TWI631828B - Frequency-generating circuit and communications apparatus - Google Patents

Frequency-generating circuit and communications apparatus Download PDF

Info

Publication number
TWI631828B
TWI631828B TW106118659A TW106118659A TWI631828B TW I631828 B TWI631828 B TW I631828B TW 106118659 A TW106118659 A TW 106118659A TW 106118659 A TW106118659 A TW 106118659A TW I631828 B TWI631828 B TW I631828B
Authority
TW
Taiwan
Prior art keywords
reference clock
frequency
clock signal
signal
threshold
Prior art date
Application number
TW106118659A
Other languages
Chinese (zh)
Other versions
TW201830870A (en
Inventor
馮紹惟
沈士琦
陳昨默
郭俊明
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Application granted granted Critical
Publication of TWI631828B publication Critical patent/TWI631828B/en
Publication of TW201830870A publication Critical patent/TW201830870A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0287Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level changing the clock frequency of a controller in the equipment
    • H04W52/029Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level changing the clock frequency of a controller in the equipment reducing the clock frequency of the controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/68Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using pulse rate multipliers or dividers pulse rate multipliers or dividers per se
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/00006Changing the frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0028Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
    • H04B1/0039Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage using DSP [Digital Signal Processor] quadrature modulation and demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0287Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level changing the clock frequency of a controller in the equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本發明提供一種頻率產生電路和通信設備。頻率產生電路包括頻率合成器電路以及參考時脈信號處理器。頻率合成器電路接收處理後參考時脈信號,並根據處理後參考時脈信號產生射頻時脈信號。參考時脈信號處理器從振盪器接收初始參考時脈信號,並根據指示信號處理初始參考時脈信號以產生處理後參考時脈信號。指示信號根據通信設備的所需參考時脈頻率產生。當所需參考時脈頻率高於第一閾值時,處理後參考時脈信號的頻率為初始參考時脈信號頻率的倍數;所需參考時脈頻率低於第二閾值時,初始參考時脈信號的頻率為處理後參考時脈信號頻率的倍數。 The invention provides a frequency generating circuit and a communication device. The frequency generating circuit includes a frequency synthesizer circuit and a reference clock signal processor. The frequency synthesizer circuit receives the processed reference clock signal and generates a radio frequency clock signal according to the processed reference clock signal. The reference clock signal processor receives the initial reference clock signal from the oscillator, and processes the initial reference clock signal according to the instruction signal to generate a processed reference clock signal. The indication signal is generated based on the required reference clock frequency of the communication device. When the required reference clock frequency is higher than the first threshold, the frequency of the processed reference clock signal is a multiple of the initial reference clock signal frequency; when the required reference clock frequency is lower than the second threshold, the initial reference clock signal The frequency is a multiple of the reference clock signal frequency after processing.

Description

頻率產生電路及通信設備 Frequency generating circuit and communication equipment

本發明係相關於行動通信,尤指一種頻率產生電路(frequency-generating circuit)和相關控制方法。 The present invention relates to mobile communications, and more particularly to a frequency-generating circuit and a related control method.

隨著蜂巢式網路、嵌入式系統和互聯網背後的各種技術的湧現,諸如智慧手機和平板電腦的行動通訊裝置(設備)將蜂巢式電話的行動性與電腦或個人數位助理(Personal Digital Assistant,PDA)的功能性組合進了單個裝置里,因此越來越流行。 With the emergence of various technologies behind cellular networks, embedded systems, and the Internet, mobile communication devices (devices) such as smartphones and tablets combine the mobility of a cellular phone with a computer or personal digital assistant (Personal Digital Assistant, The functionality of PDAs) has been combined into a single device and is therefore becoming increasingly popular.

由於行動通信裝置的供電常常受到電池的限制,如何降低功耗(power consumption),並延長行動通信裝置的待機(standby)和操作時間成為值得關注的問題。 Since the power supply of mobile communication devices is often limited by batteries, how to reduce power consumption and extend the standby and operating time of mobile communication devices has become a problem worthy of attention.

因此,需要提出一種新穎的頻率產生電路架構和相關控制方法。 Therefore, it is necessary to propose a novel frequency generation circuit architecture and related control methods.

本發明提供一種頻率產生電路,包括:一頻率合成器電路,接收一處理後參考時脈信號,並根據所述處理後參考時脈信號產生一射頻時脈信號;以及一參考時脈信號處理器,從一振盪器接收一初始參考時脈信號,並根據一指示信號處理所述初始參考時脈信號以產生所述處理後參考時脈信 號,其中,所述指示信號根據一通信設備的一所需參考時脈頻率產生,以及當所述所需參考時脈頻率高於一第一閾值時,所述處理後參考時脈信號的一頻率為所述初始參考時脈信號的一頻率的倍數;當所述所需參考時脈頻率低於一第二閾值時,所述初始參考時脈信號的所述頻率為所述處理後參考時脈信號的所述頻率的倍數。 The invention provides a frequency generating circuit, including: a frequency synthesizer circuit, receiving a processed reference clock signal, and generating a radio frequency clock signal according to the processed reference clock signal; and a reference clock signal processor Receiving an initial reference clock signal from an oscillator, and processing the initial reference clock signal according to an instruction signal to generate the processed reference clock signal No., wherein the indication signal is generated according to a required reference clock frequency of a communication device, and when the required reference clock frequency is higher than a first threshold, one of the processed reference clock signals is The frequency is a multiple of a frequency of the initial reference clock signal; when the required reference clock frequency is lower than a second threshold, the frequency of the initial reference clock signal is the post-processing reference A multiple of said frequency of the pulse signal.

在本發明的另一實施例中提供一種通信設備,包括:一頻率產生電路,根據一初始參考時脈信號產生一射頻時脈信號;以及一參考時脈控制器,根據一所需參考時脈頻率產生一指示信號,其中,所述頻率產生電路包括:一頻率合成器電路,接收一處理後參考時脈信號,並根據所述處理後參考時脈信號產生所述射頻時脈信號;以及一參考時脈信號處理器,從一振盪器接收所述初始參考時脈信號,並根據所述指示信號處理所述初始參考時脈信號以產生所述處理後參考時脈信號,其中,當所述所需參考時脈頻率高於一第一閾值時,所述處理後參考時脈信號的一頻率為所述初始參考時脈信號的一頻率的倍數;當所述所需參考時脈頻率低於一第二閾值時,所述初始參考時脈信號的所述頻率為所述處理後參考時脈信號的所述頻率的倍數。 In another embodiment of the present invention, a communication device is provided, which includes: a frequency generating circuit that generates a radio frequency clock signal based on an initial reference clock signal; and a reference clock controller based on a required reference clock An indication signal is generated at a frequency, wherein the frequency generation circuit includes: a frequency synthesizer circuit that receives a processed reference clock signal and generates the radio frequency clock signal according to the processed reference clock signal; and The reference clock signal processor receives the initial reference clock signal from an oscillator, and processes the initial reference clock signal according to the instruction signal to generate the processed reference clock signal, wherein when the When the required reference clock frequency is higher than a first threshold, a frequency of the processed reference clock signal is a multiple of a frequency of the initial reference clock signal; when the required reference clock frequency is lower than At a second threshold, the frequency of the initial reference clock signal is a multiple of the frequency of the processed reference clock signal.

100‧‧‧通信設備 100‧‧‧communication equipment

110‧‧‧無線電收發機 110‧‧‧Radio Transceiver

120‧‧‧數據機 120‧‧‧ modem

130‧‧‧應用處理器 130‧‧‧Application Processor

140‧‧‧使用者識別卡 140‧‧‧User Identification Card

150‧‧‧記憶體 150‧‧‧Memory

221‧‧‧基頻處理裝置 221‧‧‧ fundamental frequency processing device

222‧‧‧處理器 222‧‧‧Processor

223‧‧‧內部記憶體 223‧‧‧ Internal Memory

224‧‧‧網路卡 224‧‧‧ network card

300‧‧‧頻率產生電路 300‧‧‧frequency generating circuit

310‧‧‧頻率合成器電路 310‧‧‧Frequency Synthesizer Circuit

320‧‧‧參考時脈信號處理器 320‧‧‧ Reference Clock Signal Processor

330‧‧‧參考時脈控制器 330‧‧‧Reference Clock Controller

340‧‧‧振盪器 340‧‧‧Oscillator

350‧‧‧LO產生器 350‧‧‧LO generator

360‧‧‧混頻器 360‧‧‧Mixer

第1圖係根據本發明一實施例的通信設備的示範性方塊示意圖。 FIG. 1 is an exemplary block diagram of a communication device according to an embodiment of the present invention.

第2圖係根據本發明一實施例的數據機的示範性方塊示意 圖。 FIG. 2 is an exemplary block diagram of a modem according to an embodiment of the present invention; Illustration.

第3圖係根據本發明一實施例的頻率產生電路的示範性方塊示意圖。 FIG. 3 is an exemplary block diagram of a frequency generating circuit according to an embodiment of the present invention.

第4圖係根據本發明一實施例的動態調整參考時脈信號頻率的一示範性場景示意圖。 FIG. 4 is a schematic diagram of an exemplary scenario of dynamically adjusting a reference clock signal frequency according to an embodiment of the present invention.

第5圖係根據本發明另一實施例的動態調整參考時脈信號頻率的一示範性場景示意圖。 FIG. 5 is a schematic diagram of an exemplary scenario of dynamically adjusting a reference clock signal frequency according to another embodiment of the present invention.

第6圖係根據本發明一實施例的處理初始參考時脈信號的多種轉換方法中其中一種方法的系統示意圖。 FIG. 6 is a system schematic diagram of one of the multiple conversion methods for processing an initial reference clock signal according to an embodiment of the present invention.

第7圖係根據本發明一實施例的動態調整參考時脈信號頻率的仿真結果示意圖。 FIG. 7 is a schematic diagram of a simulation result of dynamically adjusting a reference clock signal frequency according to an embodiment of the present invention.

本章節所敘述的是實施本發明之最佳方式,目的在於說明本發明之精神而非用以限定本發明之保護範圍,本發明範圍由申請專利範圍所限定。 This section describes the best way to implement the present invention. The purpose is to explain the spirit of the present invention and not to limit the scope of protection of the present invention. The scope of the present invention is defined by the scope of patent application.

在本專利說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本專利說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而係以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」或「包括」為開放式的用語,故應解釋成「包含但不限定於」;「元件」、「系統」和「設備」意指與電腦有關的實體,可為硬體、軟體或硬體以及軟體的組合。另外,「耦接」一詞在此包含任何直 接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。 Certain terms are used in this patent specification and the scope of patent applications to refer to specific elements. It should be understood by those with ordinary knowledge in the art that hardware manufacturers may use different names to refer to the same component. The scope of this patent specification and application for patent does not take the difference in names as a way to distinguish components, but rather uses the difference in functions of components as a criterion for distinguishing components. "Inclusion" or "including" mentioned in the entire specification and the scope of patent application is an open-ended term, so it should be interpreted as "including but not limited to"; "component", "system" and "equipment" A computer-related entity, which can be hardware, software, or a combination of hardware and software. In addition, the term "coupled" includes any direct And indirect electrical connection means. Therefore, if a first device is described as being coupled to a second device, it means that the first device can be electrically connected directly to the second device or indirectly electrically connected to the second device through other devices or connection means.

第1圖係根據本發明一實施例的通信設備的示範性方塊示意圖。通信設備100可為可攜式電子裝置,如行動站台(Mobile Station,MS)。其中,MS可另稱為使用者設備(User Equipment,UE)。通信設備100可包含至少一天線模組、一無線電收發機110、一數據機(modem)120、一應用處理器130、一使用者識別卡(user identity card)140以及一記憶體150。其中,天線模組包含至少一天線。無線電收發機110可通過天線模組接收無線射頻(Radio Frequency,RF)信號,通過天線模組發送無線RF信號,以及進行RF信號處理。舉例來說,無線電收發機110可將接收到的信號轉換為中頻(intermediate frequency)或基頻信號,以進行處理。或者,無線電收發機110可從數據機120接收IF或基頻信號,將接收到的信號轉換為無線RF信號,以發送給網路裝置。根據本發明的一實施例,網路裝置可為網路側的蜂巢單元(cell)、演進節點B(evolved node B)、基地台、行動管理實體(Mobility Management Entity,MME)等,並可通過無線RF信號與通信設備100通信。 FIG. 1 is an exemplary block diagram of a communication device according to an embodiment of the present invention. The communication device 100 may be a portable electronic device, such as a mobile station (Mobile Station, MS). The MS may be referred to as User Equipment (UE). The communication device 100 may include at least one antenna module, a radio transceiver 110, a modem 120, an application processor 130, a user identity card 140, and a memory 150. The antenna module includes at least one antenna. The radio transceiver 110 may receive radio frequency (RF) signals through an antenna module, send wireless RF signals through the antenna module, and perform RF signal processing. For example, the radio transceiver 110 may convert the received signal into an intermediate frequency or a base frequency signal for processing. Alternatively, the radio transceiver 110 may receive an IF or baseband signal from the data transmitter 120 and convert the received signal into a wireless RF signal for transmission to a network device. According to an embodiment of the present invention, the network device may be a network cell, an evolved node B, a base station, a Mobility Management Entity (MME), etc. The RF signal is in communication with the communication device 100.

無線電收發機110可包括多個硬體裝置,以進行射頻轉換和RF信號處理。舉例來說,無線電收發機110可為電路,並可包含一功率放大器電路(power amplifier circuit) 以放大RF信號;一濾波電路以濾除RF信號的不需要部分;一頻率產生電路以產生振盪在所需射頻的信號以及/或者一混頻器(mixer)電路以進行射頻轉換。根據本發明的一實施例,射頻可為用於全球行動通訊系統(Global System for Mobile communications,GSM)的900MHz或1800MHz,或者用於通用行動電信系統(Universal Mobile Telecommunications System,UMTS)的1900MHz,或者用於長期演進(Long-Term Evolution,LTE)系統的任何特定頻段等。 The radio transceiver 110 may include multiple hardware devices for radio frequency conversion and RF signal processing. For example, the radio transceiver 110 may be a circuit and may include a power amplifier circuit To amplify the RF signal; a filter circuit to filter out unnecessary parts of the RF signal; a frequency generating circuit to generate a signal oscillating at a desired radio frequency; and / or a mixer circuit to perform radio frequency conversion. According to an embodiment of the present invention, the radio frequency may be 900 MHz or 1800 MHz for Global System for Mobile communications (GSM), or 1900 MHz for Universal Mobile Telecommunications System (UMTS), or Any specific frequency band used in a Long-Term Evolution (LTE) system.

數據機120可為蜂巢式通信數據機,用來處理蜂巢式系統通信協議運作,以及處理從無線電收發機110接收的或者待發送給無線電收發機110的IF或基頻信號。應用處理器130用來運行通信設備100的應用架構的操作系統,以及運行通信設備100中安裝的應用程序。在本發明的實施例中,數據機120和應用處理器130可被設計為獨立的晶片,彼此之間通過一些匯流排或硬體接口耦接;或者數據機120和應用處理器130可整合到一個復合(combo)晶片(即片上系統(System on Chip,SoC))中。當然,本發明並不限於此。 The modem 120 may be a cellular communication modem to process the operation of the cellular system communication protocol, and to process IF or baseband signals received from the radio transceiver 110 or to be transmitted to the radio transceiver 110. The application processor 130 is used to run an operating system of an application architecture of the communication device 100 and to run application programs installed in the communication device 100. In the embodiment of the present invention, the data machine 120 and the application processor 130 may be designed as independent chips, which are coupled to each other through some buses or hardware interfaces; or the data machine 120 and the application processor 130 may be integrated into In a combo chip (ie, System on Chip (SoC)). Of course, the invention is not limited to this.

使用者識別卡140可為SIM、USIM、R-UIM或CSIM卡等,一般包含使用者賬戶資訊、一國際行動用戶識別碼(International Mobile Subscriber Identity,IMSI)和一系列SIM應用工具箱(SIM Application Toolkit,SAT)命令,並可提供儲存電話簿聯繫人的儲存空間。記憶體150可耦接至數據機120和應用處理器130,並可儲存系統資料或使用者資料。 The user identification card 140 may be a SIM, USIM, R-UIM, or CSIM card, and generally includes user account information, an International Mobile Subscriber Identity (IMSI), and a series of SIM Application Toolboxes (SIM Application Toolkit (SAT) command, and provides storage space for phonebook contacts. The memory 150 may be coupled to the modem 120 and the application processor 130, and may store system data or user data.

請注意,為了闡明本發明的理念,第1圖只顯示 了與本發明有關的元件的簡化方塊示意圖。舉例來說,在本發明的一些實施例,通信設備100可進一步包括一些第1圖中未示的周邊裝置。而在本發明的另一些實施例中,通信設備100可進一步包含一中央控制器,耦接至數據機120與應用處理器130。因此,本發明並不限於第1圖所示內容。 Please note that in order to clarify the concept of the present invention, FIG. 1 only shows A simplified block diagram of elements related to the present invention is provided. For example, in some embodiments of the present invention, the communication device 100 may further include some peripheral devices not shown in FIG. 1. In other embodiments of the present invention, the communication device 100 may further include a central controller coupled to the modem 120 and the application processor 130. Therefore, the present invention is not limited to the content shown in FIG.

另外請注意,儘管第1圖顯示了單卡單待應用,但本發明並不限於此。舉例來說,在本發明的一些實施例中,通信設備可包括多個使用者識別卡,以支援多無線電存取技術(Radio Access Technology,RAT)通信。在多RAT通信應用中,數據機、無線電收發機以及/或者天線模組可被各使用者識別卡共享,並可具有處理多個蜂巢式系統通信協議的運作以及按照多個蜂巢式系統通信協議處理相應RF、IF或基頻信號的能力。本領域中具有通常知識者可基於上述描述進行變化與修飾,以獲取包含多個無線電收發機以及/或者多個天線模組來支援多RAT無線通信的通信設備,這皆應屬本發明的涵蓋範圍,符合本發明的精神。因此,在本發明的一些實施例中,通過進行一些變化與修飾,通信設備可被設計為支援多卡多待應用。 Please also note that although Figure 1 shows a single card single standby application, the present invention is not limited to this. For example, in some embodiments of the present invention, the communication device may include multiple user identification cards to support multiple radio access technology (RAT) communications. In multi-RAT communication applications, modems, radio transceivers, and / or antenna modules can be shared by user identification cards, and can have the operation of processing multiple cellular system communication protocols and in accordance with multiple cellular system communication protocols. The ability to process the corresponding RF, IF or fundamental frequency signals. Those with ordinary knowledge in the art can make changes and modifications based on the above description to obtain a communication device including multiple radio transceivers and / or multiple antenna modules to support multi-RAT wireless communication, which should all be covered by the present invention. The scope is in accordance with the spirit of the present invention. Therefore, in some embodiments of the present invention, by making some changes and modifications, the communication device can be designed to support multi-card multi-standby applications.

請注意,使用者識別卡140可為上述專用硬體卡。或者,在本發明的一些實施例中,也可為刻錄(burned)於相應數據機的內部記憶體中並能夠識別出相應的通信設備的識別碼、號碼、地址等。因此,本發明並不限於圖中所顯示的內容。 Please note that the user identification card 140 may be the above-mentioned dedicated hardware card. Or, in some embodiments of the present invention, the identification code, number, address, etc. of the corresponding communication device can be burned into the internal memory of the corresponding data machine. Therefore, the present invention is not limited to what is shown in the drawings.

第2圖係根據本發明一實施例的數據機的示範性 方塊示意圖。數據機120可包含至少一基頻處理裝置221、一處理器222、一內部記憶體223以及網路卡224。基頻處理裝置221可從無線電收發機110接收IF或基頻信號,並且可進行IF或基頻信號處理。舉例來說,基頻處理裝置221可將IF或基頻信號轉換成多個數位信號,並且處理數位信號,反之亦然。基頻處理裝置221可為電路,並可包括多個用以執行信號處理的電路,如用以執行類比至數位轉換的類比至數位轉換器電路、用以執行數位至類比轉換的數位至類比轉換器電路、用以執行增益調整的放大器電路、用以執行信號調變的調變器、用以執行信號解調變的解調變器、用以執行信號編碼的編碼器、用以執行信號解碼的解碼器等。 FIG. 2 is an exemplary view of a modem according to an embodiment of the present invention Block diagram. The modem 120 may include at least one baseband processing device 221, a processor 222, an internal memory 223, and a network card 224. The baseband processing device 221 may receive an IF or baseband signal from the radio transceiver 110 and may perform IF or baseband signal processing. For example, the baseband processing device 221 may convert an IF or baseband signal into a plurality of digital signals, and process the digital signals, and vice versa. The baseband processing device 221 may be a circuit and may include multiple circuits for performing signal processing, such as an analog-to-digital converter circuit for performing analog-to-digital conversion, and digital-to-analog conversion for performing digital-to-analog conversion Circuit, amplifier circuit for performing gain adjustment, modulator for performing signal modulation, demodulator for performing signal demodulation, encoder for performing signal encoding, and decoding for signal Decoder, etc.

處理器222可控制數據機120的運作。根據本發明的一實施例,處理器222可執行數據機120的相應軟體模組中的程式碼。處理器222可為不同的軟體模組維持並執行各任務(task)、線程(thread)以及/或者通信協定堆疊(protocol stack)。在一較佳實施例中,可採用通信協定堆疊以處理一RAT的無線電活動(radio activity)。然而,也可以採用多個通信協定堆疊用以同時處理一RAT的無線電活動,或僅採用一個通信協定堆疊用以同時處理多個RAT的無線電活動,而本發明並不限於此。 The processor 222 can control the operation of the modem 120. According to an embodiment of the present invention, the processor 222 may execute code in a corresponding software module of the modem 120. The processor 222 may maintain and execute various tasks, threads, and / or protocol stacks for different software modules. In a preferred embodiment, the communication protocol stack can be used to handle the radio activity of a RAT. However, multiple communication protocol stacks can also be used to simultaneously process radio activities of one RAT, or only one communication protocol stack can be used to simultaneously process radio activities of multiple RATs, and the present invention is not limited thereto.

處理器222也可從耦接至數據機120的使用者識別卡(例如使用者識別卡140)中讀取資料,並且可將資料寫入使用者識別卡。內部記憶體223可為數據機120儲存系統資料以及使用者資料。處理器220也可存取內部記憶體223。 The processor 222 may also read data from a user identification card (such as the user identification card 140) coupled to the modem 120, and may write data into the user identification card. The internal memory 223 can store system data and user data for the modem 120. The processor 220 may also access the internal memory 223.

網路卡224可為通信設備提供互聯網存取服務。請注意,雖第2圖所示的網路卡224被配置於數據機內,但本發明並不限於此。在本發明的一些實施例中,通信設備也可包含配置於數據機外部的網路卡,或者通信設備也可耦接至用以提供互聯網存取服務的外部網路卡。因此,本發明並不限於任一種實施方式。 The network card 224 can provide Internet access services for communication devices. Please note that although the network card 224 shown in FIG. 2 is disposed in the modem, the present invention is not limited to this. In some embodiments of the present invention, the communication device may also include a network card configured outside the modem, or the communication device may be coupled to an external network card for providing Internet access services. Therefore, the present invention is not limited to any one embodiment.

此外,請注意,為了闡明本發明的理念,第2圖顯示的是一簡化方塊圖,其中僅顯示出與本發明相關的組件。因此,本發明並不限於第2圖所示的內容。 In addition, please note that, in order to clarify the concept of the present invention, FIG. 2 shows a simplified block diagram in which only components related to the present invention are shown. Therefore, the present invention is not limited to the content shown in FIG. 2.

此外,請注意,在本發明一些實施例中,數據機可包含一個以上處理器以及/或者一個以上基頻處理裝置。舉例來說,數據機可包含多個處理器以及/或者多個基頻處理裝置,用以支援多RAT操作。因此,本發明並不限於第2圖所示的內容。 In addition, please note that in some embodiments of the present invention, the data machine may include more than one processor and / or more than one baseband processing device. For example, the modem may include multiple processors and / or multiple baseband processing devices to support multi-RAT operation. Therefore, the present invention is not limited to the content shown in FIG. 2.

第3圖係根據本發明一實施例的頻率產生電路的示範性方塊示意圖。頻率產生電路300根據一初始參考時脈信號(original reference clock signal)CK_Ref產生射頻時脈信號CK_RF。根據本發明的一實施例,頻率產生電路300可至少包括一頻率合成器電路310和一參考時脈信號處理器320。 FIG. 3 is an exemplary block diagram of a frequency generating circuit according to an embodiment of the present invention. The frequency generating circuit 300 generates a radio frequency clock signal CK_RF according to an original reference clock signal CK_Ref. According to an embodiment of the present invention, the frequency generating circuit 300 may include at least a frequency synthesizer circuit 310 and a reference clock signal processor 320.

參考時脈信號處理器320從一振盪器340接收初始參考時脈信號CK_Ref,根據指示信號S_Ind處理初始參考時脈信號CK_Ref,並產生處理後參考時脈信號CK_ProcRef。其中,指示信號S_Ind可根據通信設備的所需參考時脈頻率產生。 The reference clock signal processor 320 receives the initial reference clock signal CK_Ref from an oscillator 340, processes the initial reference clock signal CK_Ref according to the instruction signal S_Ind, and generates a processed reference clock signal CK_ProcRef. The indication signal S_Ind may be generated according to a required reference clock frequency of the communication device.

頻率合成器電路310接收處理後參考時脈信號CK_ProcRef,並由處理後參考時脈信號CK_ProcRef進行運算(ticked),從而根據處理後參考時脈信號CK_ProcRef產生射頻時脈信號CK_RF。根據本發明的一實施例,頻率合成器電路310可為一全數位鎖相迴路(All-Digital Phase Locked Loop,ADPLL)、一類比PLL或任何其他類型的PLL。其中,ADPLL可為一無多模分頻器(Multi Modulus Divider-less,MMD-less)ADPLL或MMD ADPLL。 The frequency synthesizer circuit 310 receives the processed reference clock signal CK_ProcRef, and performs operation on the processed reference clock signal CK_ProcRef to generate a radio frequency clock signal CK_RF according to the processed reference clock signal CK_ProcRef. According to an embodiment of the present invention, the frequency synthesizer circuit 310 may be an All-Digital Phase Locked Loop (ADPLL), an analog PLL, or any other type of PLL. The ADPLL may be a Multi Modulus Divider-less (MMD-less) ADPLL or an MMD ADPLL.

射頻時脈信號CK_RF可被提供給本地振盪信號產生器(簡稱為LO產生器)350。LO產生器350可進一步處理射頻時脈信號CK_RF(如對射頻時脈信號CK_RF進行分頻(diving the frenquency)),並產生處理後射頻時脈信號CK’_RF。混頻器360可接收處理後射頻時脈信號CK’_RF,並將處理後射頻時脈信號CK’_RF與資料信號Data相乘,以將資料信號Data攜帶在載波頻率上。請注意,在一些實施例中,混頻器360也可直接接收未處理射頻時脈信號CK_RF,並將射頻時脈信號CK_RF與資料信號Data相乘,本發明並不限於此。 The radio frequency clock signal CK_RF may be provided to a local oscillation signal generator (referred to as an LO generator for short) 350. The LO generator 350 may further process the radio frequency clock signal CK_RF (such as dividing the frenquency of the radio frequency clock signal CK_RF), and generate a processed radio frequency clock signal CK'_RF. The mixer 360 can receive the processed radio frequency clock signal CK'_RF and multiply the processed radio frequency clock signal CK'_RF by the data signal Data to carry the data signal Data on a carrier frequency. Please note that in some embodiments, the mixer 360 can also directly receive the unprocessed radio frequency clock signal CK_RF and multiply the radio frequency clock signal CK_RF by the data signal Data. The present invention is not limited thereto.

根據本發明一實施例,頻率產生電路300可進一步包括參考時脈控制器330。當然,根據不同的實施例,參考時脈控制器330可位於頻率產生電路300所在的通信設備中而不位於頻率產生電路300之中。參考時脈控制器330根據所需參考時脈頻率產生指示信號S_Ind和控制信號S_Ctrl。參考時脈信號處理器320可根據指示信號S_Ind確定處理後參考時脈信號CK_ProcRef的頻率。由於處理後參考時脈信號 CK_ProcRef的頻率可被動態調整,頻率合成器電路310也可相應地控制或調整根據控制信號S_Ctrl(或根據所需參考時脈頻率)產生射頻時脈信號CK_RF所採用的參數。舉例來說,參數可為頻率合成器電路310中包含的一分頻器(frequency divider)的除數(divisor)、頻率合成器電路310中包含的一濾波器的頻寬等。在本發明的一實施例中,除數指射頻時脈信號CK_RF的頻率與處理後參考時脈信號CK_ProcRef的頻率的比值。 According to an embodiment of the present invention, the frequency generating circuit 300 may further include a reference clock controller 330. Of course, according to different embodiments, the reference clock controller 330 may be located in the communication device where the frequency generating circuit 300 is located and not in the frequency generating circuit 300. The reference clock controller 330 generates an instruction signal S_Ind and a control signal S_Ctrl according to a required reference clock frequency. The reference clock signal processor 320 may determine the frequency of the reference clock signal CK_ProcRef after processing according to the indication signal S_Ind. Because of the reference clock signal after processing The frequency of CK_ProcRef can be adjusted dynamically, and the frequency synthesizer circuit 310 can also control or adjust the parameters used to generate the RF clock signal CK_RF according to the control signal S_Ctrl (or according to the required reference clock frequency). For example, the parameter may be a divisor of a frequency divider included in the frequency synthesizer circuit 310, a bandwidth of a filter included in the frequency synthesizer circuit 310, and the like. In an embodiment of the present invention, the divisor refers to the ratio of the frequency of the radio frequency clock signal CK_RF to the frequency of the processed reference clock signal CK_ProcRef.

請注意,在本發明的實施例中,參考時脈控制器330可通過專用硬體電路或軟體模組實現。當參考時脈控制器330通過軟體模組實現時,數據機120的處理器222可運行軟體模組中的程式碼,以實現相應功能。 Please note that in the embodiment of the present invention, the reference clock controller 330 may be implemented by a dedicated hardware circuit or a software module. When the reference clock controller 330 is implemented by a software module, the processor 222 of the modem 120 can run the code in the software module to implement the corresponding function.

振盪器340可為晶體振盪器,用來產生初始參考時脈信號CK_Ref,以作為具有精確(accurate)頻率的基礎(fundamental)時脈信號。初始參考時脈信號CK_Ref不僅可提供給頻率產生電路300,也可提供給通信設備100中需要基礎時脈信號的的任何其他電路組件。一般來說,一振盪器用來產生具有預定義頻率的一基礎時脈信號。當需要具有不同頻率的多個基礎時脈信號時,應採用多個振盪器。 The oscillator 340 may be a crystal oscillator for generating an initial reference clock signal CK_Ref as a fundamental clock signal having an accurate frequency. The initial reference clock signal CK_Ref can be provided not only to the frequency generating circuit 300 but also to any other circuit component in the communication device 100 that requires a basic clock signal. Generally, an oscillator is used to generate a basic clock signal with a predefined frequency. When multiple basic clock signals with different frequencies are required, multiple oscillators should be used.

然而,由於振盪器的數目增加,電路面積以及硬體成本也隨之增加。為了降低通信設備100的功耗且不增加振盪器的數目,特提出一種新穎的頻率產生電路架構和控制方法。 However, as the number of oscillators increases, the circuit area and hardware cost also increase. In order to reduce the power consumption of the communication device 100 without increasing the number of oscillators, a novel frequency generation circuit architecture and control method are specifically proposed.

根據本發明的實施例,參考時脈信號處理器320 可根據通信設備100的不同參考時脈頻率需求,動態調整參考時脈信號的頻率,以降低通信設備100的功耗。 According to an embodiment of the present invention, reference is made to the clock signal processor 320 The frequency of the reference clock signal can be dynamically adjusted according to different reference clock frequency requirements of the communication device 100 to reduce the power consumption of the communication device 100.

對於將處理後參考時脈信號CK_ProcRef作為參考來產生射頻時脈信號CK_RF的頻率合成器電路310來說,當處理後參考時脈信號CK_ProcRef的頻率較高時,由於頻率合成器電路310的控制頻寬可以較寬,則射頻時脈信號CK_RF中產生的雜訊(如綜合相位誤差(integrated phase error))較小,且穩定時間(settling time)較短。時脈頻率穩定時間被定義為從非鎖定狀態(unlocked state)到鎖定狀態(locked state),即頻率合成器電路310將射頻時脈信號CK_RF的頻率鎖定到目標頻率所需的時間。一般來說,當射頻時脈信號CK_RF的頻率被鎖定時,相位誤差可小於一預定義值,如1ppm或5度。 For the frequency synthesizer circuit 310 that uses the processed reference clock signal CK_ProcRef as a reference to generate the radio frequency clock signal CK_RF, when the frequency of the processed reference clock signal CK_ProcRef is high, the control frequency of the frequency synthesizer circuit 310 is high. The width can be wide, so the noise (such as integrated phase error) generated in the RF clock signal CK_RF is smaller, and the settling time is shorter. The clock frequency stabilization time is defined as an unlocked state to a locked state, that is, the time required for the frequency synthesizer circuit 310 to lock the frequency of the radio frequency clock signal CK_RF to a target frequency. Generally, when the frequency of the RF clock signal CK_RF is locked, the phase error can be less than a predefined value, such as 1 ppm or 5 degrees.

另一方面,當處理後參考時脈信號CK_ProcRef的頻率較低時,儘管與處理後參考時脈信號CK_ProcRef的頻率較高時相比起來,雜訊可能會更大,且時脈頻率穩定時間可能會更長,但頻率合成器電路310的功耗可以更低。 On the other hand, when the frequency of the reference clock signal CK_ProcRef after processing is low, although compared to when the frequency of the reference clock signal CK_ProcRef after processing is high, noise may be larger and the clock frequency stabilization time may be It will be longer, but the power consumption of the frequency synthesizer circuit 310 may be lower.

因此,在本發明的實施例中,參考時脈信號處理器320可根據通信設備100的不同參考時脈頻率需求,動態調整參考時脈信號的頻率,以降低通信設備100的功耗。 Therefore, in the embodiment of the present invention, the reference clock signal processor 320 may dynamically adjust the frequency of the reference clock signal according to different reference clock frequency requirements of the communication device 100 to reduce the power consumption of the communication device 100.

根據本發明的實施例,參考時脈控制器330可根據多個因子確定通信設備100的參考時脈頻率需求,並根據所需參考時脈頻率產生指示信號S_Ind和控制信號S_Ctrl。 According to an embodiment of the present invention, the reference clock controller 330 may determine a reference clock frequency requirement of the communication device 100 according to a plurality of factors, and generate an instruction signal S_Ind and a control signal S_Ctrl according to the required reference clock frequency.

可用來確定參考時脈頻率需求的因子可包括:信 號雜訊比(signal-to-noise ratio,SNR)需求、射頻時脈頻率穩定時間需求(即通信設備系統所要求的系統所需時脈頻率穩定時間)、省電需求、待使用或正使用的調變階數(modulation order)、通信類型、資料緩衝區使用(data buffer usage)、通信狀態、通信通道類型、射頻時脈信號CK_RF的穩定性等。 Factors that can be used to determine reference clock frequency requirements can include: Signal-to-noise ratio (SNR) requirements, RF clock frequency stabilization time requirements (i.e., clock frequency stabilization time required by the system required by the communication equipment system), power saving requirements, to be used or being used Modulation order, communication type, data buffer usage, communication status, communication channel type, and stability of the RF clock signal CK_RF.

更明確來說,根據本發明一實施例,當通信設備100與網路裝置進行通信所需的SNR高於一預定義SNR閾值時,所需參考時脈頻率較高;當所需SNR並不高於預定義SNR閾值時,所需參考時脈頻率較低。一般來說,網路裝置可指示通信的調變方案。調變方案可根據RF通道狀況和待傳送的資料數量來決定,並且可具有相應的SNR需求。 More specifically, according to an embodiment of the present invention, when the SNR required by the communication device 100 to communicate with the network device is higher than a predefined SNR threshold, the required reference clock frequency is higher; when the required SNR is not Above the predefined SNR threshold, the required reference clock frequency is lower. Generally, the network device can indicate the modulation scheme of the communication. The modulation scheme can be determined according to the condition of the RF channel and the amount of data to be transmitted, and can have corresponding SNR requirements.

根據本發明另一實施例,當通信設備100的系統所需時脈頻率穩定時間短於一預定義穩定時間閾值時,所需參考時脈頻率較高;當系統所需時脈頻率穩定時間並不短於預定義穩定時間閾值時,所需參考時脈頻率較低。如上所述,參考時脈信號頻率越高,頻率合成器電路310可達到的時脈頻率穩定時間越短。 According to another embodiment of the present invention, when the required clock frequency stabilization time of the system of the communication device 100 is shorter than a predefined stabilization time threshold, the required reference clock frequency is higher; when the system requires the clock frequency stabilization time and When it is not shorter than the predefined stabilization time threshold, the required reference clock frequency is lower. As described above, the higher the reference clock signal frequency, the shorter the clock frequency stabilization time that the frequency synthesizer circuit 310 can achieve.

根據本發明另一實施例,當通信設備100無需省電時,所需參考時脈頻率較高;當通信設備100需要省電時,所需參考時脈頻率較低。 According to another embodiment of the present invention, when the communication device 100 does not need to save power, the required reference clock frequency is higher; when the communication device 100 needs to save power, the required reference clock frequency is lower.

根據本發明另一實施例,當確定將用於或正用於通信的調變階數高於一預定義調變階數閾值時,所需參考時脈頻率較高(因為對於一高階調變,所需SNR較高)。當確定將用於或正用於通信的調變階數低於預定義調變階數閾值 時,所需參考時脈頻率較低。舉例來說,16QAM、64QAM和256QAM一般被視為高階調變(High Order Modulation,HOM),而BPSK和QPSK一般被視為低階調變。 According to another embodiment of the present invention, when it is determined that the modulation order to be used or is being used for communication is higher than a predefined modulation order threshold, the required reference clock frequency is higher (because for a higher order modulation , The required SNR is higher). When it is determined that the modulation order to be or is being used for communication is below a predefined modulation order threshold , The required reference clock frequency is lower. For example, 16QAM, 64QAM, and 256QAM are generally regarded as high-order modulation (HOM), while BPSK and QPSK are generally regarded as low-order modulation.

根據本發明另一實施例,當要處理需要較高SNR或較短時脈頻率穩定時間的通信類型時,所需參考時脈頻率較高;當要處理不需要較高SNR或較短時脈頻率穩定時間的通信類型時,所需參考時脈頻率較低。舉例來說,由於封包資料(packet data)通信的資料吞吐量(throughput)高於語音通信的資料吞吐量,封包資料通信的所需參考時脈頻率高於語音通信的所需參考時脈頻率。 According to another embodiment of the present invention, when a communication type requiring higher SNR or shorter clock frequency stabilization time is to be processed, the required reference clock frequency is higher; when it is to be processed, higher SNR or shorter clock is not required For the communication type of frequency stabilization time, the required reference clock frequency is low. For example, since the data throughput of packet data communication is higher than the data throughput of voice communication, the required reference clock frequency of packet data communication is higher than the required reference clock frequency of voice communication.

根據本發明另一實施例,當資料緩衝區使用較多時,資料吞吐量較高,且所需參考時脈頻率較高。當資料緩衝區使用較少時,所需參考時脈頻率較低。舉例來說,用來緩衝語音資料的資料緩衝區使用相對少於用來緩衝封包資料的資料緩衝區使用。 According to another embodiment of the present invention, when more data buffers are used, the data throughput is higher and the required reference clock frequency is higher. When the data buffer is used less, the required reference clock frequency is lower. For example, the data buffer used to buffer voice data is relatively less used than the data buffer used to buffer packet data.

根據本發明另一實施例,當通信設備100處於需要較高SNR或較短時脈頻率穩定時間的狀態時,所需參考時脈頻率較高。當通信設備100處於無需較高SNR或較短時脈頻率穩定時間的狀態時,所需參考時脈頻率較低。舉例來說,當通信設備100進行預同步(pre-synchronization)以與網路裝置同步時間或頻率,或操作在待機模式、睡眠模式或非連續接收(discontinuous reception,DRX)關閉(off)期間時,通信設備100可能不需要較高SNR或較短時脈頻率穩定時間。當通信設備100進行專用資料通信(包括隨機存取進程、通道 建立、資料傳送等)或DRX開啟(on)期間時,通信設備100可能需要較高SNR或較短時脈頻率穩定時間。 According to another embodiment of the present invention, when the communication device 100 is in a state that requires a higher SNR or a shorter clock frequency stabilization time, the required reference clock frequency is higher. When the communication device 100 is in a state that does not require a higher SNR or a shorter clock frequency stabilization time, the required reference clock frequency is lower. For example, when the communication device 100 performs pre-synchronization to synchronize time or frequency with a network device, or operates in a standby mode, a sleep mode, or a discontinuous reception (DRX) off period The communication device 100 may not need a higher SNR or a shorter clock frequency stabilization time. When the communication device 100 performs dedicated data communication (including random access processes, channels Setup, data transfer, etc.) or DRX on period, the communication device 100 may require a higher SNR or a shorter clock frequency stabilization time.

根據本發明另一實施例,當通信設備100將要與網路裝置在資料通道進行通信以進行資料傳送或接收時,所需參考時脈頻率較高。當通信設備100將要與網路裝置在控制通道進行通信以進行控制信號傳送或接收時,所需參考時脈頻率較低。 According to another embodiment of the present invention, when the communication device 100 is to communicate with a network device in a data channel for data transmission or reception, the required reference clock frequency is higher. When the communication device 100 is to communicate with the network device on the control channel for control signal transmission or reception, the required reference clock frequency is lower.

根據本發明另一實施例,當射頻時脈信號CK_RF尚未穩定時(舉例來說,其相位誤差高於一預定義閾值,如1ppm或5度),所需參考時脈頻率較高(因為需要快速穩定)。當射頻時脈信號CK_RF已穩定時,所需參考時脈頻率較低,以進一步降低功耗。 According to another embodiment of the present invention, when the radio frequency clock signal CK_RF is not stable (for example, its phase error is higher than a predefined threshold, such as 1 ppm or 5 degrees), the required reference clock frequency is higher (because Fast and stable). When the RF clock signal CK_RF has stabilized, the required reference clock frequency is lower to further reduce power consumption.

請注意,在本發明的實施例中,所需參考時脈頻率較高可指所需參考時脈頻率高於一第一閾值;所需參考時脈頻率較低可指所需參考時脈頻率低於一第二閾值。 Please note that in the embodiments of the present invention, a higher required reference clock frequency may indicate that the required reference clock frequency is higher than a first threshold; a lower required reference clock frequency may indicate a required reference clock frequency. Below a second threshold.

當所需參考時脈頻率較高時,參考時脈信號處理器320可對接收到的初始參考時脈信號CK_Ref進行上變頻轉換(frequency up-conversion),以產生具有更高頻率的處理後參考時脈信號CK_ProcRef。因此,當所需參考時脈頻率較高時,處理後參考時脈信號CK_ProcRef的頻率可比初始參考時脈信號CK_Ref的頻率高,並且可為初始參考時脈信號CK_Ref的頻率的倍數(整數倍或分數倍(fractional multiple))。請注意,當所需參考時脈頻率較高時,參考時脈信號處理器320也可直接輸出初始參考時脈信號CK_Ref, 而不做任何頻率轉換。因此,當所需參考時脈頻率較高時,處理後參考時脈信號CK_ProcRef的頻率也可能等於初始參考時脈信號CK_Ref的頻率。 When the required reference clock frequency is high, the reference clock signal processor 320 may perform frequency up-conversion on the received initial reference clock signal CK_Ref to generate a processed reference with a higher frequency. Clock signal CK_ProcRef. Therefore, when the required reference clock frequency is high, the frequency of the processed reference clock signal CK_ProcRef may be higher than the frequency of the initial reference clock signal CK_Ref, and may be a multiple (integer multiple or multiple) of the frequency of the initial reference clock signal CK_Ref. Fractional multiple). Please note that when the required reference clock frequency is high, the reference clock signal processor 320 may also directly output the initial reference clock signal CK_Ref, Without doing any frequency conversion. Therefore, when the required reference clock frequency is high, the frequency of the processed reference clock signal CK_ProcRef may also be equal to the frequency of the initial reference clock signal CK_Ref.

當所需參考時脈頻率較低時,參考時脈信號處理器320可對接收到的初始參考時脈信號CK_Ref進行下變頻轉換(frequency down-conversion),以產生具有更低頻率的處理後參考時脈信號CK_ProcRef。因此,當所需參考時脈頻率較低時,處理後參考時脈信號CK_ProcRef的頻率可比初始參考時脈信號CK_Ref的頻率低,並且初始參考時脈信號CK_Ref的頻率可為處理後參考時脈信號CK_ProcRef的頻率的倍數(整數倍或分數倍)。請注意,當所需參考時脈頻率較低時,參考時脈信號處理器320也可直接輸出初始參考時脈信號CK_Ref,而不做任何頻率轉換。因此,當所需參考時脈頻率較低時,處理後參考時脈信號CK_ProcRef的頻率也可能等於初始參考時脈信號CK_Ref的頻率。 When the required reference clock frequency is low, the reference clock signal processor 320 may perform frequency down-conversion on the received initial reference clock signal CK_Ref to generate a processed reference with a lower frequency. Clock signal CK_ProcRef. Therefore, when the required reference clock frequency is low, the frequency of the processed reference clock signal CK_ProcRef may be lower than the frequency of the initial reference clock signal CK_Ref, and the frequency of the initial reference clock signal CK_Ref may be the processed reference clock signal. Multiples of CK_ProcRef's frequency (integer or fractional). Please note that when the required reference clock frequency is low, the reference clock signal processor 320 may also directly output the initial reference clock signal CK_Ref without any frequency conversion. Therefore, when the required reference clock frequency is low, the frequency of the processed reference clock signal CK_ProcRef may also be equal to the frequency of the initial reference clock signal CK_Ref.

此外,請注意,在本發明的實施例中,處理後參考時脈信號CK_ProcRef的頻率不僅可在不同的無線電鏈路之間被動態調整,也可在網路裝置與通信設備之間建立的(用於通信的)無線電鏈路存在(existence)期間(不中斷地(hitless))被動態調整。 In addition, please note that in the embodiment of the present invention, the frequency of the reference clock signal CK_ProcRef after processing can be dynamically adjusted not only between different radio links, but also established between the network device and the communication device ( The radio link (for communication) is dynamically adjusted during its existence (hitless).

為了建立無線電鏈路,網路裝置可將頻帶號碼(band number)給通信設備100,通信設備100可進行蜂巢單元搜索,找到頻帶中蜂巢單元的通道號碼(如EUTRA絕對射頻通道號碼(EUTRA Absolute Radio-Frequency Channel Number,EARFCN)),以及與蜂巢單元建立無線電鏈路。無線電鏈路將被保持,直到發生蜂巢單元改變。 In order to establish a radio link, the network device may give a band number to the communication device 100, and the communication device 100 may perform a honeycomb unit search to find the channel number of the honeycomb unit in the frequency band (such as EUTRA Absolute Radio Channel Number -Frequency Channel Number, EARFCN)), and establish a radio link with the cellular unit. The radio link will be maintained until a hive cell change occurs.

第4圖係根據本發明一實施例的動態調整參考時脈信號頻率的一示範性場景示意圖。網路裝置可分配上行鏈路(UL)-下行鏈路(DL)配置,以用於通信。基於不同的上行鏈路-下行鏈路配置,下行鏈路-上行鏈路切換可在不同的子訊框中發生。然而,由於下行鏈路接收所需的頻寬一般比上行鏈路發送所需的頻寬要寬,為了節省發射機或接收機的電力,下行鏈路和上行鏈路操作的中心頻率(central frequency)不同。因此,為了在下行鏈路和上行鏈路子訊框之間切換,中心頻率也應進行切換。 FIG. 4 is a schematic diagram of an exemplary scenario of dynamically adjusting a reference clock signal frequency according to an embodiment of the present invention. Network devices may assign an uplink (UL) -downlink (DL) configuration for communication. Based on different uplink-downlink configurations, downlink-uplink switching can occur in different subframes. However, since the bandwidth required for downlink reception is generally wider than the bandwidth required for uplink transmission, in order to save the power of the transmitter or receiver, the central frequency of the downlink and uplink operations (central frequency )different. Therefore, in order to switch between the downlink and uplink subframes, the center frequency should also be switched.

為了在不同的中心頻率之間快速切換以滿足標準的要求且不降低通信性能,時脈頻率穩定時間應盡可能短。因此,在本實施例中,當確定需要從下行鏈路子訊框切換為上行鏈路子訊框或者從上行鏈路子訊框切換為下行鏈路子訊框時,參考時脈控制器330可產生指示信號S_Ind和控制信號S_Ctrl,以指示所需參考時脈頻率較高。如第4圖的示範性場景所示,其中初始參考時脈信號CK_Ref的頻率Fref為26MHz,當需要切換時,參考時脈信號處理器320可產生振盪在更高頻率(舉例來說,對快速時脈頻率穩定來說,Fref=52MHz)的處理後參考時脈信號CK_ProcRef。此外,響應於控制信號S_Ctrl,頻率合成器電路310可調整根據控制信號S_Ctrl產生射頻時脈信號CK_RF所採用的參數。 In order to quickly switch between different center frequencies to meet the requirements of the standard without reducing the communication performance, the clock frequency stabilization time should be as short as possible. Therefore, in this embodiment, when it is determined that it is necessary to switch from a downlink sub-frame to an uplink sub-frame or from an uplink sub-frame to a downlink sub-frame, the reference clock controller 330 may generate an indication signal. S_Ind and control signal S_Ctrl to indicate that the required reference clock frequency is high. As shown in the exemplary scenario in FIG. 4, where the frequency Fref of the initial reference clock signal CK_Ref is 26 MHz, when switching is required, the reference clock signal processor 320 may generate oscillation at a higher frequency (for example, for fast In terms of stable clock frequency, Fref = 52MHz) refers to the clock signal CK_ProcRef after processing. In addition, in response to the control signal S_Ctrl, the frequency synthesizer circuit 310 can adjust parameters used to generate the radio frequency clock signal CK_RF according to the control signal S_Ctrl.

另一方面,當參考時脈控制器330確定不需要切 換或確定射頻時脈信號CK_RF已經穩定時,參考時脈控制器330可產生指示信號S_Ind和控制信號S_Ctrl,以指示所需參考時脈頻率較低。響應於指示信號S_Ind,參考時脈信號處理器320可產生振盪在更低頻率(舉例來說,Fref=6.5MHz)的處理後參考時脈信號CK_ProcRef。此外,響應於控制信號S_Ctrl,頻率合成器電路310可調整根據控制信號S_Ctrl產生射頻時脈信號CK_RF所採用的參數。 On the other hand, when the reference clock controller 330 determines that it is not necessary to switch When changing or determining that the radio frequency clock signal CK_RF is stable, the reference clock controller 330 may generate an indication signal S_Ind and a control signal S_Ctrl to indicate that the required reference clock frequency is low. In response to the indication signal S_Ind, the reference clock signal processor 320 may generate a processed reference clock signal CK_ProcRef that oscillates at a lower frequency (for example, Fref = 6.5 MHz). In addition, in response to the control signal S_Ctrl, the frequency synthesizer circuit 310 can adjust parameters used to generate the radio frequency clock signal CK_RF according to the control signal S_Ctrl.

第5圖係根據本發明另一實施例的動態調整參考時脈信號頻率的一示範性場景示意圖。在本實施例中,參考時脈控制器330可根據通信狀態和通信通道類型確定參考時脈頻率需求。當通信設備100將要與網路裝置在資料通道上進行通信以進行資料傳送或接收時,由於採用了高階調變(HOM),所需參考時脈頻率較高。當通信設備100將要進行預同步,或與網路裝置在控制通道上進行通信以進行控制信號傳送或接收時,所需參考時脈頻率較低。 FIG. 5 is a schematic diagram of an exemplary scenario of dynamically adjusting a reference clock signal frequency according to another embodiment of the present invention. In this embodiment, the reference clock controller 330 may determine a reference clock frequency requirement according to a communication state and a communication channel type. When the communication device 100 is to communicate with a network device on a data channel for data transmission or reception, a high-order modulation (HOM) is used, and the required reference clock frequency is higher. When the communication device 100 is to perform pre-synchronization or communicate with a network device on a control channel to transmit or receive control signals, the required reference clock frequency is lower.

因此,在本實施例中,參考時脈控制器330可產生指示信號S_Ind和控制信號S_Ctrl,以指示預同步和控制通道通信所需的參考時脈頻率較低。如第5圖的示範性場景所示,其中初始參考時脈信號CK_Ref的頻率Fref為26MHz,響應於指示信號S_Ind,參考時脈信號處理器320可產生振盪在更低頻率(舉例來說,Fref=6.5或13MHz)的處理後參考時脈信號CK_ProcRef。此外,頻率合成器電路310也可調整根據控制信號S_Ctrl產生射頻時脈信號CK_RF所採用的參數。 Therefore, in this embodiment, the reference clock controller 330 may generate an indication signal S_Ind and a control signal S_Ctrl to indicate that the reference clock frequency required for pre-synchronization and control channel communication is low. As shown in the exemplary scenario of FIG. 5, where the frequency Fref of the initial reference clock signal CK_Ref is 26 MHz, in response to the indication signal S_Ind, the reference clock signal processor 320 may generate oscillations at a lower frequency (for example, Fref = 6.5 or 13MHz) after processing the reference clock signal CK_ProcRef. In addition, the frequency synthesizer circuit 310 can also adjust parameters used to generate the radio frequency clock signal CK_RF according to the control signal S_Ctrl.

另一方面,參考時脈控制器330可產生指示信號 S_Ind和控制信號S_Ctrl,以指示資料通道通信所需的參考時脈頻率較高。響應於指示信號S_Ind,參考時脈信號處理器320可產生振盪在更高頻率(舉例來說,Fref=52MHz)的處理後參考時脈信號CK_ProcRef。此外,頻率合成器電路310也可調整根據控制信號S_Ctrl產生射頻時脈信號CK_RF所採用的參數。 On the other hand, the reference clock controller 330 may generate an indication signal S_Ind and control signal S_Ctrl to indicate that the reference clock frequency required for data channel communication is high. In response to the indication signal S_Ind, the reference clock signal processor 320 may generate a processed reference clock signal CK_ProcRef that oscillates at a higher frequency (for example, Fref = 52 MHz). In addition, the frequency synthesizer circuit 310 can also adjust parameters used to generate the radio frequency clock signal CK_RF according to the control signal S_Ctrl.

根據本發明一實施例,參考時脈信號處理器320可根據指示信號S_Ind,選擇性輸出初始參考時脈信號的上升/下降沿(rising/falling edge),以產生處理後參考時脈信號CK_ProcRef。 According to an embodiment of the present invention, the reference clock signal processor 320 may selectively output a rising / falling edge of the initial reference clock signal according to the indication signal S_Ind to generate a processed reference clock signal CK_ProcRef.

第6圖係根據本發明一實施例的處理初始參考時脈信號的多種轉換方法中其中一種方法的系統示意圖。根據本發明一實施例,當參考時脈信號處理器320對接收到的初始參考時脈信號CK_Ref進行上變頻轉換時,參考時脈信號處理器320可輸出初始參考時脈信號CK_Ref的每個上升沿和下降沿,並可進一步將下降沿反轉為上升沿,以提高參考時脈信號的頻率。 FIG. 6 is a system schematic diagram of one of the multiple conversion methods for processing an initial reference clock signal according to an embodiment of the present invention. According to an embodiment of the present invention, when the reference clock signal processor 320 up-converts the received initial reference clock signal CK_Ref, the reference clock signal processor 320 may output each rise of the initial reference clock signal CK_Ref Edge and falling edge, and can further invert the falling edge to the rising edge to increase the frequency of the reference clock signal.

如第6圖所示,初始參考時脈信號的頻率Fref=26MHz。當所需參考時脈頻率較高(如Fref=52MHz)時,則參考時脈信號處理器320可輸出初始參考時脈信號CK_Ref的每個上升沿和下降沿,以使參考時脈信號的頻率加倍。 As shown in Figure 6, the frequency of the initial reference clock signal Fref = 26MHz. When the required reference clock frequency is high (eg, Fref = 52MHz), the reference clock signal processor 320 may output each rising and falling edge of the initial reference clock signal CK_Ref to make the frequency of the reference clock signal double.

另一方面,當參考時脈信號處理器320對接收到的初始參考時脈信號CK_Ref進行下變頻轉換時,參考時脈信號處理器320可不輸出初始參考時脈信號CK_Ref的每個上升/ 下降沿。參考時脈信號處理器320可忽略初始參考時脈信號CK_Ref的一些上升/下降沿,以降低參考時脈信號的頻率。 On the other hand, when the reference clock signal processor 320 down-converts the received initial reference clock signal CK_Ref, the reference clock signal processor 320 may not output every rise / Falling edge. The reference clock signal processor 320 may ignore some rising / falling edges of the initial reference clock signal CK_Ref to reduce the frequency of the reference clock signal.

舉例來說,當處理後參考時脈信號CK_ProcRef的頻率應為初始參考時脈信號CK_Ref的頻率的1/N時,參考時脈信號處理器320可對初始參考時脈信號CK_Ref的每N個上升/下降沿輸出一上升/下降沿,以作為處理後參考時脈信號CK_ProcRef。初始參考時脈信號CK_Ref的其他上升/下降沿被忽略。 For example, when the frequency of the reference clock signal CK_ProcRef after processing should be 1 / N of the frequency of the initial reference clock signal CK_Ref, the reference clock signal processor 320 may increase every N times the initial reference clock signal CK_Ref / Falling edge outputs a rising / falling edge as the processed reference clock signal CK_ProcRef. Other rising / falling edges of the initial reference clock signal CK_Ref are ignored.

如第6圖所示,當所需參考時脈頻率較低,如Fref=13MHz時,參考時脈信號處理器320可對初始參考時脈信號CK_Ref的每兩個上升/下降沿輸出一上升/下降沿,以作為處理後參考時脈信號CK_ProcRef。當所需參考時脈頻率較低,如Fref=6.5MHz時,參考時脈信號處理器320可對初始參考時脈信號CK_Ref的每4個上升/下降沿輸出一上升/下降沿,以作為處理後參考時脈信號CK_ProcRef。 As shown in FIG. 6, when the required reference clock frequency is low, such as Fref = 13MHz, the reference clock signal processor 320 can output a rising / falling signal for every two rising / falling edges of the initial reference clock signal CK_Ref. The falling edge is used as the reference clock signal CK_ProcRef after processing. When the required reference clock frequency is low, such as Fref = 6.5MHz, the reference clock signal processor 320 may output a rising / falling edge for every 4 rising / falling edges of the initial reference clock signal CK_Ref for processing. Post reference clock signal CK_ProcRef.

請注意,由於接收處理後參考時脈信號CK_ProcRef的頻率合成器電路310是由處理後參考時脈信號CK_ProcRef進行運算(如由處理後參考時脈信號CK_ProcRef的脈衝(pulse)或邊沿進行運算),當上升/下降沿變得密集(dense)或疏鬆(loose)時,頻率合成器電路310的操作頻率將相應提高或降低。 Please note that since the frequency synthesizer circuit 310 receiving the processed reference clock signal CK_ProcRef is operated by the processed reference clock signal CK_ProcRef (such as by the pulse or edge of the processed reference clock signal CK_ProcRef), When the rising / falling edges become dense or loose, the operating frequency of the frequency synthesizer circuit 310 will increase or decrease accordingly.

根據本發明另一實施例,參考時脈信號處理器320可根據指示信號S-_Ind,響應於初始參考時脈信號CK_Ref的上升/下降沿選擇性輸出一脈衝,以產生處理後參考時脈信 號CK_ProcRef。 According to another embodiment of the present invention, the reference clock signal processor 320 may selectively output a pulse in response to the rising / falling edge of the initial reference clock signal CK_Ref according to the indication signal S-_Ind to generate a processed reference clock signal. No. CK_ProcRef.

在本實施例中,當參考時脈信號處理器320對接收到的初始參考時脈信號CK_Ref進行上變頻轉換時,參考時脈信號處理器320對初始參考時脈信號CK_Ref的每個上升/下降沿輸出一個或多個脈衝,以提高參考時脈信號的頻率。 In this embodiment, when the reference clock signal processor 320 up-converts the received initial reference clock signal CK_Ref, the reference clock signal processor 320 performs each rise / fall of the initial reference clock signal CK_Ref. Output one or more pulses along the edge to increase the frequency of the reference clock signal.

另一方面,當參考時脈信號處理器320對接收到的初始參考時脈信號CK_Ref進行下變頻轉換時,參考時脈信號處理器320可不對初始參考時脈信號CK_Ref的每個上升/下降沿輸出一脈衝。參考時脈信號處理器320可忽略初始參考時脈信號CK_Ref的一些上升/下降沿,以降低參考時脈信號的頻率。 On the other hand, when the reference clock signal processor 320 down-converts the received initial reference clock signal CK_Ref, the reference clock signal processor 320 may not perform every rising / falling edge of the initial reference clock signal CK_Ref. Output one pulse. The reference clock signal processor 320 may ignore some rising / falling edges of the initial reference clock signal CK_Ref to reduce the frequency of the reference clock signal.

舉例來說,當處理後參考時脈信號CK_ProcRef的頻率應為初始參考時脈信號CK_Ref的頻率的1/N時,參考時脈信號處理器320可對初始參考時脈信號CK_Ref的每N個上升/下降沿輸出一脈衝,以作為處理後參考時脈信號CK_ProcRef。初始參考時脈信號CK_Ref的其他上升/下降沿被忽略。 For example, when the frequency of the reference clock signal CK_ProcRef after processing should be 1 / N of the frequency of the initial reference clock signal CK_Ref, the reference clock signal processor 320 may increase every N times the initial reference clock signal CK_Ref A falling pulse is output as a reference clock signal CK_ProcRef after processing. Other rising / falling edges of the initial reference clock signal CK_Ref are ignored.

由於接收處理後參考時脈信號CK_ProcRef的頻率合成器電路310是由處理後參考時脈信號CK_ProcRef進行運算(如由處理後參考時脈信號CK_ProcRef的脈衝或邊沿進行運算),當脈衝之間的空間變得密集或疏鬆時,頻率合成器電路310的操作頻率將相應提高或降低。 Since the frequency synthesizer circuit 310 receiving the processed reference clock signal CK_ProcRef is operated by the processed reference clock signal CK_ProcRef (such as by the pulse or edge of the processed reference clock signal CK_ProcRef), when the space between the pulses When becoming dense or loose, the operating frequency of the frequency synthesizer circuit 310 will increase or decrease accordingly.

第7圖係根據本發明一實施例的動態調整參考時脈信號頻率的仿真結果示意圖。在本實施例中,參考時脈信號 的頻率在80μs從26MHz調整為13MHz。如第7圖所示,相位誤差指標(phase error indicator,PHI)表示調整參考時脈頻率時相位誤差並不會顯著提高。因此,上述架構和控制方法可顯著降低功耗且不將過多雜訊引入到產生的時脈信號中。 FIG. 7 is a schematic diagram of a simulation result of dynamically adjusting a reference clock signal frequency according to an embodiment of the present invention. In this embodiment, the reference clock signal The frequency was adjusted from 26MHz to 13MHz at 80μs. As shown in FIG. 7, the phase error indicator (PHI) indicates that the phase error does not increase significantly when the reference clock frequency is adjusted. Therefore, the above-mentioned architecture and control method can significantly reduce power consumption without introducing excessive noise into the generated clock signal.

此外,上述架構和控制方法較簡單。因此,實現本發明理念的複雜度也較低。還有,上述架構和控制方法可用於需要低功耗、高階調變以及/或者快速穩定的任何通信系統中,如5G、LTE、WiFi等。 In addition, the above-mentioned architecture and control method are relatively simple. Therefore, the complexity of implementing the concept of the present invention is also low. In addition, the above architecture and control method can be used in any communication system that requires low power consumption, high-order modulation, and / or fast and stable, such as 5G, LTE, WiFi, and so on.

本發明的實施例可以任何方式實現。舉例來說,上述實施例可通過硬體、軟體或其組合實現。執行上述功能的任何組件或組件的集合一般可被視作可控制上述功能的一個或多個處理器。一個或多個處理器可通過多種方式實現,如通過專用硬體,或採用微碼或軟體編程來執行上述功能的一般硬體實現。 Embodiments of the invention can be implemented in any way. For example, the above embodiments may be implemented by hardware, software, or a combination thereof. Any component or collection of components that perform the functions described above may generally be considered as one or more processors that can control the functions described above. One or more processors may be implemented in a variety of ways, such as through dedicated hardware, or general hardware implementation using microcode or software programming to perform the functions described above.

本發明可以其他特定形式體現而不脫離本發明之精神和基本特徵。上述實施例僅作為說明而非用來限制本發明,本發明之保護範圍當視後附之申請專利範圍所界定者為準。凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The above embodiments are only for illustration and not for limiting the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application. All equal changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

Claims (10)

一種頻率產生電路,包括:一頻率合成器電路,接收一處理後參考時脈信號,並根據所述處理後參考時脈信號產生一射頻時脈信號;以及一參考時脈信號處理器,從一振盪器接收一初始參考時脈信號,並根據一指示信號處理所述初始參考時脈信號以產生所述處理後參考時脈信號,其中,所述指示信號根據一通信設備的一所需參考時脈頻率產生,以及當所述所需參考時脈頻率高於一第一閾值時,所述處理後參考時脈信號的一頻率為所述初始參考時脈信號的一頻率的倍數;當所述所需參考時脈頻率低於一第二閾值時,所述初始參考時脈信號的所述頻率為所述處理後參考時脈信號的所述頻率的倍數。A frequency generating circuit includes: a frequency synthesizer circuit, receiving a processed reference clock signal, and generating a radio frequency clock signal according to the processed reference clock signal; and a reference clock signal processor, from a The oscillator receives an initial reference clock signal and processes the initial reference clock signal according to an instruction signal to generate the processed reference clock signal, wherein the instruction signal is based on a required reference time of a communication device. Pulse frequency generation, and when the required reference clock frequency is higher than a first threshold, a frequency of the processed reference clock signal is a multiple of a frequency of the initial reference clock signal; when the When the required reference clock frequency is lower than a second threshold, the frequency of the initial reference clock signal is a multiple of the frequency of the processed reference clock signal. 如申請專利範圍第1項所述之頻率產生電路,其中,當所述通信設備與一網路裝置通信所需的一信號雜訊比高於一預定義信號雜訊比閾值時,所述所需參考時脈頻率為高於所述第一閾值;以及當所需的所述信號雜訊比不高於所述預定義信號雜訊比閾值時,所述所需參考時脈頻率為低於所述第二閾值。The frequency generating circuit according to item 1 of the patent application range, wherein when a signal-to-noise ratio required for the communication device to communicate with a network device is higher than a predefined signal-to-noise ratio threshold, the The reference clock frequency is higher than the first threshold; and when the required signal-to-noise ratio is not higher than the predefined signal-to-noise ratio threshold, the required reference clock frequency is lower than The second threshold. 如申請專利範圍第1項所述之頻率產生電路,其中,當所述通信設備的一系統所需時脈頻率穩定時間短於一預定義穩定時間閾值時,所述所需參考時脈頻率為高於所述第一閾值;以及當所述系統所需時脈頻率穩定時間不短於所述預定義穩定時間閾值時,所述所需參考時脈頻率為低於所述第二閾值。The frequency generating circuit according to item 1 of the scope of patent application, wherein when the required clock frequency stabilization time of a system of the communication device is shorter than a predefined stabilization time threshold, the required reference clock frequency is Higher than the first threshold; and when the required clock frequency stabilization time of the system is not shorter than the predefined stabilization time threshold, the required reference clock frequency is lower than the second threshold. 如申請專利範圍第1項所述之頻率產生電路,其中,當所述通信設備無需省電時,所述所需參考時脈頻率為高於所述第一閾值;以及當所述通信設備需要省電時,所述所需參考時脈頻率為低於所述第二閾值。The frequency generating circuit according to item 1 of the scope of patent application, wherein when the communication device does not need to save power, the required reference clock frequency is higher than the first threshold value; and when the communication device requires When saving power, the required reference clock frequency is lower than the second threshold. 如申請專利範圍第1項所述之頻率產生電路,其中,所述參考時脈信號處理器根據所述指示信號,選擇性輸出所述初始參考時脈信號的上升/下降沿,以產生所述處理後參考時脈信號。The frequency generation circuit according to item 1 of the scope of patent application, wherein the reference clock signal processor selectively outputs the rising / falling edge of the initial reference clock signal according to the instruction signal to generate the reference clock signal. Refer to the clock signal after processing. 一種通信設備,包括:一頻率產生電路,根據一初始參考時脈信號產生一射頻時脈信號;以及一參考時脈控制器,根據一所需參考時脈頻率產生一指示信號,其中,所述頻率產生電路包括:一頻率合成器電路,接收一處理後參考時脈信號,並根據所述處理後參考時脈信號產生所述射頻時脈信號;以及一參考時脈信號處理器,從一振盪器接收所述初始參考時脈信號,並根據所述指示信號處理所述初始參考時脈信號以產生所述處理後參考時脈信號,其中,當所述所需參考時脈頻率高於一第一閾值時,所述處理後參考時脈信號的一頻率為所述初始參考時脈信號的一頻率的倍數;當所述所需參考時脈頻率低於一第二閾值時,所述初始參考時脈信號的所述頻率為所述處理後參考時脈信號的所述頻率的倍數。A communication device includes: a frequency generating circuit that generates a radio frequency clock signal based on an initial reference clock signal; and a reference clock controller that generates an instruction signal according to a required reference clock frequency, wherein the said The frequency generating circuit includes: a frequency synthesizer circuit that receives a processed reference clock signal and generates the radio frequency clock signal according to the processed reference clock signal; and a reference clock signal processor that oscillates from an oscillator The receiver receives the initial reference clock signal and processes the initial reference clock signal according to the instruction signal to generate the processed reference clock signal, wherein when the required reference clock frequency is higher than a first reference clock signal At a threshold, a frequency of the processed reference clock signal is a multiple of a frequency of the initial reference clock signal; when the required reference clock frequency is lower than a second threshold, the initial reference The frequency of the clock signal is a multiple of the frequency of the processed reference clock signal. 如申請專利範圍第6項所述之通信設備,其中,當所述參考時脈控制器確定與一網路裝置通信所需的一信號雜訊比高於一預定義信號雜訊比閾值時,所述所需參考時脈頻率為高於所述第一閾值;以及當與所述網路裝置通信所需的所述信號雜訊比不高於所述預定義信號雜訊比閾值時,所述所需參考時脈頻率為低於所述第二閾值。The communication device according to item 6 of the scope of patent application, wherein when the reference clock controller determines that a signal-to-noise ratio required to communicate with a network device is higher than a predefined signal-to-noise ratio threshold, The required reference clock frequency is higher than the first threshold; and when the signal-to-noise ratio required for communication with the network device is not higher than the predefined signal-to-noise ratio threshold, all The required reference clock frequency is lower than the second threshold. 如申請專利範圍第6項所述之通信設備,其中,當所述參考時脈控制器確定一系統所需時脈頻率穩定時間短於一預定義穩定時間閾值時,所述所需參考時脈頻率為高於所述第一閾值;以及當所述系統所需時脈頻率穩定時間不短於所述預定義穩定時間閾值時,所述所需參考時脈頻率為低於所述第二閾值。The communication device according to item 6 of the scope of patent application, wherein when the reference clock controller determines that the required clock frequency stabilization time of a system is shorter than a predefined stabilization time threshold, the required reference clock The frequency is higher than the first threshold; and when the required clock frequency stabilization time of the system is not shorter than the predefined stabilization time threshold, the required reference clock frequency is lower than the second threshold . 如申請專利範圍第6項所述之通信設備,其中,當所述參考時脈控制器確定無需省電時,所述所需參考時脈頻率為高於所述第一閾值;以及當需要省電時,所述所需參考時脈頻率為低於所述第二閾值。The communication device according to item 6 of the scope of patent application, wherein when the reference clock controller determines that power saving is not required, the required reference clock frequency is higher than the first threshold value; and When the power is on, the required reference clock frequency is lower than the second threshold. 如申請專利範圍第6項所述之通信設備,其中,所述參考時脈信號處理器根據所述指示信號,選擇性輸出所述初始參考時脈信號的上升/下降沿,以產生所述處理後參考時脈信號。The communication device according to item 6 of the scope of patent application, wherein the reference clock signal processor selectively outputs a rising / falling edge of the initial reference clock signal according to the instruction signal to generate the processing. Post reference clock signal.
TW106118659A 2017-02-06 2017-06-06 Frequency-generating circuit and communications apparatus TWI631828B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/425,183 2017-02-06
US15/425,183 US9867135B1 (en) 2017-02-06 2017-02-06 Frequency-generating circuit and communications apparatus

Publications (2)

Publication Number Publication Date
TWI631828B true TWI631828B (en) 2018-08-01
TW201830870A TW201830870A (en) 2018-08-16

Family

ID=60812760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118659A TWI631828B (en) 2017-02-06 2017-06-06 Frequency-generating circuit and communications apparatus

Country Status (3)

Country Link
US (1) US9867135B1 (en)
CN (1) CN108400790B (en)
TW (1) TWI631828B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117378B1 (en) * 2002-01-19 2006-10-03 National Semiconductor Corporation Adaptive voltage scaling digital processing component and method of operating the same
US20090154615A1 (en) * 2007-02-16 2009-06-18 Katsumasa Hijikata Integrated circuit for processing multi-channel radio signal
TW200935765A (en) * 2008-02-05 2009-08-16 Mstar Semiconductor Inc High accuracy satellite receiving controller, related calibration module and method
US20090224974A1 (en) * 2008-03-04 2009-09-10 Navasic Corporation Power efficient global positioning system receiver
US20090296531A1 (en) * 2008-05-27 2009-12-03 Sony Ericsson Mobile Communications Ab Methods of Calibrating a Clock Using Multiple Clock Periods with a Single Counter and Related Devices and Methods
US20110070854A1 (en) * 2009-09-24 2011-03-24 Richwave Technology Corp. Asynchronous first in first out interface, method thereof and integrated receiver
TW201224700A (en) * 2010-12-12 2012-06-16 Mediatek Inc Clock system and method used in a clock system
US8248106B1 (en) * 2010-07-21 2012-08-21 Applied Micro Circuits Corporation Lock detection using a digital phase error message
US8756451B2 (en) * 2011-10-01 2014-06-17 Intel Corporation Frequency synthesis methods and systems
US20150097627A1 (en) * 2013-10-04 2015-04-09 Broadcom Corporation Clock Generation System
US9473157B2 (en) * 2014-07-24 2016-10-18 Mediatek Inc. Frequency synthesizer with injection pulling/pushing suppression/mitigation and related frequency synthesizing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420294B (en) * 2007-10-24 2011-06-15 大唐移动通信设备有限公司 Time clock phase locking loop controlling method and apparatus
US9287886B2 (en) 2008-02-29 2016-03-15 Qualcomm Incorporated Dynamic reference frequency for fractional-N Phase-Locked Loop
US8010072B1 (en) * 2008-06-18 2011-08-30 Atheros Communications, Inc. Charge pump current compensation for phase-locked loop frequency synthesizer systems
CN102315849B (en) * 2010-07-01 2014-05-14 群联电子股份有限公司 Method for generating reference clock signal and data receiving and transmitting system
US9344065B2 (en) * 2012-10-22 2016-05-17 Mediatek Inc. Frequency divider, clock generating apparatus, and method capable of calibrating frequency drift of oscillator
DE102014108762B4 (en) * 2014-06-23 2023-11-16 Intel Corporation A circuit, a time-to-digital converter, an integrated circuit, a transmitter, a receiver and a transceiver
US9356606B2 (en) * 2014-07-23 2016-05-31 Silicon Laboratories Inc. Clock generator using free-running oscillator and method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117378B1 (en) * 2002-01-19 2006-10-03 National Semiconductor Corporation Adaptive voltage scaling digital processing component and method of operating the same
US20090154615A1 (en) * 2007-02-16 2009-06-18 Katsumasa Hijikata Integrated circuit for processing multi-channel radio signal
TW200935765A (en) * 2008-02-05 2009-08-16 Mstar Semiconductor Inc High accuracy satellite receiving controller, related calibration module and method
US20090224974A1 (en) * 2008-03-04 2009-09-10 Navasic Corporation Power efficient global positioning system receiver
US20090296531A1 (en) * 2008-05-27 2009-12-03 Sony Ericsson Mobile Communications Ab Methods of Calibrating a Clock Using Multiple Clock Periods with a Single Counter and Related Devices and Methods
US20110070854A1 (en) * 2009-09-24 2011-03-24 Richwave Technology Corp. Asynchronous first in first out interface, method thereof and integrated receiver
US8248106B1 (en) * 2010-07-21 2012-08-21 Applied Micro Circuits Corporation Lock detection using a digital phase error message
TW201224700A (en) * 2010-12-12 2012-06-16 Mediatek Inc Clock system and method used in a clock system
US8756451B2 (en) * 2011-10-01 2014-06-17 Intel Corporation Frequency synthesis methods and systems
US20150097627A1 (en) * 2013-10-04 2015-04-09 Broadcom Corporation Clock Generation System
US9473157B2 (en) * 2014-07-24 2016-10-18 Mediatek Inc. Frequency synthesizer with injection pulling/pushing suppression/mitigation and related frequency synthesizing method thereof

Also Published As

Publication number Publication date
CN108400790A (en) 2018-08-14
US9867135B1 (en) 2018-01-09
TW201830870A (en) 2018-08-16
CN108400790B (en) 2020-02-18

Similar Documents

Publication Publication Date Title
US9072119B2 (en) Mobile communication device and integrated circuit thereof
US8565121B2 (en) Low latency frequency switching
KR100926906B1 (en) Method and system for minimizing power consumption in communication system
US9893875B2 (en) Phase continuity technique for frequency synthesis
US9276622B2 (en) Local oscillator (LO) generator with multi-phase divider and phase locked loop
JP2011023804A (en) Phase-locked loop circuit and communication device
TW201325298A (en) Concurrent use of single TX/RX synthesizer pair in multiple SIM devices
US6564039B1 (en) Frequency generation circuit and method of operating a tranceiver
JP5985711B2 (en) Apparatus, system and method for parallelizing UE wake-up process
US12004007B2 (en) Mobile assisted enhancements to reduce radio resource control (RRC) signaling
JP2016530842A (en) Receiver carrier aggregation frequency generation
US20080212658A1 (en) Method and system for communication of signals using a direct digital frequency synthesizer (ddfs)
KR100956325B1 (en) Method and system for sharing components in a time division multiplex wireless system
JP2022511174A (en) Determining the default PUCCH and SRS beams
CN112787779B (en) Communication method and user equipment
US8724758B2 (en) Power-efficient variable-clock-rate DIGRF interface
TWI631828B (en) Frequency-generating circuit and communications apparatus
US11264995B1 (en) System and method for maintaining local oscillator (LO) phase continuity
US20190245489A1 (en) Control of envelope tracker pmic
CN108243488B (en) Frequency generation circuit, control and power consumption reduction method, communication device and memory
US11984900B2 (en) Tuning voltage tracker for receive/transmit phase-locked loop (PLL) fast switching
TWI829405B (en) Communication apparatus and method for configuring a transmitter bandwidth and a receiver bandwidth
US10862461B1 (en) Techniques for generating switch control signals
WO2024075542A1 (en) Terminal device, base station device, and communication method
TW202304140A (en) Techniques for phase shift reduction in a single crystal multiple output clock system