TWI636159B - Porous materials and? systems and methods of fabricating thereof - Google Patents

Porous materials and? systems and methods of fabricating thereof Download PDF

Info

Publication number
TWI636159B
TWI636159B TW105101433A TW105101433A TWI636159B TW I636159 B TWI636159 B TW I636159B TW 105101433 A TW105101433 A TW 105101433A TW 105101433 A TW105101433 A TW 105101433A TW I636159 B TWI636159 B TW I636159B
Authority
TW
Taiwan
Prior art keywords
porous material
particle template
template
permeate
electrophoresis
Prior art date
Application number
TW105101433A
Other languages
Chinese (zh)
Other versions
TW201726981A (en
Inventor
林科闖
黃苡叡
Original Assignee
林科闖
黃苡叡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林科闖, 黃苡叡 filed Critical 林科闖
Priority to TW105101433A priority Critical patent/TWI636159B/en
Publication of TW201726981A publication Critical patent/TW201726981A/en
Application granted granted Critical
Publication of TWI636159B publication Critical patent/TWI636159B/en

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一種包含一大於10/毫米之比表面積之多孔材料,及用於製造該多孔材料之方法及系統。該多孔材料包括數個孔洞,其具有一實質上均一且變化量小於約20%之尺寸,其中,該尺寸大於約100奈米且小於約5毫米。一包含該多孔材料之系統可被設計成一淡化系統、一超微氣泡產生系統、一電容器系統,或一電池系統中之一者。A porous material comprising a specific surface area greater than 10/mm, and a method and system for making the porous material. The porous material includes a plurality of pores having a size that is substantially uniform and varies by less than about 20%, wherein the size is greater than about 100 nanometers and less than about 5 millimeters. A system comprising the porous material can be designed as one of a desalination system, an ultra-micro bubble generating system, a capacitor system, or a battery system.

Description

多孔材料及系統及其製造方法Porous material and system and method of manufacturing same

本發明是有關於一種材料及系統及其製造方法,特別是指一種多孔材料及系統及其製造方法。The present invention relates to a material and system and a method of manufacturing the same, and more particularly to a porous material and system and method of making the same.

諸如金屬泡沫之多孔材料可具有高表面積對體積比,例如可以表示為,其中,為比表面積,d 為平均孔洞直徑,單位為毫米,θ為孔隙率。例如,對於d =0.01毫米,90%之孔隙率而言,比表面積為2425/毫米。多孔材料可展現出機械、聲學、熱學、光學、電氣及化學性質而適用於各種應用。A porous material such as a metal foam may have a high surface area to volume ratio, for example, ,among them, For specific surface area, d is the average pore diameter in millimeters and θ is the porosity. For example, for d = 0.01 mm, 90% porosity, the specific surface area is 2425 / mm. Porous materials can exhibit mechanical, acoustic, thermal, optical, electrical, and chemical properties for a variety of applications.

本發明是有關於用於製造具有高表面積對體積比之大尺寸多孔材料之製造系統及方法。The present invention is directed to a manufacturing system and method for making large-sized porous materials having a high surface area to volume ratio.

習知金屬泡沫可具有0.5~8毫米之孔洞尺寸。製造具有14~3100/毫米之比表面積之多孔塊材是有可能的。然而,該等孔洞尺寸具有一大的變化量,例如大於100%。Conventional metal foams can have a hole size of 0.5 to 8 mm. It is possible to produce a porous block having a specific surface area of 14 to 3100 / mm. However, these hole sizes have a large amount of variation, for example greater than 100%.

此處揭示的一些實施例可製造高表面積對體積比(surface-area-to-volume ratio)多孔薄膜,其具有一大於100平方公分(諸如20公分×20公分)之表面積。該等孔洞之尺寸可以是例如約100奈米~5毫米。Some embodiments disclosed herein can produce a surface-area-to-volume ratio porous film having a surface area greater than 100 square centimeters (such as 20 centimeters by 20 centimeters). The dimensions of the holes may be, for example, about 100 nm to 5 mm.

此處揭示一能製造大尺寸高相對表面積多孔材料之製造系統。該系統可包括:一膠體顆粒模板形成部分,被設計來製造一膠體顆粒模板;一滲透部分,被設計來將一滲透物質滲入該膠體顆粒模板;及一模板移除部分,被設計來從該滲透物質移除該膠體顆粒模板以獲得該巨型多孔材料(macroporous material)。A manufacturing system capable of producing large-sized, high-surface-area porous materials is disclosed herein. The system can include: a colloidal particle template forming portion designed to produce a colloidal particle template; a permeate portion designed to infiltrate a permeate material into the colloidal particle template; and a template removal portion designed to The osmotic material removes the colloidal particle template to obtain the macroporous material.

在一些實施例中,該顆粒模板形成部分包括一組裝裝置,其被設計來使帶電顆粒自組裝成一陣列。該組裝裝置可包括一電泳槽、一直流電源供應器、一具有膠體懸浮液之泵系統、一參考電極,及一工作電極,其中,一包括懸浮的帶電模板顆粒之電泳溶液被設置於該電泳槽中;該參考電極及該工作電極可被垂直地或水平地配置在該電泳槽中;以及該工作電極提供用於電泳地製造該顆粒模板之一表面。在一些實施例中,該等模板顆粒是膠體顆粒,且該產生的顆粒模板是一膠體顆粒模板。In some embodiments, the particle template forming portion includes an assembly device designed to self-assemble the charged particles into an array. The assembly device may include an electrophoresis tank, a DC power supply, a pump system having a colloidal suspension, a reference electrode, and a working electrode, wherein an electrophoresis solution including suspended charged template particles is disposed on the electrophoresis The reference electrode and the working electrode may be vertically or horizontally disposed in the electrophoresis tank; and the working electrode provides a surface for electrophoretically manufacturing the particle template. In some embodiments, the template particles are colloidal particles and the resulting particle template is a colloidal particle template.

在一些實施例中,在該膠體顆粒模板形成部分之後還提供一烘烤部分,以乾燥由該膠體顆粒模板形成部分所製造的該膠體顆粒模板,藉以提高該膠體顆粒模板之機械強度。In some embodiments, a baked portion is further provided after the colloidal particle template forming portion to dry the colloidal particle template produced by the colloidal particle template forming portion, thereby increasing the mechanical strength of the colloidal particle template.

在一些實施例中,一不對稱電場可被用來製造一大尺寸多孔材料。在一些實施例中,該組裝裝置之參考電極及工作電極之配置方式可使得一不對稱電場形成於該參考電極及該工作電極之間。此外,不對稱電場亦可藉由將該參考電極之尺寸設定為大於或小於該工作電極之尺寸而達成。In some embodiments, an asymmetric electric field can be used to make a large size porous material. In some embodiments, the reference electrode and the working electrode of the assembly device are configured such that an asymmetric electric field is formed between the reference electrode and the working electrode. In addition, the asymmetric electric field can also be achieved by setting the size of the reference electrode to be larger or smaller than the size of the working electrode.

在一些實施例中,該組裝裝置之該參考電極可為矩形或圓柱形。該組裝裝置之該工作電極可為由一金屬板、一矽晶圓,或一銦錫氧化物(Indium Tin Oxide,簡稱ITO)玻璃板所製成之一堅固平板導體(rigid planar conductor)。在一些實施例中,該工作電極可為一可撓性且可移動之導電捲帶,或導電碳膜或碳管,例如用於捲帶式(roll by roll)製程。該導電捲帶可以例如為一ITO捲帶、具有一ITO膜之可撓性的玻璃等。一防漏入口可被配製在該電泳槽之一側壁上,使得該可撓性且可移動之導電捲帶可進入該電泳槽,以提供藉由一組裝過程來製造該膠體顆粒模板之一表面,因而該等表面帶電顆粒可在該表面沉積以形成一陣列。使用該可撓性且可移動之導電捲帶作為該工作電極可使此一系統達到較高程度的自動化,且該等多孔材料可藉由捲帶式製程來製造。In some embodiments, the reference electrode of the assembly device can be rectangular or cylindrical. The working electrode of the assembly device may be a rigid planar conductor made of a metal plate, a germanium wafer, or an indium tin oxide (ITO) glass plate. In some embodiments, the working electrode can be a flexible and movable conductive tape, or a conductive carbon film or carbon tube, such as for a roll by roll process. The conductive tape may be, for example, an ITO tape, a flexible glass having an ITO film, or the like. a leak-proof inlet can be formed on one side wall of the electrophoresis tank such that the flexible and movable conductive tape can enter the electrophoresis tank to provide a surface of the colloidal particle template by an assembly process Thus, the surface charged particles can be deposited on the surface to form an array. The use of the flexible and movable conductive tape as the working electrode allows for a higher degree of automation of the system, and the porous materials can be manufactured by a tape and loop process.

在一些其他實施例中,該工作電極是不需要的。例如,採用不需該導電捲帶或基板的溶膠凝膠法(Sol-Gel)、化學氣相沉積法(CVD)或是物理氣相沉積法(PVD),而該多孔材料便可以切割(slice by slice)方式來製造。In some other embodiments, the working electrode is not required. For example, a sol-gel method, a chemical vapor deposition method (CVD), or a physical vapor deposition method (PVD), which does not require the conductive tape or substrate, can be used to cut (slice) By slice) to manufacture.

在一些實施例中,該滲透部分可以是一物理氣相沉積裝置、一化學氣相沉積(CVD)裝置、一溶膠凝膠裝置,或一化學電鍍裝置。此外,該滲透部分可以是一電泳沉積(EPD)裝置,其可包括一EPD槽、一直流電源供應器、一參考電極,及一工作電極,其中,一EPD溶液可被設置在該EPD槽中;以及該工作電極可被設計來運送該膠體顆粒模板,且還提供作為用於將該滲透物質電泳沉積在該EPD槽中的該膠體顆粒模板上之一表面。該直流電源之電壓範圍為約0.01伏特-500伏特,電場範圍為約0.1-1000伏特/公分。該電壓或電場強度可基於該等膠體顆粒之尺寸而被選擇。In some embodiments, the permeable portion can be a physical vapor deposition device, a chemical vapor deposition (CVD) device, a sol gel device, or an electroless plating device. In addition, the permeable portion may be an electrophoretic deposition (EPD) device, which may include an EPD tank, a DC power supply, a reference electrode, and a working electrode, wherein an EPD solution may be disposed in the EPD tank. And the working electrode can be designed to carry the colloidal particle template and also provide as a surface on the colloidal particle template for electrophoretic deposition of the permeate in the EPD cell. The DC power source has a voltage in the range of about 0.01 volts to 500 volts and an electric field in the range of about 0.1 to 1000 volts per centimeter. The voltage or electric field strength can be selected based on the size of the colloidal particles.

在一些實施例中,該EPD裝置之該工作電極可以是一堅固平板導體或一可撓性且可移動之導電帶。在後者之情況下,一防漏入口及一防漏出口可被配置在該EPD槽之側壁上,使得該可撓性且可移動之導電捲帶可無洩漏地(leak-free)分別進入及離開該EPD槽。In some embodiments, the working electrode of the EPD device can be a rigid flat conductor or a flexible and movable conductive strip. In the latter case, a leak-proof inlet and a leak-proof outlet can be disposed on the side wall of the EPD groove, so that the flexible and movable conductive tape can be separately leak-free and Leave the EPD slot.

在一些實施例中,該模板移除部分可以是一烘烤裝置,其藉由加熱使該膠體顆粒模板從該滲透物質移除。在一些其他實施例中,該模板移除部分可以是一化學蝕刻裝置,其可包括一蝕刻槽,其內設置有一蝕刻溶液。該膠體顆粒模板可藉由該蝕刻溶液而被移除,而只保留該滲透物質。此外,當該系統中使用一可撓性且可移動之導電捲帶時,該化學蝕刻裝置可具有配置在該蝕刻槽之側壁上的一防漏入口及一防漏出口,其使運送該膠體顆粒模板及該滲透物質之該可撓性且可移動之導電捲帶可分別無洩漏地進入及離開該蝕刻槽。In some embodiments, the template removal portion can be a toasting device that removes the colloidal particle template from the permeate by heating. In some other embodiments, the template removal portion can be a chemical etching device that can include an etch bath having an etching solution disposed therein. The colloidal particle template can be removed by the etching solution while retaining only the permeating substance. In addition, when a flexible and movable conductive tape is used in the system, the chemical etching device may have a leak-proof inlet disposed on the sidewall of the etching groove and a leak-proof outlet for transporting the colloid The particle template and the flexible and movable conductive web of the permeable material can enter and exit the etch bath without leakage, respectively.

在一些實施例中,該系統還可包括一被設計來將該滲透物質從該可撓性且可移動之導電捲帶分離之裝置,以獲得該多孔材料並回收該可撓性且可移動之導電捲帶。例如,一分割刀可被設置在該導電捲帶及該多孔材料之間,且可分離該捲帶及該多孔材料,使得該多孔材料在一第一捲軸處形成一捲膜,同時可利用一第二捲軸來回收該導電捲帶。In some embodiments, the system can further include a device designed to separate the osmotic material from the flexible and movable conductive tape to obtain the porous material and recover the flexible and movable Conductive tape. For example, a splitting knife may be disposed between the conductive web and the porous material, and the web and the porous material may be separated such that the porous material forms a roll film at a first reel while utilizing a The second reel is used to recover the conductive tape.

此處也揭示一種使用前述系統來製造一多孔材料之方法。該方法可包括:步驟(1),使用該膠體顆粒模板形成部分,從預備實質上均一的(例如,單一尺寸)膠體顆粒(例如就標準差而言,尺寸變化量小於±20%,諸如±10%)製造一膠體顆粒模板;步驟(2),使用該滲透部分,將一滲透物質滲入該膠體顆粒模板;及步驟3),使用該模板移除部分移除該模板,且最終獲得該完整的滲透物質以作為該多孔材料。在一些情況下,該模板被稱為一晶體模板,因為該等模板顆粒(例如膠體顆粒)是被密集堆積成一如晶體之結構(crystal-like structure)。A method of making a porous material using the foregoing system is also disclosed herein. The method can include the step (1) of using the colloidal particle template forming portion to prepare substantially uniform (e.g., single size) colloidal particles (e.g., in terms of standard deviation, the dimensional change is less than ± 20%, such as ± 10%) manufacturing a colloidal particle template; step (2), using the permeating portion, infiltrating a permeate material into the colloidal particle template; and step 3), removing the template using the template removal portion, and finally obtaining the complete The permeating substance acts as the porous material. In some cases, the template is referred to as a crystal template because the template particles (e.g., colloidal particles) are densely packed into a crystal-like structure.

在一些實施例中,該方法還可包括,在該步驟(1)之後且在該步驟(2)之前,使用一烘烤部分來立即地乾燥該膠體顆粒模板,以提高該膠體顆粒模板之機械強度。例如,烘烤溫度可為90-500℃,且可基於所使用的材料而調整。相對濕度可大於75,且烘烤時間可為約0.5-2小時。烘烤溫度的範圍是基於所使用的材料來選擇。例如,對於聚苯乙烯而言,退火溫度可為約90-100℃,且烘烤時間可為約30分鐘。對於二氧化矽而言,退火溫度可為約450-500℃,且烘烤時間可為約1.5小時。In some embodiments, the method may further include, after the step (1) and before the step (2), using a baking portion to immediately dry the colloidal particle template to increase the mechanical structure of the colloidal particle template. strength. For example, the baking temperature can be from 90 to 500 ° C and can be adjusted based on the materials used. The relative humidity can be greater than 75 and the baking time can be from about 0.5 to 2 hours. The range of baking temperatures is chosen based on the materials used. For example, for polystyrene, the annealing temperature can be from about 90 to 100 ° C and the baking time can be about 30 minutes. For cerium oxide, the annealing temperature can be about 450-500 ° C and the baking time can be about 1.5 hours.

在一些實施例中,該方法之步驟(1)可涉及使用如上所述的該組裝裝置作為該膠體顆粒模板形成部分,其中,一包括懸浮顆粒之電泳溶液可被置於該電泳槽中;該參考電極及該工作電極可被垂直地配置於該電泳槽中;該參考電極為圓柱形;該工作電極提供用於電泳地製造該膠體顆粒模板之一表面;以及在參考電極及該工作電極之間的一電場被設定在約0.05 V/cm–1000 V/cm之範圍內。In some embodiments, step (1) of the method may involve using the assembly device as described above as the colloidal particle template forming portion, wherein an electrophoresis solution including suspended particles may be placed in the electrophoresis tank; a reference electrode and the working electrode may be vertically disposed in the electrophoresis tank; the reference electrode is cylindrical; the working electrode provides a surface for electrophoretically manufacturing the colloidal particle template; and the reference electrode and the working electrode An electric field between them is set in the range of about 0.05 V/cm - 1000 V/cm.

在一些實施例中,該方法的步驟(1)中之該組裝裝置可使用一包括懸浮的膠體顆粒(諸如聚苯乙烯、二氧化矽及聚甲基丙烯酸甲酯(PMMA))之乙醇溶液來電泳地製造對應的膠體顆粒模板。顆粒尺寸可在約100奈米-5毫米之範圍內。該乙醇溶液的pH值可以在約4-9之範圍內,並可以藉由添加氨水或是硝酸來調整。在一些其他實施例中,可以使用有機溶劑、水,或是水混和溶劑來替代乙醇。In some embodiments, the assembly device in step (1) of the method may use an ethanol solution comprising suspended colloidal particles such as polystyrene, ceria, and polymethyl methacrylate (PMMA). The corresponding colloidal particle template is electrophoretically produced. The particle size can range from about 100 nm to 5 mm. The pH of the ethanol solution can be in the range of about 4-9 and can be adjusted by the addition of aqueous ammonia or nitric acid. In some other embodiments, an organic solvent, water, or a water mixed solvent may be used in place of the ethanol.

在一些實施例中,該組裝裝置之該工作電極可以是選自於一金屬板、一矽晶圓,或一銦錫氧化物(ITO)玻璃板之一堅固平板導體。In some embodiments, the working electrode of the assembly device can be a solid plate conductor selected from a metal plate, a germanium wafer, or an indium tin oxide (ITO) glass plate.

在一些實施例中,該組裝裝置之該工作電極可以是一可撓性及可移動的導電捲帶,其可以是靜止的,或者以100奈米/秒及10公分/秒之間的速度移動。一防漏入口可被設置於該電泳槽之一側壁,使得該可撓性及可移動的導電捲帶可進入該電泳槽。In some embodiments, the working electrode of the assembly device can be a flexible and movable conductive tape that can be stationary or moved at a speed between 100 nm/sec and 10 cm/sec. . A leak-proof inlet can be disposed on one side wall of the electrophoresis tank such that the flexible and movable conductive tape can enter the electrophoresis tank.

在一些實施例中,一物理氣相沉積裝置、一化學氣相沉積裝置、一溶膠凝膠裝置,或是一化學電鍍裝置可被用來作為步驟(2)中之該滲透部分,以將一滲透物質滲入至步驟(1)中所製造的該膠體顆粒模板。In some embodiments, a physical vapor deposition apparatus, a chemical vapor deposition apparatus, a sol-gel apparatus, or an electroless plating apparatus may be used as the permeation part in the step (2) to The osmotic material penetrates into the colloidal particle template produced in the step (1).

在一些實施例中,步驟(2)中的滲透可利用上述電泳沉積(EPD)裝置來達成,其中:包括一滲透物質之該EPD溶液可被設置於該EPD槽中;運送該膠體顆粒模板之該工作電極可被設計來提供用於將該滲透物質電泳沉積在該EPD槽內的該膠體顆粒模板上之一表面。In some embodiments, the permeation in step (2) can be achieved using an electrophoretic deposition (EPD) apparatus as described above, wherein: the EPD solution comprising a permeable substance can be disposed in the EPD tank; transporting the colloidal particle template The working electrode can be designed to provide a surface for electrophoretical deposition of the osmotic material onto the colloidal particle template within the EPD cell.

在一些實施例中,使用於步驟(2)中的該EPD裝置之該工作電極可以是一堅固平板導體,或一可撓性且可移動之導電捲帶。在後者之情況下,一防漏入口及一防漏出口可被配置在該EPD槽之側壁,使得該可撓性且可移動之導電捲帶可無洩漏地分別進入及離開該EPD槽。In some embodiments, the working electrode of the EPD device used in step (2) can be a rigid flat conductor, or a flexible and movable conductive tape. In the latter case, a leak proof inlet and a leak proof outlet can be disposed on the side wall of the EPD tank such that the flexible and movable conductive web can enter and exit the EPD slot without leakage, respectively.

在一些實施例中,藉由步驟(2)中之EPD裝置而滲入該膠體顆粒模板之該滲透物質可以是能進行氧化還原反應的金屬離子,例如,Ni2+ 、諸如ZnO之陶瓷,或聚合物。可使用其他材料,諸如石墨、CeO2 、TiO2 、Cu2 O、RuO2 。諸如Ru、Cu、Ti、Al、Au、Ag、Pt等金屬可以被用來進行氧化還原反應。乙醇溶液可被用來作為該EPD溶液。反應時間可基於電場強度來決定,例如約10秒-1小時。pH值可基於配方來決定,例如約4-9。該溶液可使用異丙醇(isopropyl alcohol,簡稱IPA)、丙酮(ACE)等,或類似的有機溶劑,只要不會對該等膠體顆粒造成腐蝕即可。也可以使用水(H2 O),但其pH值可能需要加以調整,且電場不應太強(例如小於2.5伏特/公分)。In some embodiments, the permeate that permeates the colloidal particle template by the EPD device in step (2) may be a metal ion capable of undergoing a redox reaction, for example, Ni 2+ , a ceramic such as ZnO, or a polymerization. Things. Other materials such as graphite, CeO 2 , TiO 2 , Cu 2 O, RuO 2 may be used. Metals such as Ru, Cu, Ti, Al, Au, Ag, Pt, etc. can be used to carry out the redox reaction. An ethanol solution can be used as the EPD solution. The reaction time can be determined based on the electric field strength, for example, about 10 seconds to 1 hour. The pH can be determined based on the formulation, for example about 4-9. The solution may be isopropyl alcohol (IPA), acetone (ACE) or the like, or a similar organic solvent as long as it does not cause corrosion to the colloidal particles. Water (H 2 O) can also be used, but its pH may need to be adjusted and the electric field should not be too strong (eg less than 2.5 volts/cm).

依據該膠體顆粒模板之成分,可使用不同方法及裝置來移除步驟(3)中之該膠體顆粒模板。在一些實施例中,可使用一烘烤裝置,藉由在約500℃加熱運送該滲透物質之該膠體顆粒模板1-24小時來熱移除該膠體顆粒模板,同時完整保留該滲透物質。所使用的材料可以是PS或PMMA。對於有機材料而言,可使用高溫移除;對於以諸如SiO2 或ZnO之無機材料製成的膠體模板而言,可使用化學移除(例如緩衝氧化物蝕刻劑(Buffered Oxide Etchant,BOE))。在一些其他實施例中,可使用一化學蝕刻裝置,其中,運送該滲透物質之該膠體顆粒模板可浸泡於設置在一蝕刻槽內之一蝕刻溶液(例如0.01-3M的乙酸乙酯)中,以進行化學蝕刻而移除該膠體顆粒模板,同時仍完整保留該滲透物質。Depending on the composition of the colloidal particle template, the colloidal particle template in step (3) can be removed using different methods and apparatus. In some embodiments, a colloidal device can be used to thermally remove the colloidal particle template by heating the colloidal particle template of the permeate at about 500 ° C for 1 to 24 hours while retaining the permeate completely. The material used may be PS or PMMA. For organic materials, high temperature removal can be used; for colloidal templates made of inorganic materials such as SiO 2 or ZnO, chemical removal (eg Buffered Oxide Etchant (BOE)) can be used. . In some other embodiments, a chemical etching apparatus can be used, wherein the colloidal particle template that transports the permeate is immersed in an etching solution (eg, 0.01-3 M ethyl acetate) disposed in an etching bath. The colloidal particle template is removed by chemical etching while still retaining the permeate completely.

在一化學蝕刻裝置被用於步驟(3)中的一些實施例中,運送該膠體顆粒模板及該滲透物質之一可撓性及可移動之導電捲帶可被使用且可經由配置在該蝕刻槽之側壁上之一防漏入口及一防漏出口而進出該化學蝕刻裝置。In some embodiments in which a chemical etching apparatus is used in step (3), a flexible and movable conductive tape that carries the colloidal particle template and the permeating substance can be used and can be disposed through the etching. One of the leakage preventing inlet and the leakproof outlet on the side wall of the groove enters and exits the chemical etching device.

在一些實施例中,該方法還可包括一在該步驟(3)之後將該滲透物質從該可撓性及可移動之導電捲帶分離之步驟,藉以獲得該多孔膜。例如,一分割刀可被設置於該捲帶及該多孔膜之間以將它們分離,使得該多孔膜在該第一捲軸處形成一捲膜,並使用該第二捲軸來回收該捲帶。In some embodiments, the method can further include the step of separating the osmotic material from the flexible and movable conductive tape after the step (3) to obtain the porous film. For example, a split knife may be disposed between the web and the porous membrane to separate them such that the porous film forms a roll of film at the first spool and the second spool is used to recover the web.

相較於現有製造諸如金屬泡沫及奈米多孔材料之多孔材料的方法,此處所揭示的方法可具有以下優點中的一或數個:1)可達成具有大的相對表面積之大尺寸高度多孔材料。2)該等材料(例如多孔膜)可具有如同原子陣列結構(atomic-array-like structures),其具有整齊排列的密集堆積孔洞或隨機分布孔洞。在一些範例中,可達成具有一細微陣列多孔結構(fine-array porous structure)之奈米多孔材料。Compared to existing methods of fabricating porous materials such as metal foams and nanoporous materials, the methods disclosed herein may have one or more of the following advantages: 1) large size highly porous materials having large relative surface areas are achieved . 2) The materials (e.g., porous membranes) may have atomic-array-like structures with densely packed pores or randomly distributed pores arranged neatly. In some examples, a nanoporous material having a fine-array porous structure can be achieved.

此種所製造的高度多孔材料/膜之孔洞尺寸可為約100奈米-5毫米,且晶粒區域(grain domain)約為5微米-5毫米。該等晶粒區域可以利用光學顯微鏡(OM)觀察到是形成週期性或準週期性(quasi-periodic)結構之區域。類似於晶界的缺陷可存在於該等晶粒區域之間。該等晶粒區域之間的該等晶界可提供為該等多孔膜之機械強度之主要來源。The highly porous material/film produced can have a pore size of from about 100 nm to about 5 mm and a grain domain of from about 5 microns to about 5 mm. The grain regions can be observed by an optical microscope (OM) to form regions of a periodic or quasi-periodic structure. Defects similar to grain boundaries may exist between the grain regions. The grain boundaries between the grain regions can provide a primary source of mechanical strength for the porous films.

此處所揭示之方法可用以製造具有大於20公分×20公分之尺寸之大面積巨型多孔薄膜,其具有例如約為10公分之厚度(取決於膠體顆粒尺寸)。可達成一相當大的表面積對體積比,其可表示為:The methods disclosed herein can be used to produce large area giant porous films having a size greater than 20 cm x 20 cm, having a thickness of, for example, about 10 cm (depending on the size of the colloidal particles). A substantial surface area to volume ratio can be achieved, which can be expressed as:

……………………………………(1) ……………………………………(1)

其中,為比表面積,d 為平均孔洞直徑(單位為毫米),θ為孔隙率。例如,對於d =0.01毫米,74%之孔隙率而言,比表面積可約為4100/毫米;對於d =0.001毫米而言,比表面積可約為41000/毫米。among them, For specific surface area, d is the average pore diameter (in millimeters) and θ is the porosity. For example, for d = 0.01 mm, 74% porosity, the specific surface area may be about 4100 / mm; for d = 0.001 mm, the specific surface area may be about 41000 / mm.

在一些實施例中,可製造一具有三維(3D)結構之大塊多孔材料。其是對比於以現有方法製造的多孔材料。現有金屬泡沫一般具有大於500微米之孔洞尺寸,及約為14~3100/毫米之比表面積,且具有大的孔洞尺寸變化量(諸如大於100%)。In some embodiments, a bulk porous material having a three dimensional (3D) structure can be fabricated. It is compared to a porous material manufactured by an existing method. Existing metal foams generally have a pore size greater than 500 microns, and a specific surface area of from about 14 to about 3100 per millimeter, and have large pore size variations (such as greater than 100%).

因此,此處所揭示之方法之優點在於,該等所製造的金屬膜特別適用於催化作用以及其他需要具有大的相對表面積之材料之應用中。此外,有利的是,該等方法中的一些方法可以不受到用以製造金屬泡沫之金屬/合金之熔點所限制,因此可用來製造利用可進行氧化還原反應的金屬離子之任何細微陣列多孔膜。再者,在一些該等所製造的金屬膜中金屬成分之純度可高達99.99%,這是用習知製造方法所製造的金屬泡沫所沒有的優點,是因為習知製造方法在金屬熔化的過程中,常常會產生雜質。這項有利的特徵也可大幅提昇催化反應的效率。Thus, the method disclosed herein has the advantage that the metal films produced are particularly suitable for use in catalysis and other applications requiring materials having large relative surface areas. Moreover, advantageously, some of these methods may be unrestricted by the melting point of the metal/alloy used to make the metal foam, and thus may be used to fabricate any fine array porous membrane utilizing metal ions capable of undergoing redox reactions. Furthermore, the purity of the metal component in some of the metal films produced can be as high as 99.99%, which is an advantage not obtained by the metal foam produced by the conventional manufacturing method because the conventional manufacturing method is in the process of melting the metal. In the middle, impurities are often produced. This advantageous feature also greatly increases the efficiency of the catalytic reaction.

在一些實施例中,多孔材料(例如細微陣列多孔膜)之比表面積可大於10/毫米,在一些實施例中可大於3100/毫米,或者在一些實施例中,可大於4100/毫米(諸如約4108/毫米、約8217/毫米,或約41087/毫米)。同時,這些材料中的孔洞具有實質上均一的尺寸,諸如表示變化量之標準差小於20%,或者在一些實施例中變化量小於10%。In some embodiments, the porous material (eg, fine array porous membrane) may have a specific surface area greater than 10/mm, in some embodiments greater than 3100/mm, or in some embodiments, greater than 4100/mm (such as about 4108 / mm, about 8217 / mm, or about 41087 / mm). At the same time, the holes in these materials have a substantially uniform size, such as a standard deviation representing less than 20% of the amount of change, or less than 10% in some embodiments.

再者,在製造具有巨型多孔結構之材料時,該等方法中的一些是可視情況而有彈性的調整,其可使用各種沉積/滲透方法,諸如電沉積、PVD(物理氣相沉積法)、CVD(化學氣相沉積法)、Sol-Gel(溶膠凝膠法),及化學電鍍(諸如電鍍、無電鍍),以使各種材料,諸如金屬、大分子量聚合物,及陶瓷,進行滲透,。藉由簡單地調整用來製造後續會被捨棄的膠體顆粒模板之顆粒的尺寸,使得製備各種孔洞尺寸之多孔材料的過程變得更加便利。Furthermore, in the manufacture of materials having a giant porous structure, some of these methods are visibly elastically adjustable, which can use various deposition/infiltration methods such as electrodeposition, PVD (physical vapor deposition), CVD (Chemical Vapor Deposition), Sol-Gel (Sol-Gel Method), and chemical plating (such as electroplating, electroless plating) to infiltrate various materials such as metals, large molecular weight polymers, and ceramics. The process of preparing porous materials of various pore sizes is made more convenient by simply adjusting the size of the particles used to make the colloidal particle templates that are subsequently discarded.

藉由選擇具有不同形狀及尺寸之組裝裝置工作電極,可方便地製造具有不同形狀及尺寸之材料。藉由使用一可撓性及可移動之導電捲帶,可大幅提升製造該等多孔材料之過程中的自動化程度以及製造效率。在此處所揭示的一些實施例中具有一密集堆積週期性細微陣列多孔結構之大尺寸多孔材料可具有優異的機械、聲學、熱學、光學、電氣及化學性質,且因而可用於各種應用,諸如催化劑、透析膜、熱交換、能量儲存、過濾,及組織工程。Materials having different shapes and sizes can be conveniently fabricated by selecting working electrodes of assembly devices having different shapes and sizes. By using a flexible and movable conductive tape, the degree of automation and manufacturing efficiency in the process of manufacturing the porous materials can be greatly improved. The large-sized porous material having a densely packed periodic fine array porous structure in some embodiments disclosed herein can have excellent mechanical, acoustic, thermal, optical, electrical, and chemical properties, and thus can be used in various applications, such as catalysts. , dialysis membrane, heat exchange, energy storage, filtration, and tissue engineering.

在另一層面中,提供一包括該上述多孔材料之應用系統,其中,該系統被設計成一淡化裝置、一超微氣泡產生系統、一電容器系統,或一電池系統中之一者。In another aspect, an application system comprising the porous material described above is provided, wherein the system is designed as one of a desalination device, an ultra-micro bubble generation system, a capacitor system, or a battery system.

一些製造高度多孔材料之方法可能是複雜且昂貴的,並且在製造具有高比表面積之高純度多孔材料時可能會有困難。Some methods of making highly porous materials can be complex and expensive, and can be difficult to produce high purity porous materials with high specific surface areas.

圖1說明一金屬泡沫之微結構,該金屬泡沫包含相互連接的金屬韌帶基質(matrix of metallic ligaments)101,該等金屬韌帶具有不同的長度與方位(orientations),且在相鄰金屬韌帶之間形成有不同形狀與尺寸的個別空隙(孔洞)100。典型的金屬泡沫之孔洞尺寸可為0.5-8毫米。Figure 1 illustrates a microstructure of a metal foam comprising interconnected metal of metallic ligaments 101 having different lengths and orientations and between adjacent metal ligaments. Individual voids (holes) 100 of different shapes and sizes are formed. Typical metal foam pore sizes can range from 0.5 to 8 mm.

除了比面積以外,孔洞尺寸的均一性是另一個重要因素。如圖1所示,習知金屬泡沫之孔洞尺寸之變化量高達100%以上。In addition to the specific area, the uniformity of the hole size is another important factor. As shown in Fig. 1, the variation of the pore size of the conventional metal foam is as high as 100% or more.

在此處揭示的一些實施例中,一製造系統可製造一具有優異性能之多孔材料。該系統可包括:一膠體顆粒模板形成部分,被設計來製造一膠體顆粒模板;一滲透部分,被設計來將一滲透物質滲入該膠體顆粒模板;以及一模板移除部分,被設計來移除該膠體顆粒模板並實質上完整保留該滲透物質。In some embodiments disclosed herein, a manufacturing system can produce a porous material having superior properties. The system can include: a colloidal particle template forming portion designed to produce a colloidal particle template; a permeate portion designed to infiltrate a permeate material into the colloidal particle template; and a template removal portion designed to be removed The colloidal particles template and retain the permeate substantially completely.

圖2說明在一些實施例中使用該系統製造一細微陣列多孔材料的一步驟流程。該製造步驟可包括:步驟(1),表面帶電顆粒沉積以形成一陣列(組裝過程);步驟(2),沉積/滲透;以及步驟(3),模板移除。該系統可包括數個分別實現該等步驟的部分(例如數個模組)310、320、330。一可移動的導電捲帶可用來在每個槽的防水入口及出口之間輸送該膠體顆粒模板。該等部分310、320、330可具有圖3所示之功能,且其細節如以下所述。2 illustrates a first step flow for fabricating a fine array of porous materials using the system in some embodiments. The manufacturing step may include: step (1), surface charged particle deposition to form an array (assembly process); step (2), deposition/infiltration; and step (3), template removal. The system can include a number of portions (e.g., a plurality of modules) 310, 320, 330 that implement the steps, respectively. A movable conductive tape can be used to transport the colloidal particle template between the watertight inlet and outlet of each of the channels. The portions 310, 320, 330 may have the functionality shown in Figure 3, and the details thereof are as follows.

圖3說明一系統,且該系統在一些實施例中,是被設計來製造大面積、細微陣列多孔膜。該系統可包括一電泳部分310、一沉積/滲透部分320,以及一膠體顆粒模板移除部分330。Figure 3 illustrates a system which, in some embodiments, is designed to fabricate a large area, fine array porous membrane. The system can include an electrophoretic portion 310, a deposition/permeation portion 320, and a colloidal particle template removal portion 330.

該電泳部分310可包括一電泳槽311、一電源供應器312、一參考電極313、一工作電極314、一磁石攪拌器315、一防漏入口316及一烘箱/實時分析器(Real Time Analyzer,簡稱RTA)319。一包括一懸浮的單分散膠體奈米球之電泳溶液317可被設置於該電泳槽311內;該防漏入口316可被設置在該電泳槽311的側壁;該工作電極314可包含一可移動的連續導電捲帶318,其被設計來經由該防漏入口316進到該電泳槽311、提供用於在該電泳槽311中形成一膠體顆粒模板之一表面、若該膠體顆粒模板之電泳自組裝已完成則移出該電泳槽311,以及輸送該膠體顆粒模板經過該烘箱/RTA 319以進行乾燥。The electrophoresis portion 310 can include an electrophoresis tank 311, a power supply 312, a reference electrode 313, a working electrode 314, a magnet stirrer 315, a leak proof inlet 316, and an oven/real time analyzer (Real Time Analyzer, Referred to as RTA) 319. An electrophoresis solution 317 comprising a suspended monodisperse colloidal nanosphere can be disposed in the electrophoresis tank 311; the leakage prevention inlet 316 can be disposed on a sidewall of the electrophoresis tank 311; the working electrode 314 can include a movable a continuous conductive tape 318 designed to enter the electrophoresis tank 311 via the leak-proof inlet 316, providing a surface for forming a colloidal particle template in the electrophoresis tank 311, if the colloidal particle template is electrophoresed Once the assembly has been completed, the electrophoresis tank 311 is removed, and the colloidal particle template is conveyed through the oven/RTA 319 for drying.

該沉積/滲透部分320可包括一沉積槽321、一電源供應器(圖未示)、一直流電源、一參考電極323、一工作電極324、一防漏入口325,及一防漏出口326。一電沉積溶液327可被設置在該沉積/滲透槽內321中。該防漏入口325及該防漏出口326可分別被設置在該沉積槽321之兩相反側壁。The deposition/permeation portion 320 can include a deposition tank 321, a power supply (not shown), a DC power supply, a reference electrode 323, a working electrode 324, a leak-proof inlet 325, and a leak-proof outlet 326. An electrodeposition solution 327 can be disposed in the deposition/permeation tank 321 . The leak-proof inlet 325 and the leak-proof outlet 326 may be respectively disposed on opposite side walls of the deposition tank 321 .

該工作電極324位於一電極位置,且該懸浮液327設置在該沉積槽321內並填充至覆蓋該電極位置。來自於該電泳部分310並運送該乾燥膠體顆粒模板之該捲帶可經由該防漏入口325進入該沉積槽321中。在該沉積槽321中可提供用於在該膠體顆粒模板上形成一細微陣列多孔膜之一表面。直到該細微陣列多孔膜的沉積完成,該捲帶可經由該防漏出口326被移出該電沉積槽321。The working electrode 324 is located at an electrode position, and the suspension 327 is disposed in the deposition tank 321 and filled to cover the electrode position. The web from the electrophoresis portion 310 and carrying the dried colloidal particle template can enter the deposition tank 321 via the leak-proof inlet 325. A surface for forming a fine array of the porous film on the colloidal particle template may be provided in the deposition tank 321. Until the deposition of the fine array porous membrane is completed, the web can be removed from the electrodeposition tank 321 via the leak-proof outlet 326.

該膠體顆粒模板移除部分330可包含一蝕刻槽331、一防漏入口332及一防漏出口333。一蝕刻溶液334可被設置於該蝕刻槽331內。該防漏入口332及該防漏出口333可分別被設置在該蝕刻槽331之兩相反側壁。運送該膠體顆粒模板及該細微陣列多孔膜且來自於該沉積部分320的該捲帶可經由該防漏入口332被移入該蝕刻槽331以移除該膠體顆粒模板。當該膠體顆粒模板之蝕刻完成後,該捲帶可經由該防漏出口333被移出該蝕刻槽331。在該捲帶離開該蝕刻槽331後,被視為所請求保護的實施例之多孔材料或膜之該細微陣列多孔膜335可與該連續導電捲帶分離。The colloidal particle template removing portion 330 may include an etching groove 331, a leakproof inlet 332, and a leakproof outlet 333. An etching solution 334 can be disposed in the etching bath 331. The leakage preventing inlet 332 and the leakage preventing outlet 333 may be respectively disposed on opposite side walls of the etching groove 331. The colloidal particle template and the fine array porous membrane are transported and the web from the deposition portion 320 can be moved into the etching bath 331 via the leak-proof inlet 332 to remove the colloidal particle template. After the etching of the colloidal particle template is completed, the web can be removed from the etching bath 331 via the leak-proof outlet 333. After the tape exits the etched groove 331, the fine array porous film 335, which is considered to be the porous material or film of the claimed embodiment, can be separated from the continuous conductive tape.

例如,一分割刀(圖未示)可被設置在該導電捲帶337及該多孔膜335間以將它們分離,使得該多孔膜335在一第一捲軸(圖未示)處形成一捲膜,且一第二捲軸(圖未示)被使用來回收該捲帶337。For example, a splitting blade (not shown) may be disposed between the conductive web 337 and the porous film 335 to separate them such that the porous film 335 forms a roll at a first reel (not shown). And a second reel (not shown) is used to recover the reel 337.

在一些實施例中,如圖3所示的裝置可被用來製造一具有一細微陣列多孔結構之鎳膜(Nickel film)。此製程可包括,例如,1)製備單分散的聚苯乙烯(PS)膠體懸浮液;2)組裝PS膠體顆粒模板;3)進行鎳電沉積;及4)藉由加熱或使用乙酸乙酯進行蝕刻來移除PS奈米球模板。In some embodiments, the apparatus shown in Figure 3 can be used to fabricate a Nickel film having a fine array of porous structures. The process may include, for example, 1) preparing a monodisperse polystyrene (PS) colloidal suspension; 2) assembling a PS colloidal particle template; 3) performing nickel electrodeposition; and 4) heating or using ethyl acetate Etching to remove the PS nanosphere template.

相較於具有相當低的比表面積以及孔洞尺寸欠缺均一性之習知金屬泡沫,本發明之細微陣列多孔材料具有較大的比表面積,且其內的孔洞之尺寸高度均一。The fine array porous material of the present invention has a large specific surface area and a uniform height of pores therein, compared to a conventional metal foam having a relatively low specific surface area and a lack of pore size uniformity.

以下表1比較了習知金屬泡沫與本發明之細微陣列多孔材料於方程式(1)中所定義的參數。如表1所示,細微陣列多孔材料之比表面積可以高於3130/毫米,諸如高於4100/毫米。然而,細微陣列多孔材料之比表面積也可以介於10/毫米及3130/毫米,而仍然具有金屬泡沫所沒有的可用於各種應用之優異特性。例如,在一些實施例中,具有>10/毫米的比表面積之細微陣列多孔材料可具有非常均一的孔洞尺寸,諸如標準差<20%,或甚至<10%。Table 1 below compares the parameters defined by the conventional metal foam with the fine array porous material of the present invention in the equation (1). As shown in Table 1, the specific surface area of the fine array porous material may be higher than 3130 / mm, such as higher than 4100 / mm. However, the fine array porous material may have a specific surface area of between 10/mm and 3130/mm, while still having excellent properties that are not available for metal foams for various applications. For example, in some embodiments, a fine array of porous materials having a specific surface area of >10/mm can have a very uniform pore size, such as a standard deviation of <20%, or even <10%.

表1 Table 1

圖4A是一細微陣列多孔結構之一SEM影像俯視圖。4A is a top view of an SEM image of a fine array of porous structures.

圖4B是圖4A中之該結構之一SEM影像側視圖。Figure 4B is a side view of an SEM image of the structure of Figure 4A.

圖4C是圖4A中之該結構之另一SEM影像側視圖。Figure 4C is another side view of the SEM image of the structure of Figure 4A.

圖4D是堆疊的奈米球之一SEM影像俯視圖。4D is a top view of an SEM image of one of the stacked nanospheres.

圖4E是反結構之低解析度(200x)的SEM影像俯視圖,其中,粗線描繪的部分顯示出形成晶粒區域的晶界,其可以提供該多孔材料的機械強度。4E is a top view of a low resolution (200x) SEM image of the inverse structure, wherein the portion depicted by the thick line shows the grain boundaries forming the grain regions, which can provide the mechanical strength of the porous material.

圖4F是圖4E中之該結構之一放大視圖(500x)。Figure 4F is an enlarged view (500x) of the structure of Figure 4E.

圖4G是圖4E中之該結構之一放大倍率更高的放大視圖(2500x)。Figure 4G is an enlarged view (2500x) of a higher magnification of the structure of Figure 4E.

在一些實施例中,如圖3所示之該裝置可用來製造細微陣列多孔ZnO膜。例如,其製作過程可包括:1)製備單分散的聚苯乙烯(PS)膠體懸浮液;2)組裝PS膠體顆粒模板,並將該模板置於約90-100℃大氣環境下進行乾燥,例如歷經約30分鐘;3)在定電流(例如1 mA/cm2 )、溫度約70℃下,利用Zn(NO3 )2 電鍍液進行ZnO之電沉積;及4)藉由在約500℃之環境下加熱少於2小時來移除PS奈米球模板。因而,可製造出一具有可控制的複數週期性層(periodic layers)之良好陣列多孔ZnO膜。In some embodiments, the apparatus shown in Figure 3 can be used to fabricate a fine array of porous ZnO membranes. For example, the manufacturing process may include: 1) preparing a monodisperse polystyrene (PS) colloidal suspension; 2) assembling a PS colloidal particle template, and drying the template in an atmosphere of about 90-100 ° C, for example, After about 30 minutes; 3) electrodeposition of ZnO with a Zn(NO 3 ) 2 plating solution at a constant current (for example, 1 mA/cm 2 ) at a temperature of about 70 ° C; and 4) by at about 500 ° C The PS nanosphere template was removed by heating in an environment for less than 2 hours. Thus, a good array of porous ZnO films having controllable plurality of periodic layers can be fabricated.

在一些實施例中,經由組裝過程所形成的該膠體顆粒模板可以由聚苯乙烯(PS)、SiO2 、PMMA(聚甲基丙烯酸甲酯),或者任何球狀粉末物質製成,其顆粒尺寸介於約100奈米至5毫米,且直徑變化量(例如標準差)是在約±20%內,最佳在約±10%內。例如,在一些實施例中,該顆粒尺寸約為200奈米±40奈米;在另一範例中,該顆粒尺寸約為300奈米±60奈米。該等顆粒可為球狀,且可為空心或實心球。在一些其他實施例中,也可使用非球狀。In some embodiments, the colloidal particle template formed via the assembly process can be made of polystyrene (PS), SiO 2 , PMMA (polymethyl methacrylate), or any spherical powder material, the particle size of which It is between about 100 nm and 5 mm, and the amount of change in diameter (e.g., standard deviation) is within about ± 20%, and most preferably within about ± 10%. For example, in some embodiments, the particle size is about 200 nanometers ± 40 nanometers; in another example, the particle size is about 300 nanometers ± 60 nanometers. The particles may be spherical and may be hollow or solid spheres. In some other embodiments, non-spherical shapes can also be used.

在一些實施例中,所使用的溶液的pH值範圍介於4-9,溫度範圍介於約-10~45℃,直流電場範圍介於約0.1 V/cm-1 kV/cm,且電極尖端提取速度(electrode tip withdraw velocity)範圍介於約100 nm/sec - 10 cm/sec。In some embodiments, the solution used has a pH in the range of 4-9, a temperature in the range of about -10 to 45 ° C, a DC electric field in the range of about 0.1 V/cm - 1 kV/cm, and an electrode tip. The electrode tip withdraw velocity ranges from about 100 nm/sec to 10 cm/sec.

在一些實施例中,用於移除膠體顆粒模板的烘烤溫度可取決於該奈米球材料,且可在該材料之玻璃轉移溫度之約±10%範圍內。In some embodiments, the bake temperature for removing the colloidal particle template can depend on the nanosphere material and can range from about ± 10% of the glass transition temperature of the material.

在一些實施例中,該等細微陣列多孔膜(平面/塊狀(monolithic))之晶粒區域可以在約5微米-5毫米的範圍內,且孔洞尺寸可以在約100奈米-5毫米的範圍內。In some embodiments, the grain regions of the fine array porous membranes (planar/monolithic) may range from about 5 microns to 5 millimeters, and the pore size may range from about 100 nanometers to 5 millimeters. Within the scope.

在一些實施例中,該溶液之密度可高於該等奈米球之密度,使得該等奈米球浮在該溶液上。或者,該溶液之密度可低於該等奈米球之密度,以使得該等奈米球可均勻地分散在該溶液中,其中,該液體可依據密度來挑選。In some embodiments, the density of the solution can be higher than the density of the nanospheres such that the nanospheres float on the solution. Alternatively, the density of the solution may be lower than the density of the nanospheres such that the nanospheres are uniformly dispersed in the solution, wherein the liquid may be selected based on density.

在一些實施例中,該組裝裝置可具有一垂直結構,因而可控制該膜的厚度,且可從該裝置拆除該膜。In some embodiments, the assembly device can have a vertical configuration so that the thickness of the film can be controlled and the film can be removed from the device.

此處所揭示的多孔材料可用於許多領域的應用。例如,在一些實施例中,一淨水器可使用一由本發明之多孔材料組成之濾心。該濾心可以是一膜,且如上所述的該多孔膜之該高表面積對體積比使得被汙染的水可有效地被淨化。The porous materials disclosed herein are useful in a variety of applications. For example, in some embodiments, a water purifier can use a filter core comprised of the porous material of the present invention. The filter can be a membrane, and the high surface area to volume ratio of the porous membrane as described above allows the contaminated water to be effectively purified.

在一些其它實施例中,一海水淡化系統可使用一具有一高表面積對體積比之膜。該膜可有助於用於海水淡化的逆滲透或離子交換過程。In some other embodiments, a seawater desalination system can use a membrane having a high surface area to volume ratio. The membrane can aid in reverse osmosis or ion exchange processes for desalination of seawater.

在一些其他實施例中,一超微氣泡產生系統可使用一具有一高表面積對體積比之膜。該多孔結構可有助於在各種液體中產生氣泡。In some other embodiments, an ultrafine bubble generating system can use a membrane having a high surface area to volume ratio. This porous structure can contribute to the generation of bubbles in various liquids.

在另一些其他實施例中,一電容器或一電池可使用一具有一高表面積對體積比之多孔材料。本發明之多孔材料所提供的大表面積可使一電容器有較高的電容,或是可使一電池有較高的離子交換速率,以提昇電池效率。In still other embodiments, a capacitor or a battery may use a porous material having a high surface area to volume ratio. The large surface area provided by the porous material of the present invention allows a capacitor to have a higher capacitance or a higher ion exchange rate of a battery to improve cell efficiency.

在一些其他實施例中,該等多孔材料可用於以下應用領域,諸如振動及聲音吸收、衝擊保護、熱交換、膜、過濾、離子交換、光子、氣體感測、催化作用、生物醫學工程等。In some other embodiments, the porous materials can be used in applications such as vibration and sound absorption, impact protection, heat exchange, membranes, filtration, ion exchange, photon, gas sensing, catalysis, biomedical engineering, and the like.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.

100‧‧‧個別空隙(孔洞)
1~3‧‧‧步驟
101‧‧‧金屬韌帶之結締組織
310‧‧‧電泳部分
311‧‧‧電泳槽
312‧‧‧電源供應器
313‧‧‧參考電極
314‧‧‧工作電極
315‧‧‧磁石攪拌器
316‧‧‧防漏入口
317‧‧‧電泳溶液
318‧‧‧連續導電捲帶
319‧‧‧烘箱/實時分析器
321‧‧‧沉積槽
320‧‧‧沉積/滲透部分
323‧‧‧參考電極
324‧‧‧工作電極
325‧‧‧防漏入口
326‧‧‧防漏出口
327‧‧‧電沉積溶液
330‧‧‧膠體顆粒模板移除部分
331‧‧‧蝕刻槽
332‧‧‧防漏入口
333‧‧‧防漏出口
334‧‧‧蝕刻溶液
335‧‧‧細微陣列多孔膜
337‧‧‧導電捲帶
100‧‧‧Individual gaps (holes)
1~3‧‧‧Steps
101‧‧‧Connective tissue of metal ligament
310‧‧‧ Electrophoresis section
311‧‧‧electrophoresis tank
312‧‧‧Power supply
313‧‧‧ reference electrode
314‧‧‧Working electrode
315‧‧‧Magnetic mixer
316‧‧‧ leak proof entrance
317‧‧‧ Electrophoresis solution
318‧‧‧Continuous Conductive Tape
319‧‧‧Oven/Real Time Analyzer
321‧‧‧deposition tank
320‧‧‧Deposition/infiltration section
323‧‧‧ reference electrode
324‧‧‧Working electrode
325‧‧‧ leak proof entrance
326‧‧‧ leak-proof exit
327‧‧‧electrodeposition solution
330‧‧‧Colloid particle template removal part
331‧‧‧etching groove
332‧‧‧ leak proof entrance
333‧‧‧ leakproof exit
334‧‧‧etching solution
335‧‧‧Microarray porous membrane
337‧‧‧Electrical tape

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:Other features and effects of the present invention will be apparent from the embodiments of the drawings, in which:

圖1說明一金屬泡沫之一OM(光學顯微鏡)影像。Figure 1 illustrates an OM (optical microscope) image of a metal foam.

圖2是製造一習知多孔材料之方法之一流程圖。2 is a flow chart of one method of making a conventional porous material.

圖3是一示意圖,說明利用一可撓性且可移動導電捲帶作為工作電極來製造一大尺寸巨型多孔膜之系統之一實施例。Fig. 3 is a schematic view showing an embodiment of a system for manufacturing a large-sized giant porous membrane using a flexible and movable conductive tape as a working electrode.

圖4A是一細微陣列多孔結構之一SEM影像俯視圖。4A is a top view of an SEM image of a fine array of porous structures.

圖4B是圖4A中之該結構之一SEM影像側視圖。Figure 4B is a side view of an SEM image of the structure of Figure 4A.

圖4C是圖4A中之該結構之另一SEM影像側視圖。Figure 4C is another side view of the SEM image of the structure of Figure 4A.

圖4D是堆疊的奈米球之一SEM影像俯視圖。4D is a top view of an SEM image of one of the stacked nanospheres.

圖4E是反結構之低解析度(200x)的SEM影像俯視圖,其中,粗線描繪的部分顯示出形成晶粒區域的晶界,其可以提供該多孔材料的機械強度。4E is a top view of a low resolution (200x) SEM image of the inverse structure, wherein the portion depicted by the thick line shows the grain boundaries forming the grain regions, which can provide the mechanical strength of the porous material.

圖4F是圖4E中之該結構之一放大視圖(500x)。Figure 4F is an enlarged view (500x) of the structure of Figure 4E.

圖4G是圖4E中之該結構之一放大倍率更高的放大視圖(2500x)。Figure 4G is an enlarged view (2500x) of a higher magnification of the structure of Figure 4E.

Claims (21)

一種多孔材料,包含一大於10/毫米之比表面積,該比表面積取決於不同孔洞尺寸,其中,該多孔材料包括數個孔洞,其具有一實質上均一且變化量小於約20%之尺寸,其中,該尺寸大於約100奈米且小於約5毫米,其中,該多孔材料包含數個增加該多孔材料的機械強度的晶粒區域,該等晶粒區域的尺寸為5微米-5毫米。 A porous material comprising a specific surface area greater than 10/mm, the specific surface area being dependent on different pore sizes, wherein the porous material comprises a plurality of pores having a substantially uniform size and a variation of less than about 20%, wherein The size is greater than about 100 nanometers and less than about 5 millimeters, wherein the porous material comprises a plurality of grain regions that increase the mechanical strength of the porous material, the grain regions having a size of from 5 micrometers to 5 millimeters. 如請求項1所述的多孔材料,其中,該多孔材料是無基板的膜。 The porous material according to claim 1, wherein the porous material is a substrateless film. 如請求項1所述的多孔材料,其中,該比表面積大於4100/毫米,其中,該尺寸變化量小於約10%。 The porous material of claim 1, wherein the specific surface area is greater than 4100 / mm, wherein the dimensional change is less than about 10%. 一種系統,被設計來製造一多孔材料,該系統包含:一顆粒模板形成部分,被設計來利用電泳製造一顆粒模板;一滲透部分,被設計來將一滲透物質滲入該顆粒模板;及一模板移除部分,被設計來移除該顆粒模板並實質上完整保留該滲透物質,藉以形成一無基板的多孔材料,其具有一大於10/毫米之比表面積,其中,該多孔材料包括數個孔洞,其具有一實質上均一且變化量小於約20%之尺寸,其中,該尺寸大於約100奈米且小於約5毫米;其中,該多孔材料包含數個用以增加該多孔材料的機械強度的晶粒區域,該等晶粒區域的尺寸為5微米-5毫米。 A system designed to produce a porous material, the system comprising: a particle template forming portion designed to produce a particle template by electrophoresis; a permeate portion designed to infiltrate a permeate into the particle template; a template removal portion designed to remove the particle template and substantially retain the permeate substantially, thereby forming a substrateless porous material having a specific surface area greater than 10/mm, wherein the porous material comprises a plurality of a void having a dimension that is substantially uniform and varying by less than about 20%, wherein the dimension is greater than about 100 nanometers and less than about 5 millimeters; wherein the porous material comprises a plurality of materials for increasing the mechanical strength of the porous material The grain area has a size of 5 micrometers to 5 millimeters. 如請求項4所述的系統,還包含一烘烤部分,該烘烤部分 被設計來乾燥透過該顆粒模板形成部分所製造的該顆粒模板,藉以提高該顆粒模板之機械強度。 The system of claim 4, further comprising a baking portion, the baking portion It is designed to dry the particle template produced through the particle template forming portion, thereby increasing the mechanical strength of the particle template. 如請求項5所述的系統,其中,該顆粒模板形成部分包括一電泳組裝裝置,該電泳組裝裝置包括:一電泳槽;一直流電源供應器;一磁石攪拌器;一參考電極;及一工作電極;其中:一包括懸浮顆粒之電泳溶液被設置於該電泳槽中;該參考電極及該工作電極實質上是被垂直地配置在該電泳槽中;及該工作電極提供用於電泳地製造該顆粒模板之一表面。 The system of claim 5, wherein the particle template forming portion comprises an electrophoresis assembly device comprising: an electrophoresis tank; a DC power supply; a magnet agitator; a reference electrode; An electrode; wherein: an electrophoresis solution comprising suspended particles is disposed in the electrophoresis tank; the reference electrode and the working electrode are substantially vertically disposed in the electrophoresis tank; and the working electrode is provided for electrophoretically manufacturing One of the surface of the particle template. 如請求項6所述的系統,其中,該參考電極為圓柱形,且是被設置鄰近於一氣-液介面,或者低於該介面約0-5公分。 The system of claim 6 wherein the reference electrode is cylindrical and disposed adjacent to a gas-liquid interface or below about 0-5 cm below the interface. 如請求項7所述的系統,其中,該工作電極包括一可撓性且可移動之導電捲帶,且一防漏入口被配置在該電泳槽之一側壁上,因而該可撓性且可移動之導電捲帶可進入該電泳槽中。 The system of claim 7, wherein the working electrode comprises a flexible and movable conductive tape, and a leak-proof inlet is disposed on one side wall of the electrophoresis tank, thereby being flexible and A moving conductive tape can enter the electrophoresis tank. 如請求項4所述的系統,其中,該滲透部分包括一電泳沉積(EPD)裝置,該電泳沉積裝置包括: 一電泳沉積槽;一直流電源供應器;一參考電極;及一工作電極;其中:一電泳沉積溶液被置於該電泳沉積槽中;及該工作電極被設計來運送該膠體顆粒模板,該膠體顆粒模板提供用於將該滲透物質電泳沉積在該電泳沉積槽內的該膠體顆粒模板上之一表面。 The system of claim 4, wherein the infiltration portion comprises an electrophoretic deposition (EPD) device, the electrophoretic deposition device comprising: An electrophoretic deposition tank; a continuous current power supply; a reference electrode; and a working electrode; wherein: an electrophoretic deposition solution is placed in the electrophoretic deposition bath; and the working electrode is designed to transport the colloidal particle template, the colloid A particle template provides a surface for electrophoretical deposition of the osmotic material onto the colloidal particle template within the electrophoretic deposition bath. 如請求項4所述的系統,其中,該模板移除部分包括一化學蝕刻裝置,該化學蝕刻裝置包括內部設置有一蝕刻溶液之一蝕刻槽,藉此,該膠體顆粒模板被該蝕刻溶液移除,而只保留該滲透物質。 The system of claim 4, wherein the template removing portion comprises a chemical etching device comprising an etching groove internally provided with an etching solution, whereby the colloidal particle template is removed by the etching solution And only retain the permeate. 如請求項10所述的系統,其中,一防漏入口及一防漏出口被設置在該蝕刻槽的側壁,並用於使一運送該膠體顆粒模板及該滲透物質之可撓性且可移動之導電捲帶可無洩漏地分別進入及離開該蝕刻槽。 The system of claim 10, wherein a leak-proof inlet and a leak-proof outlet are provided on the side wall of the etching tank and are used to convey the colloidal particle template and the permeable substance to be flexible and movable. The conductive tape can enter and exit the etching groove separately without leakage. 如請求項11所述的系統,還包含一分割刀,該分割刀被設計來將該滲透物質從該可撓性且可移動之導電捲帶分離,以獲得該多孔材料並回收該可撓性且可移動之導電捲帶。 The system of claim 11 further comprising a split knife designed to separate the permeate from the flexible and movable conductive web to obtain the porous material and recover the flexibility And a movable conductive tape. 一種製造一多孔材料之方法,包含下列步驟:(1)以一顆粒模板形成部分,透過電泳製造一顆粒模板;(2)以一滲透部分,將一滲透物質滲入該顆粒模板; 及(3)以一模板移除部分,移除該顆粒模板,並完整保留該滲透物質,藉以形成一無基板之多孔材料,其具有一大於10/毫米之比表面積,其中,該多孔材料包括數個孔洞,其具有一實質上均一且變化量小於約20%之尺寸,其中,該尺寸大於約100奈米且小於約5毫米;其中,該多孔材料包含數個用以增加該多孔材料的機械強度的晶粒區域,該等晶粒區域的尺寸為5微米-5毫米。 A method for producing a porous material, comprising the steps of: (1) forming a portion by a particle template, and forming a particle template by electrophoresis; (2) infiltrating a permeate into the particle template by a permeating portion; And (3) removing the portion by a template, removing the particle template, and completely retaining the permeate, thereby forming a substrate-free porous material having a specific surface area greater than 10/mm, wherein the porous material comprises a plurality of pores having a size substantially uniform and varying by less than about 20%, wherein the size is greater than about 100 nanometers and less than about 5 millimeters; wherein the porous material comprises a plurality of layers for increasing the porous material A grain region of mechanical strength having a size of from 5 micrometers to 5 millimeters. 如請求項13所述的方法,還包含,在該步驟(1)之後且在該步驟(2)之前,立即地烘烤該顆粒模板,以提高該顆粒模板之機械強度,其中該烘烤步驟在約90-500℃之溫度、大於75之相對溼度下進行約0.5-2小時。 The method of claim 13, further comprising, after the step (1) and before the step (2), immediately baking the particle template to increase the mechanical strength of the particle template, wherein the baking step It is carried out at a temperature of about 90 to 500 ° C and a relative humidity of more than 75 for about 0.5 to 2 hours. 如請求項14所述的方法,其中:一包括懸浮膠體顆粒之電泳溶液被設置於一電泳槽中;一參考電極及一工作電極實質上是被垂直地設置在該電泳槽中;該參考電極為圓柱形;該工作電極提供用於電泳地製造該顆粒模板之一表面;及該參考電極及該工作電極之間的一電場是在約0.1V/cm-1000V/cm之範圍內。 The method of claim 14, wherein: an electrophoresis solution comprising suspended colloidal particles is disposed in an electrophoresis tank; a reference electrode and a working electrode are substantially vertically disposed in the electrophoresis tank; the reference electrode a cylindrical shape; the working electrode is provided for electrophoretically fabricating one surface of the particle template; and an electric field between the reference electrode and the working electrode is in a range of about 0.1 V/cm to 1000 V/cm. 如請求項15所述的方法,還包含,提供包括選自於聚苯乙烯、二氧化矽,或聚甲基丙烯酸甲酯之至少其中一者的一粉末物質的該等懸浮顆粒,其中,該粉末物質之顆粒尺寸約為100奈米-5毫米,且其中,該電泳溶液包括一被設計來提供電荷至該等膠體顆粒之表面之離子溶液。 The method of claim 15, further comprising providing the suspended particles comprising a powder material selected from at least one of polystyrene, ceria, or polymethyl methacrylate, wherein The powder material has a particle size of from about 100 nm to about 5 mm, and wherein the electrophoretic solution includes an ionic solution designed to provide a charge to the surface of the colloidal particles. 如請求項16所述的方法,其中,該電泳溶液包括pH值為約4-9的乙醇溶液、氨水/硝酸,或十二基硫酸鈉(SDS)中之至少一者。 The method of claim 16, wherein the electrophoresis solution comprises at least one of an ethanol solution having a pH of about 4-9, ammonia/nitric acid, or sodium dodecyl sulfate (SDS). 如請求項17所述的方法,其中,該工作電極是靜止的,或是被設計來以約100奈米/秒-10公分/秒之速度移動。 The method of claim 17, wherein the working electrode is stationary or is designed to move at a speed of between about 100 nm/sec and 10 cm/sec. 如請求項13所述的方法,還包含,加熱運送該滲透物質之該顆粒模板至約500℃並少於24小時,藉以熱移除該顆粒模板,同時實質上完整保留該滲透物質,其中,該顆粒模板包括聚合物。 The method of claim 13, further comprising: heating the particle template of the permeate to a temperature of about 500 ° C for less than 24 hours, whereby the particle template is thermally removed while substantially retaining the permeate substantially, wherein The particle template comprises a polymer. 如請求項14所述的方法,還包含,化學移除該顆粒模板,同時實質上完整保留該滲透物質,且其中,該化學移除步驟包括,在約40-80℃之溫度下蝕刻約1-4小時。 The method of claim 14, further comprising chemically removing the particle template while substantially completely retaining the permeate, and wherein the chemical removal step comprises etching about 1 at a temperature of about 40-80 ° C. -4 hours. 一種系統,包含請求項1所述的多孔材料,其中,該系統被設計成一淡化系統、一超微氣泡產生系統、一電容器系統,或一電池系統中之一者。 A system comprising the porous material of claim 1, wherein the system is designed as one of a desalination system, an ultrafine bubble generating system, a capacitor system, or a battery system.
TW105101433A 2016-01-18 2016-01-18 Porous materials and? systems and methods of fabricating thereof TWI636159B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105101433A TWI636159B (en) 2016-01-18 2016-01-18 Porous materials and? systems and methods of fabricating thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105101433A TWI636159B (en) 2016-01-18 2016-01-18 Porous materials and? systems and methods of fabricating thereof

Publications (2)

Publication Number Publication Date
TW201726981A TW201726981A (en) 2017-08-01
TWI636159B true TWI636159B (en) 2018-09-21

Family

ID=60186755

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101433A TWI636159B (en) 2016-01-18 2016-01-18 Porous materials and? systems and methods of fabricating thereof

Country Status (1)

Country Link
TW (1) TWI636159B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068623A1 (en) * 2007-04-09 2010-03-18 Braun Paul V Porous battery electrode for a rechargeable battery and method of making the electrode
CN103981560A (en) * 2014-05-29 2014-08-13 哈尔滨工业大学 Method for preparing three-dimensional ordered porous polyimide film by electrodepositing polyamic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068623A1 (en) * 2007-04-09 2010-03-18 Braun Paul V Porous battery electrode for a rechargeable battery and method of making the electrode
CN103981560A (en) * 2014-05-29 2014-08-13 哈尔滨工业大学 Method for preparing three-dimensional ordered porous polyimide film by electrodepositing polyamic acid

Also Published As

Publication number Publication date
TW201726981A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
Chen et al. Porous anodic alumina with continuously manipulated pore/cell size
Besra et al. A review on fundamentals and applications of electrophoretic deposition (EPD)
CN110573238B (en) Apparatus and method for three-dimensional electrodialysis
Lee et al. Hierarchically porous silver monoliths from colloidal bicontinuous interfacially jammed emulsion gels
JP2021509884A (en) Nanoporous selective sol-gel ceramic membranes, selective membrane structures, and related methods
Kikuchi et al. Ultra-high density single nanometer-scale anodic alumina nanofibers fabricated by pyrophosphoric acid anodizing
JP6378206B2 (en) A novel technique for the preparation of multilayer polymer type mixed matrix membranes and an apparatus for membrane distillation
JP2016522081A (en) Channel body and manufacturing method thereof
CN108905646B (en) Graphene PVDF (polyvinylidene fluoride) composite conductive ultrafiltration membrane and preparation and pollutant removal methods thereof
Garmsiri et al. Enhancing performance of hybrid liquid membrane process supported by porous anionic exchange membranes for removal of cadmium from wastewater
Hess et al. Template-particle stabilized bicontinuous emulsion yielding controlled assembly of hierarchical high-flux filtration membranes
US20170218532A1 (en) Porous materials and systems and methods of fabricating thereof
Zichu et al. the variation of anodization conditions and the structural properties of nanoporous anodic alumina (NAA) within different acidic solutions
US20200147559A1 (en) Boron-Nitride Nanotube Membranes
TWI636159B (en) Porous materials and? systems and methods of fabricating thereof
Burham et al. Self-adjusting electrochemical etching technique for producing nanoporous silicon membrane
RU2545887C2 (en) Method of production of flexible nanoporous composite membrane with cellular structure of anode metal oxide or alloy
Bilal et al. Fast fabrication of localized porous alumina patterns with 3D printed microdroplet cell
RU2676621C2 (en) Modified anion-exchange membrane and its manufacturing method
JP2009028635A (en) Method of manufacturing nano emulsion
JP7166118B2 (en) Diaphragm for alkaline water electrolysis
CN105568356A (en) Method for preparing gold nanowire array by using porous alumina film
Xu et al. A novel method for fabricating double layers porous anodic alumina in phosphoric/oxalic acid solution and oxalic acid solution
Nesbitt et al. Facile fabrication and formation mechanism of aluminum nanowire arrays
JP2007035301A (en) Ion conductor, energy device using the same, and fuel cell