TWI632690B - Semiconductor substrate, solar cell, solar cell module, method for cutting a semicroductor brick and device cutting a semicroductor brick - Google Patents

Semiconductor substrate, solar cell, solar cell module, method for cutting a semicroductor brick and device cutting a semicroductor brick Download PDF

Info

Publication number
TWI632690B
TWI632690B TW106122002A TW106122002A TWI632690B TW I632690 B TWI632690 B TW I632690B TW 106122002 A TW106122002 A TW 106122002A TW 106122002 A TW106122002 A TW 106122002A TW I632690 B TWI632690 B TW I632690B
Authority
TW
Taiwan
Prior art keywords
waveform
peaks
troughs
semiconductor
semiconductor substrate
Prior art date
Application number
TW106122002A
Other languages
Chinese (zh)
Other versions
TW201906183A (en
Inventor
楊鎮豪
Original Assignee
茂迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂迪股份有限公司 filed Critical 茂迪股份有限公司
Priority to TW106122002A priority Critical patent/TWI632690B/en
Application granted granted Critical
Publication of TWI632690B publication Critical patent/TWI632690B/en
Publication of TW201906183A publication Critical patent/TW201906183A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一種半導體基板包括:一第一表面,其包括週期性之一第一波形輪廓,其中該第一波形具有多個波峰及波谷,該第一波形之任一波峰及波谷皆沿一直線方向延伸;以及一第二表面,其背對於該第一表面,並包括週期性之一第二波形輪廓,其中該第二波形具有多個波峰及波谷,該第二波形之任一波峰及波谷皆沿該直線方向延伸,且該第二波形之該些波峰對應於該第一波形之該些波谷,該第二波形之該些波谷對應於該第一波形之該些波峰。 A semiconductor substrate includes: a first surface including a periodic first waveform profile, wherein the first waveform has a plurality of peaks and troughs, and any of the peaks and troughs of the first waveform extend in a straight line direction; a second surface opposite to the first surface and including a periodic second waveform profile, wherein the second waveform has a plurality of peaks and troughs, and any of the peaks and troughs of the second waveform are along the line The direction extends, and the peaks of the second waveform correspond to the valleys of the first waveform, and the valleys of the second waveform correspond to the peaks of the first waveform.

Description

半導體基板、太陽能電池、太陽能電池模組、半導體晶棒切 割方法、半導體晶棒切割裝置 Semiconductor substrate, solar cell, solar cell module, semiconductor ingot cutting Cutting method, semiconductor ingot cutting device

本發明是有關於一種半導體基板、太陽能電池、太陽能電池模組、半導體晶棒切割方法、半導體晶棒切割裝置,且特別是有關於一種半導體基板、太陽能電池、太陽能電池模組、半導體晶棒切割方法、半導體晶棒切割裝置,該半導體基板之表面包括週期性之波形輪廓。 The present invention relates to a semiconductor substrate, a solar cell, a solar cell module, a semiconductor ingot cutting method, a semiconductor ingot cutting device, and more particularly to a semiconductor substrate, a solar cell, a solar cell module, and a semiconductor ingot cutting. The method, a semiconductor ingot cutting device, the surface of the semiconductor substrate comprising a periodic waveform profile.

太陽能電池是一種將光能轉換為電能的光電元件,其由於低污染、低成本加上可利用源源不絕之太陽能作為能量來源,而成為重要的替代能源之一。太陽能電池之基本構造是運用P型半導體與N型半導體接合而成,當陽光照射至具有此P-N接面的太陽能基板時,光能激發出矽原子中之電子而產生電子和電洞的對流,且這些電子及電洞受P-N接面處構成的內建電場影響而分別聚集在負極及正極兩端,使太陽能電池的兩端產生電壓。此時可使用電極連接太陽能電池的兩端於一外部電路,以形成迴路,進而產生電流,此過程即為太陽電池發電的原理。 A solar cell is a kind of photoelectric component that converts light energy into electrical energy. It is one of the important alternative energy sources due to low pollution, low cost and the use of endless solar energy as an energy source. The basic structure of a solar cell is formed by bonding a P-type semiconductor to an N-type semiconductor. When sunlight is applied to a solar substrate having the PN junction, light energy excites electrons in the germanium atom to generate convection of electrons and holes. Moreover, these electrons and holes are concentrated on the negative electrode and the positive electrode by the built-in electric field formed at the PN junction, so that voltage is generated at both ends of the solar cell. At this time, an electrode can be used to connect both ends of the solar cell to an external circuit to form a loop, thereby generating a current, which is the principle of solar cell power generation.

目前將半導體晶棒或稱晶柱(brick)切割成太陽能電池所使用的太陽能基板,需要將矽晶棒切成像紙一樣的薄片,將甚長的金屬線按照一定的方法配置好成金屬線網後,以例如大約每小時60公里的速度切割矽晶棒,將矽晶棒同時切割成數百片太陽能基板,過程大約需要6個小時,產生的太陽能基板約為厚度180微米。 At present, a semiconductor ingot or a brick is cut into a solar substrate used for a solar cell, and the twin rod is required to be cut into a paper-like sheet, and the long metal wire is configured into a metal wire according to a certain method. After the net, the twine is cut at a speed of, for example, about 60 kilometers per hour, and the twine is simultaneously cut into hundreds of solar substrates. The process takes about 6 hours, and the resulting solar substrate is about 180 microns thick.

然而,請參考圖1a及1b,上述習知半導體晶棒9之切割方法主要是以直線切割路徑91切穿晶棒9,因此太陽能基板90之兩個切割表面901、902即形成平坦面,無法增加該兩個切割表面901、902之面積。 However, referring to FIG. 1a and FIG. 1b, the cutting method of the conventional semiconductor ingot 9 is mainly to cut through the ingot 8 by the straight cutting path 91, so that the two cutting surfaces 901 and 902 of the solar substrate 90 form a flat surface, which cannot be The area of the two cutting surfaces 901, 902 is increased.

因此,便有需要提供一種半導體基板、太陽能電池、太陽能電池模組、半導體晶棒切割方法、半導體晶棒切割裝置,能夠解決前述的問題。 Therefore, there is a need to provide a semiconductor substrate, a solar cell, a solar cell module, a semiconductor ingot cutting method, and a semiconductor ingot cutting device, which can solve the aforementioned problems.

本發明之一目的是提供一種半導體基板,其表面包括正背面互對應之週期性之波形輪廓。 SUMMARY OF THE INVENTION One object of the present invention is to provide a semiconductor substrate having a surface including a periodic waveform profile in which the front and back sides correspond to each other.

依據上述之目的,本發明提供一種半導體基板包括:一第一表面,其包括週期性之一第一波形輪廓,其中該第一波形具有多個波峰及波谷,該第一波形之任一波峰及波谷皆沿一直線方向延伸;以及一第二表面,其背對於該第一表面,並包括週期性之一第二波形輪廓,其中該第二波形具有多個波峰及波谷,該第二波形之任一波峰及波谷皆沿該直線方向延伸,且該第二波形之該些波峰對應於該第一波形之該些波谷,該第二波形之該些波谷對應於該第一波形之該些波峰。 According to the above objective, the present invention provides a semiconductor substrate comprising: a first surface comprising a first waveform profile of a periodicity, wherein the first waveform has a plurality of peaks and troughs, and any peak of the first waveform and The troughs all extend in a straight line direction; and a second surface opposite to the first surface and including a periodic second waveform profile, wherein the second waveform has a plurality of peaks and troughs, the second waveform A peak and a valley extend along the linear direction, and the peaks of the second waveform correspond to the valleys of the first waveform, and the valleys of the second waveform correspond to the peaks of the first waveform.

本發明透過將該半導體晶棒之切割路徑從直線改為多重轉折線或多重曲線,從而可使切割出之半導體基板的表面積增加,藉此可增加半導體電池表面的整體受光面積,進而提升電流和轉換效率,以提昇整體之電性效率。 The invention can increase the surface area of the cut semiconductor substrate by changing the cutting path of the semiconductor ingot from a straight line to a multiple turning line or a multiple curve, thereby increasing the overall light receiving area of the surface of the semiconductor cell, thereby increasing the current and Conversion efficiency to improve overall electrical efficiency.

5‧‧‧太陽能電池模組 5‧‧‧Solar battery module

51‧‧‧正面玻璃板 51‧‧‧Front glass plate

52‧‧‧背面板材 52‧‧‧Back plate

53‧‧‧封裝材 53‧‧‧Package

6‧‧‧太陽能電池 6‧‧‧Solar battery

6’‧‧‧太陽能電池 6'‧‧‧ solar cells

60‧‧‧基板 60‧‧‧Substrate

601‧‧‧正面 601‧‧‧ positive

602‧‧‧背面 602‧‧‧ back

61‧‧‧射極層 61‧‧ ‧ emitter layer

62‧‧‧背電場層 62‧‧‧ Back electric field layer

63a‧‧‧第一鈍化層 63a‧‧‧First passivation layer

63b‧‧‧第二鈍化層 63b‧‧‧second passivation layer

64a‧‧‧第一抗反射層 64a‧‧‧First anti-reflective layer

64b‧‧‧第二抗反射層 64b‧‧‧second anti-reflection layer

65‧‧‧導線 65‧‧‧Wire

65a‧‧‧正面電極 65a‧‧‧Front electrode

65b‧‧‧背面電極 65b‧‧‧Back electrode

7‧‧‧半導體晶棒 7‧‧‧Semiconductor ingot

70‧‧‧半導體基板 70‧‧‧Semiconductor substrate

71‧‧‧第一表面 71‧‧‧ first surface

710‧‧‧第一波形 710‧‧‧First waveform

711‧‧‧波峰 711‧‧‧Crest

712‧‧‧波谷 712‧‧‧ trough

72‧‧‧第二表面 72‧‧‧ second surface

720‧‧‧第二波形 720‧‧‧second waveform

721‧‧‧波峰 721‧‧‧Crest

722‧‧‧波谷 722‧‧‧ trough

73‧‧‧切割路徑 73‧‧‧ cutting path

74‧‧‧切割表面 74‧‧‧ cutting surface

741‧‧‧粗糙化結構 741‧‧‧Roughened structure

742‧‧‧粗糙化結構 742‧‧‧Roughened structure

75‧‧‧直線方向 75‧‧‧Line direction

8‧‧‧半導體晶棒切割設備 8‧‧‧Semiconductor rod cutting equipment

81‧‧‧基座 81‧‧‧Base

82‧‧‧縱向驅動器 82‧‧‧Longitudinal drive

820‧‧‧縱向 820‧‧‧ portrait

83‧‧‧橫向驅動器 83‧‧‧Transverse drive

830‧‧‧橫向 830‧‧‧ Horizontal

84‧‧‧切片單元 84‧‧‧Sliced unit

840‧‧‧切割線網 840‧‧‧ cutting line network

841‧‧‧放線輪 841‧‧‧Distribution wheel

842‧‧‧收線輪 842‧‧‧Rewinder

843‧‧‧滾輪 843‧‧‧Roller

844‧‧‧切割線 844‧‧‧ cutting line

9‧‧‧半導體晶棒 9‧‧‧Semiconductor ingot

901‧‧‧切割表面 901‧‧‧ cutting surface

902‧‧‧切割表面 902‧‧‧ cutting surface

91‧‧‧切割路徑 91‧‧‧ cutting path

a‧‧‧底角 A‧‧‧ bottom corner

H1‧‧‧高度 H1‧‧‧ Height

H2‧‧‧高度 H2‧‧‧ Height

L1‧‧‧全部區域 L1‧‧‧All areas

L2‧‧‧中間區域 L2‧‧‧ intermediate area

L3‧‧‧邊緣區域 L3‧‧‧Edge area

TH‧‧‧厚度 TH‧‧‧ thickness

TX1‧‧‧酸性蝕刻步驟 TX1‧‧‧ Acid etching step

TX2‧‧‧鹼性蝕刻步驟 TX2‧‧‧Alkaline etching step

D‧‧‧線徑 D‧‧‧ wire diameter

圖1a及1b為習知切割後之半導體晶棒及半導體基板之剖面示意圖。 1a and 1b are schematic cross-sectional views of a conventional semiconductor ingot and a semiconductor substrate after dicing.

圖2為本發明之一實施例之半導體晶棒切割設備之立體示意圖。 2 is a perspective view of a semiconductor ingot cutting apparatus according to an embodiment of the present invention.

圖3a及3b為本發明之一實施例之切割後之半導體晶棒之立體示意圖。 3a and 3b are schematic perspective views of a semiconductor ingot after dicing according to an embodiment of the present invention.

圖4a及4b為本發明之一實施例之切割後之半導體基板之立體示意圖。 4a and 4b are perspective views of a semiconductor substrate after dicing according to an embodiment of the present invention.

圖5a及5b為本發明之一實施例之切割時之半導體基板之剖面示意圖。 5a and 5b are schematic cross-sectional views showing a semiconductor substrate during dicing according to an embodiment of the present invention.

圖6a及6b為本發明之一實施例之進行粗糙化製程時之半導體基板之切割表面之剖面示意圖。 6a and 6b are schematic cross-sectional views showing a cut surface of a semiconductor substrate during a roughening process according to an embodiment of the present invention.

圖7a至7c為本發明之一實施例之切割後之半導體晶棒之剖面示意圖。 7a to 7c are schematic cross-sectional views of a semiconductor ingot after dicing according to an embodiment of the present invention.

圖8為本發明之一實施例之單面照光的太陽能電池之剖面示意圖。 Figure 8 is a cross-sectional view showing a single-sided illumination solar cell according to an embodiment of the present invention.

圖9為本發明之一實施例之雙面照光的太陽能電池之剖面示意圖。 Figure 9 is a cross-sectional view showing a double-sided illumination solar cell according to an embodiment of the present invention.

圖10a為本發明之一實施例之太陽能電池模組之立體示意圖。 FIG. 10a is a perspective view of a solar cell module according to an embodiment of the present invention.

圖10b為本發明之一實施例之太陽能電池模組之局部立體示意圖。 FIG. 10b is a partial perspective view of a solar cell module according to an embodiment of the invention.

圖11為本發明之一實施例之太陽能電池模組之局部剖面示意圖。 Figure 11 is a partial cross-sectional view showing a solar cell module according to an embodiment of the present invention.

為讓本發明之上述目的、特徵和特點能更明顯易懂,茲配合圖式將本發明相關實施例詳細說明如下。 The above described objects, features, and characteristics of the present invention will become more apparent from the aspects of the invention.

請參考圖2,其顯示本發明之一實施例之半導體晶棒(brick)切割設備8,此處之半導體晶棒亦可稱之為半導體晶柱,意即可為圓形或是矩形柱體。該半導體晶棒切割設備8包括:一基座81、一縱向驅動器82、一橫向驅動器83及一切片單元84。該基座81用以固持一半導體晶棒7(例如矽晶棒),舉例該基座81以黏接方式固持一矽晶棒。該縱向驅動器82連接於該基座81,用以驅動該基座81沿一縱向820進行運動。例如,該縱向驅動器82為單向推進器,可為馬達或 油壓驅動器,用以驅動該基座81沿該縱向820進行單向運動。該橫向驅動器83連接於該基座81,用以驅動該基座81沿一橫向830進行往返雙向運動。例如,該橫向驅動器83為雙向推進/拉回器,可為螺旋、齒輪、馬達或油壓驅動器,用以驅動該基座81沿該橫向830進行往返雙向運動。該切片單元84設置於該基座81沿該縱向820的下方,藉此當該半導體晶棒7被該縱向驅動器82及該橫向驅動器83所驅動而通過該切片單元84時,該切片單元84將該半導體晶棒7同時切割成多個半導體基板。舉例,該切片單元84包括一可移動之平行切割線網840(例如金屬線網),用以將該半導體晶棒7同時切割成多個半導體基板。該切片單元84更包括一放線輪841、一收線輪842及多個滾輪843,其中一切割線844自該放線輪841以一特定速度(例如大約每小時60公里)出發,然後纏繞多個滾輪843而形成該平行切割線網840,最後再回到該收線輪842。舉例,該切割線844為金屬線,先用一種混合了碳化矽和聚乙二醇的研磨液將該金屬線沾濕,這條金屬線比矽還硬,能切削矽晶棒。或是,例如也可採用鑽石切割線所構成之切割線網來對該半導體晶棒7進行切片作業。 Please refer to FIG. 2, which shows a semiconductor wafer cutting apparatus 8 according to an embodiment of the present invention. The semiconductor ingot may also be referred to as a semiconductor crystal column, which may be a circular or rectangular cylinder. . The semiconductor ingot cutting apparatus 8 includes a base 81, a longitudinal driver 82, a lateral driver 83, and a slicing unit 84. The pedestal 81 is used to hold a semiconductor ingot 7 (for example, a twin rod). For example, the susceptor 81 holds a strontium rod in an adhesive manner. The longitudinal driver 82 is coupled to the base 81 for driving the base 81 to move along a longitudinal direction 820. For example, the longitudinal drive 82 is a one-way thruster and can be a motor or A hydraulic actuator is used to drive the base 81 to move in one direction along the longitudinal direction 820. The lateral driver 83 is coupled to the base 81 for driving the base 81 to perform a reciprocating motion in a lateral direction 830. For example, the lateral drive 83 is a bi-directional advance/retractor that can be a screw, gear, motor or hydraulic drive for driving the base 81 to move back and forth in the lateral direction 830. The slicing unit 84 is disposed below the longitudinal direction 820 of the base 81, whereby when the semiconductor ingot 7 is driven by the longitudinal driver 82 and the lateral driver 83 to pass through the slicing unit 84, the slicing unit 84 The semiconductor ingot 7 is simultaneously cut into a plurality of semiconductor substrates. For example, the slicing unit 84 includes a movable parallel cutting wire web 840 (eg, a wire mesh) for simultaneously cutting the semiconductor ingot 7 into a plurality of semiconductor substrates. The slicing unit 84 further includes a payoff wheel 841, a take-up reel 842 and a plurality of rollers 843. One cutting line 844 starts from the pay-off wheel 841 at a specific speed (for example, about 60 kilometers per hour), and then is wound multiple times. The parallel cutting wire web 840 is formed by the roller 843 and finally returned to the take-up reel 842. For example, the cutting line 844 is a metal wire which is first wetted with a polishing liquid mixed with tantalum carbide and polyethylene glycol. This metal wire is harder than tantalum and can cut the crystal rod. Alternatively, the semiconductor ingot 7 may be sliced by, for example, a wire mesh formed by a diamond cutting line.

請參考圖3a,本發明之半導體晶棒(brick)切割方法主要提供一半導體晶棒7。然後,將該半導體晶棒7同時切割成多個半導體基板70。舉例,該半導體晶棒7被該縱向驅動器82及該橫向驅動器83所驅動,而以例如鋸齒狀(圖3a所示)或波浪狀(圖3b所示)之波形切割路徑73通過該平行切割線網840並切穿,其中該圖3a所示的是轉折處較尖銳的波形,該圖3b所示的是轉折處較和緩的波形,簡言之,透過此半導體基板70之兩個切割表面74(圖4a所示)為波形,如此可增加該兩個切割表面74之面積,此係相對於整體平坦的切割面而言。 Referring to FIG. 3a, the semiconductor wafer cutting method of the present invention mainly provides a semiconductor ingot 7. Then, the semiconductor ingot 7 is simultaneously cut into a plurality of semiconductor substrates 70. For example, the semiconductor ingot 7 is driven by the longitudinal driver 82 and the lateral driver 83, and the parallel cutting line is passed through a waveform cutting path 73 such as a sawtooth shape (shown in FIG. 3a) or a wave shape (shown in FIG. 3b). The mesh 840 is cut through, wherein the Figure 3a shows a sharper waveform at the turning point, and Figure 3b shows a relatively gentle waveform at the turning point. In short, the two cutting surfaces 74 of the semiconductor substrate 70 are passed through. (shown in Figure 4a) is a waveform that increases the area of the two cutting surfaces 74 relative to the overall flat cutting surface.

請參考圖4a,本發明之任一半導體基板70包括一第一表面71及一第二表面72(亦即兩個切割表面74),該第二表面72背對於該第一表面71。該第一表面71包括週期性之一第一波形710輪廓 (profile),該第一波形710具有多個波峰711及波谷712,該第一波形710之任一波峰711及波谷712皆沿一直線方向75延伸。該第二表面72包括週期性之一第二波形720輪廓(profile),該第二波形720具有多個波峰721及波谷722,該第二波形720之任一波峰721及波谷722皆沿該直線方向75延伸,該第二波形720之該些波峰721對應於該第一波形710之該些波谷712,且該第二波形720之該些波谷722對應於該第一波形710之該些波峰712,亦即半導體基板70一面的波峰對應於半導體基板70另一面的波谷。該第一及第二波形710、720可為鋸齒狀(圖4a所示)(例如等腰三角形)或波浪狀(圖4b所示)。 Referring to FIG. 4a, any of the semiconductor substrates 70 of the present invention includes a first surface 71 and a second surface 72 (ie, two cutting surfaces 74), the second surface 72 being opposite the first surface 71. The first surface 71 includes a periodicity of one of the first waveforms 710 contours The first waveform 710 has a plurality of peaks 711 and valleys 712, and any of the peaks 711 and the valleys 712 of the first waveform 710 extend in the straight line direction 75. The second surface 72 includes a periodicity of a second waveform 720 profile having a plurality of peaks 721 and troughs 722 along which any of the peaks 721 and troughs 720 of the second waveform 720 are The peaks 721 of the second waveform 720 correspond to the valleys 712 of the first waveform 710, and the valleys 722 of the second waveform 720 correspond to the peaks 712 of the first waveform 710. That is, the peak of one surface of the semiconductor substrate 70 corresponds to the valley of the other surface of the semiconductor substrate 70. The first and second waveforms 710, 720 can be serrated (as shown in Figure 4a) (e.g., isosceles triangles) or wavy (shown in Figure 4b).

請再參考圖4a,該第一波形710之任一波峰711及相鄰波谷712之間的高度H1相同於該第二波形720上與其對應之波谷722及波峰721之間的高度H2。另外,該第一波形710之波峰711及相鄰波谷712之間的高度H1之間的高度可小於該半導體基板70之厚度TH的一半,以避免該半導體基板70之本體層厚度(亦即TH減去H1或H2的厚度)過薄。 Referring again to FIG. 4a, the height H1 between any of the peaks 711 of the first waveform 710 and the adjacent valleys 712 is the same as the height H2 between the valleys 722 and the peaks 721 corresponding to the second waveform 720. In addition, the height between the peak 711 of the first waveform 710 and the height H1 between the adjacent valleys 712 may be less than half of the thickness TH of the semiconductor substrate 70 to avoid the thickness of the body layer of the semiconductor substrate 70 (ie, TH). Subtract the thickness of H1 or H2) too thin.

請參考圖5a及5b,舉例,該切割線844線徑D可為100~150μm,且該半導體基板70之厚度TH可為180~200μm或更小。當控制該縱向驅動器82及該橫向驅動器83驅動該半導體晶棒7移動的速度比例時(圖2所示),可使該第一及第二波形710、720為鋸齒狀(或波浪狀)的切割表面74。該切割表面74所增加的長度(或面積)與該橫向驅動器83之推進/拉回速度除以該縱向驅動器82之切割速度的比值成正相關。由於該橫向驅動器83持續推進/拉回,因此該切割表面74之第一及第二波形710、720將可形成轉折角度不同之多重轉折線(例如鋸齒狀)或曲率不同之多重曲線(例如波浪狀)之形狀,其往返轉換頻率可介於約20~1000μm/次。在本實施例中,該第一及第二波形710、720為鋸齒狀(等腰三角形)波形,例如等腰三角形之兩個底角a可為20度(圖5a所示)或45度(圖5b所示)。由圖可知,當該等腰三角形之兩個底角a越大時,則表示該第一及第二表面71、72之面積越大。 Referring to FIGS. 5a and 5b, for example, the cutting line 844 may have a wire diameter D of 100 to 150 μm, and the semiconductor substrate 70 may have a thickness TH of 180 to 200 μm or less. When controlling the longitudinal drive 82 and the lateral drive 83 to drive the speed ratio of the movement of the semiconductor ingot 7 (shown in FIG. 2), the first and second waveforms 710, 720 can be sawtooth (or wavy). The surface 74 is cut. The increased length (or area) of the cutting surface 74 is positively related to the ratio of the advancement/pullback speed of the transverse drive 83 divided by the cutting speed of the longitudinal drive 82. As the lateral drive 83 continues to advance/pull back, the first and second waveforms 710, 720 of the cutting surface 74 will form multiple turns (eg, serrated) or multiple curves of different curvature (eg, waves) having different turning angles. The shape of the shape has a round-trip conversion frequency of about 20 to 1000 μm/time. In this embodiment, the first and second waveforms 710, 720 are zigzag (isosceles triangle) waveforms, for example, the two base angles a of the isosceles triangles may be 20 degrees (shown in FIG. 5a) or 45 degrees ( Figure 5b). As can be seen from the figure, when the two base angles a of the isosceles triangles are larger, the area of the first and second surfaces 71, 72 is larger.

請參考圖6a及6b,該半導體基板70之切割表面74後續會可再利用蝕刻步驟進行粗糙化製程,也是作為增加該切割表面74之面積。舉例,請參考圖6a,當該半導體基板70為多晶矽時,一般是利用酸性(Acid)蝕刻步驟TX1進行該半導體基板70之切割表面74的粗糙化製程,其顯示形成在該切割表面74之第一及第二波形710、720上的粗糙化結構741,該粗糙化結構741主要具有高度約3~5μm的尺寸,此範圍有包含上下限,且其中於實施時較佳為小於4μm。請參考圖6b,當該半導體基板70為單晶矽時,一般是利用鹼性(Alkaline)蝕刻步驟TX2進行該半導體基板70之切割表面74的粗糙化製程,其顯示形成在該切割表面74之第一及第二波形710、720上的粗糙化結構742,該粗糙化結構742主要具有高度約3~5μm的尺寸,此範圍有包含上下限,且其中較佳為小於4μm。因此該第一波形710之任一波峰及相鄰波谷之間的高度H1較佳地介於5~20μm,此範圍有包含上下限,且該第二波形720之任一波峰及相鄰波谷之間的高度H2較佳地介於5~20μm,此範圍有包含上下限,可明顯地更增加該切割表面74(亦即該第一表面71及該第二表面72)之面積。其中,於實施上,為更突顯表面積增加之優勢,可將高度H1、H2設定為至少10μm以上,如此可在粗糙化結構741、742具有較多屬於5μm之較大尺寸時,仍可使該些切割表面74的表面積顯著增加,從而可使太陽能基板的受光面積亦隨之增加。簡言之,在本發明之具有週期性的第一及第二波形結構之切割表面上,進一步形成了粗糙化結構741或742,可使該半導體基板70的整體受光面積更進一步的提昇,從而可增加太陽能電池之電性效果與效率。 Referring to FIGS. 6a and 6b, the cutting surface 74 of the semiconductor substrate 70 may be subsequently subjected to a roughening process by using an etching step, also as an area for increasing the cutting surface 74. For example, referring to FIG. 6a, when the semiconductor substrate 70 is polysilicon, the roughening process of the cutting surface 74 of the semiconductor substrate 70 is generally performed by an acid etching step TX1, which is shown to be formed on the cutting surface 74. The roughened structure 741 on the first and second waveforms 710, 720, the roughened structure 741 mainly has a height of about 3 to 5 μm, and the range includes upper and lower limits, and preferably less than 4 μm in practice. Referring to FIG. 6b, when the semiconductor substrate 70 is a single crystal germanium, a roughening process of the cut surface 74 of the semiconductor substrate 70 is generally performed by an alkaline (Alkaline) etching step TX2, which is formed on the cut surface 74. The roughened structure 742 on the first and second waveforms 710, 720 has a size of about 3 to 5 μm in height, and the range includes upper and lower limits, and preferably less than 4 μm. Therefore, the height H1 between any peak of the first waveform 710 and the adjacent trough is preferably between 5 and 20 μm, and the range includes upper and lower limits, and any peak of the second waveform 720 and adjacent troughs The height H2 is preferably between 5 and 20 μm, and the range includes upper and lower limits, which significantly increases the area of the cutting surface 74 (i.e., the first surface 71 and the second surface 72). In practice, in order to further highlight the advantage of increasing surface area, the heights H1 and H2 may be set to be at least 10 μm or more, so that when the roughened structures 741 and 742 have a large size of 5 μm, the The surface area of the cutting surfaces 74 is significantly increased, so that the light receiving area of the solar substrate is also increased. In short, in the cutting surface of the first and second wave structures having periodicity of the present invention, the roughened structure 741 or 742 is further formed, so that the overall light receiving area of the semiconductor substrate 70 can be further improved, thereby It can increase the electrical effect and efficiency of solar cells.

請參考圖7a,在本實施例中,該半導體晶棒7之波形切割路徑73可為鋸齒狀,該鋸齒狀波形出現在該切割表面74之全部區域L1上,藉此該第一波形710之該些波峰及波谷依序出現在該第一表面71之全部區域L1上,且該第二波形720之該些波峰及波谷出現在該第二表面72之全部區域L1上。請參考圖7b,在另一實施例中, 該半導體晶棒7之波形切割路徑71可為部分平坦狀及部分鋸齒狀,平坦狀出現在該切割表面74之邊緣區域L3上,該鋸齒狀波形只出現在該切割表面74之中間區域L2(亦即局部區域)上,藉此該第一波形710之該些波峰及波谷只出現在該第一表面71之中間區域L2上,且該第二波形720之該些波峰及波谷只出現在該第二表面72之中間區域L2上。請參考圖7c,在又一實施例中,該半導體晶棒7之波形切割路徑71可為部分平坦狀及部分鋸齒狀,平坦狀出現在該切割表面74之中間區域L2上,該鋸齒狀波形只出現在該切割表面74之邊緣區域L3(亦即局部區域)上,藉此該第一波形710之該些波峰及波谷只出現在該第一表面71之邊緣區域L3上,且該第二波形720之該些波峰及波谷只出現在該第二表面72之邊緣區域L3上。該全部區域L1包括一中間區域L2及一邊緣區域L3,該邊緣區域L3位於該中間區域L2之兩側。該半導體晶棒7之波形切割路徑73為平坦狀時,可減少可能發生切割時的裂痕。 Referring to FIG. 7a, in the embodiment, the waveform cutting path 73 of the semiconductor ingot 7 may be in a zigzag shape, and the sawtooth waveform appears on all the regions L1 of the cutting surface 74, whereby the first waveform 710 The peaks and troughs are sequentially present on the entire area L1 of the first surface 71, and the peaks and troughs of the second waveform 720 appear on the entire area L1 of the second surface 72. Please refer to FIG. 7b. In another embodiment, The waveform cutting path 71 of the semiconductor ingot 7 may be partially flat and partially serrated, and appears flat on the edge region L3 of the cutting surface 74, and the zigzag waveform appears only in the intermediate portion L2 of the cutting surface 74 ( That is, a partial region, whereby the peaks and troughs of the first waveform 710 appear only on the intermediate region L2 of the first surface 71, and the peaks and troughs of the second waveform 720 only appear in the On the intermediate portion L2 of the second surface 72. Referring to FIG. 7c, in another embodiment, the waveform cutting path 71 of the semiconductor ingot 7 may be partially flat and partially serrated, and appear flat on the intermediate portion L2 of the cutting surface 74. The sawtooth waveform Appearing only on the edge region L3 (ie, a partial region) of the cutting surface 74, whereby the peaks and troughs of the first waveform 710 appear only on the edge region L3 of the first surface 71, and the second The peaks and troughs of waveform 720 appear only on edge region L3 of second surface 72. The entire area L1 includes an intermediate area L2 and an edge area L3, which are located on both sides of the intermediate area L2. When the waveform cutting path 73 of the semiconductor ingot 7 is flat, it is possible to reduce cracks at the time of cutting.

請參考圖8,其顯示本發明之一實施例之單面照光的太陽能電池6。該太陽能電池6包括:一基板60、一射極層61、一背電場層62、一第一鈍化層63a、一第一抗反射層64a、一第二鈍化層63b、一正面電極65a及一背面電極65b。該基板60為本發明之半導體基板70(圖3a所示),且為第一導電型,該基板60具有一正面601和一與該正面601相對的背面602。 Please refer to FIG. 8, which shows a single-sided illumination solar cell 6 in accordance with an embodiment of the present invention. The solar cell 6 includes a substrate 60, an emitter layer 61, a back field layer 62, a first passivation layer 63a, a first anti-reflective layer 64a, a second passivation layer 63b, a front electrode 65a and a Back electrode 65b. The substrate 60 is a semiconductor substrate 70 (shown in FIG. 3a) of the present invention and is of a first conductivity type having a front surface 601 and a back surface 602 opposite the front surface 601.

該正面601(亦即圖3a所示之第一表面71)包括週期性之一第一波形710輪廓(profile),該第一波形710具有多個波峰711及波谷712,該第一波形710之任一波峰711及波谷712皆沿一直線方向75延伸(圖3a所示)。另外,由於太陽能電池是單面照光,因此該背面602一般會再進行背面拋光製程以適度平坦之,該背面602不用成為圖3a所示之第二表面72的波形輪廓。 The front surface 601 (ie, the first surface 71 shown in FIG. 3a) includes a periodicity of a first waveform 710 having a plurality of peaks 711 and valleys 712, the first waveform 710 Any of the peaks 711 and troughs 712 extend in a straight line direction 75 (shown in Figure 3a). In addition, since the solar cell is single-sided illumination, the back surface 602 is generally subjected to a backside polishing process to be moderately flat, and the back surface 602 does not need to be a waveform profile of the second surface 72 shown in FIG. 3a.

請再參考圖8,該射極層61為第二導電型,該射極層61位於該基板60內靠近該正面601處。該背電場層62為第一導電型,該背電場層62位於該基板60內靠近該背面602處。該第一鈍化層63a 位於該正面601處。該抗反射層64a位於該第一鈍化層63a上。該第二鈍化層63b位於該背面602處。該正面電極65a穿過該第一抗反射層64a及該第一鈍化層63a,並接觸該射極層61。該背面電極65b穿過該第二鈍化層63b,並接觸該背電場層62。 Referring to FIG. 8 again, the emitter layer 61 is of a second conductivity type, and the emitter layer 61 is located in the substrate 60 near the front surface 601. The back electric field layer 62 is of a first conductivity type, and the back electric field layer 62 is located in the substrate 60 near the back surface 602. The first passivation layer 63a Located at the front side 601. The anti-reflective layer 64a is located on the first passivation layer 63a. The second passivation layer 63b is located at the back surface 602. The front electrode 65a passes through the first anti-reflective layer 64a and the first passivation layer 63a and contacts the emitter layer 61. The back surface electrode 65b passes through the second passivation layer 63b and contacts the back electric field layer 62.

本發明透過將該半導體晶棒之切割路徑從直線改為多重轉折線或多重曲線,從而可使切割出之半導體基板的表面積增加,藉此可增加半導體電池表面的整體受光面積,進而提升電流和轉換效率,以提昇整體之電性效率。其中實施例之圖8中的正面601的切割表面74上,同樣會具有粗糙化結構741或742(圖6a或圖6b所示),藉此可在整體表面積因切割表面74的存在而增加之下,再透過表面粗糙化之製程於多晶或單晶基板上形成這些粗糙化結構741或742,從而再次增加了可受光之表面積,故可提昇光電效率。 The invention can increase the surface area of the cut semiconductor substrate by changing the cutting path of the semiconductor ingot from a straight line to a multiple turning line or a multiple curve, thereby increasing the overall light receiving area of the surface of the semiconductor cell, thereby increasing the current and Conversion efficiency to improve overall electrical efficiency. The cutting surface 74 of the front side 601 of Figure 8 of the embodiment will also have a roughened structure 741 or 742 (shown in Figure 6a or Figure 6b) whereby the overall surface area may be increased by the presence of the cutting surface 74. Then, these roughened structures 741 or 742 are formed on the polycrystalline or single crystal substrate by the process of surface roughening, thereby increasing the surface area of the light-receiving surface, thereby improving the photoelectric efficiency.

請參考圖9,其顯示本發明之一實施例之雙面照光的太陽能電池6’。該太陽能電池6包括:一基板60、一射極層61、一背電場層62、一第一鈍化層63a、一第一抗反射層64a、一第二鈍化層63b、一第二抗反射層64b一正面電極65a及一背面電極65b。該基板60為本發明之半導體基板,且為第一導電型,該基板60具有一正面601和一與該正面601相對的背面602。 Referring to Figure 9, there is shown a double-sided illuminated solar cell 6' in accordance with one embodiment of the present invention. The solar cell 6 includes a substrate 60, an emitter layer 61, a back field layer 62, a first passivation layer 63a, a first anti-reflective layer 64a, a second passivation layer 63b, and a second anti-reflective layer. 64b is a front electrode 65a and a back electrode 65b. The substrate 60 is a semiconductor substrate of the present invention and is of a first conductivity type having a front surface 601 and a back surface 602 opposite the front surface 601.

該正面601(亦即圖3a所示之第一表面71)包括週期性之一第一波形710輪廓(profile),該第一波形710具有多個波峰711及波谷712,該第一波形710之任一波峰711及波谷712皆沿一直線方向75延伸,該背面602(亦即圖3a所示之第二表面72)包括週期性之一第二波形720輪廓(profile),該第二波形720具有多個波峰721及波谷722,該第二波形720之任一波峰721及波谷722皆沿該直線方向75延伸,該第二波形720之該些波峰721對應於該第一波形710之該些波谷712,且該第二波形720之該些波谷722對應於該第一波形710之該些波峰712(圖3a所示)。 The front surface 601 (ie, the first surface 71 shown in FIG. 3a) includes a periodicity of a first waveform 710 having a plurality of peaks 711 and valleys 712, the first waveform 710 Any of the peaks 711 and troughs 712 extend in a straight line direction 75, and the back surface 602 (ie, the second surface 72 shown in FIG. 3a) includes a periodicity of a second waveform 720 profile having a second waveform 720 having Each of the peaks 721 and the valleys 722 of the second waveform 720 extends along the linear direction 75. The peaks 721 of the second waveform 720 correspond to the valleys of the first waveform 710. 712, and the valleys 722 of the second waveform 720 correspond to the peaks 712 of the first waveform 710 (shown in FIG. 3a).

請再參考圖9,該射極層61為第二導電型,該射極層 61位於該基板60內靠近該正面601處。該背電場層62為第一導電型,該背電場層62位於該基板60內靠近該背面602處。該第一鈍化層63a位於該正面601處。該第一抗反射層64a位於該第一鈍化層63a上。該第二鈍化層63b位於該背面602處。該正面電極65a穿過該第一抗反射層64a及該第一鈍化層63a,並接觸該射極層61。該背面電極65b穿過該第二抗反射層64b及該第二鈍化層63b,並接觸該背電場層62。其中於本實施例之圖9中之正面601與背面602之切割表面74上,同樣具有粗糙化結構741或742(如圖6a或圖6b所示),藉此可在增加整體之受光面積下,進一步提昇太陽能電池之電性效率。 Referring again to FIG. 9, the emitter layer 61 is of a second conductivity type, and the emitter layer 61 is located within the substrate 60 proximate the front side 601. The back electric field layer 62 is of a first conductivity type, and the back electric field layer 62 is located in the substrate 60 near the back surface 602. The first passivation layer 63a is located at the front side 601. The first anti-reflective layer 64a is located on the first passivation layer 63a. The second passivation layer 63b is located at the back surface 602. The front electrode 65a passes through the first anti-reflective layer 64a and the first passivation layer 63a and contacts the emitter layer 61. The back surface electrode 65b passes through the second anti-reflective layer 64b and the second passivation layer 63b and contacts the back electric field layer 62. The cutting surface 74 of the front surface 601 and the back surface 602 in FIG. 9 of the embodiment also has a roughening structure 741 or 742 (as shown in FIG. 6a or FIG. 6b), thereby increasing the overall light receiving area. To further enhance the electrical efficiency of solar cells.

請參考圖10a及10b,其顯示本發明之一實施例之太陽能電池模組5。該太陽能電池模組5包括:彼此電性連接設置的多個太陽能電池,該些太陽能電池可為上述單面照光的太陽能電池6(或上述雙面照光的太陽能電池6’)。舉例,該太陽能電池6之正面電極65a藉由導線65而電性連接至另一太陽能電池6之該背面電極65b,如此使多個太陽能電池6串聯或並聯設置在一起,以提供較大的電壓或電流。請參考圖11,該太陽能電池模組5更包括:一正面玻璃板51、一背面板材52及一封裝材53,其中該些單面照光太陽能電池6(或雙面照光太陽能電池6’)位於該正面玻璃板51與該背面板材52之間,且該些太陽能電池6被該封裝材53所固定。當該太陽能電池模組5為一單玻模組(其包括上述單面照光的太陽能電池6),該背面板材52是一個非透明的背板。當該太陽能電池模組5為一雙玻模組(其包括上述雙面照光的太陽能電池6’),該背面板材52是一個透明的玻璃板。 Referring to Figures 10a and 10b, a solar cell module 5 of one embodiment of the present invention is shown. The solar cell module 5 includes a plurality of solar cells electrically connected to each other, and the solar cells may be the single-sided solar cells 6 (or the double-sided solar cells 6'). For example, the front electrode 65a of the solar cell 6 is electrically connected to the back electrode 65b of the other solar cell 6 by the wire 65, so that the plurality of solar cells 6 are arranged in series or in parallel to provide a larger voltage. Or current. Referring to FIG. 11 , the solar cell module 5 further includes: a front glass plate 51 , a back plate 52 , and a package 53 , wherein the single-sided solar cells 6 (or double-sided solar cells 6 ′) are located. The front glass plate 51 and the back surface plate 52 are disposed, and the solar cells 6 are fixed by the package 53. When the solar cell module 5 is a single glass module (which includes the single-sided illumination solar cell 6), the back plate 52 is a non-transparent back plate. When the solar cell module 5 is a double glass module (which includes the above-described double-sided solar cell 6'), the back plate 52 is a transparent glass plate.

綜上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 In summary, the present invention is only described as a preferred embodiment or embodiment of the technical means for solving the problem, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.

Claims (19)

一種半導體基板,包括:一第一表面,其包括週期性之一第一波形輪廓,其中該第一波形具有多個波峰及波谷,且該第一波形之任一波峰及波谷皆沿一直線方向延伸;以及一第二表面,其背對於該第一表面,並包括週期性之一第二波形輪廓,其中該第二波形具有多個波峰及波谷,該第二波形之任一波峰及波谷皆沿該直線方向延伸,該第二波形之該些波峰對應於該第一波形之該些波谷,且該第二波形之該些波谷對應於該第一波形之該些波峰。 A semiconductor substrate comprising: a first surface comprising a first waveform profile of a periodicity, wherein the first waveform has a plurality of peaks and troughs, and any of the peaks and troughs of the first waveform extend in a straight line direction And a second surface back to the first surface and including a periodic second waveform profile, wherein the second waveform has a plurality of peaks and troughs, and any peaks and troughs of the second waveform are along The linear direction extends, and the peaks of the second waveform correspond to the valleys of the first waveform, and the valleys of the second waveform correspond to the peaks of the first waveform. 如申請專利範圍第1項所述之半導體基板,其中該第一波形之任一波峰及相鄰波谷之間的高度,相同於該第二波形上與其對應之波谷及波峰之間的高度。 The semiconductor substrate of claim 1, wherein a height between any peak of the first waveform and an adjacent valley is the same as a height between the valley and the peak corresponding to the second waveform. 如申請專利範圍第1或2項所述之半導體基板,其中該第一波形之任一波峰及相鄰波谷之間的高度介於5~20μm。 The semiconductor substrate according to claim 1 or 2, wherein a height between any peak of the first waveform and an adjacent valley is between 5 and 20 μm. 如申請專利範圍第3項所述之半導體基板,其中該第一表面包括一粗糙化結構,其形成在該第一波形上,且該粗糙化結構具有高度約3~5μm的尺寸。 The semiconductor substrate of claim 3, wherein the first surface comprises a roughened structure formed on the first waveform, and the roughened structure has a size of about 3 to 5 μm in height. 如申請專利範圍第1項所述之半導體基板,其中該第一表面包括一粗糙化結構,其形成在該第一波形上。 The semiconductor substrate of claim 1, wherein the first surface comprises a roughened structure formed on the first waveform. 如申請專利範圍第1項所述之半導體基板,其中該第一波形之任一波峰及相鄰波谷之間的高度小於該半導體基板之厚度的一半。 The semiconductor substrate of claim 1, wherein a height between any peak of the first waveform and an adjacent valley is less than half of a thickness of the semiconductor substrate. 如申請專利範圍第1項所述之半導體基板,其中該第一波形之該些波峰及波谷出現在該第一表面之全部區域或局部區域上。 The semiconductor substrate of claim 1, wherein the peaks and troughs of the first waveform appear on all or a partial region of the first surface. 如申請專利範圍第1項所述之半導體基板,其中該第一波形之該些波峰及波谷只出現在該第一表面之中間區域上。 The semiconductor substrate of claim 1, wherein the peaks and troughs of the first waveform are only present on an intermediate portion of the first surface. 如申請專利範圍第1項所述之半導體基板,其中該第一波形之該些波峰及波谷只出現在該第一表面之邊緣區域上。 The semiconductor substrate of claim 1, wherein the peaks and troughs of the first waveform appear only on an edge region of the first surface. 如申請專利範圍第1項所述之半導體基板,其中該第一波形形成轉折角度不同之多重轉折線或曲率不同之多重曲線之形狀。 The semiconductor substrate according to claim 1, wherein the first waveform forms a shape of a plurality of transition lines having different turning angles or multiple curves having different curvatures. 如申請專利範圍第10項所述之半導體基板,其中該多重轉折線之形狀為鋸齒狀,且該多重曲線之形狀為波浪狀。 The semiconductor substrate according to claim 10, wherein the multiple turning line has a zigzag shape, and the multi-curve shape is wavy. 一種太陽能電池,包括:一基板,為第一導電型,該基板具有一正面和一與該正面相對的背面,該正面包括週期性之一第一波形輪廓,其中該第一波形具有多個波峰及波谷,且該第一波形之任一波峰及波谷皆沿一直線方向延伸;一射極層,為第二導電型,該射極層位於該基板內靠近該正面處;一背電場層,為第一導電型,該背電場層位於該基板內靠近該背面處;一第一鈍化層,位於該正面處;一第一抗反射層,位於該第一鈍化層上;一第二鈍化層,位於該背面處;一正面電極,穿過該第一抗反射層及該第一鈍化層,並接觸該射極層;以及一背面電極,穿過該第二鈍化層,並接觸該背電場層。 A solar cell comprising: a substrate having a first conductivity type, the substrate having a front surface and a back surface opposite the front surface, the front surface including a periodic first waveform profile, wherein the first waveform has a plurality of peaks And a trough, and any of the peaks and troughs of the first waveform extend in a straight line direction; an emitter layer is a second conductivity type, the emitter layer is located in the substrate near the front surface; and a back electric field layer is a first conductivity type, the back electric field layer is located in the substrate near the back surface; a first passivation layer is located at the front surface; a first anti-reflection layer is disposed on the first passivation layer; and a second passivation layer is Located at the back surface; a front electrode passing through the first anti-reflective layer and the first passivation layer and contacting the emitter layer; and a back electrode passing through the second passivation layer and contacting the back electric field layer . 如申請專利範圍第12項所述之太陽能電池,更包括:週期性 之一第二波形輪廓,該第二波形具有多個波峰及波谷,該第二波形之任一波峰及波谷皆沿該直線方向延伸,該第二波形之該些波峰對應於該第一波形之該些波谷,且該第二波形之該些波谷對應於該第一波形之該些波峰。 The solar cell as described in claim 12, further comprising: periodicity a second waveform profile having a plurality of peaks and troughs, wherein any of the peaks and troughs of the second waveform extend along the linear direction, and the peaks of the second waveform correspond to the first waveform The valleys, and the valleys of the second waveform correspond to the peaks of the first waveform. 一種太陽能電池模組,包括:彼此連接設置的多個太陽能電池,該些太陽能電池為如申請專利範圍第12或13項所述之太陽能電池;以及一正面玻璃板、一背面板材及一封裝材,其中該些太陽能電池位於該正面玻璃板與該背面板材之間,且該些太陽能電池被該封裝材所固定。 A solar cell module comprising: a plurality of solar cells connected to each other, the solar cells being the solar cell according to claim 12 or 13; and a front glass plate, a back plate and a package The solar cells are located between the front glass plate and the back plate, and the solar cells are fixed by the package. 如申請專利範圍第14項所述之太陽能電池模組,其中該太陽能電池模組為一雙玻模組,且該背面板材是一個透明的玻璃板。 The solar cell module of claim 14, wherein the solar cell module is a double glass module, and the back plate material is a transparent glass plate. 如申請專利範圍第14項所述之太陽能電池模組,其中該背面板材是一個非透明的背板。 The solar cell module of claim 14, wherein the back sheet material is a non-transparent back sheet. 一種半導體晶棒切割方法,包括下列步驟:提供一半導體晶棒;以及將該半導體晶棒同時切割成多個半導體基板,其中任一半導體基板包括一第一表面及一第二表面,該第二表面背對於該第一表面,該第一表面包括週期性之一第一波形輪廓,該第一波形具有多個波峰及波谷,該第一波形之任一波峰及波谷皆沿一直線方向延伸,該第二表面包括週期性之一第二波形輪廓,該第二波形具有多個波峰及波谷,該第二波形之任一波峰及波谷皆沿該直 線方向延伸,該第二波形之該些波峰對應於該第一波形之該些波谷,且該第二波形之該些波谷對應於該第一波形之該些波峰。 A semiconductor ingot cutting method comprising the steps of: providing a semiconductor ingot; and simultaneously cutting the semiconductor ingot into a plurality of semiconductor substrates, wherein any one of the semiconductor substrates comprises a first surface and a second surface, the second Back surface of the first surface, the first surface includes a periodic first waveform profile, the first waveform having a plurality of peaks and troughs, any of the peaks and troughs of the first waveform extending in a straight line direction, The second surface includes one of the periodic second waveform profiles, the second waveform having a plurality of peaks and troughs, any of the peaks and troughs of the second waveform being along the straight The line direction extends, the peaks of the second waveform correspond to the valleys of the first waveform, and the valleys of the second waveform correspond to the peaks of the first waveform. 一種半導體晶棒切割設備,包括:一基座,用以固持一半導體晶棒;一縱向驅動器,連接於該基座,用以驅動該基座沿一縱向進行運動;一橫向驅動器,連接於該基座,用以驅動該基座沿一橫向進行往返雙向運動;以及一切片單元,設置於該基座沿縱向的下方,藉此當該半導體晶棒被該縱向驅動器及該橫向驅動器所驅動而通過該切片單元時,該切片單元將該半導體晶棒同時切割成多個半導體基板,其中任一半導體基板包括一第一表面及一第二表面,該第二表面背對於該第一表面,該第一表面包括週期性之一第一波形輪廓,該第一波形具有多個波峰及波谷,該第一波形之任一波峰及波谷皆沿一直線方向延伸,該第二表面包括週期性之一第二波形輪廓,該第二波形具有多個波峰及波谷,該第二波形之任一波峰及波谷皆沿該直線方向延伸,該第二波形之該些波峰對應於該第一波形之該些波谷,且該第二波形之該些波谷對應於該第一波形之該些波峰。 A semiconductor ingot cutting device comprising: a base for holding a semiconductor ingot; a longitudinal driver coupled to the base for driving the base to move in a longitudinal direction; a lateral driver coupled to the a pedestal for driving the pedestal to reciprocate in a lateral direction; and a dicing unit disposed downstream of the pedestal, whereby the semiconductor ingot is driven by the longitudinal driver and the lateral driver When the dicing unit passes, the dicing unit simultaneously cuts the semiconductor ingot into a plurality of semiconductor substrates, wherein any one of the semiconductor substrates includes a first surface and a second surface, the second surface is opposite to the first surface The first surface includes a periodic first waveform profile, the first waveform having a plurality of peaks and troughs, any of the peaks and troughs of the first waveform extending in a straight line direction, the second surface comprising one of periodicity a second waveform profile having a plurality of peaks and troughs, any of the peaks and troughs of the second waveform extending along the linear direction, the second waveform Some peaks corresponding to the first wave of the plurality of troughs, and the troughs of the plurality of second waveform corresponding to the first peak of the plurality of waveforms. 如申請專利範圍第18項所述之半導體晶棒切割設備,其中該切片單元包括一可移動之平行切割線網,用以將該半導體晶棒同時切割成多個半導體基板。 The semiconductor ingot cutting apparatus of claim 18, wherein the slicing unit comprises a movable parallel cutting wire mesh for simultaneously cutting the semiconductor ingot into a plurality of semiconductor substrates.
TW106122002A 2017-06-30 2017-06-30 Semiconductor substrate, solar cell, solar cell module, method for cutting a semicroductor brick and device cutting a semicroductor brick TWI632690B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106122002A TWI632690B (en) 2017-06-30 2017-06-30 Semiconductor substrate, solar cell, solar cell module, method for cutting a semicroductor brick and device cutting a semicroductor brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106122002A TWI632690B (en) 2017-06-30 2017-06-30 Semiconductor substrate, solar cell, solar cell module, method for cutting a semicroductor brick and device cutting a semicroductor brick

Publications (2)

Publication Number Publication Date
TWI632690B true TWI632690B (en) 2018-08-11
TW201906183A TW201906183A (en) 2019-02-01

Family

ID=63959920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106122002A TWI632690B (en) 2017-06-30 2017-06-30 Semiconductor substrate, solar cell, solar cell module, method for cutting a semicroductor brick and device cutting a semicroductor brick

Country Status (1)

Country Link
TW (1) TWI632690B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210384364A1 (en) * 2020-06-04 2021-12-09 Tsec Corporation Solar cell structure and fabrication method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201703266A (en) * 2015-07-10 2017-01-16 國立屏東科技大學 Method for roughening silicon substrate surface
TW201709541A (en) * 2015-07-27 2017-03-01 Choshu Industry Co Ltd Photovoltaic power generation element and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201703266A (en) * 2015-07-10 2017-01-16 國立屏東科技大學 Method for roughening silicon substrate surface
TW201709541A (en) * 2015-07-27 2017-03-01 Choshu Industry Co Ltd Photovoltaic power generation element and method for manufacturing same

Also Published As

Publication number Publication date
TW201906183A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
US20220293803A1 (en) Shingled solar cells overlapping along non-linear edges
US20120234375A1 (en) Thin film solar cell and method of manufacturing the same
KR101855346B1 (en) Solar cell and solar cell panel including the same
US8513047B2 (en) Method for fracturing semiconductor substrate, method for fracturing solar cell, and the solar cell
US20080157283A1 (en) Template for three-dimensional thin-film solar cell manufacturing and methods of use
JP2006013406A (en) Solar cell module
TW201021231A (en) Method for manufacturing solar battery cell, and solar battery cell
CN102593223A (en) Tabbing ribbon, photovoltaic solar panel, method and machine for manufacturing tabbing ribbon
EP2509117A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
JP5299975B2 (en) Back electrode type solar cell, wiring sheet, solar cell with wiring sheet and solar cell module
JP2011044750A (en) Solar cell module
JP2010016246A (en) Solar cell module and method of manufacturing the same
TWI632690B (en) Semiconductor substrate, solar cell, solar cell module, method for cutting a semicroductor brick and device cutting a semicroductor brick
JP5306353B2 (en) Solar cell module
JP2011159676A (en) Solar cell device, and solar cell module using the same
JP6664065B2 (en) Solar cell element and solar cell module
JP6489785B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP5269014B2 (en) Solar cell module
JP2009182260A (en) Solar battery
JPWO2018034266A1 (en) PHOTOELECTRIC CONVERSION ELEMENT AND PHOTOELECTRIC CONVERSION DEVICE
JPWO2015015694A1 (en) Photovoltaic device
JP6476015B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2011044751A (en) Solar cell module
US11038071B2 (en) Solar cell, solar cell module, and method for manufacturing solar cell
JP2016009846A (en) Photoelectric conversion element and photoelectric conversion system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees