TWI635699B - Flyback power converter and synchronous rectification (sr) switch control circuit and power switch control circuit thereof - Google Patents
Flyback power converter and synchronous rectification (sr) switch control circuit and power switch control circuit thereof Download PDFInfo
- Publication number
- TWI635699B TWI635699B TW106125968A TW106125968A TWI635699B TW I635699 B TWI635699 B TW I635699B TW 106125968 A TW106125968 A TW 106125968A TW 106125968 A TW106125968 A TW 106125968A TW I635699 B TWI635699 B TW I635699B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- feedback
- pulse
- circuit
- switch control
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本發明提出一種返馳式電源供應電路及其SR開關控制電路與功率開關控制電路。返馳式電源供應電路包含變壓器、功率開關、功率開關控制電路、同步整流(synchronous rectification,SR)開關、SR開關控制電路、以及訊號耦合電路。訊號耦合電路具有電連接於功率開關控制電路之一次側埠與電連接於SR開關控制電路之二次側埠。於互不重疊的不同時段中,該一次側埠與該二次側埠分別接收功率開關控制電路與SR開關控制電路所產生的不同訊號,且訊號耦合電路以非接觸方式,感應並轉換後,產生對應的訊號於該二次側埠與該一次側埠。 The invention provides a flyback power supply circuit, an SR switch control circuit and a power switch control circuit thereof. The flyback power supply circuit includes a transformer, a power switch, a power switch control circuit, a synchronous rectification (SR) switch, an SR switch control circuit, and a signal coupling circuit. The signal coupling circuit has a primary side port electrically connected to the power switch control circuit and a secondary side port electrically connected to the SR switch control circuit. In different periods that do not overlap with each other, the primary side port and the secondary side port receive different signals generated by the power switch control circuit and the SR switch control circuit, respectively, and the signal coupling circuit senses and converts in a non-contact manner. Generate corresponding signals to the secondary side port and the primary side port.
Description
本發明係有關一種返馳式電源供應電路及其SR開關控制電路與功率開關控制電路,特別是指一種具有訊號耦合電路耦接於變壓器一次側與二次側之間,以非接觸方式,於互不重疊之不同的時段中,利用其中同一組埠,分別將一次側的訊號感應並轉換後傳送至二次側,並將二次側的訊號感應並轉換後傳送至一次側的返馳式電源供應電路及其SR開關控制電路與功率開關控制電路。 The invention relates to a flyback power supply circuit, an SR switch control circuit and a power switch control circuit thereof, and particularly to a signal coupling circuit coupled between a primary side and a secondary side of a transformer in a non-contact manner. In different periods that do not overlap with each other, the same group of ports is used to sense and convert the signals on the primary side and send them to the secondary side. The signals on the secondary side are sensed and converted to the flyback type. Power supply circuit and its SR switch control circuit and power switch control circuit.
第1圖示出一種先前技術的返馳式電源供應電路100,其中,交流電壓Vac經由整流電路101整流後,產生輸入電壓Vin。變壓器102的一次側繞組W1接收輸入電壓Vin。功率開控制電路105藉由光耦合電路104、或是從輔助繞組方式(未示出)取得相關於輸出電壓Vout的回授電壓訊號COMP,並自電流感測電路106取得相關於流經功率開關SW之電流的電流感測訊號CS,而產生PWM訊號。 PWM控制電路105再根據PWM訊號,而產生功率開關控制訊號Spwm,以控制功率開關SW的操作。 FIG. 1 illustrates a prior art flyback power supply circuit 100 in which an AC voltage Vac is rectified by a rectifier circuit 101 to generate an input voltage Vin. The primary winding W1 of the transformer 102 receives an input voltage Vin. The power on control circuit 105 obtains the feedback voltage signal COMP related to the output voltage Vout via the optical coupling circuit 104 or from an auxiliary winding method (not shown), and obtains the current flowing through the power switch from the current sensing circuit 106. The current sense signal CS of the SW current generates a PWM signal. The PWM control circuit 105 generates a power switch control signal Spwm according to the PWM signal to control the operation of the power switch SW.
繼續參閱第1圖,為了提高功率轉換效率,返馳式電源供應電路100的二次側繞組W2電連接同步整流(synchronous rectification,SR)開關電路108,由同步整流控制電路107根據同步整流開關電路108的跨壓與一同步訊號SYNC而控制,使得二次側繞組W2在一次側繞組W1不導通時導通,以將輸入電壓Vin轉換為輸出電壓Vout。如果二次側繞組W2在一次側繞組W1導通時仍然導通,會導致短路貫穿(short through)情況。然而,在某些操作狀態下,例如連續導通模式(continuous conduction mode,CCM)時,此返馳式電源供應電路100會有一次側繞組W1導通時仍尚未將同步整流開關電路108中的開關不導通的可能性,導致出現二次側繞組W2在一次側繞組W1導通時仍然導通的情況,而使返馳式電源供應電路100發生短路貫穿情況,造成電路損壞。 Continuing to refer to FIG. 1, in order to improve the power conversion efficiency, the secondary winding W2 of the flyback power supply circuit 100 is electrically connected to a synchronous rectification (SR) switch circuit 108, and the synchronous rectification control circuit 107 is based on the synchronous rectification switch circuit. The cross voltage of 108 is controlled by a synchronization signal SYNC, so that the secondary winding W2 is turned on when the primary winding W1 is not conductive, so as to convert the input voltage Vin into the output voltage Vout. If the secondary winding W2 is still conducting when the primary winding W1 is conducting, a short-through situation may result. However, in some operating states, such as continuous conduction mode (CCM), the flyback power supply circuit 100 may have the primary winding W1 turned on and the switches in the synchronous rectification switch circuit 108 may not be turned off. The possibility of conducting leads to the situation that the secondary winding W2 is still conducting when the primary winding W1 is turned on, and the flyback power supply circuit 100 is short-circuited and the circuit is damaged.
其中,PWM控制電路105產生一通知訊號PLS後,將其輸入耦合電路103,再由耦合電路103產生同步訊號SYNC,用以確認SR開關電路108不導通之後,再導通功率開關SW。此外,光耦合電路104與耦合電路103為分開的兩個電路,分別用以將二次側產生的輸出電壓相關資訊傳到一次側的PWM控制器105,與將一次側產生的功率開關控制訊號Spwm相關資訊傳到二次側的SR控制電路107,此種安排方式,使得電路微縮的空間受到限制。 The PWM control circuit 105 generates a notification signal PLS, inputs it to the coupling circuit 103, and then generates a synchronization signal SYNC from the coupling circuit 103 to confirm that the SR switch circuit 108 is not conductive, and then turns on the power switch SW. In addition, the optical coupling circuit 104 and the coupling circuit 103 are two separate circuits, which are respectively used to transmit the information about the output voltage generated on the secondary side to the PWM controller 105 on the primary side and the power switch control signal generated on the primary side. Spwm related information is transmitted to the SR control circuit 107 on the secondary side. With this arrangement, the space for circuit miniaturization is limited.
有鑑於此,本發明即針對上述先前技術之不足,提出一返馳式電源供應電路及其SR開關控制電路與功率開關控制電路,返馳式電源供應電路具有訊號耦合電路耦接於變壓器一次側與二次側之間,以相同的埠於互不重疊之不同的時段中,將一次側的訊號傳送至二次側,並將二次側的訊號傳送至一次側的返馳式電源供應電路及其SR開關控制電路與功率開關控制電路。 In view of this, the present invention proposes a flyback power supply circuit and its SR switch control circuit and power switch control circuit in response to the shortcomings of the above-mentioned prior art. Between the secondary side and the secondary side, the primary side signal is transmitted to the secondary side and the secondary side signal is transmitted to the flyback power supply circuit of the primary side in different periods without overlapping each other. And its SR switch control circuit and power switch control circuit.
就其中一個觀點言,本發明提供了一種返馳式電源供應電路,包含:一變壓器,具有一次側繞組,以接收一輸入電壓;以及二次側繞組,以產生一輸出電壓;一功率開關,耦接於該一次側繞組,用以控制該一次側繞組的導通時間;一功率開關控制電路,位於該變壓器之一次側,用以根據一耦合回授訊號,產生一功率開關控制訊號以控制該功率開關,並產生一同步整流脈衝訊號;一同步整流(synchronous rectification,SR)開關,耦接於該二次側繞組,用以控制該二次側繞組的導通時間,以對應於該一次側繞組不導通時導通;一SR開關控制電路,位於該變壓器之二次側,耦接於該SR開關,用以於一正常操作模式中,接收一耦合同步整流訊號,以控制該SR開關,並根據該輸出電壓,產生一回授脈衝訊號;以及一訊號耦合電路,耦接於該SR開關控制電路與該功率開關控制電路之間,用以將該同步整流脈衝訊號,以非接觸方式,感應產生該耦合同步整流訊號,並將該回授脈衝訊號,以非接觸方式,感應產生該耦合回授訊號;其中該訊號耦合電路具有一一次側埠與一二次側埠,該一次側埠位於該變壓器之一次側,且該二次側埠位於該變壓器之二次側,其中該一次側埠於互不重疊的不同時段中,分別接收該同步整流脈衝訊號與產生該耦合回授訊號,且該二次側埠於該對應之互不重疊的不同時段中,分別產生該耦合同步整流訊號與接收該回授脈衝訊號。 In one aspect, the present invention provides a flyback power supply circuit including: a transformer having a primary winding to receive an input voltage; and a secondary winding to generate an output voltage; a power switch, Coupled to the primary winding to control the on-time of the primary winding; a power switch control circuit, located on the primary side of the transformer, for generating a power switch control signal to control the power switch according to a coupling feedback signal The power switch generates a synchronous rectification pulse signal; a synchronous rectification (SR) switch is coupled to the secondary winding to control the conduction time of the secondary winding to correspond to the primary winding Conductive when not conducting; an SR switch control circuit, located on the secondary side of the transformer, coupled to the SR switch, for receiving a coupled synchronous rectification signal in a normal operating mode to control the SR switch, and according to The output voltage generates a feedback pulse signal; and a signal coupling circuit is coupled to the SR switch control circuit and the power switch. The control circuit is used to inductively generate the coupled synchronous rectified signal in a non-contact manner by the synchronous rectification pulse signal, and inductively generate the coupled feedback signal in the non-contact manner by the feedback pulse signal; The signal coupling circuit has a primary side port and a secondary side port. The primary side port is located on the primary side of the transformer, and the secondary side port is located on the secondary side of the transformer. The primary side ports do not overlap each other. In different periods of time, respectively receiving the synchronous rectification pulse signal and generating the coupling feedback signal, and the secondary side port respectively generating the coupling synchronous rectification signal and receiving the feedback in different corresponding periods of time that do not overlap with each other Pulse signal.
在其中一種較佳的實施例中,該訊號耦合電路包括一脈衝變壓器或一脈衝光耦合器,該脈衝變壓器與脈衝光耦合器之輸入與輸出訊號皆為具有脈衝形式的訊號。 In a preferred embodiment, the signal coupling circuit includes a pulse transformer or a pulse optical coupler, and the input and output signals of the pulse transformer and the pulse optical coupler are both signals in the form of pulses.
在其中一種較佳的實施例中,於一操作期間中,於該功率開關導通之前,該同步整流脈衝訊號具有一同步整流脈衝;且該SR開關控制電路根據相關於該同步整流脈衝的該耦合同步整流訊號,不導通該SR開關,以使該該功率開關導通之前,該SR開關不導通。 In a preferred embodiment, during an operation period, before the power switch is turned on, the synchronous rectification pulse signal has a synchronous rectification pulse; and the SR switch control circuit is based on the coupling related to the synchronous rectification pulse. The synchronous rectification signal does not turn on the SR switch, so that before the power switch is turned on, the SR switch is not turned on.
在其中一種較佳的實施例中,於一操作期間中,該SR開關控制電路在導通該SR開關前,根據相關於流經該二次側繞組之一二次側繞組電流、流經該SR開關之一SR開關電流、或該二次側繞組或SR開關的跨壓,以確認該功率開關不導通。 In a preferred embodiment, during an operation period, before the SR switch control circuit turns on the SR switch, the SR switch control circuit flows through the SR according to a secondary winding current flowing through one of the secondary windings. One of the switches is the SR switching current or the voltage across the secondary winding or the SR switch to confirm that the power switch is not conducting.
在其中一種較佳的實施例中,該回授脈衝訊號包括至少一回授脈衝,其具有下列之一或其組合:一回授脈衝位準、一回授脈衝時間長度、或一回授脈衝數目,用以示意該輸出電壓;且流經該功率開關之一功率開關電流,對應相關於該回授脈衝位準、該回授脈衝時間長度、該回授脈衝數目、或其組合 In a preferred embodiment, the feedback pulse signal includes at least one feedback pulse, which has one or a combination of the following: a feedback pulse level, a feedback pulse time length, or a feedback pulse Number to indicate the output voltage; and a power switch current flowing through one of the power switches corresponds to the feedback pulse level, the feedback pulse time length, the feedback pulse number, or a combination thereof
在其中一種較佳的實施例中,該同步整流脈衝訊號具有一同步整流脈衝,且該回授脈衝訊號具有一回授脈衝;其中該同步整流脈衝與回授脈衝之脈衝時間長度皆短於1微秒(micro-second)。 In a preferred embodiment, the synchronous rectification pulse signal has a synchronous rectification pulse, and the feedback pulse signal has a feedback pulse; wherein the pulse time length of the synchronous rectification pulse and the feedback pulse are shorter than 1 Micro-second.
在其中一種較佳的實施例中,於一操作期間中,其中該回授脈衝訊號具有一回授脈衝,該回授脈衝於該同步整流脈衝訊號之一同步整流脈衝產生後經過一同步預設期間之後產生。 In one of the preferred embodiments, during an operation period, the feedback pulse signal has a feedback pulse, and the feedback pulse undergoes a synchronous preset after a synchronous rectification pulse of one of the synchronous rectification pulse signals is generated. Generated after the period.
在前述的實施例中,當該同步整流脈衝訊號之該同步整流脈衝產生後開始,未在一同步閾值期間產生下一個該同步整流脈衝,該SR開關控制電路產生該回授脈衝,並接著以一回授週期而週期性產生該回授脈衝,直到該功率開關控制電路產生該同步整流脈衝。 In the foregoing embodiment, when the synchronous rectification pulse of the synchronous rectification pulse signal is started, the next synchronous rectification pulse is not generated during a synchronization threshold period, the SR switch control circuit generates the feedback pulse, and then A feedback cycle periodically generates the feedback pulse until the power switch control circuit generates the synchronous rectification pulse.
在前述的實施例中,該同步預設期間相關於該輸出電壓。 In the foregoing embodiment, the synchronization preset period is related to the output voltage.
在其中一種較佳的實施例中,於一操作期間中,其中該同步整流脈衝訊號具有一同步整流脈衝,該同步整流脈衝產生於該回授脈衝訊號之一回授脈衝產生後經過一回授預設期間之後產生。 In a preferred embodiment, during an operation period, wherein the synchronous rectification pulse signal has a synchronous rectification pulse, the synchronous rectification pulse is generated after a feedback pulse is generated after a feedback pulse is generated. Generated after a preset period.
在前述的實施例中,當該回授脈衝訊號之該回授脈衝產生後開始,未在一回授閾值期間產生下一個該回授脈衝,該功率開關控制電路產生該同步 整流脈衝,並接著以一同步週期而週期性產生該同步整流脈衝,直到該SR開關控制電路產生該回授脈衝。 In the foregoing embodiment, when the feedback pulse of the feedback pulse signal is generated and the next feedback pulse is not generated within a feedback threshold period, the power switch control circuit generates the synchronization Rectify the pulse, and then periodically generate the synchronous rectify pulse with a synchronization period until the SR switch control circuit generates the feedback pulse.
在前述的實施例中,該回授預設期間相關於該輸出電壓。 In the foregoing embodiment, the feedback preset period is related to the output voltage.
在其中一種較佳的實施例中,該SR開關控制電路包括:一輸出電壓取樣電路,用以取樣放大該輸出電壓,而產生一輸出電壓取樣訊號;一回授脈衝訊號產生電路,耦接於該輸出電壓取樣電路與該二次側埠之間,用以根據該輸出電壓取樣訊號,產生該回授脈衝訊號;一SR比較器,與該二次側埠耦接,用以根據該耦合同步整流訊號與一同步參考訊號,產生一同步比較訊號;一SR計時電路,與該比較器耦接,用以根據該同步比較訊號,而計時一同步預設期間後,產生一同步預設期間計時訊號;以及一SR開關控制訊號產生電路,與該比較器及該SR開關耦接,用以根據該同步比較訊號,產生一SR開關控制訊號,以控制該SR開關。 In one of the preferred embodiments, the SR switch control circuit includes: an output voltage sampling circuit for sampling and amplifying the output voltage to generate an output voltage sampling signal; a feedback pulse signal generating circuit coupled to The output voltage sampling circuit is connected to the secondary side port to generate the feedback pulse signal according to the output voltage sampling signal. An SR comparator is coupled to the secondary side port to synchronize according to the coupling. A rectified signal and a synchronous reference signal generate a synchronous comparison signal; an SR timing circuit is coupled to the comparator for timing a synchronous preset period based on the synchronous comparison signal to generate a synchronous preset period timing A signal; and an SR switch control signal generating circuit coupled to the comparator and the SR switch to generate an SR switch control signal to control the SR switch according to the synchronous comparison signal.
在其中一種較佳的實施例中,該功率開關控制電路包括:一功率開關控制訊號產生電路,與該功率開關耦接,用以根據一取樣回授訊號,以產生該功率開關控制訊號;一回授訊號取樣保持電路,耦接於該功率開關控制訊號產生電路與該一次側埠之間,用以根據該耦合回授訊號,產生該取樣回授訊號;以及一回授計時電路,與該功率開關控制訊號產生電路及該回授訊號取樣保持電路耦接,用以根據該功率開關控制訊號與該耦合回授訊號,以產生一取樣訊號及一清除訊號,其中該回授訊號取樣保持電路根據該取樣訊號與該清除訊號,以將該耦合回授訊號轉換為該取樣回授訊號。 In a preferred embodiment, the power switch control circuit includes: a power switch control signal generating circuit coupled to the power switch to generate the power switch control signal according to a sampled feedback signal; a The feedback signal sampling and holding circuit is coupled between the power switch control signal generating circuit and the primary side port to generate the sampling feedback signal according to the coupling feedback signal; and a feedback timing circuit and the feedback timing circuit. The power switch control signal generation circuit and the feedback signal sample-and-hold circuit are coupled to generate a sampling signal and a clear signal according to the power switch control signal and the coupling feedback signal, wherein the feedback signal sample-and-hold circuit According to the sampling signal and the clearing signal, the coupling feedback signal is converted into the sampling feedback signal.
在前述的實施例中,該回授訊號取樣保持電路包括:一遮蔽電路,與該功率開關控制訊號產生電路與該一次側埠耦接,用以根據相關於該功率開關控制訊號之一遮蔽訊號,以於一遮蔽期間內,防止該回授訊號取樣保持電路自該一次側埠接收該同步整流脈衝訊號;以及一取樣回授訊號產生電路,耦接於該 遮蔽電路與該功率開關控制訊號產生電路之間,用以根據該耦合回授訊號、一清除訊號、及一取樣訊號,產生該取樣回授訊號。 In the foregoing embodiment, the feedback signal sample-and-hold circuit includes a masking circuit coupled to the power switch control signal generating circuit and the primary side port for masking a signal according to one of the power switch control signals. To prevent the feedback signal sample and hold circuit from receiving the synchronous rectification pulse signal from the primary side port during a masking period; and a sample feedback signal generation circuit coupled to the The shielding circuit and the power switch control signal generating circuit are configured to generate the sampling feedback signal according to the coupling feedback signal, a clear signal, and a sampling signal.
就另一個觀點言,本發明提供了一種返馳式電源供應電路之SR開關控制電路,該返馳式電源供應電路包含一變壓器,具有一次側繞組,以接收一輸入電壓;以及二次側繞組,以產生一輸出電壓;一功率開關,耦接於該一次側繞組,用以控制該一次側繞組的導通時間;一功率開關控制電路,位於該變壓器之一次側,用以根據一耦合回授訊號,產生一功率開關控制訊號以控制該功率開關,並產生一同步整流脈衝訊號;一同步整流(synchronous rectification,SR)開關,耦接於該二次側繞組,用以控制該二次側繞組的導通時間,以對應於該一次側繞組不導通時導通;該SR開關控制電路,位於該變壓器之二次側,耦接於該SR開關,用以於一正常操作模式中,接收一耦合同步整流訊號,以控制該SR開關,並根據該輸出電壓,產生一回授脈衝訊號;以及一訊號耦合電路,耦接於該SR開關控制電路與該功率開關控制電路之間,用以將該同步整流脈衝訊號,以非接觸方式,感應產生該耦合同步整流訊號,並將該回授脈衝訊號,以非接觸方式,感應產生該耦合回授訊號;其中該訊號耦合電路具有一一次側埠與一二次側埠,該一次側埠位於該變壓器之一次側,且該二次側埠位於該變壓器之二次側,其中該一次側埠於互不重疊的不同時段中,分別接收該同步整流脈衝訊號與產生該耦合回授訊號,且該二次側埠於該對應之互不重疊的不同時段中,分別產生該耦合同步整流訊號與接收該回授脈衝訊號;該SR開關控制電路包含:一輸出電壓取樣電路,用以取樣放大該輸出電壓,而產生一輸出電壓取樣訊號;一回授脈衝訊號產生電路,耦接於該輸出電壓取樣電路與該二次側埠之間,用以根據該輸出電壓取樣訊號,產生該回授脈衝訊號;一SR比較器,與該二次側埠耦接,用以根據該耦合同步整流訊號與一同步參考訊號,產生一同步比較訊號;一SR計時電路, 與該比較器耦接,用以根據該同步比較訊號,而計時一同步預設期間後,產生一同步預設期間計時訊號;以及一SR開關控制訊號產生電路,與該比較器及該SR開關耦接,用以根據該同步比較訊號,產生一SR開關控制訊號,以控制該SR開關。 In another aspect, the present invention provides an SR switch control circuit for a flyback power supply circuit. The flyback power supply circuit includes a transformer with a primary winding to receive an input voltage; and a secondary winding. To generate an output voltage; a power switch coupled to the primary winding to control the on-time of the primary winding; a power switch control circuit located on the primary side of the transformer for feedback based on a coupling Signal, generating a power switch control signal to control the power switch, and generating a synchronous rectification pulse signal; a synchronous rectification (SR) switch, coupled to the secondary winding, for controlling the secondary winding The on time corresponds to the time when the primary winding is not conducting; the SR switch control circuit is located on the secondary side of the transformer and is coupled to the SR switch for receiving a coupling synchronization in a normal operation mode Rectify the signal to control the SR switch, and generate a feedback pulse signal according to the output voltage; and a signal coupling circuit, coupled Between the SR switch control circuit and the power switch control circuit, the synchronous rectification pulse signal is induced in a non-contact manner to generate the coupled synchronous rectification signal, and the feedback pulse signal is used in a non-contact manner. The coupling feedback signal is induced by induction; wherein the signal coupling circuit has a primary side port and a secondary side port, the primary side port is located on the primary side of the transformer, and the secondary side port is located on the secondary side of the transformer , Wherein the primary side port receives the synchronous rectification pulse signal and generates the coupling feedback signal in different periods that do not overlap each other, and the secondary side port generates the corresponding different periods that do not overlap each other. The coupling synchronous rectification signal and receiving the feedback pulse signal; the SR switch control circuit includes: an output voltage sampling circuit for sampling and amplifying the output voltage to generate an output voltage sampling signal; a feedback pulse signal generating circuit, Coupled between the output voltage sampling circuit and the secondary side port to sample the signal according to the output voltage to generate the feedback pulse signal; SR comparator, coupled to the secondary side port is coupled to the synchronous rectifier in accordance with a synchronizing signal and the reference signal, generating a synchronization signal comparison; SR a timer circuit, Is coupled to the comparator to generate a synchronous preset period timing signal after timing a synchronous preset period according to the synchronous comparison signal; and an SR switch control signal generating circuit for the comparator and the SR switch And coupled to generate an SR switch control signal according to the synchronous comparison signal to control the SR switch.
在其中一種較佳的實施例中,該訊號耦合電路包括一脈衝變壓器或一脈衝光耦合器,該脈衝變壓器與脈衝光耦合器之輸入與輸出訊號皆為具有脈衝形式的訊號。 In a preferred embodiment, the signal coupling circuit includes a pulse transformer or a pulse optical coupler, and the input and output signals of the pulse transformer and the pulse optical coupler are both signals in the form of pulses.
在其中一種較佳的實施例中,於一操作期間中,於該功率開關導通之前,該同步整流脈衝訊號具有一同步整流脈衝;且該SR開關控制電路根據相關於該同步整流脈衝的該耦合同步整流訊號,不導通該SR開關,以使該該功率開關導通之前,該SR開關不導通。 In a preferred embodiment, during an operation period, before the power switch is turned on, the synchronous rectification pulse signal has a synchronous rectification pulse; and the SR switch control circuit is based on the coupling related to the synchronous rectification pulse. The synchronous rectification signal does not turn on the SR switch, so that before the power switch is turned on, the SR switch is not turned on.
在其中一種較佳的實施例中,於一操作期間中,該SR開關控制電路在導通該SR開關前,根據相關於流經該二次側繞組之一二次側繞組電流、流經該SR開關之一SR開關電流、或該二次側繞組或SR開關的跨壓,以確認該功率開關不導通。 In a preferred embodiment, during an operation period, before the SR switch control circuit turns on the SR switch, the SR switch control circuit flows through the SR according to a secondary winding current flowing through one of the secondary windings. One of the switches is the SR switching current or the voltage across the secondary winding or the SR switch to confirm that the power switch is not conducting.
在其中一種較佳的實施例中,該回授脈衝訊號包括至少一回授脈衝,其具有下列之一或其組合:一回授脈衝位準、一回授脈衝時間長度、或一回授脈衝數目,用以示意該輸出電壓;且流經該功率開關之一功率開關電流,對應相關於該回授脈衝位準、該回授脈衝時間長度、該回授脈衝數目、或其組合。 In a preferred embodiment, the feedback pulse signal includes at least one feedback pulse, which has one or a combination of the following: a feedback pulse level, a feedback pulse time length, or a feedback pulse The number is used to indicate the output voltage; and one power switch current flowing through the power switch corresponds to the feedback pulse level, the feedback pulse time length, the number of feedback pulses, or a combination thereof.
在其中一種較佳的實施例中,該同步整流脈衝訊號具有一同步整流脈衝,且該回授脈衝訊號具有一回授脈衝;其中該同步整流脈衝與回授脈衝之脈衝時間長度皆短於1微秒(micro-second)。 In a preferred embodiment, the synchronous rectification pulse signal has a synchronous rectification pulse, and the feedback pulse signal has a feedback pulse; wherein the pulse time length of the synchronous rectification pulse and the feedback pulse are shorter than 1 Micro-second.
在其中一種較佳的實施例中,於一操作期間中,其中該回授脈衝訊號具有一回授脈衝,該回授脈衝於該同步整流脈衝訊號之一同步整流脈衝產生後經過一同步預設期間之後產生。 In one of the preferred embodiments, during an operation period, the feedback pulse signal has a feedback pulse, and the feedback pulse undergoes a synchronous preset after a synchronous rectification pulse of one of the synchronous rectification pulse signals is generated. Generated after the period.
在前述的實施例中,當該同步整流脈衝訊號之該同步整流脈衝產生後開始,未在一同步閾值期間產生下一個該同步整流脈衝,該SR開關控制電路產生該回授脈衝,並接著以一回授週期而週期性產生該回授脈衝,直到該功率開關控制電路產生該同步整流脈衝。 In the foregoing embodiment, when the synchronous rectification pulse of the synchronous rectification pulse signal is started, the next synchronous rectification pulse is not generated during a synchronization threshold period, the SR switch control circuit generates the feedback pulse, and then A feedback cycle periodically generates the feedback pulse until the power switch control circuit generates the synchronous rectification pulse.
在前述的實施例中,該同步預設期間相關於該輸出電壓。 In the foregoing embodiment, the synchronization preset period is related to the output voltage.
在其中一種較佳的實施例中,於一操作期間中,其中該同步整流脈衝訊號具有一同步整流脈衝,該同步整流脈衝產生於該回授脈衝訊號之一回授脈衝產生後經過一回授預設期間之後產生。 In a preferred embodiment, during an operation period, wherein the synchronous rectification pulse signal has a synchronous rectification pulse, the synchronous rectification pulse is generated after a feedback pulse is generated after a feedback pulse is generated. Generated after a preset period.
在前述的實施例中,當該回授脈衝訊號之該回授脈衝產生後開始,未在一回授閾值期間產生下一個該回授脈衝,該功率開關控制電路產生該同步整流脈衝,並接著以一同步週期而週期性產生該同步整流脈衝,直到該SR開關控制電路產生該回授脈衝。 In the foregoing embodiment, when the feedback pulse of the feedback pulse signal is generated and the next feedback pulse is not generated within a feedback threshold period, the power switch control circuit generates the synchronous rectification pulse, and then The synchronous rectification pulse is generated periodically with a synchronization period until the SR switch control circuit generates the feedback pulse.
在前述的實施例中,該回授預設期間相關於該輸出電壓。 In the foregoing embodiment, the feedback preset period is related to the output voltage.
在其中一種較佳的實施例中,該功率開關控制電路包括:一功率開關控制訊號產生電路,與該功率開關耦接,用以根據一取樣回授訊號,以產生該功率開關控制訊號;一回授訊號取樣保持電路,耦接於該功率開關控制訊號產生電路與該一次側埠之間,用以根據該耦合回授訊號,產生該取樣回授訊號;以及一回授計時電路,與該功率開關控制訊號產生電路及該回授訊號取樣保持電路耦接,用以根據該功率開關控制訊號與該耦合回授訊號,以產生一取樣訊號及一清除訊號,其中該回授訊號取樣保持電路根據該取樣訊號與該清除訊號,以將該耦合回授訊號轉換為該取樣回授訊號。 In a preferred embodiment, the power switch control circuit includes: a power switch control signal generating circuit coupled to the power switch to generate the power switch control signal according to a sampled feedback signal; a The feedback signal sampling and holding circuit is coupled between the power switch control signal generating circuit and the primary side port to generate the sampling feedback signal according to the coupling feedback signal; and a feedback timing circuit and the feedback timing circuit. The power switch control signal generation circuit and the feedback signal sample-and-hold circuit are coupled to generate a sampling signal and a clear signal according to the power switch control signal and the coupling feedback signal, wherein the feedback signal sample-and-hold circuit According to the sampling signal and the clearing signal, the coupling feedback signal is converted into the sampling feedback signal.
在前述的實施例中,該回授訊號取樣保持電路包括:一遮蔽電路,與該功率開關控制訊號產生電路與該一次側埠耦接,用以根據相關於該功率開關控制訊號之一遮蔽訊號,以於一遮蔽期間內,防止該回授訊號取樣保持電路自該一次側埠接收該同步整流脈衝訊號;以及一取樣回授訊號產生電路,耦接於該遮蔽電路與該功率開關控制訊號產生電路之間,用以根據該耦合回授訊號、一清除訊號、及一取樣訊號,產生該取樣回授訊號。 In the foregoing embodiment, the feedback signal sample-and-hold circuit includes a masking circuit coupled to the power switch control signal generating circuit and the primary side port for masking a signal according to one of the power switch control signals. To prevent the feedback signal sample-and-hold circuit from receiving the synchronous rectification pulse signal from the primary side port during a masking period; and a sample-feedback signal generation circuit coupled to the masking circuit and the power switch control signal generation Between the circuits, the sampling feedback signal is generated according to the coupling feedback signal, a clear signal, and a sampling signal.
就另一個觀點言,本發明提供了一種返馳式電源供應電路之功率開關控制電路,該返馳式電源供應電路包含一變壓器,具有一次側繞組,以接收一輸入電壓;以及二次側繞組,以產生一輸出電壓;一功率開關,耦接於該一次側繞組,用以控制該一次側繞組的導通時間;該功率開關控制電路,位於該變壓器之一次側,用以根據一耦合回授訊號,產生一功率開關控制訊號以控制該功率開關,並產生一同步整流脈衝訊號;一同步整流(synchronous rectification,SR)開關,耦接於該二次側繞組,用以控制該二次側繞組的導通時間,以對應於該一次側繞組不導通時導通;一SR開關控制電路,位於該變壓器之二次側,耦接於該SR開關,用以於一正常操作模式中,接收一耦合同步整流訊號,以控制該SR開關,並根據該輸出電壓,產生一回授脈衝訊號;以及一訊號耦合電路,耦接於該SR開關控制電路與該功率開關控制電路之間,用以將該同步整流脈衝訊號,以非接觸方式,感應產生該耦合同步整流訊號,並將該回授脈衝訊號,以非接觸方式,感應產生該耦合回授訊號;其中該訊號耦合電路具有一一次側埠與一二次側埠,該一次側埠位於該變壓器之一次側,且該二次側埠位於該變壓器之二次側,其中該一次側埠於互不重疊的不同時段中,分別接收該同步整流脈衝訊號與產生該耦合回授訊號,且該二次側埠於該對應之互不重疊的不同時段中,分別產生該耦合同步整流訊號與接收該回授脈衝訊號;該功率開關控制電路包含:一功率開關控制訊號產生電 路,與該功率開關耦接,用以根據一取樣回授訊號,以產生該功率開關控制訊號;一回授訊號取樣保持電路,耦接於該功率開關控制訊號產生電路與該一次側埠之間,用以根據該耦合回授訊號,產生該取樣回授訊號;以及一回授計時電路,與該功率開關控制訊號產生電路及該回授訊號取樣保持電路耦接,用以根據該功率開關控制訊號與該耦合回授訊號,以產生一取樣訊號及一清除訊號,其中該回授訊號取樣保持電路根據該取樣訊號與該清除訊號,以將該耦合回授訊號轉換為該取樣回授訊號。 In another aspect, the present invention provides a power switch control circuit for a flyback power supply circuit. The flyback power supply circuit includes a transformer having a primary winding to receive an input voltage; and a secondary winding. To generate an output voltage; a power switch coupled to the primary winding to control the on-time of the primary winding; the power switch control circuit is located on the primary side of the transformer and is used to feedback based on a coupling Signal, generating a power switch control signal to control the power switch, and generating a synchronous rectification pulse signal; a synchronous rectification (SR) switch, coupled to the secondary winding, for controlling the secondary winding The ON time corresponds to the ON time when the primary winding is non-conductive; an SR switch control circuit, located on the secondary side of the transformer, is coupled to the SR switch for receiving a coupling synchronization in a normal operating mode Rectifying a signal to control the SR switch, and generating a feedback pulse signal according to the output voltage; and a signal coupling circuit, It is connected between the SR switch control circuit and the power switch control circuit, and is used to inductively generate the coupled synchronous rectified signal in a non-contact manner, and the feedback pulse signal is used in a non-contact manner. , The coupling feedback signal is induced; wherein the signal coupling circuit has a primary side port and a secondary side port, the primary side port is located on the primary side of the transformer, and the secondary side port is located on the secondary side of the transformer Side, wherein the primary side port receives the synchronous rectification pulse signal and generates the coupling feedback signal in different periods that do not overlap each other, and the secondary side port is in the corresponding different periods that do not overlap each other, respectively Generating the coupled synchronous rectification signal and receiving the feedback pulse signal; the power switch control circuit includes: a power switch control signal to generate electricity It is coupled to the power switch to generate a power switch control signal according to a sample feedback signal; a feedback signal sample and hold circuit is coupled to the power switch control signal generation circuit and the primary side port. For generating the sampling feedback signal according to the coupling feedback signal; and a feedback timing circuit coupled to the power switch control signal generation circuit and the feedback signal sampling and holding circuit for coupling the power switch A control signal and the coupling feedback signal to generate a sampling signal and a clear signal, wherein the feedback signal sample-and-hold circuit converts the coupling feedback signal into the sampling feedback signal according to the sampling signal and the clear signal. .
在其中一種較佳的實施例中,該回授訊號取樣保持電路包括:一遮蔽電路,與該功率開關控制訊號產生電路與該一次側埠耦接,用以根據相關於該功率開關控制訊號之一遮蔽訊號,以於一遮蔽期間內,防止該回授訊號取樣保持電路自該一次側埠接收該同步整流脈衝訊號;以及一取樣回授訊號產生電路,耦接於該遮蔽電路與該功率開關控制訊號產生電路之間,用以根據該耦合回授訊號、一清除訊號、及一取樣訊號,產生該取樣回授訊號。 In one of the preferred embodiments, the feedback signal sampling and holding circuit includes a shielding circuit coupled to the power switch control signal generating circuit and the primary side port, and is configured to be connected to the power switch control signal according to A masking signal to prevent the feedback signal sampling and holding circuit from receiving the synchronous rectification pulse signal from the primary side port during a masking period; and a sampling feedback signal generating circuit coupled to the masking circuit and the power switch The control signal generating circuit is configured to generate the sampling feedback signal according to the coupling feedback signal, a clear signal, and a sampling signal.
在其中一種較佳的實施例中,該訊號耦合電路包括一脈衝變壓器或一脈衝光耦合器,該脈衝變壓器與脈衝光耦合器之輸入與輸出訊號皆為具有脈衝形式的訊號。 In a preferred embodiment, the signal coupling circuit includes a pulse transformer or a pulse optical coupler, and the input and output signals of the pulse transformer and the pulse optical coupler are both signals in the form of pulses.
在其中一種較佳的實施例中,於一操作期間中,於該功率開關導通之前,該同步整流脈衝訊號具有一同步整流脈衝;且該SR開關控制電路根據相關於該同步整流脈衝的該耦合同步整流訊號,不導通該SR開關,以使該該功率開關導通之前,該SR開關不導通。 In a preferred embodiment, during an operation period, before the power switch is turned on, the synchronous rectification pulse signal has a synchronous rectification pulse; and the SR switch control circuit is based on the coupling related to the synchronous rectification pulse. The synchronous rectification signal does not turn on the SR switch, so that before the power switch is turned on, the SR switch is not turned on.
在其中一種較佳的實施例中,於一操作期間中,該SR開關控制電路在導通該SR開關前,根據相關於流經該二次側繞組之一二次側繞組電流、流經該SR開關之一SR開關電流、或該二次側繞組或SR開關的跨壓,以確認該功率開關不導通。 In a preferred embodiment, during an operation period, before the SR switch control circuit turns on the SR switch, the SR switch control circuit flows through the SR according to a secondary winding current flowing through one of the secondary windings. One of the switches is the SR switching current or the voltage across the secondary winding or the SR switch to confirm that the power switch is not conducting.
在其中一種較佳的實施例中,該回授脈衝訊號包括至少一回授脈衝,其具有下列之一或其組合:一回授脈衝位準、一回授脈衝時間長度、或一回授脈衝數目,用以示意該輸出電壓;且流經該功率開關之一功率開關電流,對應相關於該回授脈衝位準、該回授脈衝時間長度、該回授脈衝數目、或其組合。 In a preferred embodiment, the feedback pulse signal includes at least one feedback pulse, which has one or a combination of the following: a feedback pulse level, a feedback pulse time length, or a feedback pulse The number is used to indicate the output voltage; and one power switch current flowing through the power switch corresponds to the feedback pulse level, the feedback pulse time length, the number of feedback pulses, or a combination thereof.
在其中一種較佳的實施例中,該同步整流脈衝訊號具有一同步整流脈衝,且該回授脈衝訊號具有一回授脈衝;其中該同步整流脈衝與回授脈衝之脈衝時間長度皆短於1微秒(micro-second)。 In a preferred embodiment, the synchronous rectification pulse signal has a synchronous rectification pulse, and the feedback pulse signal has a feedback pulse; wherein the pulse time length of the synchronous rectification pulse and the feedback pulse are shorter than 1 Micro-second.
在其中一種較佳的實施例中,於一操作期間中,其中該回授脈衝訊號具有一回授脈衝,該回授脈衝於該同步整流脈衝訊號之一同步整流脈衝產生後經過一同步預設期間之後產生。 In one of the preferred embodiments, during an operation period, the feedback pulse signal has a feedback pulse, and the feedback pulse undergoes a synchronous preset after a synchronous rectification pulse of one of the synchronous rectification pulse signals is generated. Generated after the period.
在前述的實施例中,當該同步整流脈衝訊號之該同步整流脈衝產生後開始,未在一同步閾值期間產生下一個該同步整流脈衝,該SR開關控制電路產生該回授脈衝,並接著以一回授週期而週期性產生該回授脈衝,直到該功率開關控制電路產生該同步整流脈衝。 In the foregoing embodiment, when the synchronous rectification pulse of the synchronous rectification pulse signal is started, the next synchronous rectification pulse is not generated during a synchronization threshold period, the SR switch control circuit generates the feedback pulse, and then A feedback cycle periodically generates the feedback pulse until the power switch control circuit generates the synchronous rectification pulse.
在前述的實施例中,該同步預設期間相關於該輸出電壓。 In the foregoing embodiment, the synchronization preset period is related to the output voltage.
在其中一種較佳的實施例中,於一操作期間中,其中該同步整流脈衝訊號具有一同步整流脈衝,該同步整流脈衝產生於該回授脈衝訊號之一回授脈衝產生後經過一回授預設期間之後產生。 In a preferred embodiment, during an operation period, wherein the synchronous rectification pulse signal has a synchronous rectification pulse, the synchronous rectification pulse is generated after a feedback pulse is generated after a feedback pulse is generated. Generated after a preset period.
在前述的實施例中,當該回授脈衝訊號之該回授脈衝產生後開始,未在一回授閾值期間產生下一個該回授脈衝,該功率開關控制電路產生該同步整流脈衝,並接著以一同步週期而週期性產生該同步整流脈衝,直到該SR開關控制電路產生該回授脈衝。 In the foregoing embodiment, when the feedback pulse of the feedback pulse signal is generated and the next feedback pulse is not generated within a feedback threshold period, the power switch control circuit generates the synchronous rectification pulse, and then The synchronous rectification pulse is generated periodically with a synchronization period until the SR switch control circuit generates the feedback pulse.
在前述的實施例中,該回授預設期間相關於該輸出電壓。 In the foregoing embodiment, the feedback preset period is related to the output voltage.
在其中一種較佳的實施例中,該SR開關控制電路包括:一輸出電壓取樣電路,用以取樣放大該輸出電壓,而產生一輸出電壓取樣訊號;一回授脈衝訊號產生電路,耦接於該輸出電壓取樣電路與該二次側埠之間,用以根據該輸出電壓取樣訊號,產生該回授脈衝訊號;一SR比較器,與該二次側埠耦接,用以根據該耦合同步整流訊號與一同步參考訊號,產生一同步比較訊號;一SR計時電路,與該比較器耦接,用以根據該同步比較訊號,而計時一同步預設期間後,產生一同步預設期間計時訊號;以及一SR開關控制訊號產生電路,與該比較器及該SR開關耦接,用以根據該同步比較訊號,產生一SR開關控制訊號,以控制該SR開關。 In one of the preferred embodiments, the SR switch control circuit includes: an output voltage sampling circuit for sampling and amplifying the output voltage to generate an output voltage sampling signal; a feedback pulse signal generating circuit coupled to The output voltage sampling circuit is connected to the secondary side port to generate the feedback pulse signal according to the output voltage sampling signal. An SR comparator is coupled to the secondary side port to synchronize according to the coupling. A rectified signal and a synchronous reference signal generate a synchronous comparison signal; an SR timing circuit is coupled to the comparator for timing a synchronous preset period based on the synchronous comparison signal to generate a synchronous preset period timing A signal; and an SR switch control signal generating circuit coupled to the comparator and the SR switch to generate an SR switch control signal to control the SR switch according to the synchronous comparison signal.
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 Detailed descriptions will be provided below through specific embodiments to make it easier to understand the purpose, technical content, features and effects of the present invention.
100,200‧‧‧返馳式電源供應電路 100,200‧‧‧Flyback power supply circuit
101‧‧‧整流電路 101‧‧‧ rectifier circuit
102,202‧‧‧變壓器 102,202‧‧‧Transformer
103‧‧‧耦合電路 103‧‧‧Coupling circuit
104‧‧‧光耦合電路 104‧‧‧optical coupling circuit
105‧‧‧PWM控制電路 105‧‧‧PWM control circuit
106‧‧‧電流感測電路 106‧‧‧Current sensing circuit
107‧‧‧同步整流控制電路 107‧‧‧Synchronous Rectification Control Circuit
108‧‧‧同步整流開關電路 108‧‧‧Synchronous Rectifier Switch Circuit
204‧‧‧訊號耦合電路 204‧‧‧Signal coupling circuit
205‧‧‧功率開關控制電路 205‧‧‧Power switch control circuit
207‧‧‧SR開關控制電路 207‧‧‧SR switch control circuit
208‧‧‧SR開關 208‧‧‧SR switch
2051‧‧‧功率開關控制訊號產生電路 2051‧‧‧Power switch control signal generating circuit
2053‧‧‧回授訊號取樣保持電路 2053‧‧‧Return signal sample and hold circuit
2055‧‧‧回授計時電路 2055‧‧‧Feedback timing circuit
2071‧‧‧輸出電壓取樣電路 2071‧‧‧Output voltage sampling circuit
2073‧‧‧回授脈衝訊號產生電路 2073‧‧‧Feedback pulse signal generating circuit
2075‧‧‧SR比較器 2075‧‧‧SR comparator
2077‧‧‧SR計時電路 2077‧‧‧SR timing circuit
2079‧‧‧SR開關控制訊號產生電路 2079‧‧‧SR switch control signal generating circuit
3051‧‧‧比較器 3051‧‧‧ Comparator
3052‧‧‧閂鎖電路 3052‧‧‧Latch circuit
3053‧‧‧取樣保持電路 3053‧‧‧Sample and Hold Circuit
3071‧‧‧分壓電路 3071‧‧‧Divided voltage circuit
3072‧‧‧比較器 3072‧‧‧ Comparator
3074‧‧‧脈衝開關 3074‧‧‧Pulse Switch
3078‧‧‧延時計時器 3078‧‧‧ Delay Timer
3079‧‧‧斜坡訊號產生電路 3079‧‧‧Slope signal generating circuit
3173‧‧‧脈衝電路 3173‧‧‧Pulse Circuit
3174‧‧‧脈衝開關 3174‧‧‧Pulse Switch
20531‧‧‧遮蔽電路 20531‧‧‧Shading circuit
20533‧‧‧取樣回授訊號產生電路 20533‧‧‧Sampling feedback signal generating circuit
BLKP‧‧‧遮蔽訊號 BLKP‧‧‧Blocking signal
C1,C2‧‧‧電容 C1, C2‧‧‧Capacitors
CLR‧‧‧清除訊號 CLR‧‧‧Clear signal
COMP‧‧‧取樣回授訊號 COMP‧‧‧Sampling feedback signal
FB‧‧‧反饋訊號 FB‧‧‧Feedback
GND‧‧‧接地電位 GND‧‧‧ ground potential
Iout‧‧‧輸出電流 Iout‧‧‧Output current
Iw2,Isr‧‧‧電流 Iw2, Isr‧‧‧Current
P1‧‧‧一次側埠 P1‧‧‧ side port
P2‧‧‧二次側埠 P2‧‧‧Secondary side port
PLS‧‧‧通知訊號 PLS‧‧‧Notification signal
Pul1,Pul2,Pul3,Pul4‧‧‧回授脈衝 Pul1, Pul2, Pul3, Pul4‧‧‧ feedback pulse
PS1,PS2‧‧‧脈衝開關訊號 PS1, PS2‧‧‧‧Pulse switch signal
REF‧‧‧參考電位 REF‧‧‧Reference potential
Sfb‧‧‧回授脈衝訊號 Sfb‧‧‧ feedback pulse signal
SH‧‧‧取樣訊號 SH‧‧‧Sampling signal
Spwm‧‧‧功率開關控制訊號 Spwm‧‧‧ Power Switch Control Signal
Sramp‧‧‧斜坡訊號 Sramp‧‧‧Slope Signal
SRPul‧‧‧同步整流脈衝 SRPul‧‧‧Synchronous rectification pulse
SW‧‧‧功率開關 SW‧‧‧Power Switch
SWb‧‧‧開關 SWb‧‧‧Switch
Sync‧‧‧同步整流脈衝訊號 Sync‧‧‧Synchronous rectification pulse signal
Sx‧‧‧同步比較訊號 Sx‧‧‧Synchronous comparison signal
Tb‧‧‧遮蔽脈衝時間長度 Tb‧‧‧Mask pulse duration
Td‧‧‧同步預設期間 Td‧‧‧Sync preset period
Tp‧‧‧回授週期 Tp‧‧‧Feedback cycle
Ts‧‧‧同步整流脈衝時間長度 Ts‧‧‧Synchronous rectification pulse time length
Tt‧‧‧同步閾值期間 Tt‧‧‧Synchronization threshold period
Vac‧‧‧交流電壓 Vac‧‧‧AC voltage
Vin‧‧‧輸入電壓 Vin‧‧‧ input voltage
Vfb‧‧‧耦合回授訊號 Vfb‧‧‧Coupled feedback signal
Vfb_cmp‧‧‧回授比較訊號 Vfb_cmp ‧‧‧ feedback comparison signal
Vfb_ltch‧‧‧閂鎖回授訊號 Vfb_ltch‧‧‧Latchback feedback signal
Vfb_sh‧‧‧取樣保持訊號 Vfb_sh‧‧‧Sampling and holding signal
Vo,Vopto‧‧‧電壓 Vo, Vopto‧‧‧Voltage
Vout‧‧‧輸出電壓 Vout‧‧‧Output voltage
Vosp‧‧‧輸出電壓取樣訊號 Vosp‧‧‧Output voltage sampling signal
Vsr‧‧‧跨壓 Vsr‧‧‧ Cross pressure
Vsync‧‧‧耦合同步整流訊號 Vsync‧‧‧Coupled synchronous rectification signal
Vth1‧‧‧同步參考訊號 Vth1‧‧‧Sync reference signal
Vth3‧‧‧回授參考訊號 Vth3‧‧‧ feedback reference signal
VSR‧‧‧SR開關控制訊號 VSR‧‧‧SR switch control signal
Vw2‧‧‧跨壓 Vw2‧‧‧cross pressure
W1‧‧‧一次側繞組 W1‧‧‧ primary winding
W2‧‧‧二次側繞組 W2‧‧‧Secondary winding
第1圖顯示一種先前技術的返馳式電源供應電路。 Figure 1 shows a prior art flyback power supply circuit.
第2圖顯示本發明之返馳式電源供應電路200的一個實施例。 FIG. 2 shows an embodiment of a flyback power supply circuit 200 according to the present invention.
第3圖顯示根據本發明之同步整流脈衝訊號Sync、功率開關控制訊號Spwm、SR開關控制訊號VSR、與回授脈衝訊號Sfb之波形示意圖。 FIG. 3 shows waveforms of the synchronous rectification pulse signal Sync, the power switch control signal Spwm, the SR switch control signal VSR, and the feedback pulse signal Sfb according to the present invention.
第4A-4D圖顯示本發明同步整流脈衝訊號Sync與回授脈衝訊號Sfb數種實施例中的波形示意圖。 4A-4D are schematic waveform diagrams of several embodiments of the synchronous rectification pulse signal Sync and the feedback pulse signal Sfb according to the present invention.
第5圖顯示本發明一種實施例之同步整流脈衝訊號Sync、功率開關控制訊號Spwm、與回授脈衝訊號Sfb之波形示意圖。 FIG. 5 is a waveform diagram of a synchronous rectification pulse signal Sync, a power switch control signal Spwm, and a feedback pulse signal Sfb according to an embodiment of the present invention.
第6圖顯示本發明SR開關控制電路207的一個實施例。 FIG. 6 shows an embodiment of the SR switch control circuit 207 of the present invention.
第7圖顯示本發明SR開關控制電路207的一個較具體的實施例。 FIG. 7 shows a more specific embodiment of the SR switch control circuit 207 of the present invention.
第8圖顯示本發明功率開關控制電路205的一個實施例。 FIG. 8 shows an embodiment of the power switch control circuit 205 of the present invention.
第9圖顯示本發明回授訊號取樣保持電路2053的一個實施例。 FIG. 9 shows an embodiment of the feedback signal sample-and-hold circuit 2053 according to the present invention.
第10圖顯示本發明功率開關控制電路205的一個較具體的實施例。 FIG. 10 shows a more specific embodiment of the power switch control circuit 205 of the present invention.
第11圖顯示在10圖的實施例中,遮蔽訊號BLKP與同步整流脈衝訊號Sync的訊號波形示意圖。 FIG. 11 is a schematic diagram of signal waveforms of the shielding signal BLKP and the synchronous rectification pulse signal Sync in the embodiment of FIG. 10.
第12圖顯示本發明功率開關控制電路205的一個較具體的實施例。 FIG. 12 shows a more specific embodiment of the power switch control circuit 205 of the present invention.
第13圖顯示根據本發明之同步整流脈衝訊號Sync、功率開關控制訊號Spwm、SR開關控制訊號VSR、回授脈衝訊號Sfb、電壓Vopto、斜坡訊號Sramp、取樣保持訊號Vfb_sh、取樣訊號SH、與清除訊號CLR之波形示意圖。 FIG. 13 shows a synchronous rectification pulse signal Sync, a power switch control signal Spwm, an SR switch control signal VSR, a feedback pulse signal Sfb, a voltage Vopto, a ramp signal Sramp, a sample and hold signal Vfb_sh, a sample signal SH, and clearing according to the present invention. Signal CLR waveform diagram.
本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。 The drawings in the present invention are schematic, and are mainly intended to represent the coupling relationship between various circuits and the relationship between signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.
請參閱第2圖,顯示本發明之返馳式電源供應電路200的一個實施例。如第2圖所示,交流電壓Vac經由整流電路101整流後,產生輸入電壓Vin。 整流電路101例如為橋式整流電路。返馳式電源供應電路200中,變壓器202的一次側繞組W1接收輸入電壓Vin。功率開關SW控制一次側繞組W1的導通時間,而在二次側繞組W2與一接地電位GND間,產生輸出電壓Vout。返馳式電源供應電路200包含變壓器202、功率開關SW、訊號耦合電路204、功率開關控制電路205、SR開關控制電路207、以及同步整流(synchronous rectification,SR)開關208。 功率開關SW耦接於一次側繞組W1,用以控制一次側繞組W1的導通時間。功率開關控制電路205位於變壓器202之一次側,用以根據耦合回授訊號Vfb,產生功率開關控制訊號Spwm以控制功率開關SW,並根據耦合回授訊號Vfb,產生同步 整流脈衝訊號Sync;其中,同步整流脈衝訊號Sync相關於功率開關控制訊號Spwm,舉例而言,同步整流脈衝訊號Sync具有一整流脈衝,用以在功率開關控制訊號Spwm導通功率開關SW之前,藉由訊號耦合電路204轉換並傳送相關資訊至於變壓器202之二次側,而不導通SR開關208。 Please refer to FIG. 2, which shows an embodiment of the flyback power supply circuit 200 of the present invention. As shown in FIG. 2, the AC voltage Vac is rectified by the rectifier circuit 101 to generate an input voltage Vin. The rectifier circuit 101 is, for example, a bridge rectifier circuit. In the flyback power supply circuit 200, the primary winding W1 of the transformer 202 receives the input voltage Vin. The power switch SW controls the on-time of the primary winding W1, and generates an output voltage Vout between the secondary winding W2 and a ground potential GND. The flyback power supply circuit 200 includes a transformer 202, a power switch SW, a signal coupling circuit 204, a power switch control circuit 205, an SR switch control circuit 207, and a synchronous rectification (SR) switch 208. The power switch SW is coupled to the primary winding W1 to control the on-time of the primary winding W1. The power switch control circuit 205 is located on the primary side of the transformer 202, and is used to generate a power switch control signal Spwm to control the power switch SW according to the coupled feedback signal Vfb, and to generate synchronization based on the coupled feedback signal Vfb. Rectifying pulse signal Sync; among them, the synchronous rectifying pulse signal Sync is related to the power switch control signal Spwm. For example, the synchronous rectifying pulse signal Sync has a rectifying pulse, and is used to control the power switch SW before the power switch control signal Spwm is turned on by The signal coupling circuit 204 converts and transmits related information to the secondary side of the transformer 202 without turning on the SR switch 208.
同步整流(synchronous rectification,SR)開關208,耦接於二次側繞組W2,用以控制二次側繞組W2的導通時間,以對應於一次側繞組W1導通時不導通。SR開關控制電路207位於變壓器202之二次側,耦接於SR開關208,用以於正常操作模式中,接收耦合同步整流訊號Vsync,以控制SR開關208,並根據輸出電壓Vout或輸出電流Iout,產生回授脈衝訊號Sfb。舉例而言,SR開關控制電路207根據相關於同步整流脈衝訊號Sync之耦合同步整流訊號Vsync,控制SR開關208,而決定不導通二次側繞組W2的時點,並根據流經二次側繞組W2的電流Iw2,或二次側繞組W2的的跨壓Vw2,或流經SR開關208中寄生二極體的電流Isr,或SR開關208的跨壓Vsr,而決定導通SR開關208的時點。 A synchronous rectification (SR) switch 208 is coupled to the secondary winding W2 to control the conduction time of the secondary winding W2 so as to correspond to the non-conduction when the primary winding W1 is conducting. The SR switch control circuit 207 is located on the secondary side of the transformer 202, and is coupled to the SR switch 208. In normal operation mode, it receives the coupled synchronous rectification signal Vsync to control the SR switch 208, and according to the output voltage Vout or the output current Iout To generate the feedback pulse signal Sfb. For example, the SR switch control circuit 207 controls the SR switch 208 according to the coupled synchronous rectification signal Vsync related to the synchronous rectification pulse signal Sync, and determines the time point when the secondary winding W2 is not conducted, and according to the flow through the secondary winding W2 The current Iw2, or the cross-voltage Vw2 of the secondary winding W2, or the current Isr flowing through the parasitic diode in the SR switch 208, or the cross-voltage Vsr of the SR switch 208 determine the timing of turning on the SR switch 208.
訊號耦合電路204耦接於SR開關控制電路207與功率開關控制電路205之間,用以將同步整流脈衝訊號Sync,以非接觸方式,感應產生耦合同步整流訊號Vsync,並將回授脈衝訊號Sfb,以非接觸方式,感應產生耦合回授訊號Vfb。其中訊號耦合電路204具有一次側埠P1與二次側埠P2,一次側埠P1位於變壓器202之一次側,且二次側埠P2位於變壓器202之二次側。其中一次側埠P1於互不重疊的不同時段中,分別接收同步整流脈衝訊號Sync與產生耦合回授訊號Vfb,且二次側埠P2於對應的前述互不重疊的不同時段中,分別產生耦合同步整流訊號Vsync與接收回授脈衝訊號Sfb。也就是說,訊號耦合電路204具有電連接於功率開關控制電路205之一次側埠P1與電連接於SR開關控制電路207之二次側埠P2。更詳言之,舉例而言,在第一時段中,一次側埠P1接收功率開關控制電路205所產生的同步整流脈衝訊號Sync,且訊號耦合電路204以非接觸方式, 感應並轉換後,產生對應的耦合同步整流訊號Vsync於二次側埠P2;又,在與第一時段不重疊的第二時段中,二次側埠P2接收回授脈衝訊號Sfb,且訊號耦合電路204以非接觸方式,感應並轉換後,產生對應的耦合回授訊號Vfb。 The signal coupling circuit 204 is coupled between the SR switch control circuit 207 and the power switch control circuit 205 to synchronize the synchronous rectification pulse signal Sync in a non-contact manner to inductively generate the coupled synchronous rectification signal Vsync and return the pulse signal Sfb In a non-contact manner, the coupling feedback signal Vfb is induced. The signal coupling circuit 204 has a primary side port P1 and a secondary side port P2. The primary side port P1 is located on the primary side of the transformer 202, and the secondary side port P2 is located on the secondary side of the transformer 202. The primary side port P1 receives the synchronous rectification pulse signal Sync and generates the coupling feedback signal Vfb in different periods that do not overlap each other, and the secondary side port P2 generates coupling in the corresponding different periods that do not overlap each other. The synchronous rectification signal Vsync and the feedback pulse signal Sfb are received. That is, the signal coupling circuit 204 has a primary-side port P1 electrically connected to the power switch control circuit 205 and a secondary-side port P2 electrically connected to the SR switch control circuit 207. More specifically, for example, in the first period, the primary side port P1 receives the synchronous rectification pulse signal Sync generated by the power switch control circuit 205, and the signal coupling circuit 204 is in a non-contact manner, After induction and conversion, the corresponding coupled synchronous rectification signal Vsync is generated on the secondary side port P2. In the second period that does not overlap with the first period, the secondary side port P2 receives the feedback pulse signal Sfb and the signal is coupled. The circuit 204 generates the corresponding coupled feedback signal Vfb after induction and conversion in a non-contact manner.
須說明的是,變壓器202之一次側表示與變壓器202一次側繞組W1同側,位於變壓器202之一次側的電路共同電連接至參考電位REF;變壓器202之二次側表示與變壓器202二次側繞組W2同側,位於變壓器202之二次側的電路共同電連接至接地電位GND;而變壓器202與訊號耦合電路204則是耦接於一次側與二次側之間。 It should be noted that the primary side of the transformer 202 represents the same side as the primary winding W1 of the transformer 202, and the circuits on the primary side of the transformer 202 are commonly electrically connected to the reference potential REF; the secondary side of the transformer 202 represents the secondary side of the transformer 202 The winding W2 is on the same side, and the circuits on the secondary side of the transformer 202 are commonly electrically connected to the ground potential GND; and the transformer 202 and the signal coupling circuit 204 are coupled between the primary side and the secondary side.
在本實施例中,訊號耦合電路204如圖所示只包括單一脈衝變壓器,在其他實施例中,訊號耦合電路204亦可以包括利用相同的埠,而在不同時段,於變壓器202的一次側與二次側間,具有雙向耦合傳輸訊號的功能即可,例如訊號耦合電路204包括一脈衝光耦合器。在一種較佳的實施例中,前述脈衝變壓器與脈衝光耦合器之輸入與輸出訊號皆為具有脈衝形式的訊號。其中,回授脈衝訊號Sfb與耦合回授訊號Vfb,例如但不限於分別具有相同或不同的回授脈衝,回授脈衝具有下列之一或其組合:回授脈衝位準、回授脈衝時間長度、或回授脈衝數目,用以示意輸出電壓Vout;且流經功率開關SW之功率開關電流,對應相關於上述回授脈衝位準、回授脈衝時間長度、回授脈衝數目、或其組合。也就是說,回授脈衝訊號Sfb與耦合回授訊號Vfb具有脈衝形式的訊號,但並不限於單一脈衝訊號的形式,而是可以利用脈衝訊號的位準、時間長度、與脈衝數目,來示意輸出電壓的高低。 In this embodiment, the signal coupling circuit 204 includes only a single pulse transformer as shown in the figure. In other embodiments, the signal coupling circuit 204 may also include using the same port, and at different times on the primary side of the transformer 202 and The secondary side only needs to have a function of bidirectionally coupling and transmitting signals. For example, the signal coupling circuit 204 includes a pulsed optical coupler. In a preferred embodiment, the input and output signals of the aforementioned pulse transformer and pulse optical coupler are both signals in the form of pulses. The feedback pulse signal Sfb and the coupled feedback signal Vfb, for example, but not limited to, have the same or different feedback pulses respectively, and the feedback pulses have one or a combination of the following: feedback pulse level, feedback pulse time length Or the number of feedback pulses to indicate the output voltage Vout; and the power switch current flowing through the power switch SW corresponds to the feedback pulse level, the length of the feedback pulse time, the number of feedback pulses, or a combination thereof. That is to say, the feedback pulse signal Sfb and the coupling feedback signal Vfb have a signal in the form of a pulse, but are not limited to the form of a single pulse signal, but can be illustrated by the level, time length, and number of pulses of the pulse signal. The level of the output voltage.
在本實施例中,SR開關控制電路207例如但不限於,根據耦合同步整流訊號Vsync與流經二次側繞組W2的電流Iw2,或二次側繞組W2的的跨壓Vw2,或流經SR開關208中寄生二極體的電流Isr,或SR開關208的跨壓Vsr,而產生SR開關控制訊號VSR,以控制SR開關208。且例如但不限於根據耦合同步整流訊號 Vsync中的同步整流脈衝的上升緣(或下降緣,如第13圖所示意),而不導通SR開關208,且根據流經二次側繞組W2的電流Iw2,或二次側繞組W2的的跨壓Vw2,或流經SR開關208中寄生二極體的電流Isr,或SR開關208的跨壓Vsr,以確認功率開關SW不導通後,而導通SR開關208。也就是說,SR開關控制電路207在導通SR開關208前,先確認功率開關SW不導通。功率開關控制電路205例如根據耦合回授訊號Vfb而決定功率開關控制訊號Spwm,以決定導通及不導通功率開關SW,進而導通及不導通一次側繞組W1。相較於先前技術,在本發明中,訊號耦合電路204具有一次側埠P1與二次側埠P2,一次側埠P1位於變壓器202之一次側,且二次側埠P2位於變壓器202之二次側,其中一次側埠P1於互不重疊的不同時段中,分別接收同步整流脈衝訊號Sync與產生耦合回授訊號Vfb,且二次側埠P2於對應的前述互不重疊的不同時段中,分別產生耦合同步整流訊號Vsync與接收回授脈衝訊號Sfb。而非如先前技術,利用不同的耦合電路103與光耦合電路104(且不同的埠),分別將一次側的通知訊號PLS傳送至二次側,及將二次側的輸出電壓相關資訊傳到一次側的PWM控制器105。也就是說,本發明在正常操作模式中,可以利用訊號耦合電路204中相同的埠,來傳送一次側與二次側的資訊。如此一來,可以有效降低電路的空間,進而降低製造成本與電路的尺寸。 In this embodiment, the SR switch control circuit 207 is, for example, but is not limited to, a coupling synchronous rectification signal Vsync and a current Iw2 flowing through the secondary winding W2, or a voltage Vw2 across the secondary winding W2, or flowing through SR The current Isr of the parasitic diode in the switch 208 or the cross-voltage Vsr of the SR switch 208 generates the SR switch control signal VSR to control the SR switch 208. And for example, but not limited to, coupled synchronous rectified signals The rising edge (or falling edge of the synchronous rectification pulse in Vsync, as shown in Figure 13), does not turn on the SR switch 208, and according to the current Iw2 flowing through the secondary winding W2, or the The cross-voltage Vw2, or the current Isr flowing through the parasitic diode in the SR switch 208, or the cross-voltage Vsr of the SR switch 208, to confirm that the power switch SW is not turned on, and then the SR switch 208 is turned on. That is, before the SR switch control circuit 207 turns on the SR switch 208, it first confirms that the power switch SW is not turned on. The power switch control circuit 205 determines, for example, the power switch control signal Spwm according to the coupling feedback signal Vfb to determine whether to turn on or off the power switch SW, and then to turn on and off the primary winding W1. Compared with the prior art, in the present invention, the signal coupling circuit 204 has a primary side port P1 and a secondary side port P2. The primary side port P1 is located on the primary side of the transformer 202, and the secondary side port P2 is located on the secondary side of the transformer 202. On the other hand, the primary side port P1 receives the synchronous rectification pulse signal Sync and the coupling feedback signal Vfb in different periods that do not overlap each other, and the secondary side port P2 is in the corresponding different periods that do not overlap each other. A coupling synchronous rectification signal Vsync and a feedback pulse signal Sfb are generated. Instead of the prior art, different coupling circuits 103 and optical coupling circuits 104 (and different ports) are used to transmit the notification signal PLS on the primary side to the secondary side, and the information about the output voltage on the secondary side to The PWM controller 105 on the primary side. In other words, in the normal operation mode, the present invention can use the same port in the signal coupling circuit 204 to transmit the primary and secondary information. In this way, the space of the circuit can be effectively reduced, thereby reducing the manufacturing cost and the size of the circuit.
第3圖顯示根據本發明之同步整流脈衝訊號Sync、功率開關控制訊號Spwm、SR開關控制訊號VSR、與回授脈衝訊號Sfb之波形示意圖。如圖所示,功率開關控制電路205根據相關於輸出電壓Vout或輸出電流Iout的耦合回授訊號Vfb,產生功率開關控制訊號Spwm以控制功率開關SW,並產生同步整流脈衝訊號Sync。其中,同步整流脈衝訊號Sync具有同步整流脈衝;在一種較佳的實施例中,該同步整流脈衝經由訊號耦合電路204轉換並傳送至SR開關電路207,以控制SR開關208不導通;且SR開關控制電路207根據相關於同步整流脈衝的耦合同步整流訊號Vsync,不導通SR開關208。在一種較佳的實施例中,功率開關控制電路 205產生同步整流脈衝訊號Sync的同步整流脈衝,以不導通SR開關208之後,才改變功率開關控制訊號Spwm的位準,以導通功率開關SW,以確認功率開關SW的導通是在SR開關208不導通之後。在一種較佳的實施例中,同步整流脈衝訊號Sync具有一同步整流脈衝,且回授脈衝訊號Sfb具有一回授脈衝;其中該同步整流脈衝與回授脈衝之脈衝時間長度皆短於1微秒(micro-second)。 FIG. 3 shows waveforms of the synchronous rectification pulse signal Sync, the power switch control signal Spwm, the SR switch control signal VSR, and the feedback pulse signal Sfb according to the present invention. As shown in the figure, the power switch control circuit 205 generates a power switch control signal Spwm to control the power switch SW according to the coupling feedback signal Vfb related to the output voltage Vout or the output current Iout, and generates a synchronous rectification pulse signal Sync. Among them, the synchronous rectification pulse signal Sync has a synchronous rectification pulse; in a preferred embodiment, the synchronous rectification pulse is converted and transmitted to the SR switch circuit 207 via the signal coupling circuit 204 to control the SR switch 208 to be non-conductive; and the SR switch The control circuit 207 does not turn on the SR switch 208 according to the coupled synchronous rectification signal Vsync related to the synchronous rectification pulse. In a preferred embodiment, the power switch control circuit 205 generates a synchronous rectification pulse signal Sync synchronous rectification pulse, so as not to turn on the SR switch 208, then change the level of the power switch control signal Spwm to turn on the power switch SW to confirm that the power switch SW is turned on when the SR switch 208 is not turned on. After turning on. In a preferred embodiment, the synchronous rectification pulse signal Sync has a synchronous rectification pulse, and the feedback pulse signal Sfb has a feedback pulse; wherein the pulse time lengths of the synchronous rectification pulse and the feedback pulse are shorter than 1 micron. Micro-second.
SR開關控制電路207於一正常操作模式中,根據所接收的耦合同步整流訊號Vsync,且例如但不限於根據流經二次側繞組W2的電流Iw2,或二次側繞組W2的的跨壓Vw2,或流經SR開關208中寄生二極體的電流Isr,或SR開關208的跨壓Vsr,而產生SR開關控制訊號VSR。SR開關控制電路207並於該正常操作模式中,根據相關於輸出電壓Vout或輸出電流Iout的反饋訊號FB,而產生回授脈衝訊號Sfb。 In a normal operation mode, the SR switch control circuit 207 synchronously rectifies the signal Vsync according to the received coupling, and for example, but is not limited to, the current Iw2 flowing through the secondary winding W2, or the cross-voltage Vw2 of the secondary winding W2. , Or the current Isr flowing through the parasitic diode in the SR switch 208, or the cross-voltage Vsr of the SR switch 208 to generate the SR switch control signal VSR. In the normal operation mode, the SR switch control circuit 207 generates a feedback pulse signal Sfb according to the feedback signal FB related to the output voltage Vout or the output current Iout.
舉例而言,於一操作期間中,回授脈衝訊號Sfb包括回授脈衝,該回授脈衝於同步整流脈衝訊號Sync之同步整流脈衝產生後經過一同步預設期間Td之後產生。所謂一個操作期間,例如但不限於為功率開關控制訊號Spwm位準在兩次由低位準上升至高位準的期間。舉例而言,參閱第3圖,以高位準導通、低位準不導通為例,根據同步整流脈衝訊號Sync的上升緣,不導通SR開關208,並根據相關於輸出電壓Vout或輸出電流Iout的反饋訊號FB,或是根據:流經二次側繞組W2的電流Iw2,或二次側繞組W2的的跨壓Vw2,或流經SR開關208中寄生二極體的電流Isr,或SR開關208的跨壓Vsr,而產生SR開關控制訊號VSR,而導通SR開關208。有關二次側繞組W2的電流情況,例如可根據SR開關208的跨壓、或是根據SR開關208在圖示左端節點的電壓來判斷。舉例而言,當功率開關控制訊號Spwm上升之前,將SR開關控制訊號VSR由高位準轉變為低位準,而不導通SR開關208;並根據流經二次側繞組W2的電流Iw2,或二次側繞組W2的的跨壓Vw2,或流經SR開關208中寄生二極體的電流Isr,或SR開關208的跨壓Vsr,而將SR開關 控制訊號VSR由低位準轉變為高位準,而導通SR開關208。以此機制就可以適切地控制SR開關208的導通時點與不導通時點,並藉由將同步整流脈衝訊號Sync和回授脈衝訊號Sfb分別利用相同的埠,在不同時段,傳遞到二次側與一次側,而控制功率開關SW與SR開關208的導通時點與關閉時點,就可以有效避免短路貫穿的情況。 For example, during an operation period, the feedback pulse signal Sfb includes a feedback pulse, and the feedback pulse is generated after the synchronous rectification pulse of the synchronous rectification pulse signal Sync passes after a synchronization preset period Td. The so-called one operation period is, for example, but not limited to, a period during which the Spwm level of the power switch control signal rises from a low level to a high level twice. For example, referring to FIG. 3, taking the high level conducting and low level non-conducting as examples, according to the rising edge of the synchronous rectification pulse signal Sync, the SR switch 208 is not turned on, and according to the feedback related to the output voltage Vout or the output current Iout The signal FB is either based on the current Iw2 flowing through the secondary winding W2, or the cross-voltage Vw2 of the secondary winding W2, or the current Isr flowing through the parasitic diode in the SR switch 208, or the The SR switch control signal VSR is generated by crossing the voltage Vsr, and the SR switch 208 is turned on. Regarding the current situation of the secondary winding W2, for example, it can be judged based on the voltage across the SR switch 208 or the voltage of the SR switch 208 at the left node in the figure. For example, before the power switch control signal Spwm rises, change the SR switch control signal VSR from a high level to a low level without turning on the SR switch 208; and according to the current Iw2 flowing through the secondary winding W2, or the secondary The cross voltage Vw2 of the side winding W2, or the current Isr flowing through the parasitic diode in the SR switch 208, or the cross voltage Vsr of the SR switch 208, and the SR switch The control signal VSR is changed from a low level to a high level, and the SR switch 208 is turned on. With this mechanism, the SR switch 208 can be properly turned on and off, and the synchronous rectification pulse signal Sync and the feedback pulse signal Sfb can be transmitted to the secondary side and On the primary side, controlling the on-time and off-time of the power switch SW and the SR switch 208 can effectively avoid the situation of short-circuit penetration.
第4A-4D圖顯示本發明同步整流脈衝訊號Sync與回授脈衝訊號Sfb數種實施例中的波形示意圖。如第4A圖所示,同步整流脈衝訊號Sync與回授脈衝訊號Sfb例如但不限於分別具有單一脈衝(分別為SR脈衝與回授脈衝)。如第4B圖所示,同步整流脈衝訊號Sync與回授脈衝訊號Sfb例如但不限於分別具有單一脈衝(分別為SR脈衝與回授脈衝),其位準可以調整;其中,回授脈衝訊號Sfb的回授脈衝之位準,例如用以示意輸出電壓Vout的位準。如第4C圖所示,同步整流脈衝訊號Sync與回授脈衝訊號Sfb例如但不限於分別具有單一脈衝(分別為SR脈衝與回授脈衝),其脈衝時間長度可以調整;其中,回授脈衝訊號Sfb的回授脈衝時間長度,例如用以示意輸出電壓Vout的位準。如第4D圖所示,同步整流脈衝訊號Sync與回授脈衝訊號Sfb例如但不限於分別具有複數脈衝(分別為複數SR脈衝與複數回授脈衝),其脈衝數目可以改變;其中,回授脈衝訊號Sfb的回授脈衝數目,例如用以示意輸出電壓Vout的位準。 4A-4D are schematic waveform diagrams of several embodiments of the synchronous rectification pulse signal Sync and the feedback pulse signal Sfb according to the present invention. As shown in FIG. 4A, the synchronous rectification pulse signal Sync and the feedback pulse signal Sfb have, for example, but not limited to, a single pulse (SR pulse and feedback pulse, respectively). As shown in FIG. 4B, the synchronous rectification pulse signal Sync and the feedback pulse signal Sfb have, for example but not limited to, a single pulse (respectively, an SR pulse and a feedback pulse), and their levels can be adjusted; among them, the feedback pulse signal Sfb The level of the feedback pulse is, for example, used to indicate the level of the output voltage Vout. As shown in FIG. 4C, the synchronous rectification pulse signal Sync and the feedback pulse signal Sfb have, for example, but not limited to, a single pulse (SR pulse and feedback pulse respectively), and the pulse time length can be adjusted; among which, the feedback pulse signal The feedback pulse duration of Sfb is, for example, used to indicate the level of the output voltage Vout. As shown in FIG. 4D, the synchronous rectification pulse signal Sync and the feedback pulse signal Sfb have, for example, but not limited to, a complex pulse (respectively, a complex SR pulse and a complex feedback pulse), and the number of pulses can be changed; among which, the feedback pulse The number of feedback pulses of the signal Sfb is, for example, used to indicate the level of the output voltage Vout.
第5圖顯示本發明一種實施例之同步整流脈衝訊號Sync、功率開關控制訊號Spwm、與回授脈衝訊號Sfb之波形示意圖。如圖所示,於一操作期間中,回授脈衝訊號Sfb具有回授脈衝Pul1,回授脈衝Pul1於同步整流脈衝訊號Sync之同步整流脈衝SRPul產生後經過同步預設期間Td之後產生。當同步整流脈衝訊號Sync之同步整流脈衝SRPul產生後開始,未在同步閾值期間Tt產生下一個同步整流脈衝SRPul,SR開關控制電路207產生回授脈衝Pul2,並接著以一回授週期Tp而週期性產生回授脈衝Pul3與回授脈衝Pul4,直到功率開關控制電路205產生同步 整流脈衝SRPul。如此一來,當輸出端為輕載時,SR開關控制電路207仍能持續產生回授脈衝以示意輸出電壓Vout。 FIG. 5 is a waveform diagram of a synchronous rectification pulse signal Sync, a power switch control signal Spwm, and a feedback pulse signal Sfb according to an embodiment of the present invention. As shown in the figure, during an operation period, the feedback pulse signal Sfb has a feedback pulse Pul1, and the feedback pulse Pul1 is generated after the synchronous rectification pulse SRPul of the synchronous rectification pulse signal Sync is generated after the synchronization preset period Td. When the synchronous rectification pulse signal SRPul of the synchronous rectification pulse signal Sync starts, the next synchronous rectification pulse SRPul is not generated during the synchronization threshold period Tt, the SR switch control circuit 207 generates a feedback pulse Pul2, and then cycles with a feedback cycle Tp The feedback pulse Pul3 and the feedback pulse Pul4 are generated repeatedly until the power switch control circuit 205 is synchronized. Rectifying pulse SRPul. In this way, when the output terminal is lightly loaded, the SR switch control circuit 207 can still continuously generate a feedback pulse to indicate the output voltage Vout.
第6圖顯示本發明SR開關控制電路207的一個實施例。如圖所示,SR開關控制電路207包括:輸出電壓取樣電路2071、回授脈衝訊號產生電路2073、SR比較器2075、SR計時電路2077與SR開關控制訊號產生電路2079。輸出電壓取樣電路2071用以取樣放大輸出電壓Vout,而產生輸出電壓取樣訊號Vosp。回授脈衝訊號產生電路2073耦接於輸出電壓取樣電路2071與二次側埠P2之間,用以根據輸出電壓取樣訊號Vosp,產生回授脈衝訊號Sfb。SR比較器2075與二次側埠P2耦接,用以根據耦合同步整流訊號Vsync與同步參考訊號Vth1,產生同步比較訊號Sx。 SR計時電路2077與比較器2075耦接,用以根據同步比較訊號Sx,而計時同步預設期間後,產生同步預設期間計時訊號。SR開關控制訊號產生電路2079與SR比較器2075及SR開關208耦接,用以根據同步比較訊號Sx,產生SR開關控制訊號VSR,以控制SR開關208。 FIG. 6 shows an embodiment of the SR switch control circuit 207 of the present invention. As shown in the figure, the SR switch control circuit 207 includes an output voltage sampling circuit 2071, a feedback pulse signal generation circuit 2073, an SR comparator 2075, an SR timing circuit 2077, and an SR switch control signal generation circuit 2079. The output voltage sampling circuit 2071 is used to sample and amplify the output voltage Vout to generate an output voltage sampling signal Vosp. The feedback pulse signal generating circuit 2073 is coupled between the output voltage sampling circuit 2071 and the secondary side port P2, and is used to sample the signal Vosp according to the output voltage to generate the feedback pulse signal Sfb. The SR comparator 2075 is coupled to the secondary side port P2 to generate a synchronous comparison signal Sx according to the coupled synchronous rectification signal Vsync and the synchronous reference signal Vth1. The SR timing circuit 2077 is coupled to the comparator 2075, and is configured to compare the synchronization signal Sx according to the synchronization, and generate a synchronization preset period timing signal after timing the synchronization preset period. The SR switch control signal generating circuit 2079 is coupled to the SR comparator 2075 and the SR switch 208, and is configured to generate an SR switch control signal VSR according to the synchronous comparison signal Sx to control the SR switch 208.
第7圖顯示本發明SR開關控制電路207的一個較具體的實施例。SR開關控制電路207包括:輸出電壓取樣電路2071、回授脈衝訊號產生電路2073、SR比較器2075、SR計時電路2077與SR開關控制訊號產生電路2079。輸出電壓取樣電路2071用以取樣放大輸出電壓Vout,而產生輸出電壓取樣訊號Vosp。如圖所示,輸出電壓取樣電路2071中,分壓電路3071接收相關於輸出電壓Vout的電壓Vo,產生與輸出電壓Vout相關的分壓,藉以產生輸出電壓取樣訊號Vosp。在本實施例中,輸出電壓取樣電路2071包括比較器3072,用以比較相關於輸出電壓Vout之電壓Vopto與斜坡訊號Sramp,而產生輸出電壓取樣訊號Vosp。舉例而言,當斜坡訊號Sramp超過電壓Vopto時,產生一個具有高位準的比較訊號。回授脈衝訊號產生電路2073耦接於輸出電壓取樣電路2071與二次側埠P2之間,用以根據輸出電壓取樣訊號Vosp,產生回授脈衝訊號Sfb。回授脈衝訊號產生電路2073包含脈衝電路 3073,其根據該具有高位準的比較訊號,產生脈衝開關訊號PS1。回授脈衝訊號產生電路2073包含脈衝開關3074,其根據脈衝開關訊號PS1而操作,以於二次側埠P2產生回授脈衝訊號Sfb。 FIG. 7 shows a more specific embodiment of the SR switch control circuit 207 of the present invention. The SR switch control circuit 207 includes an output voltage sampling circuit 2071, a feedback pulse signal generation circuit 2073, an SR comparator 2075, an SR timing circuit 2077, and an SR switch control signal generation circuit 2079. The output voltage sampling circuit 2071 is used to sample and amplify the output voltage Vout to generate an output voltage sampling signal Vosp. As shown in the figure, in the output voltage sampling circuit 2071, the voltage dividing circuit 3071 receives the voltage Vo related to the output voltage Vout and generates a divided voltage related to the output voltage Vout, thereby generating an output voltage sampling signal Vosp. In this embodiment, the output voltage sampling circuit 2071 includes a comparator 3072 to compare the voltage Vopto related to the output voltage Vout with the ramp signal Sramp to generate an output voltage sampling signal Vosp. For example, when the ramp signal Sramp exceeds the voltage Vopto, a comparison signal with a high level is generated. The feedback pulse signal generating circuit 2073 is coupled between the output voltage sampling circuit 2071 and the secondary side port P2, and is used to sample the signal Vosp according to the output voltage to generate the feedback pulse signal Sfb. Feedback pulse signal generating circuit 2073 includes a pulse circuit 3073, which generates a pulse switching signal PS1 according to the comparison signal having a high level. The feedback pulse signal generating circuit 2073 includes a pulse switch 3074, which operates according to the pulse switch signal PS1 to generate a feedback pulse signal Sfb at the secondary side port P2.
請繼續參閱第7圖,SR比較器2075與二次側埠P2耦接,用以根據耦合同步整流訊號Vsync與同步參考訊號Vth1,產生同步比較訊號Sx。SR計時電路2077與SR比較器2075耦接,用以接收同步比較訊號Sx,而計時同步預設期間後,產生同步預設期間計時訊號。同步預設期間計時訊號例如用以使回授脈衝訊號Sfb之回授脈衝,於同步整流脈衝訊號Sync之同步整流脈衝產生後經過同步預設期間Td之後產生。在本實施例中,SR計時電路2077例如但不限於包括延時計時器3078及斜坡訊號產生電路3079。使得同步預設期間計時訊號之延時效果,也就是同步預設期間Td,相關於輸出電壓Vout。其中,斜坡訊號產生電路3079用以產生前述斜坡訊號Sramp,以輸入比較器3072。SR開關控制訊號產生電路2079與SR比較器2075及SR開關208耦接,用以根據同步比較訊號Sx,產生SR開關控制訊號VSR,以控制該SR開關208。 Please continue to refer to FIG. 7. The SR comparator 2075 is coupled to the secondary side port P2 to generate a synchronous comparison signal Sx according to the coupled synchronous rectification signal Vsync and the synchronous reference signal Vth1. The SR timing circuit 2077 is coupled to the SR comparator 2075 to receive a synchronous comparison signal Sx, and after timing a preset synchronization period, generates a synchronous preset timing signal. The timing signal for the synchronization preset period is used, for example, to cause the feedback pulse of the feedback pulse signal Sfb to be generated after the synchronization rectification pulse of the synchronization rectification pulse signal Sync has passed the synchronization preset period Td. In this embodiment, the SR timing circuit 2077 includes, but is not limited to, a delay timer 3078 and a ramp signal generating circuit 3079. The delay effect of the timing signal during the synchronization preset period, that is, the synchronization preset period Td, is related to the output voltage Vout. The ramp signal generating circuit 3079 is used to generate the aforementioned ramp signal Sramp, and is input to the comparator 3072. The SR switch control signal generating circuit 2079 is coupled to the SR comparator 2075 and the SR switch 208, and is used to generate an SR switch control signal VSR according to the synchronous comparison signal Sx to control the SR switch 208.
第8圖顯示本發明功率開關控制電路205的一個實施例。如圖所示,功率開關控制電路205包括功率開關控制訊號產生電路2051、回授訊號取樣保持電路2053、回授計時電路2055、以及SR脈衝訊號產生電路2057。功率開關控制訊號產生電路2051,與功率開關SW耦接,用以根據取樣回授訊號COMP,以產生功率開關控制訊號Spwm。回授訊號取樣保持電路2053,耦接於功率開關控制訊號產生電路2051與一次側埠P1之間,用以根據耦合回授訊號Vfb,產生取樣回授訊號COMP。回授計時電路2055與功率開關控制訊號產生電路2051及回授訊號取樣保持電路2053耦接,用以根據功率開關控制訊號Spwm與耦合回授訊號Vfb,以產生取樣訊號SH及清除訊號CLR,其中回授訊號取樣保持電路2053根據取樣訊號SH與清除訊號CLR,以將耦合回授訊號Vfb轉換為取樣回授訊號COMP。 FIG. 8 shows an embodiment of the power switch control circuit 205 of the present invention. As shown in the figure, the power switch control circuit 205 includes a power switch control signal generating circuit 2051, a feedback signal sampling and holding circuit 2053, a feedback timing circuit 2055, and an SR pulse signal generating circuit 2057. The power switch control signal generating circuit 2051 is coupled to the power switch SW and is used to generate the power switch control signal Spwm according to the sampled feedback signal COMP. The feedback signal sampling and holding circuit 2053 is coupled between the power switch control signal generating circuit 2051 and the primary side port P1, and is configured to generate a sampling feedback signal COMP according to the coupling feedback signal Vfb. The feedback timing circuit 2055 is coupled to the power switch control signal generating circuit 2051 and the feedback signal sampling and holding circuit 2053, and is configured to generate the sampling signal SH and the clear signal CLR according to the power switch control signal Spwm and the coupled feedback signal Vfb. The feedback signal sample-and-hold circuit 2053 converts the coupling feedback signal Vfb into a sample feedback signal COMP according to the sample signal SH and the clear signal CLR.
第9圖顯示本發明回授訊號取樣保持電路2053的一個實施例。如圖所示,回授訊號取樣保持電路2053包括遮蔽電路20531與取樣回授訊號產生電路20533。其中,遮蔽電路20531與功率開關控制訊號產生電路2051與一次側埠P1耦接,用以根據相關於功率開關控制訊號Spwm之一遮蔽訊號BLKP,以於遮蔽期間內,防止回授訊號取樣保持電路2053自一次側埠P1接收同步整流脈衝訊號Sync。 取樣回授訊號產生電路20533耦接於遮蔽電路20531與功率開關控制訊號產生電路2051之間,用以根據耦合回授訊號Vfb、清除訊號CLR、及取樣訊號SH,產生取樣回授訊號COMP。 FIG. 9 shows an embodiment of the feedback signal sample-and-hold circuit 2053 according to the present invention. As shown in the figure, the feedback signal sampling and holding circuit 2053 includes a shielding circuit 20531 and a sampling feedback signal generating circuit 20533. The masking circuit 20531 and the power switch control signal generating circuit 2051 are coupled to the primary side port P1 to mask the signal BLKP according to one of the power switch control signals Spwm to prevent the feedback signal from being sampled and held during the masking period. 2053 receives the synchronous rectification pulse signal Sync from the primary side port P1. The sampling feedback signal generating circuit 20533 is coupled between the shielding circuit 20531 and the power switch control signal generating circuit 2051, and is used for generating the sampling feedback signal COMP according to the coupling feedback signal Vfb, the clear signal CLR, and the sampling signal SH.
第10圖顯示本發明功率開關控制電路205的一個較具體的實施例。 如圖所示,功率開關控制電路205包括功率開關控制訊號產生電路2051、回授訊號取樣保持電路2053、以及回授計時電路2055。功率開關控制訊號產生電路2051與功率開關SW耦接,用以根據取樣回授訊號COMP,以產生功率開關控制訊號Spwm。脈衝訊號產生電路2057與功率開關控制訊號產生電路2051耦接,根據功率開關控制訊號Spwm(在本實施例中,脈衝訊號產生電路2057接收功率開關控制訊號Spwm之相關訊號),產生同步整流脈衝訊號Sync。回授訊號取樣保持電路2053耦接於功率開關控制訊號產生電路2051與一次側埠P1之間,用以根據耦合回授訊號Vfb,產生取樣回授訊號COMP。回授計時電路2055與功率開關控制訊號產生電路2051及回授訊號取樣保持電路2053耦接,用以根據功率開關控制訊號Spwm與耦合回授訊號Vfb(在本實施例中,例如接收相關於耦合回授訊號Vfb的訊號),以產生取樣訊號SH及清除訊號CLR,其中回授訊號取樣保持電路2053根據取樣訊號SH與清除訊號CLR,以將耦合回授訊號Vfb轉換為取樣回授訊號COMP。 並根據遮蔽訊號BLKP,以於遮蔽期間內,防止回授訊號取樣保持電路2053自一次側埠P1接收同步整流脈衝訊號Sync。 FIG. 10 shows a more specific embodiment of the power switch control circuit 205 of the present invention. As shown in the figure, the power switch control circuit 205 includes a power switch control signal generating circuit 2051, a feedback signal sampling and holding circuit 2053, and a feedback timing circuit 2055. The power switch control signal generating circuit 2051 is coupled to the power switch SW, and is used to generate the power switch control signal Spwm according to the sampled feedback signal COMP. The pulse signal generation circuit 2057 is coupled to the power switch control signal generation circuit 2051, and generates a synchronous rectification pulse signal according to the power switch control signal Spwm (in this embodiment, the pulse signal generation circuit 2057 receives the power switch control signal Spwm). Sync. The feedback signal sampling and holding circuit 2053 is coupled between the power switch control signal generating circuit 2051 and the primary side port P1, and is configured to generate a sampling feedback signal COMP according to the coupling feedback signal Vfb. The feedback timing circuit 2055 is coupled to the power switch control signal generation circuit 2051 and the feedback signal sample-and-hold circuit 2053, and is configured to couple the feedback signal Vfb and the coupled feedback signal Vfb according to the power switch control signal Spwm (in this embodiment, for example, The feedback signal Vfb signal) is used to generate a sampling signal SH and a clear signal CLR. The feedback signal sample-and-hold circuit 2053 converts the coupling feedback signal Vfb into a sample feedback signal COMP according to the sample signal SH and the clear signal CLR. According to the masking signal BLKP, during the masking period, the feedback signal sampling and holding circuit 2053 is prevented from receiving the synchronous rectification pulse signal Sync from the primary side port P1.
第11圖顯示在10圖的實施例中,遮蔽訊號BLKP與同步整流脈衝訊號Sync的訊號波形示意圖。如圖所示,並參照第10圖,遮蔽訊號BLKP具有遮蔽脈衝時間長度Tb,同步整流脈衝訊號Sync具有同步整流脈衝時間長度Ts;其中,遮蔽脈衝時間長度Tb大於同步整流脈衝時間長度Ts,且遮蔽脈衝時間長度Tb涵蓋同步整流脈衝時間長度Ts;這使得,在同步整流脈衝訊號Sync中之同步整流脈衝的期間,具有遮蔽訊號BLKP產生遮蔽脈衝,將開關SWb導通,將回授訊號取樣保持電路2053中的比較器(用以作為遮蔽電路20531)的反向端輸入端電連接至參考電位REF,而使比較器(用以作為遮蔽電路20531)的反向端輸入端不致接收同步整流脈衝訊號Sync中之同步整流脈衝。 FIG. 11 is a schematic diagram of signal waveforms of the shielding signal BLKP and the synchronous rectification pulse signal Sync in the embodiment of FIG. 10. As shown in the figure and referring to FIG. 10, the masking signal BLKP has a masking pulse time length Tb, and the synchronous rectification pulse signal Sync has a synchronous rectification pulse time length Ts; wherein the masking pulse time length Tb is greater than the synchronous rectification pulse time length Ts, and The masking pulse time length Tb covers the synchronous rectification pulse time length Ts; this makes the masking signal BLKP generate a masking pulse during the synchronous rectifying pulse in the synchronous rectifying pulse signal Sync, the switch SWb is turned on, and the feedback signal is sampled and held. The reverse input of the comparator (used as the shielding circuit 20531) in 2053 is electrically connected to the reference potential REF, so that the reverse input of the comparator (used as the shielding circuit 20531) does not receive the synchronous rectification pulse signal. Synchronous rectification pulse in Sync.
第12圖顯示本發明功率開關控制電路205的一個較具體的實施例。 如圖所示,功率開關控制電路205包括功率開關控制訊號產生電路2051、回授訊號取樣保持電路2053、以及回授計時電路2055。功率開關控制訊號產生電路2051與功率開關SW耦接,用以根據取樣回授訊號COMP,以產生功率開關控制訊號Spwm。脈衝電路3173與功率開關控制訊號產生電路2051耦接,根據功率開關控制訊號Spwm,產生脈衝開關訊號PS2。脈衝開關3174與脈衝電路3173耦接,其根據脈衝開關訊號PS2而操作,以於一次側埠P1產生同步整流脈衝訊號Sync。回授訊號取樣保持電路2053耦接於功率開關控制訊號產生電路2051與一次側埠P1之間,用以根據耦合回授訊號Vfb,產生取樣回授訊號COMP。回授計時電路2055與功率開關控制訊號產生電路2051及回授訊號取樣保持電路2053耦接,用以根據功率開關控制訊號Spwm(在本實施例中,例如接收相關於功率開關控制訊號Spwm的脈衝開關訊號PS2)與耦合回授訊號Vfb(在本實施例中,例如接收相關於耦合回授訊號Vfb的回授比較訊號Vfb_cmp),以產生取樣訊號SH及清除訊號CLR,其中回授訊號取樣保持電路2053根據取樣訊號SH與清除訊號CLR,以將耦合回授訊號Vfb轉換為取樣回授訊號COMP。 FIG. 12 shows a more specific embodiment of the power switch control circuit 205 of the present invention. As shown in the figure, the power switch control circuit 205 includes a power switch control signal generating circuit 2051, a feedback signal sampling and holding circuit 2053, and a feedback timing circuit 2055. The power switch control signal generating circuit 2051 is coupled to the power switch SW, and is used to generate the power switch control signal Spwm according to the sampled feedback signal COMP. The pulse circuit 3173 is coupled to the power switch control signal generating circuit 2051, and generates a pulse switch signal PS2 according to the power switch control signal Spwm. The pulse switch 3174 is coupled to the pulse circuit 3173, and operates according to the pulse switch signal PS2 to generate a synchronous rectified pulse signal Sync on the primary side port P1. The feedback signal sampling and holding circuit 2053 is coupled between the power switch control signal generating circuit 2051 and the primary side port P1, and is configured to generate a sampling feedback signal COMP according to the coupling feedback signal Vfb. The feedback timing circuit 2055 is coupled to the power switch control signal generation circuit 2051 and the feedback signal sample-and-hold circuit 2053, and is configured to receive a pulse related to the power switch control signal Spwm according to the power switch control signal Spwm. Switch signal PS2) and coupling feedback signal Vfb (in this embodiment, for example, receiving a feedback comparison signal Vfb_cmp related to the coupling feedback signal Vfb) to generate a sampling signal SH and a clear signal CLR, where the feedback signal is sampled and held The circuit 2053 converts the coupling feedback signal Vfb into a sampling feedback signal COMP according to the sampling signal SH and the clear signal CLR.
請繼續參閱第12圖,回授訊號取樣保持電路2053例如包括:比較器3051、閂鎖電路3052、與取樣保持電路3053。比較器3051比較耦合回授訊號Vfb與回授參考訊號Vth3,產生回授比較訊號Vfb_cmp。栓鎖電路3052根據回授比較訊號Vfb_cmp,產生閂鎖回授訊號Vfb_ltch。如圖所示,取樣保持電路3053根據閂鎖回授訊號Vfb_ltch、取樣訊號SH、與清除訊號CLR,產生取樣回授訊號COMP。 其中,藉由閂鎖電路3052所產生相關於耦合回授訊號Vfb之閂鎖回授訊號Vfb_ltch,控制開關SW1;並藉由取樣訊號SH與清除訊號CLR,分別控制開關SW2與開關SW3,以對電容C1及電容C2充放電,而產生取樣保持訊號Vfb_sh,進而產生取樣回授訊號COMP。回授計時電路2055與功率開關控制訊號產生電路2051及回授訊號取樣保持電路2053耦接,用以根據功率開關控制訊號Spwm(在本實施例中,例如接收相關於功率開關控制訊號Spwm的訊號脈衝開關訊號PS2)與耦合回授訊號Vfb(在本實施例中,例如接收相關於耦合回授訊號Vfb的訊號回授比較訊號Vfb_cmp),以產生取樣訊號SH及清除訊號CLR。 Please continue to refer to FIG. 12. The feedback signal sample-and-hold circuit 2053 includes, for example, a comparator 3051, a latch circuit 3052, and a sample-and-hold circuit 3053. The comparator 3051 compares the coupled feedback signal Vfb with the feedback reference signal Vth3 to generate a feedback comparison signal Vfb_cmp. The latch circuit 3052 generates a latch feedback signal Vfb_ltch according to the feedback comparison signal Vfb_cmp. As shown in the figure, the sample and hold circuit 3053 generates a sample feedback signal COMP according to the latch feedback signal Vfb_ltch, the sample signal SH, and the clear signal CLR. Among them, the switch SW1 is controlled by the latch feedback signal Vfb_ltch related to the coupling feedback signal Vfb generated by the latch circuit 3052, and the switches SW2 and SW3 are controlled by the sampling signal SH and the clear signal CLR, respectively. The capacitor C1 and the capacitor C2 are charged and discharged, and a sample-and-hold signal Vfb_sh is generated, and then a sample feedback signal COMP is generated. The feedback timing circuit 2055 is coupled to the power switch control signal generation circuit 2051 and the feedback signal sample-and-hold circuit 2053, and is configured to receive a signal related to the power switch control signal Spwm according to the power switch control signal Spwm (in this embodiment, for example, The pulse switching signal PS2) and the coupling feedback signal Vfb (in this embodiment, for example, a signal feedback comparison signal Vfb_cmp related to the coupling feedback signal Vfb is received) to generate a sampling signal SH and a clear signal CLR.
第13圖顯示根據本發明之同步整流脈衝訊號Sync、功率開關控制訊號Spwm、SR開關控制訊號VSR、回授脈衝訊號Sfb、電壓Vopto、斜坡訊號Sramp、取樣保持訊號Vfb_sh、取樣訊號SH、與清除訊號CLR之波形示意圖。如圖所示,功率開關控制電路205根據相關於輸出電壓Vout或輸出電流Iout的耦合回授訊號Vfb,產生功率開關控制訊號Spwm以控制功率開關SW,並產生同步整流脈衝訊號Sync。其中,同步整流脈衝訊號Sync具有同步整流脈衝;在一種較佳的實施例中,該同步整流脈衝經由訊號耦合電路204轉換並傳送至SR開關電路207,以控制SR開關208不導通;且SR開關控制電路207根據相關於同步整流脈衝的耦合同步整流訊號Vsync,不導通SR開關208。在一種較佳的實施例中,功率開關控制電路205產生同步整流脈衝訊號Sync的同步整流脈衝,以不導通SR開關208之後,才改變功率開關控制訊號Spwm的位準,以導通功率開關SW,以確認功率開關SW的 導通是在SR開關208不導通之後。在一種較佳的實施例中,同步整流脈衝訊號Sync具有一同步整流脈衝,且回授脈衝訊號Sfb具有一回授脈衝;其中該同步整流脈衝與回授脈衝之脈衝時間長度皆短於1微秒(micro-second)。 FIG. 13 shows a synchronous rectification pulse signal Sync, a power switch control signal Spwm, an SR switch control signal VSR, a feedback pulse signal Sfb, a voltage Vopto, a ramp signal Sramp, a sample and hold signal Vfb_sh, a sample signal SH, and clearing according to the present invention. Signal CLR waveform diagram. As shown in the figure, the power switch control circuit 205 generates a power switch control signal Spwm to control the power switch SW according to the coupling feedback signal Vfb related to the output voltage Vout or the output current Iout, and generates a synchronous rectification pulse signal Sync. Among them, the synchronous rectification pulse signal Sync has a synchronous rectification pulse; in a preferred embodiment, the synchronous rectification pulse is converted and transmitted to the SR switch circuit 207 via the signal coupling circuit 204 to control the SR switch 208 to be non-conductive; and the SR switch The control circuit 207 does not turn on the SR switch 208 according to the coupled synchronous rectification signal Vsync related to the synchronous rectification pulse. In a preferred embodiment, the power switch control circuit 205 generates a synchronous rectification pulse of the synchronous rectification pulse signal Sync to change the level of the power switch control signal Spwm after the SR switch 208 is not turned on to turn on the power switch SW. To confirm the power switch SW The turn-on is after the SR switch 208 is turned off. In a preferred embodiment, the synchronous rectification pulse signal Sync has a synchronous rectification pulse, and the feedback pulse signal Sfb has a feedback pulse; wherein the pulse time lengths of the synchronous rectification pulse and the feedback pulse are shorter than 1 micron. Micro-second.
須說明的是,在本實施例中,於操作期間中,回授脈衝訊號Sfb包括回授脈衝,該回授脈衝於同步整流脈衝訊號Sync之同步整流脈衝產生後經過同步預設期間Td之後產生。而利用電壓Vopto與斜坡訊號Sramp,加上清除訊號CLR之脈衝長度時間,來決定同步預設期間Td,以使同步預設期間Td相關於輸出電壓Vout。 It should be noted that, in this embodiment, during the operation period, the feedback pulse signal Sfb includes a feedback pulse, and the feedback pulse is generated after the synchronous rectification pulse of the synchronous rectification pulse signal Sync passes the preset synchronization period Td. . The voltage Vopto and the ramp signal Sramp and the pulse length of the clear signal CLR are used to determine the synchronization preset period Td, so that the synchronization preset period Td is related to the output voltage Vout.
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。 在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。例如,各實施例中圖示直接連接的兩電路或元件間,可插置不影響主要功能的其他電路或元件,因此「耦接」應視為包括直接和間接連接。又如,電阻或分壓電路並非僅限於電阻元件,亦可以其他電路,如電晶體電路等取代。再如,誤差放大器電路與比較器電路之正負端可以互換,僅需對應修改相關電路或是訊號高低位準的意義即可;又再如,控制電路外部的訊號(例如但不限於回授訊號),在取入控制電路內部進行處理或運算時,可能經過電壓電流轉換、電流電壓轉換、比例轉換等,因此,本發明所稱「根據某訊號進行處理或運算」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行上述轉換後,根據轉換後的訊號進行處理或運算。再例如,所有實施例中的變化,可以交互採用,例如第7圖實施例中之脈衝開關3074,也可以應用於第10圖的實施例,等等。凡此種種,皆可根據本發明的教示類推而得,因此,本發明的範圍應涵蓋上述及其他所有等效變化。 The present invention has been described above with reference to the preferred embodiments, but the above is only for making those skilled in the art easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. In the same spirit of the invention, those skilled in the art can think of various equivalent changes. For example, in the embodiments, two circuits or components that are directly connected can be inserted with other circuits or components that do not affect the main function. Therefore, "coupling" should be considered to include direct and indirect connections. For another example, the resistor or voltage dividing circuit is not limited to a resistive element, and may be replaced by other circuits, such as a transistor circuit. For another example, the positive and negative terminals of the error amplifier circuit and the comparator circuit can be interchanged, and only need to correspondingly modify the meaning of the relevant circuit or the signal level. Another example is the signal outside the control circuit (such as but not limited to the feedback signal). ), When it is taken into the control circuit for processing or calculation, it may undergo voltage-current conversion, current-voltage conversion, ratio conversion, etc. Therefore, the “processing or calculation according to a signal” in the present invention is not limited to the processing based on the signal. In itself, it also includes, when necessary, performing the above-mentioned conversion on the signal, and then processing or calculating according to the converted signal. As another example, the changes in all the embodiments can be adopted interactively, such as the pulse switch 3074 in the embodiment of FIG. 7, which can also be applied to the embodiment of FIG. 10, and so on. All these can be deduced by analogy according to the teachings of the present invention. Therefore, the scope of the present invention should cover the above and all other equivalent changes.
Claims (43)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/809,595 US10014786B2 (en) | 2016-11-14 | 2017-11-10 | Flyback power converter and synchronous rectification (SR) switch control circuit and power switch control circuit thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662421945P | 2016-11-14 | 2016-11-14 | |
US62/421,945 | 2016-11-14 | ||
US201762486784P | 2017-04-18 | 2017-04-18 | |
US62/486,784 | 2017-04-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201818643A TW201818643A (en) | 2018-05-16 |
TWI635699B true TWI635699B (en) | 2018-09-11 |
Family
ID=62159115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106125968A TWI635699B (en) | 2016-11-14 | 2017-08-01 | Flyback power converter and synchronous rectification (sr) switch control circuit and power switch control circuit thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108075666B (en) |
TW (1) | TWI635699B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI737238B (en) * | 2020-01-20 | 2021-08-21 | 大陸商昂寶電子(上海)有限公司 | Control circuit and method for controlling synchronous rectification system |
US11581815B2 (en) | 2012-04-12 | 2023-02-14 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms |
US11588405B2 (en) | 2012-04-12 | 2023-02-21 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms |
US11757366B2 (en) | 2020-05-29 | 2023-09-12 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for synchronous rectification of power supply systems |
US12047007B2 (en) | 2021-03-11 | 2024-07-23 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for controlling gate voltage increase on primary side to reduce voltage spike on secondary side of switching power supplies |
US12095379B2 (en) | 2021-07-07 | 2024-09-17 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for controlling synchronous rectification with variable voltage regulation |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943622B (en) * | 2018-09-21 | 2021-02-26 | 立锜科技股份有限公司 | Power control circuit, pulse signal detection circuit and pulse signal detection method |
TWI707527B (en) * | 2019-10-15 | 2020-10-11 | 立錡科技股份有限公司 | Flyback powr converter and secondary side controller circuit and control method thereof |
CN111835205B (en) * | 2020-07-30 | 2021-06-08 | 广州金升阳科技有限公司 | Sampling control circuit |
TWI758924B (en) * | 2020-10-28 | 2022-03-21 | 產晶積體電路股份有限公司 | Adaptive On-Time Controlled Power Control System |
US11916490B2 (en) | 2021-02-10 | 2024-02-27 | Innoscience (Suzhou) Technology Co., Ltd. | Multi-functional PCB for assembling GaN-based power converter |
US11916488B2 (en) | 2021-02-10 | 2024-02-27 | Innoscience (Suzhou) Technology Co., Ltd. | High efficiency and high density GaN-based power converter |
CN114006540B (en) * | 2021-02-10 | 2022-10-21 | 英诺赛科(苏州)科技有限公司 | High efficiency high density GaN-based power converter |
US11916489B2 (en) | 2021-02-10 | 2024-02-27 | Innoscience (Suzhou) Technology Co., Ltd. | High efficiency and high density GaN-based power converter |
US11916005B2 (en) | 2021-02-10 | 2024-02-27 | Innoscience (Suzhou) Technology Co., Ltd. | Multi-functional PCB for assembling GaN-based power converter and method for manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6418039B2 (en) * | 2000-04-10 | 2002-07-09 | Stmicroelectronics, S.R.L. | Method and apparatus to digitally control turn-off time of synchronous rectifiers in isolated topologies for switched mode power supplies |
US7952894B2 (en) * | 2007-12-31 | 2011-05-31 | Niko Semiconductor Co., Ltd. | Synchronous rectifier control device and a forward synchronous rectifier circuit |
EP2757675A2 (en) * | 2013-01-22 | 2014-07-23 | Power Integrations, Inc. | Secondary controller for use in synchronous flyback converter |
CN102651615B (en) * | 2011-02-23 | 2014-09-24 | 全汉企业股份有限公司 | Power converter and control method thereof |
TWI462448B (en) * | 2011-02-23 | 2014-11-21 | Fsp Technology Inc | Power converter and control method of power converter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102342007B (en) * | 2009-01-19 | 2015-01-07 | 伟创力国际美国公司 | Controller for a power converter |
TWI462445B (en) * | 2012-10-19 | 2014-11-21 | Lite On Technology Corp | Power converting device |
EP2916445B1 (en) * | 2014-03-03 | 2018-09-05 | Nxp B.V. | A method for controlling a SMPC having a synchronous rectification switch, a SMPC and a controller therefor |
CN104300795B (en) * | 2014-10-11 | 2017-08-11 | 广州金升阳科技有限公司 | A kind of anti exciting converter and its control method |
TWI599160B (en) * | 2015-05-06 | 2017-09-11 | 立錡科技股份有限公司 | Flyback power converter and controller and driver thereof |
-
2017
- 2017-08-01 TW TW106125968A patent/TWI635699B/en active
- 2017-08-11 CN CN201710686178.XA patent/CN108075666B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6418039B2 (en) * | 2000-04-10 | 2002-07-09 | Stmicroelectronics, S.R.L. | Method and apparatus to digitally control turn-off time of synchronous rectifiers in isolated topologies for switched mode power supplies |
US7952894B2 (en) * | 2007-12-31 | 2011-05-31 | Niko Semiconductor Co., Ltd. | Synchronous rectifier control device and a forward synchronous rectifier circuit |
CN102651615B (en) * | 2011-02-23 | 2014-09-24 | 全汉企业股份有限公司 | Power converter and control method thereof |
TWI462448B (en) * | 2011-02-23 | 2014-11-21 | Fsp Technology Inc | Power converter and control method of power converter |
EP2757675A2 (en) * | 2013-01-22 | 2014-07-23 | Power Integrations, Inc. | Secondary controller for use in synchronous flyback converter |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11581815B2 (en) | 2012-04-12 | 2023-02-14 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms |
US11588405B2 (en) | 2012-04-12 | 2023-02-21 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms |
US11764684B2 (en) | 2012-04-12 | 2023-09-19 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms |
TWI737238B (en) * | 2020-01-20 | 2021-08-21 | 大陸商昂寶電子(上海)有限公司 | Control circuit and method for controlling synchronous rectification system |
US11764697B2 (en) | 2020-01-20 | 2023-09-19 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for controlling synchronous rectification |
US11757366B2 (en) | 2020-05-29 | 2023-09-12 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for synchronous rectification of power supply systems |
US12047007B2 (en) | 2021-03-11 | 2024-07-23 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for controlling gate voltage increase on primary side to reduce voltage spike on secondary side of switching power supplies |
US12095379B2 (en) | 2021-07-07 | 2024-09-17 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for controlling synchronous rectification with variable voltage regulation |
Also Published As
Publication number | Publication date |
---|---|
CN108075666B (en) | 2020-02-07 |
TW201818643A (en) | 2018-05-16 |
CN108075666A (en) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI635699B (en) | Flyback power converter and synchronous rectification (sr) switch control circuit and power switch control circuit thereof | |
TWI714510B (en) | Secondary side controlled control circuit and method of forming secondary side controlled control circuit | |
US9755530B2 (en) | Power converter with synchronous control function and control method thereof | |
JP6051265B2 (en) | Controller and power supply | |
US9479069B2 (en) | Flyback-based power conversion apparatus with high conversion efficiency and low cost mechanism | |
US8947894B2 (en) | Switched mode power supply including a flyback converter with primary side control | |
JP4862432B2 (en) | Switching power supply | |
US20160359421A1 (en) | Power supply device | |
US9241381B2 (en) | LED driving circuit, control circuit and associated current sensing circuit | |
US10014786B2 (en) | Flyback power converter and synchronous rectification (SR) switch control circuit and power switch control circuit thereof | |
US11606035B2 (en) | Quasi-resonant auto-tuning controller | |
TW201626706A (en) | Insulation type DC power supply unit and control method | |
JP2009159721A (en) | Switching power supply unit and primary-side control circuit | |
CN111756248A (en) | Switching power supply device | |
CN111641340A (en) | Switching power supply device | |
TWI462450B (en) | Control circuits for power converters and offline control circuits for power converters | |
US20120106215A1 (en) | Power conversion apparatus and brown-out protection method thereof | |
CN112713778B (en) | Switching control circuit and method for controlling flyback power supply circuit | |
KR101816290B1 (en) | Power Supply System | |
KR102230495B1 (en) | Power supplying apparatus | |
EP4380316A1 (en) | Isolated led converter | |
JP2015186405A (en) | Insulation type dc power source device | |
JP4522206B2 (en) | Switching power supply | |
JP2004048820A (en) | Insulated power source unit and semiconductor integrated circuit for power source control |