TWI632644B - Intergrated circuit structure - Google Patents
Intergrated circuit structure Download PDFInfo
- Publication number
- TWI632644B TWI632644B TW106129615A TW106129615A TWI632644B TW I632644 B TWI632644 B TW I632644B TW 106129615 A TW106129615 A TW 106129615A TW 106129615 A TW106129615 A TW 106129615A TW I632644 B TWI632644 B TW I632644B
- Authority
- TW
- Taiwan
- Prior art keywords
- metal pattern
- transistor
- metal
- electrically connected
- stack
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一種積體電路結構,包括主動區、第一頂部金屬圖樣、第二頂部金屬圖樣、第一金屬圖樣堆疊、第二金屬圖樣堆疊、第一電晶體以及第二電晶體。主動區形成於一基板。第一頂部金屬圖樣電性連接該主動區。第二頂部金屬圖樣電性連接該主動區,並與該第一頂部金屬圖樣形成於同一金屬層。第一金屬圖樣堆疊包括堆疊的K層第一金屬圖樣。第二金屬圖樣堆疊包括堆疊的K層第二金屬圖樣。第一電晶體形成於該基板,該第一電晶體經由該第一金屬圖樣堆疊電性連接至該第一頂部金屬圖樣,以經由該第一頂部金圖樣電性連接該主動區。第二電晶體鄰設於該第一電晶體,該第二電晶體經由該第二金屬圖樣堆疊電性連接至該第二頂部金屬圖樣,以經由該第二頂部金屬層電性連接該主動區。 An integrated circuit structure includes an active area, a first top metal pattern, a second top metal pattern, a first metal pattern stack, a second metal pattern stack, a first transistor, and a second transistor. The active region is formed on a substrate. The first top metal pattern is electrically connected to the active area. The second top metal pattern is electrically connected to the active region, and is formed in the same metal layer as the first top metal pattern. The first metal pattern stack includes stacked K-layer first metal patterns. The second metal pattern stack includes stacked K-layer second metal patterns. A first transistor is formed on the substrate, and the first transistor is electrically connected to the first top metal pattern via the first metal pattern stack to electrically connect the active region via the first top gold pattern. A second transistor is adjacent to the first transistor, and the second transistor is electrically connected to the second top metal pattern through the second metal pattern stack to electrically connect the active region through the second top metal layer. .
Description
本發明是有關於一種積體電路結構。 The invention relates to an integrated circuit structure.
隨著積體電路尺寸縮小,半導體製程對電子元件特性所造成的影響越趨明顯。 As the size of integrated circuits shrinks, the impact of semiconductor manufacturing processes on the characteristics of electronic components becomes increasingly apparent.
舉例來說,帶隙電壓(bandgap voltage)是重要的積體電路參考電壓來源。帶隙電壓可由典型的帶隙參考電路(bandgap reference circuit)提供,其通常包括一操作放大器(operational amplifier)。然而,操作放大器的特性往往會受到半導體製程的影響,使得操作放大器的輸出電壓發生偏移,而這對於電路設計者來說是相當不利的。 For example, bandgap voltage is an important reference voltage source for integrated circuits. The bandgap voltage can be provided by a typical bandgap reference circuit, which usually includes an operational amplifier. However, the characteristics of the operational amplifier are often affected by the semiconductor process, which causes the output voltage of the operational amplifier to shift, which is quite unfavorable to the circuit designer.
因此,如何提出一種積體電路結構,以有效降低半導體製程對於電路元件特性的影響,乃目前業界所致力的課題之一。 Therefore, how to propose an integrated circuit structure to effectively reduce the influence of the semiconductor manufacturing process on the characteristics of circuit components is one of the topics that the industry is currently working on.
本發明是有關於一種積體電路結構。在所提出的積體電路結構中,不同的電晶體會經過相同數量的金屬層再電性連接至主動區(active area)。藉由提高整體金屬佈局的空間對稱性, 可均勻化製程因素(如金屬蝕刻)對不同電晶體所造成的影響,並降低元件不匹配的可能性。 The invention relates to an integrated circuit structure. In the proposed integrated circuit structure, different transistors will be electrically connected to the active area through the same number of metal layers. By improving the spatial symmetry of the overall metal layout, The effects of process factors (such as metal etching) on different transistors can be uniformized, and the possibility of component mismatch is reduced.
根據本發明之一方面,提出一種積體電路結構,其包括主動區、第一頂部金屬圖樣、第二頂部金屬圖樣、第一金屬圖樣堆疊、第二金屬圖樣堆疊、第一電晶體以及第二電晶體。主動區形成於一基板。第一頂部金屬圖樣電性連接該主動區。第二頂部金屬圖樣電性連接該主動區,並與該第一頂部金屬圖樣形成於同一金屬層。第一金屬圖樣堆疊包括堆疊的K層第一金屬圖樣。第二金屬圖樣堆疊包括堆疊的K層第二金屬圖樣。第一電晶體形成於該基板,該第一電晶體經由該第一金屬圖樣堆疊電性連接至該第一頂部金屬圖樣,以經由該第一頂部金圖樣電性連接該主動區。第二電晶體鄰設於該第一電晶體,該第二電晶體經由該第二金屬圖樣堆疊電性連接至該第二頂部金屬圖樣,以經由該第二頂部金屬層電性連接該主動區。 According to an aspect of the present invention, an integrated circuit structure is provided, which includes an active area, a first top metal pattern, a second top metal pattern, a first metal pattern stack, a second metal pattern stack, a first transistor, and a second Transistor. The active region is formed on a substrate. The first top metal pattern is electrically connected to the active area. The second top metal pattern is electrically connected to the active region, and is formed in the same metal layer as the first top metal pattern. The first metal pattern stack includes stacked K-layer first metal patterns. The second metal pattern stack includes stacked K-layer second metal patterns. A first transistor is formed on the substrate, and the first transistor is electrically connected to the first top metal pattern via the first metal pattern stack to electrically connect the active region via the first top gold pattern. A second transistor is adjacent to the first transistor, and the second transistor is electrically connected to the second top metal pattern through the second metal pattern stack to electrically connect the active region through the second top metal layer. .
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, preferred embodiments are described below in detail with the accompanying drawings, as follows:
100‧‧‧積體電路結構 100‧‧‧Integrated Circuit Structure
OD‧‧‧主動區 OD‧‧‧active zone
Ptop1‧‧‧第一頂部金屬圖樣 Ptop1‧‧‧First Top Metal Pattern
Ptop2‧‧‧第二頂部金屬圖樣 Ptop2‧‧‧Second Top Metal Pattern
STA1‧‧‧第一金屬圖樣堆疊 STA1‧‧‧The first metal pattern stack
STA2‧‧‧第二金屬圖樣堆疊 STA2‧‧‧Second metal pattern stacking
T1‧‧‧第一電晶體 T1‧‧‧First transistor
T2‧‧‧第二電晶體 T2‧‧‧Second transistor
M1‧‧‧第一金屬層 M1‧‧‧First metal layer
M2‧‧‧第二金屬層 M2‧‧‧Second metal layer
M3‧‧‧第三金屬層 M3‧‧‧ Third metal layer
M4‧‧‧第四金屬層 M4‧‧‧ Fourth metal layer
P11、P21、P31‧‧‧第一金屬圖樣 P11, P21, P31‧‧‧First metal pattern
P12、P22、P32‧‧‧第二金屬圖樣 P12, P22, P32‧‧‧Second metal pattern
CP‧‧‧連接點 CP‧‧‧ connection point
402‧‧‧操作放大器 402‧‧‧ Operation Amplifier
404‧‧‧帶隙參考電路 404‧‧‧Band Gap Reference Circuit
in1、in2‧‧‧輸入電壓 in1, in2‧‧‧ input voltage
ref‧‧‧帶隙參考電壓 ref‧‧‧ Bandgap Reference Voltage
第1圖繪示依據本發明一實施例之積體電路結構之剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a integrated circuit structure according to an embodiment of the present invention.
第2圖繪示依據本發明一實施例之積體電路結構之俯視示意圖。 FIG. 2 is a schematic top view of the integrated circuit structure according to an embodiment of the present invention.
第3a至3e圖繪示第一電晶體T1與第二電晶體T2在基板上的多種配置示意圖。 3a to 3e are schematic diagrams showing various configurations of the first transistor T1 and the second transistor T2 on the substrate.
第4圖繪示應用本發明實施例之積體電路結構之操作放大器之示意圖。 FIG. 4 is a schematic diagram of an operational amplifier to which the integrated circuit structure of the embodiment of the present invention is applied.
第5A圖繪示傳統之電路元件之輸出電壓分布圖。 FIG. 5A shows an output voltage distribution diagram of a conventional circuit element.
第5B圖繪示依據本發明之積體電路結構實現之電路元件之輸出電壓分布圖。 FIG. 5B shows an output voltage distribution diagram of a circuit element implemented according to the integrated circuit structure of the present invention.
在本文中,參照所附圖式仔細地描述本揭露的一些實施例,但不是所有實施例都有表示在圖示中。實際上,這些發明可使用多種不同的變形,且並不限於本文中的實施例。相對的,本揭露提供這些實施例以滿足應用的法定要求。圖式中相同的參考符號用來表示相同或相似的元件。 Herein, some embodiments of the present disclosure are described in detail with reference to the attached drawings, but not all embodiments are shown in the drawings. In fact, these inventions can use many different variations and are not limited to the embodiments herein. In contrast, this disclosure provides these embodiments to meet the legal requirements of the application. The same reference symbols are used in the drawings to identify the same or similar elements.
第1圖繪示依據本發明一實施例之積體電路結構100之剖面示意圖。 FIG. 1 is a schematic cross-sectional view of an integrated circuit structure 100 according to an embodiment of the present invention.
積體電路結構100包括主動區OD、第一頂部金屬圖樣Ptop1、第二頂部金屬圖樣Ptop2、第一金屬圖樣堆疊STA1、第二金屬圖樣堆疊STA2、第一電晶體T1以及第二電晶體T2。第一電晶體T1以及第二電晶體T2例如是金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。 The integrated circuit structure 100 includes an active region OD, a first top metal pattern Ptop1, a second top metal pattern Ptop2, a first metal pattern stack STA1, a second metal pattern stack STA2, a first transistor T1, and a second transistor T2. The first transistor T1 and the second transistor T2 are, for example, metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
須注意的是,第1圖中的第一電晶體T1和第二電晶體T2雖以NMOS表示,但本發明並不限定第一電晶體T1以及第二電晶體T2的電晶體類型。依據實施電路的不同,第一電晶體T1以及第二電晶體T2可以同為N型電晶體(如NMOS)、或同為P型電晶體(如PMOS)、或一者為N型電晶體而另一者為P型電晶體。 It should be noted that although the first transistor T1 and the second transistor T2 in FIG. 1 are represented by NMOS, the present invention does not limit the transistor types of the first transistor T1 and the second transistor T2. Depending on the implementation circuit, the first transistor T1 and the second transistor T2 can be both N-type transistors (such as NMOS), or both P-type transistors (such as PMOS), or both can be N-type transistors The other is a P-type transistor.
主動區OD形成於基板(未繪示)。主動區OD例如包括一或多個形成於基板的主動元件,可透過金屬傳導路徑提供第一、二電晶體T1、T2控制訊號及/或電源訊號。第一、二電晶體T1、T2可分別電性連接至主動區OD中的兩分離區域,亦可電性連接至主動區OD中的相同區域,端視實際電路佈局設計而定。 The active region OD is formed on a substrate (not shown). The active region OD includes, for example, one or more active elements formed on a substrate, and the first and second transistors T1 and T2 control signals and / or power signals can be provided through a metal conductive path. The first and second transistors T1 and T2 may be electrically connected to two separate areas in the active area OD, respectively, or may be electrically connected to the same area in the active area OD, depending on the actual circuit layout design.
第一頂部金屬圖樣Ptop1電性連接主動區OD。舉例來說,第一頂部金屬圖樣Ptop1可透過一或多層電性連接的金屬圖樣(未繪示)往下連接至基板上的主動區OD。在第1圖的例子中,第一頂部金屬圖樣Ptop1位在第4金屬層M4。 The first top metal pattern Ptop1 is electrically connected to the active region OD. For example, the first top metal pattern Ptop1 may be connected down to the active region OD on the substrate through one or more electrically connected metal patterns (not shown). In the example of FIG. 1, the first top metal pattern Ptop1 is located on the fourth metal layer M4.
第二頂部金屬圖樣Ptop2電性連接主動區OD,並與第一頂部金屬圖樣Ptop1形成於同一金屬層,如第4金屬層M4。同樣地,第二頂部金屬圖樣Ptop2可透過一或多層電性連接的金屬圖樣(未繪示)往下連接至基板上的主動區OD。 The second top metal pattern Ptop2 is electrically connected to the active region OD, and is formed in the same metal layer as the first top metal pattern Ptop1, such as a fourth metal layer M4. Similarly, the second top metal pattern Ptop2 can be connected down to the active region OD on the substrate through one or more layers of electrically connected metal patterns (not shown).
第一金屬圖樣堆疊STA1包括堆疊的K(K為正整數)層第一金屬圖樣。K可以是任意的正整數,端視實際的電路佈局而定。在第1圖的例子中,K等於3,即第一金屬圖樣堆疊STA1 包括位在第1金屬層M1的第一金屬圖樣P11、位在第2金屬層M2的第一金屬圖樣P21以及位在第3金屬層M3的第一金屬圖樣P31。 The first metal pattern stack STA1 includes stacked K (K is a positive integer) layers of the first metal pattern. K can be any positive integer, depending on the actual circuit layout. In the example in Figure 1, K is equal to 3, which is the first metal pattern stack STA1. The first metal pattern P11 is located in the first metal layer M1, the first metal pattern P21 is located in the second metal layer M2, and the first metal pattern P31 is located in the third metal layer M3.
類似地,第二金屬圖樣堆疊STA2包括堆疊的K層第二金屬圖樣。如第1圖所示,第二金屬圖樣堆疊STA2包括位在第1金屬層M1的第二金屬圖樣P12、位在第2金屬層M2的第二金屬圖樣P22以及位在第3金屬層M3的第二金屬圖樣P32。 Similarly, the second metal pattern stack STA2 includes stacked K-layer second metal patterns. As shown in FIG. 1, the second metal pattern stack STA2 includes a second metal pattern P12 located on the first metal layer M1, a second metal pattern P22 located on the second metal layer M2, and a second metal pattern P22 located on the third metal layer M3. Second metal pattern P32.
第一電晶體T1形成於基板。第一電晶體T1可經由第一金屬圖樣堆疊STA1電性連接至第一頂部金屬圖樣Ptop1,以經由第一頂部金圖樣Ptop1電性連接主動區OD。如第1圖所示,第一金屬圖樣堆疊STA1電性連接於第一頂部金屬圖樣Ptop1與第一電晶體T1的閘極之間,且不同層的第一金屬圖樣P11~P31係透過連接點CP電性相連,以形成自第一電晶體T1閘極至第一頂部金屬圖樣Ptop1的金屬傳導路徑,藉此將第一電晶體T1的閘極電性連接至主動區OD。 The first transistor T1 is formed on a substrate. The first transistor T1 may be electrically connected to the first top metal pattern Ptop1 via the first metal pattern stack STA1, so as to be electrically connected to the active region OD via the first top gold pattern Ptop1. As shown in Figure 1, the first metal pattern stack STA1 is electrically connected between the first top metal pattern Ptop1 and the gate of the first transistor T1, and the first metal patterns P11 ~ P31 of different layers are connected through the connection point. The CPs are electrically connected to form a metal conduction path from the gate of the first transistor T1 to the first top metal pattern Ptop1, thereby electrically connecting the gate of the first transistor T1 to the active region OD.
除了透過第一頂部金屬圖樣Ptop1,第一金屬圖樣堆疊STA1中的各第一金屬圖樣P11~P31並無法透過其他路徑電性連接至主動區OD。因此,第一電晶體T1的閘極只有在建立出連接至第一頂部金屬圖樣Ptop1的金屬傳導路徑後,才可電性連接至主動區OD。 Except through the first top metal pattern Ptop1, each of the first metal patterns P11 ~ P31 in the first metal pattern stack STA1 cannot be electrically connected to the active area OD through other paths. Therefore, the gate of the first transistor T1 can be electrically connected to the active region OD only after a metal conductive path connected to the first top metal pattern Ptop1 is established.
第二電晶體T2鄰設於第一電晶體T1,第二電晶體T2經由第二金屬圖樣堆疊STA2電性連接至第二頂部金屬圖樣 Ptop2,以經由第二頂部金屬層Ptop2電性連接主動區OD。如第2圖所示,第二金屬圖樣堆疊STA2電性連接於第二頂部金屬圖樣Ptop2與第二電晶體T2的閘極之間,且不同層的第二金屬圖樣P12~P32透過連接點CP電性相連,以形成自第二電晶體T2閘極至第二頂部金屬層Ptop2的金屬傳導路徑,藉此將第二電晶體T2的閘極電性連接至主動區OD。 The second transistor T2 is adjacent to the first transistor T1, and the second transistor T2 is electrically connected to the second top metal pattern through the second metal pattern stack STA2. Ptop2 is electrically connected to the active region OD through the second top metal layer Ptop2. As shown in Figure 2, the second metal pattern stack STA2 is electrically connected between the second top metal pattern Ptop2 and the gate of the second transistor T2, and the second metal patterns P12 ~ P32 of different layers pass through the connection point CP. Electrically connected to form a metal conduction path from the gate of the second transistor T2 to the second top metal layer Ptop2, thereby electrically connecting the gate of the second transistor T2 to the active region OD.
類似地,除了透過第二頂部金屬圖樣Ptop2,第二金屬圖樣堆疊STA2中的各第二金屬圖樣P12~P32並無法透過其他路徑電性連接至主動區OD。因此,第二電晶體T1的閘極只有在建立出連接至第二頂部金屬圖樣Ptop2的金屬傳導路徑後,才可電性連接至主動區OD。 Similarly, except for the second top metal pattern Ptop2, each of the second metal patterns P12 ~ P32 in the second metal pattern stack STA2 cannot be electrically connected to the active area OD through other paths. Therefore, the gate of the second transistor T1 can be electrically connected to the active region OD only after a metal conductive path connected to the second top metal pattern Ptop2 is established.
透過上述方式,第一電晶體T1及第二電晶體T2被強制地配置成在同一金屬層(如M4)電性連接至主動區OD。舉例來說,若第一電晶體T1的閘極原可透過第2金屬層M2的其他金屬圖樣電性連接至主動區OD,而第二電晶體T2則是要到第4金屬層M4才能電性連接至主動區OD,此時需避免第一電晶體T1的閘極在第2金屬層M2即先行電性連接至主動區OD,取而代之的,第一電晶體T1需先透過第一金屬圖樣堆疊STA1所建立的金屬傳導路徑電性連接至第4金屬層M4後,才能與主動區OD電性連接。 In the above manner, the first transistor T1 and the second transistor T2 are forcibly configured to be electrically connected to the active region OD in the same metal layer (such as M4). For example, if the gate electrode of the first transistor T1 can be electrically connected to the active region OD through other metal patterns of the second metal layer M2, the second transistor T2 cannot be charged until the fourth metal layer M4. To the active region OD, the gate of the first transistor T1 must be prevented from being electrically connected to the active region OD in the second metal layer M2, and the first transistor T1 must first pass through the first metal pattern. The metal conduction path established by the stacked STA1 can be electrically connected to the active region OD only after being electrically connected to the fourth metal layer M4.
研究發現,上述之配置可有效避免元件不匹配的情況發生。進一步說,在半導體製程中,各金屬層的金屬圖樣可能 需透過電漿蝕刻來實現,然而以電漿蝕刻一金屬層往往會對與該金屬層電性連接的電晶體產生影響,使得電晶體的元件特性發生變化(例如閥電壓(threshold voltage,Vt)偏移),故對不同顆電晶體而言,若電性連接其閘極的金屬傳導路徑具有相似的金屬圖樣配置,則表示此些電晶體所承受的蝕刻處理影響程度越接近,此時即便電晶體的元件特性因蝕刻處理而發生變化,但由於不同電晶體間的元件特性改變量近乎一致,故整體仍是匹配的。以第一電晶體T1與第二電晶體T2分別耦接一運算放大器之一負輸入端以及一正輸入端為例,若第一電晶體T1與第二電晶體T2匹配,將可避免在正、負輸入端之間產生輸入偏移電壓,而這樣的特性對於採用該運算放大器的帶隙參考電路而言是相當有利的。 The study found that the above configuration can effectively avoid the occurrence of component mismatch. Further, in the semiconductor process, the metal pattern of each metal layer may be It needs to be achieved by plasma etching. However, etching a metal layer with plasma often affects the transistor that is electrically connected to the metal layer, and changes the characteristics of the transistor's components (such as threshold voltage (Vt)). Offset), so for different transistors, if the metal conductive path electrically connected to their gates has a similar metal pattern configuration, it means that the degree of influence of the etching process on these transistors is closer. The element characteristics of the transistor change due to the etching process, but because the amount of change in the element characteristics between different transistors is almost the same, the overall is still matched. Taking the first transistor T1 and the second transistor T2 respectively coupled to a negative input terminal and a positive input terminal of an operational amplifier as an example, if the first transistor T1 and the second transistor T2 are matched, the positive transistor T1 and the second transistor T2 can be avoided. The input offset voltage is generated between the negative input terminals, and this characteristic is quite advantageous for the band gap reference circuit using the operational amplifier.
第2圖繪示依據本發明一實施例之積體電路結構100之俯視示意圖。在第2圖的例子中,第一金屬圖樣堆疊STA1與第二金屬圖樣堆疊STA2是以第一電晶體T1與第二電晶體T2間的中軸線CL為對稱軸對稱設置。也就是說,第一金屬圖樣堆疊STA1中位在第i(=1、2、3)金屬層的第一金屬圖樣與第二金屬圖樣堆疊STA2中位在相同層的第i(=1、2、3)金屬層的第二金屬圖樣係以第一電晶體T1與第二電晶體T2間的中軸線CL為對稱軸對稱設置。 FIG. 2 is a schematic top view of the integrated circuit structure 100 according to an embodiment of the present invention. In the example of FIG. 2, the first metal pattern stack STA1 and the second metal pattern stack STA2 are symmetrically arranged with the central axis CL between the first transistor T1 and the second transistor T2 as a symmetry axis. That is, the first metal pattern in the first metal pattern stack STA1 at the i (= 1, 2, 3) metal layer and the second metal pattern stack STA2 in the i (= 1, 2) at the same layer. 3) The second metal pattern of the metal layer is symmetrically arranged with the central axis CL between the first transistor T1 and the second transistor T2 as a symmetry axis.
如第2圖所示,位在第1金屬層M1的第一金屬圖樣P11與位在相同金屬層的第二金屬圖樣P12具有實質上相同的形狀與配置;位在第2金屬層M2的第一金屬圖樣P21與位在相 同金屬層的第二金屬圖樣P22具有實質上相同的形狀與配置;而位在第3金屬層M3的第一金屬圖樣P31與位在相同金屬層的第二金屬圖樣P32具有實質上相同的形狀與配置。 As shown in FIG. 2, the first metal pattern P11 on the first metal layer M1 and the second metal pattern P12 on the same metal layer have substantially the same shape and configuration; the first metal pattern P12 on the second metal layer M2 A metal pattern P21 is in phase The second metal pattern P22 of the same metal layer has substantially the same shape and configuration; and the first metal pattern P31 of the third metal layer M3 and the second metal pattern P32 of the same metal layer have substantially the same shape. With configuration.
在一實施例中,可只要求第一、二金屬圖樣堆疊STA1、STA2中位在相同金屬層的金屬圖樣具有實質上相同的面積及/或形狀即可。 In one embodiment, the metal patterns in the first and second metal pattern stacks STA1 and STA2 may be required to have substantially the same area and / or shape.
舉例來說,若第一金屬圖樣堆疊STA1中位在第i金屬層的第一金屬圖樣具有一第一面積,而第二金屬圖樣堆疊STA2中位在第i金屬層的第二金屬圖樣具有第二面積,可設計使第一面積與第二面積實質上相同,即兩者間的差值小於一限值。此限值可依據不同的實際電路設計需求而定。 For example, if the first metal pattern in the i-th metal layer in the first metal pattern stack STA1 has a first area, and the second metal pattern in the i-th metal layer in the second metal pattern stack STA2 has a first area Two areas can be designed so that the first area and the second area are substantially the same, that is, the difference between the two areas is less than a limit. This limit can be based on different actual circuit design requirements.
一方面,若第一金屬圖樣堆疊STA1中位在第i金屬層的第一金屬圖樣具有一第一形狀(如矩形),而第二金屬圖樣堆疊STA2中第i金屬層的第二金屬圖樣具有一第二形狀,則可設計使第一形狀與第二形狀實質上相同,以進一步提高金屬佈局的空間對稱性。 On the one hand, if the first metal pattern in the i-th metal layer in the first metal pattern stack STA1 has a first shape (such as a rectangle), and the second metal pattern in the i-th metal layer in the second metal pattern stack STA2 has A second shape can be designed so that the first shape is substantially the same as the second shape to further improve the spatial symmetry of the metal layout.
可理解的是,第1、2圖所示之電路結構僅是用以說明本發明之技術特點,而非用以限制本發明。諸如金屬層的數量、金屬圖樣的形狀、大小及配置等,皆可因實際電路設計而有所不同。凡兩相鄰電晶體的閘極被配置成在相同金屬層才電性連接至主動區,皆屬本發明之精神範疇。 It can be understood that the circuit structure shown in Figs. 1 and 2 is only used to explain the technical features of the present invention, and not intended to limit the present invention. Such as the number of metal layers, the shape, size, and configuration of metal patterns, etc., can vary depending on the actual circuit design. It is within the spirit of the present invention that the gates of two adjacent transistors are configured to be electrically connected to the active region in the same metal layer.
第3a至3e圖繪示第一電晶體T1與第二電晶體T2 在基板上的多種配置示意圖。在此些例子中,第一電晶體T1與第二電晶體T2在基板上係以共質心(common centroid)對稱的方式排列。此時,第一電晶體T1與第二電晶體T2所對應的第一金屬圖樣堆疊STA1以及第二金屬圖樣堆疊STA2亦可例如以共質心對稱方式排列。 Figures 3a to 3e show the first transistor T1 and the second transistor T2 Schematic diagram of various configurations on the substrate. In these examples, the first transistor T1 and the second transistor T2 are arranged symmetrically on the substrate in a common centroid. At this time, the first metal pattern stack STA1 and the second metal pattern stack STA2 corresponding to the first transistor T1 and the second transistor T2 may also be arranged in a symmetry manner with a common centroid, for example.
第4圖繪示應用本發明實施例之積體電路結構之操作放大器402之示意圖。所述之積體電路結構包括第一電晶體T1以及第二電晶體T2,其分別耦接運算放大器402之負輸入端以及正輸入端。運算放大器402可例如作為帶隙參考電路404中的電壓輸出級,可回應輸入電壓in1及in2輸出穩定的帶隙參考電壓ref。輸入電壓in1例如是具有正溫度係數(或負溫度係數)的電壓,輸入電壓in2例如是具有負溫度係數(或正溫度係數)的電壓,從而獲得接近零溫度係數的帶隙參考電壓ref。 FIG. 4 is a schematic diagram of an operational amplifier 402 to which the integrated circuit structure of the embodiment of the present invention is applied. The integrated circuit structure includes a first transistor T1 and a second transistor T2, which are respectively coupled to a negative input terminal and a positive input terminal of the operational amplifier 402. The operational amplifier 402 can be used as a voltage output stage in the bandgap reference circuit 404, for example, and can output a stable bandgap reference voltage ref in response to the input voltages in1 and in2. The input voltage in1 is, for example, a voltage having a positive temperature coefficient (or a negative temperature coefficient), and the input voltage in2 is, for example, a voltage having a negative temperature coefficient (or a positive temperature coefficient), so as to obtain a band gap reference voltage ref near a zero temperature coefficient.
由於第一電晶體T1及第二電晶體T2是在同樣的金屬層(如第4金屬層M4)才電性連接至主動區OD,且連接至頂部金屬圖樣的金屬傳導路徑包括實質上近似的金屬圖樣配置,故金屬蝕刻處理對第一電晶體T1與第二電晶體T2所造成的影響差異並不大,使得第一電晶體T1與第二電晶體T2元件特性仍可維持匹配。透過此方式,能有效避免/減少在操作放大器402的兩輸入端之間產生輸入偏移電壓,進而提供更加穩定、準確的帶隙參考電壓ref。 Because the first transistor T1 and the second transistor T2 are electrically connected to the active region OD in the same metal layer (such as the fourth metal layer M4), and the metal conduction path connected to the top metal pattern includes a substantially similar The metal pattern is configured, so the difference between the effect of the metal etching process on the first transistor T1 and the second transistor T2 is not large, so that the device characteristics of the first transistor T1 and the second transistor T2 can still be matched. In this way, the input offset voltage generated between the two input terminals of the operational amplifier 402 can be effectively avoided / reduced, thereby providing a more stable and accurate band gap reference voltage ref.
第5A圖繪示傳統之電路元件之輸出電壓分布圖。 此處所述之電路元件例如是指帶隙參考電路,當中包括分別在不同金屬層電性連接至主動區的第一電晶體與第二電晶體,其分別耦接位在電壓輸出級的操作放大器的兩輸入端。由第5A圖可看出,實現於同一晶圓上的相同電路元件的輸出電壓仍可能有相當大的差異,雖然大部分電路元件的輸出電壓都集中在2.65V~2.75V之間,但仍有相當比例的電路元件的輸出電壓落在2.8V~3.1V之間。 FIG. 5A shows an output voltage distribution diagram of a conventional circuit element. The circuit element described herein refers to, for example, a band gap reference circuit, which includes a first transistor and a second transistor which are electrically connected to the active region in different metal layers, respectively, which are respectively coupled to the operation at the voltage output stage. Two inputs of the amplifier. It can be seen from Figure 5A that the output voltages of the same circuit components implemented on the same wafer may still have considerable differences. Although the output voltages of most circuit components are concentrated between 2.65V to 2.75V, they are still The output voltage of a considerable proportion of circuit elements falls between 2.8V and 3.1V.
第5B圖繪示依據本發明之積體電路結構實現之電路元件之輸出電壓分布圖。此處所述之電路元件例如是指帶隙參考電路,當中包括在同一金屬層電性連接至主動區的第一電晶體與第二電晶體,其分別耦接位在電壓輸出級的操作放大器的兩輸入端。由第5B圖可看出,實現於同一晶圓上的相同電路元件的輸出電壓呈現集中的高斯分布,輸出電壓的偏移僅約±0.06V。 FIG. 5B shows an output voltage distribution diagram of a circuit element implemented according to the integrated circuit structure of the present invention. The circuit element described herein refers to, for example, a bandgap reference circuit, which includes a first transistor and a second transistor electrically connected to the active region in the same metal layer, which are respectively coupled to an operational amplifier at a voltage output stage. Two inputs. It can be seen from FIG. 5B that the output voltages of the same circuit elements implemented on the same wafer exhibit a concentrated Gaussian distribution, and the output voltage shift is only about ± 0.06V.
綜上所述,依據本發明所提出的積體電路結構,不同的電晶體會先連接至同一金屬層,再電性連接至主動區。藉由提高整體金屬佈局的空間對稱性,可有效均勻化製程因素(如金屬蝕刻)對不同電晶體所造成的影響,進而降低元件不匹配的可能性。 In summary, according to the integrated circuit structure proposed by the present invention, different transistors will be connected to the same metal layer first, and then electrically connected to the active area. By improving the spatial symmetry of the overall metal layout, the effects of process factors (such as metal etching) on different transistors can be effectively uniformed, thereby reducing the possibility of component mismatch.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the attached patent application.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106129615A TWI632644B (en) | 2017-08-30 | 2017-08-30 | Intergrated circuit structure |
CN201710840950.9A CN109427738B (en) | 2017-08-30 | 2017-09-18 | Integrated circuit structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106129615A TWI632644B (en) | 2017-08-30 | 2017-08-30 | Intergrated circuit structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI632644B true TWI632644B (en) | 2018-08-11 |
TW201913887A TW201913887A (en) | 2019-04-01 |
Family
ID=63959850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106129615A TWI632644B (en) | 2017-08-30 | 2017-08-30 | Intergrated circuit structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109427738B (en) |
TW (1) | TWI632644B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12107013B2 (en) | 2020-04-28 | 2024-10-01 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor devices and methods of manufacturing thereof |
TWI792269B (en) * | 2020-04-28 | 2023-02-11 | 台灣積體電路製造股份有限公司 | Semiconductor device and method of fabricating the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201349460A (en) * | 2012-05-03 | 2013-12-01 | Taiwan Semiconductor Mfg | Apparatus and system of fin field effect transistor |
TW201442124A (en) * | 2013-03-14 | 2014-11-01 | Globalfoundries Us Inc | HK/MG process flows for p-type semiconductor devices |
TW201448053A (en) * | 2013-03-15 | 2014-12-16 | Globalfoundries Us Inc | Low thermal budget schemes in semiconductor device fabrication |
TW201519379A (en) * | 2013-09-27 | 2015-05-16 | Intel Corp | Die package with superposer substrate for passive components |
TW201712835A (en) * | 2015-09-18 | 2017-04-01 | 台灣積體電路製造股份有限公司 | Dummy metal with zigzagged edges |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1236787B (en) * | 1989-11-13 | 1993-04-02 | Italtel Spa | CMOS POWER AMPLIFIER CIRCUIT WITH COMPLETELY DIFFERENTIAL STRUCTURE. |
DE60132855T2 (en) * | 2000-07-27 | 2009-02-26 | Texas Instruments Inc., Dallas | Contacting structure of an integrated power circuit |
US20080157746A1 (en) * | 2006-12-29 | 2008-07-03 | Mediatek Inc. | Bandgap Reference Circuits |
JPWO2008149517A1 (en) * | 2007-06-04 | 2010-08-19 | パナソニック株式会社 | Bias circuit and semiconductor integrated circuit having the same |
US8298902B2 (en) * | 2009-03-18 | 2012-10-30 | International Business Machines Corporation | Interconnect structures, methods for fabricating interconnect structures, and design structures for a radiofrequency integrated circuit |
US8048753B2 (en) * | 2009-06-12 | 2011-11-01 | Globalfoundries Inc. | Charging protection device |
CN102110638B (en) * | 2009-12-23 | 2013-03-06 | 中芯国际集成电路制造(上海)有限公司 | Method and structure for overcoming discharge shortcoming of semiconductor device during manufacturing process |
CN102999080B (en) * | 2011-09-16 | 2014-09-03 | 晶宏半导体股份有限公司 | Energy-gap reference voltage circuit |
-
2017
- 2017-08-30 TW TW106129615A patent/TWI632644B/en active
- 2017-09-18 CN CN201710840950.9A patent/CN109427738B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201349460A (en) * | 2012-05-03 | 2013-12-01 | Taiwan Semiconductor Mfg | Apparatus and system of fin field effect transistor |
TW201442124A (en) * | 2013-03-14 | 2014-11-01 | Globalfoundries Us Inc | HK/MG process flows for p-type semiconductor devices |
TW201448053A (en) * | 2013-03-15 | 2014-12-16 | Globalfoundries Us Inc | Low thermal budget schemes in semiconductor device fabrication |
TW201519379A (en) * | 2013-09-27 | 2015-05-16 | Intel Corp | Die package with superposer substrate for passive components |
TW201712835A (en) * | 2015-09-18 | 2017-04-01 | 台灣積體電路製造股份有限公司 | Dummy metal with zigzagged edges |
Also Published As
Publication number | Publication date |
---|---|
TW201913887A (en) | 2019-04-01 |
CN109427738A (en) | 2019-03-05 |
CN109427738B (en) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8531226B2 (en) | Bridge circuit providing a polarity insensitive power connection | |
US20090096526A1 (en) | Cascoded circuit | |
CN102148227A (en) | Semiconductor device | |
JP6238534B2 (en) | Power module with leakage current protection circuit | |
TWI632644B (en) | Intergrated circuit structure | |
US9323881B2 (en) | Method and layout of an integrated circuit | |
US11251093B2 (en) | Poly gate extension design methodology to improve CMOS performance in dual stress liner process flow | |
KR20090086329A (en) | Semiconductor device | |
TW201545481A (en) | Delay line circuit and semiconductor integrated circuit | |
TWI557918B (en) | Integrated circuit with transistor array and layout method thereof | |
US8502604B2 (en) | Layout method for differential amplifier and layout using the same | |
JPH0378810A (en) | Semiconductor integrated circuit | |
TWI666774B (en) | High voltage metal oxide semiconductor field effect transistor | |
TW201806122A (en) | Semiconductor apparatus with fake functionality | |
TWI751335B (en) | Reference voltage circuit and semiconductor device | |
US10007289B2 (en) | High precision voltage reference circuit | |
WO2018053991A1 (en) | Electrostatic-discharge protection circuit applied to integrated circuit | |
TWI787588B (en) | Semiconductor device and manufacturing method thereof | |
US7352228B2 (en) | Method and apparatus of a level shifter circuit with duty-cycle correction | |
JP2006313814A (en) | Semiconductor device | |
US10122363B1 (en) | Current source logic gate | |
JP5915246B2 (en) | Protection circuit and semiconductor integrated circuit | |
TWI682544B (en) | Semiconductor element structure | |
JP2010016052A (en) | Current supply circuit, and voltage comparison circuit | |
TW201913956A (en) | Semiconductor device |