TWI632968B - Prediction method of electrical discharge machining accuracy - Google Patents

Prediction method of electrical discharge machining accuracy Download PDF

Info

Publication number
TWI632968B
TWI632968B TW106141928A TW106141928A TWI632968B TW I632968 B TWI632968 B TW I632968B TW 106141928 A TW106141928 A TW 106141928A TW 106141928 A TW106141928 A TW 106141928A TW I632968 B TWI632968 B TW I632968B
Authority
TW
Taiwan
Prior art keywords
discharge
accuracy
average
value
electrical discharge
Prior art date
Application number
TW106141928A
Other languages
Chinese (zh)
Other versions
TW201924828A (en
Inventor
詹家銘
楊浩青
吳文傑
吳閔楠
龔呂文
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW106141928A priority Critical patent/TWI632968B/en
Application granted granted Critical
Publication of TWI632968B publication Critical patent/TWI632968B/en
Publication of TW201924828A publication Critical patent/TW201924828A/en

Links

Abstract

一種放電加工精度的預測方法包括:萃取放電加工機之多個關鍵加工特徵值;將該些關鍵加工特徵值提供自動化伺服器,以建立放電加工精度預測模型;即時感測該放電加工機之多組放電電壓訊號、放電電流訊號及線上預測之電極消耗值作為輸入值,傳送至該放電加工精度預測模型(其含有電極消耗預測模型),即時輸出電極消耗預測值並修正該放電加工精度預測模型;以及即時感測該放電加工機之多組放電電壓訊號、放電電流訊號及線上預測之電極消耗值作為輸入值,並傳送至修正後之放電加工精度預測模型,以即時輸出放電加工精度預測值作為輸出值。 A method for predicting the accuracy of electrical discharge machining includes: extracting a plurality of key machining characteristic values of an electrical discharge machining machine; providing the key machining characteristic values to an automated server to establish an electrical discharge machining accuracy prediction model; and sensing the number of electrical discharge machining machines in real time Set the discharge voltage signal, discharge current signal, and electrode consumption value predicted online as input values, and send it to the discharge machining accuracy prediction model (which contains the electrode consumption prediction model), and output the electrode consumption prediction value in real time and modify the discharge processing accuracy prediction model. ; And real-time sensing of multiple discharge voltage signals, discharge current signals, and electrode consumption values predicted online on the EDM machine as input values and transmitting to the revised EDM accuracy prediction model to output EDM accuracy prediction values in real time As output value.

Description

放電加工精度的預測方法 Prediction method of electrical discharge machining accuracy

本發明有關於一種放電加工精度的預測方法,特別是關於一種放電加工精度的預測方法,可預測該放電加工精度。 The invention relates to a method for predicting the accuracy of electrical discharge machining, and more particularly to a method for predicting the accuracy of electrical discharge machining, which can predict the accuracy of electrical discharge machining.

當放電加工機在進行放電加工時,常因為排渣不良、異常短路或電極消耗等因素,造成工件尺寸不如預期及工件表面粗糙度大而導致工件品質不佳。再者,一般的放電加工機無法在加工過程中有效地預測工件的加工精度,只能透過量測設備對加工後的工件進行離線加工精度量測。 When the EDM is performing EDM, the workpiece quality is not as good as expected due to poor slag discharge, abnormal short circuit or electrode consumption. Furthermore, the general electrical discharge machine cannot effectively predict the machining accuracy of the workpiece during the machining process, and can only perform offline machining accuracy measurement of the processed workpiece through a measurement device.

為了解決工件加工過程無法立即檢測加工精度的缺失,目前透過一種預測模型,能在放電加工機進行放電加工的過程中,監測實際放電加工感測資訊(例如:放電電壓/電流),來預測工件的加工精度。歷史樣本資料常被用於建構首套預測模型。然後,將預測模型應用於後續之實際應用環境中。 In order to solve the problem that the machining process cannot immediately detect the lack of machining accuracy, a prediction model is currently used to monitor the actual EDM sensing information (such as discharge voltage / current) during the EDM process of EDM to predict the workpiece. Processing accuracy. Historical sample data is often used to construct the first set of prediction models. Then, the prediction model is applied to the subsequent practical application environment.

舉例,放電加工透過量測電極消耗以精確計算實際加工深度,並自動進行反覆加工及檢測,以確保精細孔放電加工精度。然而,放電電極消耗量測都是透過離線方式,大幅影響加工設備稼動率。 For example, EDM measures the electrode consumption to accurately calculate the actual machining depth, and automatically performs iterative machining and inspection to ensure the precision of EDM machining of fine holes. However, the discharge electrode consumption measurement is performed offline, which greatly affects the productivity of processing equipment.

有鑑於此,便有需要提供一種放電加工精度的預測方法,來解決前述的問題。 In view of this, there is a need to provide a method for predicting the accuracy of electrical discharge machining to solve the aforementioned problems.

本發明的主要目的在於提供一種放電加工精度 的預測方法,其建立或修正放電加工精度預測模型,可預測該放電加工精度。 The main object of the present invention is to provide an electrical discharge machining accuracy. The prediction method is based on establishing or modifying a prediction model of electrical discharge machining accuracy, which can predict the electrical discharge machining accuracy.

為達成上述目的,本發明提供一種放電加工精度的預測方法,包括下列步驟:以一建模基底萃取方法萃取一放電加工機之多個關鍵加工特徵值,其中該些關鍵加工特徵值包括一電極消耗值;將該些關鍵加工特徵值提供一自動化伺服器,以建立一放電加工精度預測模型;以一組放電電壓訊號、放電電流訊號及離線量測之電極消耗值,修正該放電加工機之多個關鍵加工特徵值,其中該些關鍵加工特徵值包括該電極消耗值;將修正後之該些關鍵加工特徵值提供該自動化伺服器,以修正該放電加工精度預測模型;以及即時感測該放電加工機之多組放電電壓訊號、放電電流訊號及提供離線量測之電極消耗值作為輸入值,並傳送至修正後之放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值。 In order to achieve the above object, the present invention provides a method for predicting the accuracy of electrical discharge machining, which includes the following steps: extracting a plurality of key processing feature values of an electrical discharge machine using a modeling substrate extraction method, wherein the key processing feature values include an electrode Consumption value; provide an automatic server for these key processing characteristic values to build a discharge machining accuracy prediction model; modify the discharge processing machine with a set of discharge voltage signal, discharge current signal and offline measured electrode consumption value A plurality of key processing characteristic values, wherein the key processing characteristic values include the electrode consumption value; providing the corrected key processing characteristic values to the automated server to modify the EDM accuracy prediction model; and real-time sensing the Multiple sets of discharge voltage signals, discharge current signals, and electrode consumption values that provide offline measurement are used as input values for the EDM and sent to the revised EDM accuracy prediction model, with at least one EDM accuracy prediction value being output in real time as output value.

本發明更提供一種放電加工精度的預測方法,包括下列步驟:以一建模基底萃取方法萃取一放電加工機之多個關鍵加工特徵值,其中該些關鍵加工特徵值包括一電極消耗值;將該些關鍵加工特徵值提供一自動化伺服器,以建立一放電加工精度預測模型;以多組放電電壓訊號、放電電流訊號及線上預測之電極消耗值作為輸入值,傳送至該放電加工精度預測模型(其含有電極消耗預測模型),以即時輸出電極消耗預測值並修正該放電加工機之多個關鍵加工特徵值;將修正後之該些關鍵加工特徵值提供該自動化伺服器,以修正該放電加工精度預測模型;以及即時感測多組放電電壓訊號、放電電流訊號及提供線上預測之電極消耗值作為輸入值,並傳送至修正後之放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值。 The present invention further provides a method for predicting the accuracy of electrical discharge machining, which includes the following steps: extracting a plurality of key processing characteristic values of an electrical discharge machine by a modeled substrate extraction method, wherein the key processing characteristic values include an electrode consumption value; The key processing characteristic values provide an automated server to establish a discharge machining accuracy prediction model; a plurality of sets of discharge voltage signals, discharge current signals, and online predicted electrode consumption values are used as input values and transmitted to the discharge machining accuracy prediction model (Which contains the electrode consumption prediction model), in order to output the electrode consumption prediction value in real time and modify a plurality of key processing characteristic values of the electrical discharge machine; provide the corrected key processing characteristic values to the automated server to correct the discharge Prediction model of machining accuracy; and real-time sensing of multiple sets of discharge voltage signal, discharge current signal and electrode consumption value provided online prediction as input values, and send to the revised discharge machining accuracy prediction model to output at least one discharge machining accuracy in real time The predicted value is used as the output value.

當使用離線量測之電極消耗值或線上預測之電 極消耗值時,本發明主要是可建立或修正預測模型,以完成放電加工精度的預測方法,透過資料前處理技術,找出對應建立後或修正後之預測模型及其輸入值及輸出值的相對應性,以達到放電加工精度預測。由於放電加工製程產品的精度,會直接受到即時放電電極尺寸外觀的影響,若以離線量測又會影響放電加工設備稼動率。本發明之放電加工精度的預測方法可以有效解決既有放電加工的精度預測能力不足的問題,來達到精度預測能力有效提升。 When using offline measured electrode consumption or online predicted electricity When the consumption value is extreme, the present invention mainly can establish or modify the prediction model to complete the prediction method of the accuracy of electrical discharge machining. Through the data pre-processing technology, find out the corresponding predicted or established model and its input and output values. Correspondence to achieve EDM accuracy prediction. Because the accuracy of the EDM process products is directly affected by the size and appearance of the instant discharge electrode, if it is measured offline, it will also affect the productivity of the EDM equipment. The method for predicting the accuracy of electrical discharge machining of the present invention can effectively solve the problem of insufficient accuracy prediction ability of the existing electrical discharge machining, so as to effectively improve the accuracy prediction ability.

為了讓本發明之上述和其他目的、特徵和優點能更明顯,下文將配合所附圖示,作詳細說明如下。 In order to make the above and other objects, features, and advantages of the present invention more obvious, the following description will be described in detail with reference to the accompanying drawings.

200‧‧‧放電加工精度的預測系統 200‧‧‧Prediction system for EDM accuracy

210‧‧‧放電加工機 210‧‧‧EDM

211‧‧‧主軸 211‧‧‧ Spindle

211a‧‧‧電極 211a‧‧‧electrode

212‧‧‧控制器 212‧‧‧controller

220‧‧‧資料處理模組 220‧‧‧Data Processing Module

221‧‧‧控制回授單元 221‧‧‧Control feedback unit

222a‧‧‧影像感測器 222a‧‧‧Image Sensor

222‧‧‧感測單元 222‧‧‧Sensing unit

223‧‧‧處理單元 223‧‧‧Processing unit

300‧‧‧量測機台 300‧‧‧Measuring machine

400‧‧‧自動化伺服器 400‧‧‧ automation server

A1、A2‧‧‧電極消耗面積 A1, A2‧‧‧ electrode consumption area

d1、d2‧‧‧軸向消耗值 d1, d2‧‧‧ axial consumption value

P1‧‧‧工件 P1‧‧‧Workpiece

S10~S20‧‧‧步驟 S10 ~ S20‧‧‧‧steps

S110~S150‧‧‧步驟 S110 ~ S150‧‧‧step

S210~S220‧‧‧步驟 S210 ~ S220‧‧‧step

S310~S330‧‧‧步驟 S310 ~ S330‧‧‧step

S410~S430‧‧‧步驟 S410 ~ S430‧‧‧step

w1、w2‧‧‧徑向消耗值 w1, w2‧‧‧ radial consumption value

圖1為本發明之一實施例之放電加工精度的預測系統的結構示意圖;圖2a為本發明之一實施例之建立預測模型之方法的方塊示意圖;圖2b顯示本發明之一實施例之建立預測模型之方法的步驟流程圖;圖2c為本發明之一實施例之建模基底萃取方法的步驟流程圖;圖3為本發明之放電加工機之加工電極特徵的示意圖;圖4a為本發明之一實施例之放電加工精度預測模型之輸入輸出的方塊示意圖;圖4b為本發明之一實施例之放電加工精度的預測方法之流程示意圖。 FIG. 1 is a schematic structural diagram of a prediction system for electrical discharge machining accuracy according to an embodiment of the present invention; FIG. 2a is a block schematic diagram of a method for establishing a prediction model according to an embodiment of the present invention; and FIG. 2b is a diagram illustrating the establishment of an embodiment of the present invention Step flow chart of the method of predictive model; FIG. 2c is a flow chart of the method of modeling the substrate extraction method according to an embodiment of the present invention; FIG. 3 is a schematic diagram of the processing electrode characteristics of the electrical discharge machine of the present invention; A block diagram of the input and output of the EDM precision prediction model of one embodiment; FIG. 4b is a schematic flowchart of a method for predicting the accuracy of EDM machining according to an embodiment of the present invention.

圖5為本發明之另一實施例之第一類型放電加工精度預測模型之修正方法方塊示意圖;圖6為本發明之另一實施例之第一類型放電加工精度的預測方法的步驟流程示意圖;圖7為本發明之另一實施例之第二類型放電加工精度預測模型之修正方法的方塊示意圖;以及圖8顯示本發明之另一實施例之第二類型放電加工精度的預測方法的步驟流程示意圖。 FIG. 5 is a schematic block diagram of a method for correcting a first-type EDM machining accuracy prediction model according to another embodiment of the present invention; FIG. 6 is a flowchart showing steps of a first-type EDM machining accuracy prediction method according to another embodiment of the present invention; FIG. 7 is a schematic block diagram of a method for correcting a second type of electrical discharge machining accuracy prediction model according to another embodiment of the present invention; and FIG. 8 is a flowchart showing steps of a method of predicting a second type of electrical discharge machining accuracy according to another embodiment of the present invention schematic diagram.

請先參考圖1,其顯示本發明之一實施例之放電加工精度的預測系統的結構示意圖。本實施例之放電加工精度的預測系統200包括一放電加工機210以及一資料處理模組220訊息連接該放電加工機210。該放電加工機210具有一主軸211,且該主軸211設有一電極211a,透過該電極211a可對一工件P1加工。該資料處理模組220包括一控制回授單元221、一感測單元222以及一處理單元223。該控制回授單元221主要用來感測距離訊號,作為判斷該感測單元222是否要擷取該放電加工機210在線上加工時之製程資料(該製程資料主要包括電極消耗值、放電電壓訊號及放電電流訊號)。該處理單元223則可根據該感測單元222所擷取的該製程資料建立多個加工特徵,並可根據一量測機台300所處理的不同量測項目的量測值(該些量測值是指該放電加工機加工處理該工件品質的量測值),再從該些加工特徵中彙整出與加工精度有關的關鍵加工特徵值,以提供給一自動化伺服器400並建立一放電加工精度預測模型,來預測該放電加工機210之加工精度。舉例,該自動化伺服器400是以類神經網路 (Neural Network,NN)方法與迴歸分析(Regression Analysis)方法(例如部分最小平方法PLS)而建立該放電加工精度預測模型。欲陳明者,本實施例使用的預測模型可為如專利號TW 1349867所揭示之自動化伺服器所建立之加工精度預測模型,但此並非用以限制本發明。 Please refer to FIG. 1, which is a schematic structural diagram of a prediction system for electrical discharge machining accuracy according to an embodiment of the present invention. The prediction system 200 for the accuracy of electrical discharge machining in this embodiment includes an electrical discharge machining machine 210 and a data processing module 220 that are connected to the electrical discharge machining machine 210 by messages. The electric discharge machine 210 has a main shaft 211, and the main shaft 211 is provided with an electrode 211a, and a workpiece P1 can be processed through the electrode 211a. The data processing module 220 includes a control feedback unit 221, a sensing unit 222 and a processing unit 223. The control feedback unit 221 is mainly used to sense the distance signal as a judgment to determine whether the sensing unit 222 is to capture process data when the EDM 210 is processed on the line (the process data mainly includes the electrode consumption value and the discharge voltage signal And discharge current signals). The processing unit 223 can establish a plurality of processing features based on the process data captured by the sensing unit 222, and can also measure the measurement values of different measurement items processed by a measurement machine 300 (these measurements). Value refers to the measured value of the quality of the workpiece processed by the EDM machine), and then key processing feature values related to the processing accuracy are collected from the processing features to provide to an automated server 400 and establish an EDM An accuracy prediction model is used to predict the machining accuracy of the electric discharge machine 210. For example, the automated server 400 is a neural network-like (Neural Network, NN) method and regression analysis (Regression Analysis) method (such as partial least squares method PLS) to establish the accuracy prediction model of electrical discharge machining. For those who want to know, the prediction model used in this embodiment may be a processing accuracy prediction model established by an automated server as disclosed in Patent No. TW 1349867, but this is not intended to limit the present invention.

圖2a顯示本發明之一實施例之建立預測模型之方法的方塊示意圖。先提供放電電壓訊號、放電電流訊號及電極消耗值,然後利用建模基底萃取方法,最後建立預測模型。圖2b顯示本發明之一實施例之建立預測模型之方法的步驟流程圖。該建立預測模型之方法包括下列步驟:在步驟S10中,以一建模基底萃取方法萃取一放電加工機之多個關鍵加工特徵值,其中該些關鍵加工特徵值包括一電極消耗值;以及,在步驟S20中,將該些關鍵加工特徵值提供一自動化伺服器,以建立一放電加工精度預測模型。 FIG. 2a shows a block diagram of a method for establishing a prediction model according to an embodiment of the present invention. First provide the discharge voltage signal, discharge current signal and electrode consumption value, then use the modeling substrate extraction method, and finally establish a prediction model. FIG. 2b shows a flowchart of steps in a method for establishing a prediction model according to an embodiment of the present invention. The method for establishing a prediction model includes the following steps: in step S10, a plurality of key processing feature values of an electrical discharge machine are extracted by a modeling substrate extraction method, wherein the key processing feature values include an electrode consumption value; and, In step S20, an automatic server is provided for the key processing characteristic values to establish a prediction model for the accuracy of EDM.

圖2c顯示本發明之一實施例之建模基底萃取方法之步驟流程圖。本實施例之建模基底萃取方法主要是蒐集放電加工機放電過程中的製程資料(例如電極消耗值、放電電壓訊號及放電電流訊號),然後根據這些製程資料建立出多個加工特徵,並應用資料前處理技術(Data Pre-Processing Technology)從這些加工特徵中萃取出可用於推估加工精度之關鍵加工特徵值。這些彙整出的關鍵加工特徵值主要可提供給該自動化伺服器,以建立該放電加工精度預測模型,用來預測放電加工機之加工精度。 FIG. 2c shows a flowchart of steps in a method for extracting a modeled substrate according to an embodiment of the present invention. The modeling substrate extraction method of this embodiment mainly collects process data (such as electrode consumption value, discharge voltage signal, and discharge current signal) during the discharge process of the electrical discharge machine, and then establishes multiple processing characteristics based on these process data and applies Data Pre-Processing Technology extracts key processing feature values from these processing features that can be used to estimate processing accuracy. These aggregated key processing characteristic values can be mainly provided to the automated server to establish the EDM precision prediction model for predicting the machining accuracy of EDM.

請再參考圖2c及圖1,本實施例之建模基底萃取方法包括如下步驟。首先,進行步驟S110,根據預定之加工指令與工件特性,以該放電加工機210分別加工處理多個工件P1而獲取多組製程資料。在一實例中,每一組製程資料主要包括電極消耗值訊號、放電電壓訊號及放電電流訊號。在一例子中,製程資料為放電加工機在放電加工過程之加工 條件(例如開路電壓以及脈衝on/off時間等)以及機器狀態(例如實際放電電壓波形與放電電流波形等)。在本實施例中,利用高壓探棒以及電流勾表來感測放電加工機210之放電電壓以及放電電流。再者,可利用一影像感測器222a量測電極消耗值(圖1所示)。請參考圖3,該電極消耗值可為一電極211a之頭部邊緣的消耗程度,例如電極211a之頭部邊緣的軸向消耗值d1、d2、徑向消耗值w1、w2及電極消耗面積A1、A2。 Please refer to FIG. 2c and FIG. 1 again. The modeling substrate extraction method of this embodiment includes the following steps. First, step S110 is performed. According to a predetermined processing instruction and workpiece characteristics, the electrical discharge machining machine 210 respectively processes and processes a plurality of workpieces P1 to obtain a plurality of sets of process data. In one example, each set of process data mainly includes an electrode consumption value signal, a discharge voltage signal, and a discharge current signal. In an example, the process data is the processing of the EDM during the EDM process. Conditions (such as open circuit voltage and pulse on / off time, etc.) and machine status (such as actual discharge voltage waveform and discharge current waveform, etc.). In this embodiment, a high-voltage probe and a current meter are used to sense the discharge voltage and discharge current of the electric discharge machine 210. Furthermore, an image sensor 222a can be used to measure the electrode consumption value (shown in FIG. 1). Please refer to FIG. 3, the electrode consumption value may be the consumption degree of the head edge of an electrode 211a, for example, the axial consumption value d1, d2, the radial consumption value w1, w2 of the electrode 211a and the electrode consumption area A1 , A2.

在獲取該放電加工機210之製程資料後,進行步驟S120,以利用該些製程資料建立多個加工特徵。在本實施例中,可應用資料前處理技術從電極消耗值、放電電壓訊號及放電電流訊號建立加工特徵,且這些加工特徵均可用來推估加工精度。在本實施例中,加工特徵包括電極消耗值、放電頻率、開路比、短路比、平均短路時間、短路時間標準差、平均短路電流、短路電流標準差、平均延遲時間、延遲時間標準差、平均放電峰值電流、峰值電流標準差、平均放電時間、放電時間標準差、平均放電能量以及放電能量標準差。 After obtaining the process data of the EDM 210, step S120 is performed to establish a plurality of processing features by using the process data. In this embodiment, a data pre-processing technique can be applied to establish processing characteristics from the electrode consumption value, the discharge voltage signal, and the discharge current signal, and these processing characteristics can be used to estimate the processing accuracy. In this embodiment, the processing characteristics include electrode consumption value, discharge frequency, open circuit ratio, short circuit ratio, average short circuit time, short circuit time standard deviation, average short circuit current, short circuit current standard deviation, average delay time, delay time standard deviation, average Discharge peak current, peak current standard deviation, average discharge time, discharge time standard deviation, average discharge energy, and discharge energy standard deviation.

在加工特徵中,平均延遲時間與短路比是從放電電壓訊號所建立。其中,平均延遲時間定義為從已建立足夠開路電壓的時間點開始到電壓脈衝穿過電極與工件間的間隙,並開始有放電電流為止的時間差。短路比(Short circuit ratio)的定義為短路脈衝(short circuit pulse,SCP)數除以放電脈衝數,其中短路脈衝為於一放電脈衝周期內,開路電壓值持續小於指定電壓門檻時,則該次的放電脈衝期間則紀錄為一次短路脈衝。 In processing characteristics, the average delay time and short circuit ratio are established from the discharge voltage signal. Among them, the average delay time is defined as the time difference from the time point when a sufficient open circuit voltage has been established until the voltage pulse passes through the gap between the electrode and the workpiece and the discharge current starts. Short circuit ratio is defined as the number of short circuit pulses (SCP) divided by the number of discharge pulses, where the short-circuit pulse is within a discharge pulse period when the open-circuit voltage value continues to be less than the specified voltage threshold. The discharge pulse period is recorded as a short-circuit pulse.

在加工特徵中,放電頻率、平均放電峰值電流以及平均放電時間是從放電電流訊號所建立。其中,平均放電頻率(Average spark frequency)的定義為在一脈衝時間內, 若其該次電流波峰值超過最小門檻峰值,則定義為出現電流火花,而放電頻率定義為取樣期間內出現火花的總數。平均放電峰值電流(Average peak discharge current)定義為在取樣期間內,所有放電峰值電流(peak current)的平均數。其中,峰值電流為脈衝期間內,通過電極到達工件的大電流值。平均放電電流脈衝持續時間(Average discharge current pulse duration)定義為在取樣期間內,所有電流脈衝持續時間的平均值。其中,電流脈衝持續時間為放電電流波形開始點到結束點間的時間差。 In the processing characteristics, the discharge frequency, the average discharge peak current, and the average discharge time are established from the discharge current signal. Among them, the average discharge frequency (Average spark frequency) is defined as within one pulse time, If the peak value of the current wave exceeds the minimum threshold peak value, it is defined as the occurrence of current sparks, and the discharge frequency is defined as the total number of sparks during the sampling period. Average peak discharge current is defined as the average of all discharge peak currents during the sampling period. Among them, the peak current is a large current value that reaches the workpiece through the electrode during the pulse period. The average discharge current pulse duration is defined as the average of all current pulse durations during the sampling period. The duration of the current pulse is the time difference between the start point and the end point of the discharge current waveform.

在加工特徵中,平均短路時間、開路比、平均放電能量以及平均短路電流則是根據放電電流訊號以及放電電壓訊號所共同建立。其中,平均短路時間與短路持續時間有關,且短路持續時間(Short circuit duration)定義為當一段放電脈衝期間內(需連續兩個脈衝以上)發生多次連續短路,則短路持續時間為多次連續短路期間內,第一個短路峰(short circuit peak)到最後一個短路脈衝峰的時間差。開路比是定義為取樣期間內,開路次數除以放電脈衝總數。其中,在某一脈衝時間內,當電壓峰結束時,並沒有跟著電流峰上升時,即稱之為開路(Open circuit)。若發生開路時,則代表一電壓峰(Ignition Voltage)未能導引出後續電流峰(Discharge Current),此電壓峰即為無效脈衝。平均放電能量主要是用來保持放電加工製程的穩定性以確保加工品質,而第i次放電的放電能量(E)公式如以下公式(1): 其中tei為放電持續時間,Ui為放電電壓,Ipi為放電峰電流,此公式是假設在放電過程中,放電電壓保持不變。 In the processing characteristics, the average short-circuit time, open circuit ratio, average discharge energy, and average short-circuit current are jointly established based on the discharge current signal and the discharge voltage signal. Among them, the average short-circuit time is related to the short-circuit duration, and the short-circuit duration is defined as when there are multiple continuous short-circuits in a discharge pulse period (more than two consecutive pulses are required), the short-circuit duration is multiple continuous During the short circuit period, the time difference between the first short circuit peak and the last short circuit peak. The open circuit ratio is defined as the number of open circuits divided by the total number of discharge pulses during the sampling period. Among them, in a certain pulse time, when the voltage peak ends and does not follow the current peak, it is called an open circuit. If an open circuit occurs, it means that a voltage peak (Ignition Voltage) fails to lead the subsequent current peak (Discharge Current), and this voltage peak is an invalid pulse. The average discharge energy is mainly used to maintain the stability of the EDM process to ensure the processing quality, and the discharge energy (E) formula of the i-th discharge is as follows (1): Where t ei is the discharge duration, U i is the discharge voltage, and I pi is the discharge peak current. This formula assumes that the discharge voltage remains unchanged during the discharge process.

欲陳明者,根據前述揭露內容,短路時間標準差、短路電流標準差、延遲時間標準差、峰值電流標準差、 放電時間標準差以及放電能量標準差之標準差值的計算方式為本發明所屬技術領域中之具有通常知識者所熟知,故在此不再贅述。 Those who want to know, according to the foregoing disclosure, the short-circuit time standard deviation, short-circuit current standard deviation, delay time standard deviation, peak current standard deviation, The calculation method of the standard deviation of the discharge time standard deviation and the standard deviation of the discharge energy is well known to those having ordinary knowledge in the technical field to which the present invention pertains, and therefore will not be repeated here.

請再參考圖2c,在建立多個加工特徵後,可進行步驟S130,獲取該量測機台量測該些工件之多組量測值,其中每一組量測值分別為該放電加工機加工處理該工件品質的量測值。本實施例是以長度、寬度以及高度分別為30mm、30mm及10mm的模具鋼作為工件,並搭配使用直徑為3mm的電極。其中,本實施例是以盲孔加工為例,透過電極對工件進行鑽孔的方式在工件形成盲孔洞,且每一盲孔洞具有位於工件上表面之上開口。本實施例之量測項目為每一盲孔洞的幾何和尺寸精度,分別為盲孔洞底面之粗糙度、上開口之真圓度、上開口之尺寸、盲孔底圓之真圓度以及盲孔底圓之尺寸,且每個量測項目分別具有對應之量測值。該量測機台300對工件P1進行上述量測項目的量測而取得對應之量測值。 Please refer to FIG. 2c again. After establishing a plurality of processing features, step S130 may be performed to obtain a plurality of sets of measured values of the measuring machine for measuring the workpieces, where each set of measured values is the electrical discharge machine respectively. Process the measured value of the quality of the workpiece. In this embodiment, a mold steel with a length, a width, and a height of 30 mm, 30 mm, and 10 mm is used as a workpiece, and an electrode with a diameter of 3 mm is used in combination. Wherein, in this embodiment, blind hole processing is taken as an example. A blind hole is formed in the workpiece by drilling the workpiece through an electrode, and each blind hole has an opening above the upper surface of the workpiece. The measurement items in this embodiment are the geometric and dimensional accuracy of each blind hole, which are the roughness of the bottom surface of the blind hole, the roundness of the upper opening, the size of the upper opening, the roundness of the bottom circle of the blind hole, and the blind hole. The size of the bottom circle, and each measurement item has a corresponding measurement value. The measuring machine 300 performs the measurement of the measurement item on the workpiece P1 to obtain a corresponding measurement value.

在獲取量測值後,接著進行步驟S140,進行相關性分析步驟,以獲得該些加工特徵與該些量測值間之多個相關性數值。在一實施例中,可採用MATLAB工具並利用以下關係式(2)來觀察加工特徵與量測值之間的關係: 其中:i是用以指出第i個工件,X代表加工特徵,代表加工特徵群的平均值,Y代表不同量測項目的量測值,代表不同量測項目的量測值之平均值。 After obtaining the measured values, step S140 is then performed to perform a correlation analysis step to obtain multiple correlation values between the processing features and the measured values. In an embodiment, MATLAB tools can be used and the following relationship (2) can be used to observe the relationship between processing features and measured values: Among them: i is used to indicate the i-th workpiece, X is the processing feature, Represents the average value of the processing feature group, Y represents the measured value of different measurement items, Represents the average of the measurement values of different measurement items.

在找出加工特徵與量測值間之相關性數值後,接著進行步驟S150,從相關性數值中選取具有較大之相關性數值的加工特徵,作為多個關鍵加工特徵值。其中,本實施 例是選取相關性數值絕對值大於0.3的加工特徵。 After the correlation value between the processing feature and the measured value is found, then step S150 is performed, and a processing feature with a larger correlation value is selected from the correlation values as a plurality of key processing feature values. Among them, this implementation An example is to select a processing feature whose absolute correlation value is greater than 0.3.

以下說明利用本實施例所彙整出之與不同量測項目之量測值相關的關鍵加工特徵值。當量測值為工件之底面粗糙度的量測值時,關鍵加工特徵值包括電極消耗值、放電頻率、短路比、平均短路時間、平均短路電流、平均延遲時間、延遲時間標準差、平均放電峰值電流、平均放電時間、平均放電能量以及放電能量標準差。 The following describes the key processing feature values related to the measurement values of different measurement items that are summarized by this embodiment. When the measured value is the measured value of the bottom surface roughness of the workpiece, the key processing characteristic values include the electrode consumption value, discharge frequency, short-circuit ratio, average short-circuit time, average short-circuit current, average delay time, delay time standard deviation, and average discharge. Peak current, average discharge time, average discharge energy, and standard deviation of discharge energy.

當量測值為工件之盲孔洞的上開口直徑的量測值時,關鍵加工特徵值包括電極消耗值、放電頻率、短路比、平均短路時間、平均短路電流、平均延遲時間、延遲時間標準差、平均放電峰值電流、平均放電時間、平均放電能量以及放電能量標準差。當量測值為工件之盲孔洞的上開口之真圓度的量測值時,關鍵加工特徵值包括電極消耗值、開路比、短路比、平均短路時間、平均短路電流、平均放電峰值電流、峰值電流標準差、平均放電時間、放電時間標準差、平均放電能量以及放電能量標準差。 When the measured value is the measured value of the upper opening diameter of the blind hole of the workpiece, the key processing characteristic values include the electrode consumption value, the discharge frequency, the short-circuit ratio, the average short-circuit time, the average short-circuit current, the average delay time, and the standard deviation of the delay time , Average discharge peak current, average discharge time, average discharge energy and standard deviation of discharge energy. When the measured value is the measured roundness of the upper opening of the blind hole of the workpiece, the key processing characteristic values include the electrode consumption value, open circuit ratio, short circuit ratio, average short circuit time, average short circuit current, average discharge peak current, Standard deviation of peak current, average discharge time, standard deviation of discharge time, average discharge energy, and standard deviation of discharge energy.

當量測值為工件之盲孔底圓之直徑的量測值時,關鍵加工特徵值包括電極消耗值、開路比、短路比、平均短路時間、平均短路電流、平均延遲時間、延遲時間標準差、平均放電峰值電流、平均放電時間、平均放電能量以及放電能量標準差。當量測值為工件之盲孔底圓之真圓度的量測值時,關鍵加工特徵值包括電極消耗值、放電頻率、開路比、短路比、平均延遲時間、延遲時間標準差、平均放電峰值電流、峰值電流標準差、放電時間標準差、平均放電能量以及放電能量標準差。 When the measured value is the measured value of the diameter of the bottom circle of the blind hole of the workpiece, the key processing characteristic values include the electrode consumption value, open circuit ratio, short circuit ratio, average short circuit time, average short circuit current, average delay time, delay standard deviation , Average discharge peak current, average discharge time, average discharge energy and standard deviation of discharge energy. When the measurement value is the measurement of the true roundness of the bottom circle of the blind hole of the workpiece, the key processing characteristic values include electrode consumption value, discharge frequency, open circuit ratio, short circuit ratio, average delay time, standard deviation of delay time, average discharge Peak current, standard deviation of peak current, standard deviation of discharge time, average discharge energy, and standard deviation of discharge energy.

藉此,透過將所萃取出之關鍵加工特徵值匯人自動化伺服器的資料庫中,以建立模型基底並進行放電加工精度預測模型訓練,進而預測加工精度。 In this way, by extracting the extracted key processing feature values into a database of an automated server, a model base is established and an electric discharge machining accuracy prediction model training is performed, thereby predicting the machining accuracy.

舉例,先利用自動化伺服器針對盲孔洞底面之粗 糙度的量測值與其關鍵加工特徵值來建模與測試。其中,本實施例是以類神經網路(Neural Network,NN)方法與迴歸分析(Regression Analysis)方法(例如部分最小平方法PLS)作為建立精度預測模型,來預測孔洞底面之粗糙度。預測結果如下表一所示,從表一可觀察到NN與PLS的平均絕對誤差(Mean Absolutely Error,MAE)分別為0.633與0.556μm,NN與PLS的95% Max Error分別為0.597與0.524μm,小於實際量測(Real Y)兩倍標準差1.501μm,代表以所萃取的關鍵加工特徵值可使用此兩種模型預測孔洞底面之粗糙度。 For example, first use an automated server to measure the thickness of the bottom surface of the blind hole. Roughness measurement and its key processing characteristics are used to model and test. Wherein, in this embodiment, a neural network-like (NN) method and a regression analysis method (such as a partial least square method PLS) are used to establish an accuracy prediction model to predict the roughness of the bottom surface of the hole. The prediction results are shown in Table 1 below. From Table 1, we can observe that the mean absolute errors (MAE) of NN and PLS are 0.633 and 0.556 μm, and the 95% Max Errors of NN and PLS are 0.597 and 0.524 μm, respectively. It is less than 1.501 μm, which is less than twice the standard deviation of the real measurement (Real Y), which means that with the extracted key processing feature values, the roughness of the bottom surface of the hole can be predicted using these two models.

又如下表二所示,當利用自動化伺服器針對盲孔底圓之真圓度的量測值與其關鍵加工特徵值來建模與測試時,NN與PLS的MAE分別為0.005與0.005mm,NN與PLS的95% Max Error分別為0.01與0.011mm,小於實際量測(Real Y)兩倍標準差0.015,代表所萃取的關鍵加工特徵值可使用模型預測盲孔底圓之真圓度。 As shown in Table 2 below, when using an automated server to model and test the true roundness of the blind hole bottom circle and its key processing feature values, the MAEs of NN and PLS are 0.005 and 0.005mm, respectively. The 95% Max Error with PLS is 0.01 and 0.011mm, respectively, which is less than 0.015, which is twice the standard deviation of Real Y, representing the extracted key processing feature values. The model can be used to predict the true roundness of the bottom circle of the blind hole.

圖4a顯示本發明之一實施例之放電加工精度預測模型之輸入輸出的方塊示意圖。先提供放電電壓訊號及放電電流訊號,然後利用建立後之預測模型,最後進行放電加工精度預測。圖4b顯示本發明之一實施例之放電加工精度的預測方法之流程示意圖。該放電加工精度的預測方法包括下列步驟:在步驟S210中,提供建立後之放電加工精度預測模型。在步驟S220中,即時感測該放電加工機之多組放電電壓訊號及放電電流訊號作為輸入值,並傳送至該放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值,例如工件之盲孔洞底面之粗糙度、上開口之真圓度、上開口之尺寸、盲孔底圓之真圓度以及盲孔底圓之尺寸的預測值。 FIG. 4a shows a block diagram of the input and output of an electrical discharge machining accuracy prediction model according to an embodiment of the present invention. First provide the discharge voltage signal and discharge current signal, then use the established prediction model, and finally perform the discharge machining accuracy prediction. FIG. 4b is a schematic flowchart of a method for predicting the accuracy of electrical discharge machining according to an embodiment of the present invention. The method for predicting the accuracy of electrical discharge machining includes the following steps. In step S210, a prediction model of the accuracy of electrical discharge machining is provided. In step S220, a plurality of sets of discharge voltage signals and discharge current signals of the electric discharge machine are sensed as input values and transmitted to the electric discharge machining accuracy prediction model, and at least one electric discharge machining accuracy prediction value is output in real time as For example, the roughness of the bottom surface of the blind hole of the workpiece, the true roundness of the upper opening, the size of the upper opening, the true roundness of the bottom circle of the blind hole, and the predicted value of the size of the bottom circle of the blind hole.

圖5顯示本發明之另一實施例之第一類型放電加工精度預測模型之修正方法的方塊示意圖。先提供放電電壓訊號、放電電流訊號及離線量測之電極消耗值,然後修正預測模型,最後進行放電加工精度預測。圖6顯示本發明之另一實施例之第一類型放電加工精度的預測方法的步驟流程示意圖。該放電加工精度的預測方法更包括下列步驟:在步驟S310中,以一組放電電壓訊號、放電電流訊號及離線量測之電極消耗值,修正該放電加工機之多個關鍵加工特徵值。請再參考圖3,該離線量測之電極消耗值可為一電極211a之頭部邊緣的消耗程度,例如電極211a的軸向消耗值d1、d2、徑向消耗值w1、w2及電極消耗面積A1、A2。在步驟S320中,將該些修正後之關鍵加工特徵值提供該自動化伺服器,以類神經網路方法與迴歸分析方法修正該放電加工精度預測模型。在步驟S330中,即時感測該放電加工機之多組放電電壓訊號、放電電流訊號及提供離線量測之電極消耗值作為輸入值,並傳送至修正後之放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值,例如工件之盲孔 洞底面之粗糙度、上開口之真圓度、上開口之尺寸、盲孔底圓之真圓度以及盲孔底圓之尺寸的預測值。在本實施例中,本發明使用了離線量測之電極消耗值修正放電加工精度預測模型,再將放電電壓訊號、放電電流訊號及離線量測之電極消耗值輸入至修正後之放電加工精度預測模型。本發明以電極消耗影像分析輔助,可整合離線量測電極消耗影像,修正預測模型可提升原有放電加工精度預測能力。 FIG. 5 shows a block diagram of a method for correcting the first type of EDM accuracy prediction model according to another embodiment of the present invention. First provide the discharge voltage signal, the discharge current signal and the electrode consumption value measured offline, then modify the prediction model, and finally perform the discharge machining accuracy prediction. FIG. 6 is a schematic flowchart of steps in a method for predicting the accuracy of a first type of electrical discharge machining according to another embodiment of the present invention. The method for predicting the accuracy of electrical discharge machining further includes the following steps. In step S310, a plurality of key machining characteristic values of the electrical discharge machining machine are corrected with a set of discharge voltage signals, discharge current signals, and electrode consumption values measured offline. Please refer to FIG. 3 again, the electrode consumption value measured offline can be the consumption degree of the head edge of an electrode 211a, such as the axial consumption value d1, d2, the radial consumption value w1, w2 of the electrode 211a, and the electrode consumption area A1, A2. In step S320, the modified key processing feature values are provided to the automated server, and the discharge machining accuracy prediction model is modified by a neural network-like method and a regression analysis method. In step S330, a plurality of sets of discharge voltage signals, discharge current signals, and electrode consumption values provided for offline measurement of the electric discharge machine are sensed in real time as input values, and are transmitted to the modified discharge machining accuracy prediction model for immediate output. At least one predicted value of EDM accuracy as an output value, such as a blind hole in a workpiece The predicted value of the roughness of the bottom surface of the hole, the true roundness of the upper opening, the size of the upper opening, the true roundness of the bottom circle of the blind hole, and the size of the bottom circle of the blind hole. In this embodiment, the present invention uses the electrode consumption values measured offline to modify the discharge machining accuracy prediction model, and then the discharge voltage signal, discharge current signal, and electrode consumption values measured offline are input to the corrected discharge machining accuracy prediction. model. The invention is assisted by the analysis of the electrode consumption image, which can integrate offline measurement of the electrode consumption image, and the correction prediction model can improve the original electric discharge machining accuracy prediction ability.

圖7顯示本發明之另一實施例之第二類型放電加工精度預測模型之修正方法的方塊示意圖。先提供放電電壓訊號、放電電流訊號及線上預測之電極消耗值,然後修正預測模型,最後進行放電加工精度預測。圖8顯示本發明之另一實施例之第二類型放電加工精度的預測方法的步驟流程示意圖。該放電加工精度的預測方法更包括下列步驟:在步驟S410中,以多組放電電壓訊號、放電電流訊號及線上預測之電極消耗值作為輸入值,傳送至該放電加工精度預測模型(其含有電極消耗預測模型),以即時輸出線上預測之電極消耗值並修正該放電加工機之多個關鍵加工特徵值(例如採用擬合正則化分類方法或採用羅吉斯(Glmnet)迴歸模型)。請再參考圖3,該線上預測之電極消耗值可為一電極211a之頭部邊緣消耗程度的預測值,例如電極211a之頭部邊緣的軸向消耗d1、d2、徑向消耗w1、w2及電極消耗面積A1、A2。在步驟S420中,將修正後之該些關鍵加工特徵值提供該自動化伺服器,以類神經網路方法與迴歸分析方法修正該放電加工精度預測模型。在步驟S430中,即時感測多組放電電壓訊號、放電電流訊號及提供線上預測之電極消耗值作為輸入值,並傳送至修正後之放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值,例如工件之盲孔洞底面之粗糙度、上開口之真圓度、上開口之尺寸、盲孔底圓之真圓度以及盲孔底圓之尺寸的預測值。在本實施例中,本發明使用 了線上預測之電極消耗值修正放電加工精度預測模型,再將放電電壓訊號、放電電流訊號及線上預測之電極消耗值輸入至修正後之放電加工精度預測模型。本發明線上預測該電極消耗值,將可以大幅減少電極離線量測時間,以增加該放電加工機之稼動率及整體加工預測精度提升。 FIG. 7 shows a block diagram of a method for correcting a second type of EDM accuracy prediction model according to another embodiment of the present invention. First provide the discharge voltage signal, the discharge current signal and the electrode consumption value predicted online, then modify the prediction model, and finally perform the discharge machining accuracy prediction. FIG. 8 is a schematic flowchart showing the steps of a second type of EDM accuracy prediction method according to another embodiment of the present invention. The method for predicting electrical discharge machining accuracy further includes the following steps: In step S410, a plurality of sets of discharge voltage signals, electrical discharge current signals, and electrode consumption values predicted online are transmitted as input values to the electrical discharge machining accuracy prediction model (which includes electrodes). Consumption prediction model), in order to output the electrode consumption values predicted on the line in real time and modify multiple key processing feature values of the EDM (such as using a fit regularization classification method or using a Glmnet regression model). Please refer to FIG. 3 again, the predicted electrode consumption value on the line may be the predicted value of the head edge consumption of an electrode 211a, such as the axial consumption d1, d2, the radial consumption w1, w2 and Electrode consumption area A1, A2. In step S420, the corrected key processing feature values are provided to the automated server, and the discharge machining accuracy prediction model is modified by a neural network-like method and a regression analysis method. In step S430, a plurality of sets of discharge voltage signals, discharge current signals, and electrode consumption values provided online for prediction are input as input values, and transmitted to the modified discharge machining accuracy prediction model to output at least one discharge machining accuracy prediction in real time. The value is used as an output value, such as the predicted value of the roughness of the bottom surface of the blind hole of the workpiece, the true roundness of the upper opening, the size of the upper opening, the true roundness of the bottom circle of the blind hole, and the size of the bottom circle of the blind hole. In this embodiment, the present invention uses The electrode consumption value predicted online was used to modify the discharge machining accuracy prediction model, and then the discharge voltage signal, discharge current signal, and the electrode consumption value predicted online were input to the revised discharge machining accuracy prediction model. The online prediction of the electrode consumption value in the present invention can greatly reduce the offline measurement time of the electrode, so as to increase the productivity of the electrical discharge machine and improve the overall processing prediction accuracy.

當使用離線量測之電極消耗值或線上預測之電極消耗值時,本發明主要是可建立或修正預測模型,以完成放電加工精度的預測方法,透過資料前處理技術,找出對應建立後或修正後之預測模型及其輸入值及輸出值的相對應性,以達到放電加工精度預測。由於放電加工製程產品的精度,會直接受到即時放電電極尺寸外觀的影響,若以離線量測又會影響放電加工設備稼動率。本發明之放電加工精度的預測方法可以有效解決既有放電加工的精度預測能力不足的問題,來達到精度預測能力有效提升。 When the electrode consumption value measured offline or the electrode consumption value predicted online is used, the present invention mainly can establish or modify a prediction model to complete the prediction method of electrical discharge machining accuracy. Through data pre-processing technology, find out the corresponding The revised prediction model and the correspondence between its input and output values are used to achieve the accuracy prediction of EDM. Because the accuracy of the EDM process products is directly affected by the size and appearance of the instant discharge electrode, if it is measured offline, it will also affect the productivity of the EDM equipment. The method for predicting the accuracy of electrical discharge machining of the present invention can effectively solve the problem of insufficient accuracy prediction ability of the existing electrical discharge machining, so as to effectively improve the accuracy prediction ability.

請再參考圖1,在再一實施例中,控制回授單元221可為雷射測距裝置,且設置在主軸211上。藉此,該感測單元222可透過雷射測距裝置感測電極211a的位置來選擇是否要擷取放電加工機210之製程資料(即電極消耗值、放電電壓訊號及放電電流訊號)。舉例而言,透過雷射測距裝置判斷主軸211的移動方向是否為進給方向,若判斷結果為是,則代表主軸211正在進給加工中,故感測單元222可進一步取得加工時之製程資料。相反地,若判斷結果為否,感測單元222則不需要擷取製程資料。由此可知,透過控制回授單元221可有效地篩選感測單元222擷取之所需資料量。在其他實施例中,控制回授單元221亦可為光學尺。或者,感測單元222亦可直接從放電加工機210之控制器212中得知主軸211的座標位置,來判斷是否要擷取相關製程資料,同樣可達到篩選感測單元222擷取之所需資料量之目的。 Please refer to FIG. 1 again. In yet another embodiment, the control feedback unit 221 may be a laser ranging device and is disposed on the main shaft 211. Thereby, the sensing unit 222 can select whether to acquire the process data of the electric discharge machine 210 (ie, the electrode consumption value, the discharge voltage signal and the discharge current signal) by sensing the position of the electrode 211a through the laser ranging device. For example, the laser ranging device is used to determine whether the moving direction of the main shaft 211 is the feeding direction. If the determination result is yes, it means that the main shaft 211 is being processed. Therefore, the sensing unit 222 can further obtain the manufacturing process during processing. data. Conversely, if the determination result is no, the sensing unit 222 does not need to retrieve process data. It can be known that the required data amount captured by the sensing unit 222 can be effectively filtered by controlling the feedback unit 221. In other embodiments, the control feedback unit 221 may be an optical ruler. Alternatively, the sensing unit 222 can also directly obtain the coordinate position of the main shaft 211 from the controller 212 of the electric discharge machining machine 210 to determine whether to retrieve relevant process data, and the same can be achieved by the screening sensing unit 222. Purpose of data volume.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 In summary, it only describes the implementation or examples of the technical means adopted by the present invention to solve the problem, and is not intended to limit the scope of patent implementation of the present invention. That is, all changes and modifications that are consistent with the meaning of the scope of patent application of the present invention, or made according to the scope of patent of the present invention, are covered by the scope of patent of the present invention.

Claims (10)

一種放電加工精度的預測方法,包括下列步驟:以一建模基底萃取方法萃取一放電加工機之多個關鍵加工特徵值,其中該些關鍵加工特徵值包括一電極消耗值;將該些關鍵加工特徵值提供一自動化伺服器,以建立一放電加工精度預測模型;以及即時感測該放電加工機之多組放電電壓訊號及放電電流訊號作為輸入值,並傳送至建立後之放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值。A method for predicting the accuracy of electrical discharge machining includes the following steps: extracting a plurality of key processing feature values of an electrical discharge machine using a modeling substrate extraction method, wherein the key processing feature values include an electrode consumption value; The characteristic value provides an automated server to establish a prediction model of electrical discharge machining accuracy; and a plurality of sets of electrical discharge voltage signals and electrical discharge current signals of the electrical discharge machine are sensed in real time as input values and transmitted to the established electrical discharge machining accuracy prediction model , Taking at least one predicted value of EDM accuracy as an output value in real time. 如申請專利範圍第1項所述之放電加工精度的預測方法,更包括下列步驟:以一組放電電壓訊號、放電電流訊號及離線量測之電極消耗值,修正該放電加工機之多個關鍵加工特徵值;將修正後之該些關鍵加工特徵值提供該自動化伺服器,以修正該放電加工精度預測模型;以及即時感測該放電加工機之多組放電電壓訊號、放電電流訊號及提供離線量測之電極消耗值作為輸入值,並傳送至修正後之放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值。The method for predicting the accuracy of electrical discharge machining as described in item 1 of the scope of the patent application, further includes the following steps: Correcting multiple keys of the electrical discharge machine with a set of discharge voltage signal, discharge current signal, and electrode consumption value measured offline Processing characteristic values; providing the key processing characteristic values after correction to the automated server to modify the prediction model of the discharge machining accuracy; and real-time sensing of multiple sets of discharge voltage signals, discharge current signals of the discharge processing machine, and providing offline The measured electrode consumption value is used as an input value, and is transmitted to the revised prediction model of electrical discharge machining accuracy, and at least one predicted value of electrical discharge machining accuracy is immediately output as an output value. 如申請專利範圍第1項所述之放電加工精度的預測方法,更包括下列步驟:以多組放電電壓訊號、放電電流訊號及線上預測之電極消耗值作為輸入值,傳送至該放電加工精度預測模型,該放電加工精度預測模型含有一電極消耗預測模型,以即時輸出線上預測之電極消耗值並修正該放電加工機之多個關鍵加工特徵值;將修正後之該些關鍵加工特徵值提供該自動化伺服器,以修正該放電加工精度預測模型;以及即時感測多組放電電壓訊號、放電電流訊號及提供線上預測之電極消耗值作為輸入值,並傳送至修正後之放電加工精度預測模型,以即時輸出至少一放電加工精度預測值作為輸出值。The method for predicting the accuracy of electrical discharge machining as described in item 1 of the scope of the patent application, further includes the following steps: taking multiple sets of discharge voltage signals, electrical discharge current signals, and electrode consumption values predicted online as input values, and transmitting them to the electrical discharge machining accuracy prediction Model, the electrical discharge machining accuracy prediction model includes an electrode consumption prediction model to output the electrode consumption values predicted on the line in real time and modify a plurality of key machining characteristic values of the electric discharge machining machine; and provide the corrected key machining characteristic values to the An automated server to modify the prediction model of discharge machining accuracy; and to sense multiple sets of discharge voltage signals, discharge current signals, and electrode consumption values that provide online predictions as input values, and send them to the revised discharge machining accuracy prediction model, Take at least one predicted value of EDM accuracy as an output value. 如申請專利範圍第1項所述之放電加工精度的預測方法,其中萃取一放電加工機之多個關鍵加工特徵值的步驟,包括:以該放電加工機分別處理多個工件而獲取多組製程資料,其中每一組製程資料包括一電極消耗值、一放電電壓訊號以及一放電電流訊號;利用該些組製程資料建立多個加工特徵;獲取一量測機台量測該些工件之多個量測值,其中每一量測值分別為該放電加工機根據該些製程資料所加工處理該些工件的量測值;進行一相關性分析步驟,以獲得該些加工特徵與該些量測值間之多個相關性數值;以及從該些相關性數值中選取具有較大之相關性數值的加工特徵,作為該些關鍵加工特徵值。The method for predicting the accuracy of electrical discharge machining according to item 1 of the scope of patent application, wherein the step of extracting a plurality of key machining characteristic values of an electrical discharge machining machine includes: using the electrical discharge machining machine to separately process multiple workpieces to obtain multiple sets of processes Data, where each set of process data includes an electrode consumption value, a discharge voltage signal and a discharge current signal; use the set of process data to establish a plurality of processing features; obtain a measuring machine to measure a plurality of the workpieces Measured values, each of which is a measured value of the workpiece processed by the electrical discharge machine according to the process data; a correlation analysis step is performed to obtain the processing characteristics and the measurements A plurality of correlation values among the values; and a processing feature with a large correlation value is selected from the correlation values as the key processing feature values. 如申請專利範圍第4項所述之放電加工精度的預測方法,其中選取該些相關性數值中具有較大之相關性數值的加工特徵的步驟是選取相關性數值絕對值大於0.3的加工特徵。The method for predicting the accuracy of electrical discharge machining as described in item 4 of the scope of the patent application, wherein the step of selecting processing features with a large correlation value among the correlation values is to select processing features with absolute correlation values greater than 0.3. 如申請專利範圍第4項所述之放電加工精度的預測方法,其中該些加工特徵包括該電極消耗值、一放電頻率、一開路比、一短路比、一平均短路時間、一短路時間標準差、一平均短路電流、一短路電流標準差、一平均延遲時間、一延遲時間標準差、一平均放電峰值電流、一峰值電流標準差、一平均放電時間、一放電時間標準差、一平均放電能量以及一放電能量標準差。The method for predicting discharge machining accuracy as described in item 4 of the scope of patent application, wherein the machining characteristics include the electrode consumption value, a discharge frequency, an open circuit ratio, a short circuit ratio, an average short circuit time, and a short circuit time standard deviation. , An average short-circuit current, a short-circuit current standard deviation, an average delay time, a delay time standard deviation, an average discharge peak current, a peak current standard deviation, an average discharge time, a discharge time standard deviation, an average discharge energy And a standard deviation of discharge energy. 如申請專利範圍第6項所述之放電加工精度的預測方法,其中該量測值為該些工件之粗糙度量測值,且該些關鍵加工特徵值包括該電極消耗值、一放電頻率、一短路比、一平均短路時間、一平均短路電流、一平均延遲時間、一延遲時間標準差、一平均放電峰值電流、一平均放電時間、一平均放電能量以及一放電能量標準差。The method for predicting the accuracy of electrical discharge machining as described in item 6 of the scope of the patent application, wherein the measurement value is a roughness measurement value of the workpieces, and the key processing characteristic values include the electrode consumption value, a discharge frequency, A short-circuit ratio, an average short-circuit time, an average short-circuit current, an average delay time, a delay time standard deviation, an average discharge peak current, an average discharge time, an average discharge energy, and a discharge energy standard deviation. 如申請專利範圍第6項所述之放電加工精度的預測方法,其中:該放電加工機分別對每一該些工件進行鑽孔步驟,且在每一該些工件上形成一盲孔洞,其中每一該些盲孔洞具有位於每一該些工件之上表面之一上開口以及盲孔底圓;其中該量測值為該上開口之尺寸的量測值,且該些關鍵加工特徵值包括該電極消耗值、一放電頻率、一短路比、一平均短路時間、一平均短路電流、一平均延遲時間、一延遲時間標準差、一平均放電峰值電流、一平均放電時間、一平均放電能量以及一放電能量標準差。The method for predicting the accuracy of electrical discharge machining as described in item 6 of the scope of patent application, wherein the electrical discharge machining machine performs a drilling step on each of the workpieces, and forms a blind hole on each of the workpieces, where each Each of the blind holes has an upper opening on one of the upper surfaces of each of the workpieces and a bottom circle of the blind hole; wherein the measurement value is a measurement value of the size of the upper opening, and the key processing characteristic values include the Electrode consumption value, a discharge frequency, a short-circuit ratio, an average short-circuit time, an average short-circuit current, an average delay time, a delay time standard deviation, an average discharge peak current, an average discharge time, an average discharge energy, and Standard deviation of discharge energy. 如申請專利範圍第6項所述之放電加工精度的預測方法,其中:該放電加工機分別對每一該些工件進行鑽孔步驟,且在每一該些工件上形成一盲孔洞,其中每一該些盲孔洞具有位於每一該些工件之上表面之一上開口以及盲孔底圓;其中該量測值為該盲孔底圓之尺寸的量測值,且該些關鍵加工特徵值包括該電極消耗值、一開路比、一短路比、一平均短路時間、一平均短路電流、一平均延遲時間、一延遲時間標準差、一平均放電峰值電流、一平均放電時間、一平均放電能量以及一放電能量標準差。The method for predicting the accuracy of electrical discharge machining as described in item 6 of the scope of patent application, wherein the electrical discharge machining machine performs a drilling step on each of the workpieces, and forms a blind hole on each of the workpieces, where each Each of the blind holes has an opening on one of the upper surfaces of each of the workpieces and a bottom circle of the blind hole; wherein the measured value is a measurement of the size of the bottom circle of the blind hole, and the key processing characteristic values Including the electrode consumption value, an open circuit ratio, a short circuit ratio, an average short circuit time, an average short circuit current, an average delay time, a delay time standard deviation, an average discharge peak current, an average discharge time, and an average discharge energy And a standard deviation of discharge energy. 如申請專利範圍第1項所述之放電加工精度的預測方法,其中該電極消耗值為一電極之頭部邊緣的軸向消耗值、徑向消耗值及電極消耗面積。The method for predicting the accuracy of electrical discharge machining according to item 1 of the scope of the patent application, wherein the electrode consumption value is an axial consumption value, a radial consumption value and an electrode consumption area of a head edge of an electrode.
TW106141928A 2017-11-30 2017-11-30 Prediction method of electrical discharge machining accuracy TWI632968B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106141928A TWI632968B (en) 2017-11-30 2017-11-30 Prediction method of electrical discharge machining accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106141928A TWI632968B (en) 2017-11-30 2017-11-30 Prediction method of electrical discharge machining accuracy

Publications (2)

Publication Number Publication Date
TWI632968B true TWI632968B (en) 2018-08-21
TW201924828A TW201924828A (en) 2019-07-01

Family

ID=63959673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141928A TWI632968B (en) 2017-11-30 2017-11-30 Prediction method of electrical discharge machining accuracy

Country Status (1)

Country Link
TW (1) TWI632968B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796014B (en) * 2021-11-26 2023-03-11 財團法人金屬工業研究發展中心 Electro-chemical machining process accuracy monitoring system and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791949B (en) * 2019-03-15 2023-02-11 日商住友重機械工業股份有限公司 Monitoring device, display device, monitoring method, and monitoring program
TWI778460B (en) * 2020-11-27 2022-09-21 財團法人金屬工業研究發展中心 Online prediction method of tool-electrode consumption and prediction method of machining accuracy
US11904399B2 (en) * 2020-11-30 2024-02-20 Metal Industries Research & Development Centre Online prediction method of tool-electrode consumption and prediction method of machining accuracy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200520878A (en) * 2003-12-31 2005-07-01 Ind Tech Res Inst Automatic electric-discharge-machining program generation device with stage by stage parameter adjustment
CN1905978A (en) * 2004-01-29 2007-01-31 三菱电机株式会社 Electric discharge machining device and electric discharge machining method
CN1907617A (en) * 2005-08-01 2007-02-07 阿奇公司 Method and generator for electrical discharge machining
TW200831223A (en) * 2007-01-23 2008-08-01 Ind Tech Res Inst Method for detecting and compensating electrode wear of electric dischage machining
CN102781616A (en) * 2009-10-21 2012-11-14 完美点Edm公司 Spark gap control for electro-discharge machining
CN104368886A (en) * 2013-08-16 2015-02-25 发那科株式会社 Cutting tool machining method and a wire electric discharge machine
CN104439572A (en) * 2013-09-13 2015-03-25 通用电气公司 Electroerosion machining system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200520878A (en) * 2003-12-31 2005-07-01 Ind Tech Res Inst Automatic electric-discharge-machining program generation device with stage by stage parameter adjustment
CN1905978A (en) * 2004-01-29 2007-01-31 三菱电机株式会社 Electric discharge machining device and electric discharge machining method
CN1907617A (en) * 2005-08-01 2007-02-07 阿奇公司 Method and generator for electrical discharge machining
TW200831223A (en) * 2007-01-23 2008-08-01 Ind Tech Res Inst Method for detecting and compensating electrode wear of electric dischage machining
CN102781616A (en) * 2009-10-21 2012-11-14 完美点Edm公司 Spark gap control for electro-discharge machining
CN104368886A (en) * 2013-08-16 2015-02-25 发那科株式会社 Cutting tool machining method and a wire electric discharge machine
CN104439572A (en) * 2013-09-13 2015-03-25 通用电气公司 Electroerosion machining system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796014B (en) * 2021-11-26 2023-03-11 財團法人金屬工業研究發展中心 Electro-chemical machining process accuracy monitoring system and method thereof

Also Published As

Publication number Publication date
TW201924828A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
TWI632968B (en) Prediction method of electrical discharge machining accuracy
US10413984B2 (en) Method for predicting precision of electrical discharge machine
Zhou et al. Tool wear monitoring using acoustic emissions by dominant-feature identification
TW201421178A (en) Method for predicting machining quality of machine tool
US8372252B2 (en) Method for setting a distance between an electrode and a workpiece
TWI628021B (en) Method for extracting intelligent features for predicting precision of electrical discharge machine and predicting method
CN105302123B (en) The monitoring method of on-line measurement data
US11940357B2 (en) System for predicting anomalies of machining
Lakshmanan et al. Optimization of surface roughness using response surface methodology for EN13 Tool Steel EDM Machining
Caggiano et al. Advanced sensor signal feature extraction and pattern recognition for wire EDM process monitoring
CN111331211B (en) On-line penetration detection method and system for electric spark small hole machining
CN114840932A (en) Method for improving TC4 titanium alloy surface roughness prediction precision through multi-factor coupling
Goswami et al. Support vector machine regression for predicting dimensional features of die-sinking electrical discharge machined components
EP3539705A1 (en) System and method for control of an edm drilling process
CN115106615B (en) Welding deviation real-time detection method and system based on intelligent working condition identification
CN111065106A (en) Index mutation cell detection method based on anomaly detection and Kernel Density Estimation (KDE) in mobile communication network
TWI778460B (en) Online prediction method of tool-electrode consumption and prediction method of machining accuracy
US20110238200A1 (en) Method for determing the machining quality of components, particularly for metal cutting by nc machines
US20220168834A1 (en) Online prediction method of tool-electrode consumption and prediction method of machining accuracy
TWI776606B (en) A method for parameter optimization and through-hole detection of an edm hole drilling
KR20120128251A (en) Fault detection method
CN114877821B (en) Back drilling depth detection system and method for PCB
Kayabaşi et al. On-line surface roughness prediction by using a probabilistic approach for end-milling
TWI783796B (en) Cross-process accuracy monitoring system and cross-process accuracy monitoring method
TWI796014B (en) Electro-chemical machining process accuracy monitoring system and method thereof