TWI629497B - Anti-reflection optical film - Google Patents
Anti-reflection optical film Download PDFInfo
- Publication number
- TWI629497B TWI629497B TW106111246A TW106111246A TWI629497B TW I629497 B TWI629497 B TW I629497B TW 106111246 A TW106111246 A TW 106111246A TW 106111246 A TW106111246 A TW 106111246A TW I629497 B TWI629497 B TW I629497B
- Authority
- TW
- Taiwan
- Prior art keywords
- rough
- rough surface
- optical film
- curve
- reference datum
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
Abstract
本發明提供一種光學膜片。光學膜片包含基底膜、粗糙層及抗反射層。粗糙層設置於基底膜上,並具有粗糙面;抗反射層則設置於粗糙面上。粗糙面於預設方向上之截面具有截面曲線。由截面曲線可以得出參考基準線。相對於參考基準線,截面曲線中有部分會低於參考基準線而形成為谷部,其中部分谷部之最大深度與最大寬度之比值不大於0.26。 The invention provides an optical film. The optical film includes a base film, a rough layer, and an anti-reflection layer. The rough layer is provided on the base film and has a rough surface; the anti-reflection layer is provided on the rough surface. A cross section of the rough surface in a predetermined direction has a cross section curve. The reference curve can be derived from the section curve. Relative to the reference datum line, a part of the cross-sectional curve will be lower than the reference datum line to form valleys, and the ratio of the maximum depth to the maximum width of some of the valleys is not greater than 0.26.
Description
本發明係關於一種光學膜片;具體而言,本發明係關於一種使用於顯示模組之抗反射光學膜片。 The present invention relates to an optical film; specifically, the present invention relates to an anti-reflection optical film used in a display module.
平面及曲面顯示裝置已被廣泛地應用於各式的電子裝置之中,例如行動電話、個人穿戴裝置、電視、交通工具用主機、個人電腦、數位相機、掌上型電玩等。然而為了提高使用者的視覺感受,業者仍在不斷地就顯示裝置的光學表現進行改良。 Flat and curved display devices have been widely used in various electronic devices, such as mobile phones, personal wearable devices, televisions, host computers for transportation, personal computers, digital cameras, handheld video games, and the like. However, in order to improve the user's visual experience, the industry is still continuously improving the optical performance of the display device.
例如部分顯示裝置的顯示面會因在使用時因外在環境光的關係而產生眩光。在大多數的使用狀況下,眩光往往造成部分使用者在視覺上的不舒服,並影響顯示影像的光學表現。為了解決此一問題,部分習知的顯示裝置會在顯示面上加設有粗糙表面的高霧度層,以降低眩光產生的情形。然為當霧度較高時,使用者容易因為高霧度層的設置而感覺顯示面上有白霧的不清晰感。 For example, the display surface of some display devices may cause glare due to external ambient light during use. In most use conditions, glare often causes visual discomfort for some users and affects the optical performance of the displayed image. In order to solve this problem, some conventional display devices add a high-haze layer with a rough surface on the display surface to reduce the occurrence of glare. However, when the haze is high, the user is liable to feel the unclear sense of white fog on the display surface due to the setting of the high haze layer.
為了降低上述的白霧不清晰感,部分習知的顯示裝置會在上述高霧度層的外表面再鍍上抗反射層。然而抗反射層往往會因其厚度不均勻,而使得高霧度層的表面粗糙度受到影響,進而影響整體的光學表現。 In order to reduce the above-mentioned unclear sense of white fog, some conventional display devices may further plate an anti-reflection layer on the outer surface of the high-haze layer. However, the anti-reflection layer tends to have an uneven thickness, which affects the surface roughness of the high-haze layer, thereby affecting the overall optical performance.
本發明之目的在於提供一種光學膜片,可提高設置於粗糙層上抗反射層的分佈均勻度。 The object of the present invention is to provide an optical film, which can improve the uniformity of the distribution of the anti-reflection layer disposed on the rough layer.
本發明之另一目的在於提供一種光學膜片,可於粗糙層上佈設抗反射層後仍維持有較接近的粗糙度。 Another object of the present invention is to provide an optical film that can maintain a relatively close roughness after an anti-reflection layer is disposed on the rough layer.
本發明之另一目的在於提供一種光學膜片,可減輕因於粗糙層上佈設抗反射層後產生之粗糙度差異而導至反射率提高的現象。 Another object of the present invention is to provide an optical film, which can reduce the phenomenon that the reflectance is increased due to the difference in roughness caused by the anti-reflection layer on the rough layer.
本發明之另一目的在於提供一種顯示模組,可兼顧減低眩光及反射率之光學效果。 Another object of the present invention is to provide a display module, which can balance the optical effects of reducing glare and reflectance.
顯示模組包含有光學膜片及顯示面板。顯示面板具有顯示面,而光學膜片則設置於顯示面上。光學膜片包含基底膜、粗糙層及抗反射層。基底膜具有承載面,而承載面係與基底膜上朝向顯示面之一面相背。粗糙層設置於承載面上,並具有與承載面相背向的粗糙面。抗反射層則分佈設置於粗糙面上。 The display module includes an optical film and a display panel. The display panel has a display surface, and the optical film is disposed on the display surface. The optical film includes a base film, a rough layer, and an anti-reflection layer. The base film has a bearing surface, and the bearing surface is opposite to one surface of the base film facing the display surface. The rough layer is disposed on the bearing surface and has a rough surface facing away from the bearing surface. The anti-reflection layer is distributed on the rough surface.
粗糙面於預設方向上之截面具有截面曲線。由截面曲線可以得出虛擬之參考基準線。例如,參考基準線可為截面曲線之75%高程線。相對於參考基準線,截面曲線中有部分會低於參考基準線而形成為谷部,部分則高於參考基準線而形成為峰部;其中部分谷部之最大深度與最大寬度之比值不大於0.26。由此,設置抗反射層後的光學膜片整體粗糙度與粗糙面本身的粗糙度差異將會較小,進而減輕反射率增加的狀況。 A cross section of the rough surface in a predetermined direction has a cross section curve. A virtual reference baseline can be derived from the cross-section curve. For example, the reference datum line may be a 75% elevation line of the cross section curve. Relative to the reference datum line, part of the cross section curve will be formed as a valley part below the reference datum line, and part will be formed as a peak part above the reference datum line; the ratio of the maximum depth to the maximum width of the valley part is not greater than 0.26. Therefore, the difference between the roughness of the overall optical film and the roughness of the rough surface itself after the anti-reflection layer is provided will be smaller, thereby reducing the increase in reflectance.
10‧‧‧光學膜片 10‧‧‧ Optical diaphragm
30‧‧‧顯示面板 30‧‧‧Display Panel
31‧‧‧顯示面 31‧‧‧display surface
100‧‧‧基底膜 100‧‧‧ basement membrane
110‧‧‧承載面 110‧‧‧bearing surface
200‧‧‧預設方向 200‧‧‧ default orientation
210‧‧‧截面 210‧‧‧ Section
300‧‧‧粗糙層 300‧‧‧ rough layer
310‧‧‧粗糙面 310‧‧‧ Rough
311‧‧‧凹部 311‧‧‧ recess
313‧‧‧凸部 313‧‧‧ convex
330‧‧‧粗糙結構 330‧‧‧ Rough structure
350‧‧‧截面曲線 350‧‧‧ Section curve
351‧‧‧谷部 351‧‧‧Tanibe
352‧‧‧谷底部位 352‧‧‧ valley bottom
353‧‧‧峰部 353‧‧‧Peak
370‧‧‧參考基準線 370‧‧‧ Reference Baseline
380‧‧‧參考基準面 380‧‧‧reference datum
500‧‧‧抗反射層 500‧‧‧Anti-reflective layer
700‧‧‧粗糙曲線 700‧‧‧ rough curve
710‧‧‧平均線 710‧‧‧average line
圖1為本發明顯示模組之實施例示意圖;圖2為本發明光學膜片之實施例元件爆炸圖;圖3為圖2所示實施例之截面示意圖;圖4為截面曲線之實施例放大示意圖;圖5為截面曲線之實施例示意圖;圖6為粗糙層之實施例示意圖;圖7為由截面曲線得到粗糙曲線之實施例示意圖。 FIG. 1 is a schematic diagram of an embodiment of a display module according to the present invention; FIG. 2 is an exploded view of an embodiment element of an optical film of the present invention; FIG. 3 is a schematic sectional view of the embodiment shown in FIG. 2; Fig. 5 is a schematic diagram of an embodiment of a cross-sectional curve; Fig. 6 is a schematic diagram of an embodiment of a rough layer; and Fig. 7 is a schematic diagram of an embodiment obtained from a cross-sectional curve.
本發明提供一種光學膜片以及使用此光學膜片之顯示模組。顯示模組較佳可應用於各式顯示器上,例如:電腦顯示器、電視、監視器、車用主機等。此外,顯示模組亦可運用於其他電子裝置中所包含的顯示模組上,例如手機、數位相機、掌上型遊樂器等的顯示屏幕。 The invention provides an optical film and a display module using the optical film. The display module is preferably applicable to various displays, such as computer monitors, televisions, monitors, and automotive hosts. In addition, the display module can also be applied to display modules included in other electronic devices, such as display screens of mobile phones, digital cameras, handheld gaming instruments, and the like.
如圖1所示,顯示模組包含有光學膜片10及顯示面板30。顯示面板30具有顯示面31,而光學膜片10則設置於顯示面31上。在較佳實施例中,光學膜片10係具有偏極化光線之光學效果;此外,光學膜片10亦具有降低眩光之功效。顯示面板30較佳為液晶顯示面板,可配合背光模組(未繪示)來進行影像的顯示。然而在不同實施例中,顯示面板30亦可為自發光式的顯示面板,例如有機發光二極體面板,或者是其他如電泳顯示面板等其他類似的顯示面板。 As shown in FIG. 1, the display module includes an optical film 10 and a display panel 30. The display panel 30 has a display surface 31, and the optical film 10 is disposed on the display surface 31. In a preferred embodiment, the optical film 10 has the optical effect of polarized light; in addition, the optical film 10 also has the effect of reducing glare. The display panel 30 is preferably a liquid crystal display panel, and can cooperate with a backlight module (not shown) to display images. However, in different embodiments, the display panel 30 may also be a self-luminous display panel, such as an organic light emitting diode panel, or other similar display panels such as an electrophoretic display panel.
在圖2及圖3所示之實施例中,光學膜片包含基底膜100、粗糙層300及抗反射層500。基底膜100具有承載面110,而承載面110係與基底膜100上朝向顯示面31之一面相背。基底膜100較佳為偏光片;然而在不同實施例中,基底膜100亦可為具其他光學效果之膜片,或是不具有特別光學效果之透明膜片。 In the embodiment shown in FIGS. 2 and 3, the optical film includes a base film 100, a rough layer 300, and an anti-reflection layer 500. The base film 100 has a bearing surface 110, and the bearing surface 110 is opposite to a surface of the base film 100 facing the display surface 31. The base film 100 is preferably a polarizer; however, in different embodiments, the base film 100 may be a film with other optical effects or a transparent film without special optical effects.
如圖2及圖3所示,粗糙層300設置於承載面110上,並具有與承載面110相背向的粗糙面310。粗糙層300包含分佈於承載面110的粗糙結構330,其中粗糙結構330形成有複數個凸起及其間的凹坑;而粗糙結構330的表面即為粗糙面310。粗糙層300之材質較佳為樹脂材質,且較佳採用相轉換法製成,例如熱誘導式相分離法、蒸氣誘導式相分離法、乾式法及濕式法等。抗反射層500設置於粗糙面310上;以較佳實施例而言,抗反射層500可以為金屬氧化物或其他化合物材質所製成。抗反射層500係可以各式鍍膜製程、塗佈或其他製程形成於粗糙面310上。 As shown in FIGS. 2 and 3, the rough layer 300 is disposed on the bearing surface 110 and has a rough surface 310 facing away from the bearing surface 110. The rough layer 300 includes a rough structure 330 distributed on the bearing surface 110, wherein the rough structure 330 is formed with a plurality of protrusions and pits therebetween; and the surface of the rough structure 330 is the rough surface 310. The material of the rough layer 300 is preferably a resin material, and is preferably made by a phase inversion method, such as a thermally induced phase separation method, a vapor induced phase separation method, a dry method, and a wet method. The anti-reflection layer 500 is disposed on the rough surface 310. In a preferred embodiment, the anti-reflection layer 500 may be made of metal oxide or other compound materials. The anti-reflection layer 500 can be formed on the rough surface 310 by various coating processes, coating processes, or other processes.
如圖2及圖3所示,粗糙面310於一預設方向200上之截面210具有截面曲線350。預設方向200較佳為平行於承載面110之方向;換言之,預設方向200係落入如圖2所示之X-Y平面上,例如可以為粗糙面310上任一側邊之延伸方向。預設方向200上之截面210較佳係垂直於承載面110;舉例而言,若在粗糙面310上先訂下預設方向200,即可沿預設方向200朝垂直方向切割粗糙層300以得到截面210。而截面210與粗糙面310之交會處即為截面曲線350。然而在實務上欲測得截面曲線350時,不必然需實際對粗糙層300進行切割,僅需以相關儀器沿預設方向200進行探測,即可得到此截面210上之截面曲線350。 As shown in FIGS. 2 and 3, the section 210 of the rough surface 310 in a predetermined direction 200 has a section curve 350. The preset direction 200 is preferably a direction parallel to the bearing surface 110; in other words, the preset direction 200 falls on the X-Y plane shown in FIG. 2, for example, it can be an extension direction of any side on the rough surface 310. The cross section 210 in the preset direction 200 is preferably perpendicular to the bearing surface 110. For example, if the preset direction 200 is set on the rough surface 310 first, the rough layer 300 can be cut in the vertical direction along the preset direction 200 to A cross section 210 is obtained. The intersection of the cross section 210 and the rough surface 310 is the cross section curve 350. However, in practice, if the cross-section curve 350 is to be measured, it is not necessary to actually cut the rough layer 300, and the cross-section curve 350 on the cross-section 210 can be obtained only by detecting with the relevant instrument in the preset direction 200.
如圖3及圖4所示,由截面曲線350可以得出一虛擬之參考基準線370。以較佳實施例而言,參考基準線370係為截面曲線350之75%高程線(100%為最高之高程)。例如若以承載面110與截面210之交界作為高程為0的參考線,截面曲線350上之各點分別可以得到相對之一高程高度;對於將這些高程高度進行統計分析後取第三(由下而上)之四分位數高度作為參考基準線370之高程。相對於參考基準線370,截面曲線350中有部分會低於參考基準線370而形成為谷部351,部分則高於參考基準線370而形成為峰部353。其中部分谷部351之最大深度D與最大寬度W之比值較佳不大於0.26。較佳者,各谷部351之最大深度D與最大寬度W之平均比值不大於0.26。更佳者,每一谷部351之最大深度D與最大寬度W之比值均不大於0.26。藉由控制至少部分谷部351之深寬比,可使得谷部351底部佈設的抗反射層500厚度較為平均,且抗反射層500外表面之起伏亦較貼合於粗糙面310之起伏。由此,設置抗反射層500後的光學膜片整體粗糙度與粗糙面310本身的粗糙度差異將會較小,進而減輕反射率增加的狀況。 As shown in FIGS. 3 and 4, a virtual reference reference line 370 can be obtained from the cross-sectional curve 350. In a preferred embodiment, the reference datum line 370 is a 75% elevation line of the cross section curve 350 (100% is the highest elevation). For example, if the boundary between the bearing surface 110 and the section 210 is used as a reference line with an elevation of 0, each point on the section curve 350 can obtain a relative one of the elevation heights. After statistical analysis of these elevation heights, take the third (from below) The upper quartile height is used as the elevation of the reference baseline 370. Relative to the reference datum line 370, a portion of the cross-sectional curve 350 is lower than the reference datum line 370 and is formed as a valley portion 351, and a part is higher than the reference datum line 370 and is formed as a peak portion 353. The ratio of the maximum depth D to the maximum width W of the valley portion 351 is preferably not more than 0.26. Preferably, the average ratio of the maximum depth D and the maximum width W of each valley portion 351 is not greater than 0.26. More preferably, the ratio of the maximum depth D to the maximum width W of each valley 351 is not greater than 0.26. By controlling the aspect ratio of at least part of the valley portion 351, the thickness of the anti-reflection layer 500 arranged at the bottom of the valley portion 351 can be made more even, and the undulations on the outer surface of the anti-reflection layer 500 are more conformed to the undulations of the rough surface 310. Therefore, the difference between the roughness of the entire optical film after the anti-reflection layer 500 is provided and the roughness of the rough surface 310 itself will be smaller, thereby reducing the increase in reflectivity.
此外,在此較佳實施例中,如圖4所示,谷部351均具有谷底部位352;至少部分的谷底部位352處曲率半徑R不小於1.4μm。藉由此一設計,使得谷底部位352之曲面較為平緩而不會過於尖銳,因此抗反射層500可以較均勻地分佈於谷底部位352而不會有異常的厚度增加狀況。由此可以維持粗糙面310之粗糙度,進而減輕反射率增加的狀況。 In addition, in this preferred embodiment, as shown in FIG. 4, each of the valley portions 351 has a valley bottom level 352; at least part of the valley bottom level 352 has a curvature radius R of not less than 1.4 μm. With this design, the curved surface of the valley bottom portion 352 is relatively smooth without being too sharp, so the anti-reflection layer 500 can be more uniformly distributed on the valley bottom portion 352 without an abnormal thickness increase. As a result, the roughness of the rough surface 310 can be maintained, and the situation of increased reflectance can be reduced.
如圖5所示,截面曲線350上具有複數個峰部353分別位於參考基準線370之上。各峰部353之波峰頂端高程平均後可得出平均波峰高程P(相對於承載面110)。在此較佳實施例中,平均波峰高程P與參考基準線370 間之距離d小於1μm;且較佳而言,平均波峰高程P係高於參考基準線370。藉由此一設計,可使得粗糙面310上整體的高低落差不會過大,較易於控制抗反射層500設置於粗糙面310上之均勻性。 As shown in FIG. 5, the cross section curve 350 has a plurality of peaks 353 located above the reference reference line 370. The average peak height P (relative to the bearing surface 110) can be obtained after the peak top elevations of the peaks 353 are averaged. In this preferred embodiment, the average peak height P and the reference baseline 370 The distance d is less than 1 μm; and preferably, the average peak height P is higher than the reference reference line 370. With this design, the overall height difference between the rough surface 310 and the rough surface 310 will not be too large, and it is easier to control the uniformity of the anti-reflection layer 500 disposed on the rough surface 310.
此外,如圖4及圖5所示,若以截面曲線350上分佈的谷部351而言,每一谷部351會包含有相對於粗糙面310呈外突的部分及呈內凹的部分,其中各谷部351中呈外突的部分佔各谷部351曲線總長之比例定義為第一比例。另以峰部353而言,每一峰部353會包含有相對於粗糙面310呈外突的部分及呈內凹的部分,其中各峰部353中呈外突的部分佔各峰部353曲線總長之比例定義為第二比例。在此較佳實施例中,第一比例小於第二比例;換言之,谷部351中呈內凹之曲線佔比較大。藉此將可降低在谷部351中產生兩外突曲線於谷部351內相接時產生狹窄縫隙的可能性,進而減少抗反射層500於狹窄縫隙處因堆積而增加厚度的情況。 In addition, as shown in FIG. 4 and FIG. 5, if the valley portions 351 distributed on the cross-sectional curve 350 are included, each valley portion 351 includes a portion protruding outward from the rough surface 310 and a portion concaved. The ratio of the protruding portions of each valley portion 351 to the total length of the curve of each valley portion 351 is defined as the first ratio. In terms of the peak portions 353, each peak portion 353 will include a portion protruding outward and a portion recessed relative to the rough surface 310. The portion protruding from each peak portion 353 occupies the total length of the curve of each peak portion 353. The ratio is defined as the second ratio. In this preferred embodiment, the first ratio is smaller than the second ratio; in other words, the concave curve in the valley portion 351 occupies a relatively large portion. This can reduce the possibility of generating narrow gaps in the valley portion 351 when the two protrusion curves are brought into contact in the valley portion 351, and further reduce the thickness of the anti-reflection layer 500 due to the accumulation in the narrow gap.
如圖6所示,粗糙面310可於75%高程處定義出一虛擬的參考基準面380;例如若以承載面110作為高程為0的參考面,粗糙面310上之各點分別可以得到相對之一高程高度;對於將這些高程高度進行統計分析後取第三(由下而上)之四分位數高度作為參考基準面380之高程。粗糙面310有部分高於參考基準面380而形成為凸部313,而部分則會低於參考基準面380而形成為凹部311。凹部311於參考基準面380上具有第一投影面積,而凸部313於參考基準面380上具有第二投影面積。在較佳實施例中,抗反射層500疊合於粗糙層300後之霧度需大於65%,而第一投影面積與第二投影面積之比值較佳介於16%至78.5%之間,以在兼顧高霧度之要求下,仍能維持一定的顯示清晰度。 As shown in FIG. 6, the rough surface 310 can define a virtual reference plane 380 at an elevation of 75%; for example, if the bearing surface 110 is used as a reference surface with an elevation of 0, the points on the rough surface 310 can be obtained respectively. One of the elevation heights; after statistical analysis of these elevation heights, the third (bottom-up) quartile height is taken as the elevation of the reference datum 380. The rough surface 310 is partially formed as a convex portion 313 higher than the reference reference surface 380, and is partially formed as a concave portion 311 below the reference reference surface 380. The concave portion 311 has a first projection area on the reference reference surface 380, and the convex portion 313 has a second projection area on the reference reference surface 380. In a preferred embodiment, the haze of the anti-reflection layer 500 after being superimposed on the rough layer 300 needs to be greater than 65%, and the ratio of the first projection area to the second projection area is preferably between 16% and 78.5%. Under the requirements of taking into account the high haze, it can still maintain a certain display clarity.
在較佳實施例中,粗糙面310在預設方向200上之基準長度L內之粗糙度介於0.25μm至1μm之間。更佳而言,此一粗糙度可約為0.5μm。如圖7所示,此處的粗糙度較佳係為中心線平均粗糙度(Ra);換言之,係將截面曲線進行如濾除坡度影響之處理後得到粗糙曲線700。再由粗糙曲線700上定義出平均線710,例如中心線。接著再對於粗糙曲線700於基準長度L內相對於平均線710之高程絕對值進行積分並予以平均(即除以基準長度L),即可得到中心線平均粗糙度。如下表的模擬結果所示,當其他設計因素相同時,模型2的粗糙面310原粗糙度約為0.5μm附近,其於加設抗反射層後之整體粗糙度會與原粗糙度相差最少(0.02μm);相對而言,也可以得到最低的整體反射率(0.99%)。 In a preferred embodiment, the roughness of the rough surface 310 in the reference length L in the preset direction 200 is between 0.25 μm and 1 μm. More preferably, the roughness may be about 0.5 μm. As shown in FIG. 7, the roughness here is preferably the centerline average roughness (Ra); in other words, the roughness curve 700 is obtained after the cross-section curve is processed by filtering out the influence of the slope. Then, an average line 710, such as a center line, is defined on the rough curve 700. Then, the absolute value of the elevation of the rough curve 700 with respect to the average line 710 within the reference length L is integrated and averaged (ie, divided by the reference length L) to obtain the centerline average roughness. As shown in the simulation results in the following table, when the other design factors are the same, the original roughness of the rough surface 310 of Model 2 is about 0.5 μm, and the overall roughness after adding the anti-reflection layer will be the smallest difference from the original roughness ( 0.02 μm); relatively speaking, the lowest overall reflectance (0.99%) can also be obtained.
藉由此一設計,可使得粗糙面310在設置抗反射層500後粗糙度受到影響的程度較低。此外,在不同的實施例中,亦可以上述的粗糙曲線700及平均線710來定義出複數個谷部351,並參考前述實施例中之深寬比建議來加以設計,以達成維持粗糙度及減輕反射率增加的目的。 With this design, the roughness of the rough surface 310 after the anti-reflection layer 500 is disposed is low. In addition, in different embodiments, the plurality of valleys 351 can also be defined by the rough curve 700 and the average line 710 described above, and designed with reference to the aspect ratio recommendations in the foregoing embodiments to achieve maintaining the roughness and The purpose of reducing the increase in reflectivity.
本發明已由上述相關實施例加以描述,然而上述實施例僅為實施本發明之範例。必需指出的是,已揭露之實施例並未限制本發明之範 圍。相反地,包含於申請專利範圍之精神及範圍之修改及均等設置均包含於本發明之範圍內。 The present invention has been described by the above related embodiments, but the above embodiments are merely examples for implementing the present invention. It must be noted that the disclosed embodiments do not limit the scope of the invention Around. On the contrary, modifications and equal settings included in the spirit and scope of the scope of patent application are all included in the scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106111246A TWI629497B (en) | 2017-03-31 | 2017-03-31 | Anti-reflection optical film |
CN201710305702.4A CN106873054B (en) | 2017-03-31 | 2017-05-03 | anti-reflection optical film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106111246A TWI629497B (en) | 2017-03-31 | 2017-03-31 | Anti-reflection optical film |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI629497B true TWI629497B (en) | 2018-07-11 |
TW201837498A TW201837498A (en) | 2018-10-16 |
Family
ID=59161295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106111246A TWI629497B (en) | 2017-03-31 | 2017-03-31 | Anti-reflection optical film |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106873054B (en) |
TW (1) | TWI629497B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107728237B (en) | 2017-06-30 | 2020-08-18 | 友达光电股份有限公司 | Anti-glare and anti-reflection element |
TWI679474B (en) * | 2018-10-23 | 2019-12-11 | 友達光電股份有限公司 | Anti-light leakage film assembly and display device using thereof |
TWI721767B (en) * | 2020-01-31 | 2021-03-11 | 友達光電股份有限公司 | Optical film and display module having the same |
TWI755283B (en) * | 2021-02-20 | 2022-02-11 | 住華科技股份有限公司 | Polarizer structure, manufacturing method and evaluation method of the same, and display device using the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090053486A1 (en) * | 2006-03-23 | 2009-02-26 | The Timken Company | Wear and corrosion resistant coating |
US20120113622A1 (en) * | 2009-06-02 | 2012-05-10 | Aronson Joseph T | Light redirecting film and display system incorporating same |
JP2013047749A (en) * | 2011-08-29 | 2013-03-07 | Dainippon Printing Co Ltd | Antiglare film, polarizer, and image display device |
TW201423167A (en) * | 2012-11-21 | 2014-06-16 | 3M Innovative Properties Co | Optical diffusing films and methods of making same |
JP2014115634A (en) * | 2012-12-06 | 2014-06-26 | Tatung Co | Antireflection substrate structure and manufacturing method thereof |
TW201513422A (en) * | 2013-07-26 | 2015-04-01 | Jx Nippon Oil & Energy Corp | Method for manufacturing substrate having textured structure |
US20160054477A1 (en) * | 2014-08-21 | 2016-02-25 | Tpk Touch Solutions (Xiamen) Inc. | Composite substrate structure and touch-sensitive device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5211506B2 (en) * | 2007-02-21 | 2013-06-12 | 王子ホールディングス株式会社 | Convex and concave pattern forming sheet and manufacturing method thereof, antireflection body, retardation plate and optical element manufacturing process sheet. |
JP4678437B2 (en) * | 2008-12-29 | 2011-04-27 | ソニー株式会社 | OPTICAL ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE |
JP4626721B1 (en) * | 2009-09-02 | 2011-02-09 | ソニー株式会社 | Transparent conductive electrode, touch panel, information input device, and display device |
JP6100684B2 (en) * | 2010-05-07 | 2017-03-22 | スリーエム イノベイティブ プロパティズ カンパニー | Anti-reflective film with microstructured surface |
US9946047B2 (en) * | 2014-03-04 | 2018-04-17 | Largan Precision Co., Ltd. | Annual optical spacer, image lens system, and mobile terminal |
-
2017
- 2017-03-31 TW TW106111246A patent/TWI629497B/en active
- 2017-05-03 CN CN201710305702.4A patent/CN106873054B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090053486A1 (en) * | 2006-03-23 | 2009-02-26 | The Timken Company | Wear and corrosion resistant coating |
US20120113622A1 (en) * | 2009-06-02 | 2012-05-10 | Aronson Joseph T | Light redirecting film and display system incorporating same |
JP2013047749A (en) * | 2011-08-29 | 2013-03-07 | Dainippon Printing Co Ltd | Antiglare film, polarizer, and image display device |
TW201423167A (en) * | 2012-11-21 | 2014-06-16 | 3M Innovative Properties Co | Optical diffusing films and methods of making same |
JP2014115634A (en) * | 2012-12-06 | 2014-06-26 | Tatung Co | Antireflection substrate structure and manufacturing method thereof |
TW201513422A (en) * | 2013-07-26 | 2015-04-01 | Jx Nippon Oil & Energy Corp | Method for manufacturing substrate having textured structure |
US20160054477A1 (en) * | 2014-08-21 | 2016-02-25 | Tpk Touch Solutions (Xiamen) Inc. | Composite substrate structure and touch-sensitive device |
Also Published As
Publication number | Publication date |
---|---|
CN106873054B (en) | 2019-05-10 |
TW201837498A (en) | 2018-10-16 |
CN106873054A (en) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI629497B (en) | Anti-reflection optical film | |
TWI581225B (en) | Display device | |
WO2017071404A1 (en) | Optical structure and manufacturing method thereof, display substrate and display device member | |
US20140071382A1 (en) | Textured light guide to reduce friction with film | |
WO2017177642A1 (en) | Curved surface display panel and display device | |
WO2016206261A1 (en) | Viewing angle enlarging film and wide viewing angle thin film transistor liquid crystal display device comprising the same | |
WO2015135378A1 (en) | Liquid crystal lens and display device | |
CN106646968B (en) | Display substrate, manufacturing method, liquid crystal display panel and liquid crystal display device | |
WO2015109739A1 (en) | Color film substrate and manufacturing method therefor, liquid crystal display screen and display device | |
TW201135409A (en) | Electronic device | |
WO2016197519A1 (en) | Viewing angle extending film and wide viewing angle thin film transistor liquid crystal display device comprising same | |
US8310615B2 (en) | Backlight module for preventing films from waving or curving | |
WO2017152514A1 (en) | Display panel and display device | |
JP2006208535A (en) | Liquid crystal display device | |
TW201928463A (en) | Optical film | |
WO2019148820A1 (en) | Optical structure, display device and manufacturing method for optical structure | |
TWI632401B (en) | Display device | |
CN112099117B (en) | Optical film and display module using same | |
TW201005328A (en) | Prism sheet with improved front brightness and viewing angle, back light unit having the prism sheet, and liquid crystal display device having the back light unit | |
KR102301713B1 (en) | Optical sheet for back light unit and manufacturing method thereof | |
US20240295673A1 (en) | Anti-glare layer and display device having the same | |
WO2020143460A1 (en) | Display module and display device | |
US11099431B2 (en) | Edge type backlight unit and display device including the same | |
US20130265523A1 (en) | Backlight Module and Liquid Crystal Display | |
TWI718007B (en) | Optical film and display |