧‧ Seal

1002‧‧‧庫侖效率 1002‧‧‧ Coulomb efficiency

1004‧‧‧去鋰化電容 1004‧‧‧Delithization Capacitor

圖1A至圖1C為根據某些實施例的在模板形成之不同階段的電極基板之示意性表示。 1A-1C are schematic representations of electrode substrates at different stages of template formation, in accordance with some embodiments.

圖1D為含有矽化鎳奈米線的奈米結構模板之掃描電子顯微鏡影像。 Figure 1D is a scanning electron microscope image of a nanostructure template containing a nickel-doped nickel nanowire.

圖1E為含有矽化鎳奈米線的奈米結構模板之掃描電子顯微鏡影像,其中碳奈米纖維(CNF)沈積於矽化鎳奈米線上。 FIG. 1E is a scanning electron microscope image of a nanostructure template containing a nickel germanium halide wire, wherein carbon nanofibers (CNF) are deposited on a nickel neodymium nitride wire.

圖1F為含有矽化鎳奈米線的奈米結構模板之掃描電子顯微鏡影像,其中多維矽化鎳結構之層沈積於矽化鎳奈米線上。 FIG. 1F is a scanning electron microscope image of a nanostructure template containing a nickel-deposited nickel nanowire, wherein a layer of a multi-dimensional nickel-deposited nickel structure is deposited on a nickel-nenetized nickel nanowire.

圖2A至圖2C為具有不同孔隙率的三個電極層之掃描電子顯微鏡影像。 2A to 2C are scanning electron microscope images of three electrode layers having different porosities.

圖3A為根據某些實施例的含有塗佈有高電容活性材料之單層模 板的電極層之示意性表示。 3A is a single layer mold containing a highly capacitive active material coated in accordance with some embodiments. A schematic representation of the electrode layers of the plates.

圖3B為含有塗佈有非晶矽之單層矽化鎳模板的電極層之掃描電子顯微鏡影像。 3B is a scanning electron microscope image of an electrode layer containing a single layer of a nickel telluride template coated with an amorphous germanium.

圖3C為根據某些實施例的含有由單層模板及碳奈米纖維(CNF)形成之多層模板的電極層之示意性表示。 3C is a schematic representation of an electrode layer containing a multilayer template formed from a single layer template and carbon nanofibers (CNF), in accordance with certain embodiments.

圖3D為含有由矽化鎳模板及碳奈米纖維(CNF)形成且塗佈有非晶矽之多層模板的電極層之掃描電子顯微鏡影像。 3D is a scanning electron microscope image of an electrode layer containing a multilayer template formed of a nickel telluride template and carbon nanofibers (CNF) coated with amorphous germanium.

圖3E為根據某些實施例的含有由單層模板及多維矽化物結構(「毛球」)形成之多層模板的電極層之示意性表示。 3E is a schematic representation of an electrode layer comprising a multilayer template formed from a single layer template and a multi-dimensional telluride structure ("hairball"), in accordance with some embodiments.

圖3F為含有由矽化鎳模板及多維矽化鎳結構形成且塗佈有非晶矽之多層模板的電極層之掃描電子顯微鏡影像。 3F is a scanning electron microscope image of an electrode layer comprising a multilayer template formed of a nickel telluride template and a multi-dimensional nickel-deposited nickel structure coated with an amorphous germanium.

圖4A為根據某些實施例的對應於製造電池組電極層之方法的程序流程圖。 4A is a process flow diagram corresponding to a method of fabricating a battery electrode layer, in accordance with some embodiments.

圖4B至圖4E說明表示使用不同製程條件沈積的四個非晶矽層之短程級(SRO)比之拉曼(Raman)光譜。 4B to 4E illustrate short-range (SRO) ratios of Raman spectra of four amorphous germanium layers deposited using different process conditions.

圖4F為根據某些實施例的用於多層電極層結構之殘餘應力模型之示意性表示。 4F is a schematic representation of a residual stress model for a multilayer electrode layer structure in accordance with some embodiments.

圖5A至圖5B為根據某些實施例的說明性電極配置之頂部及側面示意圖。 5A-5B are top and side schematic views of an illustrative electrode configuration, in accordance with some embodiments.

圖6A至圖6B為根據某些實施例的說明性圓形捲繞式電池之頂部示意圖及透視示意圖。 6A-6B are top and perspective schematic views of an illustrative circularly wound battery in accordance with some embodiments.

圖7為根據某些實施例的說明性稜柱形捲繞式電池之頂部示意圖。 7 is a top plan view of an illustrative prismatic wound battery in accordance with some embodiments.

圖8A至圖8B為根據某些實施例的電極及分離器薄片之說明性堆疊的頂部示意圖及透視示意圖。 8A-8B are top and perspective schematic views of an illustrative stack of electrodes and separator sheets, in accordance with some embodiments.

圖9為根據實施例的捲繞式電池之一實例之示意性橫截面圖。 9 is a schematic cross-sectional view of an example of a wound battery according to an embodiment.

圖10為對應於使用本文中描述之電極材料製造之電池的循環資料。 Figure 10 is a circulation data corresponding to a battery fabricated using the electrode materials described herein.

在以下描述中,闡明了眾多特定細節以便提供對本發明之透徹理解。可在無此等特定細節中之一些或全部之情況下實踐本發明。在其他情況下,未詳細描述熟知的程序操作以不會不必要地混淆本發明。雖然將結合特定實施例描述本發明,但應理解,並不意欲將本發明限於該等實施例。 In the following description, numerous specific details are set forth The invention may be practiced without some or all of the specific details. In other instances, well-known program operations have not been described in detail so as not to unnecessarily obscure the invention. While the invention will be described in conjunction with the specific embodiments, it is understood that the invention

高電容電化學活性材料可形成為用於在可再充電電池組中使用之奈米結構。奈米結構與較大結構相比在電池組循環期間較不可能劣化。特定言之,由於在鋰化期間在奈米結構中累積之較低機械應力,因此其不大可能粉碎及/或失去相互間之電接觸。然而,將奈米結構整合至具有足夠活性材料負載之電池組電極層內可能具有挑戰性(由於其小的大小),且需要建立並維持在電極內之許多電連接。舉例而言,難以機械地配置、支撐及電互連許多小奈米結構且難以在大量膨脹-收縮循環上保持此等配置及互連。另外,直徑僅50至100奈米之奈米粒子將必須依賴於數百且甚至數千個粒子至粒子連接及可能中間傳導結構來在典型的電極設計中傳遞電流。當奈米粒子膨脹且接著收縮時,常失去(例如)由奈米粒子及/或傳導性添加劑之直接接觸形成的初始連接。當膨脹時,奈米粒子將彼此且與其他組分推開。在去鋰化期間,相同奈米粒子收縮,且歸因於電極彈性約束,可能失去原始接觸。此可導致未連接之活性粒子,該等未連接之活性粒子在效果上變為非活性。已提議將奈米膜作為替代奈米結構。其按相對小厚度(例如,小於500奈米)形成以避免在循環期間破裂。遺憾地,沈積於平基板上之奈米膜在電極之表面積上僅含有非常少量的活性材料,且因此對於多數電池組應用不切實際。 The high capacitance electrochemically active material can be formed into a nanostructure for use in a rechargeable battery pack. Nanostructures are less likely to degrade during battery cycle than larger structures. In particular, it is less likely to smash and/or lose electrical contact with each other due to the lower mechanical stress accumulated in the nanostructure during lithiation. However, integrating the nanostructure into a battery electrode layer with sufficient active material loading can be challenging (due to its small size) and requires many electrical connections to be established and maintained within the electrode. For example, it is difficult to mechanically configure, support, and electrically interconnect many small nanostructures and it is difficult to maintain such configurations and interconnections over a large number of expansion-contraction cycles. In addition, nanoparticles having a diameter of only 50 to 100 nanometers will have to rely on hundreds and even thousands of particle-to-particle connections and possibly intermediate conductive structures to transfer current in a typical electrode design. As the nanoparticles expand and then shrink, the initial connections, for example, formed by direct contact of the nanoparticles and/or conductive additives are often lost. When expanded, the nanoparticles will push away from each other and with the other components. During delithiation, the same nanoparticle shrinks and due to electrode elastic constraints, the original contact may be lost. This can result in unattached active particles that become inactive in effect. Nanofilms have been proposed as an alternative to nanostructures. It is formed in a relatively small thickness (eg, less than 500 nanometers) to avoid cracking during cycling. Unfortunately, the nanofilm deposited on a flat substrate contains only a very small amount of active material on the surface area of the electrode and is therefore impractical for most battery pack applications.

高表面積基板有助於增加活性材料負載,同時保持活性材料結構相對小。此等基板當塗佈有活性材料時可比習知平基板每單位面積(基於平電極表面積)產生更高電容。可藉由使基板表面粗糙或在初始平基板之表面上形成模板來形成高表面積基板。舉例而言,平金屬基板可經處理以形成自基板表面延伸之矽化物奈米結構。奈米結構之添加實質上增大了可用於塗佈的總表面積。此等矽化物奈米結構可充當用於塗佈活性材料之高表面積模板。在一些實施例中,可將矽化物奈米結構成形為具有基板紮根端或中間部分之奈米線。紮根端可與基板表面形成一體結構。在一些情況下,在與基板之界面處,奈米線可不具有清晰界定之形態邊界。結果,奈米線可具有至基板之極佳的機械附著及低的電子接觸抗性。 High surface area substrates help to increase the loading of the active material while keeping the structure of the active material relatively small. Such substrates, when coated with an active material, can produce higher capacitance per unit area (based on the surface area of the flat electrode) than conventional flat substrates. The high surface area substrate can be formed by roughening the surface of the substrate or forming a template on the surface of the initial flat substrate. For example, a flat metal substrate can be processed to form a germanium nanostructure extending from the surface of the substrate. The addition of the nanostructure substantially increases the total surface area available for coating. These telluride nanostructures can serve as high surface area templates for coating active materials. In some embodiments, the telluride nanostructure can be formed into a nanowire having a rooted end or intermediate portion of the substrate. The rooted end can form an integral structure with the surface of the substrate. In some cases, at the interface with the substrate, the nanowires may not have clearly defined morphological boundaries. As a result, the nanowires can have excellent mechanical adhesion to the substrate and low electrical contact resistance.

一些模板奈米結構可能難以生長超過某些尺寸。舉例而言,當形成金屬矽化物模板時,咸信生長受到矽及金屬經由各別矽化物相態之擴散速率限制。僅可形成相對短的結構,從而導致薄模板層,例如,對於矽化鎳奈米線,厚度小於10至20微米。此等矽化物結構不提供足夠的表面積來支撐充足的活性材料。若將活性材料塗佈於此模板上使得塗層厚度不超過活性材料之破裂極限,則每單位面積之全部活性材料量對於商業上可行之電極可能不足夠。 Some template nanostructures may be difficult to grow beyond certain dimensions. For example, when a metal halide template is formed, the growth of the salt is limited by the diffusion rate of the germanium and the metal through the phase of the individual telluride. Only relatively short structures can be formed resulting in a thin template layer, for example, for a nickel-niobium nickel nanowire, having a thickness of less than 10 to 20 microns. These telluride structures do not provide sufficient surface area to support sufficient active material. If the active material is applied to the template such that the thickness of the coating does not exceed the breaking limit of the active material, then the total amount of active material per unit area may not be sufficient for commercially viable electrodes.

此外,在具有過量源金屬之金屬表面上形成矽化物奈米結構(諸如,在厚鎳箔上形成矽化鎳奈米線)可能造成形成於矽化物奈米結構之基底附近的不合需要之沈積。此等不合需要之沈積可能造成電極之總電子抗性的增加及其他不合需要之效應。最終,許多活性材料之沈積厚度限於其破裂極限(例如,對於非晶矽,數百奈米)。此等約束限制電極設計選項及高電容活性材料在商用電池組中之使用。 Furthermore, the formation of a telluride nanostructure on a metal surface having an excess of source metal (such as the formation of a nickel-deposited nickel nanowire on a thick nickel foil) may result in undesirable deposition near the substrate of the telluride nanostructure. Such undesirable deposition may result in an increase in the total electronic resistance of the electrodes and other undesirable effects. Ultimately, the deposition thickness of many active materials is limited to their cracking limit (eg, for amorphous germanium, hundreds of nanometers). These constraints limit electrode design options and the use of high capacitance active materials in commercial battery packs.

本文中提供且描述新穎模板層結構及製造技術。此等結構允許具有每電極單位面積的高電容活性材料之較高質量負載,而不超過此等 活性材料之破裂極限。較高質量負載對應於每電極單位面積之較高電容,且在某些實施例中,對應於電化學電池之較高電容。控制活性材料塗層之厚度且將其保持在破裂極限下可導致更穩健的循環效能特性。 Novel template layer structures and fabrication techniques are provided and described herein. These structures allow for higher mass loading of high capacitance active material per unit area of the electrode without exceeding this The breaking limit of the active material. The higher mass load corresponds to a higher capacitance per unit area of the electrode and, in some embodiments, corresponds to a higher capacitance of the electrochemical cell. Controlling the thickness of the active material coating and maintaining it below the fracture limit results in more robust cycle performance characteristics.

一初始模板層可在模板形成期間形成於相對惰性之基板上。舉例而言,用於形成模板之基板可包括基底層及源層。在模板製造期間僅消耗源層,而基底層保持實質上完整。源層可具有受控之厚度以控制所形成的模板結構之密度及長度。可在奈米結構模板層之形成期間充分消耗源層。舉例而言,具有受控厚度的鎳金屬層可用作模板源材料。將該層曝露至矽前驅物(諸如,矽烷),直至充分消耗該層。在該製程之程序中,形成矽化鎳奈米結構。此等矽化鎳奈米結構充當模板層。 An initial template layer can be formed on the relatively inert substrate during template formation. For example, the substrate used to form the template may include a base layer and a source layer. Only the source layer is consumed during stencil fabrication while the substrate layer remains substantially intact. The source layer can have a controlled thickness to control the density and length of the formed template structure. The source layer can be fully consumed during the formation of the nanostructure template layer. For example, a nickel metal layer having a controlled thickness can be used as the template source material. The layer is exposed to a ruthenium precursor (such as decane) until the layer is fully consumed. In the process of the process, a niobium nickel nanostructure is formed. These deuterated nickel nanostructures act as a template layer.

在某些實施例中,藉由在一初始模板層上形成額外一或多個模板層來增強彼初始層。所得結構在本文中稱作多層模板結構。可使用有時被稱作「毛球」或「刺球(urchin)」結構之預製結構(諸如,碳奈米纖維(CNF)及/或多維矽化物結構)來形成額外層。此等多維矽化物結構中之每一者通常可具有一中央支撐結構及附著至支撐結構且在遠離支撐結構之不同方向上延伸的多個金屬矽化物奈米線。此配置對此等結構給出「毛球」外觀。在某些實施例中,額外模板層之模板結構可直接形成於初始模板層上,其進一步描述於2011年3月2日申請之題為「TEMPLATE ELECTRODE STRUCTURES FOR DEPOSITING ACTIVE MATERIALS」的美國專利申請案第13/039,031號(代理人案號AMPRP012US)中,為了描述模板結構之目的,該申請案以引用的方式全部併入本文中。多維矽化物結構描述於2011年5月24日申請之題為「MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES」的美國專利申請案第 13/114,413號(代理人案號AMPRP014US)中,為了描述多維矽化物結構之目的,該申請案以引用的方式全部併入本文中。 In some embodiments, the initial layer is enhanced by forming an additional one or more template layers on an initial template layer. The resulting structure is referred to herein as a multilayer template structure. Additional layers may be formed using prefabricated structures, such as carbon nanofibers (CNF) and/or multi-dimensional telluride structures, sometimes referred to as "hairball" or "urchin" structures. Each of these multi-dimensional telluride structures can generally have a central support structure and a plurality of metal halide nanowires attached to the support structure and extending in different directions away from the support structure. This configuration gives a "hairball" appearance to these structures. In some embodiments, the template structure of the additional template layer can be formed directly on the initial template layer, which is further described in US Patent Application entitled "TEMPLATE ELECTRODE STRUCTURES FOR DEPOSITING ACTIVE MATERIALS", filed March 2, 2011 In the context of the description of the stencil structure, the application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in U.S. Patent Application No. 5, filed on May 24, 2011, entitled "MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES" In the context of the description of the multi-dimensional telluride structure, the application is hereby incorporated by reference in its entirety.

在某些實施例中,可藉由使用各種新穎活性材料塗層結構來實質上改良電池效能及活性材料負載。舉例而言,多層活性材料塗層可形成於模板結構上。以下描述各種沈積及後沈積處理技術以達成在此等活性材料塗層內之所要組合物以及形態及維度結構。 In certain embodiments, battery performance and active material loading can be substantially improved by using various novel active material coating structures. For example, a multilayer active material coating can be formed on the template structure. Various deposition and post-deposition treatment techniques are described below to achieve the desired composition and morphology and dimensional structure within such active material coatings.

典型電極材料或電極結構可包括不同層,應將其相互區分開。特定言之,應將「活性材料層」與「模板層」及「電極層」區分開。「模板層」為由一或多個模板結構(諸如,矽化鎳奈米線)形成之層。初始模板層形成於基板表面上。在涉及矽化物奈米線之實施例中,此初始層可為約10至20微米厚。額外模板層可形成於初始模板層上以形成多層模板結構。多層模板結構之厚度等於個別模板層之厚度之總和。 Typical electrode materials or electrode structures may include different layers that should be distinguished from one another. In particular, the "active material layer" should be distinguished from the "template layer" and "electrode layer". A "template layer" is a layer formed from one or more template structures, such as a deuterated nickel nanowire. The initial template layer is formed on the surface of the substrate. In embodiments involving a germanide nanowire, the initial layer can be about 10 to 20 microns thick. Additional template layers can be formed on the initial template layer to form a multilayer template structure. The thickness of the multilayer template structure is equal to the sum of the thicknesses of the individual template layers.

「活性材料層」為形成於模板層結構上的主動電極材料(諸如,非晶矽)之薄層。活性材料層常被稱作活性材料塗層,此係因為其常由藉由活性材料結構化之塗層模板形成。活性材料層/塗層之厚度通常經選擇而小於對於給定鋰化級別的材料之破裂極限。可藉由變化活性材料塗層之孔隙率及其他參數來進一步調整破裂極限。 The "active material layer" is a thin layer of an active electrode material (such as an amorphous germanium) formed on the template layer structure. The active material layer is often referred to as an active material coating because it is often formed from a coating template that is structured by the active material. The thickness of the active material layer/coating is typically selected to be less than the fracture limit for a given lithiated grade of material. The fracture limit can be further adjusted by varying the porosity of the active material coating and other parameters.

可一個在另一個頂部上地堆疊多個模板層,且此等層通常平行於基板表面。另一方面,活性材料塗層沿循模板結構之輪廓。在某些實施例中,可將活性材料塗層認為係包圍模板層內之模板奈米結構的殼。在某些實施例中,活性材料塗層可具有形成多層活性材料塗層或結構之多個層。 Multiple template layers can be stacked one on top of the other, and such layers are generally parallel to the substrate surface. On the other hand, the active material coating follows the contour of the stencil structure. In certain embodiments, the active material coating can be considered to surround the shell of the template nanostructure within the template layer. In certain embodiments, the active material coating can have multiple layers that form a multilayered active material coating or structure.

「電極層」通常在此項技術中用以描述形成於傳導基板之一或兩側上的集合結構。此結構包括活性材料及可經添加以提供在電極層內之機械支撐及電導率的各種其他組分。在某些實施例中,電極層包括 模板層與活性材料塗層之組合。 "Electrode layers" are commonly used in the art to describe collective structures formed on one or both sides of a conductive substrate. This structure includes the active material and various other components that can be added to provide mechanical support and electrical conductivity within the electrode layer. In some embodiments, the electrode layer comprises A combination of a template layer and an active material coating.

圖1A至圖1B為根據某些實施例的模板在其形成之不同階段之示意性表示。圖1A說明基板100具有基底層102及源層104之初始階段。如以下進一步參看圖4A描述,模板形成程序可開始於在基底層上沈積源層。在某些實施例中,基底層102含有極少或無可用以形成模板結構之源材料。實情為,基底層102可至少在其頂表面上包括惰性材料。在此等實施例中,基底層102需要僅在於模板形成期間使用之製程條件下為惰性。舉例而言,不鏽鋼箔可在自沈積於不鏽鋼箔上之鎳層形成矽化鎳奈米線期間保持實質上惰性。然而,進一步加熱此不鏽鋼箔可導致矽化鐵及其他副產物之形成。因而,製程條件可經特定控制以避免與基底層102之不合需要的反應及相互作用,如進一步在圖4A之上下文中所解釋。在其他實施例中,基板不具有與眾不同的基底層及源層,且將相同材料在矽化物形成期間用作(例如)金屬基底及源兩者。 1A-1B are schematic representations of templates at different stages of their formation, in accordance with some embodiments. FIG. 1A illustrates an initial stage in which substrate 100 has a base layer 102 and a source layer 104. As described further below with respect to FIG. 4A, the template forming process can begin by depositing a source layer on the substrate layer. In some embodiments, the substrate layer 102 contains little or no source material that can be used to form the template structure. In fact, the substrate layer 102 can include an inert material at least on its top surface. In such embodiments, the base layer 102 needs to be inert only under the process conditions used during template formation. For example, the stainless steel foil may remain substantially inert during the formation of the nickel beneficiation nanowires from the nickel layer deposited on the stainless steel foil. However, further heating of this stainless steel foil can result in the formation of iron telluride and other by-products. Thus, process conditions can be specifically controlled to avoid undesirable reactions and interactions with the substrate layer 102, as further explained in the context of FIG. 4A. In other embodiments, the substrate does not have a distinctive base layer and source layer, and the same material is used as both, for example, a metal substrate and a source during the formation of the vapor.

基底層102可自各種傳導材料製造,且充當用於活性材料之集電器。基底層材料之一些實例包括銅、塗佈有金屬氧化物之銅、不鏽鋼、鈦、鋁、鎳、鉻、鎢、金屬氮化物、金屬碳化物、碳、碳纖維、石墨、石墨薄膜、碳網、傳導性聚合物或以上各者之組合(包括多層結構)。基底層材料可形成為箔、膜、網、發泡體、層壓物、線、管、粒子、多層結構或任一其他合適組態。在某些實施例中,基底材料為金屬箔,其具有在約1微米與50微米之間或更特定言之在約5微米與30微米之間的厚度。 The substrate layer 102 can be fabricated from a variety of conductive materials and acts as a current collector for the active material. Some examples of substrate materials include copper, copper coated with metal oxides, stainless steel, titanium, aluminum, nickel, chromium, tungsten, metal nitrides, metal carbides, carbon, carbon fibers, graphite, graphite films, carbon networks, Conductive polymers or combinations of the above (including multilayer structures). The base layer material can be formed as a foil, film, mesh, foam, laminate, wire, tube, particle, multilayer structure, or any other suitable configuration. In certain embodiments, the substrate material is a metal foil having a thickness between about 1 micrometer and 50 micrometers or, more specifically, between about 5 micrometers and 30 micrometers.

用於源層104的材料之實例包括形成矽化物奈米結構的許多材料中之任一者。此等材料包括鎳、鈷、銅、銀、鉻、鈦、鐵、鋅、鋁、錫,及其組合。一些合金之實例包括鎳/磷、鎳/鎢、鎳/鉻、鎳/鈷、鎳/鐵及鎳/鉬。源層104可為至少約10奈米厚,或更特定言之,至少約 100奈米厚。在更特定實施例中,鎳源層處於約100奈米與300奈米厚之間。在另一特定實施例中,磷酸鎳源層處於300奈米與10奈米之間。在一些例示性實施例中,磷酸鎳層為約500奈米厚,或約1.5微米厚,或約8微米厚。源層亦可自具有在約0.5微米與10微米之間的厚度之NiFe、NiW及NiMo合金製造。 Examples of materials for the source layer 104 include any of a number of materials that form a telluride nanostructure. Such materials include nickel, cobalt, copper, silver, chromium, titanium, iron, zinc, aluminum, tin, and combinations thereof. Examples of some alloys include nickel/phosphorus, nickel/tungsten, nickel/chromium, nickel/cobalt, nickel/iron, and nickel/molybdenum. Source layer 104 can be at least about 10 nanometers thick, or more specifically, at least about 100 nanometers thick. In a more specific embodiment, the nickel source layer is between about 100 nanometers and 300 nanometers thick. In another particular embodiment, the nickel phosphate source layer is between 300 nanometers and 10 nanometers. In some exemplary embodiments, the nickel phosphate layer is about 500 nanometers thick, or about 1.5 microns thick, or about 8 microns thick. The source layer can also be fabricated from NiFe, NiW, and NiMo alloys having a thickness between about 0.5 microns and 10 microns.

源層104之特定厚度可造成所得模板層之特定特性。舉例而言,已發現,較厚源層可導致較密集及/或較長矽化物結構之形成。舉例而言,具有不同厚度之兩個鎳層在典型的矽化鎳形成條件下曝露至矽烷,且接著測試增重。具有100奈米層之樣本展示每平方公分0.04毫克增重,而具有300奈米層之樣本展示每平方公分0.1毫克增重。此等實驗結果證實可藉由形成具有特定厚度之源層來控制一些模板特性。另外,此等特性可經控制以影響可用於塗層之表面積,且因此影響活性材料層之所得質量負載。 The particular thickness of source layer 104 can result in specific characteristics of the resulting template layer. For example, it has been discovered that thicker source layers can result in the formation of denser and/or longer germanium structures. For example, two nickel layers having different thicknesses are exposed to decane under typical nickel telluride forming conditions, and then weight gain is tested. Samples with a 100 nm layer exhibited a gain of 0.04 mg per square centimeter, while samples with a 300 nm layer exhibited a gain of 0.1 mg per square centimeter. These experimental results demonstrate that some of the template properties can be controlled by forming a source layer having a particular thickness. Additionally, such characteristics can be controlled to affect the surface area available for the coating, and thus the resulting mass loading of the active material layer.

在某些實施例中,基板可具有形成於基底層與源層之間的中間保護層(未圖示)。此保護層可自惰性材料製造,且可保護基底層免於曝露至反應物質(例如,矽烷)。當使用保護層時,有可能對於基底使用可與矽烷反應之材料(若其直接接觸)。中間層之各種實例描述於2010年11月11日申請之題為「INTERMEDIATE LAYERS FOR ELECTRODE FABRICATION」的美國專利申請案第12/944,576號中,為了描述中間層之目的,該申請案以引用的方式併入本文中。除了提供保護性質之外或替代提供保護性質,可使用一中間層來增強模板結構與基底層之間的黏著。亦可使用提供其他合乎需要之特性的其他中間層。 In some embodiments, the substrate can have an intermediate protective layer (not shown) formed between the base layer and the source layer. This protective layer can be made from an inert material and can protect the substrate layer from exposure to reactive species (eg, decane). When a protective layer is used, it is possible to use a material that reacts with decane (if it is in direct contact) with the substrate. The various examples of the intermediate layer are described in U.S. Patent Application Serial No. 12/944,576, filed on Nov. 11, 2010, entitled <RTIgt;"INTERMEDIATE LAYERS FOR ELECTRODE FABRICATION" Incorporated herein. In addition to or instead of providing protective properties, an intermediate layer can be used to enhance adhesion between the template structure and the substrate layer. Other intermediate layers that provide other desirable features can also be used.

在某些實施例中,按粒子或其他離散結構之形式提供源材料。仍將此等結構描述為形成於基底層之表面上的源層104。可將此等離散結構提供為具有至少約10奈米或更特定言之在約10奈米與500奈米之 間的厚度之層。在某些實施例中,前驅物粒子用以控制所得電極層之孔隙率,且具有在約1微米與3微米之間的直徑。 In some embodiments, the source material is provided in the form of particles or other discrete structures. These structures are still described as the source layer 104 formed on the surface of the substrate layer. These discrete structures can be provided to have at least about 10 nanometers or, more specifically, about 10 nanometers and 500 nanometers. The layer of thickness between. In certain embodiments, the precursor particles are used to control the porosity of the resulting electrode layer and have a diameter between about 1 micrometer and 3 micrometers.

圖1B說明模板形成之中間階段,其中中間模板結構108形成於殘餘源層106上。已消耗了初始源材料中之一些以形成中間模板結構108。因此,圖1B中展示之殘餘源層106通常比圖1A中展示之初始源層104薄。在此階段,仍可存在一些剩餘源材料來支撐中間模板結構108之進一步生長。在某些實施例中,殘餘層106可包括形成合金的源材料之反應產物,其造成一些膨脹。因此,在此等實施例中,殘餘層106可有時比初始源層104厚。一特定實例將為非常金屬富餘矽化物相態(諸如,矽化鎳或矽化銅)之形成,其中殘餘層可在其與矽形成合金時擴大。殘餘層組合物及處理條件之適當選擇將正面影響電極之效能及體積能量密度。 FIG. 1B illustrates an intermediate stage of template formation in which an intermediate template structure 108 is formed on residual source layer 106. Some of the original source materials have been consumed to form the intermediate template structure 108. Thus, the residual source layer 106 shown in FIG. 1B is typically thinner than the initial source layer 104 shown in FIG. 1A. At this stage, there may still be some remaining source material to support further growth of the intermediate template structure 108. In certain embodiments, the residual layer 106 can include a reaction product of a source material that forms an alloy that causes some expansion. Thus, in such embodiments, the residual layer 106 may sometimes be thicker than the original source layer 104. A particular example would be the formation of a very metal rich telluride phase, such as nickel telluride or copper telluride, where the residual layer can expand as it forms an alloy with the tantalum. Appropriate selection of the residual layer composition and processing conditions will positively affect the efficacy and volumetric energy density of the electrode.

圖1C說明最終形成模板結構110的模板形成操作之最終階段。在所描繪之實施例中,模板結構110具有其紮根至基底層102之端部。模板結構110在直徑上可為約5奈米與100奈米之間(亦即,在沈積活性材料前),或更特定言之,在約10奈米與50奈米之間。另外,模板結構110之長度可為約1微米與100微米之間,或更特定言之,約2微米與25微米之間。在模板結構110實質上垂直於基底層之平表面延伸的所描繪之實施例中,此長度對應於模板層112之厚度。模板層112可具有至少約50%,或更特定言之至少約75%,或甚至至少約90%之孔隙率。不包括任何活性材料的模板層112之孔隙率應與活性層(亦即,形成於模板結構110之表面上的活性材料之薄層)之孔隙率或電極層之孔隙率區分開。 FIG. 1C illustrates the final stage of the template forming operation that ultimately forms the template structure 110. In the depicted embodiment, the template structure 110 has its end that is rooted to the substrate layer 102. The stencil structure 110 can be between about 5 nanometers and 100 nanometers in diameter (i.e., before the active material is deposited) or, more specifically, between about 10 nanometers and 50 nanometers. Additionally, the template structure 110 can be between about 1 micrometer and 100 micrometers in length, or more specifically between about 2 micrometers and 25 micrometers. In the depicted embodiment in which the stencil structure 110 extends substantially perpendicular to the planar surface of the substrate layer, this length corresponds to the thickness of the stencil layer 112. The template layer 112 can have a porosity of at least about 50%, or more specifically at least about 75%, or even at least about 90%. The porosity of the template layer 112 excluding any active material should be distinguished from the porosity of the active layer (i.e., the thin layer of active material formed on the surface of the template structure 110) or the porosity of the electrode layer.

在圖1C中所描繪之實施例中,已實質上消耗了殘餘源層106。初始源層104之厚度可經特定地選擇,使得在模板形成期間最終消耗多數或全部源材料。此方法可消除不合需要的材料(諸如,金屬矽化物) 在與基底層之界面處之形成。舉例而言,若易碎矽化物相態形成於表面上,則在活性材料沈積之前、期間或甚至之後產生之各種應力可能導致彼矽化物相態之破裂。一些相態亦可具有至下面基板或上面活性材料之不良黏著。另一實例證實具有厚(例如,至少約500奈米)鎳膜之一些缺點。已知鎳相對快速地擴散於矽結構中。若一些殘餘鎳留在界面處,則其可在矽沈積期間與矽在高溫下反應,且「消耗」旨在作為活性材料的矽之一部分。此可又造成不平衡之電化學電池(亦即,不足夠量的負性活性材料)及可能過量充電。此外,此初始厚度可經選擇以達成如上所述的模板結構之某一密度及長度。 In the embodiment depicted in FIG. 1C, the residual source layer 106 has been substantially consumed. The thickness of the initial source layer 104 can be specifically selected such that most or all of the source material is ultimately consumed during template formation. This method eliminates undesirable materials (such as metal halides) Formation at the interface with the substrate layer. For example, if a fragile telluride phase is formed on a surface, various stresses generated before, during, or after deposition of the active material may cause cracking of the phase of the telluride. Some of the phases may also have poor adhesion to the underlying substrate or the active material above. Another example demonstrates some of the disadvantages of having a thick (e.g., at least about 500 nm) nickel film. Nickel is known to diffuse relatively quickly into the ruthenium structure. If some residual nickel remains at the interface, it can react with helium at high temperatures during the deposition of tantalum, and "consumption" is intended as part of the active material. This can in turn cause an unbalanced electrochemical cell (i.e., an insufficient amount of negative active material) and possibly overcharge. Additionally, this initial thickness can be selected to achieve a certain density and length of the template structure as described above.

通常,模板材料高度導電,且在面對於循環期間自活性材料之擴大及收縮而經歷之應力下機械穩定。合適的模板材料之實例包括金屬矽化物(例如,矽化銅、矽化鎳、矽化鋁)、碳、某些金屬或半導體氧化物(例如,氧化鋅、氧化錫、氧化銦、氧化鎘、氧化鋁、二氧化鈦、氧化矽)及某些金屬(銅、鎳、鋁)。在特定實施例中,模板結構形成為奈米線,且包括矽化物。矽化物奈米線可具有沿著其長度可變之材料組合物,亦即,在較多源材料可用之紮根(近)端處比在奈米線之自由(遠)端附近高的源材料濃度。視源材料類型而定,此可變性可反映在矽化物之不同形態及化學計量相態中。舉例而言,矽化鎳奈米線可包括一個、兩個或全部三個矽化鎳相態,亦即,Ni2Si、NiSi及NiSi2。咸信,較高鎳含量相態形成與鎳金屬之較強結合。因此,此可變性可提供矽化鎳奈米線至基底層之相對強黏著,且減小接觸阻力。此等不同矽化鎳相態之傳導率及鋰不可逆性亦變化。 Typically, the templating material is highly electrically conductive and mechanically stable under the stresses experienced by the expansion and contraction of the active material during cycling. Examples of suitable templating materials include metal tellurides (eg, copper telluride, nickel telluride, aluminum telluride), carbon, certain metals or semiconducting oxides (eg, zinc oxide, tin oxide, indium oxide, cadmium oxide, aluminum oxide, Titanium dioxide, cerium oxide) and certain metals (copper, nickel, aluminum). In a particular embodiment, the template structure is formed as a nanowire and includes a telluride. The telluride nanowire may have a material composition that varies along its length, that is, a source material that is higher at the root (near) end of the source material than near the free (far) end of the nanowire. concentration. Depending on the type of source material, this variability can be reflected in the different morphology and stoichiometric phase of the telluride. For example, the deuterated nickel nanowire may include one, two or all three phases of deuterated nickel, that is, Ni 2 Si, NiSi, and NiSi 2 . It is believed that the higher nickel content phase forms a strong bond with nickel metal. Therefore, this variability provides a relatively strong adhesion of the deuterated nickel nanowire to the substrate layer and reduces contact resistance. The conductivity and lithium irreversibility of these different niobium nickel phases also change.

錐形奈米線亦可自金屬在奈米線之基板/支撐紮根端附近的較大可用性產生。在某些實施例中,在基板/支撐紮根端附近的平均直徑為在自由端附近的平均直徑之至少約兩倍。換言之,奈米線之基底可足夠大,甚至在基板之表面上的近端處相互觸碰,但由於沿著結構自 基底至尖部之直徑之減小,因此遠尖部係自由的且未連接。在更特定實施例中,在近奈米線端與遠奈米線端之間的直徑之比率為至少約4,或更特定言之,至少約10。較寬的基底可有助於維持至基板之黏著。 Tapered nanowires can also result from greater availability of metal near the substrate/support rooting end of the nanowire. In certain embodiments, the average diameter near the substrate/support rooting end is at least about two times the average diameter near the free end. In other words, the substrate of the nanowire can be large enough to touch each other even at the proximal end on the surface of the substrate, but The diameter of the base to the tip is reduced, so the distal tip is free and unconnected. In a more specific embodiment, the ratio of the diameter between the near nanowire end and the far nanowire end is at least about 4, or, more specifically, at least about 10. A wider substrate can help maintain adhesion to the substrate.

圖1D為含有奈米結構模板之矽化鎳奈米線的掃描電子顯微鏡影像。此等奈米線直接沈積於可購自德國Roth之Carl Schlenk AG公司的滾壓硬化鎳箔上。首先將該箔在處於50托之壓力下的含有空氣之處理腔室中於300℃下氧化達一分鐘。接著將該箔加熱至450℃,且將含有按體積計1%矽烷之處理氣體引入至腔室內達十分鐘。所得矽化物奈米線直徑為約10至50奈米,且長度為約1至30微米。奈米線之密度處於約10%至70%之間。如自圖1D中之SEM影像可看出,奈米線形成具有相對大的表面積之模板。承載此模板之基板經衝壓成在直徑上約15毫米之圓盤形以建構硬幣型電池。 Figure 1D is a scanning electron microscope image of a deuterated nickel nanowire containing a nanostructure template. These nanowires are deposited directly onto roll-hardened nickel foil available from Carl Schlenk AG of Roth, Germany. The foil was first oxidized at 300 ° C for one minute in an air containing processing chamber at a pressure of 50 Torr. The foil was then heated to 450 ° C and a process gas containing 1% decane by volume was introduced into the chamber for ten minutes. The resulting germanide nanowires have a diameter of from about 10 to 50 nanometers and a length of from about 1 to 30 microns. The density of the nanowires is between about 10% and 70%. As can be seen from the SEM image in Figure 1D, the nanowires form a template with a relatively large surface area. The substrate carrying the template was punched into a disk shape of about 15 mm in diameter to construct a coin type battery.

在某些實施例中,形成於基板上之初始奈米結構模板層不提供足夠的表面積及/或厚度以用於所要活性材料之沈積。如上所解釋,每平坦電極表面積可能需要模板之某一最小表面積以達成足夠的活性材料負載。為了提供額外表面積,可在初始模板層上提供一或多個額外模板層以形成多層模板結構。舉例而言,初始矽化物模板可塗佈有碳奈米纖維(CNF)層。圖1E為含有矽化鎳奈米線的奈米結構模板之掃描電子顯微鏡影像,其中碳奈米纖維(CNF)沈積於矽化鎳奈米線上。 In certain embodiments, the initial nanostructure template layer formed on the substrate does not provide sufficient surface area and/or thickness for deposition of the desired active material. As explained above, each flat electrode surface area may require some minimum surface area of the template to achieve sufficient active material loading. To provide additional surface area, one or more additional template layers may be provided on the initial template layer to form a multilayer template structure. For example, the initial telluride template can be coated with a carbon nanofiber (CNF) layer. FIG. 1E is a scanning electron microscope image of a nanostructure template containing a nickel germanium halide wire, wherein carbon nanofibers (CNF) are deposited on a nickel neodymium nitride wire.

在某些實施例中,藉由設置形成第二模板層的第二結構層而增大初始矽化物模板之可用表面積。第二模板層之此等結構可具有類似於初始層中之結構的特性,例如,兩者皆可導電且形成可用於活性材料塗層之多孔模板層。在特定實施例中,第二模板層包括纖維或直線狀奈米結構。此等結構之實例包括碳纖維、碳奈米管及矽化物奈米線。在其他實施例中,可將多維奈米結構設置於一或多個額外模板層中。 此等結構之一實例具有多個金屬矽化物奈米線附著至的中央核心,從而形成「毛球」或「雪球」樣結構。在此實例中,金屬矽化物奈米線在遠離中央核心之不同方向上延伸。圖1F為含有矽化鎳奈米線及在矽化鎳奈米線上的矽化鎳毛球結構之層的奈米結構模板之掃描電子顯微鏡影像。 In some embodiments, the available surface area of the initial telluride template is increased by providing a second structural layer that forms the second template layer. Such structures of the second template layer can have properties similar to those of the initial layer, for example, both can be electrically conductive and form a porous template layer that can be used for coating the active material. In a particular embodiment, the second template layer comprises a fiber or linear nanostructure. Examples of such structures include carbon fibers, carbon nanotubes, and telluride nanowires. In other embodiments, the multi-dimensional nanostructure can be placed in one or more additional template layers. An example of such a structure has a central core to which a plurality of metal halide nanowires are attached to form a "hairball" or "snowball"-like structure. In this example, the metal halide nanowires extend in different directions away from the central core. Figure 1F is a scanning electron microscope image of a nanostructure template containing a layer of deuterated nickel nanowires and a layer of a niobium nickel hair ball structure on a nickel neodymium nanowire.

額外模板層之結構可由與初始層相同的材料(例如,矽化物)製成,或可自不同材料(例如,含碳材料、不同矽化物)製成。多層模板結構可為至少約10奈米厚,或更特定言之,至少50奈米厚或甚至至少100奈米厚。可在用活性材料塗佈了初始層後沈積額外模板層。在另一配置中,在用活性材料塗佈初始層前沈積額外模板層,且隨後,用活性材料塗佈兩層模板。以下參看圖4A進一步描述各種操作序列。 The structure of the additional template layer may be made of the same material as the initial layer (eg, a telluride), or may be made from a different material (eg, a carbonaceous material, a different telluride). The multilayer template structure can be at least about 10 nanometers thick, or more specifically, at least 50 nanometers thick or even at least 100 nanometers thick. An additional template layer can be deposited after the initial layer is coated with the active material. In another configuration, an additional template layer is deposited prior to coating the initial layer with the active material, and then, the two layers of the template are coated with the active material. Various sequences of operations are further described below with reference to FIG. 4A.

模板結構可提供對活性材料塗層之機械支撐及/或至活性材料塗層之電連接。奈米結構模板與平基板相比具有高得多的表面積,允許形成薄活性材料塗層,同時仍提供每電極單位面積(電極之平坦表面)足夠量的活性材料。活性材料塗層通常具有低於所使用的活性材料之破裂極限之厚度及活性材料之形態結構。舉例而言,非晶矽塗層之厚度可小於約300奈米,或更特定言之,小於約100奈米。然而,改變活性材料塗層之形態特性的本文中描述之各種新結構以及沈積及處理技術允許增加塗層厚度超過典型破裂極限值。在一實例中,可形成多層活性材料塗層,在該情況下,每一層具有不同組合物、實體及/或形態結構。在一特定實施例中,多層活性材料塗層包括內部及外部非晶矽層。內層具有比外層低之孔隙率。 The stencil structure can provide mechanical support for the active material coating and/or electrical connection to the active material coating. The nanostructure template has a much higher surface area than a flat substrate, allowing the formation of a thin active material coating while still providing a sufficient amount of active material per unit area of the electrode (the flat surface of the electrode). The active material coating typically has a thickness below the breaking limit of the active material used and the morphological structure of the active material. For example, the amorphous germanium coating can have a thickness of less than about 300 nanometers, or, more specifically, less than about 100 nanometers. However, the various new structures and deposition and processing techniques described herein that alter the morphological properties of the active material coating allow for increased coating thicknesses beyond typical fracture limits. In one example, multiple layers of active material coating can be formed, in which case each layer has a different composition, entity, and/or morphological structure. In a particular embodiment, the multilayer active material coating comprises an inner and outer amorphous germanium layer. The inner layer has a lower porosity than the outer layer.

可沈積於模板上的負性電化學活性材料之實例包括(但不限於)各種含矽材料(例如,結晶矽、非晶矽、其他矽化物、氧化矽、次氧化物及氮氧化物)。可使用的負性電化學活性材料之其他實例包括含錫材料(例如,錫、氧化錫)、鍺、含碳材料、各種金屬氫化物(例如, MgH2)、矽化物、磷化物及氮化物。其他實例包括碳-矽組合(例如,塗佈碳之矽、塗佈矽之碳、摻雜有矽之碳、摻雜有碳之矽及包括碳及矽之合金)、碳-鍺組合(例如,塗佈碳之鍺、塗佈鍺之碳、摻雜有鍺之碳及摻雜有碳之鍺)及碳-錫組合(例如,塗佈碳之錫、塗佈錫之碳、摻雜有錫之碳及摻雜有碳之錫)。通常將高電容活性材料定義為具有至少約700mAh/g之理論鋰化電容的活性材料。可充當塗層的正性電化學活性材料之實例包括各種鋰金屬氧化物(例如,LiCoO2、LiFePO4、LiMnO2、LiNiO2、LiMn2O4、LiCoPO4、LiNi1/3Co1/3Mn1/3O2、LiNiXCoYAlZO2、LiFe2(SO4)3)、氟化碳、諸如氟化鐵(FeF3)之金屬氟化物、金屬氧化物、硫,及其組合。亦可使用此等正性及負性活性材料之摻雜的及非化學計量的變化。摻雜劑之實例包括來自週期表中的第III族及第V族之元素(例如,硼、鋁、鎵、銦、鉈、磷、砷、銻及鉍)以及其他適當摻雜劑(例如,硫及硒)。 Examples of negative electrochemically active materials that can be deposited on the template include, but are not limited to, various cerium-containing materials (eg, crystalline germanium, amorphous germanium, other tellurides, cerium oxide, suboxides, and nitrogen oxides). Other examples of negative electrochemically active materials that may be used include tin-containing materials (eg, tin, tin oxide), antimony, carbonaceous materials, various metal hydrides (eg, MgH 2 ), tellurides, phosphides, and nitrides. . Other examples include carbon-bismuth combinations (eg, carbon coated ruthenium, coated ruthenium carbon, ruthenium-doped carbon, carbon doped ruthenium and alloys including carbon and ruthenium), carbon-ruthenium combinations (eg, , carbon coated ruthenium, coated ruthenium carbon, ruthenium-doped carbon and carbon-doped ruthenium) and carbon-tin combination (for example, coated carbon tin, tin coated carbon, doped with Tin carbon and tin doped with carbon). A high capacitance active material is generally defined as an active material having a theoretical lithiation capacitance of at least about 700 mAh/g. Examples of the positive electrochemically active material that can serve as a coating include various lithium metal oxides (for example, LiCoO 2 , LiFePO 4 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi X Co Y Al Z O2, LiFe 2 (SO 4 ) 3 ), carbon fluoride, metal fluoride such as iron fluoride (FeF 3 ), metal oxide, sulfur, and combinations thereof. Doped and non-stoichiometric changes in these positive and negative active materials can also be used. Examples of the dopant include elements from Groups III and V of the periodic table (for example, boron, aluminum, gallium, indium, antimony, phosphorus, arsenic, antimony, and antimony) and other suitable dopants (for example, Sulfur and selenium).

在模板結構上塗佈活性材料形成電極,或更特定言之,形成電極層。如上提到,電極層通常具有與上方模板層之厚度相當的厚度,模板層可自身包括多個模板層。電極層之孔隙率通常比對應的總體模板層之孔隙率低,此係因為活性材料佔據了模板結構之間的一些空隙空間。電極層孔隙率通常視活性材料塗層之組合物及厚度以及電池之循環特性(其充電及放電之深度)而定。已發現,具有非晶矽塗層的電極層之合適的孔隙率處於約20%與80%之間,或更特定言之,處於約30%與60%之間。此等孔隙率範圍提供用於活性材料膨脹及離子遷移率之足夠的活性材料負載及空間兩者。圖2A至圖2C為具有在30%及50%範圍中之不同孔隙率的三個不同電極層之掃描電子顯微鏡(SEM)影像。 The active material is coated on the template structure to form an electrode or, more specifically, an electrode layer. As mentioned above, the electrode layer typically has a thickness comparable to the thickness of the upper template layer, which may itself comprise a plurality of template layers. The porosity of the electrode layer is generally lower than the porosity of the corresponding overall template layer because the active material occupies some void space between the template structures. The electrode layer porosity generally depends on the composition and thickness of the active material coating and the cycling characteristics of the battery (the depth of charge and discharge). It has been found that a suitable porosity of an electrode layer having an amorphous tantalum coating is between about 20% and 80%, or more specifically between about 30% and 60%. These ranges of porosity provide both sufficient active material loading and space for active material expansion and ion mobility. 2A-2C are scanning electron microscope (SEM) images of three different electrode layers having different porosities in the range of 30% and 50%.

活性材料塗層可自身為多孔結構,通常具有比與總體兩層模板奈米結構之孔隙率相關聯的空隙之尺寸小得多的尺寸之內部空隙。以上 列舉之電極層孔隙率值並不考量活性材料塗層之孔隙率。實驗資料表明,較高的活性材料孔隙率(亦即,活性材料塗層之內部孔隙率)以及其他相關聯之因素導致具有較好循環效能之電池。在某些實施例中,活性材料塗層內之孔隙率經控制以達成所要電池效能。 The active material coating may itself be a porous structure, typically having internal voids of a size that is much smaller than the size of the voids associated with the porosity of the overall two-layer template nanostructure. the above The electrode layer porosity values listed do not take into account the porosity of the active material coating. Experimental data indicates that higher active material porosity (i.e., internal porosity of the active material coating) and other associated factors result in batteries with better cycle performance. In certain embodiments, the porosity within the active material coating is controlled to achieve the desired battery performance.

可將活性材料直接沈積至初始單層模板上。圖3A為含有組成單層模板320之許多奈米結構315的電極層之示意性表示。模板320塗佈有高電容活性材料340。有時,此初始模板層320提供足夠的表面及/或厚度用於高電容活性材料340之沈積。舉例而言,高速率電池組應用通常使用較薄電極以達成產生且吸引高電流所需要之其高電子及離子傳導率。在一配置中,高電容活性材料之面積質量密度處於每平方公分約1.5毫克與4.5毫克之間。此等密度轉化為至約10微米與40微米之間的活性材料塗佈模板之總厚度。圖3B為含有塗佈有非晶矽之單層矽化鎳模板的電極層之掃描電子顯微鏡影像。 The active material can be deposited directly onto the initial single layer template. FIG. 3A is a schematic representation of an electrode layer containing a plurality of nanostructures 315 constituting a single layer template 320. The template 320 is coated with a high capacitance active material 340. Sometimes, the initial template layer 320 provides sufficient surface and/or thickness for deposition of the high capacitance active material 340. For example, high rate battery applications typically use thinner electrodes to achieve their high electron and ionic conductivity required to generate and attract high currents. In one configuration, the area density density of the high capacitance active material is between about 1.5 milligrams and 4.5 milligrams per square centimeter. These densities are converted to a total thickness of the active material coating template between about 10 microns and 40 microns. 3B is a scanning electron microscope image of an electrode layer containing a single layer of a nickel telluride template coated with an amorphous germanium.

在某些實施例中,形成於基板上之初始模板層不提供足夠的表面積用於所要量之活性材料之沈積,且額外模板層形成於初始模板層上。可用以產生此等額外層的材料之實例包括碳奈米纖維(CNF)及多維矽化物結構。圖3C為含有由奈米結構矽化物模板之第一層340及碳奈米纖維(CNF)之第二模板層360形成之多層模板的電極層之示意性表示。兩個模板層皆塗佈有高電容主動。為了清晰起見,在圖3C中未展示活性材料塗層。可在形成每一模板層後依序或在形成所有模板層後在一個步驟中執行活性材料塗佈。圖3D為含有由矽化鎳模板及碳奈米纖維(CNF)形成且塗佈有非晶矽之多層模板的電極層之掃描電子顯微鏡影像。 In some embodiments, the initial template layer formed on the substrate does not provide sufficient surface area for deposition of the desired amount of active material, and an additional template layer is formed on the initial template layer. Examples of materials that can be used to create such additional layers include carbon nanofibers (CNF) and multi-dimensional telluride structures. 3C is a schematic representation of an electrode layer comprising a multilayer template formed from a first layer 340 of a nanostructured telluride template and a second template layer 360 of carbon nanofibers (CNF). Both template layers are coated with high capacitance active. For the sake of clarity, the active material coating is not shown in Figure 3C. The active material coating may be performed in one step after forming each template layer sequentially or after forming all of the template layers. 3D is a scanning electron microscope image of an electrode layer containing a multilayer template formed of a nickel telluride template and carbon nanofibers (CNF) coated with amorphous germanium.

圖3E為含有自矽化物奈米線之初始模板層370及多維矽化物結構之額外模板層380形成之多層模板的電極層之示意性表示。兩個模板層皆塗佈有高電容活性材料。為了清晰且簡單起見,在圖3E中未展示 活性材料塗層。多維矽化物結構可用以形成具有任何厚度之電極,例如,連續沈積於初始模板層370上,直至不符合合乎需要之特性。額外模板層380有助於使總模板變厚超出原始模板結構之長度。對於自多個模板層製造之電極層,通常不存在厚度上限。此特徵允許吾人按每單位面積大的活性材料質量(及因此每單位面積非常高的電容)形成電池組電極層。多層模板結構可堆疊直至對於電容及其他電池組效能參數(例如,循環速率)所需之任何厚度。舉例而言,將較厚電極層用於高電容應用係有用的,同時使用較薄的傳導性更強的電池組電極層以獲得高循環速率(高充電及/或放電電流)亦係有用的。 Figure 3E is a schematic representation of an electrode layer comprising a multilayer template formed from an initial template layer 370 of a germanide nanowire and an additional template layer 380 of a multi-dimensional germanide structure. Both template layers are coated with a high capacitance active material. For clarity and simplicity, not shown in Figure 3E Active material coating. The multi-dimensional telluride structure can be used to form electrodes of any thickness, for example, deposited continuously on the initial template layer 370 until it does not meet desirable characteristics. The additional template layer 380 helps to thicken the overall template beyond the length of the original template structure. For electrode layers fabricated from multiple template layers, there is typically no upper thickness limit. This feature allows us to form a battery electrode layer with a large mass of active material per unit area (and therefore a very high capacitance per unit area). The multilayer template structure can be stacked up to any thickness required for capacitance and other battery performance parameters (eg, cycle rate). For example, it is useful to use a thicker electrode layer for high capacitance applications while using a thinner, more conductive battery electrode layer to achieve high cycle rates (high charge and/or discharge current). .

可使用模板層之各種組合,在該情況下,個別層自各種不同材料及/或奈米結構形態製造。用於模板的合適材料之實例包括矽化物、碳(芙或其他)、氮化物、碳化物等。可形成為適當奈米結構且在高達約500℃或600℃之溫度下不侵略性地消耗矽(或其他對應的活性材料塗層)之幾乎任何材料可用作模板材料。在一些配置中,模板材料為導電性的。合適的模板奈米結構之實例包括奈米線、毛球、奈米纖維、奈米管、球、錐、棒、線、弧形物、鞍形物、薄片、橢球、長釘、履帶式結構等。 Various combinations of template layers can be used, in which case the individual layers are fabricated from a variety of different materials and/or nanostructured forms. Examples of suitable materials for the template include telluride, carbon (fu or other), nitrides, carbides, and the like. Almost any material that can be formed into a suitable nanostructure and that does not aggressively consume cerium (or other corresponding active material coating) at temperatures up to about 500 ° C or 600 ° C can be used as the template material. In some configurations, the templating material is electrically conductive. Examples of suitable template nanostructures include nanowires, hairballs, nanofibers, nanotubes, spheres, cones, rods, wires, arcs, saddles, flakes, ellipsoids, spikes, tracked Structure, etc.

可使用聚合黏合劑及/或活性材料塗層將第二層模板結構結合至基板或下層模板結構。舉例而言,若在已添加第二層模板後沈積活性材料塗層,則活性材料自身可將模板層接合在一起。此等結合方法進一步描述於2011年3月2日申請之題為「TEMPLATE ELECTRODE STRUCTURES FOR DEPOSITING ACTIVE MATERIALS」的美國專利申請案第13/039,031號(代理人案號AMPRP012US)中,為了描述結合方法之目的,該申請案以引用的方式併入本文中。圖3F為含有由矽化鎳模板及矽化鎳多維結構形成且塗佈有非晶矽之多層模板的電極層之掃描電子顯微鏡影像。 The second layer of template structure can be bonded to the substrate or underlying template structure using a polymeric binder and/or active material coating. For example, if a coating of active material is deposited after the second layer of template has been added, the active material itself can join the template layers together. Such a combination method is further described in U.S. Patent Application Serial No. 13/039,031, filed on Mar. 2, 2011, entitled &lt;RTIgt; </RTI> </RTI> </RTI> </RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The application is hereby incorporated by reference. 3F is a scanning electron microscope image of an electrode layer comprising a multilayer template formed of a nickel-plated nickel template and a nickel-doped nickel multi-layer structure coated with an amorphous germanium.

圖4A為根據某些實施例的對應於用於製造電極層之方法400的程序流程圖。方法400可開始於在操作402期間接收具有基底層之基板。以上描述各種基板實例。方法400可繼續進行操作404,在操作404期間,具有受控厚度的源層形成於基板上。在操作期間可使用的技術之實例包括物理氣相沈積(PVD)、化學氣相沈積(CVD)或適合於產生受控厚度的均勻黏著層之其他技術。以上描述各種源層實例。在特定實施例中,具有在約100奈米與500奈米之間的厚度之鎳層沈積於不鏽鋼或鎢箔之一或兩側上。該箔可處於約5微米與50微米厚之間。用於沈積源層的技術之其他實例包括將具有在約100奈米與10微米之間的厚度之含鎳之溶膠-凝膠溶液層旋塗至支撐箔上或用於在箔上自組合鎳奈米粒子及/或奈米線之朗繆爾-布羅吉(Langmuir-Blodgett)方法。 4A is a process flow diagram corresponding to method 400 for fabricating an electrode layer, in accordance with some embodiments. Method 400 can begin by receiving a substrate having a substrate layer during operation 402. Various substrate examples are described above. The method 400 can continue with operation 404 during which a source layer having a controlled thickness is formed on the substrate. Examples of techniques that may be used during operation include physical vapor deposition (PVD), chemical vapor deposition (CVD), or other techniques suitable for producing a uniform thickness of controlled thickness. Various source layer examples are described above. In a particular embodiment, a layer of nickel having a thickness between about 100 nanometers and 500 nanometers is deposited on one or both sides of the stainless steel or tungsten foil. The foil can be between about 5 microns and 50 microns thick. Other examples of techniques for depositing a source layer include spin coating a nickel-containing sol-gel solution layer having a thickness between about 100 nm and 10 microns onto a support foil or for self-combining nickel on a foil Langmuir-Blodgett method for nanoparticle and/or nanowires.

操作404亦可涉及處理源層表面,(例如)以增加其表面粗糙度及/或改變其表面組合物。處理技術之實例包括將矽化物前驅物(例如,矽、金屬及/或含催化劑之材料)引入至表面內、以化學方式使表面改質(例如,形成氧化物、氮化物、碳化物、初始矽化物結構,及藉由各種氧化劑及還原劑之處理)及以物理方式使表面改質(例如,藉由雷射切除及/或電漿處理來增加表面粗糙度)。其他實例包括改變晶粒定向、退火、音波處理、摻雜及離子植入。源層之經改質之表面可增強在操作406期間的模板結構之形成。 Operation 404 can also involve treating the surface of the source layer, for example, to increase its surface roughness and/or change its surface composition. Examples of processing techniques include introducing a telluride precursor (eg, a ruthenium, a metal, and/or a catalyst-containing material) into the surface to chemically modify the surface (eg, forming oxides, nitrides, carbides, initials) The telluride structure, and by treatment with various oxidizing agents and reducing agents) and physically modifying the surface (eg, by laser ablation and/or plasma treatment to increase surface roughness). Other examples include changing grain orientation, annealing, sonication, doping, and ion implantation. The modified surface of the source layer enhances the formation of the template structure during operation 406.

在某些實施例中,在含有氧及其他合適氧化劑之氣流中,在處於約150℃與500℃之間的溫度(更特定言之,大約250℃)下氧化源層達在約0.1分鐘與10分鐘之間的時段(或更特定言之,大約一分鐘)。已發現,一些氧化有助於使表面變粗糙,且有助於矽化鎳結構之初始形成。在不受限於任何特定理論之情況下,咸信粗糙的氧化物邊緣可在矽化物形成期間充當長晶位點。另外,氧化物可充當遮罩以允許僅在小孔處之長晶。氧化物之另一功能可為調節金屬至反應位點之擴散速 率。亦已發現,過度氧化可能對矽化物形成有害。因而,可針對每一含金屬之材料及含有此等材料之結構使氧化條件最佳化。 In certain embodiments, the source layer is oxidized at a temperature between about 150 ° C and 500 ° C (more specifically, about 250 ° C) in a gas stream containing oxygen and other suitable oxidizing agents for about 0.1 minutes. A time period between 10 minutes (or more specifically, about one minute). It has been found that some oxidation helps to roughen the surface and contributes to the initial formation of the nickel structure. Without being bound by any particular theory, the rough oxide edge can act as a long crystal site during the formation of the telluride. Additionally, the oxide can act as a mask to allow for crystal growth only at the small holes. Another function of the oxide can be to adjust the diffusion rate of the metal to the reaction site. rate. It has also been found that excessive oxidation can be detrimental to the formation of telluride. Thus, the oxidation conditions can be optimized for each metal-containing material and structure containing such materials.

方法400可繼續進行在操作406期間的模板結構之形成,例如,使用CVD。舉例而言,包括含矽前驅物(例如,矽烷)之處理氣體可流至CVD腔室內。在某些實施例中,在處理氣體中的矽烷之體積濃度小於約10%,或更特定言之小於約5%,或甚至小於約1%。在特定實施例中,矽烷之濃度為約1%。處理氣體亦可包括一或多種載氣,諸如,氬、氮、氦、氫、氧(但通常不具有矽烷)、二氧化碳及甲烷。可將氣體及/或基板維持在約350℃與500℃之間(或更特定言之,約425℃與475℃之間)的溫度下。沈積之持續時間可處於約1分鐘與30分鐘之間,或更特定言之,處於約5分鐘與15分鐘之間。在使用非矽化物奈米結構之實施例中,可使用對氣相前驅物及其他製程條件之適當調整。 The method 400 can continue with the formation of the template structure during operation 406, for example, using CVD. For example, a process gas comprising a ruthenium containing precursor (eg, decane) can flow into the CVD chamber. In certain embodiments, the volume concentration of decane in the process gas is less than about 10%, or more specifically less than about 5%, or even less than about 1%. In a particular embodiment, the concentration of decane is about 1%. The process gas may also include one or more carrier gases such as argon, nitrogen, helium, hydrogen, oxygen (but typically without decane), carbon dioxide, and methane. The gas and/or substrate can be maintained at a temperature between about 350 ° C and 500 ° C (or more specifically between about 425 ° C and 475 ° C). The duration of deposition can be between about 1 minute and 30 minutes, or more specifically between about 5 minutes and 15 minutes. In embodiments where a non-tellurized nanostructure is used, appropriate adjustments to the vapor phase precursor and other process conditions can be used.

在特定實施例中,在操作406期間變化製程條件。舉例而言,在矽化物結構之形成期間,一開始可在相對高的濃度下引入矽烷以便促進長晶,且接著當(例如)進一步的矽化物形成受到自結構之紮根端朝向生長的尖部的源金屬擴散限制時,減小該濃度。另外,製程溫度可在一開始保持得低且接著增加以便促進此金屬擴散。一般而言,可變化製程條件以控制所形成的模板結構之物理性質(例如,長度、直徑、形狀、定向、面積密度)及形態性質(例如,確保矽化物之高傳導率的化學計量相,例如,沿著長度之分佈、結晶/非晶)。可在操作406期間變化之其他製程條件包括氣體混合物之組合物(除了以上描述之可變矽烷濃度之外)、各種流動速率及型樣及/或腔室壓力。若使用PECVD(電漿增強型化學氣相沈積)技術,則亦可變化電漿產生器之功率輸出及頻率。亦可使用CVD。 In a particular embodiment, the process conditions are varied during operation 406. For example, during the formation of the telluride structure, decane can be introduced at a relatively high concentration to promote the growth of the crystal, and then, for example, further sulphide formation is directed from the rooted end of the structure toward the tip of the growth. When the source metal diffusion is limited, the concentration is reduced. Additionally, the process temperature can be kept low initially and then increased to promote diffusion of the metal. In general, process conditions can be varied to control the physical properties (eg, length, diameter, shape, orientation, area density) and morphological properties of the formed template structure (eg, a stoichiometric phase that ensures high conductivity of the telluride, For example, distribution along the length, crystallization/amorphous). Other process conditions that may vary during operation 406 include compositions of the gas mixture (in addition to the variable decane concentrations described above), various flow rates and patterns and/or chamber pressures. If PECVD (plasma enhanced chemical vapor deposition) technology is used, the power output and frequency of the plasma generator can also be changed. CVD can also be used.

方法400可繼續進行在操作408期間形成額外模板層。在此操作 中,將單層模板變換成多層模板結構。舉例而言,如所提到,可用碳奈米纖維(CNF)層塗佈初始矽化物模板。在另一實施例中,用多維矽化物結構(諸如,毛球)層塗佈初始矽化物模板。CNF或多維矽化物結構可懸浮於液體中以形成漿料,且接著使用「刮漿刀」技術或噴霧技術(接著為乾燥)塗佈於初始層上。應注意,可在用活性材料塗佈初始模板層之前或之後形成額外模板層,如在決策區塊414之上下文中進一步描述。 Method 400 can continue with forming an additional template layer during operation 408. In this operation In the process, a single layer template is transformed into a multi-layer template structure. For example, as mentioned, the initial telluride template can be coated with a carbon nanofiber (CNF) layer. In another embodiment, the initial telluride template is coated with a layer of a multi-dimensional telluride structure, such as a hair bulb. The CNF or multi-dimensional telluride structure can be suspended in a liquid to form a slurry, and then applied to the initial layer using a "squeegee" technique or a spray technique (followed by drying). It should be noted that additional template layers may be formed before or after the initial template layer is coated with the active material, as further described in the context of decision block 414.

方法400接著繼續進行在操作410期間在單層或多層模板結構上形成活性材料塗層。活性材料塗層之沈積可涉及CVD、PVD、電鍍、無電極電鍍或溶液沈積。現將更詳細描述PECVD技術之一實例。提供至腔室內之模板層及/或處理氣體經加熱至約200℃與400℃之間,或更特定言之,約250℃與350℃之間。遞送至腔室內之氣體可包括含矽前驅物(例如,矽烷)及一或多種載氣(例如,氬、氮、氦、氫、二氧化碳及甲烷)。在一特定實例中,矽烷在氦中之濃度處於約5%與20%之間,或更特定言之,處於約8%與15%之間。氣體亦可包括含摻雜劑之材料,諸如,膦。可在約10W與1000W之間遞送RF功率,其通常視腔室之大小及其他因素而定。 The method 400 then proceeds to form a coating of the active material on the single or multiple layer template structure during operation 410. Deposition of the active material coating can involve CVD, PVD, electroplating, electroless plating, or solution deposition. An example of PECVD technology will now be described in more detail. The template layer and/or process gas supplied to the chamber is heated to between about 200 ° C and 400 ° C, or more specifically between about 250 ° C and 350 ° C. The gas delivered to the chamber may include a ruthenium containing precursor (eg, decane) and one or more carrier gases (eg, argon, nitrogen, helium, hydrogen, carbon dioxide, and methane). In a particular example, the concentration of decane in the mash is between about 5% and 20%, or more specifically between about 8% and 15%. The gas may also include a dopant-containing material such as a phosphine. RF power can be delivered between about 10 W and 1000 W, which is typically dependent on the size of the chamber and other factors.

方法400可接著繼續進行在操作412期間的可選後沈積處理。後沈積處理技術之實例包括化學蝕刻、退火及塗佈。在某些實施例中,將含碳材料之塗層沈積於高電容活性材料上。在另一實施例中,化學蝕刻在410中沈積之非晶矽之塗層以將小孔引入至活性材料塗層內。在某些實施例中,使用固體反應相技術或液相沈積技術。舉例而言,含活性材料物質之液體可沈積至模板上,且接著經物理或化學轉換成固體活性材料。在特定實施例中,可將含正矽酸四乙酯(TEOS)溶膠-凝膠之液體(SiO2)沈積至模板上,隨後化學還原為矽。 Method 400 can then proceed with optional post deposition processing during operation 412. Examples of post deposition processing techniques include chemical etching, annealing, and coating. In certain embodiments, a coating of a carbonaceous material is deposited on the high capacitance active material. In another embodiment, the amorphous germanium coating deposited in 410 is chemically etched to introduce apertures into the active material coating. In certain embodiments, a solid reaction phase technique or a liquid phase deposition technique is used. For example, a liquid containing an active material material can be deposited onto a template and then physically or chemically converted into a solid active material. In a particular embodiment, the orthosilicic acid containing tetraethylorthosilicate (TEOS) sol - gel of liquid (SiO 2) is deposited onto the template, followed by chemical reduction of silicon.

各種製程技術及製程條件更詳細地描述於2011年5月24日申請之 題為「MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES」的美國專利申請案第13/114,413號(代理人案號AMPRP014US)中,為了描述此等製程技術及製程條件之目的,該申請案以引用的方式全部併入本文中。 Various process technologies and process conditions are described in more detail on May 24, 2011. U.S. Patent Application Serial No. 13/114,413 (Attorney Docket No. AMPRP014US) entitled "MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES", for the purpose of describing such process technology and process conditions, the application is incorporated by reference. Incorporated herein.

不同的沈積技術、製程條件及/或前驅物可導致具有不同特性之活性材料塗層。在某些實施例中,重複操作408至412(決策區塊414)以形成與單層活性材料塗層相比證實出極佳的電池效能特性之多層活性材料塗層。在一實例中,使用PECVD技術沈積非晶矽之第一層/塗層,隨後藉由熱CVD技術沈積的非晶矽之第二層/塗層,或反之亦然。此等兩個活性材料塗層中之每一者具有不同結晶度、孔隙率、密度、雜質之濃度(例如,氫)、空位及殘餘應力等級。執行一系列測試以判定製程條件對矽之原子密度的影響。在第一測試中,使用熱CVD技術在520℃下沈積矽,從而導致結構具有95%的矽及5%的氫且具有每立方公分5.40E22個原子之密度。在第二測試中,使用熱CVD技術但在550℃之較高溫度下沈積矽,其導致結構具有98%的矽及1%的氫且具有每立方公分僅5.16E22個原子之密度。最後,在第三測試中,使用PECVD技術在520℃下沈積矽,從而導致結構具有89%的矽及11%的氫且具有每立方公分5.88E22個原子之密度。 Different deposition techniques, process conditions, and/or precursors can result in active material coatings having different characteristics. In certain embodiments, operations 408 through 412 (decision block 414) are repeated to form a multilayer active material coating that demonstrates superior battery performance characteristics compared to a single layer of active material coating. In one example, a first layer/coating of amorphous germanium is deposited using PECVD techniques followed by a second layer/coating of amorphous germanium deposited by thermal CVD techniques, or vice versa. Each of the two active material coatings has a different crystallinity, porosity, density, concentration of impurities (e.g., hydrogen), vacancies, and residual stress levels. A series of tests were performed to determine the effect of process conditions on the atomic density of germanium. In the first test, germanium was deposited using a thermal CVD technique at 520 ° C, resulting in a structure having 95% germanium and 5% hydrogen and having a density of 5.40 E22 atoms per cubic centimeter. In a second test, a thermal CVD technique was used but a germanium was deposited at a higher temperature of 550 ° C, which resulted in a structure having 98% germanium and 1% hydrogen and having a density of only 5.16 E22 atoms per cubic centimeter. Finally, in the third test, ruthenium was deposited at 520 ° C using PECVD techniques, resulting in a structure having 89% bismuth and 11% hydrogen and having a density of 5.88 E22 atoms per cubic centimeter.

在另一實例中,使用一組製程條件(例如,基板溫度、腔室壓力、前驅物之組合物),使用熱CVD技術沈積非晶矽之第一層/塗層,而使用另一組條件,使用熱CVD技術亦沈積第二層/塗層。在又一實施例中,非晶矽之第一層/塗層經沈積且接著蝕刻以形成多孔非晶矽層。非晶矽之第二層/塗層沈積於此多孔層上。第二層/塗層可或可不經歷類似蝕刻。至少第一內層之較高孔隙率有助於克服在循環期間的此矽多層結構之大體積改變。 In another example, a set of process conditions (eg, substrate temperature, chamber pressure, composition of precursors) is used, a first layer/coating of amorphous germanium is deposited using thermal CVD techniques, and another set of conditions is used. A second layer/coating is also deposited using thermal CVD techniques. In yet another embodiment, the first layer/coating of amorphous germanium is deposited and then etched to form a porous amorphous germanium layer. A second layer/coating of amorphous germanium is deposited on the porous layer. The second layer/coating may or may not undergo a similar etch. At least the higher porosity of the first inner layer helps to overcome large volume changes of the multilayer structure during the cycle.

已發現,活性材料結構中之短程無序可在很大程度上影響各種電 池效能特性。舉例而言,不同CVD技術產生不同短程級(short range order,SRO)比,咸信其已影響了循環壽命。圖4B至圖4E說明使用不同製程條件沈積的四個非晶矽塗層之短程級比。圖4B對應於使用PECVD製程沈積的未摻雜之非晶矽。圖4C對應於使用熱CVD技術在520℃下沈積之矽層。使用曲線擬合判定有序(結晶)矽相主要處於520cm-1位置。在約480cm-1處之另一峰值對應於非晶矽。圖4D對應於在約550℃下執行的使用PECVD技術沈積之經摻雜之矽材料。自曲線擬合可觀察到,PECVD導致幾乎所有矽在非晶狀態下沈積。使用熱CVD在520℃下沈積之矽之SRO比為4%,而對於在550℃下沈積之矽,其為約14%。 It has been discovered that short-range disorder in the structure of the active material can greatly affect various battery performance characteristics. For example, different CVD techniques produce different short range order (SRO) ratios, which have affected cycle life. 4B through 4E illustrate the short-range ratios of four amorphous germanium coatings deposited using different process conditions. Figure 4B corresponds to an undoped amorphous germanium deposited using a PECVD process. Figure 4C corresponds to a layer of germanium deposited at 520 °C using thermal CVD techniques. The curve-fitting was used to determine that the ordered (crystalline) 矽 phase was mainly at the 520 cm -1 position. Another peak at about 480 cm -1 corresponds to amorphous germanium. Figure 4D corresponds to a doped germanium material deposited using PECVD techniques performed at about 550 °C. It can be observed from curve fitting that PECVD causes almost all germanium to deposit in an amorphous state. The SRO ratio of germanium deposited using thermal CVD at 520 ° C was 4%, while for germanium deposited at 550 ° C it was about 14%.

亦已發現,活性材料塗層中之殘餘應力在循環(亦即,鋰化及去鋰化)期間可具有對此等結構之穩定性的顯著影響。已對各種沈積及後沈積處理製程參數作調查以判定此等參數對殘餘應力等級之影響。舉例而言,已發現,一些形式之蝕刻及迅速熱退火可有助於減小非晶矽結構中之殘餘應力,且在很大程度上改良所得電池之循環壽命。 It has also been found that residual stress in the active material coating can have a significant effect on the stability of such structures during cycling (i.e., lithiation and delithiation). Various deposition and post-deposition treatment process parameters have been investigated to determine the effect of these parameters on residual stress levels. For example, it has been discovered that some forms of etching and rapid thermal annealing can help reduce residual stress in the amorphous germanium structure and greatly improve the cycle life of the resulting battery.

此外,在活性材料塗層中形成之小初始缺陷可進一步在隨後處理(例如,後沈積處理及形成額外塗佈層)期間產生。舉例而言,甚至小的裂縫可使活性材料塗層之大部分起皺且與下伏模板結構之接觸變鬆。圖4F為根據某些實施例的用於多層電極結構之殘餘應力模型之示意性表示。此模型已經自用於多層塗層之線彈性破裂力學(LEFM)開發以估計應力等級。根據此模型,可使用具有不同熱膨脹係數(CTE)之材料來匹配諸層之間的張力及將初始應力減小至小於約1GPa範圍。此又可有助於防止至少在處理期間的塗層之開裂及分離,在該情況下,此等材料經受劇烈的熱波動。已發現,特定地量身制定活性材料塗層之此等特性有助於克服以上描述的應力誘發之破裂中之一些。換言之,可將更活性材料沈積於同一模板結構上,而不犧牲電池之循 環效能,同時改良其總電容。 Furthermore, small initial defects formed in the active material coating can be further produced during subsequent processing (eg, post deposition processing and formation of additional coating layers). For example, even small cracks can cause most of the active material coating to wrinkle and loosen contact with the underlying stencil structure. 4F is a schematic representation of a residual stress model for a multilayer electrode structure in accordance with some embodiments. This model has been developed from the Linear Elastic Fracture Mechanics (LEFM) for multilayer coatings to estimate stress levels. According to this model, materials having different coefficients of thermal expansion (CTE) can be used to match the tension between the layers and reduce the initial stress to less than about 1 GPa. This, in turn, can help prevent cracking and separation of the coating at least during processing, in which case the materials are subject to severe thermal fluctuations. It has been found that the particular tailoring of such properties of the active material coating helps to overcome some of the stress-induced cracking described above. In other words, more active materials can be deposited on the same template structure without sacrificing battery tracking. Loop performance while improving its total capacitance.

圖5A為根據本發明之一實施例的使用本文中描述之電極的部分組裝之電化學電池之平面圖。該電池具有一正電極活性層502,正電極活性層502展示覆蓋正集電器503之主要部分。該電池亦具有一負電極活性層504,負電極活性層504展示為覆蓋負集電器505之主要部分。在正電極活性層502與負電極活性層504之間的為分離器506。 5A is a plan view of a partially assembled electrochemical cell using the electrodes described herein, in accordance with an embodiment of the present invention. The battery has a positive electrode active layer 502, and the positive electrode active layer 502 exhibits a major portion covering the positive current collector 503. The battery also has a negative electrode active layer 504 that is shown to cover a major portion of the negative current collector 505. Between the positive electrode active layer 502 and the negative electrode active layer 504 is a separator 506.

在一實施例中,負電極活性層504比正電極活性層502稍大以確保藉由負活性層504之活性材料截獲自正電極活性層502釋放之鋰離子。在一實施例中,負活性層504在一或多個方向上延伸超出正活性層502至少約0.25mm與5mm之間。在一更特定實施例中,負層在一或多個方向上延伸超出正層約1mm與2mm之間。在某些實施例中,分離器506之邊緣延伸超出至少負活性層504之外邊緣以提供負電極與其他電池組組件之完全電子絕緣。 In one embodiment, the negative electrode active layer 504 is slightly larger than the positive electrode active layer 502 to ensure that lithium ions released from the positive electrode active layer 502 are trapped by the active material of the negative active layer 504. In one embodiment, the negative active layer 504 extends beyond the positive active layer 502 by at least about 0.25 mm and 5 mm in one or more directions. In a more specific embodiment, the negative layer extends between about 1 mm and 2 mm beyond the positive layer in one or more directions. In some embodiments, the edge of separator 506 extends beyond at least the outer edge of negative active layer 504 to provide complete electronic insulation of the negative electrode from other battery components.

圖5B為根據本發明之一實施例的使用本文中描述之電極的部分組裝之電化學電池500之橫截面圖。電池500包括一正集電器503,正集電器503在一側上具有一正電極活性層502a且在相對側上具有一正電極活性層502b。電池500亦包括一負集電器505,負集電器505在一側上具有一負電極活性層504a且在相對側上具有一負電極活性層504b。在正電極活性層502a與負電極活性層504a之間存在一分離器506a。分離器506用以維持正電極活性層502a與負電極活性層504a之間的機械分離,且充當海綿狀物以獲取稍後將添加之電解質(未圖示)。其上不存在活性材料的集電器503、505之端部可用於連接至電池之適當端子(未圖示)。 Figure 5B is a cross-sectional view of a partially assembled electrochemical cell 500 using the electrodes described herein, in accordance with an embodiment of the present invention. Battery 500 includes a positive current collector 503 having a positive electrode active layer 502a on one side and a positive electrode active layer 502b on the opposite side. Battery 500 also includes a negative current collector 505 having a negative electrode active layer 504a on one side and a negative electrode active layer 504b on the opposite side. A separator 506a is present between the positive electrode active layer 502a and the negative electrode active layer 504a. The separator 506 serves to maintain mechanical separation between the positive electrode active layer 502a and the negative electrode active layer 504a, and acts as a sponge to acquire an electrolyte (not shown) to be added later. The ends of the current collectors 503, 505 on which the active material is absent may be used to connect to appropriate terminals (not shown) of the battery.

電極層502a、504a、集電器503、505與分離器506a一起可被認為形成一個電化學電池單元。圖5B中展示之完全堆疊500包括電極層502b、504b及額外分離器506b。可在鄰近電池之間共用集電器503、 505。當重複此等堆疊時,結果為具有比單一電池單元之電容大的電容之電池或電池組。 Electrode layers 502a, 504a, current collectors 503, 505, together with separator 506a, can be considered to form an electrochemical cell. The full stack 500 shown in Figure 5B includes electrode layers 502b, 504b and an additional separator 506b. A current collector 503 can be shared between adjacent batteries, 505. When such stacking is repeated, the result is a battery or battery pack having a capacitance that is greater than the capacitance of a single battery cell.

製造具有大的電容之電池組或電池之另一方式為製造一個非常大的電池單元且將其捲進自身之上以製造多個堆疊。圖6A中之橫截面示意性說明展示可將電極與兩個分離器片捲繞在一起以形成電池組或電池(有時被稱作卷式電池(jellyroll)600)之長度及窄度。卷式電池經成形及定大小以適合於彎曲(常為圓柱形)罩602之內部尺寸。卷式電池600具有一正電極606及一負電極604。電極之間的空白空間為分離器片。可將卷式電池插入至罩602內。在一些實施例中,卷式電池600在中心可具有一心軸608,心軸608建立初始捲繞直徑且防止內部卷圈佔據中心軸向區域。心軸608可由傳導性材料製成,且在一些實施例中,其可為電池接線端子(cell terminal)之一部分。圖6B展示具有分別自正集電器(未圖示)及負集電器(未圖示)延伸之正短小突出部612及負短小突出部614的卷式電池600之透視圖。該等短小突出部可焊接至集電器。 Another way to make a battery pack or battery with a large capacitance is to make a very large battery cell and roll it onto itself to make multiple stacks. The cross-sectional schematic illustration in Figure 6A shows the length and narrowness of an electrode and two separator sheets that can be wound together to form a battery or battery (sometimes referred to as a jellyroll 600). The roll battery is shaped and sized to fit the inner dimensions of the curved (usually cylindrical) cover 602. The roll battery 600 has a positive electrode 606 and a negative electrode 604. The blank space between the electrodes is a separator piece. A roll battery can be inserted into the cover 602. In some embodiments, the roll battery 600 can have a mandrel 608 at the center that establishes an initial winding diameter and prevents the inner coil from occupying a central axial region. The mandrel 608 can be made of a conductive material, and in some embodiments it can be part of a battery terminal. 6B shows a perspective view of a roll-to-roll battery 600 having positive short projections 612 and negative short projections 614 extending from a positive current collector (not shown) and a negative current collector (not shown), respectively. The short projections can be welded to the current collector.

電極之長度及寬度視電池之總尺寸及活性層及集電器之厚度而定。舉例而言,具有18mm直徑及65mm長度之習知18650電池可具有處於約300mm與1000mm長之間的電極。對應於較低速率/較高電容應用之較短電極較厚,且具有較少卷圈。 The length and width of the electrode depend on the total size of the battery and the thickness of the active layer and current collector. For example, a conventional 18650 battery having a diameter of 18 mm and a length of 65 mm can have electrodes between about 300 mm and 1000 mm long. The shorter electrodes corresponding to lower rate/higher capacitance applications are thicker and have fewer turns.

圓柱形設計可對於一些鋰離子電池合乎需要,此係因為電極可在循環期間膨脹,且因此對外殼施加壓力。使用儘可能薄同時仍能夠維持電池上之足夠壓力(具有良好安全裕度)的圓柱形外殼係有用的。可類似地捲繞稜柱形(平)電池,但其罩可為可撓性,使得其可沿著較長側彎曲以適應內部壓力。此外,壓力在電池之不同部分內可不相同,且可使稜柱形電池之角落為空。在鋰離子電池內之空凹穴並不合乎需要,此係因為在電極膨脹期間,電極傾向於被不均勻地推動至此等凹 穴內。此外,電解質可聚集於空凹穴中,且在電極之間留下乾燥區,從而負面影響電極之間的鋰離子輸送。然而,對於某些應用(諸如,由矩形外觀尺寸指定之應用),稜柱形電池係適當的。在一些實施例中,稜柱形電池使用成堆疊之矩形電極及分離器片以避免在捲繞式稜柱形電池之情況下遇到的困難中之一些。 A cylindrical design may be desirable for some lithium ion batteries because the electrodes may expand during cycling and thus exert pressure on the outer casing. It is useful to use a cylindrical outer casing that is as thin as possible while still maintaining sufficient pressure on the battery (with good safety margin). The prismatic (flat) cell can be similarly wound, but its cover can be flexible such that it can be bent along the longer side to accommodate internal pressure. In addition, the pressure may be different in different portions of the battery and the corners of the prismatic battery may be empty. An empty pocket in a lithium ion battery is not desirable because the electrode tends to be unevenly pushed to this recess during expansion of the electrode. Inside the cave. In addition, the electrolyte can collect in the empty pockets and leave a dry zone between the electrodes, thereby negatively affecting lithium ion transport between the electrodes. However, for certain applications, such as those specified by rectangular appearance dimensions, prismatic batteries are suitable. In some embodiments, prismatic cells use stacked rectangular electrodes and separator sheets to avoid some of the difficulties encountered with wound prismatic cells.

圖7說明捲繞式稜柱形卷式電池700之俯視圖。卷式電池700包括一正電極704及一負電極706。電極之間的空白空間為分離器片。卷式電池700圍封在矩形稜柱形罩702中。與圖6A及圖6B中展示之圓柱形卷式電池不同,稜柱形卷式電池之捲繞開始於在卷式電池之中間的平延伸段。在一實施例中,卷式電池可在卷式電池之中間包括一心軸(未圖示),電極及分離器捲繞於該心軸上。 FIG. 7 illustrates a plan view of a wound prismatic roll battery 700. The roll battery 700 includes a positive electrode 704 and a negative electrode 706. The blank space between the electrodes is a separator piece. The roll battery 700 is enclosed in a rectangular prismatic cover 702. Unlike the cylindrical roll battery shown in Figures 6A and 6B, the winding of the prismatic roll battery begins with a flat extension in the middle of the roll battery. In one embodiment, the roll battery can include a mandrel (not shown) in the middle of the roll battery with the electrode and separator wound on the mandrel.

圖8A說明包括複數個電池(801a、801b、801c、801d及801e)的堆疊式電池之橫截面,每一電池具有一正電極(例如,803a、803b)、一正集電器(例如,802)、一負電極(例如,805a、805b)、一負集電器(例如,804)及在該等電極之間的一分離器(例如,806a、806b)。每一集電器由鄰近電池共用。堆疊電池之一優勢為,該堆疊可按幾乎任何形狀製造,其特別適合於稜柱形電池。集電器短小突出部通常自該堆疊延伸,且引入至電池組接線端子。圖8B展示包括複數個電池的堆疊式電池之透視圖。 Figure 8A illustrates a cross section of a stacked battery including a plurality of cells (801a, 801b, 801c, 801d, and 801e), each cell having a positive electrode (e.g., 803a, 803b), a positive current collector (e.g., 802). A negative electrode (eg, 805a, 805b), a negative current collector (eg, 804), and a separator (eg, 806a, 806b) between the electrodes. Each current collector is shared by adjacent batteries. One of the advantages of stacked batteries is that the stack can be fabricated in almost any shape, which is particularly suitable for prismatic batteries. The current collector tabs typically extend from the stack and are introduced to the battery pack terminals. Figure 8B shows a perspective view of a stacked battery including a plurality of batteries.

一旦如上所述配置該等電極,即用電解質填充電池組。鋰離子電池中之電解質可為液體、固體或凝膠。具有固體電解質之鋰離子電池亦稱作鋰聚合物電池。 Once the electrodes are configured as described above, the battery pack is filled with an electrolyte. The electrolyte in a lithium ion battery can be a liquid, a solid or a gel. A lithium ion battery having a solid electrolyte is also referred to as a lithium polymer battery.

典型的液體電解質包括一或多種溶劑及一或多種鹽,其中之至少一者包括鋰。在第一充電循環(有時稱作形成循環)期間,電解質中之有機溶劑可部分地在負電極表面上分解以形成固體電解質相界層(SEI層)。相界通常電絕緣但可傳導離子,從而允許鋰離子通過。相界亦 防止在稍後充電子循環中的電解質之分解。 A typical liquid electrolyte includes one or more solvents and one or more salts, at least one of which includes lithium. During the first charge cycle (sometimes referred to as a formation cycle), the organic solvent in the electrolyte may partially decompose on the surface of the negative electrode to form a solid electrolyte phase boundary layer (SEI layer). The phase boundaries are typically electrically insulating but can conduct ions, allowing lithium ions to pass. Phase boundary The decomposition of the electrolyte in the charge sub-cycle is prevented later.

適合於一些鋰離子電池的非水溶劑之一些實例包括下列各者:環狀碳酸酯(例如,碳酸伸乙酯(EC)、碳酸伸丙酯(PC)、碳酸伸丁酯(BC)及碳酸乙烯基伸乙酯(VEC))、內酯(例如,γ-丁內酯(GBL)、γ-戊內酯(GVL)及α-當歸內酯(AGL))、直鏈碳酸酯(例如,碳酸二甲酯(DMC)、甲基乙基碳酸酯(MEC)、碳酸二乙酯(DEC)、甲基丙基碳酸酯(MPC)、碳酸二丙酯(DPC)、甲基丁基碳酸酯(NBC)及碳酸二丁酯(DBC))、醚(例如,四氫呋喃(THF)、2-甲基四氫呋喃、1,4-二噁烷、1,2-二甲氧乙烷(DME)、1,2-二乙氧乙烷及1,2-二丁氧乙烷)、亞硝酸酯(例如,乙腈及己二腈)、直鏈酯(例如,丙酸甲酯、特戊酸甲酯、特戊酸丁酯及特戊酸辛酯)、醯胺(例如,二甲基甲醯胺)、有機磷酸酯(例如,磷酸三甲酯及磷酸三辛酯)及含有S=O基團之有機化合物(例如,二甲碸及二乙烯碸),及其組合。 Some examples of non-aqueous solvents suitable for some lithium ion batteries include the following: cyclic carbonates (e.g., ethyl carbonate (EC), propyl carbonate (PC), butyl carbonate (BC), and carbonic acid. Vinyl Ethyl Ester (VEC), lactones (eg, γ-butyrolactone (GBL), γ-valerolactone (GVL), and α-angelica lactone (AGL)), linear carbonates (eg, carbonic acid) Dimethyl ester (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), dipropyl carbonate (DPC), methyl butyl carbonate ( NBC) and dibutyl carbonate (DBC), ether (for example, tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane (DME), 1, 2-diethoxyethane and 1,2-dibutoxyethane), nitrites (for example, acetonitrile and adiponitrile), linear esters (for example, methyl propionate, methyl pivalate, special Butyl valerate and octyl pivalate), decylamine (for example, dimethylformamide), organic phosphates (for example, trimethyl phosphate and trioctyl phosphate) and organic compounds containing S=O groups (eg, dimethylhydrazine and divinyl fluorene), and combinations thereof.

可按組合使用非水液體溶劑。組合之實例包括以下組合:環狀碳酸酯-直鏈碳酸酯、環狀碳酸酯-內酯、環狀碳酸酯-內酯-直鏈碳酸酯、環狀碳酸酯-直鏈碳酸酯-內酯、環狀碳酸酯-直鏈碳酸酯-醚,及環狀碳酸酯-直鏈碳酸酯-直鏈酯。在一實施例中,可將環狀碳酸酯與直鏈酯組合。此外,可將環狀碳酸酯與內酯及直鏈酯組合。在一特定實施例中,環狀碳酸酯對直鏈酯之比率處於按體積計約1:9至10:0、較佳地2:8至7:3之間。 A non-aqueous liquid solvent can be used in combination. Examples of combinations include the following combinations: cyclic carbonate-linear carbonate, cyclic carbonate-lactone, cyclic carbonate-lactone-linear carbonate, cyclic carbonate-linear carbonate-lactone , cyclic carbonate-linear carbonate-ether, and cyclic carbonate-linear carbonate-linear ester. In one embodiment, a cyclic carbonate can be combined with a linear ester. Further, a cyclic carbonate can be combined with a lactone and a linear ester. In a particular embodiment, the ratio of cyclic carbonate to linear ester is between about 1:9 to 10:0, preferably 2:8 to 7:3 by volume.

用於液體電解質之鹽可包括下列各者中之一或多者:LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiCF3SO3、LiC(CF3SO2)3、LiPF4(CF3)2、LiPF3(C2F5)3、LiPF3(CF3)3、LiPF3(iso-C3F7)3、LiPF5(iso-C3F7)、具有環烷基之鋰鹽(例如,(CF2)2(SO2)2xLi及(CF2)3(SO2)2xLi),及其組合。常見組合包括LiPF6與LiBF4、LiPF6與LiN(CF3SO2)2、LiBF4與LiN(CF3SO2)2The salt for the liquid electrolyte may include one or more of the following: LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 LiCF 3 SO 3 , LiC(CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ), a lithium salt having a cycloalkyl group (for example, (CF 2 ) 2 (SO 2 ) 2x Li and (CF 2 ) 3 (SO 2 ) 2x Li), and combination. Common combinations include LiPF 6 and LiBF 4 , LiPF 6 and LiN(CF 3 SO 2 ) 2 , LiBF 4 and LiN(CF 3 SO 2 ) 2 .

在一實施例中,在液體非水溶劑(或溶劑之組合)中的鹽之總濃度為至少約0.3M;在一更特定實施例中,鹽濃度為至少約0.7M。濃度上限可受到溶解限度驅動,或可不大於約2.5M;在一更特定實施例中,不大於約1.5M。 In one embodiment, the total concentration of salts in the liquid non-aqueous solvent (or combination of solvents) is at least about 0.3 M; in a more specific embodiment, the salt concentration is at least about 0.7 M. The upper concentration limit can be driven by the dissolution limit, or can be no greater than about 2.5 M; in a more specific embodiment, no greater than about 1.5 M.

在無分離器之情況下通常使用固體電解質,此係因為其自身充當分離器。其電絕緣、傳導離子且電化學穩定。在固體電解質組態中,使用含鋰鹽(其可與對於以上描述之液體電解質電池相同),但與溶解於有機溶劑中不同,將其保持於固體聚合物複合物中。固體聚合物電解質之實例可為離子傳導聚合物,該等離子傳導聚合物自含有具有可用於供電解質鹽之鋰離子在傳導期間附著至且在其間移動的未共電子對之原子的單體製備,諸如,聚偏二氟乙烯(PVDF)或其衍生物之氯化物或共聚物、聚(氯三氟乙烯)、聚(乙烯-氯三氟-乙烯)或聚(氟化乙烯-丙烯)、聚氧化乙烯(PEO)及甲醛鍵聯之PEO、與三官能胺基甲酸酯交聯之PEO-PPO-PEO、聚(雙(甲氧基-乙氧基-乙氧化物))-磷氮烯(MEEP)、與雙官能胺基甲酸酯交聯之三醇型PEO、聚((寡聚)氧化乙烯)甲基丙烯酸酯-共-鹼金屬甲基丙烯酸酯、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PNMA)、聚甲基丙烯腈(PMAN)、聚矽氧烷及其共聚物及衍生物、基於丙烯酸酯之聚合物、其他類似無溶劑聚合物、經縮合或交聯以形成不同聚合物的前述聚合物之組合及前述聚合物中之任一者之物理混合物。其他傳導性較差之聚合物可與以上聚合物組合使用以改良薄層壓物之強度,該等傳導性較差之聚合物包括:聚酯(PET)、聚丙烯(PP)、聚萘二甲酸乙二酯(PEN)、聚偏二氟乙烯(PVDF)、聚碳酸酯(PC)、聚苯硫醚(PPS)及聚四氟乙烯(PTFE)。 A solid electrolyte is usually used without a separator because it acts as a separator itself. It is electrically insulated, conducts ions and is electrochemically stable. In the solid electrolyte configuration, a lithium-containing salt (which may be the same as the liquid electrolyte battery described above) is used, but unlike being dissolved in an organic solvent, it is held in a solid polymer composite. An example of a solid polymer electrolyte may be an ion-conducting polymer prepared from a monomer containing atoms having un-co-electron pairs attached to and moving between lithium ions available for the electrolyte salt during conduction, For example, a chloride or copolymer of polyvinylidene fluoride (PVDF) or a derivative thereof, poly(chlorotrifluoroethylene), poly(ethylene-chlorotrifluoro-ethylene) or poly(fluorinated ethylene-propylene), poly Ethylene oxide (PEO) and formaldehyde-bonded PEO, PEO-PPO-PEO crosslinked with trifunctional urethane, poly(bis(methoxy-ethoxy-ethoxy))-phosphazene (MEEP), triol type PEO crosslinked with a difunctional urethane, poly((oligo)ethylene oxide) methacrylate-co-alkali metal methacrylate, polyacrylonitrile (PAN), Polymethyl methacrylate (PNMA), polymethacrylonitrile (PMAN), polyoxyalkylene and copolymers and derivatives thereof, acrylate-based polymers, other similar solvent-free polymers, condensed or crosslinked To form a combination of the foregoing polymers of different polymers and a physical mixture of any of the foregoing polymers. Other less conductive polymers can be used in combination with the above polymers to improve the strength of thin laminates including: polyester (PET), polypropylene (PP), polyethylene naphthalate. Diester (PEN), polyvinylidene fluoride (PVDF), polycarbonate (PC), polyphenylene sulfide (PPS), and polytetrafluoroethylene (PTFE).

圖9說明根據一實施例的捲繞式圓柱形電池之橫截面圖。卷式電池包括一螺旋捲繞式正電極902、一負電極904及分離器906之兩個薄片。將卷式電池插入至電池罩916內,且使用蓋918及密封墊920來密 封電池。在一些情況下,蓋912或罩916包括安全器件。舉例而言,可使用安全通氣孔或衝開閥以在過多壓力累積於電池組中時爆開。又,正熱係數(PTC)器件可併入至蓋918之傳導路徑內以減少在電池遭受短路時可能導致之損壞。蓋918之外部表面可用作正端子,而電池罩916之外部表面可充當負端子。在一替代實施例中,顛倒電池組之極性,且蓋918之外部表面用作負端子,而電池罩916之外部表面充當正端子。短小突出部908及910可用以建立正及負電極與對應端子之間的連接。可插入適當絕緣密封墊914以防止內部短路之可能性。舉例而言,可將KaptonTM薄膜用於內部絕緣。在製造期間,可將蓋918壓扁至罩916以便密封電池。然而,在此操作前,添加電解質(未圖示)以填充卷式電池之多孔空間。 Figure 9 illustrates a cross-sectional view of a wound cylindrical battery in accordance with an embodiment. The roll battery includes a spiral wound positive electrode 902, a negative electrode 904, and two sheets of separator 906. The roll battery is inserted into the battery cover 916, and the cover 918 and the gasket 920 are used to seal the battery. In some cases, cover 912 or cover 916 includes a security device. For example, a safety vent or a flush valve can be used to pop open when excessive pressure builds up in the battery pack. Again, a positive thermal coefficient (PTC) device can be incorporated into the conduction path of the cover 918 to reduce damage that can be caused when the battery is subjected to a short circuit. The outer surface of the cover 918 can serve as a positive terminal, while the outer surface of the battery cover 916 can serve as a negative terminal. In an alternate embodiment, the polarity of the battery pack is reversed and the outer surface of the cover 918 acts as a negative terminal and the outer surface of the battery cover 916 acts as a positive terminal. The tabs 908 and 910 can be used to establish a connection between the positive and negative electrodes and the corresponding terminals. A suitable insulating gasket 914 can be inserted to prevent the possibility of an internal short circuit. For example, Kapton TM film can be used for internal insulation. During manufacture, the lid 918 can be flattened to the cover 916 to seal the battery. However, prior to this operation, an electrolyte (not shown) is added to fill the porous space of the roll battery.

對於鋰離子電池,通常需要硬質罩,而可將鋰聚合物電池裝填至可撓性、箔型(聚合物層壓物)罩內。可選擇各種材料用於罩。對於鋰離子電池組,Ti-6-4、其他Ti合金、Al、Al合金及300系列不鏽鋼可適合於正傳導性罩部分及端蓋,且商用純Ti、Ti合金、Cu、Al、Al合金、Ni、Pb及不鏽鋼可適合於負傳導性罩部分及端蓋。 For lithium ion batteries, a hard cover is typically required, and a lithium polymer battery can be loaded into a flexible, foil (polymer laminate) cover. A variety of materials can be selected for the cover. For lithium-ion battery packs, Ti-6-4, other Ti alloys, Al, Al alloys and 300 series stainless steels are suitable for positive-conducting hood parts and end caps, and commercially pure Ti, Ti alloys, Cu, Al, Al alloys Ni, Pb and stainless steel may be suitable for the negative conductive cover portion and the end cover.

可形成電池組(cell pack或battery pack)或為電池組之部分的鋰離子電池組包括本發明之一或多個鋰離子電化學電池,每一電池含有電化學活性材料。除了電池之外,鋰離子電池組亦可包括一功率管理電路以控制多個電池間的功率平衡、控制充電及放電參數、確保安全(熱及電逸散)及其他目的。個別電池可相互串聯及/或並聯連接以形成具有適當電壓、功率及其他特性之電池。 A lithium ion battery pack that can form a battery pack or a battery pack or is part of a battery pack includes one or more lithium ion electrochemical cells of the present invention, each battery containing an electrochemically active material. In addition to batteries, lithium-ion battery packs can also include a power management circuit to control power balance between multiple batteries, control charging and discharging parameters, ensure safety (thermal and electrical dissipation), and other purposes. Individual cells can be connected in series and/or in parallel to form a battery having suitable voltage, power, and other characteristics.

除了以上描述之電池組應用之外,金屬矽化物可用於燃料電池(例如,用於負電極、正電極及電解質)、異質接面太陽能電池活性材料、各種形式之集電器及/或吸收塗層中。此等應用中之一些可自由金屬矽化物結構提供之高表面積、矽化物材料之高傳導率及快速價廉 沈積技術受益。 In addition to the battery pack applications described above, metal halides can be used in fuel cells (eg, for negative electrodes, positive electrodes, and electrolytes), heterojunction solar cell active materials, various types of current collectors, and/or absorbing coatings. in. Some of these applications offer high surface area from free metal telluride structures, high conductivity of germanide materials, and fast and inexpensive Deposition technology benefits.

對使用以上描述之各種技術製造的電池執行一系列測試。圖10說明對應於一個此電池之循環資料。特定言之,圖10說明在160個循環上的庫侖效率1002及去鋰化電容1004。該電池在此許多循環上維持超過1000mAh/g之穩定電容。在每一循環中,庫侖效率為至少99.1%。 A series of tests were performed on batteries fabricated using the various techniques described above. Figure 10 illustrates the cycle data corresponding to one of the batteries. In particular, Figure 10 illustrates coulombic efficiency 1002 and delithiation capacitor 1004 over 160 cycles. The cell maintains a stable capacitance of over 1000 mAh/g over many cycles. The coulombic efficiency is at least 99.1% in each cycle.

雖然已為了理解之清晰性之目的而詳細地描述了前述本發明,但應顯而易見,可在隨附申請專利範圍之範疇內實踐某些改變及修改。應注意,存在實施本發明之程序、系統及裝置之許多替代方式。因此,應將本發明之實施例視為說明性而非限制性的,且本發明不限於本文中給出之細節。 Although the foregoing invention has been described in detail, it is understood that It should be noted that there are many alternative ways of implementing the procedures, systems, and devices of the present invention. Therefore, the present embodiments are to be considered as illustrative and not restrictive.

Claims (16)

一種電極,其包含:一基板;奈米結構(nanostructures)之一第一層,其根植於(rooted to)該基板;一電化學活性內層(electrochemically active inner layer),其塗佈該第一層,該電化學活性內層具有一第一孔隙率(porosity);及一電化學活性外層(electrochemically active outer layer),其塗佈該電化學活性內層,該電化學活性外層具有不同於該第一孔隙率之一第二孔隙率。 An electrode comprising: a substrate; a first layer of nanostructures rooted to the substrate; an electrochemically active inner layer coated with the first a layer, the electrochemically active inner layer has a first porosity; and an electrochemically active outer layer coated with the electrochemically active inner layer, the electrochemically active outer layer having a different One of the first porosity is the second porosity. 如請求項1之電極,其中奈米結構之該第一層包括一或多種金屬矽化物(metal silicides)。 The electrode of claim 1, wherein the first layer of the nanostructure comprises one or more metal silicides. 如請求項2之電極,其中該一或多種金屬矽化物係選自由以下各物所構成之群組:矽化鎳(nickel silicides)、矽化鈷(cobalt silicides)、矽化銅(copper silicides)、矽化銀(silver silicides)、矽化鉻(silver silicides)、矽化鈦(titanium silicides)、矽化鋁(aluminum silicides)、矽化鋅(zinc silicides)及矽化鐵(iron silicides)。 The electrode of claim 2, wherein the one or more metal halides are selected from the group consisting of nickel silicides, cobalt silicides, copper silicides, silver telluride (silver silicides), silver silicides, titanium silicides, aluminum silicides, zinc silicides, and iron silicides. 如請求項3之電極,其中該矽化鎳係選自由Ni2Si、NiSi及NiSi2及其組合所構成之群組。 The electrode of claim 3, wherein the nickel halide is selected from the group consisting of Ni 2 Si, NiSi, and NiSi 2 and combinations thereof. 如請求項1至4中任一項之電極,其中該電化學活性材料包含選自由以下各物質所構成之群組的一或多種材料:矽、氧化矽(silicon oxides)、氮氧化矽(silicon oxy-nitrides)、含錫材料、含鍺材料及含碳材料。 The electrode of any one of claims 1 to 4, wherein the electrochemically active material comprises one or more materials selected from the group consisting of: cerium, silicon oxides, silicon oxynitride (silicon) Oxy-nitrides), tin-containing materials, niobium-containing materials, and carbonaceous materials. 如請求項1至4中任一項之電極,其中該電化學活性內層包括非晶矽,且該電化學活性外層包括非晶矽。 The electrode of any one of claims 1 to 4, wherein the electrochemically active inner layer comprises amorphous germanium, and the electrochemically active outer layer comprises amorphous germanium. 如請求項6之電極,其中該電化學活性內層與該電化學活性外層具有不同氫濃度(hydrogen concentrations)。 The electrode of claim 6, wherein the electrochemically active inner layer and the electrochemically active outer layer have different hydrogen concentrations. 如請求項1之電極,其中該電化學活性內層與該電化學活性外層具有不同組成物(compositions)。 The electrode of claim 1, wherein the electrochemically active inner layer has different compositions from the electrochemically active outer layer. 如請求項1之電極,其中該電化學活性內層與該電化學活性外層具有不同形態(morphologies)。 The electrode of claim 1, wherein the electrochemically active inner layer has different morphologies from the electrochemically active outer layer. 如請求項1之電極,其中該電化學活性內層相較於該電化學活性外層而言具有一較低孔隙率。 The electrode of claim 1, wherein the electrochemically active inner layer has a lower porosity than the electrochemically active outer layer. 一種電極總成,其包含:一傳導基板,其用於在一電極活性材料與電池端子之間傳導電流;及一電極材料,其包含:附著至該傳導基板的第一奈米結構之一層,該等第一奈米結構包含一或多種金屬矽化物;覆蓋該等第一奈米結構之至少一部分之該電極活性材料之一塗層,該塗層包括具有一第一孔隙率之一內層及具有一第二孔隙率之一外層,該二孔隙率不同於該第一孔隙率,其中該等第一奈米結構提供該電極活性材料與傳導基板之間的電子連通(electronic communication)。 An electrode assembly comprising: a conductive substrate for conducting current between an electrode active material and a battery terminal; and an electrode material comprising: a layer of a first nanostructure attached to the conductive substrate, The first nanostructures comprise one or more metal halides; a coating of one of the electrode active materials covering at least a portion of the first nanostructures, the coating comprising an inner layer having a first porosity And an outer layer having a second porosity different from the first porosity, wherein the first nanostructures provide electronic communication between the electrode active material and the conductive substrate. 一種電化學電池,其包含:如請求項1之一第一電極;一第二電極;及一電解質,其提供該第一電極與該第二電極之間的離子連 通。 An electrochemical cell comprising: a first electrode as claimed in claim 1; a second electrode; and an electrolyte providing an ion connection between the first electrode and the second electrode through. 一種製造用於一電池之一陽極(anode)之方法,該方法包括以下步驟:提供多個奈米結構;使用一電漿增強型化學氣相沈積(PECVD)方法在該等奈米結構上方沉積一第一矽層;及使用一熱化學氣相沈積(thermal CVD)方法在該第一矽層上方沉積一第二矽層。 A method of fabricating an anode for a battery, the method comprising the steps of: providing a plurality of nanostructures; depositing over the nanostructures using a plasma enhanced chemical vapor deposition (PECVD) method a first layer of germanium; and a second layer of germanium deposited over the first layer of germanium using a thermal CVD method. 如請求項13之方法,其中該第一矽層具有一第一孔隙率,且該第二矽層具有不同於該第一孔隙率之一第二孔隙率。 The method of claim 13, wherein the first ruthenium layer has a first porosity and the second ruthenium layer has a second porosity that is different from the first porosity. 如請求項13之方法,其中該等奈米結構包括一或多種金屬矽化物。 The method of claim 13, wherein the nanostructures comprise one or more metal halides. 如請求項15之方法,其中該一或多種金屬矽化物係選自由以下各物所構成之群組:矽化鎳、矽化鈷、矽化銅、矽化銀、矽化鉻、矽化鈦、矽化鋁、矽化鋅及矽化鐵。 The method of claim 15, wherein the one or more metal halides are selected from the group consisting of: nickel telluride, cobalt telluride, copper telluride, silver telluride, chromium telluride, titanium telluride, aluminum telluride, zinc telluride And bismuth iron.
TW105142724A 2010-10-22 2011-10-21 Battery electrode structures for high mass loadings of high capacity active materials TWI642225B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40604710P 2010-10-22 2010-10-22
US61/406,047 2010-10-22

Publications (2)

Publication Number Publication Date
TW201725775A TW201725775A (en) 2017-07-16
TWI642225B true TWI642225B (en) 2018-11-21

Family

ID=45975896

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105142724A TWI642225B (en) 2010-10-22 2011-10-21 Battery electrode structures for high mass loadings of high capacity active materials
TW100138369A TWI575800B (en) 2010-10-22 2011-10-21 Battery electrode structures for high mass loadings of high capacity active materials

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100138369A TWI575800B (en) 2010-10-22 2011-10-21 Battery electrode structures for high mass loadings of high capacity active materials

Country Status (2)

Country Link
TW (2) TWI642225B (en)
WO (1) WO2012054767A2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US10205166B2 (en) 2008-02-25 2019-02-12 Cf Traverse Llc Energy storage devices including stabilized silicon
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US8450012B2 (en) 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
EP2499686A2 (en) 2009-11-11 2012-09-19 Amprius, Inc. Intermediate layers for electrode fabrication
US20110143019A1 (en) 2009-12-14 2011-06-16 Amprius, Inc. Apparatus for Deposition on Two Sides of the Web
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
JP5918150B2 (en) 2010-03-03 2016-05-18 アンプリウス、インコーポレイテッド Template electrode structure for depositing active materials
KR101838627B1 (en) 2010-05-28 2018-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Energy storage device and manufacturing method thereof
CN102906907B (en) 2010-06-02 2015-09-02 株式会社半导体能源研究所 Electrical storage device and manufacture method thereof
TWI582041B (en) 2011-06-03 2017-05-11 半導體能源研究所股份有限公司 Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
JP6035054B2 (en) 2011-06-24 2016-11-30 株式会社半導体エネルギー研究所 Method for manufacturing electrode of power storage device
WO2013006583A2 (en) 2011-07-01 2013-01-10 Amprius, Inc. Template electrode structures with enhanced adhesion characteristics
KR20130006301A (en) 2011-07-08 2013-01-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming silicon film and method for manufacturing power storage device
JP6025284B2 (en) 2011-08-19 2016-11-16 株式会社半導体エネルギー研究所 Electrode for power storage device and power storage device
WO2013027561A1 (en) 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
JP6045260B2 (en) 2011-09-16 2016-12-14 株式会社半導体エネルギー研究所 Power storage device
JP6218349B2 (en) 2011-09-30 2017-10-25 株式会社半導体エネルギー研究所 Power storage device
KR20140116061A (en) * 2011-10-31 2014-10-01 더 트러스티스 오브 보스턴 칼리지 Hetero-nanostructure materials for use in energy-storage devices and methods of fabricating same
JP6059941B2 (en) 2011-12-07 2017-01-11 株式会社半導体エネルギー研究所 Negative electrode for lithium secondary battery and lithium secondary battery
KR102428025B1 (en) 2012-08-16 2022-08-03 에노빅스 코오퍼레이션 Electrode structures for three-dimensional batteries
TWI623130B (en) * 2012-11-21 2018-05-01 國立臺灣大學 Lithium-ion battery,lithium-ion battery electrode structure with dopants and the method for manufacturing the same
EP2973785B1 (en) 2013-03-15 2019-10-02 Enovix Corporation Separators for three-dimensional batteries
JP7182758B2 (en) 2014-05-12 2022-12-05 アンプリウス テクノロジーズ インコーポレイテッド Anode for lithium battery and method of making same
TWI793480B (en) 2015-05-14 2023-02-21 美商易諾維公司 Longitudinal constraints for energy storage devices
US10326142B2 (en) * 2015-09-15 2019-06-18 GM Global Technology Operations LLC Positive electrode including discrete aluminum oxide nanomaterials and method for forming aluminum oxide nanomaterials
KR20230110655A (en) 2016-05-13 2023-07-24 에노빅스 코오퍼레이션 Dimensional constraints for three-dimensional batteries
KR102525366B1 (en) 2016-11-16 2023-04-26 에노빅스 코오퍼레이션 Three-dimensional batteries with compressible cathodes
US10256507B1 (en) 2017-11-15 2019-04-09 Enovix Corporation Constrained electrode assembly
US11264680B2 (en) 2017-11-15 2022-03-01 Enovix Corporation Electrode assembly and secondary battery
US11211639B2 (en) 2018-08-06 2021-12-28 Enovix Corporation Electrode assembly manufacture and device
TR201917239A1 (en) * 2019-11-06 2021-05-21 Izmir Yueksek Teknoloji Enstituesue A BATTERY WITH DENDRITIC CONNECTION (TAB) POINT
TWI740400B (en) * 2020-03-02 2021-09-21 力哲科技股份有限公司 Battery material and preparation method thereof
KR20230121994A (en) 2020-09-18 2023-08-22 에노빅스 코오퍼레이션 Method for contouring a collection of electrode structures on a web using a laser beam
CN116783744A (en) 2020-12-09 2023-09-19 艾诺维克斯公司 Method and apparatus for manufacturing electrode assembly of secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305781A (en) * 2007-05-09 2008-12-18 Mitsubishi Chemicals Corp Electrode, its manufacturing method, and nonaqueous electrolte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216603A1 (en) * 2005-03-26 2006-09-28 Enable Ipc Lithium-ion rechargeable battery based on nanostructures
US7816031B2 (en) * 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
CN104393257B (en) * 2008-02-25 2017-09-22 罗纳德·安东尼·罗杰斯基 High-capacity electrode
US8968820B2 (en) * 2008-04-25 2015-03-03 Nanotek Instruments, Inc. Process for producing hybrid nano-filament electrodes for lithium batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305781A (en) * 2007-05-09 2008-12-18 Mitsubishi Chemicals Corp Electrode, its manufacturing method, and nonaqueous electrolte secondary battery

Also Published As

Publication number Publication date
TWI575800B (en) 2017-03-21
TW201725775A (en) 2017-07-16
WO2012054767A2 (en) 2012-04-26
WO2012054767A3 (en) 2012-08-02
TW201225385A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
TWI642225B (en) Battery electrode structures for high mass loadings of high capacity active materials
US20180090755A1 (en) High capacity battery electrode structures
US11024841B2 (en) Template electrode structures for depositing active materials
US10461359B2 (en) Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US10096817B2 (en) Template electrode structures with enhanced adhesion characteristics
US9172088B2 (en) Multidimensional electrochemically active structures for battery electrodes
KR101665154B1 (en) Core-shell high capacity nanowires for battery electrodes
WO2011149958A2 (en) Multidimensional electrochemically active structures for battery electrodes
KR20130012021A (en) Interconnecting electrochemically active material nanostructures
KR101456201B1 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery including the same
US20220149379A1 (en) High capacity battery electrode structures
US20220020979A1 (en) Template electrode structures for depositing active materials
TWI536640B (en) Template electrode structures for depositing active materials