TWI633957B - High stability nano metal particles, manufacturing method and stabilizer - Google Patents

High stability nano metal particles, manufacturing method and stabilizer Download PDF

Info

Publication number
TWI633957B
TWI633957B TW101140838A TW101140838A TWI633957B TW I633957 B TWI633957 B TW I633957B TW 101140838 A TW101140838 A TW 101140838A TW 101140838 A TW101140838 A TW 101140838A TW I633957 B TWI633957 B TW I633957B
Authority
TW
Taiwan
Prior art keywords
nano
amino
stabilizer
solution
particles
Prior art date
Application number
TW101140838A
Other languages
Chinese (zh)
Other versions
TW201417912A (en
Inventor
竇維平
謝承蓉
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW101140838A priority Critical patent/TWI633957B/en
Publication of TW201417912A publication Critical patent/TW201417912A/en
Application granted granted Critical
Publication of TWI633957B publication Critical patent/TWI633957B/en

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

一種高穩定性奈米金屬粒子,包括:一奈米金屬粒子;以及包覆於該奈米金屬粒子外部的抗氧化保護膜;該抗氧化保護膜是由含苯環的有機化合物或含氮的雜環化合物所構成。該抗氧化保護膜延長了奈米金屬粒子的抗氧化時間,從傳統的1~2天延長至最少14天。 A high-stability nano metal particle comprising: a nano metal particle; and an antioxidant protective film coated on the outside of the nano metal particle; the antioxidant protective film is an organic compound containing a benzene ring or a nitrogen-containing compound It is composed of a heterocyclic compound. The antioxidant protective film prolongs the antioxidant time of the nano metal particles, extending from the conventional 1-2 days to a minimum of 14 days.

Description

高穩定性奈米金屬粒子、製造方法及穩定劑 High stability nano metal particles, manufacturing method and stabilizer

本發明是關於如何提昇奈米金屬粒子的抗氧化能力,並且使已具備抗氧化能力的奈米金屬粒子仍保有其催化活性。 The present invention relates to how to enhance the oxidation resistance of nano metal particles, and to maintain the catalytic activity of the nano metal particles having the antioxidant ability.

至目前為止已有許多合成奈米金屬粒子的方法被提出,例如利用還原作用將原本溶解在溶液中的金屬離子還原成奈米級金屬顆粒。然而奈米級金屬顆粒因凡得瓦力的作用而極易形成團聚及沈澱的問題。除了團聚問題之外,合成後的奈米金屬粒子(例如奈米銅)抗氧化能力不佳的問題,奈米銅僅能維持1~2天左右即產生明顯的氧化現象。以上的問題影響了奈米金屬粒子的商業利用性。 A number of methods for synthesizing nano metal particles have been proposed so far, for example, reduction of metal ions originally dissolved in a solution into nano-sized metal particles by reduction. However, nano-sized metal particles are prone to agglomeration and precipitation due to the effect of van der Waals. In addition to the problem of agglomeration, the problem of poor oxidation resistance of the synthesized nano metal particles (such as nano copper), nano copper can only maintain about 1 to 2 days to produce significant oxidation. The above problems affect the commercial availability of nano metal particles.

為解決這些問題,於合成奈米金屬粒子的溶液中添加保護劑,使合成的奈米金屬粒子表面形成功能性保護膜對抗凡得瓦力的凝聚作用,並延長奈米金屬粒子的抗氧化時間。所述的功能性保護膜的主要成份包括雙官能性分子(如中華民國發明專利公開200907113號所揭露)、聚合物(如中華民國發明專利公開200640596)、抗壞血酸(C6H8O6)及二丁基羥基甲苯(C15H24O)(如中華民國發明專利I341756)。然而,此類功能性保護膜卻會使奈米金屬粒子的導電性變差,因此覆有保護劑的奈米金屬粒子應用於電鍍製程之前,需特別進行移除保護劑的清洗步驟,將保護劑從奈米金屬粒子的表面移除。然而這個移除步驟增加了製造上的麻煩,並衍生成本增加的問題。 In order to solve these problems, a protective agent is added to the solution of the synthesized nano metal particles to form a functional protective film on the surface of the synthesized nano metal particles to resist the cohesion of the van der Waals force, and to prolong the oxidation resistance time of the nano metal particles. . The main components of the functional protective film include bifunctional molecules (as disclosed in the Chinese Patent Publication No. 200907113), polymers (such as the Republic of China invention patent publication 200640596), ascorbic acid (C 6 H 8 O 6 ) and Dibutylhydroxytoluene (C 15 H 24 O) (eg, Republic of China invention patent I341756). However, such a functional protective film deteriorates the conductivity of the nano metal particles. Therefore, before the nano metal particles coated with the protective agent are applied to the electroplating process, a special cleaning step of removing the protective agent is required to protect The agent is removed from the surface of the nano metal particles. However, this removal step increases the trouble of manufacturing and the problem of increased cost.

中華民國發明專利公開第201023999號揭露了一種製造奈米金屬粒子的方法,其製成之奈米金屬粒子的表面具有以自裂解分子所構成之可自裂解的保護劑,該保護劑可使奈米金屬具有抗團聚作用以及抗氧化的功能。自裂解保護劑在特定溫度範圍(低於200℃)產生自裂解現象,使保護劑從奈米金屬顆粒的表面脫離。此專利文獻解決了因移除保護劑之清洗步驟的問題,但是此在使用這一類的奈米金屬粒子時,必需設定在一個可使其保護劑產生自裂解的操作溫度,這仍然使得商業利用範圍受到限制,例如以25℃溫操作的無電電鍍浴則不適用,因為保護劑無法產生自裂解現象。 The Republic of China Patent Publication No. 201023999 discloses a method for producing nano metal particles, wherein the surface of the prepared nano metal particles has a self-cleavable protective agent composed of self-cracking molecules, and the protective agent can be used. Rice metal has anti-agglomeration and anti-oxidation functions. The self-cracking protectant produces a self-cracking phenomenon at a specific temperature range (less than 200 ° C), causing the protective agent to detach from the surface of the nano metal particles. This patent document solves the problem of the cleaning step of removing the protective agent, but when using such a type of nano metal particles, it is necessary to set an operating temperature at which the protective agent can be self-cracked, which still makes commercial use. The range is limited. For example, an electroless plating bath operating at a temperature of 25 ° C is not suitable because the protective agent cannot produce self-cracking.

一.奈米金屬粒子之抗氧化能力不佳的問題。(其抗氧化能力在空氣中僅能維持1~2天)。 One. The problem of poor oxidation resistance of nano metal particles. (The antioxidant capacity can only last for 1 to 2 days in the air).

二.奈米金屬粒子易團聚的問題。 two. The problem of easy agglomeration of nano metal particles.

三.表面覆有抗氧化或抗團聚力之保護膜的奈米金屬粒子,卻導致導電性或催化活性不佳的問題。 three. Nano metal particles coated with a protective film of anti-oxidation or anti-agglomeration result in problems of poor conductivity or catalytic activity.

四.必需以移除保護膜之清洗步驟始能恢復奈米金屬粒子導電性或催化活性,但卻衍生出製程繁瑣及成本增加的問題。 four. It is necessary to recover the conductivity or catalytic activity of the nano metal particles by the cleaning step of removing the protective film, but the problem of cumbersome process and increased cost is derived.

五.必需在特定的操作溫度中才能使用具有自裂解薄膜,而致奈米金屬粒子的應用範圍受限的問題。 Fives. It is necessary to use a self-cracking film at a specific operating temperature, and the application range of the nano metal particles is limited.

一種高穩定性奈米金屬粒子,包括:一奈米金屬粒子;以及包覆於該奈米金屬粒子外部的抗氧化保護膜;該抗氧化保護膜是由含苯環的有機化合物或含氮的雜環化合物所構成。 A high-stability nano metal particle comprising: a nano metal particle; and an antioxidant protective film coated on the outside of the nano metal particle; the antioxidant protective film is an organic compound containing a benzene ring or a nitrogen-containing compound It is composed of a heterocyclic compound.

一種穩定劑,該穩定劑添加於製造奈米金屬粒子之溶液中,該穩定劑使該溶液所產出的奈米金屬粒子的外部具有一抗氧化保護膜;該穩定劑之組成為以下通式之擇一: a stabilizer added to a solution for producing nano metal particles, the stabilizer having an outer surface of the nano metal particles produced by the solution; the composition of the stabilizer is the following formula Optional one:

其中,X為N或S;Y為N或C;Z為N或S;R為H、SH、SCH3之擇一 Where X is N or S; Y is N or C; Z is N or S; R is an alternative to H, SH, and SCH 3

R1為H;R2為H或SH;R3為H或OH。 R 1 is H; R 2 is H or SH; and R 3 is H or OH.

一種製造高穩定性奈米金屬粒子之方法,是在一液相對固相的異相反應溶液中置入上述的穩定劑,穩定劑是在反應溶液已製出奈米金屬粒子後置入,該穩定劑是奈米金屬粒子的表現形成一抗氧化保護膜。 A method for producing high-stability nano metal particles, wherein the stabilizer is placed in a liquid phase relative to a solid phase heterogeneous reaction solution, and the stabilizer is placed after the reaction solution has prepared nano metal particles, and the stabilization is performed. The agent is an expression of nano metal particles to form an antioxidant protective film.

一.高穩定性奈米金屬粒子具有顯著的抗氧化能力,抗氧化時間從傳統的1~2天延長至最少14天。 One. The high-stability nano metal particles have significant antioxidant capacity, and the antioxidant time is extended from the conventional 1-2 days to at least 14 days.

二.高穩定性奈米金屬粒子在溶液中具有良好的分散性。 two. The high stability nano metal particles have good dispersibility in solution.

三.高穩定性奈米金屬粒子保有觸媒催化活性。 three. The high stability nano metal particles retain catalytic catalytic activity.

四.高穩定性奈米金屬粒子可直接應用於無電電鍍做為催化觸媒,不必經過移除抗氧化保護膜的步驟,省除了傳統的保護劑清洗移除步驟,減少了製程麻煩及成本。 four. The high-stability nano metal particles can be directly applied to the electroless plating as a catalytic catalyst, without the step of removing the anti-oxidation protective film, eliminating the traditional protective agent cleaning and removing steps, reducing the labor trouble and cost.

五.高穩定性奈米金屬粒子可應用在各種已知的電鍍領域中。 Fives. Highly stable nano metal particles can be used in various known electroplating fields.

六.可取代鈀觸媒應用於無電電鍍,減少觸媒成本。 six. It can replace palladium catalyst for electroless plating and reduce catalyst cost.

<<表面包覆抗氧化保護膜之奈米金屬粒子>><<Nano-coated metal particles coated with anti-oxidation protective film>>

第一圖(a)(b)(c)為本發明奈米金屬粒子於電子顯微鏡下的樣態。該奈米金屬粒子10為奈米銅,該奈米金屬粒子10的外表面包覆一抗氧化保護膜11。該抗氧化保護膜11是由含苯環的有機化合物或含氮的雜環化合物所構成。為便於說明,本發明以下將包覆抗氧化保護膜11的奈米金屬粒子10稱之為高穩定性奈米金屬(銅)粒子。 The first figure (a), (b) and (c) are views of the nano metal particles of the present invention under an electron microscope. The nano metal particles 10 are nano copper, and the outer surface of the nano metal particles 10 is coated with an oxidation resistant protective film 11. The oxidation-resistant protective film 11 is composed of a benzene ring-containing organic compound or a nitrogen-containing heterocyclic compound. For convenience of explanation, the nano metal particles 10 coated with the oxidation resistant protective film 11 are hereinafter referred to as high-stability nano metal (copper) particles.

該抗氧化保護膜11是由通式[1]之化合物所構成。 This antioxidant protective film 11 is composed of a compound of the general formula [1].

通式[1],X為N或S;Y為N或C;Z為N或S;R1為H;R2為H或SH;R3為H或OH。 General formula [1], X is N or S; Y is N or C; Z is N or S; R 1 is H; R 2 is H or SH; and R 3 is H or OH.

屬通式[1]之有機化合物苯並三唑(Benzotriazole,,BTA)、甲苯二胺(Benthzothiadiazole,,TDA)、1-羥基苯井三唑(1-hydroxybenzotriazole,BTAOH)、硫醇苯駢噻唑(Mercaptobenzothiazole,MBT)、苯並咪唑(Benzimidazole,BIMD)、氫硫基苯並咪唑(Mercaptobenzimidazole,MBIMD)之擇一可做為上述抗氧化保護膜11。 Benzotriazole (BTA), Benthzothiadiazole (TDA), 1-hydroxybenzotriazole (BTAOH), thiol benzothiazole (Mercaptobenzothiazole, MBT), Benzimidazole (BIMD), and Mercaptobenzimidazole (MBIMD) may be selected as the above-mentioned antioxidant protective film 11.

該抗氧化保護膜11亦可由通式[2]之化合物所構成。 The antioxidant protective film 11 can also be composed of a compound of the general formula [2].

通式[2],R為H、SH、SCH3之擇一。 In the general formula [2], R is an alternative to H, SH, and SCH 3 .

屬通式[2]之有機化合物3-胺基-1,2,4-三氮唑(3-amino-1,2,4 triazole,ATA)、3-胺基-5氫硫-1,2,4三氮唑(3-amino-5-mercapto1,2,4 triazole,AMT)、3-胺基-5甲硫-1,2,4-三氮唑(3-amino-5-methylthio1,2,4,AMTT)、2-氫硫基乙磺酸鈉(Sodium 2-mercaptoethanesulfonate,MES)之擇一可做為上述抗氧化保護膜11。 The organic compound of the general formula [2] 3-amino-1,2,4-triazole (3-amino-1,2,4 triazole, ATA), 3-amino-5-hydrogen sulfide-1,2 , 4-amino-5-mercapto1, 2,4 triazole, AMT, 3-amino-5-methylthio-1,2,4-triazole (3-amino-5-methylthio1,2 The alternative to Sodium 2-mercaptoethanesulfonate (MES) can be used as the above-mentioned antioxidant protective film 11.

<<高穩定性奈米金屬粒子之合成方法>><<Synthesis method of high stability nano metal particles>> 實施例一: Embodiment 1:

步驟一,選用包含金屬離子之固態聚亞醯胺酸(Polyamide acid,PAA);所述的金屬離子可為Cu2+;步驟二,選用包含添加劑之還原液;該還原液係選用二甲基胺硼烷((CH3)2NHBH3,DMAB)水溶液、硼氫化鈉(NaBH4)水溶液,該添加劑是選用硫醇類化合物,例如: MPS(3-Mercapto-1-pronaesulfoante) Step one, selecting a solid polyamic acid (PAA) containing a metal ion; the metal ion may be Cu 2+ ; in step 2, selecting a reducing solution containing an additive; the reducing liquid is dimethyl An aqueous solution of an amine borane ((CH 3 ) 2 NHBH 3 , DMAB), an aqueous solution of sodium borohydride (NaBH 4 ), which is a thiol compound selected, for example: MPS (3-Mercapto-1-pronaesulfoante)

MPE(3-Mercapto-1-propanol) MPE(3-Mercapto-1-propanol)

MPA(3-Mercapto-propionic acid) MPA (3-Mercapto-propionic acid)

MES(Sodium2-Mercaptoethanesulfonate) MES(Sodium2-Mercaptoethanesulfonate)

TGC(Sodium thioglycolate) TGC(Sodium thioglycolate)

DMPS(2,3-Dimercapto-1-propanesulfonic acid sodium) DMPS (2,3-Dimercapto-1-propanesulfonic acid sodium)

步驟三,將該固態聚亞醯胺酸置入該還原液中,使金屬離子還原為金屬原子,此階段的金屬原子仍附著於聚亞醯胺酸;接著,金屬原子被添加劑氧化為金屬離子,形成帶有添加劑之金屬離子而懸浮於還原液中,帶有添加劑之金屬離子被還原液還原成帶有添加劑之奈米金屬粒子(金屬原子);步驟四,將穩定劑置入該還原液中,以超音波攪拌10分鐘,使穩定劑吸附包圍在奈米金屬粒子的表面,形成本發明高穩定性奈米金屬(銅)粒子;所述之穩定劑包含上述任一的有機化合物,苯並三唑(Benzotriazole,,BTA)、甲苯二胺(Benthzothiadiazole,,TDA)、1-羥基苯井三唑(1-hydroxybenzotriazole,BTAOH)、硫醇苯駢噻唑(Mercaptobenzothiazole,MBT)、苯並咪唑(Benzimidazole,BIMD)、氫硫基苯並咪唑 (Mercaptobenzimidazole,MBIMD)、3-胺基-1,2,4-三氮唑(3-amino-1,2,4 triazole,ATA)、3-胺基-5氫硫-1,2,4三氮唑(3-amino-5-mercapto1,2,4 triazole,AMT)、3-胺基-5甲硫-1,2,4-三氮唑(3-amino-5-methylthio1,2,4,AMTT)、2-氫硫基乙磺酸鈉(Sodium 2-mercaptoethanesulfonate,MES)。 Step 3, the solid polyimidic acid is placed in the reducing solution to reduce the metal ion to a metal atom, and the metal atom at this stage is still attached to the poly-proline; then, the metal atom is oxidized to the metal ion by the additive Forming a metal ion with an additive suspended in the reducing solution, and the metal ion with the additive is reduced by the reducing liquid into a nano metal particle (metal atom) with an additive; in step 4, the stabilizer is placed in the reducing liquid In the ultrasonic wave stirring for 10 minutes, the stabilizer is adsorbed and surrounded on the surface of the nano metal particles to form the high-stability nano metal (copper) particles of the present invention; the stabilizer comprises any of the above organic compounds, benzene Benzotriazole (BTA), Benthzothiadiazole (TDA), 1-hydroxybenzotriazole (BTAOH), Mercaptobenzothiazole (MBT), benzimidazole Benzimidazole, BIMD), thiothiabenzimidazole (Mercaptobenzimidazole, MBIMD), 3-amino-1,2,4-triazole (ATA), 3-amino-5-hydrogen sulfide-1,2,4 3-amino-5-mercapto1,2,4 triazole (AMT), 3-amino-5-methylthio-1,2,4-triazole (3-amino-5-methylthio1,2,4, AMTT), sodium 2-mercaptoethanesulfonate (MES).

實施例二: Embodiment 2:

步驟一,選用包含金屬離子之固態聚亞醯胺酸(Polyamide acid,PAA);所述的金屬離子可為Cu2+;步驟二,選用包含添加劑之還原液;該還原液係選用二甲基胺硼烷((CH3)2NHBH3,DMAB)水溶液、硼氫化鈉(NaBH4)水溶液,該添加劑是選用硫醇類化合物,例如: MPS(3-Mercapto-1-pronaesulfoante) Step one, selecting a solid polyamic acid (PAA) containing a metal ion; the metal ion may be Cu 2+ ; in step 2, selecting a reducing solution containing an additive; the reducing liquid is dimethyl An aqueous solution of an amine borane ((CH 3 ) 2 NHBH 3 , DMAB), an aqueous solution of sodium borohydride (NaBH 4 ), which is a thiol compound selected, for example: MPS (3-Mercapto-1-pronaesulfoante)

MPE(3-Mercapto-1-propanol) MPE(3-Mercapto-1-propanol)

MPA(3-Mercapto-propionic acid) MPA (3-Mercapto-propionic acid)

MES(Sodium2-Mercaptoethanesulfonate) MES(Sodium2-Mercaptoethanesulfonate)

TGC(Sodium thioglycolate) TGC(Sodium thioglycolate)

DMPS(2,3-Dimercapto-1-propanesulfonic acid sodium) DMPS (2,3-Dimercapto-1-propanesulfonic acid sodium)

步驟三,將該固態聚亞醯胺酸置入該還原液中,使金屬離子還原為金屬原子,此階段的金屬原子仍附著於聚亞醯胺酸;接著,金屬原子被添加劑氧化為金屬離子,形成帶有添加劑之金屬離子而懸浮於還原液中,帶有添加劑之金屬離子被還原液還原成帶有添加劑之奈米金屬粒子(金屬原子);步驟四,將水溶液型奈米金屬粒子加入一抗氧化溶液中,所述抗氧化溶液中包含水(或乙醇)及穩定劑,該穩定劑為上述任一有機化合物,苯並三 唑(Benzotriazole,,BTA)、甲苯二胺(Benthzothiadiazole,,TDA)、1-羥基苯井三唑(1-hydroxybenzotriazole,BTAOH)、硫醇苯駢噻唑(Mercaptobenzothiazole,MBT)、苯並咪唑(Benzimidazole,BIMD)、氫硫基苯並咪唑(Mercaptobenzimidazole,MBIMD)、3-胺基-1,2,4-三氮唑(3-amino-1,2,4 triazole,ATA)、3-胺基-5氫硫-1,2,4三氮唑(3-amino-5-mercapto1,2,4 triazole,AMT)、3-胺基-5甲硫-1,2,4-三氮唑(3-amino-5-methylthio1,2,4,AMTT)、2-氫硫基乙磺酸鈉(Sodium 2-mercaptoethanesulfonate,MES);以超音波攪拌10分鐘,使穩定劑吸附包圍在奈米金屬粒子的表面,形成高穩定性奈米金屬(銅)粒子。 Step 3, the solid polyimidic acid is placed in the reducing solution to reduce the metal ion to a metal atom, and the metal atom at this stage is still attached to the poly-proline; then, the metal atom is oxidized to the metal ion by the additive Forming a metal ion with an additive suspended in the reducing liquid, and the metal ion with the additive is reduced by the reducing liquid into a nano metal particle (metal atom) with an additive; in step 4, the aqueous solution type nano metal particle is added In an antioxidant solution, the antioxidant solution comprises water (or ethanol) and a stabilizer, and the stabilizer is any of the above organic compounds, benzotriene Benzotriazole (BTA), Benthzothiadiazole (TDA), 1-hydroxybenzotriazole (BTAOH), Mercaptobenzothiazole (MBT), Benzimidazole (Benzimidazole, BIMD), Mercaptobenzimidazole (MBIMD), 3-amino-1,2,4-triazole (ATA), 3-amino-5 Hydrogen sulfur-1,2,4 triazole (3-amino-5-mercapto1,2,4 triazole, AMT), 3-amino-5-methylthio-1,2,4-triazole (3-amino -5-methylthio1,2,4,AMTT), sodium 2-mercaptoethanesulfonate (MES); ultrasonically stirred for 10 minutes to surround the surface of the nanoparticle by adsorption of the stabilizer. High stability nano metal (copper) particles are formed.

<<高穩定性奈米金屬(銅)粒子抗氧化實驗>><<High stability nano metal (copper) particles antioxidant experiment >>

第二圖,將本發明高穩定性奈米銅粒子與未包覆抗氧化保護膜的一般奈米銅粒子同於空氣中觀察。 In the second figure, the high-stability nano copper particles of the present invention were observed in the air together with the ordinary nano copper particles not coated with the antioxidant protective film.

第0天~第5天,高穩定性奈米銅粒子仍均勻懸浮於溶液中,未發生氧化及沈澱現象,而一般奈米金屬粒子在第3天幾乎全數氧化並有極少量的沈澱。圖式中僅列至第5天,但事實上本發明高穩定性奈米銅粒子之抗氧化能力延續至十四天。 From day 0 to day 5, the high-stability nano-copper particles were still uniformly suspended in the solution without oxidation and precipitation, and generally the nano metal particles were almost completely oxidized on the third day with a very small amount of precipitation. Only the fifth day is shown in the figure, but in fact the antioxidant capacity of the high stability nano copper particles of the present invention lasts for fourteen days.

如第三圖是奈米銅粒子的紫外線可見光譜圖(UV-Vis),其中(a)為高穩定性奈米銅粒子,(b)是一般奈米銅粒子。可發現在550nm處有因奈米銅粒子表面電漿共振現象(SPR)所造成的UV吸收峰,其吸收峰會隨著時間而消耗,但並未呈現明顯的平移(shift),如果奈米銅粒子被氧化,其吸收峰會向右平移,也就是向高波長方向移動。(a)在第6天仍然有明顯的吸收峰,(b) 的吸收峰則只維持3天。 The third figure is an ultraviolet visible spectrum (UV-Vis) of nano copper particles, wherein (a) is a high stability nano copper particle, and (b) is a general nano copper particle. It can be found that there is a UV absorption peak caused by surface plasma resonance phenomenon (SPR) of the copper particles at 550 nm, and the absorption peak is consumed over time, but does not exhibit significant shift, if nano copper When the particles are oxidized, their absorption peaks shift to the right, that is, toward the high wavelength. (a) There is still a significant absorption peak on the 6th day, (b) The absorption peak is only maintained for 3 days.

<<高穩定性奈米銅粒子之催化活性實驗>><<Experimental activity of high stability nano copper particles>>

本實驗是以無電電鍍證明本發明高穩定性奈米銅粒子仍具有良好的觸媒催化活性。雖然仍有很多因素會影響無電電鍍的效能,但其中最重要的仍是活化步驟,它決定了沈積金屬時的反應速率與反應機制。非金屬基材本身不具活性,要在非金屬基材表面進行無電電鍍使其金屬化,必需先將非金屬基材表面吸附觸媒後促使還原劑脫氫、氧化並放出電子,使金屬離子還原沈積於具催化活性的基材表面生成金屬層。習知無電電鍍的觸媒通常採用鈀,然而鈀金屬的成本極高。 This experiment demonstrates that the high stability nano copper particles of the present invention still have good catalytic catalytic activity by electroless plating. Although there are still many factors that affect the performance of electroless plating, the most important one is the activation step, which determines the reaction rate and reaction mechanism when depositing metals. The non-metal substrate itself is not active. To perform electroless plating on the surface of the non-metal substrate for metallization, it is necessary to first adsorb the catalyst on the surface of the non-metal substrate to promote dehydrogenation, oxidation and release of electrons to reduce the metal ions. Deposited on the surface of the catalytically active substrate to form a metal layer. Conventional electroless plating catalysts typically use palladium, however palladium metal is extremely expensive.

本發明以高穩定性奈米銅粒子調配無電電鍍的活化液,將非金屬基板清洗乾燥後,浸泡於本發明活化液中,取出進行乾燥,即進行無電電鍍。無電電鍍銅之鍍浴配方如習知者,包括銅離子源、螯合劑、還原劑、PH值調整劑。無電電鍍後取出基板,以3M膠帶(附著力測試膠帶)進行導電金屬層與非金屬基板的附著力測試。 In the present invention, an electroless plating activation liquid is prepared by using high-stability nano copper particles, and the non-metal substrate is washed and dried, then immersed in the activation liquid of the present invention, taken out and dried, that is, electroless plating is performed. The plating bath formulation for electroless copper plating is as known, including a copper ion source, a chelating agent, a reducing agent, and a pH adjusting agent. After electroless plating, the substrate was taken out, and the adhesion test of the conductive metal layer and the non-metal substrate was performed with a 3M tape (adhesion test tape).

為突顯高穩定性奈米銅粒子因其長時間的抗氧化性而保有銅粒子的催化活性,實驗是以在空氣中放置6天的高穩定性奈米銅粒子做為催化觸媒,並與以一般奈米銅粒子為催化觸媒進行比較。實驗結果如第四圖,(a)為使用一般奈米銅粒子為催化觸媒進行無電電鍍之結果;(b)為使用高穩定性奈米銅粒子為催化觸媒進行無電電鍍之結果。可看出,(a)的基材表面只有一部份起鍍,而(b)則表現了全面性的起鍍。此結果顯示,在空氣中放置6 天的一般奈米銅粒子因為氧化現象而失去了催化活性,但本發明高穩定性奈米銅粒子則因其優越的抗氧化能力而仍保有良好的催化活性。 In order to highlight the high stability of the nano copper particles to retain the catalytic activity of copper particles due to their long-term oxidation resistance, the experiment is based on high-stability nano copper particles placed in the air for 6 days as a catalytic catalyst, and The general nano copper particles were used as a catalytic catalyst for comparison. The experimental results are shown in the fourth figure, (a) is the result of electroless plating using general nano copper particles as a catalytic catalyst; (b) is the result of electroless plating using high stability nano copper particles as a catalytic catalyst. It can be seen that only part of the surface of the substrate of (a) is plated, and (b) exhibits a comprehensive plating. This result shows that 6 is placed in the air The general nano-copper particles of the day lose their catalytic activity due to the oxidation phenomenon, but the high-stability nano copper particles of the present invention retain good catalytic activity due to their superior oxidation resistance.

如第四圖(C),將(b)的基板以3M膠帶(附著力測試膠帶)進行導電金屬層與非金屬基板的附著力測試,在膠帶附著少量的導電金屬,表示導電金屬層與非金屬基板的附著力符合工業要求。 As shown in the fourth figure (C), the substrate of (b) is tested for adhesion of the conductive metal layer to the non-metal substrate with a 3M tape (adhesion test tape), and a small amount of conductive metal is attached to the tape to indicate that the conductive metal layer is non-metallic. The adhesion of the metal substrate meets industrial requirements.

基於上述實驗結果,本發明高穩定性奈米銅粒子可取代鈀做為無電電鍍之觸媒。 Based on the above experimental results, the high-stability nano copper particles of the present invention can replace palladium as a catalyst for electroless plating.

<<以化學接枝方式將高穩定性奈米銅粒子固定於基材>><<The high-stability nano copper particles are fixed to the substrate by chemical grafting>>

此項實驗是以本案發明人之一所提出之中華民國發明專利公開第201230744號(以下簡稱744案)之方法接枝於一矽基材上,做為無電電鍍晶種層之催化觸媒,並以填孔電鍍的成果證明本發明高穩定性奈米銅粒子可應用於半導體領域。 This experiment was grafted on a substrate by the method of the Republic of China Invention Patent Publication No. 201230744 (hereinafter referred to as the 744 case), which is one of the inventors of the present invention, as a catalytic catalyst for electroless plating seed layer. The results of the hole-fill plating show that the high-stability nano copper particles of the present invention can be applied to the field of semiconductors.

該接枝方法是施行於一具有高深寬比孔洞的矽基材,且孔洞內壁預設阻障層。孔徑為10μm、20μm、30μm、40μm、50μm。所採用的是剛合成好的高穩定性奈米銅粒子。 The grafting method is performed on a tantalum substrate having a cavity having a high aspect ratio, and the inner wall of the hole is preset with a barrier layer. The pore diameters were 10 μm, 20 μm, 30 μm, 40 μm, and 50 μm. The high-stability nano copper particles that have just been synthesized are used.

步驟一,將上述矽基材與一第一溶液接觸,於該阻障層表面形成一第一接枝單元;該第一溶液包含3-氨基丙基三甲氧基甲矽烷及接枝物質,該接枝物質可為含胺基之化合物;步驟二,將上述具有第一接枝單元的矽基材接觸一第二溶液;該第二 溶液包含具有高穩定性奈米銅粒子的化合物,例如包含高穩定性奈米銅粒子的硫基乙酸;該第一接枝單元與該具有奈米金屬粒子的化合物產生化學鍵結,使本發明高穩定性奈米銅粒子接枝於該第一接枝單元上,形成一高穩定性奈米銅粒子接枝層;步驟三,以無電電鍍技術於該高穩定性奈米銅粒子接枝層鍍上一層銅晶種層;步驟四,以電鍍銅填孔技術將銅鍍於該銅晶種層上完成填孔。 Step 1: contacting the ruthenium substrate with a first solution to form a first graft unit on the surface of the barrier layer; the first solution comprises 3-aminopropyltrimethoxymethane and a grafting substance, The grafting substance may be an amine group-containing compound; in step 2, the ruthenium substrate having the first graft unit is contacted with a second solution; the second The solution comprises a compound having high stability nano copper particles, such as thioglycolic acid comprising high stability nano copper particles; the first grafting unit chemically bonds with the compound having nano metal particles, making the invention high The stable nano copper particles are grafted on the first grafting unit to form a high stability nano copper particle grafting layer; in the third step, the high stability nano copper particle grafting layer is electrolessly plated. The upper layer of copper seed layer is formed; in step 4, copper is plated on the copper seed layer by electroplating copper hole filling technology to complete the hole filling.

第五圖為填孔成果的SEM圖,於各孔徑之孔洞均完成填孔,顯示本發明高穩定性奈米銅粒子確具有觸媒催化作用,使銅晶種層確實固著而發揮填孔電鍍的效能。 The fifth figure is the SEM image of the hole-filling results. The holes are filled in the pores of each pore diameter, which shows that the high-stability nano copper particles of the present invention do have catalyst catalytic effect, so that the copper seed layer is indeed fixed and the pore filling is performed. The effectiveness of plating.

<<結論>><<Conclusion>>

綜上所述,以上的實驗均證明本發明高穩定性奈米銅粒子具有顯著的抗氧化能力,它的抗氧化時間從傳統的1~2天延長至最少14天。 In summary, the above experiments all prove that the high-stability nano copper particles of the invention have remarkable antioxidant capacity, and the oxidation time thereof is extended from the conventional 1-2 days to at least 14 days.

上述的無電電鍍實驗結果顯示高穩定性奈米銅粒子不需移除表面的抗氧化保護層,即可直接做為無電電鍍的觸媒,並使非導電基材順利完成無電電鍍。 The above electroless plating experiment results show that the high-stability nano copper particles can be directly used as a catalyst for electroless plating without removing the anti-oxidation protective layer on the surface, and the non-conductive substrate can be smoothly electrolessly plated.

上述填孔電鍍實驗結果顯示高穩定性奈米銅粒子不需移除表面的抗氧化保護層,亦可接枝於矽基材,並順利完成填孔電鍍。 The results of the above-mentioned hole-filling electroplating experiment show that the high-stability nano-copper particles do not need to remove the anti-oxidation protective layer on the surface, and can also be grafted on the ruthenium substrate, and the hole-fill plating is successfully completed.

10‧‧‧奈米金屬粒子 10‧‧‧Nano metal particles

11‧‧‧抗氧化保護膜 11‧‧‧Antioxidant protective film

第一圖(a)(b)(c)為本發明高穩定性奈米銅粒子於電子顯微鏡下的樣態。 The first figure (a), (b) and (c) show the state of the high-stability nano copper particles of the present invention under an electron microscope.

第二圖描述本發明高穩定性奈米銅粒子與未包覆抗氧化保護膜的一般奈米銅粒子同於空氣中觀察數天的變化情形。 The second graph depicts the variation of the high stability nano copper particles of the present invention with the conventional nano copper particles not coated with the antioxidant protective film for several days in the air.

第三圖是奈米銅粒子的紫外線可見光譜圖(UV-Vis),(a)為本發明高穩定性奈米銅粒子,(b)是一般奈米銅粒子。 The third figure is an ultraviolet visible spectrum (UV-Vis) of nano copper particles, (a) is a high-stability nano copper particle of the present invention, and (b) is a general nano copper particle.

第四圖(a)為使用一般奈米銅粒子為催化觸媒進行無電電鍍之結果;(b)為使用本發明高穩定性奈米銅粒子為催化觸媒進行無電電鍍之結果;(C)為將(b)的基板以3M膠帶(附著力測試膠帶)進行導電金屬層與非金屬基板的附著力測試結果。 The fourth diagram (a) is the result of electroless plating using general nano copper particles as a catalytic catalyst; (b) the result of electroless plating using the high stability nano copper particles of the present invention as a catalytic catalyst; The adhesion test results of the conductive metal layer and the non-metal substrate were performed on the substrate of (b) with a 3M tape (adhesion test tape).

第五圖描述本發明高穩定性奈米銅粒子以化學接枝法接枝於一矽基材高深寬比孔洞之阻障層上,做為銅晶種層之觸媒,完成銅晶種層之無電電鍍,並於銅晶種層上進行填孔之SEM圖。 The fifth figure describes that the high-stability nano copper particles of the present invention are grafted onto the barrier layer of a high aspect ratio hole by a chemical grafting method, and serve as a catalyst for the copper seed layer to complete the copper seed layer. The electroless plating, and the SEM image of the hole filling on the copper seed layer.

Claims (8)

一種高穩定性奈米金屬粒子,包括:一奈米金屬粒子;,該奈米金屬粒子為奈米銅粒子;包覆於該奈米銅粒子外部的抗氧化保護膜;該抗氧化保護膜是由含苯環的有機化合物所構成;其中,含苯環的有機化合物為苯並三唑(Benzotriazole,,BTA)、甲苯二胺(Benthzothiadiazole,,TDA)、1-羥基苯井三唑(1-hydroxybenzotriazole,BTAOH)、硫醇苯駢噻唑(Mercaptobenzothiazole,MBT)、苯並咪唑(Benzimidazole,BIMD)、氫硫基苯並咪唑(Mercaptobenzimidazole,MBIMD)之擇一;包覆該抗氧化保護膜之奈米銅粒子在無電電鍍系統中具有觸媒催化活性。 A high-stability nano metal particle comprising: one nano metal particle; the nano metal particle is a nano copper particle; an anti-oxidation protective film coated on the outside of the nano copper particle; the antioxidant protective film is It is composed of an organic compound containing a benzene ring; wherein the organic compound containing a benzene ring is Benzotriazole (BTA), Benthzothiadiazole (TDA), 1-hydroxybenzene triazole (1- Hydroxybenzotriazole (BTAOH), Mercaptobenzothiazole (MBT), Benzimidazole (BIMD), Mercaptobenzimidazole (MBIMD); Nanoparticle coated with the antioxidant film Copper particles have catalytic catalytic activity in electroless plating systems. 一種高穩定性奈米金屬粒子,包括:一奈米金屬粒子,該奈米金屬粒子為奈米銅粒子;包覆於該奈米銅粒子外部的抗氧化保護膜;該抗氧化保護膜是由含氮的雜環化合物所構成;該含氮的雜環化合物為3-胺基-1,2,4-三氮唑(3-amino-1,2,4 triazole,ATA)、3-胺基-5氫硫-1,2,4三氮唑(3-amino-5-mercapto1,2,4 triazole,AMT)、3-胺基-5甲硫-1,2,4-三氮唑(3-amino-5-methylthio1,2,4,AMTT)、2-氫硫基乙磺酸鈉(Sodium 2-mercaptoethanesulfonate,MES)之擇一。 A high-stability nano metal particle, comprising: a nano metal particle, wherein the nano metal particle is a nano copper particle; an anti-oxidation protective film coated on the outside of the nano copper particle; the anti-oxidation protective film is The nitrogen-containing heterocyclic compound is 3-amino-1,2,4-triazole (3-amino-1,2,4 triazole, ATA), 3-amino group -5 hydrogen sulfide-1,2,4 triazole (3-amino-5-mercapto1,2,4 triazole, AMT), 3-amino-5-methylthio-1,2,4-triazole (3 -amino-5-methylthio1,2,4,AMTT), sodium 2-mercaptoethanesulfonate (MES). 一種製造如申請專利範圍第1項所述高穩定性奈米金屬粒子之穩定劑,該 穩定劑被添加於合成奈米銅粒子之溶液中,該穩定劑使該溶液所產出的奈米銅粒子的外部具有一抗氧化保護膜,且包覆該抗氧化保護膜之奈米銅粒子在無電電鍍系統中具有觸媒催化活性;該穩定劑為苯並三唑(Benzotriazole,,BTA)、甲苯二胺(Benthzothiadiazole,,TDA)、1-羥基苯井三唑(1-hydroxybenzotriazole,BTAOH)、硫醇苯駢噻唑(Mercaptobenzothiazole,MBT)、苯並咪唑(Benzimidazole,BIMD)、氫硫基苯並咪唑(Mercaptobenzimidazole,MBIMD)之擇一。 A stabilizer for producing high-stability nano metal particles as described in claim 1 of the patent application, a stabilizer is added to the solution of the synthetic nano copper particles, the stabilizer has an anti-oxidation protective film on the outside of the nano copper particles produced by the solution, and the nano copper particles coated with the anti-oxidation protective film Catalytic activity in electroless plating systems; Benzotriazole (BTA), Benthzothiadiazole (TDA), 1-hydroxybenzotriazole (BTAOH) , Mercaptobenzothiazole (MBT), Benzimidazole (BIMD), Mercaptobenzimidazole (MBIMD). 一種製造如申請專利範圍第2項所述高穩定性奈米金屬粒子之穩定劑,該穩定劑被添加於合成奈米銅粒子之溶液中,該穩定劑使該溶液所產出的奈米銅粒子的外部具有一抗氧化保護膜,且包覆該抗氧化保護膜之奈米銅粒子在無電電鍍系統中具有觸媒催化活性;該穩定劑為3-胺基-1,2,4-三氮唑(3-amino-1,2,4 triazole,ATA)、3-胺基-5氫硫-1,2,4三氮唑(3-amino-5-mercapto1,2,4 triazole,AMT)、3-胺基-5甲硫-1,2,4-三氮唑(3-amino-5-methylthio1,2,4,AMTT)、2-氫硫基乙磺酸鈉(Sodium 2-mercaptoethanesulfonate,MES)之擇一。 A stabilizer for producing high-stability nano metal particles as described in claim 2, the stabilizer being added to a solution of synthetic nano copper particles, the stabilizer producing nano copper produced by the solution The outer part of the particle has an anti-oxidation protective film, and the nano copper particles coated with the anti-oxidation protective film have catalytic catalytic activity in the electroless plating system; the stabilizer is 3-amino-1,2,4-three 3-amino-1,2,4 triazole, ATA, 3-amino-5-mercapto1,2,4 triazole, AMT , 3-amino-5-methylthio-1,2,4-triazole (3-amino-5-methylthio1,2,4,AMTT), sodium 2-mercaptoethanesulfonate (Sodium 2-mercaptoethanesulfonate, MES). 一種如申請專利範圍第1項所述之高穩定性奈米金屬粒子的製造方法,包含:步驟一,選用包含銅離子之固態聚亞醯胺酸(Polyamide acid,PAA);選用包含添加劑之還原液;該還原液係選用二甲基胺硼烷((CH3)2NHBH3,DMAB)水溶液、硼氫化鈉(NaBH4)水溶液,該添加劑是選用硫醇類化合物; 步驟二,將該固態聚亞醯胺酸置入該還原液中,於該還原液中產生奈米銅粒子;步驟三,將穩定劑置入該還原液中,並攪拌該還原液,使該穩定劑吸附包圍在奈米銅粒子的表面,於該奈米銅金屬粒子之表面形成一抗氧化保護膜,製成高穩定性奈米銅粒子,且包覆該抗氧化保護膜之奈米金屬粒子在無電電鍍系統中具有觸媒催化活性;該穩定劑是選自苯並三唑(Benzotriazole,,BTA)、甲苯二胺(Benthzothiadiazole,,TDA)、1-羥基苯井三唑(1-hydroxybenzotriazole,BTAOH)、硫醇苯駢噻唑(Mercaptobenzothiazole,MBT)、苯並咪唑(Benzimidazole,BIMD)、氫硫基苯並咪唑(Mercaptobenzimidazole,MBIMD)之擇一。 A method for producing high-stability nano metal particles according to claim 1, comprising: step one, selecting a solid polyamic acid (PAA) containing copper ions; a stock solution; the reducing liquid is selected from an aqueous solution of dimethylamine borane ((CH 3 ) 2 NHBH 3 , DMAB), an aqueous solution of sodium borohydride (NaBH 4 ), the additive is a thiol compound; Polyamic acid is placed in the reducing liquid to produce nano copper particles in the reducing liquid; in step three, a stabilizer is placed in the reducing liquid, and the reducing liquid is stirred to cause the stabilizer to be adsorbed and surrounded by a surface of the copper-copper particles forms an anti-oxidation protective film on the surface of the nano-copper metal particles to form high-stability nano-copper particles, and the nano-metal particles coated with the anti-oxidation protective film are in an electroless plating system Catalytic activity; the stabilizer is selected from Benzotriazole (BTA), Benthzothiadiazole (TDA), 1-hydroxybenzotriazole (BTAOH), thiol Benzothiazole (Mercaptobenzothia) Zole, MBT), benzimidazole (BIMD), Mercaptobenzimidazole (MBIMD). 一種如申請專利範圍第2項所述之高穩定性奈米金屬粒子的製造方法,包含:步驟一,選用包含銅離子之固態聚亞醯胺酸(Polyamide acid,PAA);選用包含添加劑之還原液;該還原液係選用二甲基胺硼烷((CH3)2NHBH3,DMAB)水溶液、硼氫化鈉(NaBH4)水溶液,該添加劑是選用硫醇類化合物;步驟二,將該固態聚亞醯胺酸置入該還原液中,於該還原液中產生奈米銅粒子;步驟三,將穩定劑置入該還原液中,並攪拌該還原液,使該穩定劑吸附包圍在奈米金銅粒子的表面,於該奈米銅粒子之表面形成一抗氧化保 護膜,製成高穩定性奈米銅粒子,且包覆該抗氧化保護膜之奈米銅粒子在無電電鍍系統中具有觸媒催化活性;該穩定劑是選自3-胺基-1,2,4-三氮唑(3-amino-1,2,4 triazole,ATA)、3-胺基-5氫硫-1,2,4三氮唑(3-amino-5-mercapto1,2,4 triazole,AMT)、3-胺基-5甲硫-1,2,4-三氮唑(3-amino-5-methylthio1,2,4,AMTT)、2-氫硫基乙磺酸鈉(Sodium 2-mercaptoethanesulfonate,MES)之擇一。 A method for producing high-stability nano metal particles according to claim 2, comprising: step one, selecting a solid polyamic acid (PAA) containing copper ions; a stock solution; the reducing liquid is selected from the group consisting of an aqueous solution of dimethylamine borane ((CH 3 ) 2 NHBH 3 , DMAB), an aqueous solution of sodium borohydride (NaBH 4 ), the additive is a thiol compound; and the second step is the solid state. Polyamic acid is placed in the reducing liquid to produce nano copper particles in the reducing liquid; in step three, a stabilizer is placed in the reducing liquid, and the reducing liquid is stirred to cause the stabilizer to be adsorbed and surrounded by The surface of the gold-plated copper particles forms an anti-oxidation protective film on the surface of the nano-copper particles to form high-stability nano-copper particles, and the nano-copper particles coated with the anti-oxidation protective film have an electroless plating system. Catalytic catalytic activity; the stabilizer is selected from the group consisting of 3-amino-1,2,4-triazole (3-amino-1,2,4 triazole, ATA), 3-amino-5-hydrogen sulfide-1 , 2,4 triazole (3-amino-5-mercapto1, 2,4 triazole, AMT), 3-amino-5-methylthio-1,2,4-triazole (3-amino-5-met Hylthio1, 2, 4, AMTT), sodium 2-mercaptoethanesulfonate (MES). 一種如申請專利範圍第1項所述之高穩定性奈米金屬粒子的製造方法,包含:步驟一,選用包含銅離子之固態聚亞醯胺酸(Polyamide acid,PAA);選用包含添加劑之還原液;該還原液係選用二甲基胺硼烷((CH3)2NHBH3,DMAB)水溶液、硼氫化鈉(NaBH4)水溶液,該添加劑是選用硫醇類化合物;步驟二,將該固態聚亞醯胺酸置入該還原液中,於該還原液中產生奈米銅粒子;步驟三,將奈米銅粒子置入一抗氧化溶液中,將穩定劑置入該抗氧化溶液中,攪拌該抗氧化溶液,使該穩定劑吸附包圍在奈米金屬粒子的表面,於該奈米銅粒子之表面形成一抗氧化保護膜,製成高穩定性奈米銅粒子,且包覆該抗氧化保護膜之奈米金屬粒子在無電電鍍系統中具有觸媒催化活性;該抗氧化溶液中包含水或乙醇,以及穩定劑,該穩定劑係選自苯並三唑(Benzotriazole,,BTA)、甲苯二胺(Benthzothiadiazole,,TDA)、1-羥基苯井三唑(1-hydroxybenzotriazole,BTAOH)、硫醇苯駢噻 唑(Mercaptobenzothiazole,MBT)、苯並咪唑(Benzimidazole,BIMD)、氫硫基苯並咪唑(Mercaptobenzimidazole,MBIMD)之擇一。 A method for producing high-stability nano metal particles according to claim 1, comprising: step one, selecting a solid polyamic acid (PAA) containing copper ions; a stock solution; the reducing liquid is selected from the group consisting of an aqueous solution of dimethylamine borane ((CH 3 ) 2 NHBH 3 , DMAB), an aqueous solution of sodium borohydride (NaBH 4 ), the additive is a thiol compound; and the second step is the solid state. Polyamic acid is placed in the reducing solution to produce nano copper particles in the reducing solution; in step three, the nano copper particles are placed in an anti-oxidation solution, and the stabilizer is placed in the antioxidant solution. The anti-oxidation solution is stirred to adsorb the stabilizer on the surface of the nano metal particles, and an anti-oxidation protective film is formed on the surface of the nano-copper particles to form high-stability nano copper particles, and the anti-coating is coated. The nano-particles of the oxidized protective film have catalytic catalytic activity in an electroless plating system; the anti-oxidation solution contains water or ethanol, and a stabilizer selected from Benzotriazole (BTA), Toluene diamine (Benthzo Thiadiazole, TDA), 1-hydroxybenzotriazole (BTAOH), Mercaptobenzothiazole (MBT), Benzimidazole (BIMD), Mercaptobenzimidazole (Mercaptobenzimidazole, MBIMD). 一種如申請專利範圍第1項所述之高穩定性奈米金屬粒子的製造方法,包含:步驟一,選用包含銅離子之固態聚亞醯胺酸(Polyamide acid,PAA);選用包含添加劑之還原液;該還原液係選用二甲基胺硼烷((CH3)2NHBH3,DMAB)水溶液、硼氫化鈉(NaBH4)水溶液,該添加劑是選用硫醇類化合物;步驟二,將該固態聚亞醯胺酸置入該還原液中,於該還原液中產生奈米銅粒子;步驟三,將奈米銅粒子置入一抗氧化溶液中,將穩定劑置入該抗氧化溶液中,攪拌該抗氧化溶液,使該穩定劑吸附包圍在奈米金屬粒子的表面,於該奈米銅粒子之表面形成一抗氧化保護膜,製成高穩定性奈米銅粒子,且包覆該抗氧化保護膜之奈米金屬粒子在無電電鍍系統中具有觸媒催化活性;該抗氧化溶液中包含水或乙醇,以及穩定劑,該穩定劑係選自3-胺基-1,2,4-三氮唑(3-amino-1,2,4 triazole,ATA)、3-胺基-5氫硫-1,2,4三氮唑(3-amino-5-mercapto1,2,4 triazole,AMT)、3-胺基-5甲硫-1,2,4-三氮唑(3-amino-5-methylthio1,2,4,AMTT)、2-氫硫基乙磺酸鈉(Sodium 2-mercaptoethanesulfonate,MES)之擇一。 A method for producing high-stability nano metal particles according to claim 1, comprising: step one, selecting a solid polyamic acid (PAA) containing copper ions; a stock solution; the reducing liquid is selected from the group consisting of an aqueous solution of dimethylamine borane ((CH 3 ) 2 NHBH 3 , DMAB), an aqueous solution of sodium borohydride (NaBH 4 ), the additive is a thiol compound; and the second step is the solid state. Polyamic acid is placed in the reducing solution to produce nano copper particles in the reducing solution; in step three, the nano copper particles are placed in an anti-oxidation solution, and the stabilizer is placed in the antioxidant solution. The anti-oxidation solution is stirred to adsorb the stabilizer on the surface of the nano metal particles, and an anti-oxidation protective film is formed on the surface of the nano-copper particles to form high-stability nano copper particles, and the anti-coating is coated. The nano metal particles of the oxidized protective film have catalytic catalytic activity in an electroless plating system; the antioxidant solution contains water or ethanol, and a stabilizer selected from the group consisting of 3-amino-1,2,4- Triazole (3-amino-1, 2, 4 triazole, ATA), 3-Amino-5-mercapto-1,2,4 triazole (AMT), 3-amino-5-methylthio-1,2,4-tri A choice of azozolium (3-amino-5-methylthio1,2,4,AMTT) and sodium 2-mercaptoethanesulfonate (MES).
TW101140838A 2012-11-02 2012-11-02 High stability nano metal particles, manufacturing method and stabilizer TWI633957B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101140838A TWI633957B (en) 2012-11-02 2012-11-02 High stability nano metal particles, manufacturing method and stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101140838A TWI633957B (en) 2012-11-02 2012-11-02 High stability nano metal particles, manufacturing method and stabilizer

Publications (2)

Publication Number Publication Date
TW201417912A TW201417912A (en) 2014-05-16
TWI633957B true TWI633957B (en) 2018-09-01

Family

ID=51294106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101140838A TWI633957B (en) 2012-11-02 2012-11-02 High stability nano metal particles, manufacturing method and stabilizer

Country Status (1)

Country Link
TW (1) TWI633957B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150001A (en) * 1983-02-16 1984-08-28 Fukuda Kinzoku Hakufun Kogyo Kk Production of copper or copper alloy powder having resistance to discoloration
JPH04264302A (en) * 1991-02-18 1992-09-21 Toagosei Chem Ind Co Ltd Copper powder for conductive paste, and conductive paste thereof
JP2006011795A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Port mode control system
CN1721572A (en) * 2004-07-16 2006-01-18 北京有色金属研究总院 Protection liquid for prevention of oxidative stain of copper powder and its preparation method and use thereof
CN101139716A (en) * 2007-10-25 2008-03-12 金川集团有限公司 Method for preventing oxidization of copper powder
US20080148904A1 (en) * 2004-08-20 2008-06-26 Masanori Tomonari Copper Microparticle and Process for Producing the Same
CN101935839A (en) * 2010-09-01 2011-01-05 六安市晖润粉末新材料有限公司 Protective liquid for preventing oxidation of copper powder, and preparation method and using method thereof
TW201109107A (en) * 2009-09-08 2011-03-16 Univ Nat Chunghsing Method for synthesis of metal nanoparticles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150001A (en) * 1983-02-16 1984-08-28 Fukuda Kinzoku Hakufun Kogyo Kk Production of copper or copper alloy powder having resistance to discoloration
JPH04264302A (en) * 1991-02-18 1992-09-21 Toagosei Chem Ind Co Ltd Copper powder for conductive paste, and conductive paste thereof
JP2006011795A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Port mode control system
CN1721572A (en) * 2004-07-16 2006-01-18 北京有色金属研究总院 Protection liquid for prevention of oxidative stain of copper powder and its preparation method and use thereof
US20080148904A1 (en) * 2004-08-20 2008-06-26 Masanori Tomonari Copper Microparticle and Process for Producing the Same
CN101139716A (en) * 2007-10-25 2008-03-12 金川集团有限公司 Method for preventing oxidization of copper powder
TW201109107A (en) * 2009-09-08 2011-03-16 Univ Nat Chunghsing Method for synthesis of metal nanoparticles
CN101935839A (en) * 2010-09-01 2011-01-05 六安市晖润粉末新材料有限公司 Protective liquid for preventing oxidation of copper powder, and preparation method and using method thereof

Also Published As

Publication number Publication date
TW201417912A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5568811B2 (en) Substrate intermediate, substrate and through via electrode forming method
JP5602260B2 (en) Method for producing nickel-coated nanocarbons using electroless plating
JP6047713B2 (en) Electroless copper plating method
JP6047707B2 (en) Electroless copper plating method using pretreatment liquid
US9932676B2 (en) Pretreatment solution for electroless plating and electroless plating method
EP1681372A1 (en) Electroless copper plating solution and method for electroless copper plating
TW201720956A (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
KR101641031B1 (en) Method for treating substrate that supports catalyst particles for plating processing
TWI614372B (en) Method of electroless plating
TWI617700B (en) Method of electroless plating
TW201627531A (en) Plating bath composition and method for electroless plating of palladium
TWI582266B (en) Alkaline plating bath for electroless deposition of cobalt alloys
TWI540222B (en) Method of metallization for surface of substrate and substrate manufactured by the same
TW201723226A (en) Plating bath composition and method for electroless plating of palladium
TWI633957B (en) High stability nano metal particles, manufacturing method and stabilizer
JP5648229B2 (en) Electroless plating metal film manufacturing method and plating coated substrate
Wang et al. Growing process and reaction mechanism of electroless Ni–Mo–P film on SiO2 substrate
TW201631210A (en) Plating bath composition and method for electroless plating of palladium
JP7335280B2 (en) Electroless copper or copper alloy plating bath and plating method
US20180264548A1 (en) Silver Coated Copper Flakes and Methods of Their Manufacture
CN103403223A (en) Plating pretreatment liquid and method for producing aluminum substrate for hard disk devices using same
WO2011033819A1 (en) Method for forming polymer layer
WO2003002780A1 (en) Surface treatment agent, article surface-treated therewith and method of nickel plating using the agent
JP6524459B1 (en) Additive for silver catalyst application agent for electroless plating
JP2013091841A (en) Electroless nickel plating method and electroless nickel plating material