TWI633932B - Multivalence photocatalytic heterogeneous materials for semiconductors - Google Patents

Multivalence photocatalytic heterogeneous materials for semiconductors Download PDF

Info

Publication number
TWI633932B
TWI633932B TW103109809A TW103109809A TWI633932B TW I633932 B TWI633932 B TW I633932B TW 103109809 A TW103109809 A TW 103109809A TW 103109809 A TW103109809 A TW 103109809A TW I633932 B TWI633932 B TW I633932B
Authority
TW
Taiwan
Prior art keywords
type semiconductor
heterogeneous material
copper
material according
compound
Prior art date
Application number
TW103109809A
Other languages
Chinese (zh)
Other versions
TW201500112A (en
Inventor
俄卡巴塱 山邦丹
張斌
Original Assignee
日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/840,859 external-priority patent/US9376332B2/en
Application filed by 日東電工股份有限公司 filed Critical 日東電工股份有限公司
Publication of TW201500112A publication Critical patent/TW201500112A/en
Application granted granted Critical
Publication of TWI633932B publication Critical patent/TWI633932B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper

Abstract

本發明描述一個非均相材料,此非均相材料包含具有相同金屬的兩個不同氧化態之兩個金屬氧化物的p型半導體、以及具有深於p型半導體的價帶之價帶的n型半導體,其中半導體型相互離子連通。非均相材料會增進光催化的活性。 The present invention describes a heterogeneous material comprising a p-type semiconductor having two metal oxides of two different oxidation states of the same metal, and n having a valence band deeper than the valence band of the p-type semiconductor A type semiconductor in which semiconductor types are in ion communication with each other. Heterogeneous materials enhance photocatalytic activity.

Description

用於半導體之多價光催化非均相材料 Multivalent photocatalytic heterogeneous materials for semiconductors

本揭露描述一種具有包含混合價氧化合物之p型半導體以及比起p型半導體具有較深價帶之n型半導體的非均相材料,n型半導體與p型半導體的混合價氧化化合物係離子電荷連通(ionic charge communication)。這些多價非均相材料能夠用在增進光催化材料的光催化活性。 The present disclosure describes a heterogeneous material having a p-type semiconductor comprising a mixed valence oxygen compound and an n-type semiconductor having a deeper valence band than the p-type semiconductor, and a mixed valence oxide compound ionic charge of the n-type semiconductor and the p-type semiconductor Ionic charge communication. These multivalent heterogeneous materials can be used to enhance the photocatalytic activity of photocatalytic materials.

可見光活化光觸媒可配置以自我潔淨、空氣和水淨化,以及多種其他有趣的應用,通常無任何部署後非再生能源的成本。這是因為光觸媒能夠藉由使用環境光源如太陽輻射或室內室外光源分解汙染物(像是染劑、揮發性有機化合物和氮氧化物(NOx))。非UV室內光源(如發光二極體和有機發光二極體)如預期般的迅速普及下,當務之急是找到方法來部署於室內應用的可見光活化光觸媒,例如,清潔家庭、公共、和商業場所的室內空氣,特別是在密閉的區域比如飛機、公眾建築等。更甚者,抗菌表面和自我潔淨材料的附加應用在餐飲服務、交通運輸、健康照護和旅館業者上具有廣泛的應用性。 Visible light activated photocatalysts can be configured for self-cleaning, air and water purification, as well as a variety of other interesting applications, often without the cost of non-renewable energy after deployment. This is because the photocatalyst can decompose contaminants (such as dyes, volatile organic compounds, and nitrogen oxides (NO x )) by using an ambient light source such as solar radiation or indoor and outdoor light sources. Non-UV indoor light sources (such as light-emitting diodes and organic light-emitting diodes) are rapidly spreading as expected, and it is imperative to find ways to deploy visible light-activated photocatalysts for indoor applications, for example, cleaning household, public, and commercial locations. Indoor air, especially in confined areas such as airplanes, public buildings, etc. What's more, the additional applications of antimicrobial surfaces and self-cleaning materials are widely used in catering services, transportation, health care and hoteliers.

單獨或和金屬氧化物結合之元素銅、銅組成物係描述為可用的光催化/抗菌/抗病毒的材料。參考美國專利公開號2007/0154561、2009/0269269、2011/0082026和2012/0201714;且參考邱曉清等人,「混合氧化銅/TiO2奈米複合材料於室內環境作為降低風險的材料」,美國化學學會奈米期刊,2012年,卷6(2),頁次1609-1618(Qiu,Xiaoqing et al.,“Hybrid CuxO/TiO2 Nanocomposites as risk-reduction materials in indoor environments,”ACS Nano,6(2):1609-1618(2012))。然而,元素銅在一般應用環境下據信由於元素銅的氧化會同時表現出抗菌活性隨著時間下降(耐久性)以及無吸引力的裝飾外觀表面的改變(從銅金屬變成黑色氧化銅)。如此,增進時間推移下的抗菌活性壽命是必要的。因此,具有對於在不具有無吸引力的裝飾外觀改變下提供抗菌/抗病毒活性之光催化材料的需求。 The elemental copper and copper compositions, alone or in combination with metal oxides, are described as useful photocatalytic/antibacterial/antiviral materials. Reference is made to U.S. Patent Publication Nos. 2007/0154561, 2009/0269269, 2011/0082026 and 2012/0201714; and with reference to Qiu Xiaoqing et al., "Mixed copper oxide/TiO2 nanocomposites in indoor environments as materials for risk reduction", American Chemical Society NanoJournal, 2012, Volume 6 (2), pp. 1609-1618 (Qiu, Xiaoqing et al ., "Hybrid CuxO/TiO 2 Nanocomposites as risk-reduction materials in indoor environments," ACS Nano , 6(2) :1609-1618 (2012)). However, elemental copper is believed to be a general application environment due to the oxidation of elemental copper which simultaneously exhibits a decrease in antibacterial activity over time (durability) and an unattractive change in the decorative appearance surface (from copper metal to black copper oxide). Thus, it is necessary to increase the life expectancy of antimicrobial activity under time lapse. Thus, there is a need for a photocatalytic material that provides antimicrobial/antiviral activity without a change in decorative appearance that is unattractive.

本揭露描述了一種非均相材料,此非均相材料具有包含混合價氧化化合物之p型半導體、以及具有深於p型半導體之價帶的價帶之n型半導體,其中半導體係相互離子電荷連通。這些多價非均相材料可以用以增強光催化材料之光催化活性並增加其耐久性(舉例來說,維持隨時間推移的光催化活性)。光催化材料用於具有及/或增進抗菌(光和暗)活性、抗病毒活性、揮發性有機化合物的分解(VOC)和/或染料在水溶液裡的變色。 The present disclosure describes a heterogeneous material having a p-type semiconductor comprising a mixed valence oxidized compound and an n-type semiconductor having a valence band deeper than the valence band of the p-type semiconductor, wherein the semiconductor is ionic charge each other Connected. These multivalent heterogeneous materials can be used to enhance the photocatalytic activity of the photocatalytic material and increase its durability (for example, maintaining photocatalytic activity over time). Photocatalytic materials are used to have and/or enhance antibacterial (light and dark) activity, antiviral activity, decomposition of volatile organic compounds (VOC) and/or discoloration of dyes in aqueous solutions.

某些實施例包含一種非均相材料,其包含:p型半導體,包含第一金屬氧化化合物和第二金屬氧化化合物,其中第一金屬氧化化合物和第二金屬氧化化合物具有相同金屬的不同氧化 態,且其中p型半導體具有p型價帶;以及n型半導體,具有深於p型價帶之n型價帶,其中n型半導體與p型半導體為離子電荷連通。 Some embodiments comprise a heterogeneous material comprising: a p-type semiconductor comprising a first metal oxidizing compound and a second metal oxidizing compound, wherein the first metal oxidizing compound and the second metal oxidizing compound have different oxidations of the same metal And wherein the p-type semiconductor has a p-type valence band; and the n-type semiconductor has an n-type valence band deeper than the p-type valence band, wherein the n-type semiconductor is in ionic charge communication with the p-type semiconductor.

另一實施例更包含貴金屬與混合價氧化化合物為離子電荷連通。在另一實施例中,貴金屬為銠、釕、鈀、銀、鋨、鉑或金。在另一實施例中,貴金屬負載於n型半導體之上。 Another embodiment further comprises the noble metal being in ionic charge communication with the mixed valence oxidizing compound. In another embodiment, the precious metal is ruthenium, rhodium, palladium, silver, rhodium, platinum or gold. In another embodiment, the precious metal is supported on top of the n-type semiconductor.

另一實施例更進一步包含第二n型半導體,其中至少一部分的第二n型半導體與混合價氧化化合物為離子電荷隔離。在另一實施例中,第二n型半導體包含鈰氧化物。在另一實施例,該鈰氧化物為CeO2。在另一實施例,第二n型半導體包含TiO2的複數相。 Another embodiment further includes a second n-type semiconductor, wherein at least a portion of the second n-type semiconductor is ionically isolated from the mixed valence oxide compound. In another embodiment, the second n-type semiconductor comprises tantalum oxide. In another embodiment, the niobium oxide is CeO 2 . In another embodiment, the second n-type semiconductor comprises a complex phase of TiO 2 .

在另一實施例,該混合價氧化化合物包含一對相同金屬化學元素,例如,銅、鈷、錳、鐵、銥等,於兩個不同的氧化態,比如一價銅和二價銅組合;二價鈷和三價鈷組合;二價錳和三價錳;二價鐵和三價鐵;或三價銥和四價銥。 In another embodiment, the mixed valence oxidizing compound comprises a pair of identical metal chemical elements, such as copper, cobalt, manganese, iron, ruthenium, etc., in two different oxidation states, such as a combination of monovalent copper and divalent copper; a combination of divalent cobalt and trivalent cobalt; divalent manganese and trivalent manganese; divalent iron and ferric iron; or trivalent europium and tetravalent europium.

在另一實施例中,p型半導體負載於n型半導體之上。 In another embodiment, the p-type semiconductor is loaded over the n-type semiconductor.

在另一實施例中,p型半導體會基本上均勻地散佈於n型半導體之上。在另一實施例中,混合價氧化化合物具有100奈米或小於100奈米的粒徑。 In another embodiment, the p-type semiconductor will be substantially uniformly dispersed over the n-type semiconductor. In another embodiment, the mixed valence oxidizing compound has a particle size of 100 nanometers or less.

在另一實施例中,一價銅和二價銅化合物為氧化銅(CuxO)化合物。在另一實施例中,氧化銅化合物為化學價受控的。在另一實施例中,一價銅和二價銅的比例介於10:90到90:10。 In another embodiment, the monovalent copper and divalent copper compound are copper oxide (Cu x O) compounds. In another embodiment, the copper oxide compound is chemically valence controlled. In another embodiment, the ratio of monovalent copper to divalent copper is between 10:90 and 90:10.

在另一實施例中,p型半導體為非均相材料0.001至10 重量百分比而n型半導體為非均相材料之90至99.999重量百分比。 In another embodiment, the p-type semiconductor is a heterogeneous material of 0.001 to 10 The weight percentage and the n-type semiconductor are from 90 to 99.999 weight percent of the heterogeneous material.

n型半導體可以為任何合適的半導體,其中電荷載體為電子,如在導帶由一供體的供體帶捐輸的電子。在另一實施例中,n型半導體為包含鈰、鎢、鉭、錫、鋅、鍶、鋯、鋇、銦、鋁氧化物之氧化物。在另一實施例中,n型半導體為Sn-Ti(O,C,N)2、CeO2、KTaO3、Ta2O5、SnO2、WO3、ZnO、SrTiO3、BaTiO3、ZrTiO4、In2TiO5、Al2TiO5或LiCa2Zn2V3O12。在另一實施例中,n型半導體是Sn-Ti(O,C,N)2。在另一實施例中,n型半導體為Al2-xInxTiO5,其中0<x<2。在另一實施例中,n型半導體為Zr1-yCeyTiO4,其中0<y<1。 The n-type semiconductor can be any suitable semiconductor wherein the charge carrier is an electron, such as an electron that is donated by a donor donor band in the conduction band. In another embodiment, the n-type semiconductor is an oxide comprising tantalum, tungsten, lanthanum, tin, zinc, lanthanum, zirconium, hafnium, indium, aluminum oxide. In another embodiment, the n-type semiconductor is Sn-Ti(O, C, N) 2 , CeO 2 , KTaO 3 , Ta 2 O 5 , SnO 2 , WO 3 , ZnO, SrTiO 3 , BaTiO 3 , ZrTiO 4 . , In 2 TiO 5 , Al 2 TiO 5 or LiCa 2 Zn 2 V 3 O 12 . In another embodiment, the n-type semiconductor is Sn-Ti(O, C, N) 2 . In another embodiment, the n-type semiconductor is Al 2-x In x TiO 5 , where 0 < x < 2. In another embodiment, the n-type semiconductor is Zr 1-y Ce y TiO 4 , where 0 < y < 1.

在另一實施例,n型半導體可包含包含鈦之氧化物。在另一實施例,包含鈦之氧化物包含複數相之氧化鈦。在另一實施例中,複數相之氧化鈦包含銳鈦礦相TiO2和金紅石相TiO2的混合物。 In another embodiment, the n-type semiconductor can comprise an oxide comprising titanium. In another embodiment, the oxide comprising titanium comprises a plurality of phases of titanium oxide. In another embodiment, the plurality of titanium oxides comprise a mixture of anatase phase TiO 2 and rutile phase TiO 2 .

在另一實施例中,n型半導體為具有摻雜物之氧化鈦。舉例說明,摻雜物能夠捐輸電子至氧化鈦的導帶。在另一實施例,n型半導體是摻雜氮、碳或兩者的氧化鈦。在另一實施例中,n型半導體是包含以化學式(Ti1-rMr)(O2-s-tCsNt)表示之化合物之氧化鈦,其中:M表示錫、鎳、鍶、鋇、鐵、鉍、釩、鉬、鎢、鋅、銅或其組合;r為從0至0.25之範圍;s為從0.001至0.1之範圍;且t為從0.001至0.1之範圍。 In another embodiment, the n-type semiconductor is titanium oxide with dopants. By way of example, the dopant is capable of donating electrons to the conduction band of the titanium oxide. In another embodiment, the n-type semiconductor is titanium oxide doped with nitrogen, carbon, or both. In another embodiment, the n-type semiconductor is a titanium oxide comprising a compound represented by the chemical formula (Ti 1-r M r )(O 2-st C s N t ), wherein: M represents tin, nickel, ruthenium, iridium , iron, ruthenium, vanadium, molybdenum, tungsten, zinc, copper or combinations thereof; r is in the range from 0 to 0.25; s is in the range from 0.001 to 0.1; and t is in the range from 0.001 to 0.1.

另一實施例包含一光觸媒(Ti0.99Sn0.01)(O2-s-tCsNt)、(Ti0.97Sn0.03)(O2-s-tCsNt)、(Ti0.95Sn0.05)(O2-s-tCsNt)、 (Ti0.90Sn0.10)(O2-s-tCsNt)、(Ti0.85Sn0.15)(O2-s-tCsNt)、(Ti0.985Ni0.015)(O2-s-tCsNt)、(Ti0.98Ni0.02)(O2-s-tCsNt)、(Ti0.97Ni0.03)(O2-s-tCsNt)、(Ti0.99Sr0.01)(O2-s-tCsNt)、(Ti0.97Sr0.03)(O2-s-tCsNt)、(Ti0.95Sr0.05)(O2-s-tCsNt)、(Ti0.97Ba0.03)(O2-s-tCsNt)、(Ti0.95Ba0.05)(O2-s-tCsNt)、(Ti0.94Sn0.05Fe0.01)(O2-s-tCsNt)、(Ti0.94Sn0.05Ni0.01)(O2-s-tCsNt)、(Ti0.99Fe0.01)(O2-s-tCsNt)、(Ti0.95Zn0.05)(O2-s-tCsNt)、(Ti0.77Sn0.15Cu0.08)(O2-s-tCsNt)、(Ti0.85Zn0.15)(O2-s-tCsNt)、(Ti0.90Bi0.10)(O2-s-tCsNt)、(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、(Ti0.970V0.03)(O2-s-tCsNt)、(Ti0.997Mo0.003)(O2-s-tCsNt)、(Ti0.984Mo0.016)(O2-s-tCsNt)、(Ti0.957Mo0.043)(O2-s-tCsNt)、(Ti0.97W0.03)(O2-s-tCsNt)、(Ti0.95W0.05)(O2-s-tCsNt)、(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、或(Ti0.970V0.03)(O2-s-tCsNt)。 Another embodiment comprises a photocatalyst (Ti 0.99 Sn 0.01 ) (O 2-st C s N t ), (Ti 0.97 Sn 0.03 ) (O 2-st C s N t ), (Ti 0.95 Sn 0.05 ) (O 2 ) -st C s N t ), (Ti 0.90 Sn 0.10 )(O 2-st C s N t ), (Ti 0.85 Sn 0.15 )(O 2-st C s N t ), (Ti 0.985 Ni 0.015 )(O 2-st C s N t ), (Ti 0.98 Ni 0.02 ) (O 2-st C s N t ), (Ti 0.97 Ni 0.03 ) (O 2-st C s N t ), (Ti 0.99 Sr 0.01 ) ( O 2-st C s N t ), (Ti 0.97 Sr 0.03 ) (O 2-st C s N t ), (Ti 0.95 Sr 0.05 ) (O 2-st C s N t ), (Ti 0.97 Ba 0.03 ) (O 2-st C s N t ), (Ti 0.95 Ba 0.05 )(O 2-st C s N t ), (Ti 0.94 Sn 0.05F e 0.01 )(O 2-st C s N t ), (Ti 0.94 Sn 0.05 Ni 0.01 )(O 2-st C s N t ), (Ti 0.99 Fe 0.01 )(O 2-st C s N t ), (Ti 0.95 Zn 0.05 )(O 2-st C s N t ) (Ti 0.77 Sn 0.15 Cu 0.08 ) (O 2-st C s N t ), (Ti 0.85 Zn 0.15 ) (O 2-st C s N t ), (Ti 0.90 Bi 0.10 ) (O 2-st C s N t ), (Ti 0.996 V 0.004 ) (O 2-st C s N t ), (Ti 0.984 V 0.016 ) (O 2-st C s N t ), (Ti 0.970 V 0.03 ) (O 2-st C s N t ), (Ti 0.997 Mo 0.003 ) (O 2-st C s N t ), (Ti 0.984 Mo 0.016 ) (O 2 -st C s N t ), (Ti 0.957 Mo 0.043 ) (O 2-st C s N t ), (Ti 0.97 W 0.03 ) (O 2-st C s N t ), (Ti 0.95 W 0.05 ) (O 2-st C s N t ), (Ti 0.996 V 0.004 ) (O 2-st C s N t ), (Ti 0.984 V 0.016 ) (O 2-st C s N t ), or (Ti 0.970 V 0.03 ) (O 2-st C s N t ).

某些實施例包含一種分解化學化合物的方法,其包含於有光的情況下暴露該化學化合物於包含在這裡描述的均相材料之光觸媒。在某些實施例裡,該化學化合物是汙染物,像是揮發性有機化合物。 Certain embodiments comprise a method of decomposing a chemical compound comprising exposing the chemical compound to a photocatalyst comprising a homogeneous material as described herein in the presence of light. In certain embodiments, the chemical compound is a contaminant, such as a volatile organic compound.

有些實施例包含一種殺死微生物的方法,其包含於有光的情況下暴露微生物於含有這裡描述的均相材料的光觸媒。 Some embodiments comprise a method of killing a microorganism comprising exposing the microorganism to a photocatalyst comprising a homogeneous material as described herein in the presence of light.

如這裡描述之一特定實施例包含一種負載混合價化合物之方法。這個方法可以包含加入一分散劑於混合價型化合物以讓n型化合物的表面更正電;加入一吸引劑於n型化合物以使n型半導體表面更負電;並且以低於混合價化合物的摻雜溫度的溫度相互混合不相同充電之材料。 One particular embodiment as described herein comprises a method of loading a mixed valence compound. The method may comprise adding a dispersing agent to the mixed valence compound to make the surface of the n-type compound more positive; adding an attracting agent to the n-type compound to make the n-type semiconductor surface more negative; and doping at a lower than the mixed valence compound The temperature of the temperature is mixed with materials that are not the same as the charging.

10‧‧‧導帶 10‧‧‧ Guide belt

20‧‧‧價帶 20‧‧ ‧Price band

25‧‧‧重疊 25‧‧ ‧ overlap

30‧‧‧禁帶 30‧‧ ‧Forbidden band

第1A圖為概略顯示金屬材料之導能帶和價能帶之間的關係圖。 Fig. 1A is a diagram schematically showing the relationship between the conduction band of the metal material and the valence band.

第1B圖為概略顯示半導體材料之導能帶與價能帶之間的關係圖。 Fig. 1B is a diagram schematically showing the relationship between the conduction band of the semiconductor material and the valence band.

第1C圖為概略顯示非導體材料之導能帶與價能帶之間的關係圖。 Fig. 1C is a diagram schematically showing the relationship between the conduction band of the non-conductor material and the valence band.

第2圖為概略顯示本文描述的各種化合物之導能帶與價能帶之能階之示意圖。 Figure 2 is a schematic diagram showing the energy levels of the energy and energy bands of the various compounds described herein.

第3圖顯示本文描述的p型及n型複合材料的實施例與n型材料單獨之X射線繞射圖。 Figure 3 shows an X-ray diffraction pattern of an embodiment of the p-type and n-type composites described herein and a separate n-type material.

第4圖顯示本文描述的p型及n型複合材料的另一實施例與n型材料單獨之X射線繞射圖。 Figure 4 shows a separate X-ray diffraction pattern of another embodiment of the p-type and n-type composites described herein and the n-type material.

第5圖顯示本文描述的p型及n型複合材料的另一實施例與n型材料單獨之X射線繞射圖。 Figure 5 shows a separate X-ray diffraction pattern of another embodiment of the p-type and n-type composites described herein and the n-type material.

第6圖顯示本文描述的p型和n型複合材料之實施例與n型材料單獨(Ti(OCN)2:Sn)比較之漫反射光譜。 Figure 6 shows the diffuse reflectance spectra of the examples of p-type and n-type composites described herein compared to the n-type material alone (Ti(OCN) 2 :Sn).

第7圖顯示本文描述的p型和n型複合材料之另一實施例與n型材料單獨(CeO2)比較之漫反射光譜。 Figure 7 shows a diffuse reflectance spectrum of another embodiment of the p-type and n-type composites described herein compared to the n-type material alone (CeO 2 ).

第8圖顯示本文描述的p型和n型複合材料之另一實施例與n型材料單獨來比較之漫反射光譜。 Figure 8 shows a diffuse reflectance spectrum of another embodiment of the p-type and n-type composites described herein compared to the n-type material alone.

第9圖顯示藉由多種光催化複合物,如本文所述Ex-1A和CE-1之乙醛的分解示意圖。 Figure 9 shows a schematic representation of the decomposition of acetaldehyde of Ex-1A and CE-1 as described herein by various photocatalytic complexes.

第10圖顯示藉由如本文描述的Ex-1A和CE-1之多種光催化複合物在暴露於螢光燈之800lux可見光後於大腸桿菌的抗菌活性(菌落形成單位/樣品(CFU/Specimen)之示意圖。 Figure 10 shows the antibacterial activity (CFU/Specimen) of Escherichia coli after exposure to 800 lux visible light of a fluorescent lamp by various photocatalytic complexes of Ex-1A and CE-1 as described herein. Schematic diagram.

第11圖顯示藉由在本文描述的Ex-4和CE-2之多樣光催化複合物在暴露於螢光燈之800lux可見光後於大腸桿菌的抗菌活性(菌落形成單位/樣品)之示意圖。 Figure 11 is a graph showing the antibacterial activity (colony forming unit/sample) of Escherichia coli after exposure to 800 lux of visible light of a fluorescent lamp by the various photocatalytic complexes of Ex-4 and CE-2 described herein.

第12A圖為顯示藉由光催化複合物Ex-1在經攝氏85度和相對溼度(RH)85%處理下7天之前和之後於大腸桿菌之增強抗菌活性耐久性的之示意圖。 Fig. 12A is a graph showing the durability of the enhanced antibacterial activity in Escherichia coli by the photocatalytic complex Ex-1 at 7 degrees Celsius and 85% relative humidity (RH).

第12B圖為顯示藉由光催化複合物Ex-7在經攝氏300度處理20分鐘之前和之後對大腸桿菌之增強抗菌活性耐久性的之示意圖。 Fig. 12B is a schematic view showing the durability of the enhanced antibacterial activity against Escherichia coli by the photocatalytic composite Ex-7 before and after treatment at 300 ° C for 20 minutes.

第13圖係為顯示藉由如本文所描述之範例1和CE-1之各種光催化複合物與金紅石相TiO2在有無CuXO負載下之天然藍色的染劑變色之示意圖。 Figure 13 is a graphical representation showing the discoloration of the natural blue dyes by the various photocatalytic composites of Examples 1 and CE-1 as described herein and the rutile phase TiO 2 in the presence or absence of Cu X O loading.

第14圖顯示藉由如本文所述之Ex-12、Ex-13、Ex-15、Ex-16和CE-6之各種光催化複合物的乙醛分解之示意圖。 Figure 14 shows a schematic representation of acetaldehyde decomposition by various photocatalytic complexes of Ex-12, Ex-13, Ex-15, Ex-16 and CE-6 as described herein.

第15圖顯示藉由不同的光催化複合物之範例19和SnO2無負載對藍色染劑之染劑變色的示意圖。 Figure 15 shows a schematic representation of discoloration of dyes of blue dyes by Example 19 of different photocatalytic composites and no loading of SnO 2 .

第16圖顯示藉由各種光催化複合物之範例18對天然藍色之染劑變色的示意圖。 Figure 16 shows a schematic representation of the discoloration of natural blue dye by Example 18 of various photocatalytic composites.

第17圖顯示物理性的混合物CE-0(0.25wt.% CuO+0.12wt.% Cu2O+0.5wt.%錫摻雜Ti(OCN)2之光觸媒)對大腸桿菌的殺菌性能之效果之示意圖。 Figure 17 shows the effect of the physical mixture CE-0 (0.25 wt.% CuO + 0.12 wt.% Cu 2 O + 0.5 wt.% tin-doped Ti(OCN) 2 photocatalyst) on the bactericidal properties of Escherichia coli. schematic diagram.

第18圖顯示Ex-7A(0.5wt.% CuXO負載氧化鋁(無光觸媒))於抗菌性能之效果(大腸桿菌殺菌研究)之示意圖。 Figure 18 shows a schematic diagram of the effect of Ex-7A (0.5 wt.% Cu X O loaded alumina (without photocatalyst)) on antimicrobial performance (E. coli sterilization study).

第19圖為顯示Ex-1B(0.5wt.% CuXO負載錫摻雜Ti(OCN)2光觸媒)對於抗菌性能的效果(大腸桿菌殺菌研究)之示意圖。 Fig. 19 is a view showing the effect of Ex-1B (0.5 wt.% Cu X O-supported tin-doped Ti(OCN) 2 photocatalyst) on antibacterial properties (Escherichia coli sterilization study).

第20圖為顯示Ex-1(1wt.% CuXO負載錫摻雜Ti(OCN)2)於抗菌性能之協同效應(大腸桿菌殺菌研究)之示意圖。 Figure 20 is a schematic diagram showing the synergistic effect of Ex-1 (1 wt.% Cu X O supported tin-doped Ti(OCN) 2 ) on antimicrobial properties (E. coli sterilization study).

第21圖為顯示Ex-1(1wt.% CuXO負載錫摻雜Ti(OCN)2)對於抗菌性能之增強耐久性結果(大腸桿菌殺菌研究)之示意圖。 Fig. 21 is a view showing the results of enhanced durability of the antibacterial property of Ex-1 (1 wt.% Cu X O-supported tin-doped Ti(OCN) 2 ) (Escherichia coli sterilization study).

第22圖顯示CuXO/P25和CuXO/Al2O3對於抗菌特性的協同效應(大腸桿菌殺菌研究)之示意圖。 Figure 22 shows a schematic diagram of the synergistic effect of Cu X O/P25 and Cu X O/Al 2 O 3 on antimicrobial properties (E. coli sterilization study).

第23圖顯示CuXO/P25和CuXO/Al2O3於抗菌特性之增強耐久性結果(大腸桿菌殺菌研究)之示意圖。 Fig. 23 is a view showing the results of enhanced durability of Cu X O/P25 and Cu X O/Al 2 O 3 in antibacterial properties (Escherichia coli sterilization study).

本揭露闡述一種非均相材料,此非均相材料具有包含混合價氧化化合物之p型半導體。p型半導體具有p型價帶。該非均相材料也包含比起p型價帶具有較深價帶之n型價帶之n型半導體。在非均相材料中,n型半導體與混合價氧化化合物為離子電荷連通。這些多價非均相材料可以用以增加光催化材料的光催 化活性並增進耐久性(即,增加隨時間推移的光催化活性)。光催化材料對具有及/或增強抗菌(光和暗)活性、抗病毒活性、揮發性有機化合物的分解(VOC)和/或水溶液裡的染劑變色上相當有效。 The present disclosure describes a heterogeneous material having a p-type semiconductor comprising a mixed valence oxidizing compound. The p-type semiconductor has a p-type valence band. The heterogeneous material also includes an n-type semiconductor having an n-type valence band with a deeper valence band than the p-type valence band. In the heterogeneous material, the n-type semiconductor is in ionic charge communication with the mixed valence oxidizing compound. These multivalent heterogeneous materials can be used to increase the photocatalysis of photocatalytic materials. It activates and enhances durability (i.e., increases photocatalytic activity over time). Photocatalytic materials are quite effective at having and/or enhancing antibacterial (light and dark) activity, antiviral activity, decomposition of volatile organic compounds (VOC), and/or discoloration of dyes in aqueous solutions.

如第1圖所示,導帶10為足夠將電子從其鍵結的原子游離以自由地移動在材料的原子晶格裡如同一「離域電子」之電子能量的範圍。在半導體裡,價帶20是在其中電子正常存在於絕對零度時電子能量的最高範圍。價電子基本地和個別原子鍵結,和能夠更自由地在材料的原子晶格裡移動之導電子(在半導體裡出現)相反。在材料的電子帶結構的圖式中,價帶20一般位於導帶之下,藉由能隙30在絕緣體和半導體中與導帶分開。在某些材料裡,導帶實質上不具有使其與價帶分開之可辨別能隙。舉例來說,當價帶能階能量比導帶能階能量高或較少負值時,導帶和價帶可實際上重疊在一起(重疊25)。 As shown in Fig. 1, the conduction band 10 is a range of electron energy sufficient to free electrons from the atoms it bonds to move freely in the atomic lattice of the material, such as the same "delocalized electron". In semiconductors, the valence band 20 is the highest range of electron energy in which electrons normally exist at absolute zero. Valence electrons are essentially bonded to individual atoms, and to conductors that are more free to move in the atomic lattice of the material (present in the semiconductor). In the pattern of the electronic strip structure of the material, the valence band 20 is generally located below the conduction band and is separated from the conduction band by the energy gap 30 in the insulator and the semiconductor. In some materials, the conduction band does not substantially have a discernible energy gap that separates it from the valence band. For example, when the valence band energy is higher or less negative than the conduction band energy, the conduction band and the valence band may actually overlap (overlap 25).

多種材料可以透過其能隙來分類;舉例來說,藉由價帶20和導帶10之間的差異來分類。在非導體(如絕緣體)中,導帶比起價帶會有較高能量,所以對一絕緣體來說換置價電子以有效率的導電會消耗太多能量。這些絕緣體被稱為具有一非零能隙。在於正常情況下具有許多自由電子之像是金屬之導體中,導帶10重疊25和價帶20-無能隙,所以只需要消耗一點點或是根本不需要消耗額外的供應能量來換置價電子。在半導體裡,能隙很小,為200奈米至1000奈米量級。然而意為受理論侷限,此據信為消耗相對較少的能量(以熱或光的形式)以使半導體的電子從價帶移動到另一個能階並導電的原因;因此,名為半導體。 A variety of materials can be classified by their energy gap; for example, by the difference between the valence band 20 and the conduction band 10. In a non-conductor (such as an insulator), the conduction band has a higher energy than the valence band, so for an insulator to exchange valence electrons for efficient conduction will consume too much energy. These insulators are said to have a non-zero energy gap. In the case of a conductor with many free electrons in a normal state, the conduction band 10 overlaps 25 and the valence band 20 has no energy gap, so it only needs to consume a little or no additional supply energy to exchange the valence electrons. . In semiconductors, the energy gap is small, on the order of 200 nm to 1000 nm. However, it is meant to be limited by theory, which is believed to be the reason for consuming relatively little energy (in the form of heat or light) to move the electrons of the semiconductor from the valence band to another energy level and to conduct electricity; therefore, it is called a semiconductor.

在某些實施例中,非均相材料係提供包含含有混合價氧化化合物之p型半導體,化合物具有p型導帶和p型價帶;以及 相較於p型價帶具有較深、較低能、或更負值之n型價帶的另外n型半導體。n型半導體應與p型半導體離子電荷連通,意味著離子電荷可以從n型半導體轉移至混合價氧化化合物,或從混合價氧化化合物轉移至n型半導體。適合的導帶和價帶範例係如第2圖所示。然而並不意在受理論侷限,若n型半導體的價帶較p型的價帶為深或是較為負值,則電子會更容易地從n型傳到p型化合物。如果材料為離子連通,電子能從一化合物傳至下一個,能夠將高價化合物重新生成為低價複合物。舉例說明,Cu2+可以透過這種機制回收為Cu1+。在某些實施例中,離子連通的材料會裝載在彼此之上。藉由裝載,材料維持他們獨立特性,比如,從TiO2、Ti(OCN)2:Sn等(n型半導體)分離的CuXO(p型半導體)。在特定實施例中,一材料在表面上,係與其他材料接觸或相鄰靠近,與摻雜相對為物理上與其他材料分離,離子電荷分離或摻合(物理混合)。在某些實施例中,這樣的接觸及/或分離可以被p型和n型材料之穿透式電子顯微鏡(TEM)檢測來判定。在其他的實施例,非均相材料與複合介質整合,比如,摻入化合物/晶格中。 In certain embodiments, the heterogeneous material provides a p-type semiconductor comprising a mixed-valent oxidized compound having a p-type conduction band and a p-type valence band; and having a deeper, lower phase than the p-type valence band Another n-type semiconductor capable of, or more negative, n-type valence band. The n-type semiconductor should be in charge communication with the p-type semiconductor ion, meaning that the ionic charge can be transferred from the n-type semiconductor to the mixed-valent oxidized compound, or from the mixed-valent oxidized compound to the n-type semiconductor. Examples of suitable conduction and valence bands are shown in Figure 2. However, it is not intended to be limited by theory. If the valence band of the n-type semiconductor is deeper or more negative than the valence band of the p-type, the electrons are more easily transferred from the n-type to the p-type compound. If the material is ionically connected, electrons can pass from one compound to the next, and the high-priced compound can be regenerated into a low-cost complex. For example, Cu 2+ can be recovered as Cu 1+ through this mechanism. In certain embodiments, the ionically connected materials will be loaded on top of each other. By loading, the material maintains its independent properties, such as Cu X O (p-type semiconductor) separated from TiO 2 , Ti(OCN) 2 :Sn, etc. (n-type semiconductor). In a particular embodiment, a material is in contact with or adjacent to other materials on the surface, physically separated from other materials, and ionically separated or blended (physically mixed). In certain embodiments, such contact and/or separation can be determined by transmission electron microscopy (TEM) detection of p-type and n-type materials. In other embodiments, the heterogeneous material is integrated with the composite medium, such as incorporated into the compound/lattice.

非均相材料可包含任何合適的p型半導體,包含其中電荷載體是有效率的正電洞的任何半導體。這些電洞可存在於p型價帶裡,其可被電子填充,除了一些可本質上帶有正電荷的少數電洞之外。在某些實施例裡,p型半導體可包含具有p型價帶之混合價氧化化合物。在某些實施例裡,混合價氧化化合物包含相同金屬元素的混合價配對,像是銅(I)和銅(II);鈷(II)和鈷(III);錳(II)和錳(III);鐵(II)和鐵(III);和/或銥(III)和依(IV);以及其組合。在特定的實施例中,銅(I)和銅(II)化合物可為CuXO化合物。在特定的實施例中,混合價氧化化合物可包含Cu1+和Cu2+。混合 價氧化化合物的比例可為10%比90%至90%比10%。特定的比例亦可包含:15%比85%;20%比80%;25%比75%;30%比70%;35%比65%;40%比60%;45%比55%;50%比50%;55%比45%;60%比40%;65%比35%;70%比30%;75%比25%;80%比20%以及85%比15%。 The heterogeneous material can comprise any suitable p-type semiconductor, including any semiconductor in which the charge carrier is an efficient positive hole. These holes can exist in the p-type valence band, which can be filled with electrons, except for a few holes that can be essentially positively charged. In certain embodiments, the p-type semiconductor can comprise a mixed valence oxidizing compound having a p-type valence band. In certain embodiments, the mixed valence oxidizing compound comprises a mixed valence pair of the same metal elements, such as copper (I) and copper (II); cobalt (II) and cobalt (III); manganese (II) and manganese (III). Iron (II) and iron (III); and/or ruthenium (III) and (IV); and combinations thereof. In a particular embodiment, the copper (I) and copper (II) compounds can be Cu X O compounds. In a particular embodiment, the mixed valence oxidizing compound can comprise Cu 1+ and Cu 2+ . The ratio of the mixed valence oxidizing compound may be 10% to 90% to 90% to 10%. Specific ratios may also include: 15% to 85%; 20% to 80%; 25% to 75%; 30% to 70%; 35% to 65%; 40% to 60%; 45% to 55%; % to 50%; 55% to 45%; 60% to 40%; 65% to 35%; 70% to 30%; 75% to 25%; 80% to 20% and 85% to 15%.

在特定的實施例中,混合價金屬氧化化合物之Cu1+:Cu2+之比例為10%至90%的Cu1+比90%至10%的Cu2+。Cu1+:Cu2+的比例也可為大約10%:90%至大約30%:70%,大約15%:85%至大約25%:75%,大約15%:85%;約20%:80%;約25%:75%;約30%:70%;約35%:65%;約40%:60%;約45%:55%;約50%:50%;約55%:45%;約60%:40%;約65%:35%;約70%:30%;約75%:25%;約80%:20%;或約85%:15%。在某些實施例中,比例為Cu1+:Cu2+的重量百分比(wt%)。在某些實施例中,比例為Cu1+:Cu2+的莫耳百分比(molar%)。 In a particular embodiment, the ratio of Cu 1+ :Cu 2+ of the mixed valence metal oxide compound is from 10% to 90% Cu 1+ to 90% to 10% Cu 2+ . The ratio of Cu 1+ :Cu 2+ may also be about 10%: 90% to about 30%: 70%, about 15%: 85% to about 25%: 75%, about 15%: 85%; about 20% : 80%; about 25%: 75%; about 30%: 70%; about 35%: 65%; about 40%: 60%; about 45%: 55%; about 50%: 50%; about 55%: 45%; about 60%: 40%; about 65%: 35%; about 70%: 30%; about 75%: 25%; about 80%: 20%; or about 85%: 15%. In certain embodiments, the ratio is the weight percent (wt%) of Cu 1+ :Cu 2+ . In certain embodiments, the ratio is the molar percentage of Cu 1+ :Cu 2+ .

在某些實施例裡,其中n型半導體與p型半導體離子電荷連通,p型半導體負載於n型半導體之上。在某些實施例中,其中n型半導體與p型半導體離子電荷連通,p型半導體可嵌入、層疊、接觸和/或沉積在n型半導體上。在某些實施例中,p型半導體混合價化合物基本上均勻地散布在n型半導體上。混合價化合物的粒徑可比200奈米還小;比190奈米還小;比180奈米還小;比170奈米還小;比160奈米還小;比150奈米還小;比140奈米還小;比130奈米還小;比120奈米還小;比110奈米還小;比100奈米還小;比90奈米還小;比80奈米還小;比70奈米還小;比60奈米還小;比50奈米還小;比40奈米還小;比30奈米還小;比20奈米還小;或比10奈米還小。在某些特性的實 施例中,混合價化合物的粒徑為100奈米或更小。 In some embodiments, wherein the n-type semiconductor is in charge communication with the p-type semiconductor, the p-type semiconductor is supported on the n-type semiconductor. In some embodiments, wherein the n-type semiconductor is in charge communication with the p-type semiconductor, the p-type semiconductor can be embedded, stacked, contacted, and/or deposited on the n-type semiconductor. In certain embodiments, the p-type semiconductor mixed valence compound is substantially uniformly dispersed over the n-type semiconductor. The particle size of the mixed valence compound can be smaller than 200 nm; smaller than 190 nm; smaller than 180 nm; smaller than 170 nm; smaller than 160 nm; smaller than 150 nm; Nano is still small; smaller than 130 nm; smaller than 120 nm; smaller than 110 nm; smaller than 100 nm; smaller than 90 nm; smaller than 80 nm; Rice is still small; smaller than 60 nm; smaller than 50 nm; smaller than 40 nm; smaller than 30 nm; smaller than 20 nm; or smaller than 10 nm. In some characteristics In the examples, the mixed-valent compound has a particle diameter of 100 nm or less.

在某些實施例中,p型半導體包含非均相材料的0.001至10重量百分比且n型半導體包含非均相材料的99.999至90重量百分比。在另外的實施例中,p型半導體包含非均相材料的0.001重量百分比;非均相材料的0.005重量百分比;非均相材料的0.01重量百分比;非均相材料的0.05重量百分比;非均相材料的0.1重量百分比;非均相材料的0.5重量百分比;非均相材料的1重量百分比;非均相材料的2重量百分比;非均相材料的3重量百分比;非均相材料的4重量百分比;非均相材料的5重量百分比;非均相材料的6重量百分比;非均相材料的7重量百分比;非均相材料的8重量百分比;非均相材料的9重量百分比;或者,非均相材料的10重量百分比。在另外的實施例中,n型半導體包含非均相材料的90重量百分比;非均相材料的91重量百分比;非均相材料的92重量百分比;非均相材料的93重量百分比;非均相材料的94重量百分比;非均相材料的95重量百分比;非均相材料的96重量百分比;非均相材料的97重量百分比;非均相材料的98重量百分比;非均相材料的99重量百分比;非均相材料的99.1重量百分比;非均相材料的99.2重量百分比;非均相材料的99.3重量百分比;非均相材料的99.4重量百分比;非均相材料的99.5重量百分比;非均相材料的99.6重量百分比;非均相材料的99.7重量百分比;非均相材料的99.8重量百分比;或者,非均相材料的99.5重量百分比。 In certain embodiments, the p-type semiconductor comprises from 0.001 to 10 weight percent of the heterogeneous material and the n-type semiconductor comprises from 99.999 to 90 weight percent of the heterogeneous material. In further embodiments, the p-type semiconductor comprises 0.001 weight percent of the heterogeneous material; 0.005 weight percent of the heterogeneous material; 0.01 weight percent of the heterogeneous material; 0.05 weight percent of the heterogeneous material; heterogeneous 0.1% by weight of the material; 0.5% by weight of the heterogeneous material; 1% by weight of the heterogeneous material; 2% by weight of the heterogeneous material; 3% by weight of the heterogeneous material; 4% by weight of the heterogeneous material 5 wt% of the heterogeneous material; 6 wt% of the heterogeneous material; 7 wt% of the heterogeneous material; 8 wt% of the heterogeneous material; 9 wt% of the heterogeneous material; or, uneven 10% by weight of the phase material. In a further embodiment, the n-type semiconductor comprises 90 weight percent of the heterogeneous material; 91 weight percent of the heterogeneous material; 92 weight percent of the heterogeneous material; 93 weight percent of the heterogeneous material; heterogeneous 94% by weight of the material; 95% by weight of the heterogeneous material; 96% by weight of the heterogeneous material; 97% by weight of the heterogeneous material; 98% by weight of the heterogeneous material; 99% by weight of the heterogeneous material 99.1% by weight of heterogeneous material; 99.2% by weight of heterogeneous material; 99.3% by weight of heterogeneous material; 99.4% by weight of heterogeneous material; 99.5 weight% of heterogeneous material; Heterogeneous material 99.6 weight percent; 99.7 weight percent of the heterogeneous material; 99.8 weight percent of the heterogeneous material; or 99.5 weight percent of the heterogeneous material.

在某些實施例中,該p型半導體包含氧化銅混合物,像是第一氧化銅化合物和第二氧化銅,像是銅(I)化合物(如Cu2O)和銅(II)化合物(如Cu2O)。在某些實施例中,p型半導體以重量比 重量或莫耳數比莫耳數為[銅(I)比銅(II)]約1:9至約3:7,約1:3至約1:6,或約1:3至約1:4的比例包含銅(I)(如Cu2O)和銅(II)(如Cu2O)。 In certain embodiments, the p-type semiconductor comprises a mixture of copper oxide, such as a first copper oxide compound and a second copper oxide, such as a copper (I) compound (such as Cu 2 O) and a copper (II) compound (such as Cu). 2 O). In certain embodiments, the p-type semiconductor has a weight ratio by weight or a molar ratio of [earth(I) to copper (II)] of from about 1:9 to about 3:7, and about 1:3 to about A ratio of 1:6, or from about 1:3 to about 1:4, comprises copper (I) (such as Cu 2 O) and copper (II) (such as Cu 2 O).

某些實施例包含前面段落之p型半導體和n型半導體結合,n型半導體係氧化鈦或是摻雜錫之Ti(O、C、N)2)、或氧化鈦、像是TiO2,具有不只一個相。在某些實施例中,這樣的TiO2具有兩個相,像是金紅石相TiO2和銳鈦礦相TiO2。在某些實施例中,n型半導體可為約70%至約90%銳鈦礦相及10%至約30%金紅石相TiO2;約80%至約90%銳鈦礦相及20%至約30%金紅石相TiO2;約75%至約80%銳鈦礦相及15%至約20%金紅石相TiO2;或約83%銳鈦礦相TiO2及17%金紅石相TiO2。某些實施例包含前段之p型半導體與為氧化錫之n型半導體組合。 Some embodiments include the p-type semiconductor and the n-type semiconductor combination of the preceding paragraph, the n-type semiconductor-based titanium oxide or tin-doped Ti(O, C, N) 2 ), or titanium oxide, such as TiO 2 , having More than one phase. In certain embodiments, such TiO 2 has two phases, such as rutile phase TiO 2 and anatase phase TiO 2 . In certain embodiments, n is type semiconductor may be from about 70% to about 90% anatase phase and about 10% to 30% rutile TiO 2; from about 80% to about 90% anatase phase and 20% Up to about 30% rutile phase TiO 2 ; about 75% to about 80% anatase phase and 15% to about 20% rutile phase TiO 2 ; or about 83% anatase phase TiO 2 and 17% rutile phase TiO 2 . Some embodiments include a combination of a front-stage p-type semiconductor and an n-type semiconductor that is tin oxide.

關於半導體包含具有氧化銅混合物的p型半導體和為氧化鈦或摻雜錫之Ti(O、C、N)2),或具有不只一種相之像是TiO2之氧化鈦的n型半導體中,在某些實施例中,氧化銅可為n型和p型半導體的總重量的約0.1%至約5%、約0.2%至約2%、約0.2%至約1.5%、約0.5%或約1%。 Regarding a semiconductor comprising a p-type semiconductor having a mixture of copper oxide and Ti(O, C, N) 2 which is titanium oxide or tin-doped, or an n-type semiconductor having titanium oxide of not more than one phase, such as TiO 2 , In certain embodiments, the copper oxide can be from about 0.1% to about 5%, from about 0.2% to about 2%, from about 0.2% to about 1.5%, about 0.5% or about, based on the total weight of the n-type and p-type semiconductors. 1%.

在某些實施例中,p型半導體負載於n型半導體之上。在某些實施例裡,n型半導體為包含相較於p型半導體對價帶具有較深之價帶之可為鈰、鎢、鉭、錫、鋅、鍶、鋯、鋇、銦或鋁的元素氧化物。在某些實施例裡,n型半導體可為銳鈦礦相(anatase)、金紅石相(rutile)、纖鋅礦相(wurtzite)、尖晶石(spinel)、鈣鈦礦(perovskite)、燒綠石(pyrochlore)、石榴子石(garnet)、鋯石(zircon)和/或鋁假板鈦礦(tialite)相材料或其混合物。此些每個選項都賦予如同半導體領域之普通技術人員所理解之通常涵義。給 定標準及生成樣品的X射線繞射圖樣之比較是可用於確定樣品是否包含一個特定相的多種方法的其中之一。實施例標準品包含由美國國家標準技術研究所(NIST)(蓋瑟斯堡,馬里蘭州,美國)(National Institute of Standards and Technology(NIST)(Gaitherburg,Maryland,USA))及/或國際繞射資料中心(ICDD,正式名稱為粉末繞射標準聯合委員會[JCPDS])(新城廣場,賓州,美國)(International Centre for Diffraction Data(ICDD,formerly the Joint Committee on Powder Diffraction Standards[JCPDS])(Newtown Square,Pennsylvania,USA))所提供之X射線繞射圖樣圖譜。在某些實施例裡,鈣鈦礦物會為鈣鈦礦氧化物。在某些實施例裡,鈣鈦礦氧化物可包含FeTiO3、YFeO3、LuRhO3、BaSnO3、Ba0.8Ca0.2TiO3、CdSnO3、LaRhO3、LaRhO3、LaMnO3、CoTiO3、CuTiO3、MgTiO3、ZnTiO3、BiNb1-xTaxO4,其中x=0至1.00,或InNb1-xTaxO4,其中x=0至1.00。 In some embodiments, the p-type semiconductor is loaded over the n-type semiconductor. In some embodiments, the n-type semiconductor is an element comprising tantalum, tungsten, tantalum, tin, zinc, lanthanum, zirconium, hafnium, indium or aluminum having a deeper valence band than the p-type semiconductor. Oxide. In some embodiments, the n-type semiconductor can be an anatase phase, a rutile phase, a wurtzite phase, a spinel, a perovskite, a burn. Pyrochlore, garnet, zircon and/or tialite phase materials or mixtures thereof. Each of these options is given the usual meaning as understood by one of ordinary skill in the semiconductor arts. The comparison of a given standard and the X-ray diffraction pattern of the generated sample is one of a number of methods that can be used to determine if the sample contains a particular phase. Example standards include diffraction by the National Institute of Standards and Technology (NIST) (Gaitherburg, Maryland, USA) and/or international diffraction. Information Center (ICDD, officially known as the Powder Diffraction Standards Joint Committee [JCPDS]) (International Centre for Diffraction Data (ICDD, formerly the Joint Committee on Powder Diffraction Standards [JCPDS]) (Newtown Square, Pennsylvania, USA)) X-ray diffraction pattern map provided. In certain embodiments, the perovskite mineral will be a perovskite oxide. In some embodiments, the perovskite oxide may comprise FeTiO 3 , YFeO 3 , LuRhO 3 , BaSnO 3 , Ba 0.8 Ca 0.2 TiO 3 , CdSnO 3 , LaRhO 3 , LaRhO 3 , LaMnO 3 , CoTiO 3 , CuTiO 3 . , MgTiO 3 , ZnTiO 3 , BiNb 1-x Ta x O 4 , wherein x=0 to 1.00, or InNb 1-x Ta x O 4 , wherein x=0 to 1.00.

在另外的實施例,n型半導體可以包含鈰、鎢、鉭、錫、鋅、鍶、鋯、鋇、銦、鈮、釩、鐵、鎘、鍺和/或鋁氧化物。n型半導體可包含CeO2;MgTa2O6;BaTa2O6;SrTa2O6;Ta2O5;FeTa2O6;Hg2Ta2O7;Hg2Nb2O7;Hg2TaVNb1-VO7;K3Ta3Si2O13;K2LnTa5O15;WO3;ZnO;SrTiO3;SrNb2O7;SrTa2O7;SrTaNbO7;Sr2FeNbO6;Sr3FeNb2O9;TiO2;SnO2;BaTiO3;FeTiO3;CdFe2O4;MnTiO3;Cs2Nb4O11;KNbO3;Sr2FeNbO6;Sr3FeNb2O9;NiNb2O6;CoNb2O6;ZnNb2O6;Nb2O5;K4Nb6O17;Rb4Nb6O17;CuTiO3;BiO3;In2O3;LiTaO3;NiTiO3;In2TiO5;Al2TiO5;Al2-xInxTiO5;ZrTiO4;Zr1-yCeyTiO4;LiCa2Zn2V3O12;Cd2SnO4;CdIn2O4;Cd2GeO4;Bi2W2O9;Bi2WO6;Bi3TiNbO9;ACrO4,其中A可為鍶、鋇或其 組合;CuMnO2;PbWO4;CuFeO2;InVO4;MVWO6,其中M可為Li、Ag或其組合;Bi2MNbO7,其中M可為鋁、鎵、銦、釔、稀土族、鐵或其組合;Zr2WO6;PbWO4;SnWO4;Bi2W2O9;Na2W4O13及/或MWO4,其中M可為鈣、鋅、銅或其組合。 In further embodiments, the n-type semiconductor may comprise germanium, tungsten, antimony, tin, zinc, antimony, zirconium, hafnium, indium, antimony, vanadium, iron, cadmium, antimony, and/or aluminum oxide. The n-type semiconductor may comprise CeO 2 ; MgTa 2 O 6 ; BaTa 2 O 6 ; SrTa 2 O 6 ; Ta 2 O 5 ; FeTa 2 O 6 ; Hg 2 Ta 2 O 7 ; Hg 2 Nb 2 O 7 ; Hg 2 TaVNb 1- VO7; K 3 Ta 3 Si 2 O 13 ; K 2 LnTa 5 O 15 ; WO 3 ; ZnO; SrTiO 3 ; SrNb 2 O 7 ; SrTa 2 O 7 ; SrTaNbO 7 ; Sr 2 FeNbO 6 ; Sr 3 FeNb 2 O 9; TiO 2; SnO 2 ; BaTiO 3; FeTiO 3; CdFe 2 O 4; MnTiO 3; Cs 2 Nb 4 O 11; KNbO 3; Sr 2 FeNbO 6; Sr 3 FeNb 2 O 9; NiNb 2 O 6; CoNb 2 O 6 ;ZnNb 2 O 6 ;Nb 2 O 5 ;K 4 Nb 6 O 17 ;Rb 4 Nb 6 O 17 ;CuTiO 3 ;BiO 3 ;In 2 O 3 ;LiTaO 3 ;NiTiO 3 ;In 2 TiO 5 Al 2 TiO 5 ; Al 2-x In x TiO 5 ; ZrTiO 4 ; Zr 1-y Ce y TiO 4 ; LiCa 2 Zn 2 V 3 O 12 ; Cd 2 SnO 4 ; CdIn 2 O 4 ; Cd 2 GeO 4 ; Bi 2 W 2 O 9; Bi 2 WO 6; Bi 3 TiNbO 9; ACrO 4, where A may be strontium, barium or combinations thereof; CuMnO 2; PbWO 4; CuFeO 2; InVO 4; MVWO 6, wherein M Is Li, Ag or a combination thereof; Bi 2 MNbO 7 , wherein M can be aluminum, gallium, indium, antimony, rare earth, iron or a combination thereof; Zr 2 WO 6 ; PbWO 4 ; SnW O 4 ; Bi 2 W 2 O 9 ; Na 2 W 4 O 13 and/or MWO 4 , wherein M may be calcium, zinc, copper or a combination thereof.

在某些實施例裡,n型半導體可為釩石榴石半導性光觸媒(vanadium garnet semiconducting photocatalyst)。在某些實施例中,釩石榴石半導性光觸媒可以化學式(A1-xOx)3(M)2(V3)O12表示,其中0<x<1。在某些實施例裡,(A1-xOx)3與(M)2累計離子電荷為+9。在某些實施例裡,A+可為Li+、Cu+、Na+、K+、Ti+、Cd2+、Ca2+、Sr2+、Pb2+、Y3+、Bi3+、Ln3+或其組合。在某些實施例裡,M可為Li+、Ni2+、Mg2+、Co2+、Cu2+、Zn2+、Mn2+、Cd2+、Cr3+、Fe3+或Sc3+或其組合之其中之一或任何一個。 In some embodiments, the n-type semiconductor can be a vanadium garnet semiconducting photocatalyst. In certain embodiments, the vanadium garnet semiconducting photocatalyst can be represented by the formula (A 1-x O x ) 3 (M) 2 (V 3 )O 12 wherein 0 < x < 1. In certain embodiments, the cumulative ion charge of (A 1-x O x ) 3 and (M) 2 is +9. In some embodiments, A+ can be Li + , Cu + , Na + , K + , Ti + , Cd 2+ , Ca 2+ , Sr 2+ , Pb 2+ , Y 3+ , Bi 3+ , Ln 3+ or a combination thereof. In certain embodiments, M can be Li + , Ni 2+ , Mg 2+ , Co 2+ , Cu 2+ , Zn 2+ , Mn 2+ , Cd 2+ , Cr 3+ , Fe 3+ or Sc One or any of 3+ or a combination thereof.

在某些實施例裡,n型半導體可以為釩石榴石半導性光觸媒。在某些實施例裡,該釩石榴石半導性光觸媒可以化學式1:(A2+)3(M+M2+)(V3)O12表示。在某些實施例裡,釩石榴石半導性光觸媒可為Ca3LiZnV3O12或Sr3LiZnV3O12In some embodiments, the n-type semiconductor can be a vanadium garnet semiconducting photocatalyst. In certain embodiments, the vanadium garnet semiconducting photocatalyst can be represented by the formula 1: (A 2+ ) 3 (M + M 2+ )(V 3 )O 12 . In certain embodiments, the vanadium garnet semiconductive photocatalyst can be Ca 3 LiZnV 3 O 12 or Sr 3 LiZnV 3 O 12 .

在某些實施例裡,n型半導體可為混合鈦酸。該術語「混合鈦酸」指稱一化合物係包含鈦、氧、和至少一種其他的元素,像是鈣、銅、鎂或鑭。在某些實施例裡,該混合鈦酸可為CaCu2Ti3O12(鈣鈦礦型鈦酸(perovskite titanate));MgTi2O5(鐵板鈦礦);及/或La2Ti2O7(燒綠石鈦酸)。在某些實施例裡,氧化鈦可包含銳鈦礦相和金紅石相TiO2之混合物。 In some embodiments, the n-type semiconductor can be a mixed titanic acid. The term "mixed titanic acid" refers to a compound comprising titanium, oxygen, and at least one other element such as calcium, copper, magnesium or strontium. In certain embodiments, the mixed titanic acid can be CaCu 2 Ti 3 O 12 (perovskite titanate); MgTi 2 O 5 (iron brookite); and/or La 2 Ti 2 O 7 (green earth titanic acid). In certain embodiments, the titanium oxide may comprise a mixture of anatase and rutile phase of TiO 2.

在某些實施例裡,n型半導體可以包含混合銅氧化物。混合銅氧化物指稱包含銅、氧、和其他有別於銅和氧的元素之n 型半導體。在某些實施例裡,混合銅氧化物可為CuMnO2或CuFeO2In some embodiments, the n-type semiconductor can comprise a mixed copper oxide. Mixed copper oxide refers to an n-type semiconductor comprising copper, oxygen, and other elements distinct from copper and oxygen. In certain embodiments, the mixed copper oxide can be CuMnO 2 or CuFeO 2 .

在某些實施例裡,n型半導體可為簡單或混合之鐵素體。在某些實施例裡,混合鐵素體可為α-Fe2O3;MFe2O4,其中M是鎂、鋅、鈣、鋇或其組合;Ca2Fe2O5、MFe12O19,其中M是鍶、鋇或其組合;Sr7Fe10O22,MFeO2.5+x,其中M是鍶、鋇或其組合,Sr3Fe2O6.16;Bi1.5Pb0.5Sr2BiFe2O9.25;Pb2Sr2BiFe2O9+y;Bi2Sr2BiFe2O9+y;及/或Bi1.5Pb0.5Sr4Fe2O10.04In some embodiments, the n-type semiconductor can be a simple or mixed ferrite. In certain embodiments, the mixed ferrite may be α-Fe 2 O 3 ; MFe 2 O 4 , wherein M is magnesium, zinc, calcium, strontium or combinations thereof; Ca 2 Fe 2 O 5 , MFe 12 O 19 Wherein M is ruthenium, osmium or a combination thereof; Sr 7 Fe 10 O 22 , MFeO 2.5+x , wherein M is ruthenium, osmium or a combination thereof, Sr 3 Fe 2 O 6.16 ; Bi 1.5 Pb 0.5 Sr 2 BiFe 2 O 9.25 Pb 2 Sr 2 BiFe 2 O 9+y ; Bi 2 Sr 2 BiFe 2 O 9+y ; and/or Bi 1.5 Pb 0.5 Sr 4 Fe 2 O 10.04 .

在某些實施例裡,n型半導體可為CuX負載氮氧化合物半導性光觸媒。在某些實施例裡,氮氧化合物半導性光觸媒可以包含TaON;MTaO2N,其中M為鈣、鍶、鋇或其組合;SrNb2O7-xNx;(Ga1-xZnx)(N1-xOx);及/或(Zn1+xGe)(N2Ox)。 In some embodiments, the n-type semiconductor can be a CuX supported oxynitride semiconducting photocatalyst. In certain embodiments, the oxynitride semiconducting photocatalyst can comprise TaON; MTaO 2 N, wherein M is calcium, lanthanum, cerium or a combination thereof; SrNb 2 O 7-x N x ; (Ga 1-x Zn x (N 1-x O x ); and/or (Zn 1+x Ge)(N 2 O x ).

在某些實施例裡,n型半導體可為CuX負載硫化物、硒化物或硫硒化物半導性光觸媒。在某些實施例中,硫化物、硒化物或硫硒化物半導性光觸媒可包含Cd(Sy,Se1-y),其中0<y<1;(Cd,Zn(Sy,Se1-y),其中0<y<1;(AgIn)xZn2(1-x)(Sy,Se1-y)2,其中0<y<1;(CuIn)xZn2(1-x)(Sy,Se1-y)2,其中0<y<1;(CuAgIn)XSn2(1-x)(Sy、Se1-y)2,其中0<y<1;及/或Sm2Ti2S2O5In some embodiments, the n-type semiconductor can be a CuX supported sulfide, selenide or sulphide selenide semiconductor photocatalyst. In certain embodiments, the sulfide, selenide or sulphide selenide semiconductor photocatalyst may comprise Cd(Sy, Se 1-y ), where 0 < y <1; (Cd, Zn(Sy, Se 1-y) ), where 0 < y <1; (AgIn) x Zn 2 ( 1-x ) (S y , Se 1-y ) 2 , where 0 < y <1; (CuIn) x Zn 2 ( 1-x ) ( S y ,Se 1-y ) 2 , where 0<y<1; (CuAgIn) X Sn 2 ( 1-x )(S y , Se 1-y ) 2 , where 0<y<1; and/or Sm 2 Ti 2 S 2 O 5 .

在特定的實施例中,n型半導體包含一化合物以化學式「Al2-xInxTiO5」表示,其中x在0至2的範圍內(0<x<2)。在另一個特定的實施例中,n型半導體包含一化合物以化學式「Zr1-yCeyTiO4」表示,其中y在0至1的範圍內(0<y<1)。在特定的實施例,n型半導體是具有透過摻雜受控制之價帶的氧化鈦。在某些實施例中,n型半導體為摻雜氮或碳或兩者之氧化鈦。 在某些實施例裡,氧化鈦包含一化合物以化學式(Ti1-rMr)(O2-s-tCsNt)表示,其中M為錫、鎳、鍶、鋇、鐵、鉍、釩、錳、鎢、鋅、銅或其組合;r在0至0.25的範圍內;s於0.001至0.1的範圍內;且,t為0.001至0.1的範圍內。在某些實施例中,r不能大於0.2。在某些實施例裡,r可特定地為0;0.01;0.02;0.03;0.04;0.05;0.06;0.07;0.08;0.09;0.10;0.11;0.12;0.13;0.14;0.15;0.16;0.17;0.18;0.19;0.20;0.21;0.22;0.23;0.24;或0.25。在某些實施例裡,s可特定地為0.001;0.005;0.01;0.02;0.03;0.04;0.05;0.06;0.07;0.08;0.09或0.1。在某些實施例裡,t可以特定是0.001;0.005;0.01;0.02;0.03;0.04;0.05;0.06;0.07;0.08;0.09或0.1。 In a particular embodiment, the n-type semiconductor comprises a compound represented by the chemical formula "Al 2-x In x TiO 5 ", wherein x is in the range of 0 to 2 (0 < x < 2). In another specific embodiment, the n-type semiconductor comprises a compound represented by the chemical formula "Zr 1-y Ce y TiO 4 ", wherein y is in the range of 0 to 1 (0 < y < 1). In a particular embodiment, the n-type semiconductor is titanium oxide having a valence band controlled by doping. In certain embodiments, the n-type semiconductor is titanium oxide doped with nitrogen or carbon or both. In certain embodiments, the titanium oxide comprises a compound represented by the formula (Ti 1-r M r )(O 2-st C s N t ), wherein M is tin, nickel, ruthenium, osmium, iron, ruthenium, vanadium , manganese, tungsten, zinc, copper or a combination thereof; r is in the range of 0 to 0.25; s is in the range of 0.001 to 0.1; and, t is in the range of 0.001 to 0.1. In certain embodiments, r cannot be greater than 0.2. In certain embodiments, r can be specifically 0; 0.01; 0.02; 0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.09; 0.10; 0.11; 0.12; 0.13; 0.14; 0.15; 0.16; 0.17; 0.19; 0.20; 0.21; 0.22; 0.23; 0.24; or 0.25. In certain embodiments, s can be specifically 0.001; 0.005; 0.01; 0.02; 0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.09 or 0.1. In certain embodiments, t can be specified to be 0.001; 0.005; 0.01; 0.02; 0.03; 0.04; 0.05; 0.06; 0.07; 0.08; 0.09 or 0.1.

該材料亦描述於共同待決(co-pending)和共同轉讓(co-assigned)的申請案中,序號13/741,191,申請於2013年1月14日,此申請案透過引用被全部納入光催化化合物和/或組成的描述裡。在某些實施例中,M為錫、鎳、鍶、鋇、鐵、鉍或其組合。在某些實施例裡,r為在0.0001至0.15之範圍內。在某些實施例裡,M為錫。在某些實施例裡,r至少為0.001。在某些實施例裡,n型半導體包含(Ti0.99Sn0.01)(O2-s-tCsNt)、(Ti0.97Sn0.03)(O2-s-tCsNt)、(Ti0.95Sn0.05)(O2-s-tCsNt)、(Ti0.90Sn0.10)(O2-s-tCsNt)、(Ti0.85Sn0.15)(O2-s-tCsNt)、(Ti0.985Ni0.015)(O2-s-tCsNt)、(Ti0.98Ni0.02)(O2-s-tCsNt)、(Ti0.97Ni0.03)(O2-s-tCsNt)、(Ti0.99Sr0.01)(O2-s-tCsNt)、(Ti0.97Sr0.03)(O2-s-tCsNt)、(Ti0.95Sr0.05)(O2-s-tCsNt)、(Ti0.97Ba0.03)(O2-s-tCsNt)、(Ti0.95Ba0.05)(O2-s-tCsNt)、(Ti0.94Sn0.05Fe0.01)(O2-s-tCsNt)、(Ti0.94Sn0.05Ni0.01)(O2-s-tCsNt)、(Ti0.99Fe0.01)(O2-s-tCsNt)、 (Ti0.95Zn0.05)(O2-s-tCsNt)、(Ti0.77Sn0.15Cu0.08)(O2-s-tCsNt)、(Ti0.85Zn0.15)(O2-s-tCsNt)、(Ti0.90Bi0.10)(O2-s-tCsNt)、(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、(Ti0.970V0.03)(O2-s-tCsNt)、(Ti0.997MO0.003)(O2-s-tCsNt)、(Ti0.984MO0.016)(O2-s-tCsNt)、(Ti0.957MO0.043)(O2-s-tCsNt)、(Ti0.97W0.03)(O2-s-tCsNt)、及/或(Ti0.95W0.05)(O2-s-tCsNt)。在某些實施例裡,n型半導體包含(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、及/或(Ti0.970V0.03)(O2-s-tCsNt)。 This material is also described in the co-pending and co-assigned applications, Serial No. 13/741,191, filed on January 14, 2013, the entire application of which is incorporated by reference. In the description of the compound and / or composition. In certain embodiments, M is tin, nickel, ruthenium, osmium, iron, ruthenium or combinations thereof. In certain embodiments, r is in the range of 0.0001 to 0.15. In certain embodiments, M is tin. In certain embodiments, r is at least 0.001. In some embodiments, the n-type semiconductor comprises (Ti 0.99 Sn 0.01 ) (O 2-st CsN t ), (Ti 0.97 Sn 0.03 ) (O 2-st C s N t ), (Ti 0.95 Sn 0.05 ) ( O 2-st C s N t ), (Ti 0.90 Sn 0.10 ) (O 2-st C s N t ), (Ti 0.85 Sn 0.15 ) (O 2-st C s N t ), (Ti 0.985 Ni 0.015 ) (O 2-st C s N t ), (Ti 0.98 Ni 0.02 ) (O 2-st C s N t ), (Ti 0.97 Ni 0.03 ) (O 2-st C s N t ), (Ti 0.99 Sr 0.01 (O 2-st C s N t ), (Ti 0.97 Sr 0.03 ) (O 2-st C s N t ), (Ti 0.95 Sr 0.05 ) (O 2-st C s N t ), (Ti 0.97 Ba 0.03 )(O 2-st C s N t ), (Ti 0.95 Ba 0.05 )(O 2-st C s N t ), (Ti 0.94 Sn 0.05 Fe 0.01 )(O 2-st C s N t ), ( Ti 0.94 Sn 0.05 Ni 0.01 )(O 2-st C s N t ), (Ti 0.99 Fe 0.01 )(O 2-st C s N t ), (Ti 0.95 Zn 0.05 )(O 2-st C s N t ), (Ti 0.77 Sn 0.15 Cu 0.08 ) (O 2-st C s N t ), (Ti 0.85 Zn 0.15 ) (O 2-st C s N t ), (Ti 0.90 Bi 0.10 ) (O 2-st C s N t ), (Ti 0.996 V 0.004 ) (O 2-st C s N t ), (Ti 0.984 V 0.016 ) (O 2-st C s N t ), (Ti 0.970 V 0.03 ) (O 2-st C s N t ), (Ti 0.997 MO 0.003 ) (O 2-st C s N t ), (Ti 0.984 MO 0.0 16 ) (O 2-st C s N t ), (Ti 0.957 MO 0.043 ) (O 2-st C s N t ), (Ti 0.97 W 0.03 ) (O 2-st C s N t ), and/or (Ti 0.95 W 0.05 ) (O 2-st C s N t ). In some embodiments, the n-type semiconductor comprises (Ti 0.996 V 0.004 ) (O 2-st C s N t ), (Ti 0.984 V 0.016 ) (O 2-st C s N t ), and/or (Ti 0.970 V 0.03 ) (O 2-st C s N t ).

在某些實施例中,其中非均相材料包含p型半導體負載於n型半導體上,非均相材料更進一步包含第二n型半導體,其中至少有一部分第二n型半導體與p型半導體離子電荷隔離。在部分實施例中,至少有一部分第二n型半導體可以物理上與p型導體分開、離子電荷分離、摻合於和/或不負載於p型半導體。在部分實施例中,第二n型半導體可以為本申請中其他地方所描述的任何一n型半導體。在部分實施例中,分隔或摻合n型半導體之離子電荷可以包含CeO2及/或複數相n型半導體化合物。在部分實施例中,複數相n型半導體化合物包含銳鈦礦相和金紅石相化合物。在部分實施例中,複數相n型半導體化合物可為鈦氧化物。在部分實施例中,該銳鈦礦相可為2.5%至約97.5%、約5%至約95%、及/或約10%至約90%,且該金紅石相可為97.5%至約2.5%、95%至約5%,及/或約10%至約90%。合適材料之非限制性例子包含,但不受限於,以贏創(Evonik)公司出售之品牌名P25的TiO2混合物(83%銳鈦礦相TiO2+17%金紅石相TiO2)。在部分實施例中,物理上與負載於WO3的p型混合之n型半導體可包含CeO2、TiO2、SrTiO3及/或KTaO3。在部分實施例中,物理上與負 載於複數相n型半導體化合物上之p型混合之n型半導體(例如,P25)可以包含非負載的複數相n型半導體化合物(例如,P25)。在部分實施例中,物理性與負載於複數相n型半導體化合物之p型混合之n型半導體可以包含CeO2、TiO2、SrTiO3及/或KTaO3。 在部分實施例中,n型半導體可為無機的。在部分實施例中,無機n型半導體可為氧化物,像是包含CeO2、TiO2、或其他類似物之金屬二氧化物。在部分實施例中、n型半導體可包含SiO2、SnO2、Al2O3、ZrO2、Fe2O3、Fe3O4、NiO、Nb2O5、和或CeO2In some embodiments, wherein the heterogeneous material comprises a p-type semiconductor supported on the n-type semiconductor, the heterogeneous material further comprises a second n-type semiconductor, wherein at least a portion of the second n-type semiconductor and the p-type semiconductor ion Charge isolation. In some embodiments, at least a portion of the second n-type semiconductor can be physically separated from the p-type conductor, ionically separated, blended, and/or unsupported by the p-type semiconductor. In some embodiments, the second n-type semiconductor can be any of the n-type semiconductors described elsewhere in this application. In some embodiments, the ionic charge separating or blending the n-type semiconductor may comprise a CeO 2 and/or a complex phase n-type semiconductor compound. In some embodiments, the complex phase n-type semiconductor compound comprises an anatase phase and a rutile phase compound. In some embodiments, the complex phase n-type semiconductor compound can be a titanium oxide. In some embodiments, the anatase phase can range from 2.5% to about 97.5%, from about 5% to about 95%, and/or from about 10% to about 90%, and the rutile phase can range from 97.5% to about 2.5%, 95% to about 5%, and/or from about 10% to about 90%. Non-limiting examples of suitable materials include, but are not limited to, a TiO 2 mixture (83% anatase phase TiO 2 + 17% rutile phase TiO 2 ) sold under the brand name P25 by Evonik. In some embodiments, the n-type semiconductor physically mixed with the p-type supported on WO 3 may comprise CeO 2 , TiO 2 , SrTiO 3 , and/or KTaO 3 . In some embodiments, an n-type semiconductor (eg, P25) physically mixed with a p-type supported on a complex phase n-type semiconductor compound may comprise an unsupported complex phase n-type semiconductor compound (eg, P25). In some embodiments, the n-type semiconductor physically mixed with the p -type supported on the complex phase n-type semiconductor compound may comprise CeO 2 , TiO 2 , SrTiO 3 , and/or KTaO 3 . In some embodiments, the n-type semiconductor can be inorganic. In some embodiments, the inorganic n-type semiconductor can be an oxide such as a metal dioxide comprising CeO 2 , TiO 2 , or the like. In some embodiments, the n-type semiconductor may include SiO 2 , SnO 2 , Al 2 O 3 , ZrO 2 , Fe 2 O 3 , Fe 3 O 4 , NiO, Nb 2 O 5 , and or CeO 2 .

在部分實施例中,n型半導體可為REkEmOn,其中RE為稀土族元素,E為一元素或是元素組合,O為氧,且1k2,2m3,且0n3。在部分實施例,n型半導體可為REpOq,其中RE為稀土金屬元素且p可大於或等於1,並小於或等於2,或可在1及2之間;而q可大於或等於2並小於或等於3,或可在2至3之間。合適的稀土元素例子包含鈧、釔和鑭系元素和錒系元素。鑭系元素包含原子數57至71之元素。錒系元素包含原子數89至103之元素。在某些實施例中,n型半導體可為CexZryO2,其中y/x比值=0.001至0.999。在某些實施例中,n型半導體可為鈰。在某些實施例中,n型半導體可為CeOa(a2)。在某些實施例中,n型半導體可為鈰氧化物(CeO2)。 In some embodiments, the n-type semiconductor can be RE k E m O n , wherein RE is a rare earth element, E is an element or a combination of elements, O is oxygen, and 1 k 2,2 m 3, and 0 n 3. In some embodiments, the n-type semiconductor can be RE p O q , wherein RE is a rare earth metal element and p can be greater than or equal to 1, and less than or equal to 2, or can be between 1 and 2; and q can be greater than or equal to 2 is less than or equal to 3, or may be between 2 and 3. Examples of suitable rare earth elements include lanthanum, cerium and lanthanides and actinides. The lanthanide element contains an element having an atomic number of 57 to 71. The lanthanide element contains elements of atomic number 89 to 103. In certain embodiments, the n-type semiconductor can be Ce x Zr y O 2 with a y/x ratio = 0.001 to 0.999. In some embodiments, the n-type semiconductor can be germanium. In some embodiments, the n-type semiconductor can be CeO a (a 2). In certain embodiments, the n-type semiconductor can be a cerium oxide (CeO 2 ).

在部分實施例,n型半導體可為非氧化物。在某些實施例中,非氧化物可為碳化物和/或氮化物。在某些實施例中,碳化物可為碳化矽。 In some embodiments, the n-type semiconductor can be a non-oxide. In certain embodiments, the non-oxide can be a carbide and/or a nitride. In certain embodiments, the carbide can be tantalum carbide.

在部分實施例中,n型半導體(像是CeO2)和負載於WO3之p型半導體(例如,CuXO-WO3)之物理混合物的莫耳比可為n型半導體的0%-99%和p型半導體(CuxO負載於WO3)的100%-1% 在某些實施例中,n型半導體(像是CeO2)和負載於WO3之p型半導體之物理混合物的莫耳比可為n型半導體的25%至75%(與這之間的每個整數)至負載n型材料(如WO3)之p型半導體的75%至25%(與這之間的每個整數)。在某些實施例中,n型半導體(像是CeO2)和負載於WO3之p型半導體之物理混合物的莫耳比可為n型半導體的40%至60%(與這之間的每個整數)到負載n型材料(如WO3)之p型半導體的60%至40%(與這之間的每個整數)。 In some embodiments, the molar ratio of the physical mixture of the n-type semiconductor (such as CeO 2 ) and the p-type semiconductor supported by WO 3 (eg, Cu X O-WO 3 ) may be 0% of the n-type semiconductor - 100%-1% of 99% and p-type semiconductors (Cu x O supported at WO 3 ) In certain embodiments, a physical mixture of an n-type semiconductor (such as CeO 2 ) and a p-type semiconductor supported on WO 3 75 to 25% molar ratio may be 25% to 75% n-type semiconductor (and every integer between these) to a load n-type material (e.g., WO 3) of the p-type semiconductor (between this and the Every integer). In some embodiments, the molar ratio of the physical mixture of the n-type semiconductor (such as CeO 2 ) and the p-type semiconductor supported by WO 3 may be 40% to 60% of the n-type semiconductor (between and An integer) from 60% to 40% of the p-type semiconductor loaded with an n-type material (such as WO 3 ) (with each integer between them).

在某些實施例中,非均相材料可以進一步包含貴金屬與混合價氧化化合物離子電荷連通。在部分實施例裡,貴金屬元素負載於n型半導體上。在部分實施例中,貴金屬可為,但不受限於,銠、釕、鈀、銀、鋨、鉑、及/或金或其混合物。在一實施例中,貴金屬為鉑。 In certain embodiments, the heterogeneous material may further comprise a noble metal in charge communication with the mixed valence oxidizing compound ion. In some embodiments, the precious metal element is supported on the n-type semiconductor. In some embodiments, the noble metal can be, but is not limited to, ruthenium, rhodium, palladium, silver, rhodium, platinum, and/or gold or mixtures thereof. In one embodiment, the precious metal is platinum.

在某些實施例中,用於負載混合價化合物的方法可加入p型前導物至吸引劑以使n型半導體之表面電荷更負,其中p型前導物包含銅陽離子複合物。在部分實施例中,用於負載混合價化合物之方法可包含加入吸引劑至n型化合物;且在低於混合價化合物之摻雜溫度的溫度下將n型和p型前導物彼此組合。在某些實施例中,此方法更包含加入分散劑至n型化合物用以使n型化合物之表面電荷更加為正之步驟。 In certain embodiments, a method for loading a mixed valence compound can add a p-type precursor to an attractant to make the surface charge of the n-type semiconductor more negative, wherein the p-type precursor comprises a copper cation complex. In some embodiments, a method for supporting a mixed valence compound can include adding an attractant to an n-type compound; and combining the n-type and p-type precursors with each other at a temperature lower than a doping temperature of the mixed-valent compound. In certain embodiments, the method further comprises the step of adding a dispersant to the n-type compound to make the surface charge of the n-type compound more positive.

在部分實施例中,用於負載混合價化合物之方法可添加分散劑於n型化合物以使n-型化合物的表面更帶正電荷;添加p型前導物於分散劑和n型化合物中,其中p型前導物包含銅陽離子複合物;添加吸引劑於n型化合物以使n型半導體表面電荷更負;以及於低於混合價化合物摻雜溫度的溫度下相互結合相異裝載材料(charge material)。 In some embodiments, a method for supporting a mixed valence compound may add a dispersing agent to the n-type compound to make the surface of the n-type compound more positively charged; and add a p-type precursor to the dispersing agent and the n-type compound, wherein The p-type precursor comprises a copper cation complex; an attractant is added to the n-type compound to make the n-type semiconductor surface charge more negative; and a dissimilar charge material is bonded to each other at a temperature lower than the doping temperature of the mixed valence compound. .

在某些實施例中,分散劑可為強酸。在某些實施例中,分散劑可為4-7莫耳濃度(M)之鹽酸。在某些實施例裡,該分散劑為6M鹽酸。 In certain embodiments, the dispersing agent can be a strong acid. In certain embodiments, the dispersing agent can be 4-7 molar concentrations (M) of hydrochloric acid. In certain embodiments, the dispersing agent is 6M hydrochloric acid.

在某些方法裡,一價控制材料被單獨添加於相異裝載材料以在混合價氧化物合成期間控制混合價氧化物。在某些實施例中,價控制材料為溫和的還原劑。在某些實施例裡,價控制材料可為糖、醯肼、胺基酸、及/或醯胺之至少其中之一。在某些實施例中,醯胺類可為尿素。在某些實施例裡,糖類可為蔗糖、果糖和/或葡萄糖。在某些實施例裡,糖類可為葡萄糖。在某些實施例裡,該醯肼類為碳醯肼(Carbohydrazide)、草醯二肼(Oxalyl Dihydrazide)、馬來醯肼(Maleic Hydrazide)、二甲醯肼(Diformyl Hydrazine)或四甲基醯晴(Tetraformyl Trisazine)。在某些實施例裡,該胺基酸為蛋白原或自然界胺基酸之至少其中之一。在某些實施例裡,胺基酸可為脂肪族胺基酸(像是甘胺酸、丙胺酸、纈胺酸、白胺酸和/或異白胺酸)。在某些實施例中,胺基酸可為含羥基或硫之胺基酸(像是絲胺酸、半胱胺酸、蘇胺酸和/或甲硫胺酸)。在某些實施例中,該胺基酸可為環類(像是脯胺酸)。在某些實施例中,該胺基酸可為芳香環(像是苯丙胺酸、酪胺酸、及/或色氨酸)。在某些實施例中,胺基酸可為鹼性的(如組胺酸、賴胺酸、及/或精胺酸)。在某些實施例中,胺基酸可為酸性的或醯胺(像是天門冬胺酸、穀醯胺、天門冬醯胺及/或谷胺酸)。在某些實施例中,胺基酸為硒半胱胺酸和/或吡咯賴胺酸。在某些實施例中,該胺基酸可為非蛋白原。在某些實施例中,非蛋白原胺基酸包含沒有在蛋白質裡發現的(舉例,肉鹼、GABA)。在某些實施例裡,非蛋白質原的胺基酸可為被標準細胞機制(standard cellular machinery)分隔的那些胺基酸(像是羥脯胺酸和硒代蛋胺酸)。在某些實施例中,胺基酸為可溶於水。在某些實施例中,胺基酸在攝氏90度可溶於水。在某些實施例中,胺基酸大致上可在攝氏90度時完全溶於水。該術語「可溶性」有本領域普通技術人員所知之普通意義。 In some methods, the monovalent control material is added separately to the dissimilar loading material to control the mixed valence oxide during the synthesis of the mixed valence oxide. In certain embodiments, the valence control material is a mild reducing agent. In certain embodiments, the valence controlling material can be at least one of a sugar, a hydrazine, an amino acid, and/or a guanamine. In certain embodiments, the guanamine can be urea. In certain embodiments, the saccharide can be sucrose, fructose, and/or glucose. In certain embodiments, the saccharide can be glucose. In certain embodiments, the moss is Carbohydrazide, Oxalyl Dihydrazide, Maleic Hydrazide, Diformyl Hydrazine, or Tetramethylhydrazine. Tetraformyl Trisazine. In certain embodiments, the amino acid is at least one of a proprotein or a natural amino acid. In certain embodiments, the amino acid can be an aliphatic amino acid (such as glycine, alanine, valine, leucine, and/or isoleucine). In certain embodiments, the amino acid can be a hydroxyl or sulfur containing amino acid (such as serine, cysteine, threonine, and/or methionine). In certain embodiments, the amino acid can be a ring (such as valine). In certain embodiments, the amino acid can be an aromatic ring (such as phenylalanine, tyrosine, and/or tryptophan). In certain embodiments, the amino acid can be basic (eg, histidine, lysine, and/or arginine). In certain embodiments, the amino acid can be acidic or a guanamine (such as aspartic acid, sitamine, aspartame, and/or glutamic acid). In certain embodiments, the amino acid is selenocysteine and/or pyrrolysine. In certain embodiments, the amino acid can be non-proteinogenic. In certain embodiments, the non-proteinogenic amino acid comprises no such found in the protein (for example, carnitine, GABA). In certain embodiments, the non-proteinogenic amino acid can be subjected to standard cellular mechanisms (standard cellular Amino acids (such as hydroxyproline and selenomethionine) separated by machinery. In certain embodiments, the amino acid is water soluble. In certain embodiments, the amino acid is soluble in water at 90 degrees Celsius. In certain embodiments, the amino acid is substantially completely soluble in water at 90 degrees Celsius. The term "soluble" has its ordinary meaning as known to those of ordinary skill in the art.

在部分實施例,混合價氧化化合物之比值,例如Cu+化合物和Cu2+化合物可受到將銅負載於p型半導體的方法來調控,此方法包含加入吸引劑。在某些實施例中,可以控制該混合價氧化物的比例之吸引劑可包含單醣和鹼基化合物。在某些實施例中,單醣為葡萄糖。在某些實施例中,葡萄糖可為D-葡萄糖和/或L-葡萄糖。在某些實施例中,葡萄糖比上NaOH之比值可為10%至90%比90%至10%。特定的比例亦可包含:15%比85%;20%比80%;25%比75%;30%比70%;35%比65%;40%比60%;45%比55%;50%比50%;55%比45%;60%比40%;65%比35%;70%比30%;75%比25%;80%比20%;和85%比15%。在某些實施例中,該鹼為NaOH。CuxO化合物為價控制化學物。 In some embodiments, the ratio of mixed valence oxidizing compounds, such as Cu + compounds and Cu 2+ compounds, can be regulated by a method of loading copper onto a p-type semiconductor, the method comprising the addition of an attractant. In certain embodiments, the attractant that can control the ratio of the mixed valence oxide can comprise a monosaccharide and a base compound. In certain embodiments, the monosaccharide is glucose. In certain embodiments, the glucose can be D-glucose and/or L-glucose. In certain embodiments, the ratio of glucose to NaOH above may range from 10% to 90% to 90% to 10%. Specific ratios may also include: 15% to 85%; 20% to 80%; 25% to 75%; 30% to 70%; 35% to 65%; 40% to 60%; 45% to 55%; % to 50%; 55% to 45%; 60% to 40%; 65% to 35%; 70% to 30%; 75% to 25%; 80% to 20%; and 85% to 15%. In certain embodiments, the base is NaOH. Cu x O compounds are valence control chemicals.

在某些實施例中,吸引劑可為提供氫氧根離子的有效量以使總溶液的pH值介於8.0至9.0之用劑。在某些實施例中,吸引劑可為強鹼。在某些實施例中,吸引劑為4-7莫耳濃度之強鹼。在某些實施例中,吸引劑為6莫耳濃度之NaOH。 In certain embodiments, the attractant can be an agent that provides an effective amount of hydroxide ions such that the pH of the total solution is between 8.0 and 9.0. In certain embodiments, the attractant can be a strong base. In certain embodiments, the attractant is a strong base at a concentration of 4-7 moles. In certain embodiments, the attractant is NaOH at a concentration of 6 moles.

在某些實施例中,p型前導物可為本質上無鈉的化合物。在某些實施例中,本質上無鈉的化合物可為銅陽離子複合物。在某些實施例裡,銅陽離子複合物可為雙(氫氧化乙二胺)銅(II)(Bis(Ethylenediamine)Copper(II))(BEDCull)、二價銅四氯化銨(Copper(II)tetra amine chloride)、硫酸四胺合銅(II)(Copper(II) tetra amine sulfate)、及/或氫氧化四氨合銅(II)(Copper(II)tetra amine hydroxide)和/或其混合物。在某些實施例中,化合物可為雙(氫氧化乙二胺)銅(II)。BEDCull之結構如下圖所示: In certain embodiments, the p-type leader can be a compound that is substantially sodium-free. In certain embodiments, the substantially sodium-free compound can be a copper cationic complex. In certain embodiments, the copper cation complex may be Bis(Ethylenediamine)Copper(II)(BEDCull), divalent copper tetraammonium chloride (Copper(II) Tetramine chloride), copper (II) tetra amine sulfate, and/or copper (II) tetra amine hydroxide and/or mixtures thereof . In certain embodiments, the compound can be bis(ethylenediamine hydroxide) copper (II). The structure of BEDCull is shown below:

在某些實施例裡,該混合價化合物的摻雜溫度介於攝氏150至700度。在某些實施例裡,少於混合價化合物的摻雜溫度小於攝氏175度,小於攝氏150度、小於攝氏125度。在某些實施例中,混合溫度在攝氏75至125度之間。在某些實施例中,混合溫度為攝氏80度;攝氏85度;攝氏95度;攝氏100度;攝氏105度;攝氏110度;攝氏115度;攝氏120度;或者,攝氏120度。 In certain embodiments, the mixed valence compound has a doping temperature between 150 and 700 degrees Celsius. In certain embodiments, the doping temperature of the compound less than the mixed valence is less than 175 degrees Celsius, less than 150 degrees Celsius, and less than 125 degrees Celsius. In certain embodiments, the mixing temperature is between 75 and 125 degrees Celsius. In certain embodiments, the mixing temperature is 80 degrees Celsius; 85 degrees Celsius; 95 degrees Celsius; 100 degrees Celsius; 105 degrees Celsius; 110 degrees Celsius; 115 degrees Celsius; 120 degrees Celsius; or 120 degrees Celsius.

在某些實施例裡,挑選用於p型半導體之前導物可為氯化物、醋酸鹽、硝酸鹽、硫酸鹽、碳酸鹽、氧化物、氫氧化物、過氧化物之鹽類或其組合。 In certain embodiments, the precursors selected for the p-type semiconductor can be chlorides, acetates, nitrates, sulfates, carbonates, oxides, hydroxides, salts of peroxides, or combinations thereof.

在某些實施例裡,所述的非均相材料具有光催化活性。該非均相材料可為抗菌(光和暗);抗病毒;可以分解揮發性有機化合物;及/或可使食品用添加染劑變色。合適的食品用添加染劑非限制性範例包含天然藍色粉末(Color Maker公司,阿納海姆,加州,美國)(Color Maker,Anaheim,California,USA)和/或FD&C藍色No.2合成食品添加染劑(合成藍色粉末,Chromatech公司,密西根州,美國)(Synthetic blue colored powder,Chromatech,Inc.,Michigan,USA)。這裡所描述之非均相材料也可以增加光催化材 料的耐久性(有效性時間)。 In certain embodiments, the heterogeneous material has photocatalytic activity. The heterogeneous material may be antibacterial (light and dark); antiviral; may decompose volatile organic compounds; and/or may discolor the food with an additive dye. Non-limiting examples of suitable food additive dyes include natural blue powder (Color Maker, Anaheim, CA, USA) (Color Maker, Anaheim, California, USA) and/or FD&C Blue No. 2 synthetic food. A dye (synthetic blue powder, Chromatech, Michigan, USA) (Synthetic blue colored powder, Chromatech, Inc., Michigan, USA) was added. The heterogeneous materials described here can also increase the photocatalytic material. Durability of the material (effectiveness time).

本領域普通技術人員辨認決定非均相材料為抗菌(光)與否的方法,例如,將非均相材料暴露於可見光之後。在一實施例中,抗菌暴露導致至少有10%的減少(還剩餘90%),至少有50%的減少(還剩餘50%),至少99%的減少(至少還剩餘1%),至少減少99.9%(至少有0.1%剩餘)或至少100%的減少(剩餘0%)。決定該非均相材料是否為抗菌(光)的一種例子可藉由評估存活細菌量;例如在非均相材料和細菌接觸並暴露於可見光之後看細菌存活量減少多少。舉例說明,在暴露樣本於預定的時間周期之後,於樣品裡存活細菌的量可被評估。在某些實施例中,樣本可被暴露15分鐘、30分鐘、1小時、2小時、5小時、7.5小時、10小時、12小時或24小時。在某些實施例中,樣本暴露於800lux之螢光源或暴露於至少5mW/cm2的藍色發光二極體。 One of ordinary skill in the art recognizes methods for determining whether a heterogeneous material is antibacterial (light) or not, for example, after exposing a heterogeneous material to visible light. In one embodiment, the antimicrobial exposure results in at least a 10% reduction (90% remaining), at least a 50% reduction (50% remaining), at least a 99% reduction (at least 1% remaining), at least a reduction 99.9% (at least 0.1% remaining) or at least 100% reduction (0% remaining). An example of determining whether the heterogeneous material is antibacterial (light) can be obtained by assessing the amount of viable bacteria; for example, how much the survival of the bacteria is reduced after exposure of the heterogeneous material to the bacteria and exposure to visible light. By way of example, the amount of viable bacteria in the sample can be assessed after exposing the sample for a predetermined period of time. In certain embodiments, the sample can be exposed for 15 minutes, 30 minutes, 1 hour, 2 hours, 5 hours, 7.5 hours, 10 hours, 12 hours, or 24 hours. In certain embodiments, the sample is exposed to a 800 lux fluorescent source or to a blue light emitting diode of at least 5 mW/cm 2 .

本領域普通技術人員辨認決定非均相材料是否抗菌(暗)的方法。在一實施例中,抗菌暴露導致至少有10%的減少(還剩餘90%),至少有50%的減少(還剩餘50%),至少99%的減少(至少還剩餘1%),至少99.9%的減少(至少有0.1%剩餘)或至少100%的減少(剩餘0%)。決定非均相材料是否為抗菌(暗)的一種例子可藉由評估存活細菌量,例如在該非均相材料和細菌接觸並不要暴露於可見光之後看減少或降低之存活菌落數。 One of ordinary skill in the art recognizes methods for determining whether a heterogeneous material is antibacterial (dark). In one embodiment, the antimicrobial exposure results in at least a 10% reduction (90% remaining), at least a 50% reduction (50% remaining), at least a 99% reduction (at least 1% remaining), at least 99.9 % reduction (at least 0.1% remaining) or at least 100% reduction (0% remaining). An example of determining whether a heterogeneous material is antibacterial (dark) can be obtained by assessing the amount of viable bacteria, such as the number of viable colonies that are reduced or decreased after the heterogeneous material is contacted with the bacteria and not exposed to visible light.

本領域普通技術人員辨認決定非均相材料是否抗病毒的方法。在一範例中,決定非均相材料是否為抗病毒可藉由評估,例如抑制或減低之病毒(噬菌體)菌落的數量。在一實施例中,決定該非均相材料是否為抗病毒可以藉由計算在暴露於該非均相材料之後隨著時間推移的病毒菌落存在的數量。在一實施例中, 抗病毒暴露導致至少有10%減少(剩餘90%),至少50%的減少(還剩餘50%),至少99%的減少(至少還剩餘1%),至少減少99.9%(至少有0.1%剩餘)或至少100%的減少(剩餘0%)。 One of ordinary skill in the art recognizes methods for determining whether a heterogeneous material is antiviral. In one example, determining whether a heterogeneous material is antiviral can be assessed by, for example, inhibiting or reducing the number of viral (phage) colonies. In one embodiment, determining whether the heterogeneous material is antiviral can be calculated by calculating the amount of viral colonies present over time after exposure to the heterogeneous material. In an embodiment, Antiviral exposure results in at least a 10% reduction (90% remaining), at least a 50% reduction (50% remaining), at least a 99% reduction (at least 1% remaining), at least 99.9% reduction (at least 0.1% remaining) ) or at least 100% reduction (0% remaining).

本領域普通技術人員辨認決定非均相材料是否可分解揮發性有機化合物的方法。決定該非均相材料是否分解揮發性有機化合物之一種例子可藉由在電磁輻射例如可見光下評估有機化合物的降解情形。在一實施例中,決定乙醛降解為減少量或初始降解之百分比係為一種選項來判定揮發性有機化合物的分解;例如隨著時間推移範圍從0%至90%;或於可見光如具有270mW/cm2功率之455奈米之藍光發光二極體下3到10小時或5小時之量。在某些實施例裡,在暴露於非均相材料之後降解為乙醛初始值的至少50%、60%、70%、80%、90%或100%。 One of ordinary skill in the art recognizes methods for determining whether a heterogeneous material can decompose a volatile organic compound. An example of determining whether the heterogeneous material decomposes a volatile organic compound can be evaluated by measuring the degradation of the organic compound under electromagnetic radiation such as visible light. In one embodiment, determining the percentage of acetaldehyde degradation to reduction or initial degradation is an option to determine the decomposition of volatile organic compounds; for example, ranging from 0% to 90% over time; or 270 mW to visible light. /cm2 power of 455 nm blue light emitting diode under 3 to 10 hours or 5 hours. In certain embodiments, the degradation is at least 50%, 60%, 70%, 80%, 90%, or 100% of the initial value of acetaldehyde after exposure to the heterogeneous material.

本領域普通技術人員辨認決定是否非均相材料使食物添加劑或染劑變色的方法。判定食物添加染劑的變色之一種例子可為藉由食物添加染劑隨著時間之減少或是初始量的百分比。在一個實施例中,食物添加可為自然的花青素食品添加劑染料或是FDC食物添加染劑。在某些實施例裡,食物染劑添加劑的變色在受到具45mW/cm2功率之於455奈米之藍色發光二極體5小時之後可從0%至60%。在某些實施例中,在暴露於非均相材料之後,該降解為天然花青素食品添加劑染劑之初始量的至少25%、30%、40%、50%及/或60%。 One of ordinary skill in the art recognizes methods for determining whether a heterogeneous material discolors a food additive or dye. An example of determining the discoloration of a food additive may be a reduction in the amount of dye added by food over time or a percentage of the initial amount. In one embodiment, the food addition may be a natural anthocyanin food additive dye or an FDC food additive. In certain embodiments, the discoloration of the food dye additive can range from 0% to 60% after 5 hours of exposure to a blue light emitting diode having a power of 45 mW/cm2 to 455 nm. In certain embodiments, the degradation is at least 25%, 30%, 40%, 50%, and/or 60% of the initial amount of the natural anthocyanin food additive dye after exposure to the heterogeneous material.

本領域普通技術人員辨認決定是否非均相材料隨著時間維持活性的方法,比如說非均相材料的耐久性。在某些實施例裡,在受到具45mW/cm2功率之於455nm之藍色發光二極體5小時後,該食物染劑添加的變色會從0%降低至60%。舉例來說, 在某些實施例中,抗菌活性在暴露於相對濕度85%和攝氏85度之下會保留至少7天,示例性但非受限性的實施例如下: One of ordinary skill in the art recognizes methods for determining whether a heterogeneous material maintains activity over time, such as the durability of a heterogeneous material. In some embodiments, the color change added by the food dye is reduced from 0% to 60% after 5 hours of exposure to a blue light emitting diode having a power of 45 mW/cm2 at 455 nm. for example, In certain embodiments, the antimicrobial activity will remain for at least 7 days after exposure to 85% relative humidity and 85 degrees Celsius, an exemplary but non-limiting embodiment such as:

實施例1:一非均相材料包含:p型半導體,p型半導體包含第一金屬氧化化合物和第二金屬氧化化合物,其中該第一氧化化合物和第二氧化化合物具有相同金屬之不同的氧化態,且其中p型半導體具有p型價帶;以及n型半導體,n型半導體具有深於p型價帶之n型價帶,其中n型半導體與p型半導體離子電荷連通。 Embodiment 1: A heterogeneous material comprises: a p-type semiconductor comprising a first metal oxidizing compound and a second metal oxidizing compound, wherein the first oxidizing compound and the second oxidizing compound have different oxidation states of the same metal And wherein the p-type semiconductor has a p-type valence band; and the n-type semiconductor, the n-type semiconductor has an n-type valence band deeper than the p-type valence band, wherein the n-type semiconductor is in charge communication with the p-type semiconductor ion.

實施例2:如實施例1之非均相材料,更進一步包含貴金屬與第一金屬氧化化合物和第二金屬氧化化合物離子電荷連通。 Embodiment 2: The heterogeneous material of Embodiment 1, further comprising a noble metal in charge communication with the first metal oxidizing compound and the second metal oxidizing compound ion.

實施例3:如實施例2之非均相材料,其中貴金屬為銠、釕、鈀、銀、鋨、鉑或金。 Embodiment 3: The heterogeneous material of Embodiment 2, wherein the noble metal is ruthenium, rhodium, palladium, silver, rhodium, platinum or gold.

實施例4:如實施例2或3之非均相材料,其中貴金屬負載於n型半導體上。 Embodiment 4: The heterogeneous material of Embodiment 2 or 3, wherein the precious metal is supported on the n-type semiconductor.

實施例5:如實施例1、2、3、或4之非均相材料,更進一步包含一第二n型半導體,其中至少有一部分的第二n型半導體與p型半導體為離子電荷隔離。 Embodiment 5: The heterogeneous material of Embodiment 1, 2, 3, or 4, further comprising a second n-type semiconductor, wherein at least a portion of the second n-type semiconductor is ionically isolated from the p-type semiconductor.

實施例6:如實施例5之非均相材料,其中第二n型半導體包含鈰氧化物。 Embodiment 6: The heterogeneous material of Embodiment 5, wherein the second n-type semiconductor comprises a cerium oxide.

實施例7:如實施例6之非均相材料,其中鈰氧化物為CeO2Embodiment 7: The heterogeneous material of Embodiment 6, wherein the cerium oxide is CeO 2 .

實施例8:如實施例5之非均相材料,其中第二n型半導體包含複數相TiO2Embodiment 8: The heterogeneous material of Embodiment 5, wherein the second n-type semiconductor comprises a complex phase TiO 2 .

實施例9:如實施例1、2、3、4、5、6、7或8之非均相材料,其中第一金屬氧化化合物包含銅(I)而第二金屬氧化化合物包含銅(II);第一金屬氧化化合物包含鈷(II)而第二金屬氧化化合物包含鈷(III);第一金屬氧化化合物包含錳(II)和第二金屬氧化化合物包含錳(III);第一金屬氧化化合物包含鐵(II)和第二金屬氧化化合物包含鐵(III),或第一金屬氧化化合物包含銥(III)而該第二金屬氧化化合物包含銥(IV)。 Embodiment 9: The heterogeneous material of Embodiment 1, 2, 3, 4, 5, 6, 7, or 8, wherein the first metal oxide compound comprises copper (I) and the second metal oxide compound comprises copper (II) The first metal oxidizing compound comprises cobalt (II) and the second metal oxidizing compound comprises cobalt (III); the first metal oxidizing compound comprises manganese (II) and the second metal oxidizing compound comprises manganese (III); the first metal oxidizing compound The iron-containing (II) and second metal oxidizing compound comprise iron (III), or the first metal oxidizing compound comprises cerium (III) and the second metal oxidizing compound comprises cerium (IV).

實施例10:如實施例1、2、3、4、5、6、7、8或9之非均相材料,其中p型半導體被負載到n型半導體之上。 Embodiment 10: The heterogeneous material of Embodiment 1, 2, 3, 4, 5, 6, 7, 8, or 9, wherein the p-type semiconductor is loaded over the n-type semiconductor.

實施例11:如實施例1、2、3、4、5、6、7、8或9之非均相材料,其中p型半導體大致均勻散佈於n型半導體之上。 Embodiment 11: The heterogeneous material of Embodiment 1, 2, 3, 4, 5, 6, 7, 8, or 9, wherein the p-type semiconductor is substantially uniformly dispersed over the n-type semiconductor.

實施例12:如實施例1、2、3、4、5、6、7、8、9、10或11之非均相材料,其中p型半導體為具有100奈米或小於100奈米的粒徑之顆粒形式。 Embodiment 12: The heterogeneous material of Embodiment 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11, wherein the p-type semiconductor is a pellet having 100 nm or less The particle form of the diameter.

實施例13:如實施例9之非均相材料,其中p型半導體包含銅(I)和銅(II)。 Embodiment 13: The heterogeneous material of Embodiment 9, wherein the p-type semiconductor comprises copper (I) and copper (II).

實施例14:如實施例13之非均相材料,其中p型半導體包含CuxO。 Embodiment 14: The heterogeneous material of Embodiment 13, wherein the p-type semiconductor comprises Cu x O.

實施例15:如實施例14之非均相材料,其中CuxO係化學價受控的(chemically valence controlled)。 Embodiment 15: The heterogeneous material of Embodiment 14, wherein the CuxO is chemically valence controlled.

實施例16:如實施例9之非均相材料,其中銅(I):銅(II) 的比例介於10:90至30:70之間。 Embodiment 16: A heterogeneous material as in Example 9, wherein copper (I): copper (II) The ratio is between 10:90 and 30:70.

實施例17:如實施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16之非均相材料,其中p型半導體為非均相材料的0.001至10重量百分比,且n型半導體為非均相材料的90至99.999重量百分比。 Embodiment 17: Heterogeneous material as in Embodiment 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16, wherein the p-type semiconductor is non- 0.001 to 10 weight percent of the homogeneous material, and the n-type semiconductor is 90 to 99.999 weight percent of the heterogeneous material.

實施例18:如實施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17之非均相材料,其中n型半導體是鈰、鎢、鉭、錫、鋅、鍶、鋯、鋇、銦、或鋁的氧化物。 Embodiment 18: Heterogeneous material as in Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, wherein the n-type semiconductor It is an oxide of bismuth, tungsten, bismuth, tin, zinc, antimony, zirconium, hafnium, indium, or aluminum.

實施例19:如實施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17之非均相材料,其中n型半導體包含Sn-Ti(O,C,N)2、MgTi2O5、CeO2、KTaO3、Ta2O5、SnO2、WO3、ZnO、SrTiO3、BaTiO3、ZrTiO4、In2TiO5、Al2TiO5或LiCa2Zn2V3O12Embodiment 19: Heterogeneous material as in Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, wherein the n-type semiconductor Containing Sn-Ti(O,C,N) 2 , MgTi 2 O 5 , CeO 2 , KTaO 3 , Ta 2 O 5 , SnO 2 , WO 3 , ZnO, SrTiO 3 , BaTiO 3 , ZrTiO 4 , In 2 TiO 5 , Al 2 TiO 5 or LiCa 2 Zn 2 V 3 O 12 .

實施例20:如實施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17之非均相材料,其中該n型半導體為Al2-xInxTiO5,其中0<x<2。 Embodiment 20: Heterogeneous material as in Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, wherein the n-type The semiconductor is Al 2-x In x TiO 5 , where 0 < x < 2.

實施例21:如實施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17之非均相材料,其中n型半導體為Zr1-yCeyTiO4,其中0<y<1。 Embodiment 21: Heterogeneous material as in Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, wherein the n-type semiconductor Is Zr 1-y Ce y TiO 4 , where 0 < y < 1.

實施例22:如實施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17之非均相材料,其中n型半導體係具有透過摻雜而調控的價帶之氧化鈦。 Embodiment 22: Heterogeneous material as in Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, wherein the n-type semiconductor It is a titanium oxide having a valence band regulated by doping.

實施例23:如實施例1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17之非均相材料,其中n型半導體 係為以氮、碳或兩者摻雜的氧化鈦。 Embodiment 23: Heterogeneous material as in Embodiment 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17, wherein the n-type semiconductor It is titanium oxide doped with nitrogen, carbon or both.

實施例24:如實施例22之非均相材料,其中n型半導體為氧化鈦,此氧化包含一化合物以化學式(Ti1-rMr)(O2-s-tCsNt)表示,其中:M表示錫、鎳、鍶、鋇、鐵、鉍、釩、鉬、鎢、鋅、銅或其組合;r從0至0.25;s從0.001至0.1;且t從0.001至0.1。 Embodiment 24: The heterogeneous material of Embodiment 22, wherein the n-type semiconductor is titanium oxide, the oxidation Containing a compound represented by the chemical formula (Ti 1-r M r )(O 2-st C s N t ), wherein: M represents tin, nickel, ruthenium, osmium, iron, ruthenium, vanadium, molybdenum, tungsten, zinc, copper Or a combination thereof; r from 0 to 0.25; s from 0.001 to 0.1; and t from 0.001 to 0.1.

實施例25:如實施例24之非均相材料,包含(Ti0.99Sn0.01)(O2-s-tCsNt)、(Ti0.97Sn0.03)(O2-s-tCsNt)、(Ti0.95Sn0.05)(O2-s-tCsNt)、(Ti0.90Sn0.10)(O2-s-tCsNt)、(Ti0.85Sn0.15)(O2-s-tCsNt)、(Ti0.985Ni0.015)(O2-s-tCsNt)、(Ti0.98Ni0.02)(O2-s-tCsNt)、(Ti0.97Ni0.03)(O2-s-tCsNt)、(Ti0.99Sr0.01)(O2-s-tCsNt)、(Ti0.97Sr0.03)(O2-s-tCsNt)、(Ti0.95Sr0.05)(O2-s-tCsNt)、(Ti0.97Ba0.03)(O2-s-tCsNt)、(Ti0.95Ba0.05)(O2-s-tCsNt)、(Ti0.94Sn0.05Fe0.01)(O2-s-tCsNt)、(Ti0.94Sn0.05Ni0.01)(O2-s-tCsNt)、(Ti0.99Fe0.01)(O2-s-tCsNt)、(Ti0.95Zn0.05)(O2-s-tCsNt)、(Ti0.77Sn0.15Cu0.08)(O2-s-tCsNt)、(Ti0.85Zn0.15)(O2-s-tCsNt)、(Ti0.90Bi0.10)(O2-s-tCsNt)、(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、(Ti0.970V0.03)(O2-s-tCsNt)、(Ti0.997MO0.003)(O2-s-tCsNt)、(Ti0.984MO0.016)(O2-s-tCsNt)、(Ti0.957MO0.043)(O2-s-tCsNt)、(Ti0.97W0.03)(O2-s-tCsNt)、(Ti0.95W0.05)(O2-s-tCsNt)、(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、或(Ti0.970V0.03)(O2-s-tCsNt)。 Embodiment 25: The heterogeneous material as in Example 24, comprising (Ti 0.99 Sn 0.01 ) (O 2-st C s N t ), (Ti 0.97 Sn 0.03 ) (O 2-st C s N t ), ( Ti 0.95 Sn 0.05 )(O 2-st C s N t ), (Ti 0.90 Sn 0.10 )(O 2-st C s N t ), (Ti 0.85 Sn 0.15 )(O 2-st C s N t ), (Ti 0.985 Ni 0.015 )(O 2-st C s N t ), (Ti 0.98 Ni 0.02 )(O 2-st C s N t ), (Ti 0.97 Ni 0.03 )(O 2-st C s N t ) (Ti 0.99 Sr 0.01 )(O 2-st C s N t ), (Ti 0.97 Sr 0.03 )(O 2-st C s N t ), (Ti 0.95 Sr 0.05 )(O 2-st C s N t ), (Ti 0.97 Ba 0.03 ) (O 2-st C s N t ), (Ti 0.95 Ba 0.05 ) (O 2-st C s N t ), (Ti 0.94 Sn 0.05 Fe 0.01 ) (O 2-st C s N t ), (Ti 0.94 Sn 0.05 Ni 0.01 )(O 2-st C s N t ), (Ti 0.99 Fe 0.01 )(O 2-st C s N t ), (Ti 0.95 Zn 0.05 )(O 2 -st C s N t ), (Ti 0.77 Sn 0.15 Cu 0.08 ) (O 2-st C s N t ), (Ti 0.85 Zn 0.15 ) (O 2-st C s N t ), (Ti 0.90 Bi 0.10 ) (O 2-st C s N t ), (Ti 0.996 V 0.004 ) (O 2-st C s N t ), (Ti 0.984 V 0.016 ) (O 2-st C s N t ), (Ti 0.970 V 0.03 (O 2-st C s N t ), (Ti 0.997 MO 0.003 ) (O 2-st C s N t ), (Ti 0.984 MO 0.016 )(O 2-st C s N t ), (Ti 0.957 MO 0.043 )(O 2-st C s N t ), (Ti 0.97 W 0.03 )(O 2-st C s N t ), ( Ti 0.95 W 0.05 )(O 2-st C s N t ), (Ti 0.996 V 0.004 )(O 2-st C s N t ), (Ti 0.984 V 0.016 )(O 2-st C s N t ), Or (Ti 0.970 V 0.03 ) (O 2-st C s N t ).

實施例26:如實施例16之非均相材料,其中n型半導體包含(Ti1-rMr)(O2-s-tCsNt),其中:M為錫;r為從0至0.25;s為從0.001至0.1;且t為從0.001至0.1。 Embodiment 26: The heterogeneous material of Embodiment 16, wherein the n-type semiconductor comprises (Ti 1-r M r )(O 2-st C s N t ), wherein: M is tin; r is from 0 to 0.25 ;s is from 0.001 to 0.1; and t is from 0.001 to 0.1.

實施例27:如實施例26之非均相材料,其中r大於0。 Embodiment 27. A heterogeneous material as in Example 26, wherein r is greater than zero.

實施例28:如實施例26之非均相材料,其中r為0,且半導體包含一金紅石相和一銳鈦礦相。 Embodiment 28: The heterogeneous material of Embodiment 26, wherein r is 0, and the semiconductor comprises a rutile phase and an anatase phase.

實施例29:如實施例16之非均相材料,其中n型半導體為錫氧化物。 Embodiment 29. The heterogeneous material of Embodiment 16, wherein the n-type semiconductor is tin oxide.

實施例30:一種分解化學複合物的方法包括在有光的存在下暴露化學化合物於一光觸媒,此光觸媒包含實施例1至29之任一均勻相材料。 Embodiment 30: A method of decomposing a chemical composite comprising exposing a chemical compound to a photocatalyst in the presence of light, the photocatalyst comprising any of the homogeneous phase materials of Examples 1 to 29.

實施例31:如實施例30之方法,其中化學化合物為一污染物。 Embodiment 31: The method of Embodiment 30 wherein the chemical compound is a contaminant.

實施例32:一種殺死微生物的方法,此方法包含在有光的存在下將微生物暴露於包含實施例1至29之任一均勻相材料之光觸媒。 Embodiment 32: A method of killing a microorganism, the method comprising exposing the microorganism to a photocatalyst comprising the homogeneous phase material of any of Embodiments 1 to 29 in the presence of light.

範例1:合成 Example 1: Synthesis 範例1(a),合成n型半導體(Ex-1) Example 1 (a), Synthesis of n-type semiconductors (Ex-1)

Ti(CNO)2:Sn(Ex-1):3.78克的2-乙基己酸錫(II)(Tin(II)2-ethylhexanoate)(又稱錫(II)-異辛酸(tin(II)octoate)和/或辛酸亞錫(stannous octoate))(斯百全化學公司,加迪納,加州,美國)(Spectrum Chemicals,Gardena,CA,USA),30毫升50重量百分比的鈦(IV)雙(銨乳酸根合)二氫氧化物(Titanium(IV)bis(ammonium lactato)dihydroxide)溶液(乳酸(titanium lactate)(Tyzor LA))(西格瑪奧瑞奇集團,聖路易,密蘇里,美國)(Sigma Aldrich,St.Louis,MO,USA)和15克硝酸銨(NH4NO3)(西格瑪奧瑞奇集團,聖路易,密蘇里,美國)一起溶於25毫升的逆滲透(RO)純化水中,然後加熱至攝氏150度並攪拌20分鐘。生成混合物接著再於大氣環境(室溫)和大氣壓力條件下在預熱的馬弗爐裡於攝氏350度加熱40分鐘。生成粉末放置在預熱的馬弗爐裡並接著於環境條件下在攝氏475度退火40分鐘。 Ti(CNO) 2 :Sn(Ex-1): 3.78 g of tin(II) 2-ethylhexanoate (also known as tin(II)-isooctanoic acid (tin(II)) Octoate) and/or stannous octoate (Sp. Chemical, Inc., Gardiner, CA, USA) (Spectrum Chemicals, Gardena, CA, USA), 30 ml of 50 weight percent titanium (IV) double (Ammonium lactate) dihydrate (Titanium (IV) bis (ammonium lactato) dihydroxide) solution (lactic acid (titanium lactate) (Tyzor LA)) (Sigma Sigma Group, St. Louis, Missouri, USA) (Sigma Aldrich, St. Louis, MO, USA) and 15 grams of ammonium nitrate (NH 4 NO 3 ) (Sigma) The Qi Group, St. Louis, Missouri, USA) was dissolved in 25 ml of reverse osmosis (RO) purified water, then heated to 150 ° C and stirred for 20 minutes. The resulting mixture was then heated in a preheated muffle furnace at 350 degrees Celsius for 40 minutes under atmospheric conditions (room temperature) and atmospheric pressure. The resulting powder was placed in a preheated muffle furnace and then annealed at 475 degrees Celsius for 40 minutes under ambient conditions.

範例1(b),負載 Example 1(b), load

於水浴中將燃燒合成之Ti(O,C,N)2:Sn(6克)與6M的HCl(60毫升)混合在攝氏90度下3小時並同時攪拌。該混合物接著降溫至室溫,以0.2微米濾膜過濾紙過濾,以100至150毫升之去離子水(DI)洗滌,並最後在室溫下通宵乾燥10至15小時。 The combusted synthetic Ti(O,C,N) 2 :Sn (6 g) was mixed with 6 M HCl (60 ml) in a water bath at 90 ° C for 3 hours while stirring. The mixture was then cooled to room temperature, filtered through a 0.2 micron filter paper, washed with 100 to 150 milliliters of deionized water (DI), and finally dried overnight at room temperature for 10 to 15 hours.

用以處理Ti(O,C,N)2:Sn(1克)的銅的重量比重為0.01。10毫升的CuCl2.2H2O(26.8毫克)之水溶液和1克處理過的Ti(O,C,N)2:Sn在攝氏90度一同攪拌1小時。接著,於攝氏90度下將含有NaOH(50毫克)和葡萄糖(250毫克)的水溶液1.5毫升加入該反應混合物同時攪拌。加入葡萄糖和NaOH之水溶液之後,該混合物要再攪拌1小時,接著降溫至室溫,隨後以0.2微米濾膜過濾,以100至150毫升的去離子水洗滌並最後在烘箱裡以攝 氏110度通宵乾燥(10至15小時)。 The weight of copper used to treat Ti(O,C,N) 2 :Sn (1 gram) is 0.01. 10 ml of an aqueous solution of CuCl 2 .2H 2 O (26.8 mg) and 1 gram of treated Ti (O) , C, N) 2 : Sn was stirred at 90 ° C for 1 hour. Next, 1.5 ml of an aqueous solution containing NaOH (50 mg) and glucose (250 mg) was added to the reaction mixture at 90 ° C while stirring. After the addition of an aqueous solution of glucose and NaOH, the mixture was stirred for an additional hour, then cooled to room temperature, then filtered through a 0.2 micron filter, washed with 100 to 150 ml of deionized water and finally passed through an oven at 110 degrees Celsius. Dry (10 to 15 hours).

Ex-1之CuO:Cu2O重量比值被決定為0.789:0.211。經由比較,根據邱等人,美國化學學會奈米期刊,卷6,頁次1609-1618之所描述程序所獲得之CuxO/TiO2奈米複合物,具有CuO:Cu2O的重量比例為0.169:0.831。 The weight ratio of CuO:Cu 2 O of Ex-1 was determined to be 0.789:0.211. By comparison, the CuxO/TiO2 nanocomposite obtained according to the procedure described by Qiu et al., American Society of Chemistry, Nano-Journal, Vol. 6, No. 1609-1618, has a weight ratio of CuO:Cu 2 O of 0.169: 0.831.

範例1(b)’,比較範例0(CE-0) Example 1(b)', Comparative Example 0 (CE-0)

藉由手使用研缽和杵在5至10毫升的甲醇裡物理上混合總重為0.25wt.% CuO+0.125wt.% Cu2O之銅與Sn-Ti(OCN)2光觸媒。該混合動作要持續至甲醇完全蒸發為止。 Copper and Sn-Ti(OCN) 2 photocatalysts having a total weight of 0.25 wt.% CuO + 0.125 wt.% Cu 2 O were physically mixed by hand using a mortar and pestle in 5 to 10 ml of methanol. This mixing action continues until the methanol has completely evaporated.

範例1(c),比較範例1(CE-1) Example 1 (c), Comparative Example 1 (CE-1)

CE-1(Ti(CNO)2:Sn)以類似範例1(a)的程序製備,除了並無執行負載CuxO(也就是只有步驟A而已)以外,結果完成無負載的Ti(CNO)2:Sn(無CuxO)。 CE-1 (Ti(CNO) 2 :Sn) was prepared in a similar manner to the procedure of Example 1 (a) except that the load CuxO was not performed (ie, only step A), and the result was completed without load Ti(CNO) 2 : Sn (no Cu x O).

範例1(d),比較範例2(Ex-1A) Example 1 (d), Comparative Example 2 (Ex-1A)

Ex-1A以和上述範例1(b)相似的方法製備,除了是使用25毫克而非50毫克之NaOH和125毫克而非250毫克之葡萄糖以外。 Ex-1A was prepared in a similar manner to Example 1 (b) above, except that 25 mg instead of 50 mg NaOH and 125 mg instead of 250 mg glucose were used.

範例1(d)’,比較範例2’(Ex-1B) Example 1(d)', Comparative Example 2' (Ex-1B)

Ex-1B以和上述範例1(b)相似的方法製備,除了對處理Ti(O,C,N)2:Sn(1g)的銅的重量比值為0.005以外。 Ex-1B was prepared in a similar manner to the above Example 1 (b) except that the weight ratio of copper to the treated Ti(O, C, N) 2 :Sn (1 g) was 0.005.

範例1(e),比較範例3(Ex-2和Ex-3) Example 1 (e), Comparative Example 3 (Ex-2 and Ex-3)

Ex-2(電漿WO3)和Ex-3(全球鎢粉公司(GTP)所售WO3) 以和上述Ex-1相似的方法製備,除了使用等莫耳量的電漿WO3或市售GTP-WO3而非使用Ti(O,C,N)2:Sn光觸媒;NaOH並無加在反應混合物且葡萄糖的量是125毫克而非250毫克以外。電漿WO3以如同申請於2013年1月10日之美國專利申請號13/738,243中所描述之相似的製備程序被製造,此美國專利申請案關於此其教示係以引用的方式併入其中。GTP-WO3是從全球鎢粉公司取得(托旺達,賓州,美國)(Towanda,PA,USA)且並無附加的純化或退火。 Ex-2 (plasma WO 3 ) and Ex-3 (WO 3 sold by Global Tungsten Powder Company (GTP)) were prepared in a similar manner to Ex-1 above, except that a plasma of WO 3 or the mass was used. GTP-WO 3 was sold instead of Ti(O,C,N) 2 :Sn photocatalyst; NaOH was not added to the reaction mixture and the amount of glucose was 125 mg instead of 250 mg. The plasmonics WO 3 is manufactured in a similar preparation procedure as described in U.S. Patent Application Serial No. 13/738,243, filed on Jan. 10, 2013, which is incorporated herein by reference. . GTP-WO 3 was obtained from Global Tungsten Powder Company (Twanda, Pennsylvania, USA) (Towanda, PA, USA) with no additional purification or annealing.

0.159毫升的1莫耳的雙氫氧化乙二胺銅(II)(Bis(Ethylenediamine)copper(II)hydroxid)溶液和10毫升的逆滲透水混合並在攝氏90度下和1克WO3攪拌1小時。接著,在攝氏90度攪拌時加入葡萄糖(125毫克)於該混合液裡。在加入葡萄糖水溶液之後,該混合液要再攪拌1小時,接著冷卻至室溫,接著以0.2微米濾膜過濾之,用100毫升至150毫升去離子水洗滌最後在空氣烘箱以攝氏110度通宵乾燥(10小時至15小時)。 0.159 ml of a 1 molar solution of Bis(Ethylenediamine)copper(II)hydroxidate and 10 ml of reverse osmosis water and mix at 90 ° C and 1 g of WO 3 hour. Next, glucose (125 mg) was added to the mixture while stirring at 90 °C. After the addition of the aqueous dextrose solution, the mixture was stirred for an additional hour, then cooled to room temperature, then filtered through a 0.2 micron filter, washed with 100 ml to 150 ml of deionized water and finally dried overnight in an air oven at 110 degrees Celsius. (10 hours to 15 hours).

範例1(f),比較範例4(Ex-4,Ex-5,Ex-6,CE-2) Example 1 (f), Comparative Example 4 (Ex-4, Ex-5, Ex-6, CE-2)

Ex-4,Ex-5,Ex-6和CE-2以和Ex-1相似的方法製備,除了使用相同莫耳量的CeO2而非Ti(O,C,N)2:Sn。另外,負載條件如下列所述修改:Ex-4:NaOH(25毫克)和葡萄糖(125毫克)之水溶液;Ex-5:無葡萄糖;Ex-6:葡萄糖(62.5毫克)和NaOH(25毫克)之濃度。 Ex-4, Ex-5, Ex-6 and CE-2 were prepared in a similar manner to Ex-1 except that the same molar amount of CeO2 was used instead of Ti(O, C, N) 2 :Sn. In addition, the loading conditions were modified as follows: Ex-4: aqueous solution of NaOH (25 mg) and glucose (125 mg); Ex-5: no glucose; Ex-6: glucose (62.5 mg) and NaOH (25 mg) Concentration.

CE-2和CE-1相似,除了CE-2是CeO2的等效卸載莫耳量(equivalent unloaded molar amount)(比Ti(O,C,N)2:Sn)(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)。CeO2從供應商所接受 的狀態來使用,並無額外純化或退火。 CE-2 is similar to CE-1 except that CE-2 is the equivalent unloaded molar amount of CeO 2 (than Ti(O, C, N) 2 :Sn) (Sigma Sigma Group, St. Louis, Missouri, USA). CeO 2 is used from a state accepted by the supplier without additional purification or annealing.

範例1(g),比較範例5(Ex-7,CE-3) Example 1 (g), Comparative Example 5 (Ex-7, CE-3)

Ex-7以同上述Ex-1相似之過程製備,除了使用相同莫耳量的絕緣劑Al2O3而非Ti(O,C,N)2:Sn,使用25毫克NaOH及使用125毫克葡萄糖。CuxO負載相對於Al2O3為重量百分比1%。CE-3相似CE-1,除了CE-3是Al2O3的等效卸載莫耳量(比Ti(O,C,N)2:Sn)。Al2O3從供應商所接受的狀態來使用,並無額外純化或退火。 Ex-7 was prepared in a similar procedure to Ex-1 above, except that the same molar amount of insulating agent Al 2 O 3 was used instead of Ti(O,C,N) 2 :Sn, using 25 mg of NaOH and using 125 mg of glucose. . The Cu x O loading was 1% by weight relative to Al 2 O 3 . CE-3 is similar to CE-1 except that CE-3 is the equivalent unloading molar amount of Al 2 O 3 (than Ti(O, C, N) 2 :Sn). Al 2 O 3 is used from a state accepted by the supplier without additional purification or annealing.

範例1(h),比較範例6(Ex-8,CE-4) Example 1 (h), Comparative Example 6 (Ex-8, CE-4)

Ex-8用和上述Ex-1相似的方法製備,除了使用相同n型UV活性光觸媒的莫耳量而非Ti(O,C,N)2:Sn;使用25毫克之NaOH和125毫克之葡萄糖以外。CuxO負載為相對於Ta2O5之1重量百分比的銅。CE-4和CE-1類似,除了CE-4為Ta2O5之等效卸載莫耳量(比上Ti(O,C,N)2:Sn)(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)。Ta2O5以從供應商所接受的狀態來使用,並無額外純化或退火。 Ex-8 was prepared in a similar manner to Ex-1 above, except that the same n-type UV-active photocatalyst was used instead of Ti(O, C, N) 2 :Sn; 25 mg of NaOH and 125 mg of glucose were used. other than. The Cu x O loading is 1 weight percent copper relative to Ta 2 O 5 . CE-4 is similar to CE-1 except that CE-4 is the equivalent unloading molar amount of Ta 2 O 5 (than Ti(O, C, N) 2 :Sn) (Sigma Sigma Group, St. Louis, Missouri, USA). Ta 2 O 5 is used in a state acceptable from the supplier without additional purification or annealing.

範例1(i),比較範例7(Ex-9,Ex-10,Ex-11,Ex19,Ex-20,CE-4A) Example 1 (i), Comparative Example 7 (Ex-9, Ex-10, Ex-11, Ex19, Ex-20, CE-4A)

Ex-9以和上述Ex-1相同的方法來製備,除了使用等量的n型UV活性光觸媒SnO2,而非Ti(O,C,N)2:Sn以外。CuxO負載為相對於SnO2之1重量百分比的銅。奈米尺寸的SnO2(美國國家奈米材料研究院,休士頓,德州,美國)(US Research Nanomaterial,Houston,TX,USA)在攝氏900度在一箱式爐裡大氣壓下退火1小時。然後如同Ex-1將其浸泡在6M HCl水溶液。在 Ex-10,NaOH的量為25毫克且所使用的葡萄糖的量為125毫克。在Ex-11,NaOH之量為75毫克且葡萄糖的量為375毫克。在Ex-19和Ex-20,退火之SnO2並無像Ex-1,Ex-10,Ex-11所描述般浸泡在6M HCl水溶液中。在Ex-19,NaOH之量為25毫克且所使用之葡萄糖之量為3毫克。在Ex-20,NaOH之量為25毫克且葡萄糖之量為10毫克。CE-4A和CE-1類似,除了CE-4A是SnO2之等效卸載莫耳量(比上Ti(O,C,N)2:Sn)。有著不同量的NaOH和葡萄糖而負載相對於SnO2之固定量1重量百分比的銅,結果會導致不同外觀顏色。 Ex-9 was prepared in the same manner as Ex-1 described above except that an equivalent amount of n-type UV-active photocatalyst SnO 2 was used instead of Ti(O, C, N) 2 :Sn. The Cu x O loading is 1 weight percent copper relative to SnO 2 . Nano-sized SnO 2 (National Nanomaterials Research Institute, Houston, TX, USA) was annealed at 900 ° C for one hour at atmospheric pressure in a box furnace. It was then immersed in 6 M aqueous HCl as Ex-1. At Ex-10, the amount of NaOH was 25 mg and the amount of glucose used was 125 mg. In Ex-11, the amount of NaOH was 75 mg and the amount of glucose was 375 mg. In Ex-19 and Ex-20, the annealed SnO 2 was not soaked in 6 M aqueous HCl as described in Ex-1, Ex-10, Ex-11. In Ex-19, the amount of NaOH was 25 mg and the amount of glucose used was 3 mg. In Ex-20, the amount of NaOH is 25 mg and the amount of glucose is 10 mg. CE-4A is similar to CE-1 except that CE-4A is the equivalent unloading molar amount of SnO 2 (than Ti(O, C, N) 2 : Sn). There are different amounts of NaOH and glucose and a fixed amount of 1 weight percent copper relative to SnO 2 is loaded, resulting in a different appearance color.

範例1(j),比較範例8(Ex-12,CE-5,Ex-13) Example 1 (j), Comparative Example 8 (Ex-12, CE-5, Ex-13)

Ex-12以和上述Ex-1B之相同方法製備。在金紅石相TiO2(日本帝國化工株式會社,大阪,日本)(Tayca,Inc.Osaka,JP)上執行負載Cux,除了使用25毫克而非50毫克之NaOH以及125毫克而非250毫克之葡萄糖以外。 Ex-12 was prepared in the same manner as Ex-1B above. Loading Cu x on rutile phase TiO 2 (Japan Imperial Chemical Co., Ltd., Osaka, Japan) (Tayca, Inc. Osaka, JP), except using 25 mg instead of 50 mg NaOH and 125 mg instead of 250 mg Other than glucose.

CE-5和CE-1類似,除了CE-5是金紅石相TiO2(日本帝國化工株式會社,大阪,日本)之等效卸載莫耳量(比上Ti(O,C,N)2:Sn)。金紅石相TiO2以從供應商所接受的狀態來使用並無額外純化或鍛鍊。 CE-5 is similar to CE-1 except that CE-5 is the equivalent unloading molar amount of rutile phase TiO 2 (Japan Imperial Chemical Co., Ltd., Osaka, Japan) (than Ti(O, C, N) 2 : Sn). The rutile phase TiO 2 is used in a state acceptable from the supplier without additional purification or exercise.

Ex-13,10克的市售WO3(全球鎢粉公司,西爾瓦尼亞,賓州,美國)(Global Tungsten Powder,Sylvania,PA,USA)在攝氏400度下退火一小時。[Pt(NH3)4]Cl2(0.181毫克,阿法埃莎,沃德山,麻州,美國)(0.181mg Alfa Aesar,Ward Hill,MA,USA)]溶於15毫升逆滲透水中並和2克退火WO3一起在室溫(RT)下攪拌2小時。接著,透過0.2微米孔徑的過濾薄膜過濾並以逆滲透水 洗滌且在攝氏120度下通宵乾燥。生成材料在大氣下以攝氏400度另外退火1小時。 Ex- 13, 10 grams of commercially available WO 3 (Global Tungsten Powder, Sylvania, PA, USA) was annealed at 400 degrees Celsius for one hour. [Pt(NH 3 ) 4 ]Cl 2 (0.181 mg, Alfa Aesar, Ward Hill, MA, USA) (0.181 mg Alfa Aesar, Ward Hill, MA, USA) was dissolved in 15 ml of reverse osmosis water and It was stirred at room temperature (RT) for 2 hours together with 2 g of the annealed WO 3 . Next, it was filtered through a 0.2 micron pore size filter membrane and washed with reverse osmosis water and dried overnight at 120 degrees Celsius. The resulting material was annealed for an additional hour at 400 degrees Celsius under the atmosphere.

範例1(k),比較範例9(Ex-13-17,CE-6) Example 1 (k), Comparative Example 9 (Ex-13-17, CE-6)

Ex-14至Ex-17以和上述相同的方式製備,除了Pt(NH3)4]Cl2及/或IrCl3/IrO2之不同量溶解於15毫升的逆滲透水以外。見表1所表示: Ex-14 to Ex-17 were prepared in the same manner as above except that different amounts of Pt(NH 3 ) 4 ]Cl 2 and/or IrCl 3 /IrO 2 were dissolved in 15 ml of reverse osmosis water. See Table 1 for:

CE-6和CE-1類似,除了CE-5為WO3(全球鎢粉公司,賓州,美國)之等效卸載莫耳量(比上Ti(O,C,N)2:Sn)。WO3用以從供應商所接受的狀態來使用,並無額外純化或鍛鍊。 CE-6 is similar to CE-1 except that CE-5 is the equivalent unloading molar amount of WO 3 (Global Tungsten Powder Company, Pennsylvania, USA) (than Ti(O, C, N) 2 : Sn). WO 3 is used in a state acceptable to the supplier without additional purification or exercise.

範例1(l),n型半導體的合成(Ex-18) Example 1 (l), Synthesis of n-type semiconductors (Ex-18)

MgTi2O5的合成:2.663克的Mg(NO3)2.6H2O(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)、5克的硝酸銨(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)、1.5克尿素(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)和10毫升的雙(乳酸銨)氫氧化鈦(Titanium(IV)bis(ammonium lactate)hydroxide)(乳酸鈦[Tyzor LA])(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)一同溶於10毫升的去離子水於250毫升之低耐熱形式燒杯。該結果混合物接著再 於大氣環境(室溫)和大氣壓條件下在預熱的馬弗爐中加熱至攝氏350度20分鐘。生成粉末放在預熱的馬弗爐中並接著在攝氏600度之室溫條件下退火30分鐘。 Synthesis of MgTi2O5: 2.663 g of Mg(NO 3 ) 2 . 6H2O (Sigma Sigma Group, St. Louis, Missouri, USA), 5 grams of ammonium nitrate (Sigma Sigma Group, St. Louis, Missouri, USA), 1.5 grams of urea (Sigma Sigma Group, Saint Louis) , Missouri, USA) and 10 ml of Titanium (IV) bis (ammonium lactate) hydroxide (Tyzor LA) (Sigma Sigma Group, St. Louis, Missouri) , USA) Dissolve in 10 ml of deionized water in a 250 ml low heat resistant beaker. The resulting mixture was then heated to 350 degrees Celsius for 20 minutes in a preheated muffle furnace under atmospheric conditions (room temperature) and atmospheric conditions. The resulting powder was placed in a preheated muffle furnace and then annealed at room temperature of 600 degrees Celsius for 30 minutes.

MgTi2O5負載CuxO:以上述範例1(b)之相似的方式使CuxO負載於MgTi2O5,除了在製備的過程中,沒有使用HCl製備的過程。所使用之NaOH的製備步驟和範例1(b)所述相似。MgTi2O5的銅比重為0.01。10毫升的CuCl2˙2H2O(26.8毫克)水溶液與1克MgTi2O5一同在攝氏90度下攪拌1小時。接著,含有NaOH(25毫克)和葡萄糖(125毫克)之1.5毫升水溶液於攝氏90度加入反應混合液並同時攪拌。加入葡萄糖和NaOH之水溶液之後,混合液再額外攪拌1小時,並在冷卻至室溫,接續以0.05微米的濾膜過濾,以100至150毫升的去離子水洗滌並以攝氏110度於烘箱乾燥約2小時。 MgTi 2 O 5 supported Cu x O: Cu x O was supported on MgTi 2 O 5 in a similar manner to the above Example 1 (b) except that during the preparation, no HCl preparation process was used. The procedure for the preparation of the NaOH used is similar to that described in Example 1 (b). The copper specific gravity of MgTi 2 O 5 was 0.01. 10 ml of an aqueous solution of CuCl 2 ̇ 2H 2 O (26.8 mg) was stirred with 1 g of MgTi 2 O 5 at 90 ° C for 1 hour. Next, a 1.5 ml aqueous solution containing NaOH (25 mg) and glucose (125 mg) was added to the reaction mixture at 90 ° C while stirring. After adding an aqueous solution of glucose and NaOH, the mixture was stirred for an additional hour and cooled to room temperature, then filtered through a 0.05 micron filter, washed with 100 to 150 ml of deionized water and dried in an oven at 110 degrees Celsius. About 2 hours.

範例1(m),(Ex-20(CuxO負載於複數相TiO2) Example 1 (m), (Ex-20 (Cu x O loaded in complex phase TiO 2 )

以和範例1(b)相似的方法將n型半導體的複數相負載於CuxO上。銅的重量比相對於複數相的n型半導體(品牌名P25的87%銳鈦礦相TiO2,13%金紅石相TiO2[贏創德固賽,紐澤西,美國][EvoniK Degussa,NJ,USA])是0.01。15毫升之CuCl2.2H2O(26.8毫克)之水溶液和1克的P25一同於攝氏90度下攪拌1小時。接著,含有NaOH(25毫克)和葡萄糖(125毫克)的1.5毫升的水溶液加入反應混合物於攝氏90度並同時攪拌。加入葡萄糖和NaOH水溶液後,該混合液再攪拌約1小時,並冷卻至室溫,後續以0.05微米濾膜過濾,以100至150毫升之去離子水洗滌,並在空氣烘箱以攝氏110度最後乾燥約2小時。 The complex phase of the n-type semiconductor was loaded on Cu x O in a similar manner to Example 1 (b). The weight ratio of copper relative to the complex phase of n-type semiconductor (brand name P25 87% anatase phase TiO 2 , 13% rutile phase TiO 2 [Evonik Degussa, New Jersey, USA] [EvoniK Degussa, NJ, USA]) is 0.015 ml of CuCl 2 . An aqueous solution of 2H2O (26.8 mg) was stirred with 1 g of P25 at 90 ° C for 1 hour. Next, a 1.5 ml aqueous solution containing NaOH (25 mg) and glucose (125 mg) was added to the reaction mixture at 90 ° C while stirring. After adding glucose and NaOH aqueous solution, the mixture was stirred for another hour and cooled to room temperature, subsequently filtered through a 0.05 micron filter, washed with 100 to 150 ml of deionized water, and at an air oven at 110 degrees Celsius. Dry for about 2 hours.

範例1(n),(CE-7) Example 1 (n), (CE-7)

比較範例CE-7使用和範例1(m)相似的方法所製備,除了藉由手於甲醇(5-10毫升)中將0.25wt.%CuO+0.125wt.%Cu2O物理性混合0.625wt% P25直到甲醇最後完全蒸發以外。 Comparative Example CE-7 was prepared using a method similar to that of Example 1 (m) except that 0.25 wt.% CuO + 0.125 wt.% Cu 2 O was physically mixed with 0.625 wt by hand in methanol (5-10 mL). % P25 until the methanol is completely evaporated at the end.

範例1(o),(Ex-19 AgVWO6) Example 1 (o), (Ex-19 AgVWO 6 )

4.12克的草酸氧釩(Vanadyl oxalate)(美國戰略礦業公司,阿肯色州,美國)(Stratcor,Inc,Arkansas,USA)、0.3克的甘胺酸(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)、0.62克的硝酸銨(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)和1.484克的偏鎢酸銨(Ammonium meta tungstate)(全球鎢粉公司,賓州,美國)一同溶於約5毫升的逆滲透純水。1克的硝酸銀(阿法埃莎,美國)加入該溶液中以得到褐色漿料於250毫升之低型燒杯,接著,再將生成混合物在大氣環境(室溫)和大氣壓力下於預熱的馬弗爐加熱至大約攝氏350度約20分鐘。所得之粉末接著放置於預熱的馬弗爐內,再接著於大氣環境下於攝氏500度退火約60分鐘,結果得到黃色粉末(Ex-19)。 4.12 grams of vanadyl oxalate (American Strategic Mining Company, Arkansas, USA) (Stratcor, Inc, Arkansas, USA), 0.3 grams of glycine (Sigma Sigma Group, St. Louis, Missouri, US), 0.62 grams of ammonium nitrate (Sigma Sigma Group, St. Louis, Missouri, USA) and 1.484 grams of Ammonium meta tungstate (Global Tungsten Powder Company, Pennsylvania, USA) are dissolved together About 5 ml of reverse osmosis pure water. One gram of silver nitrate (Alfa Aesar, USA) was added to the solution to obtain a brown slurry in a 250 ml low-profile beaker, and then the resulting mixture was preheated under atmospheric conditions (room temperature) and atmospheric pressure. The muffle is heated to approximately 350 degrees Celsius for approximately 20 minutes. The resulting powder was then placed in a preheated muffle furnace and then annealed at 500 ° C for about 60 minutes under atmospheric conditions to give a yellow powder (Ex-19).

範例1(p),(Ex-20(AgCa2Zn2V3O12)) Example 1 (p), (Ex-20 (AgCa 2 Zn 2 V 3 O 12 ))

6.19克之草酸氧釩(美國戰略礦業公司,阿肯色州,美國)、1.11克之甘胺酸(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)、1.75克之六水合硝酸鋅(zinc nitrate hexahydrate)(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)、1.39克之四水合硝酸鈣(Calcium nitrate tetrahydrate)(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)、2.49克之硝酸銨(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)一同溶於約10毫升之逆滲透(RO)純水中。0.5105 克之硝酸銀(阿法埃莎,美國)加入該溶液中以獲得褐色漿料於250毫升之低型燒杯,接著,將結果混合物在大氣環境(室溫)和大氣壓力下於預熱的馬弗爐內加熱至約攝氏350度20分鐘。該結果粉末放置在預熱的馬弗爐內,並在大氣環境下於攝氏600度退火約60分鐘,結果得到黃色粉末(Ex-20)。 6.19 grams of vanadyl oxalate (US strategic mining company, Arkansas, USA), 1.11 grams of glycine (Sigma Sigma Group, St. Louis, Missouri, USA), 1.75 grams of zinc nitrate hexahydrate (zinc nitrate hexahydrate) Sigma Oric Group, St. Louis, Missouri, USA), 1.39 grams of Calcium nitrate tetrahydrate (Sigma Sigma Group, St. Louis, Missouri, USA), 2.49 grams of ammonium nitrate (Sigma) Qiqi Group, St. Louis, Missouri, USA) is dissolved together in about 10 ml of reverse osmosis (RO) pure water. 0.5105 Silver nitrate (Alfa Aesar, USA) was added to the solution to obtain a brown slurry in a 250 ml low-profile beaker, and then the resulting mixture was placed in a preheated muffle furnace at atmospheric (room temperature) and atmospheric pressure. Heat internally to approximately 350 degrees Celsius for 20 minutes. The resulting powder was placed in a preheated muffle furnace and annealed at 600 ° C for about 60 minutes under atmospheric conditions, resulting in a yellow powder (Ex-20).

範例1(q),(Ex-21磷酸銀(Ag3PO4) Example 1 (q), (Ex-21 silver phosphate (Ag 3 PO 4 )

5克的硝酸銀(阿法埃莎,美國)於50毫升的低型燒杯中溶於10毫升的逆滲透(RO)純水中。1.128克之磷酸二氫銨(ammonium dihydrogen phosphate)(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)於另一50毫升之玻璃燒杯溶於10毫升之逆滲透(RO)純水中。硝酸銀水溶液以滴定方式加入磷酸二氫銨水溶液並同時攪拌該磷酸二氫銨溶液。此次加成期間於室溫所形成之黃色沉澱最後過濾並在攝氏110度於空氣烘箱中乾燥2小時。 Five grams of silver nitrate (Alfa Aesar, USA) was dissolved in 10 ml of reverse osmosis (RO) pure water in a 50 ml low beaker. 1.128 grams of ammonium dihydrogen phosphate (Sigma Sigma Group, St. Louis, Missouri, USA) was dissolved in 10 ml of reverse osmosis (RO) pure water in a 50 ml glass beaker. The aqueous silver nitrate solution was titrated to the aqueous solution of ammonium dihydrogen phosphate while stirring the ammonium dihydrogen phosphate solution. The yellow precipitate formed at room temperature during this addition was finally filtered and dried in an air oven at 110 °C for 2 hours.

範例2:支持光觸媒的特性 Example 2: Supporting Photocatalyst Characteristics 範例2(a),粉末X射線繞射之特性(Ex-1A、CE-1、Ex-4、CE-2、Ex-7和CE-3) Example 2(a), Characteristics of Powder X-Ray Diffraction (Ex-1A, CE-1, Ex-4, CE-2, Ex-7, and CE-3)

範例Ex-1A、CE-1、Ex-4、CE-2、Ex-7和CE-3之粉末樣品利用銅K-α輻射(X射線粉末繞射儀(Rigaku Miniflex II)[美國理學公司,伍德蘭,德州,美國])(Rigaku Miniflex II[Rigaku Americas,Woodland,TX,USA)照1°/分鐘之粉末X射線繞射來分析。X射線繞射分析Ex-1和CE-1之結果顯示於第3圖並確認銳鈦礦相TiO2之存在。同樣從X射線繞射圖樣(第3圖)可以確認Ti(O,C,N)2:Sn的銳鈦礦相即使在CuxO負載之後還是維持,因為將X射線繞射圖圖譜之結果和聯合委員會粉末繞射標準(Joint committed powder diffraction standards)來自粉末繞射標準聯合委員會[JCPDS])(新城廣場,賓州,美國)之card no.00-021-1272[anatase-TiO2](JCPDS)比較下展現基本上如銳鈦礦相圖譜(該材料的相一般為可見光觸媒之活性)相同的波峰。 Sample powder samples of Ex-1A, CE-1, Ex-4, CE-2, Ex-7, and CE-3 utilize copper K-alpha radiation (Xigma Powder Diffractometer (Rigaku Miniflex II) [American Science, Inc., Woodland, Texas, USA]) (Rigaku Miniflex II [Rigaku Americas, Woodland, TX, USA) was analyzed by powder X-ray diffraction at 1 °/min. The results of X-ray diffraction analysis of Ex-1 and CE-1 are shown in Figure 3 and confirm the presence of anatase phase TiO 2 . Also from the X-ray diffraction pattern (Fig. 3), it can be confirmed that the anatase phase of Ti(O, C, N) 2:Sn is maintained even after the Cu x O load because of the result of the X-ray diffraction pattern. And the Joint Committee's Powder Compressed Standards (JCPDS) (New Town Plaza, Pennsylvania, USA) card no.00-021-1272[anatase-TiO 2 ] JCPDS) shows the same peaks as basically the anatase phase map (the phase of the material is generally the activity of the visible light catalyst).

另外,範例Ex-4和Ex-7之粉末樣品會以和如上述Ex-1A相同之方法分析,除了使用範例Ex-4和Ex-7之等莫耳數而非範例Ex-1A之外。結果顯示於第4圖和第5圖,分別利用銅K-α輻射(X射線粉末繞射儀(Rigaku Miniflex II)[美國理學公司,伍德蘭,德州,美國])之粉末X射線繞射1°/分鐘。X射線繞射結果顯示於第4圖和第5圖並確定CuxO負載並無實質上影響各n型材料的塊材半導體相。 In addition, powder samples of the Examples Ex-4 and Ex-7 were analyzed in the same manner as Ex-1A above, except that the molar numbers of Ex-4 and Ex-7 were used instead of the Ex-1A. The results are shown in Figures 4 and 5, respectively, using powdered X-ray diffraction of copper K-alpha radiation (Xigma Powder Diffuser (Rigaku Miniflex II) [American Science, Inc., Woodland, Texas, USA]) ° / minute. The X-ray diffraction results are shown in Figures 4 and 5 and it is determined that the Cu x O loading does not substantially affect the bulk semiconductor phase of each n-type material.

範例2(b):漫反射光譜(DRS)特性 Example 2(b): Diffuse Reflectance Spectroscopy (DRS) Characteristics

Ex-1A、CE-1之粉末樣品(第6圖);Ex-4和CE-2(第7圖),Ex-7和CE-3(第8圖)一同利用漫反射光譜(DRS)分析。該結果顯示於第6圖、第7圖和第8圖,並顯示至少錫摻雜(Ex-1A)、CeO2(Ex-4)和Al2O3(Ex-7)表現會增加可見光譜(400奈米-800奈米)的吸收,而其中CE-1、CE-2和CE-3並無。因此,銳鈦礦相TiO2在X射線繞射光譜和可見光吸收光譜內被觀察到是由於銳鈦礦相確定了Ti(O,C,N)2:Sn、CeO2、和Al2O3負載於基板上。負載的CuxO在半導體的吸收邊緣中較長的波長側有吸收光譜,並且如果負載的CuxO具有CuO和Cu2O之混合體,那麼將觀察到其吸收特性分別在600奈米和800奈米之間、以及500奈米至600奈米之間,除了負載的CuxO的吸收外。 Powder samples of Ex-1A, CE-1 (Fig. 6); Ex-4 and CE-2 (Fig. 7), Ex-7 and CE-3 (Fig. 8) together using diffuse reflectance spectroscopy (DRS) analysis . The results are shown in Figures 6, 7, and 8, and show that at least tin-doped (Ex-1A), CeO 2 (Ex-4), and Al 2 O 3 (Ex-7) exhibit increased visible spectrum. (400 nm - 800 nm) absorption, and CE-1, CE-2 and CE-3 are not. Therefore, anatase phase TiO 2 was observed in the X-ray diffraction spectrum and the visible light absorption spectrum because Ti(O, C, N) 2 : Sn, CeO 2 , and Al 2 O 3 were determined due to the anatase phase. Loaded on the substrate. The supported Cu x O has an absorption spectrum on the longer wavelength side of the absorption edge of the semiconductor, and if the supported Cu x O has a mixture of CuO and Cu 2 O, the absorption characteristics thereof are observed to be 600 nm and respectively. Between 800 nm and between 500 nm and 600 nm, in addition to the absorption of Cu x O under load.

範例3、光催化的實驗設立(Ex-1A和CE-1) Example 3. Establishment of Photocatalytic Experiments (Ex-1A and CE-1)

Ex-1A(130毫克),如同本公開上述的方法來製造,加入1.04毫升之去離子水以製造為10重量百分比之固體材料於水中之塗層溶液。該結果分散劑使用超聲波均質機使之均質。玻璃基板(50毫米x75毫米)利用旋轉塗佈機(1200轉/40秒)用上述製備的生成物塗層。該塗層基板於攝氏120度加熱兩分鐘。另外一片則以用相同的方法製備,除了以範例CE-1(130毫克)取代Ex-1A之外。 Ex-1A (130 mg) was made as described in the above method of the present disclosure, and 1.04 ml of deionized water was added to make a coating solution of 10% by weight of solid material in water. As a result, the dispersant was homogenized using an ultrasonic homogenizer. The glass substrate (50 mm x 75 mm) was coated with the product prepared above using a spin coater (1200 rpm / 40 sec). The coated substrate was heated at 120 degrees Celsius for two minutes. The other was prepared in the same manner except that Ex-1A was replaced by the example CE-1 (130 mg).

旋轉塗佈之後的玻璃片藉著氙(xenon)燈(燈輸出功率為300瓦)下在加熱板上全光譜輻射下於攝氏120度加熱1小時。每片接著分別以各別5公升空氣採樣袋(Tedlar bag)在真空下密封,並接著注射3公升大氣和80毫升之3500ppm之乙醛。每個袋子用手輕微地按壓2分鐘接著放入黑暗15分鐘。該乙醛濃度透過氣相層析-火焰離子化檢測器(GC-FID)估算為在80±2ppm。每個包含樣本之空氣採樣袋放置在黑暗1小時。該面/空氣採樣袋暴露在光強度為270mW/平方公分之455奈米之藍色發光二極體下。藉由氣相層析-火焰離子化檢測器之自動注射孔,每30分鐘收集一樣本,並且剩餘的乙醛量在下個30分鐘區間估量。第9圖是繪示範例Ex-1A之VOC表現數據的圖示。圖式顯示一般當Ti(CNO)2:Sn和CuxO(範例Ex-1A)組合時,表現會比單單只有Ti(CNO)2:Sn(CE-1)還要更好。 The glass piece after spin coating was heated at 120 degrees Celsius for 1 hour under full spectrum irradiation on a hot plate by a xenon lamp (lamp output power of 300 watts). Each piece was then sealed under vacuum with a respective 5 liter air sampling bag (Tedlar bag), followed by injection of 3 liters of atmosphere and 80 ml of 3500 ppm of acetaldehyde. Each bag was gently pressed by hand for 2 minutes and then placed in the dark for 15 minutes. The acetaldehyde concentration was estimated to be 80 ± 2 ppm by a gas chromatography-flame ionization detector (GC-FID). Each air sampling bag containing the sample was placed in the dark for 1 hour. The face/air sampling bag was exposed to a 455 nm blue light emitting diode having a light intensity of 270 mW/cm 2 . The same was collected every 30 minutes by an auto-injection well of a gas chromatography-flame ionization detector, and the remaining amount of acetaldehyde was estimated over the next 30 minute interval. Fig. 9 is a diagram showing the VOC performance data of the exemplary Ex-1A. The figure shows that when Ti(CNO) 2 :Sn and Cu x O (example Ex-1A) are combined, the performance is better than Ti(CNO) 2 :Sn(CE-1) alone.

範例4、抗菌實驗 Example 4, antibacterial experiment 範例4A Example 4A

基板(1英吋X 2英吋之玻璃片)以70%的異丙醇(IPA)和100%之乙醇(EtOH)連續應用以製備並接著在空氣中乾燥。範例 Ex-1B以2毫克/毫升被散佈在濃度100%乙醇裡,接著100微升的懸浮液加入基板,並乾燥。應用過程重複五次直到達到1毫克的範例Ex-1B於基板之上。基板在室溫下乾燥。塗層過的基板放置在含有水浸濕濾紙的玻璃盤裡以保持濕潤,且玻璃間隔插入基板和該濾紙之間以分開玻璃片。 The substrate (1 inch X 2 inch glass slide) was continuously applied with 70% isopropanol (IPA) and 100% ethanol (EtOH) to prepare and then dried in air. example Ex-1B was dispersed in 100% ethanol at 2 mg/ml, and then 100 μl of the suspension was added to the substrate and dried. The application process was repeated five times until 1 mg of the sample Ex-1B was reached on the substrate. The substrate was dried at room temperature. The coated substrate was placed in a glass dish containing water-wet filter paper to keep it wet, and the glass was interposed between the substrate and the filter paper to separate the glass sheets.

大腸桿菌(ATCC 8739)劃線在含有20毫升LB(lysogeny broth/luria broth)洋菜之10公分直徑之培養皿中,並在攝氏37度下通宵培養。每個實驗中,每個單一菌落挑選並接種於3毫升之營養基,且接種之培養物以攝氏37度培養16小時以創造隔夜培養物(約109細胞/毫升)。藉由稀釋該隔夜培養物100倍,隔夜培養物之新鮮對數期的培養物可以得到並以另外5公分直徑之培養皿培養於含有LB洋菜且於攝氏37度下培養2.5小時。新鮮的培養物接著以0.85%之鹽水稀釋50倍,其給予2 x 106細胞/毫升之細胞懸浮液。50微升之細胞懸浮液被移液至每個沉積玻璃基板。滅菌過的(於70%接著以100 EtOH)塑膠濾膜(20毫米X40毫米)被放置於懸浮液之上以使其在濾膜之下均勻擴散。樣品被保存於黑暗(CuxO2-黑暗)或在藍色發光二極體燈光下照射(波長455奈米,10mW/平方公分)(CuO2-光)。在所選擇的時間點,比如30分鐘/60分鐘增量,該樣品放置於10毫升的0.85%鹽水中並渦漩洗掉細菌。該懸浮液的洗滌繼續維持,接著使用0.85%鹽水連續稀釋,且接著放置於LB洋菜裡並在攝氏37度隔夜培養以決定活著細胞的個數也就是所謂菌落形成單位/樣品。 Escherichia coli (ATCC 8739) was streaked in a 10 cm diameter petri dish containing 20 ml of LB (lysogeny broth/luria broth) and cultured overnight at 37 degrees Celsius. In each experiment, each single colony was picked and inoculated into 3 ml of nutrient base, and the inoculated culture was cultured at 37 degrees Celsius for 16 hours to create an overnight culture (about 109 cells/ml). By diluting the overnight culture 100-fold, the fresh log phase culture of the overnight culture was obtained and cultured in a petri dish containing another 5 cm diameter in LB containing vegetables and incubated at 37 degrees Celsius for 2.5 hours. The fresh culture was then diluted 50-fold with 0.85% saline, which was administered a cell suspension of 2 x 106 cells/ml. 50 microliters of the cell suspension was pipetted onto each of the deposited glass substrates. A sterilized (at 70% followed by 100 EtOH) plastic filter (20 mm x 40 mm) was placed over the suspension to spread evenly under the filter. The sample was stored in the dark (Cu x O 2 - dark) or under blue light-emitting diode light (wavelength 455 nm, 10 mW/cm 2 ) (CuO 2 - light). At selected time points, such as 30 minute/60 minute increments, the sample was placed in 10 milliliters of 0.85% saline and vortexed to wash off the bacteria. The washing of the suspension was continued, followed by serial dilution with 0.85% saline, and then placed in LB amaranth and cultured overnight at 37 degrees Celsius to determine the number of living cells, the so-called colony forming units/samples.

該結果顯示於第10圖和第11圖。很明顯地殺死大腸桿菌特性是由於即使是在30分鐘的黑暗裡(見第10圖和第11圖),仍然觀察到存在彈性(flexible)的銅離子。 The results are shown in Figures 10 and 11. The characteristic of killing E. coli was apparently due to the presence of flexible copper ions even in the darkness of 30 minutes (see Figures 10 and 11).

第10圖同時也顯示在Cu+負載於CeO2之後觀察到在黑暗中以及於10mW/平方公分之455奈米之藍色發光二極體下1小時皆完全殺死大腸桿菌之性能。因此,CuxO負載於CeO2對於清除大腸桿菌是一種具有好功能之材料。 Figure 10 also shows the performance of completely killing E. coli in the dark and in the blue light-emitting diode of 455 nm at 10 mW/cm 2 after Cu+ loading on CeO 2 . Therefore, Cu x O loading on CeO 2 is a good function for removing Escherichia coli.

範例4B Example 4B

範例Ex-1粉末如同範例1所述之方法製備。粉末接著被保持在相對濕度85%和攝氏85度之黑暗下為期7天。玻片接著以和範例4A所述相同方法製備並檢測其抗菌活性。該結果顯示於第12A圖。該結果顯示即使暴露於相對濕度85%和攝氏85度下為期7天,範例Ex-1還是展示維持光催化之活性。 Example Ex-1 powder was prepared as described in Example 1. The powder was then held in the dark at a relative humidity of 85% and 85 degrees Celsius for 7 days. The slides were then prepared and tested for antibacterial activity in the same manner as described in Example 4A. The results are shown in Figure 12A. The results show that the Ex-1 exhibits photocatalytic activity even after exposure to 85% relative humidity and 85 degrees Celsius for 7 days.

範例4C Example 4C

範例Ex-7粉末以如同上述方法製備。該粉末保存於攝氏300度的黑暗中20分鐘。玻片接著用如同上述範例4A相同之方法製備和測試其抗菌活性。該結果顯示於第12B圖。該結果顯示即使暴露於攝氏300度20分鐘後,Ex-7還是維持其光催化活性。 Example Ex-7 powder was prepared as described above. The powder was stored in the dark at 300 degrees Celsius for 20 minutes. The slides were then prepared and tested for antibacterial activity in the same manner as in Example 4A above. The result is shown in Figure 12B. The results show that Ex-7 maintains its photocatalytic activity even after exposure to 300 degrees Celsius for 20 minutes.

範例5、染劑變色研究之光觸媒實驗 Example 5: Photocatalyst experiment of dye discoloration study 範例5A Example 5A

Ex-1,CE-1之光催化特性和金紅石相之TiO2負載於或未負載於CuxO係皆藉著測量食品添加染劑(天然藍色粉末,ColorMaker公司,阿納海姆,加州,美國)的降解來相比,以天然藍色粉末2.85克溶於100毫升之逆滲透水創造出藍色粉末原液。每個樣品之150毫克放置於逆滲透水(27毫升)中和藍色粉末原液之3毫升天然藍色混合在無任何光照的情況下放置1小時並 暴露於藍色發光二極體(455奈米,45mW/平方公分)5個小時。於1小時、3小時、5小時藉由利用紫外可見光吸收光譜(Cary-50,分光光度計,安捷倫科技公司,聖克拉拉,加州,美國)(Cary-50,Spectrophotometer Agilent Technologies,Santa Clara,CA,USA)監測其濃度來測量結果藍色溶液的降解狀況。當光波強度為600奈米時計算其濃度。該結果顯示於第13圖。下面第2表比較四種光催化材料之最後降解結果。 The photocatalytic properties of Ex-1, CE-1 and the rutile phase of TiO 2 loaded or unloaded in the Cu x O system are measured by food additive dyes (natural blue powder, ColorMaker, Anaheim, CA). , US) degradation compared to a natural blue powder 2.85 grams dissolved in 100 ml of reverse osmosis water to create a blue powder stock solution. 150 mg of each sample was placed in reverse osmosis water (27 ml) and mixed with 3 ml of natural blue in a blue powder stock solution for 1 hour without any light and exposed to blue light-emitting diodes (455 Nai) Meter, 45mW / square centimeter) 5 hours. By using ultraviolet-visible absorption spectroscopy at 1 hour, 3 hours, and 5 hours (Cary-50, spectrophotometer, Agilent Technologies, Santa Clara, Calif., USA) (Cary-50, Spectrophotometer Agilent Technologies, Santa Clara, CA) , USA) monitor its concentration to measure the degradation of the blue solution. The concentration was calculated when the light wave intensity was 600 nm. The result is shown in Figure 13. Table 2 below compares the final degradation results of the four photocatalytic materials.

5B 5B

範例Ex-18(CuxO負載於MgTi2O5)之光催化性能係藉由測量如同天然藍色粉末之食物添加染劑(天然藍色粉末,ColorMaker公司,阿納海姆,加州,美國)的降解來檢測)。降解如同上述範例5A之方式檢測。結果顯示於第17圖。 The photocatalytic performance of the sample Ex-18 (Cu x O supported on MgTi 2 O 5 ) is measured by measuring the dye additive like natural blue powder (natural blue powder, ColorMaker, Anaheim, California, USA) Degradation to detect). Degradation was detected as in the manner of Example 5A above. The results are shown in Figure 17.

光觸媒實驗用以抗菌研究範例6A Photocatalyst experiment for antibacterial research example 6A

130毫克之各粉末樣品(上述之Ex-14至Ex-18)同時溶於最小值之逆滲透純水(ca-15毫升)並均質化5分鐘。 Each of the 130 mg powder samples (Ex-14 to Ex-18 described above) was simultaneously dissolved in a minimum of reverse osmosis pure water (ca-15 ml) and homogenized for 5 minutes.

乾淨之培養皿用乙醇潤洗過且其內部表面用等離子裝置 離子化1至2分鐘。每個化合物之均質化樣品倒入處理過的培養皿並在攝氏120度加熱同時攪動至增加其乾燥時樣品之均質分布。在樣品乾燥後,培養皿放置於紫外光燈(300瓦)下1小時。每個培養皿接著分別以5升的空氣採樣袋於真空下封住,接續注射3公升之環境空氣和80毫升之3500ppm乙醛。每個袋子用手輕微地按壓2分鐘接著放入黑暗中15分鐘。乙醛之濃度會被氣相層析-火焰離子化檢測器(GC-FID)估算為80±2ppm。包含樣品之每個空氣採樣袋放入黑暗1小時。玻片/空氣採樣袋暴露於具光強度0.656mW/平方公分之455奈米藍光發光二極體陣列下。藉由氣相層析-火焰離子化檢測器之自動注射孔每30分鐘收集一樣品並於接下來30分鐘間隔檢測剩餘之乙醛量。該結果顯示於以下表3。 The clean culture dish is rinsed with ethanol and the internal surface is plasma-coated Ionize for 1 to 2 minutes. A homogenized sample of each compound was poured into the treated petri dish and heated at 120 degrees Celsius while agitating to increase the homogenous distribution of the sample as it dried. After the sample was dried, the dish was placed under an ultraviolet lamp (300 watts) for 1 hour. Each dish was then sealed under vacuum with a 5 liter air sampling bag, followed by 3 liters of ambient air and 80 ml of 3500 ppm acetaldehyde. Each bag was gently pressed by hand for 2 minutes and then placed in the dark for 15 minutes. The concentration of acetaldehyde was estimated to be 80 ± 2 ppm by a gas chromatography-flame ionization detector (GC-FID). Each air sampling bag containing the sample was placed in the dark for 1 hour. The slide/air sampling bag was exposed to a 455 nm blue light emitting diode array having a light intensity of 0.656 mW/cm 2 . A sample was collected every 30 minutes by an auto-injection well of a gas chromatography-flame ionization detector and the amount of acetaldehyde remaining was detected at intervals of the next 30 minutes. The results are shown in Table 3 below.

第14圖顯示以WO3(市售GTP)(CE-6),0.05莫耳%鉑負 載WO3(Ex-13),0.1莫耳% IrO2負載WO3(Ex-16)和同時0.05莫耳%鉑和0.1莫耳% IrO2負載WO3(兩次)(Ex-17)之乙醛之分解率(Ct/Co)。滿有趣的是觀察結果係為鉑負載具有正向的影響而IrO2單獨負載WO3在455奈米(光強度0.656mW/cm2)之藍色發光二極體下的乙醛分解無任何效應。然而,當同時鉑(0.05莫耳百分比)和IrO2(0.1莫耳百分比)負載於WO3時,相比於單獨鉑(0.05莫耳%)或單獨IrO2(0.1莫耳%)或只是單獨GTP WO3之相同的條件,可導致乙醛之光降解能力更進一步加強。 Figure 14 shows WO3 (commercial GTP) (CE-6), 0.05 mol% platinum loaded WO3 (Ex-13), 0.1 mol% IrO 2 loaded WO 3 (Ex-16) and 0.05 mol% at the same time The decomposition rate (Ct/Co) of acetaldehyde of platinum and 0.1 mol% IrO 2 supported WO 3 (twice) (Ex-17). Interestingly, the observations have a positive effect on the platinum loading and the acetaldehyde decomposition of the IrO 2 alone loaded WO3 at 455 nm (light intensity 0.656 mW/cm 2 ) of blue light-emitting diodes has no effect. However, when both platinum (0.05 molar percentage) and IrO 2 (0.1 mole percentage) were loaded on WO 3 , compared to platinum alone (0.05 mol%) or IrO 2 alone (0.1 mol%) or just alone The same conditions of GTP WO3 can lead to further enhancement of the photodegradation ability of acetaldehyde.

範例5c Example 5c

Ex-10之光催化特性(SnO2),CE-4A和單獨食物添加染劑FD&C藍色2號染劑藉由測量食物添加染劑FD&C藍色2號染劑(合成藍色粉末,闊碼科技公司,密西根州,美國)(Synthetic blue colored powder,Chromatech,Inc,Michigan,USA)之降解情況來比較。克的天然藍色粉末可溶於100毫升之逆滲透水裡,創造藍色粉末原液。每樣品取150毫克放置。光觸媒特性用於和範例5a相同的方法判定。該結果顯示於第15圖。 Ex-10 photocatalytic properties (SnO 2 ), CE-4A and individual food additive dye FD&C Blue No. 2 dye by measuring food additive dye FD&C Blue No. 2 dye (synthetic blue powder, wide code The degradation of the technology company, Michigan, USA) (Synthetic blue colored powder, Chromatech, Inc, Michigan, USA) was compared. Gram's natural blue powder is soluble in 100 ml of reverse osmosis water to create a blue powder stock solution. Place 150 mg per sample. The photocatalyst characteristics were determined in the same manner as in Example 5a. The result is shown in Figure 15.

藉由測量食物添加染劑FD&C藍色2號染劑(合成藍色粉末,闊碼科技公司,密西根州,美國)的降解來比較Ex-18(MgTiO5)和Ex-1(SnTi(OCN)2:)負載(CuxO)之光觸媒特性。2.85克之天然藍色粉末溶於100毫升之逆滲透水並製造藍色粉末原液溶液。每個樣品放置150毫克。以和範例5a所述之方法來決定光催化特性。結果顯示於第16圖。 Comparison of Ex-18 (MgTiO 5 ) and Ex-1 (SnTi (OCN) by measuring the degradation of food additive dye FD&C Blue No. 2 dye (synthetic blue powder, K.K., Michigan, USA) 2: ) Photocatalyst characteristics of the load (CuxO). 2.85 grams of natural blue powder was dissolved in 100 milliliters of reverse osmosis water and a blue powder stock solution was prepared. Place 150 mg per sample. The photocatalytic properties were determined in the same manner as described in Example 5a. The results are shown in Figure 16.

範例6、大腸桿菌(ATCC 8739)的光催化去活性 Example 6. Photocatalytic Deactivation of E. coli (ATCC 8739) 範例6A方法: Example 6A method:

基板(1英吋X 2英吋玻片)依序用70%異丙醇和100%乙醇應用準備接著在空氣中乾燥而製備。範例Ex-1B分佈在100%乙醇於2毫克/毫升濃度裡且接著約100微升之懸浮液施加於基板上,接著乾燥。該施加程序重複5次以得到在基板上約1毫克之範例Ex-1B。該基板接著在室溫乾燥。塗層基板放置於浸有濾紙之玻璃培養皿以保持濕潤。玻璃間隔插入於基板和濾紙之間以分開基板與濾紙。 The substrate (1 inch X 2 inch slide) was prepared by sequential application with 70% isopropanol and 100% ethanol followed by drying in air. Example Ex-1B was applied to a substrate at a concentration of 100% ethanol in a concentration of 2 mg/ml and then about 100 microliters, followed by drying. This application procedure was repeated 5 times to obtain about 1 mg of the sample Ex-1B on the substrate. The substrate was then dried at room temperature. The coated substrate was placed in a glass petri dish impregnated with filter paper to keep it moist. A glass spacer is interposed between the substrate and the filter paper to separate the substrate from the filter paper.

大腸桿菌(ATCC 8739)劃線於5公分直徑含有約25毫升LB洋菜之培養皿,並在攝氏37度下通宵培養。每個實驗裡,單一的菌落被挑選接種於約3毫升之營養基裡,且接種於培養基上在攝氏約37度下培養約16小時以製造隔夜培養基(約109細胞/毫升)。藉由稀釋隔夜培養物100倍,隔夜培養物之新鮮對數期的培養物可以得到並接種於含有LB洋菜之另外5公分直徑之培養皿並培養於攝氏37度2.5小時。新鮮培養物接著稀釋50倍,係給予約2 x 106細胞/毫升之細胞懸浮液。50微升之細胞懸浮液被疑液至每個玻璃基板。滅菌過的(於70%接著以100乙醇)塑膠濾膜(20毫米X40毫米)被放置於懸浮液上以使其均勻擴散在濾膜之下。在所選擇的時間點時,比如約30分鐘增量,該樣品放置於10毫升的0.85%鹽水中並以3200轉約1分鐘離心以洗掉細菌。懸浮液的洗滌使用0.85%鹽水依序稀釋,接著放置於LB洋菜裡並在攝氏37度隔夜培養以判斷活著細胞的個數,也就是所謂菌落形成單位/樣品。計數是透過目視檢查,並將結果乘以稀釋倍數來達到決定數量。該樣品接著受提供約45mW/cm2之455奈米之藍色發光二極體對樣品之照射且放置於45mW/cm2之455奈米之藍色發光二極體。該結果顯示於第19圖。 Escherichia coli (ATCC 8739) was streaked in a petri dish containing 5 ml of LB acacia in a diameter of 5 cm and cultured overnight at 37 degrees Celsius. In each experiment, a single colony was selected and inoculated into about 3 ml of nutrient base, and inoculated on a medium at about 37 degrees Celsius for about 16 hours to produce an overnight medium (about 109 cells/ml). By diluting the overnight culture 100-fold, the fresh log phase culture of the overnight culture can be obtained and inoculated into an additional 5 cm diameter petri dish containing LB agar and cultured at 37 degrees Celsius for 2.5 hours. The fresh culture was then diluted 50-fold and a cell suspension of approximately 2 x 106 cells/ml was administered. 50 microliters of the cell suspension was suspected to each glass substrate. A sterilized (70% followed by 100 ethanol) plastic filter (20 mm x 40 mm) was placed on the suspension to spread evenly under the filter. At the selected time point, such as in about 30 minute increments, the sample was placed in 10 ml of 0.85% saline and centrifuged at 3200 rpm for about 1 minute to wash off the bacteria. The suspension was washed sequentially with 0.85% saline, then placed in LB amaranth and cultured overnight at 37 degrees Celsius to determine the number of living cells, the so-called colony forming units/samples. Counting is done by visual inspection and multiplying the result by the dilution factor to reach the determined amount. The sample was then irradiated with a blue light emitting diode providing about 455 nm of about 45 mW/cm 2 and placed in a blue light emitting diode of 455 nm at 45 mW/cm 2 . The result is shown in Figure 19.

範例CE-7和Ex-7A之抗菌特性與範例6A所述相同來決定,除了使用CE-7和Ex-7A等量莫耳數而非Ex-1B。該結果顯示於第17圖(CE-7)和第18圖(Ex-7A)。 The antibacterial properties of the Examples CE-7 and Ex-7A were determined in the same manner as described in Example 6A, except that CE-7 and Ex-7A were used in the same molar amount instead of Ex-1B. The results are shown in Figure 17 (CE-7) and Figure 18 (Ex-7A).

範例Ex-1(負載於1% CuxO/Sn:Ti(OCN)2:錫),只有CuxO和無負載之Sn:Ti(OCN)2(如同範例1(a)所述)之抗菌特性藉由計算如範例6A所述之抗菌活性來比較。該結果顯示於第20圖。 Example Ex-1 (loaded at 1% Cu x O/Sn:Ti(OCN) 2 : tin), only Cu x O and unloaded Sn:Ti(OCN) 2 (as described in Example 1(a)) Antibacterial properties were compared by calculating the antibacterial activity as described in Example 6A. The result is shown in Figure 20.

光觸媒之功能I Photocatalyst function I

50毫克的CuxO/P25(如同範例1(m)所產出的)和1毫升的10%漂白劑(高樂氏殺菌漂白劑,NaClO基)(Clorox Germincidal,NaClO based)於1.6毫升之微量離心管裡混合,並且在室溫(約攝氏24度)下震盪培養兩小時(VWR渦流混合器,設定為9)。培養之後,試管離心於微量離心管5430微量離心機(2分鐘14167相對離心力),之後會有顆粒物質成形成固體沉澱物於離心管底部。乾淨的上清液要小心的移除,另外加入1毫升之去離子水。將離心管完全震盪至底部的沉澱物完全被打散且均勻地分佈且懸浮液變成均質。再度離心。上述步驟要多重複四次。 50 mg of Cu x O/P25 (as produced by Example 1 (m)) and 1 ml of 10% bleach (Colox Germincidal, NaClO based) in 1.6 ml Mix in a microcentrifuge tube and incubate for two hours at room temperature (approximately 24 degrees Celsius) (VWR vortex mixer set to 9). After the incubation, the tubes were centrifuged in a microcentrifuge tube 5430 microcentrifuge (2 minutes 14167 relative centrifugal force), after which particulate matter formed to form a solid precipitate at the bottom of the centrifuge tube. The clean supernatant should be carefully removed and 1 ml of deionized water added. The sediment that completely oscillated the centrifuge tube to the bottom was completely broken up and evenly distributed and the suspension became homogeneous. Centrifuge again. The above steps should be repeated four more times.

最後一次離心之後,該固體沉澱物將再度懸浮於1毫升去離子水裡,並且和4毫升之去離子水混合於20毫升乾淨有蓋玻璃小瓶中,加入5毫升之甲醇,使瓶內總體積變成約10毫升。 After the last centrifugation, the solid precipitate was resuspended in 1 ml of deionized water and mixed with 4 ml of deionized water in a 20 ml clean covered glass vial, and 5 ml of methanol was added to make the total volume in the bottle About 10 ml.

磁性攪拌子(1/2英吋x 1/8英吋,拋棄式)加入該瓶內,並放置於攪拌器上(1000rpm)。300瓦之氙燈(Oriel 68811)放置於離瓶身15公分之處。輻射照射持續1小時於通風櫥內,且在此過程內該瓶內的溫度變化微不足道。 A magnetic stir bar (1/2 inch x 1/8 inch, disposable) was added to the bottle and placed on a stirrer (1000 rpm). The 300 watt xenon lamp (Oriel 68811) was placed 15 cm from the bottle. The radiation exposure lasted for 1 hour in the fume hood, and the temperature change within the bottle was negligible during this process.

輻射之後,瓶子的內容物係離心移去所有液體。沉澱物 在真空中乾燥,並再重新懸浮於25毫升之200純乙醇。該混合物接著用超音波震盪器震盪20分鐘。 After irradiation, the contents of the bottle are centrifuged to remove all liquid. Precipitate Dry in vacuo and resuspend in 25 ml of 200 pure ethanol. The mixture was then shaken for 20 minutes with an ultrasonic oscillator.

100微升之震盪過的分散液均勻塗抹在1英吋X2英吋之玻璃片上。在表面乾燥後(於通風櫥內),過程再重複,總共塗層五層。塗層過的玻片係使用用於本標準細菌測試。 Spread 100 μl of the oscillating dispersion onto a 1 inch X 2 inch piece of glass. After the surface is dry (in a fume hood), the process is repeated and a total of five layers are applied. The coated slides were used for the bacterial test of this standard.

為了控制組的目的,50毫克之CuxO/Al2O3使用如上述相同方法做處理,接著用以製造塗層玻片。該控制組玻片用於和CuxO/P25相同方式之標準細菌測試。從黑暗測試之結果被繪製成圖。 For the purpose of the control group, 50 mg of Cu x O/Al 2 O 3 was treated in the same manner as above, and then used to fabricate coated slides. This control slide was used for standard bacterial testing in the same manner as Cu x O/P25. The results from the dark test are plotted as a graph.

如第22圖所示,(左圖),新生成的CuxO/P25(1)展現高活性,於黑暗中30分鐘降低大腸桿菌3個對數值單位。漂白處理過之材料(2)展現大幅降低之活性,只有在黑暗中2小時後才達到降低3個對數值單位。一旦經過漂白處理,材料受到氙燈輻射,然而,結果樣品(3)相較於未處理過的樣品(1)所展現的活性同樣也於30分鐘後達到3個對數值的降低。 As shown in Figure 22, (left), the newly generated Cu x O/P25(1) exhibited high activity and reduced E. coli 3 log units in 30 minutes in the dark. The bleached material (2) exhibited a greatly reduced activity, which was reduced by 3 log units only after 2 hours in the dark. Once bleached, the material was irradiated with a xenon lamp, however, as a result, the activity exhibited by sample (3) compared to the untreated sample (1) also reached a three log reduction after 30 minutes.

相比之下,這樣藉由輻射的功能恢復並沒有在氧化銅/Al2O3之情況上看到(第22圖,右圖),如同經過漂白處理或輻射處理之樣品(3)所顯現的活性和只有透過漂白處理的樣品(2)相似,但明顯地比新鮮樣品(1)要低。 In contrast, this recovery by radiation is not seen in the case of copper oxide/Al 2 O 3 (Fig. 22, right), as shown by bleached or irradiated samples (3). The activity was similar to that of the bleach-treated sample (2), but was significantly lower than the fresh sample (1).

光觸媒之功能II Photocatalyst function II

為了調查漂白處理的時間如何影響負載氧化銅之材料的活性,上述的實驗被進行且以漂白處理時間設置2和16小時。所有其他的實驗態樣都維持相同。這些處理樣品的對數值減少的結果和未經處理的材料一同繪製成圖。 In order to investigate how the time of the bleaching treatment affects the activity of the material supporting the copper oxide, the above experiment was carried out and set for 2 and 16 hours with the bleaching treatment time. All other experimental aspects remain the same. The results of the log reduction of these treated samples are plotted along with the untreated material.

在第23圖,左圖,漂白處理過的CuxO/Al2O3導致黑暗活性顯著的掉落。在光照下做測試無法重建任何很大程度的活性。與此相比,在CuxO/光觸媒(P25)的情況下(第23圖,右圖),雖然黑暗活性有被類似地影響到,高光活性被重建。此實驗的重點在於即使經過16小時之漂白處理,光活性之重建能力過程仍然相當大程度地完好,這強烈地證明了CuxO/P25之耐久性。 In Figure 23, on the left, bleached treated Cu x O/Al 2 O 3 resulted in a significant drop in dark activity. Testing under light does not rebuild any significant activity. In contrast, in the case of Cu x O/photocatalyst (P25) (Fig. 23, right panel), although the dark activity was similarly affected, the high light activity was reconstructed. The focus of this experiment is that even after 16 hours of bleaching, the photoreactivity reproducibility process is still quite intact, which strongly demonstrates the durability of Cu x O/P25.

水燃燒合成(Aqueous combustion synthesis)之摻雜WO3之硼:水燃燒合成之方法用來以小量階段(Epsilon phase)製備摻雜WO3之硼。 Aqueous catalytic synthesis of doped WO3 boron: The method of water combustion synthesis is used to prepare WO 3 doped boron in a small stage (Epsilon phase).

5克之偏鎢酸銨水合物(Ammonium Meta Tungstate hydrate)(英佛曼高新材料公司,曼徹斯特,康乃狄克州,美國)(Inframat Advanced Materials,Manchester,CT,USA)、100毫克之硼酸(西格瑪奧瑞奇集團,聖路易,密蘇里州,美國)、2克之碳醯肼(Carbohydrazide)(西格瑪奧瑞奇集團)和10克之硝酸銨(西格瑪奧瑞奇集團)一同溶於50毫升之去離子水裡。該水溶液接著放置於馬弗爐內,預熱至約攝氏420度至到燃燒最後完全(大約要20分鐘)。在燃燒結束之後,產物在空氣下於攝氏425度退火約30分鐘。該粉末主體外觀顏色顯現橘黃且藉由將粉末X射線繞射圖譜(第1圖)和標準小量(epsilon)WO3之X射線繞射(ICFF PDF卡號(card number)01-087-2404)比較來確認。 5 grams of Ammonium Meta Tungstate hydrate (Inverman Advanced Materials, Manchester, Connecticut, USA) (Inframat Advanced Materials, Manchester, CT, USA), 100 mg of boric acid (Sigma) Oric Group, St. Louis, Missouri, USA), 2 grams of Carbohydrazide (Sigma Sigma Group) and 10 grams of ammonium nitrate (Sigma Sigma Group) dissolved in 50 ml of deionized water in. The aqueous solution is then placed in a muffle furnace and preheated to about 420 degrees Celsius until the end of the combustion is complete (about 20 minutes). After the end of combustion, the product was annealed at 425 ° C for about 30 minutes under air. The powder body appearance color appears orange and is diffracted by X-ray diffraction of powder X-ray diffraction pattern (Fig. 1) and standard small amount (epsilon) WO 3 (ICFF PDF card number 01-087-2404) Compare to confirm.

第1圖:粉末X射線繞射圖譜(右邊) Figure 1: Powder X-ray diffraction pattern (right)

使用氧化鈷藉由強選擇性吸附法(Strong and Selective Adsorption Method)作小量WO3的表面修飾 Surface modification of a small amount of WO 3 by cobalt and selective adsorption method using cobalt oxide

1克(gm)之小量WO3和40.37克之CoCl2˙4H2O溶於約10毫升之去離子水裡並在攝氏90度裡攪拌約2小時於40毫升之封閉的反應器。接著,該封閉反應器以自來水冷卻並透過濾膜過濾(精細0.05微孔),以去離子水洗滌多次(至少約250毫升)和最後在攝氏110度下乾燥兩小時以得到氧化鈷負載小量WO3One gram (gm) of small amount of WO 3 and 40.37 grams of CoCl 2 ̇ 4H 2 O were dissolved in about 10 ml of deionized water and stirred at 90 ° C for about 2 hours in a 40 ml closed reactor. Next, the closed reactor was cooled with tap water and filtered through a filter membrane (fine 0.05 micropores), washed several times with deionized water (at least about 250 ml) and finally dried at 110 ° C for two hours to obtain a small cobalt oxide load. Amount of WO 3 .

除非另有說明,表示成分質量、特性的所有數字,例如分子量,反應條件,和所有在本說明書和專利申請範圍中所使用闡述者被理解為在所有情況下被語詞「約」修飾。因此,除非與此相反,否則在本說明書和所附申請專利範圍中所闡述的數值參數為可能根據尋求獲得的期望性質而變化的近似值。在最低限度下,且不嘗試限制等同於申請專利範圍的等效物之教義的應用,每個數值參數應當根據所報告的顯著位數之數字並且透過應用普通的四捨五入技術來解釋。 Unless otherwise indicated, all numbers expressing the quality and characteristics of the ingredients, such as molecular weight, reaction conditions, and all those described in the specification and patent application are to be construed as being modified by the word "about" in all instances. Accordingly, unless stated to the contrary, the numerical parameters set forth in the specification and the appended claims are the approximations that may vary depending on the desired properties sought. At the very least, and without attempting to limit the application of the teachings equivalent to the equivalents of the claims, each numerical parameter should be construed in accordance with the number of significant digits reported and by applying the ordinary rounding technique.

術語「一」、「一個」、「該」和類似的參考文獻用在描述本發明(特別是在以下專利申請範圍的上下文中)的內容中之類似指稱都將被解釋為包括單數和複數,除非本文另有說明或內文明顯矛盾。本文中所描述的所有方法可以以任何合適的順序進行,除非本文另有說明或以其它方式與內文明顯矛盾。本文提供的任何和所有範例的使用,或示例性語言(例如,「諸如」)僅旨在更好地闡明本發明,並不構成對任何專利申請範圍之範疇的限制。在說明書中沒有語言應該被解釋為指示任何未主張的元件對於本發明的實踐為必需的。 The terms "a", "an", "the" and "the" are used in the description of the invention, particularly in the context of the following claims. Unless otherwise stated herein or the context clearly contradicts. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted. The use of any and all examples herein, or exemplary language, such as "such as", No language in the specification should be construed as indicating that any element not claimed is essential to the practice of the invention.

本文所揭露的實施例的另外元件群組之不應被解釋為限制性。每個群組元件可視作為單獨主張或與群組其他元件或本文中的其他要素任意組合。可以預料的是,為了方便和/或可獲專利 性的原因,一個群組的一或多個元件可以被包括在或從一個組中刪除。當任何這類包括或刪除發生時,本說明書被認為包含群組作為修飾,從而實現所附專利範圍所使用的所有馬庫西群組的書面描述。 The other element groups of the embodiments disclosed herein are not to be construed as limiting. Each group element can be considered as a separate claim or arbitrarily combined with other elements of the group or other elements herein. It is expected that for convenience and / or patentability For sexual reasons, one or more elements of a group may be included or deleted from a group. When any such inclusion or deletion occurs, the specification is considered to include a group as a modification to achieve a written description of all of the Markusi groups used in the appended claims.

某些實施例在本文中描述,包括發明人已知的用於施行實施本發明的最佳模式。當然,對於本領域的普通技術人員,與這些描述的實施例之差異將在閱讀前面的描述中而變得顯而易見。本發明人期望本領域技術人員在適當時採用這些差異,並且本發明人旨在本發明也可以以本文中所具體描述之外的方式實施。因此,專利申請範圍包含記載在專利申請範圍由所適用法律許可下對標的的所有修改和等效物。此外,擬想為在所有可能的差異形式中的上述元素的任意組合,除非本文另有指明或另外方明顯地與內文矛盾。 Certain embodiments are described herein, including the best mode known to the inventors for carrying out the invention. Of course, differences from the described embodiments will become apparent to those of ordinary skill in the art. The inventors expect that those skilled in the art will employ these differences as appropriate, and the inventors intend that the invention may be practiced otherwise than as specifically described herein. Accordingly, the scope of the patent application contains all modifications and equivalents to the scope of the patent application, which is subject to the applicable law. In addition, any combination of the above-described elements in all possible forms of the differences is intended to be inconsistent with the context unless otherwise indicated herein.

結論,應當理解的是,本文所公開的實施例是申請專利範圍的原理的說明。可以使用的其它修改都在專利申請範圍之範疇內。因此,通過舉例的方式,而非限制性的,其他實施例可根據本文的教示來利用。因此,申請專利範圍不局限於所準確地顯示和描述之實施例。 It should be understood that the embodiments disclosed herein are illustrative of the principles of the claimed invention. Other modifications that may be used are within the scope of the patent application. Accordingly, other embodiments may be utilized in accordance with the teachings herein. Therefore, the scope of patent application is not limited to the embodiments shown and described.

Claims (32)

一種非均相材料,其包含:一p型半導體,包含一第一金屬氧化化合物和一第二金屬氧化化合物,其中該第一金屬氧化化合物和該第二金屬氧化化合物具有相同金屬之不同氧化態,且其中該p型半導體具有一p型價帶;以及一n型半導體,具有深於該p型價帶之一n型價帶,其中該n型半導體與該p型半導體為離子電荷連通。 A heterogeneous material comprising: a p-type semiconductor comprising a first metal oxidizing compound and a second metal oxidizing compound, wherein the first metal oxidizing compound and the second metal oxidizing compound have different oxidation states of the same metal And wherein the p-type semiconductor has a p-type valence band; and an n-type semiconductor having an n-type valence band deeper than the p-type valence band, wherein the n-type semiconductor is in ionic charge communication with the p-type semiconductor. 如申請專利範圍第1項所述之非均相材料,其更包含一貴金屬與該第一金屬氧化化合物和該第二金屬氧化化合物為離子電荷連通。 The heterogeneous material according to claim 1, further comprising a noble metal in ionic charge communication with the first metal oxidizing compound and the second metal oxidizing compound. 如申請專利範圍第2項所述之非均相材料,其中該貴金屬為銠、釕、鈀、銀、鋨、鉑或金。 The heterogeneous material according to claim 2, wherein the noble metal is ruthenium, rhodium, palladium, silver, rhodium, platinum or gold. 如申請專利範圍第2項所述之非均相材料,其中該貴金屬被負載到該n型半導體之上。 The heterogeneous material of claim 2, wherein the noble metal is supported on the n-type semiconductor. 如申請專利範圍第1項所述之非均相材料,其更包含一第二n型半導體,其中至少有一部分的該第二n型半導體與該p型半導體為離子電荷隔離。 The heterogeneous material of claim 1, further comprising a second n-type semiconductor, wherein at least a portion of the second n-type semiconductor is ionically isolated from the p-type semiconductor. 如申請專利範圍第5項所述之非均相材料,其中該第二n型半導體包含一鈰氧化物。 The heterogeneous material of claim 5, wherein the second n-type semiconductor comprises a tantalum oxide. 如申請專利範圍第6項所述之非均相材料,其中該鈰氧化物為CeO2The heterogeneous material according to claim 6, wherein the cerium oxide is CeO 2 . 如申請專利範圍第5項所述之非均相材料,其中該第二n 型半導體包含複數相TiO2The heterogeneous material of claim 5, wherein the second n-type semiconductor comprises a complex phase TiO 2 . 如申請專利範圍第1項所述之非均相材料,其中該第一金屬氧化化合物包含一價銅而該第二金屬氧化化合物包含二價銅;該第一金屬氧化化合物包含二價鈷而該第二金屬氧化化合物包含三價鈷;該第一金屬氧化化合物包含二價錳而該第二金屬氧化化合物包含三價錳;該第一金屬氧化化合物包含二價鐵而該第二金屬氧化化合物包含三價鐵;或該第一金屬氧化化合物包含三價銥而該第二金屬氧化化合物包含四價銥。 The heterogeneous material according to claim 1, wherein the first metal oxide compound comprises monovalent copper and the second metal oxide compound comprises divalent copper; the first metal oxide compound comprises divalent cobalt The second metal oxidizing compound comprises trivalent cobalt; the first metal oxidizing compound comprises divalent manganese and the second metal oxidizing compound comprises trivalent manganese; the first metal oxidizing compound comprises ferrous iron and the second metal oxidizing compound comprises Ferric iron; or the first metal oxidizing compound comprises trivalent cerium and the second metal oxidizing compound comprises tetravalent cerium. 如申請專利範圍第1項所述之非均相材料,其中該p型半導體被負載到該n型半導體之上。 The heterogeneous material of claim 1, wherein the p-type semiconductor is loaded onto the n-type semiconductor. 如申請專利範圍第1項所述之非均相材料,其中該p型半導體大致均勻散佈於該n型半導體之上。 The heterogeneous material of claim 1, wherein the p-type semiconductor is substantially uniformly dispersed over the n-type semiconductor. 如申請專利範圍第1項所述之非均相材料,其中該p型半導體為具有100奈米或小於100奈米的粒徑之顆粒形式。 The heterogeneous material according to claim 1, wherein the p-type semiconductor is in the form of particles having a particle diameter of 100 nm or less. 如申請專利範圍第9項所述之非均相材料,其中該p型半導體包含一價銅和二價銅。 The heterogeneous material according to claim 9, wherein the p-type semiconductor comprises monovalent copper and divalent copper. 如申請專利範圍第13項所述之非均相材料,其中該p型半導體包含氧化銅。 The heterogeneous material of claim 13, wherein the p-type semiconductor comprises copper oxide. 如申請專利範圍第14項所述之非均相材料,其中該氧化銅係化學價受控的(chemically valence controlled)。 The heterogeneous material of claim 14, wherein the copper oxide is chemically valence controlled. 如申請專利範圍第9項所述之非均相材料,其中一價銅和二價銅的比例介於10:90至30:70之間。 The heterogeneous material according to claim 9, wherein the ratio of monovalent copper to divalent copper is between 10:90 and 30:70. 如申請專利範圍第1項所述之非均相材料,其中該p型半導體為該非均相材料的0.001至10重量百分比,且該n型半導體為該非均相材料的90至99.999重量百分比。 The heterogeneous material of claim 1, wherein the p-type semiconductor is from 0.001 to 10 weight percent of the heterogeneous material, and the n-type semiconductor is from 90 to 99.999 weight percent of the heterogeneous material. 如申請專利範圍第1項所述之非均相材料,其中該n型半導體是鈰、鎢、鉭、錫、鋅、鍶、鋯、鋇、銦、或鋁的氧化物。 The heterogeneous material according to claim 1, wherein the n-type semiconductor is an oxide of tantalum, tungsten, lanthanum, tin, zinc, lanthanum, zirconium, hafnium, indium, or aluminum. 如申請專利範圍第1項所述之非均相材料,其中該n型半導體包含Sn-Ti(O,C,N)2)、MgTi2O5、CeO2、KTaO3,、Ta2O5、SnO2、WO3、ZnO、SrTiO3、BaTiO3、ZrTiO4、In2TiO5、Al2TiO5或LiCa2Zn2V3O12The heterogeneous material according to claim 1, wherein the n-type semiconductor comprises Sn-Ti(O, C, N) 2 ), MgTi 2 O 5 , CeO 2 , KTaO 3 , Ta 2 O 5 , SnO 2 , WO 3 , ZnO, SrTiO 3 , BaTiO 3 , ZrTiO 4 , In 2 TiO 5 , Al 2 TiO 5 or LiCa 2 Zn 2 V 3 O 12 . 如申請專利範圍第1項所述之非均相材料,其中該n型半導體為Al2-xInxTiO5,其中0<x<2。 The heterogeneous material according to claim 1, wherein the n-type semiconductor is Al 2-x In x TiO 5 , wherein 0 < x < 2. 如申請專利範圍第1項所述之非均相材料,其中該n型半導體為Zr1-yCeyTiO4,其中0<y<1。 The heterogeneous material according to claim 1, wherein the n-type semiconductor is Zr 1-y Ce y TiO 4 , wherein 0 < y < 1. 如申請專利範圍第1項所述之非均相材料,其中該n型半導體係為具有透過摻雜而調控的一價帶之氧化鈦。 The heterogeneous material according to claim 1, wherein the n-type semiconductor is a titanium oxide having a monovalent band controlled by doping. 如申請專利範圍第1項所述之非均相材料,其中該n型半導體係以氮、碳或兩者摻雜的氧化鈦。 The heterogeneous material according to claim 1, wherein the n-type semiconductor is titanium oxide doped with nitrogen, carbon or both. 如請專利範圍第1項所述之非均相材料,其中該n型半導體為包含以化學式(Ti1-rMr)(O2-s-tCsNt)表示之化合物之氧化鈦,其中:M為錫、鎳、鍶、鋇、鐵、鉍、釩、鉬、鎢、鋅、銅或其組合; r為0至0.25;s為0.001至0.1;且t為0.001至0.1。 The heterogeneous material according to claim 1, wherein the n-type semiconductor is titanium oxide comprising a compound represented by the chemical formula (Ti 1-r M r )(O 2-st C s N t ), wherein :M is tin, nickel, ruthenium, osmium, iron, ruthenium, vanadium, molybdenum, tungsten, zinc, copper or a combination thereof; r is from 0 to 0.25; s is from 0.001 to 0.1; and t is from 0.001 to 0.1. 如申請專利範圍第24項所述之非均相材料,其包含(Ti0.99Sn0.01)(O2-s-tCsNt)、(Ti0.97Sn0.03)(O2-s-tCsNt)、(Ti0.95Sn0.05)(O2-s-tCsNt)、(Ti0.90Sn0.10)(O2-s-tCsNt)、(Ti0.85Sn0.15)(O2-s-tCsNt)、(Ti0.985Ni0.015)(O2-s-tCsNt)、(Ti0.98Ni0.02)(O2-s-tCsNt)、(Ti0.97Ni0.03)(O2-s-tCsNt)、(Ti0.99Sr0.01)(O2-s-tCsNt)、(Ti0.97Sr0.03)(O2-s-tCsNt)、(Ti0.95Sr0.05)(O2-s-tCsNt)、(Ti0.97Ba0.03)(O2-s-tCsNt)、(Ti0.95Ba0.05)(O2-s-tCsNt)、(Ti0.94Sn0.05Fe0.01)(O2-s-tCsNt)、(Ti0.94Sn0.05Ni0.01)(O2-s-tCsNt)、(Ti0.99Fe0.01)(O2-s-tCsNt)、(Ti0.95Zn0.05)(O2-s-tCsNt)、(Ti0.77Sn0.15Cu0.08)(O2-s-tCsNt)、(Ti0.85Zn0.15)(O2-s-tCsNt)、(Ti0.90Bi0.10)(O2-s-tCsNt)、(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、(Ti0.970V0.03)(O2-s-tCsNt)、(Ti0.997Mo0.003)(O2-s-tCsNt)、(Ti0.984Mo0.016)(O2-s-tCsNt)、(Ti0.957Mo0.043)(O2-s-tCsNt)、(Ti0.97W0.03)(O2-s-tCsNt)、(Ti0.95W0.05)(O2-s-tCsNt)、(Ti0.996V0.004)(O2-s-tCsNt)、(Ti0.984V0.016)(O2-s-tCsNt)、或(Ti0.970V0.03)(O2-s-tCsNt)。 The heterogeneous material according to claim 24, which comprises (Ti 0.99 Sn 0.01 ) (O 2-st C s N t ), (Ti 0.97 Sn 0.03 ) (O 2-st C s N t ) (Ti 0.95 Sn 0.05 )(O 2-st C s N t ), (Ti 0.90 Sn 0.10 )(O 2-st C s N t ), (Ti 0.85 Sn 0.15 )(O 2-st C s N t ), (Ti 0.985 Ni 0.015 ) (O 2-st C s N t ), (Ti 0.98 Ni 0.02 ) (O 2-st C s N t ), (Ti 0.97 Ni 0.03 ) (O 2-st C s N t ), (Ti 0.99 Sr 0.01 )(O 2-st C s N t ), (Ti 0.97 Sr 0.03 )(O 2-st C s N t ), (Ti 0.95 Sr 0.05 )(O 2-st C s N t ), (Ti 0.97 Ba 0.03 ) (O 2-st C s N t ), (Ti 0.95 Ba 0.05 ) (O 2-st C s N t ), (Ti 0.94 Sn 0.05 Fe 0.01 ) (O 2- St C s N t ), (Ti 0.94 Sn 0.05 Ni 0.01 ) (O 2-st C s N t ), (Ti 0.99 Fe 0.01 ) (O 2-st C s N t ), (Ti 0.95 Zn 0.05 ) O 2-st C s N t ), (Ti 0.77 Sn 0.15 Cu 0.08 ) (O 2-st C s N t ), (Ti 0.85 Zn 0.15 ) (O 2-st C s N t ), (Ti 0.90 Bi 0.10 )(O 2-st C s N t ), (Ti 0.996 V 0.004 )(O 2-st C s N t ), (Ti 0.984 V 0.016 )(O 2-st C s N t ), (Ti 0.970 V 0.03 )(O 2-st C s N t ), (Ti 0.997 Mo 0.003 )(O 2-st C s N t ), (Ti 0.984 Mo 0.016 ) (O 2-st C s N t ), (Ti 0.957 Mo 0.043 ) (O 2-st C s N t ), (Ti 0.97 W 0.03 ) (O 2-st C s N t ), (Ti 0.95 W 0.05 ) (O 2-st C s N t ), (Ti 0.996 V 0.004 ) (O 2-st C s N t ), (Ti 0.984 V 0.016 ) (O 2-st C s N t ), or (Ti 0.970 V 0.03 ) (O 2-st C s N t ). 如申請專利範圍第16項所述之非均相材料,其中該n型半導體包含(Ti1-rMr)(O2-s-tCsNt),其中:M為錫;r為從0至0.25; s為從0.001至0.1;且t為從0.001至0.1。 The heterogeneous material according to claim 16, wherein the n-type semiconductor comprises (Ti 1-r M r )(O 2-st C s N t ), wherein: M is tin; r is from 0 To 0.25; s is from 0.001 to 0.1; and t is from 0.001 to 0.1. 如申請專利範圍第26項所述之非均相材料,其中r大於0。 A heterogeneous material as described in claim 26, wherein r is greater than zero. 如申請專利範圍第26項所述之非均相材料,其中r為0,且該半導體包含一金紅石相和一銳鈦礦相。 The heterogeneous material of claim 26, wherein r is 0, and the semiconductor comprises a rutile phase and an anatase phase. 如申請專利範圍第16項所述之非均相材料,其中該n型半導體為一錫氧化物。 The heterogeneous material according to claim 16, wherein the n-type semiconductor is a tin oxide. 一種分解化學化合物的方法,其包括在光的存在下暴露該化學化合物於一光觸媒,該光觸媒包含如申請專利範圍第1項所述之均相材料。 A method of decomposing a chemical compound, comprising exposing the chemical compound to a photocatalyst in the presence of light, the photocatalyst comprising a homogeneous material as described in claim 1 of the patent application. 如申請專利範圍第30項所述之方法,其中該化學化合物為一污染物。 The method of claim 30, wherein the chemical compound is a contaminant. 一種殺死微生物的方法,其包含在光的存在下將該微生物暴露於包含如申請專利範圍第1項所述之均相材料之一光觸媒。 A method of killing a microorganism comprising exposing the microorganism to a photocatalyst comprising a homogeneous material as described in claim 1 of the patent application in the presence of light.
TW103109809A 2013-03-15 2014-03-14 Multivalence photocatalytic heterogeneous materials for semiconductors TWI633932B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/840,859 US9376332B2 (en) 2013-03-15 2013-03-15 Multivalence photocatalytic semiconductor elements
US13/840,859 2013-03-15
US201361835399P 2013-06-14 2013-06-14
US61/835,399 2013-06-14

Publications (2)

Publication Number Publication Date
TW201500112A TW201500112A (en) 2015-01-01
TWI633932B true TWI633932B (en) 2018-09-01

Family

ID=50628970

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103109809A TWI633932B (en) 2013-03-15 2014-03-14 Multivalence photocatalytic heterogeneous materials for semiconductors

Country Status (5)

Country Link
EP (1) EP2969186A1 (en)
JP (1) JP6462658B2 (en)
CN (1) CN105163847B (en)
TW (1) TWI633932B (en)
WO (1) WO2014151861A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530697A (en) 2015-05-14 2018-01-02 日东电工株式会社 Photochemical catalyst is coated to pellet and its manufacture method
RU2624620C1 (en) * 2016-04-14 2017-07-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) METHOD FOR PRODUCING PHOTOCATALYST BASED ON NANO-HETEROSTRUCTURAL SEMICONDUCTOR CdS-WO3-TiO2
CN105797740B (en) * 2016-05-09 2018-04-24 国家纳米科学中心 A kind of tantalum oxide cube, the preparation method and the usage of Fe doping
JP6696838B2 (en) * 2016-06-16 2020-05-20 株式会社フジコー Interior material and manufacturing method thereof
CN107519889B (en) * 2017-08-02 2020-06-30 肇庆市华师大光电产业研究院 Preparation method of copper-doped tungsten trioxide composite nanofiber material
CN110538656B (en) * 2019-09-12 2021-04-30 中国科学院生态环境研究中心 Catalyst for degrading formaldehyde by photocatalyst and preparation method and application thereof
CN111185137A (en) * 2020-01-22 2020-05-22 青岛农业大学 Method for preparing biological carbon with magnetism and photocatalysis simultaneously by using pepper straws
JP7422552B2 (en) 2020-02-03 2024-01-26 公益財団法人電磁材料研究所 photocatalyst
WO2023122693A1 (en) * 2021-12-21 2023-06-29 Nitto Denko Corporation Deactivation resistant catalytic materials and method for making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101259422A (en) * 2008-04-24 2008-09-10 南开大学 Preparation of high efficiency nano Ti1-XO2-SnX/TiO2-X-NX compound film
TW201036180A (en) * 2009-03-26 2010-10-01 Ritdisplay Corp Photovoltaic cell structure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780592B2 (en) * 1995-12-21 2006-05-31 旭硝子株式会社 Photocatalyst composition, method for producing the same, and substrate with photocatalyst composition
JP4135921B2 (en) * 2002-09-18 2008-08-20 コバレントマテリアル株式会社 Titanium dioxide fine particles and method for producing the same
JP4135907B2 (en) * 2003-03-25 2008-08-20 コバレントマテリアル株式会社 Visible light active photocatalyst particles
CN100475335C (en) * 2003-09-22 2009-04-08 中国科学院化学研究所 Photocatalyst responding to visible light, and preparation method and application thereof
EP1716077A2 (en) 2004-02-18 2006-11-02 Nippon Shokubai Co.,Ltd. Metal oxide particle and its uses
WO2007136488A2 (en) 2006-04-20 2007-11-29 The Trustees Of Columbia University In The City Of New York Copper oxide nanoparticle system
WO2008075615A1 (en) * 2006-12-21 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
JP5614709B2 (en) * 2009-06-26 2014-10-29 Toto株式会社 Photocatalyst paint
JP2011224534A (en) 2009-09-16 2011-11-10 Sumitomo Chemical Co Ltd Photocatalyst composite and photocatalyst functional product using the same
CN102573926B (en) 2009-10-19 2014-09-17 国立大学法人东京大学 Method for inactivating virus and article provided with antiviral properties
CN103228358B (en) * 2011-06-27 2015-08-26 昭和电工株式会社 Be supported with titania photocatalyst and its manufacture method of copper compound
CN102527421A (en) * 2011-11-10 2012-07-04 重庆工商大学 C and N dual-doped nano TiO2 photochemical catalyst and preparation method thereof
CN102836715B (en) * 2012-08-27 2014-08-27 华中科技大学 Visible light response-type CuXO-TiO2 photocatalyst and preparation method thereof
CN103386306B (en) * 2013-08-07 2015-05-20 上海师范大学 Cu/CuxO/TiO2 heterojunction visible light catalyst, as well as preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101259422A (en) * 2008-04-24 2008-09-10 南开大学 Preparation of high efficiency nano Ti1-XO2-SnX/TiO2-X-NX compound film
TW201036180A (en) * 2009-03-26 2010-10-01 Ritdisplay Corp Photovoltaic cell structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. Nagaveni, M. S. Hedge, Giridhar Madras, 2004. Structure and Photocatalttic Activity of Ti1-xMxO2±δ(M = W, C, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method, The Journal of Physical Chemistry B, vol. 108, no. 52, page : 20204-20212. *

Also Published As

Publication number Publication date
CN105163847B (en) 2018-04-03
EP2969186A1 (en) 2016-01-20
JP6462658B2 (en) 2019-01-30
TW201500112A (en) 2015-01-01
CN105163847A (en) 2015-12-16
WO2014151861A1 (en) 2014-09-25
JP2016512164A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
TWI633932B (en) Multivalence photocatalytic heterogeneous materials for semiconductors
US10213780B2 (en) Multivalence semiconductor photocatalytic materials
US9376332B2 (en) Multivalence photocatalytic semiconductor elements
Zaleska Doped-TiO2: a review
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
Lin et al. Optical and photocatalytic properties of Fe3+-doped TiO2 thin films prepared by a sol–gel spin coating
Khan et al. Visible light photocatalysis of mixed phase zinc stannate/zinc oxide nanostructures precipitated at room temperature in aqueous media
Nussbaum et al. Synergistic photocatalytic effect in Fe, Nb-doped BiOCl
KR20090083239A (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
US9718695B2 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
Leonard et al. Interactions between Zn2+ or ZnO with TiO2 to produce an efficient photocatalytic, superhydrophilic and aesthetic glass
TW201121645A (en) Photocatalytic materials and process for producing the same
US10835631B2 (en) Photocatalytic element
Moradzadeh et al. Investigation on synthesis, characterization and photo catalytic degradation of congo red by Zn-doped CdTiO3/TiO2
KR101548296B1 (en) Manufacturing method of bimetallic transition metal doped titanium dioxide
Werapun et al. Synthesis and antimicrobial activity of Fe: TiO2 particles
Lin et al. Preparation of Y3+ and transition metal ions codoped-BiFeO3 with enhanced magnetism and photocatalytic properties
Chen et al. Gas sensitization and photochromism of CaTiO3− δ for visible-light photocatalysis
Clabel H et al. Potential application of perovskite structure for water treatment: effects of band gap, band edges, and lifetime of charge carrier for photocatalysis
Zhang et al. The evolution of structure, chemical state and photocatalytic performance of α-Fe/FeTiO3/TiO2 with the nitridation at different temperatures
JP2006198465A (en) Photocatalyst and its production method
Roudgar-Amoli et al. Understanding double perovskite oxides capabilities to improve photocatalytic contaminants degradation performances in water treatment processes: a review
JPH10314600A (en) Oxide photocatalyst film and product provided with the same
US8679403B2 (en) Method and use of providing photocatalytic activity
Malek et al. Structural, electrical and photoluminescence properties of ZTO thin films for water depollution