TWI632775B - Buffer circuit - Google Patents

Buffer circuit Download PDF

Info

Publication number
TWI632775B
TWI632775B TW106111708A TW106111708A TWI632775B TW I632775 B TWI632775 B TW I632775B TW 106111708 A TW106111708 A TW 106111708A TW 106111708 A TW106111708 A TW 106111708A TW I632775 B TWI632775 B TW I632775B
Authority
TW
Taiwan
Prior art keywords
pmos transistor
transistor
buffer circuit
current
pmos
Prior art date
Application number
TW106111708A
Other languages
Chinese (zh)
Other versions
TW201838332A (en
Inventor
明東 陳
惠禎 林
又法 王
Original Assignee
光寶新加坡有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光寶新加坡有限公司 filed Critical 光寶新加坡有限公司
Priority to TW106111708A priority Critical patent/TWI632775B/en
Application granted granted Critical
Publication of TWI632775B publication Critical patent/TWI632775B/en
Publication of TW201838332A publication Critical patent/TW201838332A/en

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

一種緩衝電路,操作於一工作電壓,且由其輸入端接收此工作電壓,其中此工作電壓被控制於一電壓區間。緩衝電路至少包括高壓恆流緩衝電路。於高壓恆流緩衝電路中,第一NMOS電晶體之源極接地,且第一PMOS電晶體與第一NMOS電晶體之兩汲極相接。第二PMOS電晶體之源極接於緩衝電路之輸入端,且第二PMOS電晶體之汲極接於第一PMOS電晶體之源極。串接式電流鏡之輸入端接於緩衝電路之輸入端,且串接式電流鏡之輸出端接於第一PMOS電晶體之閘極與第二PMOS電晶體之閘極。第一PMOS電晶體為高電壓PMOS電晶體,第一NMOS電晶體為低電壓NMOS電晶體,且第二PMOS電晶體為低電壓PMOS電晶體,以減小緩衝電路工作於不同電壓下所造成之輸出電流的變化。 A snubber circuit operates at an operating voltage and receives the operating voltage from its input, wherein the operating voltage is controlled to a voltage interval. The buffer circuit includes at least a high voltage constant current buffer circuit. In the high voltage constant current buffer circuit, the source of the first NMOS transistor is grounded, and the first PMOS transistor is connected to the two drains of the first NMOS transistor. The source of the second PMOS transistor is connected to the input end of the buffer circuit, and the drain of the second PMOS transistor is connected to the source of the first PMOS transistor. The input end of the series current mirror is connected to the input end of the buffer circuit, and the output end of the series current mirror is connected to the gate of the first PMOS transistor and the gate of the second PMOS transistor. The first PMOS transistor is a high voltage PMOS transistor, the first NMOS transistor is a low voltage NMOS transistor, and the second PMOS transistor is a low voltage PMOS transistor to reduce the operation of the buffer circuit at different voltages. The change in output current.

Description

緩衝電路 Buffer circuit

本發明乃是關於一種高電壓且定電流的緩衝電路,特別是指一種即便工作電壓會於一大範圍的電壓區間內變動亦能提供穩定輸出電流的緩衝電路。 The present invention relates to a high voltage and constant current buffer circuit, and more particularly to a buffer circuit capable of providing a stable output current even if the operating voltage fluctuates within a wide range of voltage ranges.

於智慧型功率模組(Intelligent Power Module;IPM)的應用中,緩衝電路常用以提供足夠的驅動電源給負載。對於智慧型功率模組而言,其負載多為雙極性接面電晶體(Bipolar Junction Transistor;BJT),因此,由緩衝電路輸出至負載的電流不可過大。原因在於,若由緩衝電路輸出至負載的電流過大,將會造成智慧型功率模組之輸出的傳輸延遲(propagation delay)。 In the application of Intelligent Power Module (IPM), the snubber circuit is often used to provide sufficient driving power to the load. For smart power modules, the load is mostly Bipolar Junction Transistor (BJT). Therefore, the current output from the snubber circuit to the load should not be too large. The reason is that if the current output from the snubber circuit to the load is too large, the propagation delay of the output of the smart power module will be caused.

請參照圖1,圖1是根據先前技術所繪示之緩衝電路的電路圖。如圖1所示,為了讓緩衝電路100能夠操作在一個較大的工作電壓區間,傳統的緩衝電路100中配置了一NMOS電晶體MN1’與一PMOS電晶體MP1’,並將此NMOS電晶體MN1’與此PMOS電晶體MP1’均設計為高電壓電晶體。除此之外,傳統的緩衝電路100中配置了另一PMOS電晶體MP2’,以將位準偏移器之輸出端電壓以及PMOS電晶體MP1’的閘極電壓限制在一預設電壓。此PMOS電晶體MP2’之源極連接於緩衝電路100的輸入端以接收工作電壓,且此PMOS電晶體MP2’之閘極與汲極相連接後再進一步連接至PMOS電晶體MP1’之閘極。 Please refer to FIG. 1. FIG. 1 is a circuit diagram of a buffer circuit according to the prior art. As shown in FIG. 1, in order to enable the buffer circuit 100 to operate in a large operating voltage range, an NMOS transistor MN1' and a PMOS transistor MP1' are disposed in the conventional buffer circuit 100, and the NMOS transistor is disposed. Both MN1' and this PMOS transistor MP1' are designed as high voltage transistors. In addition to this, another PMOS transistor MP2' is disposed in the conventional buffer circuit 100 to limit the output terminal voltage of the level shifter and the gate voltage of the PMOS transistor MP1' to a predetermined voltage. The source of the PMOS transistor MP2' is connected to the input end of the buffer circuit 100 to receive the operating voltage, and the gate of the PMOS transistor MP2' is connected to the drain and further connected to the gate of the PMOS transistor MP1'. .

然而,此種緩衝電路100雖然能夠操作於較大的工作電壓區 間,但其輸出電流會隨著工作電壓變化而改變。較具體地說,此種緩衝電路的輸出電流會隨著工作電壓的增大而明顯地增加。也就是說,若將此種緩衝電路使用於智慧型功率模組(Intelligent Power Module;IPM)的應用中,可能會提供過大的輸出電流給負載(如:NPN雙極性接面電晶體),造成智慧型功率模組之輸出的傳輸延遲。 However, such a snubber circuit 100 can operate in a large operating voltage region. Between, but its output current will change with the operating voltage. More specifically, the output current of such a snubber circuit increases significantly as the operating voltage increases. In other words, if such a snubber circuit is used in an intelligent power module (IPM) application, it may provide excessive output current to the load (eg, NPN bipolar junction transistor), resulting in The transmission delay of the output of the smart power module.

本發明實施例提供一種緩衝電路,此緩衝電路操作於一工作電壓且由緩衝電路之輸入端接收此工作電壓,其中此工作電壓被控制於一電壓區間。此緩衝電路至少包括高壓恆流緩衝電路,且高壓恆流緩衝電路包括第一PMOS電晶體、第一NMOS電晶體、第二PMOS電晶體與串接式電流鏡。於高壓恆流緩衝電路中,第一NMOS電晶體之源極接地,且第一PMOS電晶體之汲極與第一NMOS電晶體之汲極相連接。第二PMOS電晶體之源極連接於緩衝電路之輸入端,且第二PMOS電晶體之汲極連接於第一PMOS電晶體之源極。串接式電流鏡之輸入端連接於緩衝電路之輸入端,且串接式電流鏡之輸出端連接於第一PMOS電晶體之閘極與第二PMOS電晶體之閘極。於高壓恆流緩衝電路中,第一PMOS電晶體被設計為一高電壓PMOS電晶體,第一NMOS電晶體被設計為一高電壓NMOS電晶體,且第二PMOS電晶體被設計為一低電壓PMOS電晶體,以減小緩衝電路工作於不同工作電壓下所造成緩衝電路之輸出電流的變化。 Embodiments of the present invention provide a buffer circuit that operates at an operating voltage and receives the operating voltage from an input terminal of the buffer circuit, wherein the operating voltage is controlled to a voltage interval. The buffer circuit includes at least a high voltage constant current buffer circuit, and the high voltage constant current buffer circuit includes a first PMOS transistor, a first NMOS transistor, a second PMOS transistor, and a series current mirror. In the high voltage constant current buffer circuit, the source of the first NMOS transistor is grounded, and the drain of the first PMOS transistor is connected to the drain of the first NMOS transistor. The source of the second PMOS transistor is connected to the input end of the buffer circuit, and the drain of the second PMOS transistor is connected to the source of the first PMOS transistor. The input end of the series current mirror is connected to the input end of the buffer circuit, and the output end of the serial current mirror is connected to the gate of the first PMOS transistor and the gate of the second PMOS transistor. In the high voltage constant current buffer circuit, the first PMOS transistor is designed as a high voltage PMOS transistor, the first NMOS transistor is designed as a high voltage NMOS transistor, and the second PMOS transistor is designed as a low voltage PMOS transistor to reduce the variation of the output current of the snubber circuit caused by the snubber circuit operating at different operating voltages.

在本發明其中一個實施例中,緩衝電路還包括電流加速電路。電流加速電路連接於高壓恆流緩衝電路與脈衝產生器,以接收脈衝產生器之一開關訊號。脈衝產生器輸出一窄脈衝訊號作為開關訊號來導通第二NMOS電晶體,以驅動電流加速電路中之PMOS電流鏡,使得PMOS電流鏡直接地輸出一電流以增加高壓 恆流緩衝電路之輸出電流。當脈衝產生器之輸入訊號由低電位轉為高電位,脈衝產生器輸出窄脈衝訊號至電流加速電路,使得電流加速電路將所接收之高壓恆流緩衝電路之輸出電流放大後輸出。 In one of the embodiments of the present invention, the snubber circuit further includes a current accelerating circuit. The current accelerating circuit is connected to the high voltage constant current buffer circuit and the pulse generator to receive a switching signal of the pulse generator. The pulse generator outputs a narrow pulse signal as a switching signal to turn on the second NMOS transistor to drive the PMOS current mirror in the current acceleration circuit, so that the PMOS current mirror directly outputs a current to increase the high voltage. The output current of the constant current buffer circuit. When the input signal of the pulse generator is changed from a low potential to a high potential, the pulse generator outputs a narrow pulse signal to the current acceleration circuit, so that the current acceleration circuit amplifies the output current of the received high voltage constant current buffer circuit and outputs the output current.

高壓恆流緩衝電路高壓恆流緩衝電路高壓恆流緩衝電路高壓恆流緩衝電路綜上所述,由於高壓恆流緩衝電路中的第一PMOS電晶體與第一NMOS電晶體被設計為高電壓電晶體,本發明所提供之緩衝電路便能夠操作於大範圍的工作電壓。再者,第二PMOS電晶體與串接式電流鏡的配置使得緩衝電路在不同的工作電壓下仍能夠提供穩定的低輸出電流。另外,當緩衝電路操作於較低的工作電壓時,電流加速電路能夠將高壓恆流緩衝電路之輸出電流放大後再輸出,以穩定緩衝電路的輸出電流。 High voltage constant current buffer circuit high voltage constant current buffer circuit high voltage constant current buffer circuit high voltage constant current buffer circuit in summary, because the first PMOS transistor and the first NMOS transistor in the high voltage constant current buffer circuit are designed as high voltage electricity The crystal, the snubber circuit provided by the present invention is capable of operating over a wide range of operating voltages. Furthermore, the configuration of the second PMOS transistor and the series current mirror allows the snubber circuit to provide a stable low output current at different operating voltages. In addition, when the buffer circuit operates at a lower operating voltage, the current accelerating circuit can amplify the output current of the high voltage constant current buffer circuit and output it to stabilize the output current of the buffer circuit.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

100、200、400‧‧‧緩衝電路 100, 200, 400‧‧‧ buffer circuit

Vcc、Vcc1‧‧‧供應電壓 Vcc, Vcc1‧‧‧ supply voltage

INV1、INV2‧‧‧反相器 INV1, INV2‧‧‧ inverter

LS‧‧‧位準偏移器 LS‧‧‧ position shifter

Vb1、Vb2‧‧‧緩衝偏壓 Vb1, Vb2‧‧‧ buffer bias

MP1’、MP2’‧‧‧PMOS電晶體 MP1', MP2'‧‧‧ PMOS transistor

MN1’‧‧‧NMOS電晶體 MN1'‧‧‧ NMOS transistor

MP1‧‧‧第一PMOS電晶體 MP1‧‧‧First PMOS transistor

MP2‧‧‧第二PMOS電晶體 MP2‧‧‧second PMOS transistor

MN1‧‧‧第一NMOS電晶體 MN1‧‧‧First NMOS transistor

MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor

MN3‧‧‧第三NMOS電晶體 MN3‧‧‧ Third NMOS transistor

Iout‧‧‧輸出電流 Iout‧‧‧Output current

MP4‧‧‧第四PMOS電晶體 MP4‧‧‧fourth PMOS transistor

MP5‧‧‧第五PMOS電晶體 MP5‧‧‧ Fifth PMOS transistor

MP6‧‧‧第六PMOS電晶體 MP6‧‧‧6th PMOS transistor

MP7‧‧‧第七PMOS電晶體 MP7‧‧‧ seventh PMOS transistor

SM‧‧‧串接式電流鏡 SM‧‧‧Spliced Current Mirror

PM‧‧‧PMOS電流鏡 PM‧‧‧PMOS current mirror

CA‧‧‧高壓恆流緩衝電路 CA‧‧‧High voltage constant current buffer circuit

CS‧‧‧電流加速電路 CS‧‧‧current accelerating circuit

PG‧‧‧脈衝產生器 PG‧‧‧pulse generator

R1‧‧‧電阻 R1‧‧‧ resistance

Vin‧‧‧輸入端 Vin‧‧‧ input

CT1、CT2、CT3、CT4‧‧‧曲線 CT1, CT2, CT3, CT4‧‧‧ curves

圖1是根據先前技術所繪示之緩衝電路的電路圖。 1 is a circuit diagram of a snubber circuit according to the prior art.

圖2是本發明實施例所提供之緩衝電路的電路圖。 2 is a circuit diagram of a buffer circuit provided by an embodiment of the present invention.

圖3是根據圖1與圖2所繪示之緩衝電路之輸出電流與工作電壓之關係所繪示的曲線圖。 FIG. 3 is a graph showing the relationship between the output current and the operating voltage of the snubber circuit illustrated in FIGS. 1 and 2.

圖4是本發明另一實施例所提供之緩衝電路的電路圖。 4 is a circuit diagram of a buffer circuit provided by another embodiment of the present invention.

圖5是根據圖4所繪示之緩衝電路所驅動之智慧型功率模組之負載之輸出電壓與時間之關係的曲線圖。 FIG. 5 is a graph showing the relationship between the output voltage of the load of the smart power module driven by the buffer circuit shown in FIG. 4 and time.

在下文將參看隨附圖式更充分地描述各種例示性實施例,在隨附圖式中展示一些例示性實施例。然而,本發明概念可能以許 多不同形式來體現,且不應解釋為限於本文中所闡述之例示性實施例。確切而言,提供此等例示性實施例使得本發明將為詳盡且完整,且將向熟習此項技術者充分傳達本發明概念的範疇。在諸圖式中,類似數字始終指示類似元件。 Various illustrative embodiments are described more fully hereinafter with reference to the accompanying drawings. However, the concept of the present invention may be The invention is in many different forms and should not be construed as being limited to the illustrative embodiments set forth herein. Rather, these exemplary embodiments are provided so that this invention will be in the In the figures, like numerals are used to indicate like elements.

應理解,雖然本文中可能使用術語第一、第二、第三等來描述各種元件,但此等元件不應受此等術語限制。此等術語乃用以區分一元件與另一元件。因此,下文論述之第一元件可稱為第二元件而不偏離本發明概念之教示。如本文中所使用,術語「及/或」包括相關聯之列出項目中之任一者及一或多者之所有組合。 It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, such elements are not limited by the terms. These terms are used to distinguish one element from another. Thus, a first element discussed below could be termed a second element without departing from the teachings of the inventive concept. As used herein, the term "and/or" includes any of the associated listed items and all combinations of one or more.

〔緩衝電路的實施例〕 [Example of snubber circuit]

請參照圖2,圖2是本發明實施例所提供之緩衝電路的電路圖。本實施例所提供之緩衝電路200至少包括一高壓恆流緩衝電路(High Voltage Constant Current Buffer Circuit)CA,如圖2A所示,高壓恆流緩衝電路CA之輸入端Vin即為緩衝電路200的輸入端。緩衝電路200操作於一工作電壓,且此工作電壓由緩衝電路200之輸入端所接收之供應電壓Vcc來提供。因此,供應電壓Vcc被控制於一電壓區間。於本實施例中,緩衝電路200之輸入端所接收之供應電壓Vcc的電壓區間可為4.5伏特至30伏特。為了能夠操作於4.5伏特至30伏特之電壓區間,高壓恆流緩衝電路CA包括第一PMOS電晶體MP1與第一NMOS電晶體MN1,其中第一NMOS電晶體MN1之源極接地,且第一PMOS電晶體MP1之汲極與第一NMOS電晶體MN1之汲極相連接。此外,為了承受緩衝電路200較大的供應電壓Vcc,第一PMOS電晶體MP1被設計為-一高電壓PMOS電晶體,且第一NMOS電晶體MN1被設計為一高電壓NMOS電晶體。 Please refer to FIG. 2. FIG. 2 is a circuit diagram of a buffer circuit according to an embodiment of the present invention. The buffer circuit 200 provided in this embodiment includes at least a high voltage constant current buffer circuit CA. As shown in FIG. 2A, the input terminal Vin of the high voltage constant current buffer circuit CA is the input of the buffer circuit 200. end. The buffer circuit 200 operates at an operating voltage, and the operating voltage is provided by a supply voltage Vcc received at an input of the buffer circuit 200. Therefore, the supply voltage Vcc is controlled to a voltage interval. In this embodiment, the voltage interval of the supply voltage Vcc received at the input end of the buffer circuit 200 may be 4.5 volts to 30 volts. In order to be able to operate in a voltage range of 4.5 volts to 30 volts, the high voltage constant current buffer circuit CA includes a first PMOS transistor MP1 and a first NMOS transistor MN1, wherein the source of the first NMOS transistor MN1 is grounded, and the first PMOS The drain of the transistor MP1 is connected to the drain of the first NMOS transistor MN1. Furthermore, in order to withstand the large supply voltage Vcc of the snubber circuit 200, the first PMOS transistor MP1 is designed as a high voltage PMOS transistor, and the first NMOS transistor MN1 is designed as a high voltage NMOS transistor.

值得注意地是,不同於圖1所繪示之先前技術,於本實施例中,高壓恆流緩衝電路CA還包括了第二PMOS電晶體MP2與串接式電流鏡SM與一電阻R1。復如圖2所示,第二PMOS電晶體 MP2之源極耦接於高壓恆流緩衝電路CA之供應電壓Vcc,且第二PMOS電晶體MP2之汲極連接於第一PMOS電晶體MP1之源極。另外,串接式電流鏡SM之輸入端耦接於高壓恆流緩衝電路CA之供應電壓Vcc,且串接式電流鏡SM之輸出端連接於。電阻R1之另一端接於第一PMOS電晶體MP1之閘極與第二PMOS電晶體MP2之閘極。於是,第一PMOS電晶體MP1之閘極電壓與第二PMOS電晶體MP2之閘極電壓係由串接式電流鏡SM與電阻R1控制。 Notably, unlike the prior art illustrated in FIG. 1, in the present embodiment, the high voltage constant current buffer circuit CA further includes a second PMOS transistor MP2 and a series current mirror SM and a resistor R1. As shown in Figure 2, the second PMOS transistor The source of the MP2 is coupled to the supply voltage Vcc of the high voltage constant current buffer circuit CA, and the drain of the second PMOS transistor MP2 is connected to the source of the first PMOS transistor MP1. In addition, the input end of the series current mirror SM is coupled to the supply voltage Vcc of the high voltage constant current buffer circuit CA, and the output end of the series current mirror SM is connected. The other end of the resistor R1 is connected to the gate of the first PMOS transistor MP1 and the gate of the second PMOS transistor MP2. Thus, the gate voltage of the first PMOS transistor MP1 and the gate voltage of the second PMOS transistor MP2 are controlled by the series current mirror SM and the resistor R1.

進一步說明,串接式電流鏡SM係由第四PMOS電晶體MP4與第五PMOS電晶體MP5串聯組成。第四PMOS電晶體MP4需設計為低電壓PMOS電晶體,且第五PMOS電晶體MP5需設計為高電壓PMOS電晶體,如此一來,相較於由第一PMOS電晶體MP1和第二PMOS電晶體MP2所構成的一個高壓電流鏡,串接式電流鏡SM能具有與其類似的電路架構與成比例的尺寸。第四PMOS電晶體MP4之源極耦接於高壓恆流緩衝電路CA之供應電壓Vcc,且第五PMOS電晶體MP5之汲極為串接式電流鏡SM之輸出端。第四PMOS電晶體MP4之汲極連接於第五PMOS電晶體MP5之源極。 Further, the series current mirror SM is composed of a fourth PMOS transistor MP4 and a fifth PMOS transistor MP5 connected in series. The fourth PMOS transistor MP4 needs to be designed as a low voltage PMOS transistor, and the fifth PMOS transistor MP5 needs to be designed as a high voltage PMOS transistor, so that compared to the first PMOS transistor MP1 and the second PMOS transistor A high voltage current mirror composed of a crystal MP2, the series current mirror SM can have a similar circuit structure and a proportional size. The source of the fourth PMOS transistor MP4 is coupled to the supply voltage Vcc of the high voltage constant current buffer circuit CA, and the output of the fifth PMOS transistor MP5 is the output terminal of the serial current mirror SM. The drain of the fourth PMOS transistor MP4 is connected to the source of the fifth PMOS transistor MP5.

如前述,高壓恆流緩衝電路CA包括電阻R1,且復如圖2所示,電阻R1係連接於串接式電流鏡SM之輸出端、第一PMOS電晶體MP1之閘極與第二PMOS電晶體MP2之閘極之間。更細部地看,第五PMOS電晶體MP5之汲極、以及第四PMOS電晶體MP4之閘極與第五PMOS電晶體MP5之閘極均連接於電阻R1。由於串接式電流鏡SM中的第四PMOS電晶體MP4與第五PMOS電晶體MP5之偏壓易受電路溫度變化影響,故需設置電阻R1以進行溫度補償。也就是說,電阻R1有助於降低串接式電流鏡SM中的第四PMOS電晶體MP4與第五PMOS電晶體MP5對溫度的敏感度。 As described above, the high voltage constant current buffer circuit CA includes a resistor R1, and as shown in FIG. 2, the resistor R1 is connected to the output terminal of the series current mirror SM, the gate of the first PMOS transistor MP1, and the second PMOS battery. Between the gates of the crystal MP2. In more detail, the drain of the fifth PMOS transistor MP5, and the gate of the fourth PMOS transistor MP4 and the gate of the fifth PMOS transistor MP5 are both connected to the resistor R1. Since the bias voltages of the fourth PMOS transistor MP4 and the fifth PMOS transistor MP5 in the series current mirror SM are susceptible to circuit temperature variations, the resistor R1 needs to be set for temperature compensation. That is, the resistor R1 helps to reduce the sensitivity of the fourth PMOS transistor MP4 and the fifth PMOS transistor MP5 in the series current mirror SM to temperature.

此外,由於第四PMOS電晶體MP4之閘極與第五PMOS電晶體MP5之閘極相連,使得串接式電流鏡SM之輸出阻抗增加。串接式電流鏡SM之輸出阻抗增加會使得緩衝電路200的輸出電流Iout較不易因為其操作於不同的供應電壓Vcc而產生變化。請參見圖3,圖3是根據圖1與圖2所繪示之緩衝電路之輸出電流與工作電壓之關係所繪示的曲線圖。由圖3可以看出,傳統的緩衝電路100其供應電壓若由5伏特增加至35伏特時,其輸出電流Iout約會從200μA增加至350μA(如圖3中的曲線CT1所示);然而,本實施例所提供之緩衝電路200其工作電壓若由5伏特增加至35伏特時,其輸出電流Iout則約從225μA增加至250μA(如圖3中的曲線CT2所示)。也就是說,由於僅設置有PMOS電晶體MP1’,傳統的緩衝電路100在操作於不同的供應電壓時,其輸出電流Iout之變化較大(350μA-200μA=150μA),但本實施例所提供之緩衝電路200由於另設置有圖2所示之串接式電流鏡SM,便能使緩衝電路200操作於不同的供應電壓時其輸出電流Iout之變化被減緩(250μA-225μA=25μA)。 Further, since the gate of the fourth PMOS transistor MP4 is connected to the gate of the fifth PMOS transistor MP5, the output impedance of the series current mirror SM is increased. The increase in the output impedance of the series current mirror SM makes the output current Iout of the snubber circuit 200 less susceptible to variations due to its operation at different supply voltages Vcc. Please refer to FIG. 3. FIG. 3 is a graph showing the relationship between the output current and the operating voltage of the snubber circuit according to FIG. 1 and FIG. As can be seen from FIG. 3, when the conventional snubber circuit 100 increases its supply voltage from 5 volts to 35 volts, its output current Iout increases from 200 μA to 350 μA (as shown by curve CT1 in FIG. 3); however, When the operating voltage of the buffer circuit 200 provided by the embodiment is increased from 5 volts to 35 volts, the output current Iout is increased from about 225 μA to 250 μA (as shown by the curve CT2 in FIG. 3). That is, since only the PMOS transistor MP1' is provided, the conventional snubber circuit 100 has a large change in the output current Iout when operating at different supply voltages (350 μA - 200 μA = 150 μA), but is provided by this embodiment. The buffer circuit 200 is further provided with the series current mirror SM shown in FIG. 2, so that the change of the output current Iout when the buffer circuit 200 operates at different supply voltages is slowed down (250 μA - 225 μA = 25 μA).

更特定地說,請復參照圖3,當操作於不同的供應電壓Vcc時,相較於僅設置有PMOS電晶體MP1’之傳統的緩衝電路100,本實施例所提供之緩衝電路200之輸出電流Iout不僅變化較小,其電流值也較小,如此一來便有利於將本實施例所提供之緩衝電路200應用於智慧型功率模組中,用以輸出電流來驅動智慧型功率模組之負載,如:NPN雙極性接面電晶體。原因在於,一般而言,智慧型功率模組之負載可工作較大的電壓範圍,但需工作於較小的輸出電流。若由緩衝電路輸出至智慧型功率模組之負載的電流過大,將會造成智慧型功率模組之輸出的傳輸延遲(propagation delay)。 More specifically, referring to FIG. 3, when operating at different supply voltages Vcc, the output of the buffer circuit 200 provided in this embodiment is compared to the conventional buffer circuit 100 in which only the PMOS transistor MP1' is provided. The current Iout is not only changed less, but also has a smaller current value. Therefore, the buffer circuit 200 provided in this embodiment is applied to the smart power module for outputting current to drive the smart power module. The load, such as: NPN bipolar junction transistor. The reason is that, in general, the load of the smart power module can work in a larger voltage range, but it needs to work with a smaller output current. If the current output from the snubber circuit to the load of the smart power module is too large, the propagation delay of the output of the smart power module will be caused.

除此之外,復如圖2所示,為了提供足夠的電壓予高壓恆流緩衝電路CA,於圖2所示之電路中,另設置有兩個反相器INV1 與INV2,以及一個位準偏移器LS,反相器INV1與INV2以及位準偏移器LS均連接於高壓恆流緩衝電路CA。較詳細地說,反相器INV1連接於反相器INV2,並接收供應電壓Vcc1,且反相器INV2連接於位準偏移器LS。位準偏移器LS係設置以提高供應電壓Vcc1,接著將被提高的供應電壓Vcc1提供給高壓恆流緩衝電路CA。 In addition, as shown in FIG. 2, in order to provide a sufficient voltage to the high voltage constant current buffer circuit CA, in the circuit shown in FIG. 2, two inverters INV1 are additionally provided. Together with INV2, and a level shifter LS, the inverters INV1 and INV2 and the level shifter LS are both connected to the high voltage constant current buffer circuit CA. In more detail, the inverter INV1 is connected to the inverter INV2, and receives the supply voltage Vcc1, and the inverter INV2 is connected to the level shifter LS. The level shifter LS is set to increase the supply voltage Vcc1, and then the boosted supply voltage Vcc1 is supplied to the high voltage constant current buffer circuit CA.

於本實施例中,反相器INV1與反相器INV2皆為由一NMOS電晶體與一PMOS電晶體所組成的CMOS反相器。此外,位準偏移器LS是由三個PMOS電晶體與三個NMOS電晶體所組成。值得注意地是,由於位準偏移器LS係設置以提高供應電壓Vcc1,因此,位準偏移器LS中的其中兩個NMOS電晶體須被設計為能承受較高電壓之高電壓NMOS電晶體。此外,如圖2所示,位準偏移器LS中被設計為低電壓NMOS電晶體之NMOS電晶體其閘極耦接於一緩衝偏壓Vb1。 In this embodiment, the inverter INV1 and the inverter INV2 are both CMOS inverters composed of an NMOS transistor and a PMOS transistor. In addition, the level shifter LS is composed of three PMOS transistors and three NMOS transistors. Notably, since the level shifter LS is set to increase the supply voltage Vcc1, two of the NMOS transistors in the level shifter LS must be designed to withstand higher voltages of high voltage NMOS Crystal. In addition, as shown in FIG. 2, the NMOS transistor of the level shifter LS designed as a low voltage NMOS transistor has its gate coupled to a buffer bias voltage Vb1.

為了更詳細地說明本發明所述之緩衝電路的電路設計,以下將再舉一個實施例來作更進一步的說明。 In order to explain the circuit design of the snubber circuit of the present invention in more detail, an embodiment will be further described below.

在接下來的實施例中,將描述不同於上述圖2實施例之部分,且其餘省略部分與上述圖2實施例之部分相同。此外,為說明便利起見,相似之參考數字或標號指示相似之元件。 In the following embodiments, portions different from the above-described embodiment of Fig. 2 will be described, and the remaining omitted portions are the same as those of the above-described embodiment of Fig. 2. In addition, for the sake of convenience, like reference numerals or numerals indicate similar elements.

〔緩衝電路的另一實施例〕 [Another embodiment of the buffer circuit]

請參照圖4,圖4是本發明另一實施例所提供之緩衝電路的電路圖。本實施例與前述圖2所繪示之實施例之間的差異在於,除了高壓恆流緩衝電路CA,本實施例提供之緩衝電路400更包括有電流加速電路CS。 Please refer to FIG. 4. FIG. 4 is a circuit diagram of a buffer circuit according to another embodiment of the present invention. The difference between this embodiment and the foregoing embodiment shown in FIG. 2 is that, in addition to the high voltage constant current buffer circuit CA, the buffer circuit 400 provided in this embodiment further includes a current accelerating circuit CS.

如圖4所示,電流加速電路CS包括脈衝產生器PG、PMOS電流鏡PM、第二NMOS電晶體NM2與第三NMOS電晶體NM3。第二NMOS電晶體NM2之閘極連接於脈衝產生器PG之輸出端,且第二NMOS電晶體NM2之汲極連接於並接式電流鏡PM之輸入 端。另外,第三NMOS電晶體NM3之汲極連接於第二NMOS電晶體NM2之源極,第三NMOS電晶體NM3之源極接地,且第三NMOS電晶體NM3之閘極接收一緩衝偏壓Vb2。 As shown in FIG. 4, the current accelerating circuit CS includes a pulse generator PG, a PMOS current mirror PM, a second NMOS transistor NM2, and a third NMOS transistor NM3. The gate of the second NMOS transistor NM2 is connected to the output of the pulse generator PG, and the drain of the second NMOS transistor NM2 is connected to the input of the parallel current mirror PM end. In addition, the drain of the third NMOS transistor NM3 is connected to the source of the second NMOS transistor NM2, the source of the third NMOS transistor NM3 is grounded, and the gate of the third NMOS transistor NM3 receives a buffer bias Vb2. .

除此之外,並接式電流鏡PM包括兩閘極相連接之第六PMOS電晶體MP6與第七PMOS電晶體MP7。第六PMOS電晶體MP6之源極與第七PMOS電晶體MP7之源極均耦接於緩衝電路400之供應電壓。第六PMOS電晶體MP6之閘極與汲極,以及第七PMOS電晶體MP7之閘極400接連接於第二NMOS電晶體NM2之汲極。 In addition, the parallel current mirror PM includes a sixth PMOS transistor MP6 and a seventh PMOS transistor MP7 to which two gates are connected. The source of the sixth PMOS transistor MP6 and the source of the seventh PMOS transistor MP7 are coupled to the supply voltage of the buffer circuit 400. The gate and the drain of the sixth PMOS transistor MP6 and the gate 400 of the seventh PMOS transistor MP7 are connected to the drain of the second NMOS transistor NM2.

詳細地說,復如圖4所示,脈衝產生器PG之輸入端所接收的電壓等於緩衝電路400之輸入端所接收的輸入訊號。當緩衝電路400之輸入端所接收的輸入訊號由低電位轉為高電位時,脈衝產生器PG產生一窄脈衝訊號以導通PMOS電流鏡PM。第三NMOS電晶體NM3係設置以作為一電流源,第二NMOS電晶體NM2則係設置以作為一開關,其中第二NMOS電晶體NM2之閘極連接於脈衝產生器PG之輸出端。第二NMOS電晶體NM2用以開啟作為電流源之第三NMOS電晶體NM3。當第二NMOS電晶體NM2導通時,PMOS電流鏡PM被導通,於是一加速電流由PMOS電流鏡PM流向高壓恆流緩衝電路CA之輸出端,最後,電流加速電路將所接收之高壓恆流緩衝電路之輸出電流透過加速電流放大後輸出。 In detail, as shown in FIG. 4, the voltage received at the input of the pulse generator PG is equal to the input signal received at the input of the buffer circuit 400. When the input signal received at the input of the buffer circuit 400 is turned from a low level to a high level, the pulse generator PG generates a narrow pulse signal to turn on the PMOS current mirror PM. The third NMOS transistor NM3 is provided as a current source, and the second NMOS transistor NM2 is provided as a switch, wherein the gate of the second NMOS transistor NM2 is connected to the output of the pulse generator PG. The second NMOS transistor NM2 is used to turn on the third NMOS transistor NM3 as a current source. When the second NMOS transistor NM2 is turned on, the PMOS current mirror PM is turned on, and then an accelerating current flows from the PMOS current mirror PM to the output terminal of the high voltage constant current buffer circuit CA. Finally, the current accelerating circuit buffers the received high voltage constant current. The output current of the circuit is amplified by the acceleration current and output.

此設計主要的考量因素在於,如前述,本實施例所提供之緩衝電路400可應用於智慧型功率模組中,用以輸出電流來驅動智慧型功率模組之負載,如:NPN雙極性接面電晶體。請參見圖5,圖5是根據圖4所繪示之緩衝電路所驅動之智慧型功率模組的負載之輸出電壓與時間之關係的曲線圖。如圖5所示,當緩衝電路200操作於一較小的供應電壓Vcc時,電流加速電路CS直接將高壓恆流緩衝電路CA的輸出電流輸出為緩衝電路400的輸出電流Iout以驅動智慧型功率模組之負載(未圖示),於此情況下,智慧型 功率模組之輸出電壓的下降時間(Fall Time)約為0.06μS(如圖5中的曲線CT3所示)。不同地是,當緩衝電路400之輸入端的工作電壓操作於一較小的供應電壓Vcc時,高壓恆流緩衝電路CA的輸出電流能先經由透過電流加速電路CS所產生的加速電流放大,再作為緩衝電路400的輸出電流Iout來驅動智慧型功率模組之負載,於此情況下,智慧型功率模組之輸出電壓的下降時間約縮短為0.04μS(如圖5中的曲線CT4所示)。 The main consideration of this design is that, as described above, the buffer circuit 400 provided in this embodiment can be applied to a smart power module for outputting current to drive the load of the smart power module, such as: NPN dual polarity connection. Surface transistor. Please refer to FIG. 5. FIG. 5 is a graph showing the relationship between the output voltage of the load of the smart power module driven by the buffer circuit shown in FIG. As shown in FIG. 5, when the buffer circuit 200 operates on a small supply voltage Vcc, the current acceleration circuit CS directly outputs the output current of the high voltage constant current buffer circuit CA as the output current Iout of the buffer circuit 400 to drive the smart power. Module load (not shown), in this case, smart The fall time of the output voltage of the power module is about 0.06 μS (shown as curve CT3 in Figure 5). Differently, when the operating voltage of the input terminal of the buffer circuit 400 is operated at a small supply voltage Vcc, the output current of the high-voltage constant current buffer circuit CA can be amplified by the acceleration current generated by the current-acceleration circuit CS, and then The output current Iout of the snubber circuit 400 drives the load of the smart power module. In this case, the fall time of the output voltage of the smart power module is shortened to about 0.04 μS (as shown by the curve CT4 in FIG. 5).

另外值得注意地是,於本實施例中,電流加速電路CS中的第二NMOS電晶體係設計為一高電壓NMOS電晶體,並接式電流鏡PM中的第六PMOS電晶體MP6與第七PMOS電晶體MP7係分別設計為一低電壓PMOS電晶體與一高電壓PMOS電晶體。將並接式電流鏡PM中的第七PMOS電晶體MP7設計為高電壓PMOS電晶體的原因是因為高電壓PMOS電晶體能承受較大的電壓,如此一來,即便緩衝電路操作於較大的供應電壓,電流加速電路CS也不會因此損壞400。 In addition, in this embodiment, the second NMOS transistor system in the current acceleration circuit CS is designed as a high voltage NMOS transistor, and the sixth PMOS transistor MP6 and the seventh in the parallel current mirror PM. The PMOS transistor MP7 is designed as a low voltage PMOS transistor and a high voltage PMOS transistor, respectively. The reason why the seventh PMOS transistor MP7 in the parallel current mirror PM is designed as a high voltage PMOS transistor is because the high voltage PMOS transistor can withstand a large voltage, so that even if the buffer circuit operates at a large The supply voltage and current acceleration circuit CS will not damage 400.

〔實施例的可能功效〕 [Possible effects of the examples]

綜上所述,本發明所提供之緩衝電路能夠操作於大範圍的工作電壓,如:4.5伏特至30伏特,並至少具有以下優點:首先,當應用於智慧型功率模組中用以輸出電流來驅動智慧型功率模組之負載時,即便操作於大範圍的工作電壓,本發明所提供之緩衝電路仍能穩定地提供低輸出電流,以避免智慧型功率模組之負載被過度驅動而造成智慧型功率模組之輸出的傳輸延遲。 In summary, the snubber circuit provided by the present invention can operate over a wide range of operating voltages, such as 4.5 volts to 30 volts, and has at least the following advantages: First, when applied to a smart power module for outputting current When driving the load of the smart power module, even if operating over a wide range of operating voltages, the snubber circuit provided by the present invention can stably provide a low output current to prevent the load of the smart power module from being overdriven. The transmission delay of the output of the smart power module.

除此之外,本發明所提供之緩衝電路亦設置有電流加速電路。當緩衝電路操作於較小的供應電壓,高壓恆流緩衝電路之輸出電流會先被放大(即,加上電流加速電路所產生的加速電流),接著再作為緩衝電路之輸出電流輸出以驅動智慧型功率模組之負載。此種做法能使得智慧型功率模組之輸出電壓的下降時間縮短。 In addition, the snubber circuit provided by the present invention is also provided with a current accelerating circuit. When the snubber circuit operates at a small supply voltage, the output current of the high voltage constant current snubber circuit is first amplified (ie, the acceleration current generated by the current accelerating circuit is added), and then used as the output current output of the snubber circuit to drive the wisdom. The load of the power module. This approach can shorten the fall time of the output voltage of the smart power module.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

Claims (9)

一種緩衝電路,操作於一工作電壓,且由該緩衝電路之輸入端接收該工作電壓,其中該工作電壓被控制於一電壓區間,該緩衝電路包括:一高壓恆流緩衝電路,包括:一第一PMOS電晶體與一第一NMOS電晶體,該第一NMOS電晶體之源極接地,且該第一PMOS電晶體之汲極與該第一NMOS電晶體之汲極相連接;一第二PMOS電晶體,該第二PMOS電晶體之源極連接於該緩衝電路之輸入端,且該第二PMOS電晶體之汲極連接於該第一PMOS電晶體之源極;以及一串接式電流鏡,該串接式電流鏡之輸入端連接於該緩衝電路之輸入端,且該串接式電流鏡之輸出端連接於該第一PMOS電晶體之閘極與該第二PMOS電晶體之閘極;以及一電流加速電路,連接於該高壓恆流緩衝電路與一脈衝產生器,接收該脈衝產生器之一開關訊號;其中,該高壓恆流緩衝電路之該第二PMOS電晶體為一低電壓PMOS電晶體,該高壓恆流緩衝電路之該第一PMOS電晶體為一高電壓PMOS電晶體,且該高壓恆流緩衝電路之該第一NMOS電晶體為一高電壓NMOS電晶體,以減小該緩衝電路之輸出電流因該工作電壓改變所產生的變化;其中,當該脈衝產生器之一輸入訊號由低電位轉為高電位,該脈衝產生器輸出一窄脈衝訊號以驅動該電流加速電路中之一PMOS電流鏡,該PMOS電流鏡直接地輸出一電流,以使該電流加速電路將所接收之該高壓恆流緩衝電路之輸出電流放大後輸出。 A buffer circuit is operated at an operating voltage, and the operating voltage is received by an input end of the buffer circuit, wherein the operating voltage is controlled in a voltage interval, the buffer circuit comprises: a high voltage constant current buffer circuit, comprising: a first a PMOS transistor and a first NMOS transistor, a source of the first NMOS transistor is grounded, and a drain of the first PMOS transistor is connected to a drain of the first NMOS transistor; a second PMOS a transistor, a source of the second PMOS transistor is connected to an input end of the buffer circuit, and a drain of the second PMOS transistor is connected to a source of the first PMOS transistor; and a series current mirror The input end of the series current mirror is connected to the input end of the buffer circuit, and the output end of the series current mirror is connected to the gate of the first PMOS transistor and the gate of the second PMOS transistor And a current accelerating circuit connected to the high voltage constant current buffer circuit and a pulse generator to receive a switching signal of the pulse generator; wherein the second PMOS transistor of the high voltage constant current buffer circuit is a low voltage PMOS transistor The first PMOS transistor of the high voltage constant current buffer circuit is a high voltage PMOS transistor, and the first NMOS transistor of the high voltage constant current buffer circuit is a high voltage NMOS transistor to reduce the buffer circuit. The output current changes due to the change of the operating voltage; wherein, when one of the pulse generators inputs the signal from a low potential to a high potential, the pulse generator outputs a narrow pulse signal to drive one of the current acceleration circuits The PMOS current mirror directly outputs a current, so that the current accelerating circuit amplifies the output current of the received high voltage constant current buffer circuit and outputs the current. 如請求項第1項所述之緩衝電路,其中該串接式電流鏡包括: 一第四PMOS電晶體與一第五PMOS電晶體,該第四PMOS電晶體之源極為該串接式電流鏡之輸入端,該第五PMOS電晶體之汲極為該串接式電流鏡之輸出端,該第四PMOS電晶體之汲極連接於該第五PMOS電晶體之源極,且該第四PMOS電晶體之閘極與該第五PMOS電晶體之閘極相連接並進一步連接於該串接式電流鏡之輸出端。 The snubber circuit of claim 1, wherein the series current mirror comprises: a fourth PMOS transistor and a fifth PMOS transistor, the source of the fourth PMOS transistor is an input end of the series current mirror, and the fifth PMOS transistor is substantially the output of the series current mirror The drain of the fourth PMOS transistor is connected to the source of the fifth PMOS transistor, and the gate of the fourth PMOS transistor is connected to the gate of the fifth PMOS transistor and further connected to the gate The output of the series current mirror. 如請求項第2項所述之緩衝電路,其中該串接式電流鏡之該第四PMOS電晶體為一低電壓PMOS電晶體,且該第五PMOS電晶體為一高電壓PMOS電晶體。 The snubber circuit of claim 2, wherein the fourth PMOS transistor of the series current mirror is a low voltage PMOS transistor, and the fifth PMOS transistor is a high voltage PMOS transistor. 如請求項第3項所述之緩衝電路,更包括:一電阻,該電阻連接於該串接式電流鏡之輸出端、該第一PMOS電晶體之閘極與該第二PMOS電晶體之閘極。 The snubber circuit of claim 3, further comprising: a resistor connected to the output end of the series current mirror, the gate of the first PMOS transistor and the gate of the second PMOS transistor pole. 如請求項第1項所述之緩衝電路,其中該電流加速電路包括:一PMOS電流鏡;一第二NMOS電晶體,該第二NMOS電晶體之汲極連接於該並接式電流鏡,且該第二NMOS電晶體之閘極連接於該脈衝產生器;以及一第三NMOS電晶體,該第三NMOS電晶體之汲極連接於該第二NMOS電晶體之源極,該第三NMOS電晶體之源極接地,且該第三NMOS電晶體之閘極接收一緩衝偏壓;其中,當該脈衝產生器之該輸入訊號由低電位轉為高電位,該脈衝產生器輸出該窄脈衝訊號來導通該第二NMOS電晶體,使得該第三NMOS電晶體提供一加速電流予該PMOS電流鏡,以將該電流加速電路所接收之該高壓恆流緩衝電路之輸出電流放大後輸出。 The snubber circuit of claim 1, wherein the current accelerating circuit comprises: a PMOS current mirror; a second NMOS transistor, wherein a drain of the second NMOS transistor is connected to the parallel current mirror, and a gate of the second NMOS transistor is connected to the pulse generator; and a third NMOS transistor, a drain of the third NMOS transistor is connected to a source of the second NMOS transistor, and the third NMOS is The source of the crystal is grounded, and the gate of the third NMOS transistor receives a buffer bias; wherein the pulse generator outputs the narrow pulse signal when the input signal of the pulse generator changes from a low potential to a high potential The second NMOS transistor is turned on, so that the third NMOS transistor provides an accelerating current to the PMOS current mirror to amplify and output the output current of the high voltage constant current buffer circuit received by the current accelerating circuit. 如請求項第5項所述之緩衝電路,其中該第二NMOS電晶體為一高電壓NMOS電晶體。 The snubber circuit of claim 5, wherein the second NMOS transistor is a high voltage NMOS transistor. 如請求項第5項所述之緩衝電路,其中該PMOS電流鏡包括兩 閘極相連接之一第六PMOS電晶體與一第七PMOS電晶體,該第六PMOS電晶體與該第七PMOS電晶體之源極均連接於該緩衝電路之輸入端,且該第六PMOS電晶體與該第七PMOS電晶體之兩閘極與兩汲極更連接至該第二NMOS電晶體之汲極。 The buffer circuit of claim 5, wherein the PMOS current mirror comprises two The gate is connected to one of the sixth PMOS transistor and the seventh PMOS transistor, and the source of the sixth PMOS transistor and the seventh PMOS transistor are both connected to the input end of the buffer circuit, and the sixth PMOS The transistor and the two gates and the two drains of the seventh PMOS transistor are further connected to the drain of the second NMOS transistor. 如請求項第5項所述之緩衝電路,其中該第六PMOS電晶體為一低電壓PMOS電晶體,且該第七PMOS電晶體為一高電壓PMOS電晶體。 The snubber circuit of claim 5, wherein the sixth PMOS transistor is a low voltage PMOS transistor, and the seventh PMOS transistor is a high voltage PMOS transistor. 如請求項第1項所述之緩衝電路,其中該電壓區間為4.5V至30V。 The snubber circuit of claim 1, wherein the voltage interval is 4.5V to 30V.
TW106111708A 2017-04-07 2017-04-07 Buffer circuit TWI632775B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106111708A TWI632775B (en) 2017-04-07 2017-04-07 Buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106111708A TWI632775B (en) 2017-04-07 2017-04-07 Buffer circuit

Publications (2)

Publication Number Publication Date
TWI632775B true TWI632775B (en) 2018-08-11
TW201838332A TW201838332A (en) 2018-10-16

Family

ID=63959930

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106111708A TWI632775B (en) 2017-04-07 2017-04-07 Buffer circuit

Country Status (1)

Country Link
TW (1) TWI632775B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965266B1 (en) * 2004-02-10 2005-11-15 Intersil America's Inc. High voltage differential amplifier using low voltage devices
US7064609B1 (en) * 2004-08-17 2006-06-20 Ami Semiconductor, Inc. High voltage, low-offset operational amplifier with rail-to-rail common mode input range in a digital CMOS process
US20090153199A1 (en) * 2007-12-17 2009-06-18 Seiko Epson Corporation Operational comparator, differential output circuit, and semiconductor integrated circuit
US20090261865A1 (en) * 2008-04-17 2009-10-22 Ronald Pasqualini High voltage CMOS output buffer constructed from low voltage CMOS transistors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965266B1 (en) * 2004-02-10 2005-11-15 Intersil America's Inc. High voltage differential amplifier using low voltage devices
US7064609B1 (en) * 2004-08-17 2006-06-20 Ami Semiconductor, Inc. High voltage, low-offset operational amplifier with rail-to-rail common mode input range in a digital CMOS process
US20090153199A1 (en) * 2007-12-17 2009-06-18 Seiko Epson Corporation Operational comparator, differential output circuit, and semiconductor integrated circuit
US20090261865A1 (en) * 2008-04-17 2009-10-22 Ronald Pasqualini High voltage CMOS output buffer constructed from low voltage CMOS transistors

Also Published As

Publication number Publication date
TW201838332A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP6643157B2 (en) Semiconductor device
US8742821B2 (en) Level shifter
US10418997B2 (en) Level shifter
JP2017112537A (en) Inverter circuit
KR101712211B1 (en) Level Shifter
US9143090B2 (en) Output voltage stabilization circuit of display device driving circuit
US10972102B2 (en) Interface circuit
US8169250B2 (en) Signal level conversion circuit
US8779829B2 (en) Level shift circuit
TWI528718B (en) Output buffers
US10270446B2 (en) Buffer circuit
TWI632775B (en) Buffer circuit
US8742829B2 (en) Low leakage digital buffer using bootstrap inter-stage
EP1360765B1 (en) Buffers with reduced voltage input/output signals
CN108696275B (en) Buffer circuit
JP5838743B2 (en) Semiconductor device and electronic apparatus using the same
JP2008072197A (en) Semiconductor integrated circuit device
CN110297517B (en) Reference voltage generating circuit
JP2012156826A (en) Comparator
KR100406544B1 (en) Semiconductor device
KR101120941B1 (en) system stabilization circuit
JP5067463B2 (en) Drive circuit
TWM528035U (en) Voltage level converter
KR20110109124A (en) Input buffer
TWM463939U (en) Voltage level converter