TWI629357B - 跨物種特異性的PSMAxCD3雙特異性單鏈抗體 - Google Patents

跨物種特異性的PSMAxCD3雙特異性單鏈抗體 Download PDF

Info

Publication number
TWI629357B
TWI629357B TW098133577A TW98133577A TWI629357B TW I629357 B TWI629357 B TW I629357B TW 098133577 A TW098133577 A TW 098133577A TW 98133577 A TW98133577 A TW 98133577A TW I629357 B TWI629357 B TW I629357B
Authority
TW
Taiwan
Prior art keywords
cdr
identification number
sequence identification
sequence
bispecific single
Prior art date
Application number
TW098133577A
Other languages
English (en)
Other versions
TW201113374A (en
Inventor
馬帝斯 克林格
托比斯 勞姆
朵瑞斯 勞
蘇珊尼 曼古德
羅曼 契思確爾
雷夫 路特布斯
派翠克 霍夫曼
彼得 庫佛
艾芙琳 夏勒
蘇珊尼 休斯曼
卡羅拉 史堤格
格特拉 弗路爾
Original Assignee
安進研究(慕尼黑)有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安進研究(慕尼黑)有限責任公司 filed Critical 安進研究(慕尼黑)有限責任公司
Priority to TW098133577A priority Critical patent/TWI629357B/zh
Publication of TW201113374A publication Critical patent/TW201113374A/zh
Application granted granted Critical
Publication of TWI629357B publication Critical patent/TWI629357B/zh

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本發明係有關於一種雙特異性單鏈抗體分子,其包括一個可與人類及非黑猩猩靈長類CD3 ε鏈的表位結合之第一結合域,其中該表位係由序列辨識編號2、4、6與8所組成的群組所包含之胺基酸序列的一部份;及一個可與前列腺特異性膜抗原(PSMA)結合之第二結合域。本發明亦提供編碼該雙特異性單鏈抗體分子的核酸以及載體與宿主細胞,及用於其生產作用之一種方法。本發明進一步有關於包含該雙特異性單鏈抗體分子之藥物組成物,及該雙特異性單鏈抗體分子之醫療用途。

Description

跨物種特異性的PSMAxCD3雙特異性單鏈抗體
本發明係有關於一種雙特異性單鏈抗體分子,其包括一個可與人類及非黑猩猩靈長類CD3 ε鏈的表位結合之第一結合域,其中該表位係由序列辨識編號2、4、6與8所組成的群組所包含之胺基酸序列的一部份;及一個可與前列腺特異性膜抗原(PSMA)結合之第二結合域。本發明亦提供編碼該雙特異性單鏈抗體分子的核酸以及載體與宿主細胞,及用於其生產作用之一種方法。本發明進一步有關於包含該雙特異性單鏈抗體分子之藥物組成物,及該雙特異性單鏈抗體分子之醫療用途。
T細胞的辨識係藉由與肽MHC(pMHC)的肽負載分子交互作用之株落分佈型αβ與γδ T細胞受體(TcR)所媒介(Davis與Bjorkman於期刊“Nature”第334期(1988年)第395-402頁乙文)。TcR的抗原特異性鏈不具有訊號傳導域,而是與保留性多次單元訊號傳導器CD3偶合(Call於期刊“Cell”第111期(2002年)第967-979頁乙文、Alarcon於期刊“Immunol. Rev.”第191期(2003年)第38-46頁乙文、Malissen於期刊“Immunol. Rev.”第191期(2003年)第7-27頁乙文)。將TcR連接作用直接傳達至訊號傳導器之機制,仍然是T細胞生物學上的一個根本問題(上述引述文獻中的Alarcon乙文;Davis於期刊“Cell”第110期(2002年)第285-287頁乙文)。持續性T細胞反應似乎明顯地涉及共同受體接合作用、TcR寡聚作用及在免疫突觸中的TcR-pMHC複合體之高級排列(Davis與van der Merwe於期刊“Curr. Biol.”第11期(2001年)第R289-R291頁乙文、Davis於期刊“Nat. Immunol.”第4期(2003年)第217-224頁乙文)。然而,非常早期的TcR訊號傳導係在該等事件不存在時發生,而可能涉及配體所誘導的CD3ε構形變化(上述引述文獻中的Alarcon乙文、上述引述文獻中的Davis(2002年)乙文、Gil於期刊“J. Biol. Chem.”第276期(2001年)第11174-11179頁乙文、Gil於期刊“Cell”第109期(2002年)第901-912頁乙文)。訊號傳導複合體的ε、γ、δ和ζ次單元互相締合而形成CD3 ε-γ異型二聚體、CD3 ε-δ異型二聚體及CD3 ζ-ζ同型二聚體(上述引述文獻中的Call乙文)。不同的研究揭露,CD3分子攸關αβ TcR適當的細胞表面表現作用及正常的T細胞發育(Berkhout於期刊“J. Biol. Chem.”第263期(1988年)第8528-8536頁乙文、Wang於期刊“J. Exp. Med.”第188期(1998年)第1375-1380頁乙文、Kappes於期刊“Curr. Opin. Immunol.”第7期(1995年)第441-447頁乙文)。小鼠CD3 εγ異型二聚體的胞外域片段之溶液結構顯示,εγ次單元均為C2型Ig域,其等交互作用而形成不尋常的邊對邊二聚體構型(Sun於期刊“Cell”第105期(2001年)第913-923頁乙文)。雖然富含半胱胺酸的主幹似乎在驅使CD3二聚化方面扮演重要角色(上述引述文獻中的Su乙文、Borroto於期刊“J. Biol. Chem.”第273期(1998年)第12807-12816頁乙文),藉由CD3ε與CD3γ的細胞外域之交互作用對於該等蛋白質與TcR β的總成而言已經足夠(Manolios於期刊“Eur. J. Immunol.”第24期(1994年)第84-92頁乙文、Manolios與Li於期刊“Immunol. Cell Biol.”第73期(1995年)第532-536頁乙文)。儘管仍有爭議,但TcR的主要化學計量最可能包含一個αβ TcR、一個CD3 εγ異型二聚體、一個CD3 εδ異型二聚體及一個CD3 ζζ同型二聚體(上述引述文獻中的Call乙文)。鑒於人類CD3 εγ異型二聚體在免疫反應中所扮演的核心角色,最近已闡明該複合體與治療性抗體OKT3結合之晶體結構(Kjer-Nielsen於期刊“PNAS”第101期(2004年)第7675-7680頁乙文)。
數種治療策略係藉由標定TcR訊號傳導,特別是臨床上廣泛用於免疫抑制療法的抗人類CD3單株抗體(mAb),調節T細胞免疫性。CD3特異性小鼠mAb OKT3係第一個經許可用於人類的mAb(Sgro於期刊“Toxicology”第105期(1995年)第23-29),及在臨床上廣泛作為免疫抑制劑而用於移植手術(Chatenoud於期刊“Clin. Transplant”第7期(1993年)第422-430頁乙文、Chatenoud於期刊“Nat. Rev. Immunol.”第3期(2003年)第123-132頁乙文、Kumar於期刊“Transplant. Proc.”第30期(1998年)第1351-1352頁乙文)、第1型糖尿病(上述引述文獻中的Chatenoud乙文)及牛皮癬(Utset於期刊“J. Rheumatol.”第29期(2002年)第1907-1913頁乙文)。此外,抗CD3 mAb可引發部分的T細胞訊號傳導及株落無反應性(Smith於期刊“J. Exp. Med.”第185期(1997年)第1413-1422頁乙文)。在文獻中已述及OKT3係一種強效的T細胞有絲分裂促進劑(Van Wauve於期刊“J. Immunol.”第124期(1980年)第2708-18頁乙文)以及一種強效的T細胞殺手(Wong於期刊“Transplantation”第50期(1990年)第683-9頁乙文)。OKT3依時間依賴性方式展現該二種活性;在T細胞的早期活化作用之後導致細胞介素的釋出,進一步投予OKT3時則在稍後阻斷所有已知的T細胞功能。歸因於稍後對於T細胞功能之阻斷作用,OKT3得以廣泛應用在治療方法中作為免疫抑制劑,以減少或甚至消除對於同種異體移植組織之排斥。
OKT3最可能藉由阻斷在急性排斥中扮演主要角色之所有T細胞的功能,而逆轉對於同種異體移植組織之排斥作用。OKT3與人類T細胞膜中的CD3複合體反應及阻斷其功能,該CD3複合體係與T細胞的抗原辨識結構(TCR)締合及為訊號轉導作用所必需者。OKT3究竟與TCR/CD3次單元中之何者結合,已成為多項研究的主題。然而一些證據已指出OKT3對於TCR/CD3複合體的ε次單元具有特異性(Tunnacliffe於期刊“Int. Immunol.”第1期(1989年)第546-50頁乙文;Kjer-Nielsen於期刊“PNAS”第101期(2004年)第7675-7680頁乙文)。進一步的證據已顯示,OKT3與TCR/CD3複合體的結合作用需要該複合體的其他次單元之存在(Salmeron於期刊“J. Immunol.”第147期(1991年)第3047-52頁乙文)。
對CD3分子具特異性之其他所熟知的抗體係列於Tunnacliffe於期刊“Int. Immunol.”第1期(1989年)第546-50頁乙文。如上所述,該等CD3特異性抗體可引發不同的T細胞反應,諸如淋巴介質製造作用(Von Wussow於期刊“J. Immunol.”第127期(1981年)第1197頁乙文;Palacious於期刊“J. Immunol.”第128期(1982年)第337頁乙文)、增殖作用(Van Wauve於期刊“J. Immunol.”第124期(1980年)第2708-18頁乙文)及抑制型T細胞誘發作用(Kunicka於期刊“Lymphocyte Typing II”第1期(1986年)第223頁乙文)。亦即,依實驗條件而定,CD3特異性單株抗體可抑制或誘發細胞毒性(Leewenberg於期刊“J. Immunol.”第134(1985年)第3770頁乙文;Phillips於期刊“J. Immunol.”第136期(1986年)第1579頁乙文;Platsoucas於期刊“Proc. Natl. Acad. Sci. USA”第78期(1981年)第4500頁乙文;Itoh於期刊“Cell. Immunol.”第108期(1987年)第283-96頁乙文;Mentzer於期刊“J. Immunol.”第135期(1985年)第34頁乙文;Landegren於期刊“J. Exp. Med.”第155期(1982年)第1579頁乙文;Choi(2001年)於期刊“Eur. J. Immunol.”第31期第94-106頁乙文;Xu(2000年)於期刊“Cell Immunol.”第200期第16-26乙文;Kimball(1995年)於期刊“Transpl. Immunol.”第3期第212-221頁乙文)。
雖然已報導技藝中所述的眾多CD3抗體辨識CD3複合體之CD3 ε次單元,但其等中的大部分事實上係與構形表位結合,及因而僅辨識TCR之天然狀態下的CD3ε。構形表位的特徵在於存在兩個或更多個不連續的胺基酸殘基,該等胺基酸殘基在一級序列中是分開的,但當多肽折疊成天然蛋白/抗原時則齊聚於分子表面(Sela(1969年)於期刊“Science”第166期第1365頁乙文與Laver(1990年)於期刊“Cell”第61期第553-6頁乙文)。可將技藝中所述之CD3ε抗體所結合的構形表位分成二個群組。在主要的群組中,該表位係由二個CD3次單元所形成,例如CD3ε鏈與CD3γ或CD3δ鏈。例如,在數項研究中已發現,最廣泛使用的CD3ε單株抗體OKT3、WT31、UCHT1、7D6及Leu-4並不與經CD3-ε鏈單獨轉染的細胞結合。然而,該等抗體將經CD3ε加上CD3γ或CD3δ的組合雙重轉染之細胞染色(上述引述文獻中的Tunnacliffe乙文;Law於期刊“Int. Immunol.”第14期(2002年)第389-400頁乙文;Salmeron於期刊“J. Immunol.”第147期(1991年)第3047-52頁乙文;Coulie於期刊“Eur. J. Immunol.”第21期(1991年)第1703-9頁乙文)。在第二個較小的群組中,構形表位係在CD3ε次單元自身內部形成。該群組的一個成員例如mAb APA 1/1,係針對變性CD3ε而產生(Risueno於期刊“Blood”第106期(2005年)第601-8頁乙文)。綜合言之,技藝中所述之大部分CD3ε抗體辨識位於CD3的二個或多個次單元上之構形表位。形成該等表位的三維結構之不連續胺基酸殘基,可因此位於CD3ε次單元本身上,或者位於CD3ε次單元與其他CD3次單元例如CD3γ或CD3δ上。
另一個有關CD3抗體的問題,在於發現許多CD3抗體具有物種特異性。如同一般亦適用於其他任一單株抗體者,抗CD3單株抗體藉由對於其等標的分子之高度特異性辨識作用而發揮功用。其等僅辨識其標的CD3分子上的單一位點或表位。例如,對於CD3複合體具有特異性的單株抗體中,最廣泛使用及特徵分析最完整者為OKT-3。該抗體與黑猩猩CD3反應,但不與其他靈長類例如獼猴的CD3同源物或狗的CD3反應(Sandusky等人於期刊“J. Med. Primatol.”第15期(1986年)第441-451頁乙文)。類似地,WO 2005/118635或WO 2007/033230述及人類單株CD3ε抗體與人類CD3ε反應,但不與小鼠、大鼠、兔或非黑猩猩靈長類諸如恒河猴、食蟹猴、狒狒的CD3ε反應。抗CD3單株抗體UCHT-1亦與黑猩猩的CD3反應,但不與獼猴的CD3反應(自有資料)。另一方面,亦有辨識獼猴抗原但不辨識人類對應物之單株抗體實例。這群組的一實例為導向獼猴CD3之單株抗體FN-18(Uda等人於期刊“J. Med. Primatol.”第30期(2001年)第141-147頁乙文)。有趣地,已發現由於獼猴CD3抗原的多型性,來自約12%的食蟹猴之周邊淋巴細胞係缺乏與抗恒河猴CD3單株抗體(FN-18)的反應性。Uda等人述及相較於自具有FN-18抗體反應性之動物所衍生的CD3而言,不具有FN-18抗體反應性之食蟹猴的CD3序列中發生二個胺基酸的取代作用(Uda等人於期刊“J Med Primatol.”第32(2003年)第105-10頁乙文;Uda等人於期刊“J Med Primatol.”第33(2004年)第34-7頁乙文)。
不僅CD3單株抗體(與其片段)及亦為一般單株抗體所固有之辨別能力亦即物種特異性,係其等研發作為治療人類疾病的治療劑之顯著阻力。為了獲得核准上市,任何新的候選藥物必須通過嚴格的試驗。該試驗可再分為臨床前與臨床階段:進一步細分為通稱為臨床階段I、II及III之後者係以人類病患進行,而前者係以動物進行。臨床前測試之目的係證明候選藥物具有所欲活性,及最重要地是安全。唯當在臨床前試驗中證實候選藥物在動物中的安全性及可能的效用時,該候選藥物方可獲得相關主管機關核可進行人類臨床試驗。候選藥物依下列三種方式在動物中進行安全性試驗:(i)在相關物種亦即該候選藥物可辨識直系同源抗原的物種中,(ii)在含有人類抗原的基因轉殖動物中及(iii)藉由使用能與動物的直系同源抗原結合之候選藥物的替代物。基因轉殖動物之限制在於該技術通常侷限於囓齒動物。在囓齒動物與人之間存在顯著的生理差異,該安全性結果無法輕易地外推至人類。該候選藥物的替代物之限制在於物質組成與實際候選藥物不同,及所用的動物通常為具有上述限制的囓齒動物。因此,在囓齒動物中所得的臨床前數據,對於候選藥物之預測能力有限。進行安全性試驗之首選方法係使用相關物種,較佳為低等靈長類。技藝中所述適用於人體治療介入的單株抗體目前所面臨的限制,在於相關物種為高等靈長類,特別是黑猩猩。黑猩猩被認為是瀕臨絕種之物種,及歸因於其等的類人特性,在歐洲禁止使用該種動物進行藥物安全性試驗,而在其他地方亦受到嚴格限制。CD3亦已成功地作為雙特異性單鏈抗體之一標的,以將細胞毒性T細胞重新導向至病理細胞,而造成個別生物體內罹病細胞之減少(WO 99/54440;WO 04/106380)。例如,Bargou等人(於期刊“Science”第321期(2008年)第974-7頁乙文)最近報導一種稱作布納圖馬(blinatumomab)的CD19xCD3雙特異性抗體建構體之臨床活性,該抗體具有募集人類病患中的所有細胞毒性T細胞參與分解癌細胞之潛力。在非霍奇金氏(Hodgkin)淋巴瘤病患中,低至每天每平方公尺0.005毫克之劑量導致血液中標的細胞之消除。在0.015毫克的劑量水平首度觀察到部份及完全的腫瘤消退,及經0.06毫克的劑量水平治療之所有7名病患均體驗到腫瘤消退。布納圖馬(blinatumomab)亦導致自骨髓與肝清除腫瘤細胞。經由該研究確立雙特異性單鏈抗體形式在治療血球衍生癌症的治療效力概念之臨床證據,然而仍需要用於其他癌症類型療法之成功概念。
在美國,估計在2008年將有186,320名男性新診斷出患有前列腺癌及約28,660名男性死於該疾病。可取得之有關癌症死亡率的最新報導顯示,在2004年美國男性的前列腺癌總死亡率為每100,000人中有25人。在1980年代後期,前列腺特異性抗原(PSA)試驗之普遍採用,代表在前列腺癌管理方面之一項重大改進。該試驗測量血中PSA蛋白質的量,其在罹患前列腺癌的病患中通常會升高。美國食品藥物管理局於1986年核准PSA試驗用於監督追蹤罹患前列腺癌的病患,及於1994年又核准其作為該疾病的篩檢試驗。由於在美國普遍採用PSA試驗,目前診斷出之所有前列腺癌中約90%為早期階段,因而男性在診斷後存活較長的時間。然而,將需要二個進行中的臨床試驗亦即NCI-資助的前列腺、肺、結腸直腸與卵巢(PLCO)篩檢試驗及歐洲前列腺癌篩檢研究(ERSPC)之結果,以判定PSA篩檢是否確實拯救生命。在過去25年持續進行的臨床試驗已調查天然與合成化合物預防前列腺癌之效用。例如,納入近19,000名健康男性之前列腺癌預防試驗(PCPT)發現,核准用於治療一種非癌性前列腺肥大之良性前列腺增生(BPH)的一種藥物非那雄胺(finasteride),將發展成為前列腺癌之風險降低25%。另一試驗係研究超過35,000名男性之硒與維生素E預防癌症試驗(SELECT),以判定每日增補硒與維生素E是否可降低健康男性的前列腺癌發生率。其他前列腺癌預防試驗目前正評估多種維生素、維生素C與D、大豆、綠茶及番茄中所發現的一種天然化合物茄紅素之保護性潛力。在2005年發表的一項研究顯示,特定基因在60至80%之所分析的前列腺腫瘤中融合。該研究代表首度觀察到前列腺癌中之非隨機基因重排。該基因改變最終可作為一種生物標記以協助診斷及可能地治療該疾病。其他研究已顯示在第8染色體的特定區域之基因變化,可增加男性發生前列腺癌之風險。該等基因變化約佔白種男性所發生之前列腺癌中的25%。其等係第一個經驗證增加前列腺癌發生風險之基因變異,及可協助科學家更加瞭解該疾病的基因成因。進行中的研究亦檢視如何使用在病患血液中循環的蛋白質,以改進前列腺癌與其他癌症之診斷。科學家於2005年識別出病患之免疫系統因應前列腺腫瘤所產生的一個特異性蛋白群組。該等蛋白係一種自體抗體類型,能以高於90%的準確度檢測到血液試樣中所存在的前列腺癌細胞。當與PSA組合使用時,該等與其他血液蛋白最終可用於減少單獨以PSA試驗所獲得的偽陽性結果之數目,及因此減少每年由於偽陽性的PSA試驗結果所進行之眾多數目之不必要的前列腺生檢。
除了PSA之外,已識別出前列腺癌之其他數種標記,例如包括前列腺的六跨膜上皮抗原(STEAP)(Hubert等人於期刊“PNAS”第96期(1999年)第14523-14528頁乙文)、前列腺幹細胞抗原(PSCA)(Reiter等人於1998年期刊“Proc. Nat. Acad. Sci.”第95期1735-1740頁乙文)及前列腺特異性膜抗原(PSMA;PSM)(Israeli等人於期刊“Cancer Res.”第53期(1993)乙文)。PSMA最初係由單株抗體(MAb)7E11所界定,單株抗體(MAb)7E11係衍生自淋巴結前列腺腺癌(LNCaP)細胞系之部份純化型膜製劑的免疫作用(Horoszewicz等人於期刊“Anticancer Res.”第7期(1987年)第927-35頁乙文)。將編碼PSMA蛋白之一個2.65kb的cDNA片段選殖,之後定位至染色體11p11.2(上述引述文獻中之Israeli等人乙文;O’Keefe等人於期刊“Biochem. Biophys. Acta”第1443期(1998年)第113-127頁乙文)。PSMA之初始分析證明在前列腺分泌上皮細胞內之普遍的表現作用。免疫組織化學染色作用證明,在增生性與良性組織中PSMA係不表現至中等表現,而在惡性組織的染色強度最高(上述引述文獻中之Horoszewicz等人乙文)。後續的調查研究已重現該等結果,及證明PSMA表現作用係迄今所檢視的實際上每一個前列腺組織共有的特徵。該等報導進一步證明PSMA的表現作用隨著腫瘤侵犯性陡峭地呈比例增加(Burger等人於期刊“Int. J. Cancer”第100期(2002年)第228-237頁乙文;Chang等人於期刊“Cancer Res.”第59期(1999年)第3192-98頁乙文;Chang等人於期刊“Urology”第57(2001年)第1179-83頁乙文);Kawakami與Nakayama於期刊“Cancer Res.”第57期(1997年)第2321-24頁乙文;Liu等人於期刊“Cancer Res.”第57期(1997年)第3629-34頁乙文;Lopes等人於期刊“Cancer Res.”第50期(1990年)第6423-29頁乙文;Silver等人於期刊“Clin. Cancer Res.”第9期(2003年)第6357-62頁乙文;Sweat等人於期刊“Urology”第52期(1998年)第637-40頁乙文;Troyer等人於期刊“Int. J. Cancer”第62期(1995年)第552-558頁乙文;Wright等人於期刊“Urology”第48期(1996年)第326-334頁乙文)。與PSMA表現作用及腫瘤階段之間的相關性相符,PSMA水平之增加係與非雄性激素依賴型前列腺癌(PCa)相關聯。自前列腺癌病患的組織試樣分析已論證,PSMA水平在實際去勢或雄性激素去除療法之後升高。不同於前列腺特異性抗原的表現作用在雄性激素去除作用後之向下調控,PSMA表現作用在原發性與轉移性腫瘤試樣中均顯著增加(上述引述文獻中之Kawakami等人、Wright等人乙文)。與非雄性激素依賴型腫瘤中之增高的表現作用相符,亦知PSMA轉錄作用因類固醇而向下調控,及睪固酮的投藥作用媒介PSMA蛋白與mRNA水平之大幅減少(Israeli等人於期刊“Cancer Res.”第54期(1994年)第1807-11頁乙文;上述引述文獻中之Wright等人乙文)。PSMA在次發性前列腺腫瘤與潛隱型轉移性疾病中亦高度表現。免疫組織化學分析已揭露,相較於良性前列腺組織,位於淋巴結、骨、軟組織及肺的轉移性局部病灶內之PSMA表現作用較強與均一(上述引述文獻中之Chang等人(2001年)乙文;Murphy等人於期刊“Cancer”第78(1996年)第809-818頁乙文;上述引述文獻中之Sweat等人乙文)。一些報導亦已指出,在前列腺外組織包括近端腎小管的子集、小腸刷狀緣膜的一些細胞及結腸腺窩中的稀有細胞中,PSMA的表現作用有限(上述引述文獻中之Chang等人(1999年)、Horoszewicz等人、Isrseli等人(1994年)、Lopes等人、Troyer等人乙文)。然而,在該等組織中的PSMA水平,一般比前列腺中所觀察到者低2至3個數量級(Sokoloff等人於期刊“Prostate”第43期(2000年)第150-157頁乙文)。PSMA亦在所檢視的大部分實體癌之腫瘤相關新生血管中表現,然而在正常的血管內皮細胞中不表現(上述引述文獻中之Chang等人(1999年)、Liu等人、Silver等人乙文)。雖然PSMA在血管系統中的表現作用之顯著性仍屬未知,然而PSMA對於腫瘤相關內皮細胞之特異性,使其成為用於治療眾多形式的惡性症之一潛力標的。
雖然已多方努力試圖找出用於癌症治療方法之新穎標的,癌症仍為最常被診斷出之疾病。有鑑於此,仍然需要有效的癌症療法。
本發明提供一種雙特異性單鏈抗體分子,其包含一個可與人類及非黑猩猩靈長類CD3ε鏈的表位結合之第一結合域,其中該表位係由序列辨識編號2、4、6與8所組成的群組中所包含之胺基酸序列的一部份;及一個可與前列腺特異性膜抗原(PSMA)結合之第二結合域。
雖然技藝中所述之T細胞聯結型雙特異性單鏈抗體具有用於治療惡性疾病之極大的治療潛力,大部分的雙特異性分子之限制在於其等具物種特異性及僅辨識人類抗原,及由於基因相似性而可能辨識黑猩猩對應物。本發明的優點係提供了一種雙特異性單鏈抗體,其包含對於人類及非黑猩猩靈長類CD3ε鏈展現跨物種特異性之一結合域。
在本發明中,意外地辨識出CD3ε細胞外域之一個N端1至27個胺基酸殘基的多肽片段,其與技藝中所述之其他所有已知的CD3ε表位相反,當自CD3複合體的天然環境中取出時維持其三維結構完整性(及選擇性地融合至異源胺基酸序列諸如EpCAM或免疫球蛋白Fc部分)。本發明因此提供一種雙特異性單鏈抗體分子,其所包含的第一結合域可與人類及至少一種非黑猩猩靈長類CD3ε鏈之CD3ε(該CD3ε係例如自其天然環境中取出及/或由一個T細胞所包含(存在於其表面))細胞外域的一個N端1至27個胺基酸殘基多肽片段之表位結合,其中該表位係由序列辨識編號2、4、6及8所組成的群組中所包含之胺基酸序列的一部分;及所包含的第二結合域可與前列腺特異性膜抗原(PSMA)結合。較佳的非黑猩猩靈長類係在本說明書他處提及。至少一種(或其一選擇或全部)靈長類係特佳選自白鬢狨(Callithrix jacchus)、棉冠獠狨(Saguinus oedipus)、松鼠猴(Saimiris ciureus)及馬來猴(Macaca fascicularis)(序列辨識編號1047或1048或二者)。亦預期亦稱作恒河猴之恒河獼猴(Macaca mulatta)係另一種較佳的靈長類。因而預期本發明之抗體與人類及白鬢狨(Callithrix jacchus)、棉冠獠狨(Saguinus oedipus)、松鼠猴(Saimiri sciureus)及馬來猴(Macaca fascicularis)(序列辨識編號1047或1048或二者)之CD3ε細胞外域的一個N端1至27個胺基酸殘基多肽片段之鄰近序列無關性表位結合(可結合),及選擇性地亦與恒河獼猴(Macaca mulatta)結合。可製得(或藉由製得)或可依據所附實例(特別是第2例)所說明的操作程序製造包含如在此所界定的第一結合域之一種雙特異性單鏈抗體分子。就該方面而言,預期(a)以人類及/或松鼠猴(Saimiri sciureus)之CD3ε細胞外域的一個N端1至27個胺基酸殘基多肽片段使小鼠產生免疫;(b)產生一個免疫鼠抗體scFv庫;(c)藉由測試至少與序列辨識編號2、4、6及8結合的能力而辨識出CD3ε特異性結合子。
本發明所提供之CD3表位的鄰近序列無關性,係對應於CD3ε的頭27個N端胺基酸或該27個胺基酸段的功能片段。所用有關CD3表位的片語“鄰近序列無關性”,係指此述創新性結合分子/抗體分子之結合作用不導致抗原決定簇或表位周圍的構形、序列或結構的變化或修飾。相反地,習用CD3結合分子(如WO 99/54440或WO 04/106380中所揭露者)所辨識的CD3表位,係位於相對於鄰近序列無關性表位的N端1至27個胺基酸之CD3ε鏈的C端,其中當其被嵌入ε鏈的其餘部分及被ε鏈與CD3γ或δ鏈的異二聚化作用維持在正確空間位置時才具有正確構形。作為在此所提供的PSMAxCD3雙特異性單鏈分子的一部分及針對鄰近序列無關性CD3表位所產生(與導向)之抗CD3結合域,在T細胞重新分佈方面提供驚人的臨床改進,及因此提供更有利的安全性廓型。在不受限於理論之下,因為CD3表位具鄰近序列無關性,其形成自主性自給自足的亞域而對於CD3複合體的其餘部分並無太大影響,所以相較於辨識鄰近序列相關性CD3表位之習用CD3結合分子(如WO 99/54440或WO 04/106380中所提供的分子)而言,在此所提供的PSMAx CD3雙特異性單鏈分子誘發較少的CD3構形異位變化。
本發明PSMAxCD3雙特異性單鏈抗體的CD3結合域所辨識之CD3表位的鄰近序列無關性,在以本發明的PSMAxCD3雙特異性單鏈抗體治療之起始階段期間,所關聯發生的T細胞重新分佈(T細胞重新分佈即絕對T細胞計數先下降而後恢復之事件)較少或全無。其導致本發明的PSMAxCD3雙特異性單鏈抗體之安全性廓型,係優於技藝中所知之辨識鄰近序列相關性CD3表位的習用CD3結合分子。尤其,因為在以CD3結合分子治療的起始階段期間之T細胞重新分佈,係不良事件如CNS不良事件的一項主要風險因素,所以本發明的PSMAxCD3雙特異性單鏈抗體藉由辨識一個鄰近序列無關性而非一個鄰近序列相關性CD3表位,而具有顯著優於技藝中所知CD3結合分子的安全性優點。在以習用CD3結合分子治療的起始階段期間經歷與T細胞重新分佈相關的CNS不良事件之病患,通常患有精神混亂與定向力障礙,在一些情況下也患有小便失禁。精神混亂係精神狀態的改變,其中病患無法以他或她通常的清晰水準進行思考。病患通常難以集中精神,而思考不僅模糊不清晰,亦經常顯著變慢。在以習用CD3結合分子治療的起始階段期間經歷與T細胞重新分佈相關的CNS不良事件之病患,也可能罹患失憶。精神混亂經常導致辨識人、地點、時間或日期的能力喪失。感覺定向力障礙係在精神混亂中所常見者,及損及決策能力。在以習用CD3結合分子治療的起始階段期間與T細胞重新分佈相關之CNS不良事件,亦可進一步包括言語含糊及/或用字遣詞困難。該疾患可損及言語的表達與理解以及讀寫。在一些病患中,除了小便失禁之外,在以習用CD3結合分子治療的起始階段期間與T細胞重新分佈相關的CNS不良事件,亦可能伴隨眩暈與頭昏。
在所述CD3ε之具27個胺基酸的N端多肽片段內之三維結構的維持,可用於產生較佳為人類的結合域,其可在試管內與N端CD3ε多肽片段結合,及在活體內以相同的結合親和力與T細胞上的天然(其CD3ε的次單元)CD3複合體結合。該等數據強力地表明,此述N端片段所形成的三級構形係與其在活體內正常存在的結構相似。對於CD3ε的N端多肽片段之1至27個胺基酸的結構完整性之重要性,進行一項非常敏感的試驗。將CD3ε的N端多肽片段之1至27個胺基酸中的個別胺基酸改變為丙胺酸(丙胺酸掃描),以測試CD3ε的N端多肽片段之1至27個胺基酸對於輕微破壞的敏感性。使用身為本發明PSMAxCD3雙特異性單鏈抗體的一部分之CD3特異性結合域,以測試與CD3ε的N端多肽片段之1至27個胺基酸的丙胺酸突變體之結合作用(參見所附第5例)。在該片段的N端頂端之頭5個胺基酸殘基與在CD3ε的N端多肽片段之1至27個胺基酸的位置23與25的二個胺基酸之個別交換作用,對於抗體分子的結合作用而言具關鍵性。將包括殘基Q(位於位置1的穀胺醯胺)、D(位於位置2的天冬胺酸)、G(位於位置3的甘胺酸)、N(位於位置4的天冬醯胺)及E(位於位置5的麩胺酸)之位置1-5區域中的胺基酸殘基替換為丙胺酸,則破壞本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體與該片段的結合作用。而對於本發明至少一些之較佳為人類的PSMAxCD3雙特異性單鏈抗體而言,在所述片段C端的二個胺基酸殘基T(位於位置23的蘇胺酸)與I(位於位置25的異白胺酸),降低與本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體之結合能。
出乎意料地,已發現依此方式所分離之本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體不僅辨識人類CD3ε的N端片段,亦辨識各種靈長類CD3ε的對應同源片段,該等靈長類包括新世界猴(狨猿(Marmoset)、白鬢狨(Callithrix jacchus);棉冠獠狨(Saguinus oedipus);松鼠猴(Saimiri sciureus))及舊世界猴(亦稱作食蟹猴的馬來猴(Macaca fascicularis);或亦稱作恒河猴的恆河獼猴(Macaca mulatta))。因此,檢測到本發明之PSMAxCD3雙特異性單鏈抗體的多靈長類特異性。下列的序列分析確認人類與靈長類在CD3ε細胞外域之N端共有高度同源的序列段。
前述CD3ε的N端片段之胺基酸序列係示於序列辨識編號2(人類)、序列辨識編號4(白鬢狨(Callithrix jacchus));序列辨識編號6(棉冠獠狨(Saguinus oedipus));序列辨識編號8(松鼠猴(Saimiri sciureus));序列辨識編號1047 QDGNEEMGSITQTPYQVSISGTTILTC或序列辨識編號1048 QDGNEEMGSITQTPYQVSISGTTVILT(亦稱作食蟹猴的馬來猴(Macaca fascicularis))及序列辨識編號1049 QDGNEEMGSITQTPYHVSISGTTVILT(亦稱作恒河猴的恒河獼猴(Macaca mulatta))。
本發明之PSMAxCD3雙特異性單鏈抗體的第二結合域係與前列腺特異性膜抗原(PSMA)結合。該PSMAxCD3雙特異性單鏈抗體的第二結合域較佳與人類PSMA或一種非黑猩猩靈長類PSMA結合;其更佳與人類PSMA及一種非黑猩猩靈長類PSMA結合及因此具跨物種特異性;甚至更佳與人類PSMA及獼猴PSMA結合(及亦因此具跨物種特異性)。尤其,該獼猴PSMA較佳為食蟹猴PSMA及/或恒河猴PSMA。然而,在本發明的範圍中,未排除該第二結合域亦可與其他物種的PSMA同源物結合,諸如囓齒動物的PSMA同源物。
前列腺癌係男性第二常見的癌症。在美國,估計在2008年將有186,320名男性新診斷出患有前列腺癌及約28,660名男性死於該疾病。前列腺癌風險強烈地與年齡相關:非常少的病例發生在50歲以下的男性,及四分之三的病例發生在超過65歲的男性。最多數的病例係在70至74歲診斷出。目前,老年人口的成長率顯著高於總人口的成長率。預測在2025至2030年以前,60歲以上人口的成長將比總人口快3.5倍。估計在今後的半個世紀期間,全球老年人的比例將增加超過二倍,其意謂可預期未來診斷出的前列腺癌發生率將進一步增加。高度受限的PSMA表現作用及其在前列腺癌晚期階段與轉移性疾病中之向上調控作用以及其作為其他多種不同類型固態腫瘤之腫瘤血管系統的新抗原之角色,使得PSMA有資格成為用於抗體式癌症療法之具吸引力的標的抗原。如下列實例中所示,本發明之PSMAxCD3雙特異性單鏈抗體提供一種有利的工具,以殺滅表現PSMA的人類癌細胞如人類前列腺癌細胞系LNCaP所例示。此外,本發明之PSMAxCD3雙特異性單鏈抗體的細胞毒性活性,係高於技藝中所述抗體的細胞毒性活性。因本發明的PSMAxCD3雙特異性單鏈抗體之CD3與PSMA結合域較佳均具跨物種特異性,亦即與人類及非黑猩猩靈長類的抗原反應,其可在靈長類中用於臨床前評估該等結合域的安全性、活性及/或藥物動力學廓型,及以同一形式作為用於人類之藥物。
有利地,本發明亦提供PSMAxCD3雙特異性單鏈抗體,其所包含的第二結合域係與人類PSMA及及獼猴PSMA同源物亦即一種非黑猩猩靈長類的同源物均結合。在一個較佳的實施例中,該雙特異性單鏈抗體因此包含一個對於人類與非黑猩猩靈長類PSMA展現跨物種特異性之第二結合域。在該情況下,同一種雙特異性單鏈抗體分子可同時在靈長類中用於臨床前評估該等結合域的安全性、活性及/或藥物動力學廓型,及作為用於人類之藥物。換言之,該相同分子可用於動物的臨床前研究以及人類的臨床研究。相較於物種特異性替代物分子而言,其導致動物研究的結果係非常可比較,及其預測能力大幅增加。因本發明的PSMAxCD3雙特異性單鏈抗體之CD3與PSMA結合域均具有跨物種特異性,亦即與人類及非黑猩猩靈長類的抗原反應,其可在靈長類中用於臨床前評估該等結合域的安全性、活性及/或藥物動力學廓型,及以同一形式作為用於人類之藥物。在一個較佳的實施例中將瞭解,本發明之抗體的第一與第二結合域的跨物種特異性係一致的。
在本發明中已發現可能產生一種較佳為人類的PSMAxCD3雙特異性單鏈抗體,其中同一分子可用於臨床前動物試驗以及臨床研究,及甚至用於治療人類。其係歸因於意外地找到較佳為人類的PSMAxCD3雙特異性單鏈抗體,其除了分別與人類CD3ε與PSMA結合之外,(並且由於可能與黑猩猩對應物的基因相似性),亦與非黑猩猩靈長類包括新世界猴及舊世界猴之該抗原同系物結合。如下列實例所示,本發明之該較佳為人類的PSMAxCD3雙特異性單鏈抗體,可作為對抗包括但不限於癌症的各種疾病之治療劑。PSMAxCD3雙特異性單鏈抗體特別利於用在癌症療法,較佳為固態腫瘤,更佳為癌與前列腺癌。鑑於上述所言,建構用於在種系發生(與人類相距)較遠的物種中測試之一種PSMAxCD3雙特異性單鏈抗體替代物之需求消失。結果,預期在臨床測試以及後續上市許可與治療藥物投藥作用中投予人類之同一分子,可用於動物臨床前試驗中。在臨床前動物試驗及後續人類投藥作用中使用相同分子之能力,實質上消除或至少大幅減少在臨床前動物試驗中所獲得的資料對於人類病例的適用性有限之危險。簡言之,在動物中使用與實際投藥至人類之相同分子所獲得的臨床前安全性資料,大大地確保該數據對於人類相關情況的適用性。相反地,在使用替代物分子之習用方法中,該替代物分子必須在分子上適於臨床前安全性評估所用的動物試驗系統。因此,待用於治療人類之分子,事實上在序列上及亦可能在結構上有別於在藥物代謝動力學參數及/或生物活性的臨床前試驗中所用之替代物分子,結果在臨床前動物試驗中所獲得的數據在人類病例之適用性/可轉用性有限。使用替代物分子需要建構、生產、純化及特徵化分析一種全新的建構體。其導致製得該分子所需之額外開發費用與時間。總而言之,除了用於治療人類的實際藥物之外,需要另外開發替代物,藉此必須進行兩種分子的兩條開發線。因此,本發明展現此述跨物種特異性之較佳為人類的PSMAxCD3雙特異性單鏈抗體之一個主要優點,係在於同一分子可作為人類的治療劑及用於臨床前動物試驗中。
本發明之雙特異性單鏈抗體的該第一或第二結合域中之至少一者較佳為CDR接枝型、擬人化型或人類來源,如詳述於後。本發明之雙特異性單鏈抗體的第一與第二結合域中之二者較佳均為CDR-接枝型、擬人化型或人類來源。就本發明之較佳為人類的PSMAxCD3雙特異性單鏈抗體而言,在對於人類病患投予該分子時,在最大可能的程度上排除了針對該結合分子所產生的免疫反應。
本發明之較佳為人類的PSMAxCD3雙特異性單鏈抗體之另一個主要優點,在於其在各種靈長類的臨床前試驗中之適用性。候選藥物在動物體內的行為,理想地應預示該候選藥物投藥至人類時之預期行為。結果,自該臨床前試驗所獲得的數據,因此一般應對於人類病例具有高度的預測能力。然而,如最近自TGN1412(一種CD28單株抗體)的第I階段臨床試驗的悲劇結果所得知,候選藥物在靈長類物種與人類的作用可能不同:雖然該抗體在以食蟹猴進行的動物研究之臨床前試驗中並未或僅觀察到有限的不良效應,但是六名人類病患在投予該抗體之後出現多重器官衰竭(期刊“Lancet”第368期(2006年)第2206-7頁乙文)。該等嚴重、非所欲的負面事件之結果顯示,將臨床前試驗侷限於單種(靈長類)物種可能不夠。本發明之PSMAxCD3雙特異性單鏈抗體與一系列的新世界與舊世界猴結合之事實,可能有助於克服上述病例所面臨的問題。因此,本發明提供在開發與測試用於人類的治療藥物時,將物種的效應差異最小化之方式與方法。
使用本發明具跨種特異性之較佳為人類的PSMAxCD3雙特異性單鏈抗體,亦不再需要使試驗動物適應規劃投藥至人類的候選藥物,諸如創造基因轉殖動物。如本發明的用途與方法,展現跨物種特異性之本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體,能直接用於非黑猩猩靈長類的臨床前試驗,而不需對動物進行任何遺傳操作。如嫻熟技藝者所熟知,使試驗動物適應候選藥物之方法,使得在臨床前安全性測試中所獲得的結果由於動物的改變,而總具有對於人類的代表性與預測性較低之風險。例如,在基因轉殖動物中,轉殖基因所編碼的蛋白質通常非常過度表現。因此,所獲得之對抗該蛋白質抗原的抗體生物活性數據,對於該蛋白質在其中以顯著較低、較為生理水平表現之人類而言,其預測價值可能有限。
使用具跨物種特異性之本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體之另一優點,係在於避免身為瀕臨絕種物種的黑猩猩用於動物試驗之事實。黑猩猩與人類的親緣關係最近,及近來根據基因體序列數據被歸類為人科動物(Wildman等人於期刊“PNAS”第100期(2003年)第7181頁乙文)。因此,自黑猩猩所獲得的數據一般認為對於人類具有高度預測性。然而,由於其等被列為瀕臨絕種物種,可用於醫學實驗的黑猩猩數量受到高度限制。如上述,飼養黑猩猩用於動物試驗因此既昂貴又具有道德上的問題。使用本發明之較佳為人類的PSMAxCD3雙特異性單鏈抗體,在臨床前試驗期間避免道德上之異議與經濟負擔,而且不損及所獲得的動物試驗數據之品質,亦即適用性。有鑑於此,使用本發明之較佳為人類的PSMAxCD3雙特異性單鏈抗體,提供在黑猩猩進行研究之一種合理的替代方案。
本發明之較佳為人類的PSMAxCD3雙特異性單鏈抗體之又一優點,係在於當其作為動物臨床前測試的一部分時,例如在藥物動力學的動物研究期間,抽取多個血液試樣之能力。相較於較低等動物例如小鼠,非黑猩猩靈長類能夠更容易地抽取多個血液試樣。抽取多個血液試樣容許連續測試血液參數,以測定本發明之較佳為人類的PSMAxCD3雙特異性單鏈抗體所引發的生物效應。此外,抽取多個血液試樣,使研究人員能得以評估在此所界定之本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體之藥物動力學廓型。此外,可在該抗體投藥期間所抽取的不同血液試樣中,測量本發明之較佳為人類的PSMAxCD3雙特異性單鏈抗體可能引發之反映在血液參數的潛在副作用。其容許測定在此所界定之本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體之潛在毒性廓型。
如在此所界定之本發明展現跨物種特異性之較佳為人類的PSMAxCD3雙特異性單鏈抗體之優點,可簡單概括如下:第一,用於臨床前試驗之如在此所界定的本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體,係與用於治療人類者相同。因此,不再需要開發藥物動力學性質與生物活性可能不同之兩種獨立的分子。其係非常有利的,例如相較於習用的替代物方法,該藥物動力學結果更直接地轉移與應用到人類環境。
第二,使用如在此所界定之本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體製備人類治療劑,其成本與勞力密集程度係低於替代物方法。
第三,如在此所界定之本發明較佳為人類的PSMAxCD3雙特異性單鏈抗體不僅可用於一種靈長類物種的臨床前測試,亦可用於一系列不同的靈長類物種之臨床前測試,藉此限制靈長類與人類之間的潛在物種差異之風險。
第四,若為所欲者,可避免在動物試驗中使用瀕臨絕種物種黑猩猩。
第五,可抽取多個血液試樣,以進行詳盡的藥物動力學研究。
第六,由於如本發明的一個較佳實施例之較佳為人類的結合分子之人類來源,當投藥至人類病患時,將針對該結合分子所產生的免疫反應降至最低。而排除對於衍生自非人類物種例如小鼠的候選藥物具特異性之抗體所引發的免疫反應,及其所導致之針對鼠來源的治療分子之人抗小鼠抗體(HAMA)形成作用。
最後但非最不重要地,本發明的PSMAxCD3雙特異性單鏈抗體之治療用途,提供一種新穎與創新的癌症治療方法,該癌症較佳為固態腫瘤,更佳為癌與前列腺癌。如下列實例中所示,本發明的PSMAxCD3雙特異性單鏈抗體提供殺滅表現PSMA的人類前列腺癌細胞之一種有利的工具。此外,本發明之PSMAxCD3雙特異性單鏈抗體的細胞毒性活性,係高於技藝中所述抗體之活性。
如上述,本發明提供多肽,亦即雙特異性單鏈抗體,其包含可與人類及非黑猩猩靈長類CD3ε鏈的一個表位結合之第一結合域及可與PSMA結合之第二結合域。該第二結合域較佳與人類PSMA及一種非黑猩猩靈長類PSMA結合。符合本發明的較佳雙特異性單鏈抗體分子要求之雙特異性單鏈抗體分子候選藥物之優點,係該分子用於臨床前動物試驗以及臨床研究及甚至用於治療人類。在本發明具跨物種特異性的雙特異性單鏈抗體之一個較佳實施例中,與PSMA結合的第二結合域係源自人類。在如本發明具跨物種特異性的雙特異性分子中,與人類及非黑猩猩靈長類CD3ε鏈的表位結合之結合域係以VH-VL或VL-VH的順序位於該雙特異性分子的N端或C端。如本發明具跨物種特異性的雙特異性分子之處於第一與第二結合域中的不同VH與VL鏈排列形式之實例,係述於所附實例中。
如用於此之“雙特異性單鏈抗體”,係指包含二個結合域之單多肽鏈。各結合域包含一個來自抗體重鏈(“VH區域”)的可變區域,其中第一結合域的VH區域係與CD3ε分子特異性地結合,而第二結合域的VH區域係與PSMA特異性地結合。該二結合域選擇性地經由一個短多肽間隔區而互相連接。多肽間隔區的一個非限制性實例為甘胺酸-甘胺酸-甘胺酸-甘胺酸-絲胺酸(G-G-G-S)及其重複序列。各結合域可另外包括一個來自抗體輕鏈的可變區域(“VL區域”),在各個第一與第二結合域中之VH區域與VL區域,係經由一個多肽連接子例如EP 623679B1中所揭露與申請專利之類型而互相連接,但是在任何情況下係長至足以容許第一結合域的VH區域與VL區域及第二結合域的VH區域與VL區域互相配對,藉此其等一起可特異性地與各自的第一與第二結合域結合。
“蛋白質”一詞係技藝中所熟知,及係指生物化合物。蛋白質包含一個或多個胺基酸鏈(多肽),藉此胺基酸經由一個肽鍵而相互連接。如用於此之“多肽”一詞係指一群組的分子,其係由超過30個的胺基酸所組成。如本發明,多肽的群組包括“蛋白質”,前提在於該蛋白質係由單一多肽鏈所組成。與該定義相符,“多肽”一詞係指蛋白質片段,前提在於該等片段係由超過30個的胺基酸所組成。多肽可進一步形成多聚體例如二聚體、三聚體及更高級的寡聚體,亦即由一個以上的多肽分子所組成。形成該等二聚體、三聚體等的多肽分子可為相同或不同者。因此,該等多聚體對應的較高級結構,係稱作同型或異型二聚體、同型或異型三聚體等。異型多聚體的一實例為一種抗體分子,其天然存在的形式係由二個相同的多肽輕鏈與二個相同的多肽重鏈所組成。“多肽”與“蛋白質”等詞亦指天然修飾的多肽/蛋白質,其中該修飾作用係藉由例如後轉譯修飾作用如糖基化作用、乙醯化作用、磷酸化作用等達成。該等修飾作用係技藝中所熟知。
與本發明相關之“結合域”一詞,係說明以特異性方式與一特定標的結構/抗原/表位結合/交互作用之多肽的域。因此,該結合域係“抗原交互作用位點”。如本發明之“抗原交互作用位點”一詞,係定義為一個多肽的基序,其能以特異性方式與一特異性抗原或一特異性抗原群組例如不同物種中的相同抗原交互作用。該結合/交互作用亦理解為定義一種“特異性辨識作用”。如本發明之“特異性辨識”一詞,係指抗體分子能以特異性方式與抗原如在此所界定的人類CD3抗原之至少二個、較佳至少三個、更佳至少四個胺基酸交互作用及/或結合。該結合作用可藉由“鎖鑰原則”的特異性例示。因此,結合域胺基酸序列的特異性基序與抗原之互相結合,係由於其等的一級、二級或三級結構之結果,以及該結構的二級修飾作用之結果。該抗原相互作用位點與其特異性抗原之特異性交互作用,亦可造成該位點與抗原的簡單結合作用。此外,該結合域/抗原交互作用位點與其特異性抗原之特異性相互作用,可任擇地造成訊號的啟始,如由於引發抗原構形的變化、抗原的低聚化作用等。符合本發明結合域的一個較佳實例係一種抗體。該結合域可為一種單株或多株抗體,或衍生自一種單株或多株抗體。
“抗體”一詞包括仍然保持結合特異性的衍生物或其功能片段。生產抗體的技術係技藝中所熟知,及述於如冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於1988年出版之Harlow與Lane的“抗體,實驗室手冊(Antibodies,A Laboratory Manual)”乙書及冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於1999年出版之Harlow與Lane的“抗體之使用:實驗室手冊(Using Antibodies:A Laboratory Manual)”乙書。“抗體”一詞亦包括免疫球蛋白(Ig)的不同類別(亦即IgA、IgG、IgM、IgD及IgE)及亞類別(例如IgG1、1gG2等)。
“抗體”一詞的定義亦包括諸如嵌合、單鏈及擬人化抗體之實施例,以及抗體片段尤其如Fab片段。抗體片段或衍生物進一步包括F(ab')2、Fv、scFv片段或僅包含一個可變域的單域抗體、單可變域抗體或免疫球蛋白單可變域,該可變域可為VH或VL及以獨立於其他V區域或域之方式而特異性地與抗原或表位結合;如參見上述引述文獻中的“Harlow與Lane(1988年)和(1999年)”乙書。該免疫球蛋白的單可變域不僅包含一個獨立的抗體單可變域多肽,亦包含其中包括抗體單可變域多肽序列的一個或多個單體之較大型多肽。
技藝中已知可用於生產該等抗體及/或片段之各種程序。因此,該(抗體)衍生物亦可藉由模擬肽學產生。此外,用來生產單鏈抗體之技術(尤其參見第4,946,778號美國專利)可適於生產對所選定的多肽具特異性之單鏈抗體。同時,可使用基因轉殖動物以表現對本發明的多肽與融合蛋白具特異性之擬人化或人類抗體。為製備單株抗體,可使用藉由連續細胞系培養而產生與提供抗體之任何技術。該等技術的實例包括融合瘤技術(Kohler與Milstein於期刊“Nature”第256期(1975年)第495-497頁乙文)、三源融合瘤技術、人類B細胞融合瘤技術(Kozbor於期刊“Immunology Today”第4期(1983年)第72頁乙文)及生產人類單株抗體的EBV融合瘤技術(Alan R. Liss有限公司(1985年)出版之Cole等人的“單株抗體與癌症治療(Monoclonal Antibodies and Cancer Therapy)”乙書第77-96頁)。如用於BIAcore系統中之表面電漿子共振可用於提高噬菌體抗體的效率,該噬菌體抗體係與標的多肽諸如CD3ε或PSMA的一個表位結合(Schier於期刊“Human Antibodies Hybridomas”第7期(1996年)第97-105頁乙文;Malmborg於期刊“J. Immunol. Methods”第183期(1995年)第7-13頁乙文)。本發明的上下文中亦預見“抗體”一詞包括抗體建構體,其可如後述地在宿主中表現,例如可經由尤其是病毒或質體載體轉染及/或轉導之抗體建構體。
如本發明所用之“特異性交互作用”一詞,係指結合域並不與或不顯著地與多肽交叉反應,其中該多肽具有與結合域所結合者相似的結構,及其可能藉由與所探討的多肽相同之細胞表現。例如可藉由在習用條件下評估該組結合域的結合作用,而測試所研究之一組結合域的交叉反應性(如參見冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於1988年出版之Harlow與Lane的“抗體:實驗室手冊(Antibodies:A Laboratory Manual)”乙書及冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於1999年出版之Harlow與Lane的“抗體之使用:實驗室手冊(Using Antibodies:A Laboratory Manual)”乙書)。結合域與特異性抗原之特異性交互作用的實例,係包括配體對於其受體之特異性。該定義特別包括配體的交互作用,其在與其特異性受體結合之際誘發一訊號。該定義亦特別包含的交互作用實例,係抗原決定簇(表位)與抗體的結合域(抗原結合位點)之交互作用。
在此所用的“跨物種特異性”或“種間特異性”一詞,係指在此所述的結合域與人類及非黑猩猩靈長類中的相同標的分子之結合作用。因此,應瞭解“跨種特異性”或“種間特異性”係對於在不同物種中表現的相同分子“X”之種間反應性,而非對於X以外的一分子。辨識例如人類CD3ε的單株抗體對於非黑猩猩靈長類CD3ε例如獼猴CD3ε之跨物種特異性,例如可藉由FACS分析而測定。FACS分析之進行方式,係測試個別的單株抗體對於分別表現該人類與非黑猩猩靈長類CD3ε抗原之人類與非黑猩猩靈長類細胞如獼猴細胞之結合作用。一種適宜的分析方法係示於下列實施例中。上述事項準用於PSMA抗原:辨識如人類PSMA之一種單株抗體對於一種非黑猩猩靈長類PSMA如獼猴PSMA之跨物種特異性,例如可藉由FACS分析而測定。FACS分析之進行方式,係測試個別的單株抗體對於分別表現該人類與非黑猩猩靈長類PSMA抗原之人類與非黑猩猩靈長類細胞如獼猴細胞之結合作用。
如用於此之CD3ε係指以T細胞受體的一部分表現之一分子,及具有先前技術所典型賦予之意義。在人類中,其包括所有已知的CD3次單元,例如CD3ε、CD3δ、CD3γ、CD3ζ、CD3α及CD3β之個別或獨立組合形式。在此所提及之非黑猩猩靈長類、非人類CD3抗原例如為馬來猴(Macaca fascicularis)CD3與恆河獼猴(Macaca mulatta)CD3。在馬來猴(Macaca fascicularis)中,其包括CD3ε FN-18陰性與CD3ε FN-18陽性、CD3γ與CD3δ。在恆河獼猴(Macaca mulatta)中,其包括CD3ε、CD3γ與CD3δ。如用於此之CD3較佳為CD3ε。
人類CD3ε係示於基因庫(GenBank)登錄號NM_000733,及包含序列辨識編號1。人類CD3γ係示於基因庫(GenBank)登錄號NM_000073。人類CD3δ係示於基因庫(GenBank)登錄號NM_000732。
馬來猴(Macaca fascicularis)之CD3ε“FN-18陰性”(亦即由於上述所說明的多形性而不被單株抗體FN-18辨識之CD3ε)係示於基因庫(GenBank)登錄號AB073994。
馬來猴(Macaca fascicularis)之CD3ε“FN-18陽性”(亦即被單株抗體FN-18辨識之CD3ε)係示於基因庫(GenBank)登錄號AB073993。馬來猴(Macaca fascicularis)之CD3γ係示於基因庫(GenBank)登錄號AB073992。馬來猴(Macaca fascicularis)之CD3δ係示於基因庫(GenBank)登錄號AB073991。
恆河獼猴(Macaca mulatta)之CD3ε、γ及δ同源物的個別核酸序列與胺基酸序列,可藉由技藝中所述之重組技術進行鑑定與分離(冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版之Sambrook等人的“分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)”乙書第三版)。其準用於在此所界定之其他非黑猩猩靈長類的CD3ε、γ及δ同源物。白鬢狨(Callithrix jacchus)、松鼠猴(Saimiri sciureus)及棉冠獠狨(Saguinus oedipus)的胺基酸序列之鑑定,係述於所附實例中。白鬢狨(Callithrix jacchus)之CD3ε細胞外域的胺基酸序列係示於序列辨識編號3,棉冠獠狨(Saguinus oedipus)係示於序列辨識編號5,及松鼠猴(Saimiri sciureus)係示於序列辨識編號7。
人類PSMA係示於基因庫(GenBank)登錄號’AY 101595’。獼猴的PSMA同源物之選殖作用係說明於下列實例中,對應的cDNA與胺基酸序列係分別示於序列辨識編號385與386。
如同上述,“表位”一詞係定義一個抗原決定簇,上述所定義的結合域係以特異性方式與其結合/辨識。該結合域可以特異性方式與標的結構如人類與非黑猩猩靈長類的CD3ε鏈或人類PSMA之獨特的構形或連續表位結合/交互作用。多肽抗原的構形或不連續表位之特徵在於存在二或多個離散的胺基酸殘基,該等胺基酸殘基在一級序列中分開,但當多肽折疊成天然蛋白/抗原時則在分子表面聚集(Sela(1969年)於期刊“Science”第166期第1365頁乙文及Laver(1990年)於期刊“Cell”第61期第553-6頁乙文)。影響該表位之二或多個離散的胺基酸殘基,係存在於一或多個多肽鏈的分離部分。當多肽鏈折疊成三維結構以構成表位時,該等殘基在分子表面聚集。相反地,連續或線性表位係由二或多個離散的胺基酸殘基所組成,其中胺基酸殘基係存在於一個多肽鏈的一單線性段。在本發明中,“鄰近序列相關性”CD3表位係指該表位的構形。位於CD3ε鏈之該鄰近序列相關性表位,僅當其被嵌入ε鏈的其餘部分及被ε鏈與CD3γ或δ鏈的異二聚化作用維持在正確空間位置時,才具有正確構形。相反地,在此所提供的鄰近序列無關性CD3表位,係指CD3ε的N端1至27個胺基酸殘基多肽或其功能片段。當從CD3複合體中的天然環境取出時,該N端1至27個胺基酸殘基多肽或其功能片段維持其三維結構完整性與正確的構形。因此,作為CD3ε細胞外域的一部分之N端1至27個胺基酸殘基多肽或其功能片段之鄰近序列無關性,其所代表的一表位係與WO 2004/106380有關人類結合分子的一種製備方法中所述之CD3ε的表位完全不同。所用的該方法單獨表現重組CD3ε。該單獨表現的重組CD3ε之構形係不同於其天然形式的構形,亦即其中TCR/CD3複合體的CD3ε次單元係以作為與TCR/CD3複合體之CD3δ或CD3-γ次單元的非共價複合體的一部分之形式存在。當使用該單獨表現的重組CD3ε蛋白質作為自抗體庫選擇抗體之抗原時,自該庫識別出對於該抗原具特異性的抗體,雖然該庫不含有對於自身抗原/自體抗原具特異性之抗體。其係由於單獨表現的重組CD3-ε蛋白質不存在於活體內之事實;其並非一種自體抗原。因而,表現具該蛋白質特異性的抗體之B細胞亞群,仍未自活體內清除;從該等B細胞所建構的抗體庫,將含有對於單獨表現的重組CD3ε蛋白質具特異性之抗體的遺傳物質。
然而,因為鄰近序列無關性N端1至27個胺基酸殘基多肽或其功能片段係在其天然形式折疊之一表位,藉由以WO 04/106380所述方式為基礎之方法無法辨識如本發明的結合域。因此,在試驗中可證實,WO 04/106380所揭露之結合分子無法與CD3ε鏈的N端1至27個胺基酸殘基結合。因此,習用的抗CD3結合分子或抗CD3抗體分子(如WO 99/54440中所揭露者)與CD3ε鏈結合的位置,係比在此所提供的鄰近序列無關性N端1至27個胺基酸殘基多肽或功能片段更靠近C端。先前技術之抗體分子OKT3與UCHT-1亦對於第35至85個胺基酸殘基之間之TCR/CD3複合體的ε次單元具特異性,因此,該等抗體的表位亦距C端更近。此外,UCHT-1在第43至77個胺基酸殘基之間的區域與CD3ε鏈結合(Tunnacliffe於期刊“Int. Immunol.”第1期(1989年)第546-50頁乙文;Kjer-Nielsen於期刊“PNAS”第101期(2004年)第7675-7680頁乙文;Salmeron於期刊“J. Immunol.”第147期(1991年)第3047-52頁乙文)。因此,先前技術的抗CD3分子不結合亦不導向對抗在此所界定之鄰近序列無關性N端1至27個胺基酸殘基表位(或其功能片段)。尤其,現今技藝無法提供以特異性方式與鄰近序列無關性N端1至27個胺基酸殘基表位結合之具跨物種特異性亦即與人類及非黑猩猩靈長類CD3ε結合的抗CD3分子。
為生產包含於本發明的雙特異性單鏈抗體分子中之一種較佳為人類的結合域,可使用如同時與人類及非黑猩猩靈長類CD3ε(如獼猴CD3ε)結合之單株抗體,或同時與人類及非黑猩猩靈長類PSMA結合之單株抗體。
如用於此之“人類”與“男性”係指物種智人(Homo sapiens)。就此述建構體之醫學用途而言,將使用同樣的分子治療人類病患。
本發明之雙特異性單鏈抗體的該第一或第二結合域中之至少一者較佳為CDR接枝型、擬人化型或人類來源。本發明之雙特異性單鏈抗體的第一與第二結合域中之二者較佳均為CDR-接枝型、擬人化型或人類來源。
應瞭解如用於此之“人類”抗體一詞係指在此所界定之雙特異性單鏈抗體,其包括人類生殖系抗體譜中所包含之胺基酸序列。就此處定義之目的而言,若該雙特異性單鏈抗體係由該人類生殖系胺基酸序列所組成,亦即若所探討的雙特異性單鏈抗體之胺基酸序列係與所表現的人類生殖系胺基酸序列相同,則可因而被視為人類來源。在此所界定之雙特異性單鏈抗體亦可視為人類來源,若其係自不超過由於體細胞高度突變的印記所能預期之其(其等)親緣關係最近的人類生殖系序列所衍生之序列所組成。此外,眾多非人類哺乳類動物例如囓齒動物如小鼠與大鼠之抗體,包含VH CDR3胺基酸序列,其係可預期亦存在於所表現的人類抗體譜中。可預期存在於所表現的人類抗體譜中之人類或非人類來源的任一該等序列,就本發明的目的而言亦將視為“人類來源”。
如用於此之“擬人化型”、“擬人化”.“類似人類”等詞或其文法上相關的變體,係以可互換方式使用及指一種雙特異性單鏈抗體,其在至少一個結合域包含來自一種非人類抗體或其片段之至少一個互補性決定區(“CDR”)。擬人化方法例如述於WO 91/09968與第6,407,213號美國專利。就非限制性實例而言,該詞包括其中至少一個結合域的一個可變區域包含來自另一種非人類動物例如囓齒動物之單一CDR區域例如VH的第三CDR區域(CDRH3)之案例,以及包括其中一或二個可變區域在其等個別的第一、第二及第三CDR中之各者包含來自該非人類動物的CDR之案例。在雙特異性單鏈抗體的一個結合域之所有CDR均已被來自例如囓齒動物之其等的對應同等物置換之事件,通常稱作“CDR接枝”,及該詞係涵蓋於如用於此之“擬人化”一詞或或其文法上相關的變體中。“擬人化”一詞或其文法上相關的變體亦涵蓋其中除了第一及/或第二結合域之一個VH及/或VL內的一或多個CDR區域之置換作用之外,還進一步實行CDR之間的骨架(framework)(“FR”)區域內之至少一個單胺基酸殘基的突變作用(如取代作用)之案例,藉此在該/該等位置的胺基酸係對應於衍生置換作用所用的CDR區域之動物中之該/該等位置的胺基酸。如技藝中所知,通常在CDR接枝作用之後,在骨架區域進行該等個別的突變作用,以回復作為CDR供體之非人類抗體對於其標的分子之原有結合親和力。除了上述骨架區域中的胺基酸置換作用之外,“擬人化”一詞可進一步涵蓋將來自非人類動物的CDR區域中之胺基酸置換為來自人類抗體的一個對應CDR區域之胺基酸之置換作用。
應依下列方式理解如用於此之“同源物”或“同源性”一詞:蛋白質與DNA之同源性通常係以序列相似性為基礎而推斷,尤其在生物資訊學中。例如,一般而言,若二或多個基因具有高度相似的DNA序列,則其等可能為同源。但序列相似性可能源自不同的祖先:短序列可能剛好相似,及序列可能因為二者均被選擇與一特定蛋白質諸如一種轉錄因子結合而相似。該等序列係相似,但非同源。同源的序列區域亦稱作保留性區域。其不應與胺基酸序列中的保守性混淆,保守性係指在一特定位置的胺基酸已改變但該胺基酸的生理化學性質仍維持不變。同源序列有二種類型:直系同源與旁系同源。若同源序列因一個種化事件而分開,則其等為直系同源:當一個物種分歧成為二種不同物種時,在所形成物種中之單一基因的分歧複本即為直系同源。直系同源物或直系同源基因係在不同物種中之彼此相似的基因,因其等源自同一祖先。對於基因譜系的種系發生分析之結果,係二個相似基因為直系同源之最強力的證據。在一個進化枝內所發現的基因係直系同源,其等皆源自同一祖先。直系同源通常具有相同功能,但非總是如此。直系同源序列提供生物體的分類學分類研究上之有用資訊。可使用基因分歧模式,以追查生物體的親緣關係。親緣關係很近的二種生物體,可能在二個直系同源物之間展現非常相似的DNA序列。相反地,在演化上距離另一生物體較遠的一生物體,在所研究的直系同源物之序列中可能展現較大的分歧。若同源序列因一個基因複製事件而分開,則其等為旁系同源:若一生物體中之一基因因為複製而在同一基因體中佔有二個不同的位置,則該二複本為旁系同源。一組旁系同源的序列,係彼此互稱為旁系同源物。旁系同源物典型地具有相同或相似的功能,但有時並非如此:由於缺乏該複製基因的單一複本原本所面臨之天擇壓力,該複本可自由地進行突變及獲取新的功能。其中之一實例可在囓齒動物諸如大鼠與小鼠中發現。囓齒動物具有一對旁系同源的胰島素基因,雖然不清楚是否在功能上曾發生任何分歧。旁系同源基因通常屬同一物種,但其並非必然:例如,人類的血紅素基因與黑猩猩的肌紅素基因為旁系同源物。其係生物資訊學常見的一個問題:當不同物種的基因體經定序及發現同源基因時,無法立即推論該等基因具有相同或相似的功能,因其等可能為功能分歧之旁系同源物。
如用於此之“非黑猩猩靈長類”或“非黑猩靈長類”或其文法上的變體,係指黑猩猩亦即屬於黑猩猩屬的動物以外之任一靈長類動物(亦即非人類),及包括侏儒黑猩猩(Pan paniscus)與黑猩猩(Pan troglodytes),亦稱作Anthropopithecus troglodytesSimia satyrus。然而,將瞭解本發明的抗體可能亦能以其等的第一及/或第二結合域與該黑猩猩個別的表位/片段結合。若為所欲者,僅意圖避免以黑猩猩進行動物試驗。因而亦預期在另一實施例中,本發明的抗體亦以其等的第一及/或第二結合域與黑猩猩個別的表位結合。“靈長類”、“靈長類物種”、“多種靈長類”或其文法上的變體,係指分成原猴與類人猿二種亞目之真哺乳亞綱哺乳類動物目,其包括猿、猴及狐猴。特別地,如用於此之“靈長類”包括原猴亞目(Strepsirrhini)(非眼鏡猴的原猴),其包括狐猴型下目(Lemuriformes)(其本身包括鼠狐猴總科(Cheirogaleoidea)與狐猴總科(Lemuroidea))、指猴型下目(Chiromyiformes)(其本身包括指猴科(Daubentoniidae))及懶猴型下目(Lorisiformes)(其本身包括懶猴科(Lorisidae)與嬰猴科(Galagidae))。如用於此之“靈長類”亦包括簡鼻亞目(Haplorrhini),其包含跗猴型下目(Tarsiiformes)(其本身包括眼鏡猴科(Tarsiidae))、類人猿下目(Simiiformes)(其本身包括闊鼻小目(Platyrrhini)或新世界猴;及包括獼猴總科(Cercopithecidea)之狹鼻小目(Catarrhini)或舊世界猴)。
非黑猩猩靈長類物種在本發明的意涵內可理解為狐猴、眼鏡猴、長臂猿、狨猿(屬於捲尾猴科(Cebidae)的新世界猴)或舊世界猴(屬於獼猴總科(Cercopithecoidea))。
如用於此之“舊世界猴”包括屬於獼猴總科(Cercopithecoidea)的任何猴,其本身再分為以下各科:獼猴亞科(Cercopithecinae),其主要是非洲但亦包括亞洲與北非的多種獼猴屬;及疣猴亞科(Colobinae),其包括大部分的亞洲屬但亦包括非洲疣猴。
更詳細地,在獼猴亞科(Cercopithecinae)中,有利的非黑猩猩靈長類可來自長尾猴族(Cercopithecini),在短肢猴屬(Allenopithecus)內(艾倫氏沼澤猴(Allenopithecus nigroviridis));在侏長尾猴屬(Miopithecus)中(安哥拉侏長尾猴(Angolan Talapoin)、侏長尾猴屬talapoin(Miopithecus talapoin);Gabon Talapoin、侏長尾猴屬ogouensis(Miopithecus ogouensis));在赤猴屬(Erythrocebus)內(帕他斯氏赤猴(Erythrocebus patas));在綠猴屬(Chlorocebus)內(綠猴(Chlorocebus sabaceus);素領猴(Chlorocebus aethiops);貝爾山長尾黑顎猴(Chlorocebus djamdjamensis);坦塔羅斯綠猴(Chlorocebus tantalus);長尾黑顎猴(Chlorocebus pygerythrus);狗尾猴(Chlorocebus cynosuros));或在鬚猴屬(Cercopithecus)內(德賴斯(Dryas)鬚猴或薩洛哥(Salongo)猴、德賴斯長尾猴(Cercopithecus dryas);黛安娜鬚猴(Cercopithecus Diana);羅洛威鬚猴(Cercopithecus roloway);大斑鼻猴(Cercopithecus nictitans);藍猴(Cercopithecus mitis);銀猴(Cercopithecus doggetti);金猴(Cercopithecus kandti);賽克斯(Sykes)猴(Cercopithecus albogularis);摩那(Mona)猴(Cercopithecus mona);坎氏(Campbell)摩那猴(Cercopithecus campbelli);洛威(Lowe)氏摩那猴(Cercopithecus lowei);冠毛摩那猴(Cercopithecus pogonias);鄔氏(Wolf)摩那猴(Cercopithecus wolfi);丹氏(Dent)摩那猴(Cercopithecus denti);小斑鼻猴(Cercopithecus petaurista);白喉長尾猴、赤腹長尾猴(Cercopithecus erythrogaster);斯氏(Sclater)鬚猴(Cercopithecus sclateri);紅耳長尾猴(Cercopithecus erythrotis);髭長尾猴(Cercopithecus cephus);紅尾猴(Cercopithecus ascanius);霍氏(L'Hoest)猴(Cercopithecus lhoesti);普氏(Preuss)猴(Cercopithecus preussi);陽光長尾猴(Cercopithecus solatus);海氏(Hamlyn)猴或梟面猴(Cercopithecus hamlyni);迪氏(DeBrazza)猴(Cercopithecus neglectus))。
任擇地,有利的非黑猩猩靈長類亦存在於獼猴亞科(Cercopithecinae)中,但非狒狒族(Papionini)中,可來自獼猴屬(Macaca)內(巴巴利獼猴(Macaca sylvanus);獅尾獼猴(Macaca silenus);南方豬尾獼猴或豬尾猴(Macaca nemestrina);北方豬尾獼猴(Macaca leonina);巴蓋(Pagai)島獼猴或Bokkoi(Macaca pagensis);賽柏路特(Siberut)獼猴(Macaca siberu);摩爾獼猴(Macaca maura);靴獼猴(Macaca ochreata);通金獼猴(Macaca tonkeana);黑氏(Heck)獼猴(Macaca hecki);哥倫打洛(Gorontalo)獼猴(Macaca nighscens);西里伯斯(Celebes)冠毛獼猴或黑猴(Macaca nigra);食蟹猴或吃食螃蟹的獼猴或長尾獼猴或奇拉(Kera)獼猴(Macaca fascicularis);短尾獼猴或熊獼猴(Macaca arctoides);恒河獼猴(Macaca mulatta);臺灣岩獼猴(Macaca cyclopis);日本獼猴(Macaca fuscata);錫蘭獼猴(Macaca sinica);綺帽獼猴(Macaca radiata);巴巴利(Barbary)獼猴(Macaca sylvanmus);阿薩姆獼猴(Macaca assamensis);西藏獼猴或米恩-愛德華氏(Milne-Edwards)獼猴(Macaca thibetana);阿魯納查(Arunachal)獼猴或Munzala(Macaca munzala));在白瞼猴屬(Lophocebus)內(灰頰白瞼猴(Lophocebus albigena);白瞼猴屬albigena albigena(Lophocebus albigena albigena);白瞼猴屬albigena osmani(Lophocebus albigena osmani);約氏(Johnston)灰頰白瞼猴(Lophocebus albigena johnstoni);黑色冠毛白瞼猴(Lophocebus aterrimus);歐氏(Opdenbosch)白瞼猴(Lophocebus opdenboschi);高地白瞼猴(Lophocebus kipunji));在狒狒屬(Papio)內(長鬃狒狒(Papio hamadryas);幾內亞狒狒(Papio papio);東非狒狒(Papio anubis);黃狒狒(Papio cynocephalus);大狒狒(Papio ursinus));在獅尾狒屬(Theropithecus)內(獅尾狒(Theropithecus gelada));在白眉猴屬(Cercocebus)內(烏黑白眉猴(Cercocebus atys);白眉猴屬atysatys Cercocebus atys atys;白頸白眉猴(Cercocebus atys lunulatus);白領白眉猴(Cercocebus torquatus);敏白眉猴(Cercocebus agilis);金腹白眉猴(Cercocebus chrysogaster);塔那(Tana)河長尾猴(Cercocebus galeritus);猻氏(Sanje)白眉猴(Cercocebus sanjei));或在山魈屬(Mandrillus)內(彩面山魈(Mandrillus sphinx);黑臉山魈(Mandrillus leucophaeus))。
最佳為馬來猴(Macaca fascicularis)(亦稱作食蟹猴及因此在實例中以“食蟹猴(Cynomolgus)”稱之)及恆河獼猴(Macaca mulatta)(恒河猴及命名為“恒河猴”(“rhesus”))。
在疣猴亞科(Colobinae)中,有利的非黑猩猩靈長類可來自非洲群,在疣猴屬(Colobus)內(黑疣猴(Colobus satanas);安哥拉疣猴(Colobus angolensis);帝王疣猴(Colobus polykomos);熊疣猴(Colobus vellerosus);吼疣猴、東非黑白疣猴(Colobus guereza));在紅疣猴屬(Piliocolobus)內(西方紅疣猴(Piliocolobus badius);紅疣猴屬badius badius(Piliocolobus badius badius);譚氏(Temminck)西方紅疣猴(Piliocolobus badius temminckii);瓦頓氏(Waldron)紅疣猴(Piliocolobus badius waldronae);潘氏(Pennant)紅疣猴(Piliocolobus pennantii);紅疣猴屬pennantii pennantii(Piliocolobus pennantii pennantii);紅疣猴屬pennantii epieni(Piliocolobus pennantii epieni);紅疣猴屬(pennantii bouvieh Piliocolobus pennantii bouvieh);普氏(Preuss)紅疣猴(Piliocolobus preussi);頌氏(Thollon)紅疣猴(Piliocolobus tholloni);中非紅疣猴(Piliocolobus foai);紅疣猴屬foai foai(Piliocolobus foai foai);艾氏(Elliot)中非紅疣猴(Piliocolobus foai ellioti);奧氏(Oustalet)中非紅疣猴(Piliocolobus foai oustaleti);塞姆利基(Semliki)中非紅疣猴(Piliocolobus foai semlikiensis);紅疣猴屬foai parmentierorum(Piliocolobus foai parmentierorum);烏干達紅疣猴(Piliocolobus tephrosceles);烏贊瓦(Uzyngwa)紅疣猴(Piliocolobus gordonorum);桑给巴(Zanzibar)紅疣猴(Piliocolobus kirkii);塔那(Tana)河紅疣猴(Piliocolobus rufomitratus));或在綠疣猴屬(Procolobus)內(橄欖綠疣猴(Procolobus verus))。
在疣猴亞科(Colobinae)中,有利的非黑猩猩靈長類可選擇地來自葉猴(食葉猴)群,在長尾葉猴屬(Semnopithecus)內(尼泊爾灰葉猴(喜山長尾葉猴(Semnopithecus schistaceus));喀什米爾灰葉猴(Semnopithecus ajax);德賴(Tarai)灰葉猴(Semnopithecus hector);北方平原灰葉猴(Semnopithecus entellus);黑腳灰葉猴(Semnopithecus hypoleucos);南方平原灰葉猴(Semnopithecus dussumieri);毛冠灰葉猴(Semnopithecus priam));在紫面葉猴(T. vetulus)群或烏葉猴屬(Trachypithecus)內(紫面葉猴(Trachypithecus vetulus);尼爾基里(Nilgiri)葉猴(Trachypithecus johnii));在烏葉猴屬(Trachypithecus)的銀葉猴(T. cristatus)群中(爪哇烏葉猴(Trachypithecus auratus);銀色食葉猴或銀色烏葉猴(Trachypithecus cristatus);印度支那烏葉猴(Trachypithecus germaini);頓遜(Tenasserim)烏葉猴、巴氏(Barbe)烏葉猴(Trachypithecus barbei));在烏葉猴屬(Trachypithecus)的眼鏡烏葉猴(T. obscurus)群中(暗色食葉猴或眼鏡葉猴(Trachypithecus obscurus);菲氏(Phayre)葉猴(Trachypithecus phayrei));在烏葉猴屬(Trachypithecus)的冠葉猴(T. pileatus)群中(冠葉猴(Trachypithecus pileatus);邵氏(Shortridge)葉猴(Trachypithecus shortridgei);吉氏(Gee)黃冠葉猴(Trachypithecus geei));在烏葉猴屬(Trachypithecus)的弗氏(Francois)黑葉猴(T. francoisi)群中(弗氏(Francois)黑葉猴(Trachypithecus francoisi);河静(Hatinh)葉猴(Trachypithecus hatinhensis);白頭葉猴(Trachypithecus poliocephalus);老撾(Laotian)葉猴(Trachypithecus laotum);戴氏(Delacour)葉猴(Trachypithecus delacouri);印度支那黑色葉猴(Trachypithecus ebenus));或在葉猴屬(Presbytis)內(蘇門答臘葉猴、黑脊葉猴(Presbytis melalophos);斑紋葉猴(Presbytis femoralis);沙勞越葉猴(Presbytis chrysomelas);白腿葉猴(Presbytis siamensis);白額葉猴(Presbytis frontata);爪哇葉猴(Presbytis comata);湯氏(Thomas)葉猴(Presbytis thomasi);何氏(Hose)葉猴(Presbytis hosei);紅葉猴(Presbytis rubicunda);門塔威(Mentawai)葉猴或裘加(Joja)葉猴、白頰葉猴(Presbytis potenziani);納土納(Natuna)島葉猴(Presbytis natunae))。
在疣猴亞科(Colobinae)中,有利的非黑猩猩靈長類可任擇地來自怪鼻猴群,在海南葉猴屬(Pygathrix)內(紅腿海南葉猴(Pygathrix nemaeus);黑腿海南葉猴(Pygathrix nigripes);灰腿海南葉猴(Pygathrix cinerea));在獅鼻猴屬(Rhinopithecus)內(金色獅鼻猴、川金絲猴(Rhinopithecus roxellana);黑色獅鼻猴、滇金絲猴(Rhinopithecus bieti);灰色獅鼻猴、黔金絲猴(Rhinopithecus brelichi);越南獅鼻葉猴、越南金絲猴(Rhinopithecus avunculus));在長鼻猴屬(Nasalis)內(長鼻猴(Nasalis larvatus));或在豬尾葉猴屬(Simias)內(豬尾葉猴(Simias concolor))。
如用於此之“狨猿”一詞係指狨屬(Callithrix)的任何新世界猴,例如屬於狨亞屬Callithrix(原文如此)的大西洋狨猿(常見狨猿、狨(Callithrix(Callithrix)jacchus);黑耳狨(Callithrix(Callithrix)penicillata);維氏(Wied)狨(Callithrix(Callithrix)kuhlii);白頭狨(Callithrix(Callithrix)geoffroyi);黃頭狨(Callithrix(Callithrix)flaviceps);白耳狨(Callithrix(Callithrix)aurita));屬於黑尾毛狨(Mico)亞屬的亞馬遜狨猿(里約阿卡里(Rio Acari)狨(Callithrix(Mico)acariensis);馬尼可(Manicore)狨(Callithrix(Mico)manicorensis);銀狨(Callithrix(Mico)argentata);白狨(Callithrix(Mico)leucippe);艾氏(Emilia)狨(Callithrix(Mico)emiliae);黑頭狨(Callithrix(Mico)nigriceps)馬氏(Marca)狨(Callithrix(Mico)marcai);黑尾狨(Callithrix(Mico)melanura);雅馬遜狨、白肩狨(Callithrix(Mico)humeralifera);莫氏(Maues)狨(Callithrix(Mico)mauesi);金白色狨、黃肢狨(Callithrix(Mico)chrysoleuca);賀氏(Hershkovitz)狨(Callithrix(Mico)intermedia);賽氏(Satere)狨(Callithrix(Mico)saterei));屬於倭狨(Callibella)亞屬的盧氏(Roosmalens)倭狨(Callithrix(Callibella)humilis);或屬於倭狨亞屬(Cebuella)的侏儒狨(Callithrix(Cebuella)pygmaea)。
其他屬的新世界猴包括獠狨屬(Saguinus)的獠狨(包括棉冠獠狨(S. oedipus)群、赤掌獠狨(S. midas)群、黑腳獠狨(S. nigricollis)群、白鬚獠狨(S. mystax)群、雙色獠狨(S. bicolor)群及斑面獠狨(S. inustus)群)以及松鼠猴屬(Saimiri)的松鼠猴(例如松鼠猴(Saimiri sciureus)、紅背松鼠猴(Saimiri oerstedii)、馬河松鼠猴(Saimiri ustus)、亞馬遜松鼠猴(Saimiri boliviensis)、黑松鼠猴(Saimiri vanzolini))。
在本發明的雙特異性單鏈抗體分子之一個較佳的實施例中,非黑猩猩靈長類係一種舊世界猴。在該多肽的一個更佳實施例中,該舊世界猴係狒狒屬(Papio)與獼猴屬的猴。獼猴屬的猴最佳為阿薩姆(Assamese)獼猴(Macaca assamensis)、巴巴利(Barbary)獼猴(Macaca sylvanus)、綺帽獼猴(Macaca radiata)、靴獼猴或蘇拉威西(Sulawesi)靴獼猴(Macaca ochreata)、蘇拉威西冠毛獼猴(Macaca nigra)、臺灣岩獼猴(Macaca cyclopis)、日本雪獼猴或日本獼猴(Macaca fuscata)、食蟹猴或食蟹獼猴或長尾獼猴或爪哇獼猴(Macaca fascicularis)、獅尾獼猴(Macaca silenus)、豬尾獼猴(Macaca nemestrina)、恒河獼猴(Macaca mulatta)、西藏獼猴(Macaca thibetana)、通金獼猴(Macaca tonkeana)、錫蘭獼猴(Macaca sinica)、短尾獼猴或紅臉獼猴或熊猴(Macaca arctoides)或摩爾(Moor)獼猴(Macaca maurus)。狒狒屬(Papio)的猴子最佳為長鬃狒狒(Papio hamadryas)、幾內亞狒狒(Papio papio)、東非狒狒(Papio anubis)、黃狒狒(Papio cynocephalus)、大狒狒(Papio ursinus)。
在本發明的雙特異性單鏈抗體分子之一個任擇地較佳實施例中,非黑猩猩靈長類係一種新世界猴。在該多肽之一個更佳的實施例中,該新世界猴係狨屬(Callithrix)(狨猿)、獠狨屬(Saguinus)或松鼠猴屬(Saimiri)的猴。狨屬的猴最佳為白鬢狨(Callithrix jacchus),獠狨屬的猴為棉冠獠狨(Saguinus oedipus),及松鼠猴屬的猴為松鼠猴(Saimiri sciureus)。
如用於此之“細胞表面抗原”一詞,係指在細胞表面所展現的一個分子。在大部分的情況下,該分子將位於細胞的質膜內或質膜上,藉此該分子的至少一部分在三級形式上保持從細胞外的可接近性。位於質膜內的細胞表面分子之一個非限制性的實例為跨膜蛋白,其在三級構形中包含親水性與疏水性區域。在此,至少一個疏水性區域容許細胞表面分子嵌入或插入細胞的疏水性質膜,而親水性區域分別在質膜的任一側延伸進入細胞質與細胞外空間。位於質膜上的細胞表面分子之非限制性實例,係在半胱胺酸殘基被修飾而帶有棕櫚醯基之蛋白質、在C端半胱胺酸殘基被修飾而帶有法呢基(farnesyl)之蛋白質或在C端被修飾而帶有糖基磷脂醯肌醇(“GPI”)錨之蛋白質。該等基團容許蛋白質與細胞質膜的外表面共價連接,在該處其等維持供諸如抗體的細胞外分子辨識之可接近性。細胞表面抗原的實例為CD3ε與PSMA。如上述,PSMA係一種細胞表面抗原,其係包括但不限於固態腫瘤及較佳為癌與前列腺癌之癌症治療標的。
有鑑於此,PSMA亦可表徵為一種腫瘤抗原。如用於此之“腫瘤抗原”一詞,可理解為腫瘤細胞所呈現的該等抗原。可在細胞表面上呈現該等抗原,該細胞具有通常與該分子的跨膜與胞質部分結合之一細胞外部分。有時僅腫瘤細胞可呈現該等抗原,而正常細胞從未呈現。腫瘤抗原可單單表現在腫瘤細胞上,或相較於正常細胞而言可能代表一種腫瘤特異性突變。在該情況下,其等稱作腫瘤特異性抗原。呈現於腫瘤細胞與正常細胞之抗原係更常見者,及其等稱作腫瘤相關性抗原。相較於正常細胞而言,在腫瘤細胞中,該等腫瘤相關性抗原可過度表現,或由於腫瘤組織結構相較於正常組織而言較不密實而易於進行抗體結合作用。依據本發明之一種腫瘤抗原實例為PSMA。
如上述,本發明的雙特異性單鏈抗體分子以第一結合域與人類及非黑猩猩靈長類CD3ε鏈的表位結合,其中該表位係由序列辨識編號2、4、6或8或其功能片段所示的27個胺基酸殘基所組成的群組中所包括之一胺基酸序列的一部分。依據本發明,對於本發明的雙特異性單鏈抗體分子而言,該表位較佳為包含26、25、24、23、22、21、20、19、18、17、16、15、14、13、12、11、10、9、8、7、6或5個胺基酸之一胺基酸序列的一部分。
更佳地,其中該表位至少包含麩醯胺-天冬胺酸-甘胺酸-天冬醯胺-麩胺酸(Q-D-G-N-E-D)之胺基酸序列。
在本發明中,“N端1至27個胺基酸殘基之功能片段”係指該功能片段仍為一個鄰近序列無關性表位,其自CD3複合體的天然環境中被取出時維持其三維結構完整性(及與如第3.1例所示之一種異源胺基酸序列諸如EpCAM或免疫球蛋白Fc部分融合)。在CD3ε之具27個胺基酸的N端多肽或其功能片段內維持三維結構,可用於產生結合域,該結合域可在試管內與N端CD3ε多肽片段結合,及在活體內以相同的結合親和力與T細胞上的天然(其CD3ε的次單元)CD3複合體結合。在本發明中,N端1至27個胺基酸殘基的功能片段,係指在此所提供的CD3結合域仍能以鄰近序列無關性方式與該功能片段結合。嫻熟技藝者知悉用於確定該抗CD3結合域係辨識一表位中的何種胺基酸殘基之表位定位方法(如丙胺酸掃描;見所附實例)。
在本發明的一實施例中,本發明的雙特異性單鏈抗體分子包含可與人類及非黑猩猩靈長類CD3ε鏈的表位結合之一個(第一)結合域及可與細胞表面抗原PSMA結合之一個第二結合域。
在本發明中,第二結合域更佳與人類細胞表面抗原PSMA及/或一種非黑猩猩靈長類PSMA結合。第二結合域特佳與人類細胞表面抗原PSMA及/或較佳為一種獼猴PSMA之一種非黑猩猩靈長類PSMA結合。應瞭解第二結合域與至少一種非黑猩猩靈長類PSMA結合,然而其亦可與二種、三種或更多種非黑猩猩靈長類PSMA同源物結合。例如,第二結合域可與食蟹猴PSMA及與恒河猴PSMA結合。
本發明包括此述的所有方法、用途、套組等,亦有關於第二結合域本身(亦即並非在一種雙特異性單鏈抗體的鄰近序列中)。“其本身”進一步包括此述雙特異性單鏈抗體以外的抗體形式,例如抗體片段(包含該第二域)、擬人化抗體、包含第二域的融合蛋白等。本發明的雙特異性單鏈抗體以外之抗體形式亦如上所述。
為了生產本發明之雙特異性單鏈抗體分子如在此所界定的雙特異性單鏈抗體之第二結合域,可使用與個別的人類及/或非黑猩猩靈長類細胞表面抗原二者均結合之單株抗體。如在此所界定的雙特異性多肽之適用的結合域,可藉由技藝中所述的重組方法自跨物種特異性單株抗體衍生。與人類細胞表面抗原及與非黑猩猩靈長類中的該細胞表面抗原同源物結合之單株抗體,可藉由上述FACS分析進行試驗。嫻熟技藝者明瞭,亦可藉由文獻(Kohler與Milstein於期刊“Nature”第256期(1975年)第495-7頁乙文)中所述的融合瘤技術,產生跨物種特異性抗體。例如,小鼠可任擇地以人類與非黑猩猩靈長類細胞表面抗原諸如PSMA進行免疫接種。自該等小鼠,經由融合瘤技術分離產生跨物種特異性抗體的融合瘤細胞,及藉由上述的FACS分析之。雙特異性多肽諸如此述展現跨物種特異性的雙特異性單鏈抗體之產生與分析,係示於下列實例中。展現跨物種特異性的雙特異性單鏈抗體之優點,包括在此所列舉之各點。
就本發明的雙特異性單鏈抗體分子而言,可與人類及非黑猩猩靈長類CD3ε鏈的一表位結合之第一結合域特佳包含一個VL區域,其包括選自下列之CDR-L1、CDR-L2及CDR-L3:
(a)如序列辨識編號27所示之CDR-L1,如序列辨識編號28所示之CDR-L2,及如序列辨識編號29所示之CDR-L3;
(b)如序列辨識編號117所示之CDR-L1,如序列辨識編號118所示CDR-L2,及如序列辨識編號119所示之CDR-L3;及
(c)如序列辨識編號153所示之CDR-L1,如序列辨識編號154所示CDR-L2,及如序列辨識編號155所示之CDR-L3。
依據技藝中所理解之可變區域,亦即可變輕鏈(“L”或“VL”)與可變重鏈(“H”或“VH”),係提供一抗體之結合域。該可變區域包含互補性決定區。如技藝中眾所周知,“互補性決定區”(CDR)一詞係指一抗體的抗原特異性。“CDR-L”或“L CDR”或“LCDR”係指VL中的CDR,而“CDR-H”或“H CDR”或“HCDR”係指VH中的CDR。
在本發明之雙特異性單鏈抗體分子之一個任擇的較佳實施例中,可與人類及非黑猩猩靈長類CD3ε鏈的一表位結合之第一結合域特佳包含一個VH區域,其包括選自下列之CDR-H1、CDR-H2及CDR-H3:
(a)如序列辨識編號12所示之CDR-H1,如序列辨識編號13所示CDR-H2,及如序列辨識編號14所示之CDR-H3;
(b)如序列辨識編號30所示之CDR-H1,如序列辨識編號31所示CDR-H2,及如序列辨識編號32所示之CDR-H3;
(c)如序列辨識編號48所示之CDR-H1,如序列辨識編號49所示CDR-H2,及如序列辨識編號50所示之CDR-H3;
(d)如序列辨識編號66所示之CDR-H1,如序列辨識編號67所示CDR-H2,及如序列辨識編號68所示之CDR-H3;
(e)如序列辨識編號84所示之CDR-H1,如序列辨識編號85所示CDR-H2,及如序列辨識編號86所示之CDR-H3;
(f)如序列辨識編號102所示之CDR-H1,如序列辨識編號103所示CDR-H2,及如序列辨識編號104所示之CDR-H3;
(g)如序列辨識編號120所示之CDR-H1,如序列辨識編號121所示CDR-H2,及如序列辨識編號122所示之CDR-H3;
(h)如序列辨識編號138所示之CDR-H1,如序列辨識編號139所示CDR-H2,及如序列辨識編號140所示之CDR-H3;
(i)如序列辨識編號156所示之CDR-H1,如序列辨識編號157所示CDR-H2,及如序列辨識編號158所示之CDR-H3;及
(j)如序列辨識編號174所示之CDR-H1,如序列辨識編號175所示CDR-H2,及如序列辨識編號176所示之CDR-H3。
可與人類及非黑猩猩靈長類CD3ε鏈的一表位結合之第一結合域又較佳包含一個VL區域,其係選自由序列辨識編號35、39、125、129、161或165所示之VL區域所組成之群組。
可與人類及非黑猩猩靈長類CD3ε鏈的一表位結合之第一結合域任擇較佳地包含一個VH區域,其係選自由序列辨識編號15、19、33、37、51、55、69、73、87、91、105、109、123、127、141、145、159、163、177或181所示之VH區域所組成之群組。
本發明的雙特異性單鏈抗體分子之特徵,更佳在於可與人類及非黑猩猩靈長類CD3ε鏈的一表位結合之第一結合域,其包含選自由下列所組成的群組中之一個VL區域與一個VH區域:
(a)如序列辨識編號17或21所示之一個VL區域,及如序列辨識編號15或19所示之一個VH區域;
(b)如序列辨識編號35或39所示之一個VL區域,及如序列辨識編號33或37所示之一個VH區域;
(c)如序列辨識編號53或57所示之一個VL區域,及如序列辨識編號51或55所示之一個VH區域;
(d)如序列辨識編號71或75所示之一個VL區域,及如序列辨識編號69或73所示之一個VH區域;
(e)如序列辨識編號89或93所示之一個VL區域,及如序列辨識編號87或91所示之一個VH區域;
(f)如序列辨識編號107或111所示之一個VL區域,及如序列辨識編號105或109所示之一個VH區域;
(g)如序列辨識編號125或129所示之一個VL區域,及如序列辨識編號123或127所示之一個VH區域;
(h)如序列辨識編號143或147所示之一個VL區域,及如序列辨識編號141或145所示之一個VH區域;
(i)如序列辨識編號161或165所示之一個VL區域,及如序列辨識編號159或163所示之一個VH區域;及
(j)如序列辨識編號179或183所示之一個VL區域,及如序列辨識編號177或181所示之一個VH區域。
如本發明之雙特異性單鏈抗體分子的一個較佳實施例,與CD3ε結合的第一結合域中之成對的VH區域與VL區域係以單鏈抗體(scFv)的形式存在。該VH與VL區域係以VH-VL或VL-VH的順序排列。VH區域較佳位於連接子序列的N端。VL區域較佳位於連接子序列的C端。換言之,本發明之雙特異性單鏈抗體分子的CD3結合域中之域排列方式較佳為VH-VL,以該CD3結合域位於第二(細胞表面抗原諸如PSMA)結合域的C端。VH-VL較佳包含或即為序列辨識編號185。
本發明之上述雙特異性單鏈抗體分子的一個較佳實施例之特徵,在於可與人類及非黑猩猩靈長類CD3ε鏈的一表位結合之第一結合域包含選自由序列辨識編號23、25、41、43、59、61、77、79、95、97、113、115、131、133、149、151、167、169、185或187所組成的群組中之一個胺基酸序列。
本發明進一步有關於上述的一種雙特異性單鏈抗體,其中該第二結合域係與細胞表面抗原PSMA結合。
如本發明的一個較佳實施例,上述表徵的雙特異性單鏈抗體分子包含下列序列的群組作為第二結合域中之CDR H1、CDR H2、CDR H3、CDR L1、CDR L2及CDR L3,其係選自由下列所組成之群組:
a)具序列辨識編號394-396之CDR H1-3及具序列辨識編號389-391之CDR L1-3;
b)具序列辨識編號408-410之CDR H1-3及具序列辨識編號403-405之CDR L1-3;
c)具序列辨識編號422-424之CDR H1-3及具序列辨識編號417-419之CDR L1-3;
d)具序列辨識編號436-438之CDR H1-3及具序列辨識編號431-433之CDR L1-3;
e)具序列辨識編號445-447之CDR H1-3及具序列辨識編號450-452之CDR L1-3;
f)具序列辨識編號464-466之CDR H1-3及具序列辨識編號459-461之CDR L1-3;
g)具序列辨識編號478-480之CDR H1-3及具序列辨識編號473-475之CDR L1-3;
h)具序列辨識編號492-494之CDR H1-3及具序列辨識編號487-489之CDR L1-3;
i)具序列辨識編號506-508之CDR H1-3及具序列辨識編號501-503之CDR L1-3;
j)具序列辨識編號520-522之CDR H1-3及具序列辨識編號515-517之CDR L1-3;
k)具序列辨識編號534-536之CDR H1-3及具序列辨識編號529-531之CDR L1-3;
l)具序列辨識編號548-550之CDR H1-3及具序列辨識編號543-545之CDR L1-3;
m)具序列辨識編號562-564之CDR H1-3及具序列辨識編號557-559之CDR L1-3;
n)具序列辨識編號576-578之CDR H1-3及具序列辨識編號571-573之CDR L1-3;
o)具序列辨識編號590-592之CDR H1-3及具序列辨識編號585-587之CDR L1-3;
p)具序列辨識編號604-606之CDR H1-3及具序列辨識編號599-601之CDR L1-3;
q)具序列辨識編號618-620之CDR H1-3及具序列辨識編號613-615之CDR L1-3;
r)具序列辨識編號632-634之CDR H1-3及具序列辨識編號627-629之CDR L1-3;
s)具序列辨識編號646-648之CDR H1-3及具序列辨識編號641-643之CDR L1-3;
t)具序列辨識編號660-662之CDR H1-3及具序列辨識編號655-657之CDR L1-3;
u)具序列辨識編號674-676之CDR H1-3及具序列辨識編號669-671之CDR L1-3;
v)具序列辨識編號688-690之CDR H1-3及具序列辨識編號683-685之CDR L1-3;
w)具序列辨識編號702-704之CDR H1-3及具序列辨識編號697-699之CDR L1-3;
x)具序列辨識編號716-718之CDR H1-3及具序列辨識編號711-713之CDR L1-3;及
y)具序列辨識編號729-731之CDR H1-3及具序列辨識編號724-726之CDR L1-3。
本發明雙特異性單鏈抗體分子之第二結合域的對應VL-與VH-區域以及個別的scFv之序列,係示於序列清單中。
在本發明的雙特異性單鏈抗體分子中,結合域係依VL-VH-VH-VL、VL-VH-VL-VH、VH-VL-VH-VL或VH-VL-VL-VH之順序排列,如所附實例中所例示。結合域較佳係依VH PSMA-VL PSMA-VH CD3-VL CD3或VL PSMA-VH PSMA-VH CD3-VL CD3之順序排列。
本發明之一個特佳實施例係有關於上述表徵的多肽,其中該雙特異性單鏈抗體分子包含選自下列之序列:
(a)如序列辨識編號399、413、427、441、455、469、483、497、511、525、539、553、567、581、595、609、623、637、651、665、679、693、707、721、734、799、817、863、849、835、785、899、935、1017、1031、917、1003、953、971或989中任一者所示之一胺基酸序列;
(b)如序列辨識編號400、414、428、442、456、470、484、498、512、526、540、554、568、582、596、610、624、638、652、666、680、694、708、736735、800、818、864、850、836、786、882、900、936、1018、1032、918、1004、954、972、990、804、822、868、886、904、940、922、958或976中任一者所示的核酸序列所編碼之一胺基酸序列;
(c)與(a)或(b)的胺基酸序列至少90%相同,更佳至少95%相同,最佳至少96%相同之一胺基酸序列。
本發明係有關於一種雙特異性單鏈抗體分子,其包含如序列辨識編號399、413、427、441、455、469、483、497、511、525、539、553、567、581、595、609、623、637、651、665、679、693、707、721、734、799、817、863、849、835、785、899、935、1017、1031、917、1003、953、971或989中之任一者所示的一個胺基酸序列,以及有關於與序列辨識編號399、413、427、441、455、469、483、497、511、525、539、553、567、581、595、609、623、637、651、665、679、693、707、721、734、799、817、863、849、835、785、899、935、1017、1031、917、1003、953、971或989的胺基酸序列至少85%相同,較佳90%,更佳至少95%相同,最佳至少96、97、98、或99%相同之胺基酸序列。本發明亦有關於如序列辨識編號400、414、428、442、456、470、484、498、512、526、540、554、568、582、596、610、624、638、652、666、680、694、708、736735、800、818、864、850、836、786、882、900、936、1018、1032、918、1004、954、972、990、804、822、868、886、904、940、922、958或976中之任一者所示的對應核酸序列,以及有關於與序列辨識編號400、414、428、442、456、470、484、498、512、526、540、554、568、582、596、610、624、638、652、666、680、694、708、736、735、800、818、864、850、836、786、882、900、936、1018、1032、918、1004、954、972、990、804、822、868、886、904、940、922、958或976所示的核酸序列至少85%相同,較佳90%,更佳至少95%相同,最佳至少96、97、98、或99%相同之核酸序列。應瞭解係以整個核苷酸或胺基酸序列,測定序列一致性。就序列比對而言,例如可使用包括在GCG軟體包(美國53711威斯康辛州麥迪遜(Madison)科學道(Science Drive)575號基因電腦集團(Genetics Computer Group)(1991年))中的Gap或BestFit程式(Needleman與Wunsch於期刊“J. Mol. Biol.”第48期(1970年)第443-453頁乙文;Smith與Waterman於期刊“Adv. Appl. Math”第2期(1981年)第482-489頁乙文)。藉由使用如上所提及的程式,測定與辨識具有與本發明雙特異性單鏈抗體的核苷酸或胺基酸序列如85%(90%、95%、96%、97%、98%或99%)的序列一致性之一種核苷酸或胺基酸序列,對於嫻熟技藝者而言係一種例行方法。例如,依據克利克(Crick)的搖擺假說,抗密碼子上的5'鹼基在空間上受到拘限的程度不如其他二個鹼基,及因而可具有非標準鹼基配對。換言之:密碼子三聯體中的第三個位置可改變,藉此在該第三個位置不同的二個三聯體,可編碼相同的胺基酸殘基。該假說係嫻熟技藝者所熟知(如參見http://en.wikipedia.org/wiki/Wobble_Hypothesis;Crick於期刊“J Mol Biol”第19期(1966年)第548-55頁乙文)。
本發明PSMAxCD3雙特異性單鏈抗體建構體中之較佳的域排列,係示於下列實例。
在本發明的一個較佳實施例中,雙特異性單鏈抗體對於CD3ε及對於其等第二結合域所辨識之人類與非黑猩猩靈長類細胞表面抗原PSMA係具有跨物種特異性。
在一個任擇的實施例中,本發明提供編碼本發明的上述雙特異性單鏈抗體分子之一種核酸序列。
本發明亦有關於包含本發明的核酸分子之一種載體。
該等嫻熟分子生物學者知悉多種適宜的載體,包括質體、黏接質體、病毒、噬菌體與遺傳工程中習用的其他載體,及其選擇取決於所欲的功能。可使用嫻熟技藝者熟知的方法以建構各種質體與載體;如參見Sambrook等人(上述引文)及美國紐約的綠色出版學會(Green Publishing Associates)與威立資訊網路(Wiley Interscience)公司於(1989年)、(1994年)出版之Ausubel所著“現行分子生物學操作程序(Current Protocols in Molecular Biology)”乙書中所述之技術。任擇地,可將本發明的多核苷酸與載體重組成為脂質體,以輸送至標的細胞。如進一步詳述於後,選殖載體係用於分離個別的DNA序列。當需要一特定多肽的表現作用時,可將相關序列轉移至表現載體中。典型的選殖載體包括pBluescript SK、pGEM、pUC9、pBR322及pGBT9。典型的表現載體包括pTRE、pCAL-n-EK、pESP-1、pOP13CAT。
該載體較佳包括一核酸序列,其係以可操作方式連接至在此所界定的核酸序列之調控序列。
“調節序列”一詞係指達成其上所連接的編碼序列之表現作用所必需的DNA序列。該控制序列的性質係依宿主生物體而不同。在原核生物中,控制序列一般包括啟動子、核糖體結合位點及終止子。在真核生物中,控制序列一般包括啟動子、終止子及在某些情況下之增強子、轉錄活化子或轉錄因子。“控制序列”一詞係意欲至少包括表現作用必然不可或缺的所有組份,及亦可包括其他有利的組份。
“以可操作方式連接”一詞係指鄰接位置,在其中所述組分所處的關係容許其等以所預期方式發揮作用。控制序列“以可操作方式連接”至編碼序列之連接方式,使得編碼序列的表現作用係在與控制序列可相容的條件下達成。在控制序列為啟動子之情況下,嫻熟技藝者顯然明瞭較佳使用雙股核酸。
因此,所述載體較佳為一種表現載體。“表現載體”係可將所選宿主轉型及提供編碼序列在所選宿主中表現之一建構體。表現載體例如可為選殖載體、二元載體或嵌入型載體。表現作用包括將核酸分子較佳轉錄成為可轉譯的mRNA之轉錄作用。確保原核生物及/或真核生物細胞中的表現作用之調控元件,係嫻熟技藝者所熟知。在真核細胞的情況下,其等一般包括確保轉錄作用起始的啟動子,及選擇性地包括確保轉錄作用終止與轉錄本安定之多腺苷酸訊號。容許原核宿主細胞中的表現作用之可能的調節元件,包括如大腸桿菌(E. coli)中的PL、lactrptac啟動子;而容許真核宿主細胞中的表現作用之調節元件實例為酵母中的AOX1GAL1啟動子或哺乳類動物與其他動物細胞中的CMV-、SV40-、RSV-啟動子(勞氏(Rous)肉瘤病毒)、CMV-增強子、SV40-增強子或球蛋白內含子。
除了負責起始轉錄作用的元件之外,該等調控元件亦可包括位於多核苷酸下游的轉錄終止訊號,諸如SV40-多腺苷酸位點或tk-多腺苷酸位點。此外,依所用的表現系統而定,可在所述核酸序列的編碼序列中,添加可將多肽導向一個細胞區室或將其分泌至培養基中之引導序列,及其係技藝中所熟知;亦參見所附實例。引導序列在適當的階段與轉譯、起始及終止序列組合,及引導序列較佳可引導所轉譯的蛋白質或其一部分分泌至周質間隙或細胞外基質中。選擇性地,異源序列可編碼一種包括N端辨識肽之融合蛋白,該N端辨識肽賦予所欲的特性,如所表現的重組產物之安定化或簡化純化作用;見上文。在上下文中,適宜的表現載體係技藝中所知者,諸如岡山-柏格(Okayama-Berg)cDNA表現載體pcDV1(法瑪西亞(Pharmacia)公司)、pCDM8、pRc/CMV、pcDNA1、pcDNA3(英杰(In-vitrogene)公司)、pEF-DHFR、pEF-ADA或pEF-neo(Mack等人於期刊“PNAS”(1995年)第92期第7021-7025頁乙文及Raum等人於期刊“Cancer Immunol Immunother”(2001年)第50(3)期第141-150頁乙文)或pSPORT1(吉柏柯(GIBCO BRL)公司)。
表現作用控制序列較佳為可將真核宿主細胞轉型或轉染之載體中的真核啟動子系統,但亦可使用原核宿主的控制序列。一旦將載體納入適當的宿主中,將該宿主維持於適合核苷酸序列的高水平表現作用之條件下,及如所欲地接著進行本發明的雙特異性單鏈抗體分子之收集與純化作用;如參見所附實例。
可用於表現細胞週期交互作用蛋白之一種任擇的表現系統,係一種昆蟲系統。在該系統中,使用加州苜蓿夜蛾(Autographa californica)核多角體病毒(AcNPV)作為載體,以在秋行軍蟲(Spodoptera frugiperda)細胞或夜蛾(Trichoplusia)幼蟲中表現外來基因。可將所述核酸分子的編碼序列選殖進入病毒的非必需區域,諸如多角體蛋白基因,及置於多角體蛋白啟動子的控制之下。成功插入該編碼序列,將使得多角體蛋白基因失活性,及所產生的重組型病毒具有缺少外鞘蛋白之外鞘。然後以該重組型病毒感染在其中表現本發明的蛋白質之秋行軍蟲(S. frugiperda)細胞或夜蛾(Trichoplusia)幼蟲(Smith於期刊“J. Virol.”第46期(1983年)第584頁乙文;Engelhard於期刊“Proc. Nat. Acad. Sci. USA”第91期(1994年)第3224-3227頁乙文)。
其他的調控元件可包括轉錄以及轉譯增強子。有利地,本發明之上述載體包括一個可選擇及/或可評分的標記。
適用於選擇轉型細胞及如植物組織與植物之可選擇性標記基因,係嫻熟技藝者所熟知,及例如包括作為下列各者的篩選基礎之抗代謝物抗性:賦予胺甲葉酸抗性的dhf(Reiss於期刊“Plant Physiol. (Life Sci. Adv.)”第13期(1994年)第143-149頁乙文);賦予對胺基糖苷類新黴素、康黴素(kanamycin)與巴龍黴素(paromycin)抗性的npt(Herrera-Estrella於期刊“EMBO J.”第2期(1983年)第987-995頁乙文)及賦予潮黴素抗性的hygro(Marsh於期刊“Gene”第32期(1984年)第481-485頁乙文)。業已說明其他可選擇的基因,亦即容許細胞使用吲哚取代色胺酸的trpB;容許細胞使用組胺醇(histinol)取代組胺酸的hisD(Hartman於期刊“Proc. Natl. Acad. Sci. USA”第85期(1988年)第8047頁乙文);容許細胞使用甘露糖的甘露糖-6-磷酸異構酶(WO 94/20627)及賦予對鳥胺酸去羧酶抑制劑2-(二氟甲基)-DL-鳥胺酸DFMO抗性的ODC(鳥胺酸去羧酶)(McConlogue於1987年冷泉港實驗室(Cold Spring Harbor Laboratory)編輯之“現代分子生物學通訊(Current Communications in Molecular Biology)”中乙文)或賦予殺稻瘟菌素S抗性之來自土麯黴(Aspergillus terreus)的去胺酶(Tamura於期刊“Biosci. Biotechnol. Biochem.”第59期(1995年)第2336-2338頁乙文)。
適用的可評分性標記亦為嫻熟技藝者已知,及能以商品取得。有利地,該標記係編碼螢光素酶(Giacomin於期刊“Pl. Sci.”第116期(1996年)第59-72頁乙文;Scikantha於期刊“J. Bact.”第178期(1996年)第121頁乙文)、綠色螢光蛋白(Gerdes於期刊“FEBS Lett.”第389期(1996年)第44-47頁乙文)或β-葡糖醛酸酶(Jefferson於期刊“EMBO J.”第6期(1987年)第3901-3907頁乙文)的一個基因。該實施例特別適用於簡單與快速篩選含有所述載體的細胞、組織及生物體。
如上述,所述核酸分子可單獨使用或作為載體的一部分以在細胞內表現本發明的雙特異性單鏈抗體分子,而供例如純化作用及亦供基因療法之目的。將含有編碼本發明上述任一雙特異性單鏈抗體分子的DNA序列之核酸分子或載體引入細胞中,該細胞進而產生所探討的多肽。以離體或活體內技術將治療基因引入細胞中為基礎之基因療法,係基因轉移最重要的應用之一。在文獻中述及適用於試管內或活體內基因療法之載體、方法或基因輸送系統,及為嫻熟技藝者所知;如參見Giordano於期刊“Nature Medicine”第2期(1996年)第534-539頁乙文;Schaper於期刊“Circ. Res.”第79期(1996年)第911-919頁乙文;Anderson於期刊“Science”第256期(1992年)第808-813頁乙文;Verma於期刊“Nature”第389期(1994年)第239頁乙文;Isner於期刊“Lancet”第348(1996年)第370-374頁乙文;Muhlhauser於期刊“Circ. Res.”第77期(1995年)第1077-1086頁乙文;Onodera於期刊“Blood”第91期(1998年)第30-36頁乙文;Verma於期刊“Gene Ther.”第5期(1998年)第692-699頁乙文;Nabel於期刊“Ann. N.Y. Acad. Sci.”第811期(1997年)第289-292頁乙文;Verzeletti於期刊“Hum. Gene Ther.”第9期(1998年)第2243-51頁乙文;Wang於期刊“Nature Medicine”第2期(1996年)第714-716頁乙文;WO 94/29469;WO 97/00957,第US 5,580,859號美國專利;第5,589,466號美國專利;或Schaper於期刊“Current Opinion in Biotechnology”第7期(1996年)第635-640頁乙文。可設計所述核酸分子與載體,以供直接引入或經由脂質體或病毒載體(如腺病毒、反轉錄病毒)引入細胞中。該細胞較佳為生殖系細胞、胚細胞或卵細胞或自其所衍生者,該細胞最佳為幹細胞。胚胎幹細胞之一實例,係尤其如Nagy於期刊“Proc. Natl. Acad. Sci. USA”第90期(1993年)第8424-8428頁乙文中所述之幹細胞。
本發明亦提供以本發明的載體轉型或轉染之宿主。可藉由在宿主中引入本發明的上述載體或本發明的上述核酸分子,而產生該宿主。存在於宿主中之至少一種載體或至少一種核酸分子,可媒介編碼上述單鏈抗體建構體的基因之表現作用。
被引入宿主中之本發明所述的核酸分子或載體,可嵌入宿主的基因體或維持在染色體外。
該宿主可為任一種原核或真核細胞。
“原核生物”一詞係意欲包括經可用於表現本發明的蛋白質之DNA或RNA分子轉型或轉染的所有細菌。原核宿主可包括革蘭氏陰性以及革蘭氏陽性細菌,諸如例如大腸桿菌(E. coli)、鼠傷寒沙門氏菌(S. typhimurium)、黏質沙雷氏桿菌(Serratia marcescens)及枯草桿菌(Bacillus subtilis)。“真核生物”一詞意欲包括酵母、高等植物、昆蟲及較佳為哺乳類動物細胞。依重組生產程序中所用的宿主而定,本發明的多核苷酸所編碼之蛋白質可為糖化或非糖化。特佳使用含有本發明之雙特異性單鏈抗體分子的編碼序列之質體或病毒,及以遺傳學方式融合至一個N端的FLAG標籤及/或一個C端的His標籤。該FLAG標籤的長度較佳約為4至8個胺基酸,最佳為8個胺基酸。使用一般技藝者通知的任一技術,上述的多核苷酸可用於轉型或轉染宿主。此外,用於製備融合型、以可操作方式連接的基因及將其等在例如哺乳類動物細胞與細菌中表現之方法,係技藝中所熟知(Sambrook的上述引文中)。該宿主較佳為細菌或昆蟲、真菌、植物或動物細胞。
特別預期所述宿主可為一種哺乳類動物細胞。特佳的宿主細胞包括CHO細胞、COS細胞、骨髓瘤細胞系如SP2/0或NS/0。如所附實例中之說明,特佳係以CHO細胞作為宿主。
該宿主細胞更佳為一種人類細胞或人類細胞系,如per.c6(Kroos於期刊“Biotechnol. Prog.”2003年第19期第163-168頁乙文)。
因而在另一實施例中,本發明係有關於用於生產本發明的雙特異性單鏈抗體分子之一種方法,該方法包括在容許本發明的雙特異性單鏈抗體分子表現之條件下,培養本發明的宿主,及自培養中回收所生成的多肽。
可將轉型宿主接種在發酵槽中及依據技藝中已知的技術培養,以達到最佳的細胞生長作用。然後可自生長培養基、細胞熔解產物或細胞膜碎片分離本發明的雙特異性單鏈抗體分子。可藉由任一習用方式諸如例如製備層析分離作用與免疫分離作用,諸如該等涉及使用導向對抗例如本發明雙特異性單鏈抗體分子的標記之單株或多株抗體或如所附實例所述者,分離與純化例如以微生物方式表現之雙特異性單鏈抗體分子。
容許表現作用之宿主培養條件係技藝中所知,及依該方法中所用的宿主系統與表現系統/載體而定。為達到容許重組型多肽表現之條件而待修改的參數,係技藝中所知。因此,在缺乏進一步的創新投入之下,適宜的條件可由嫻熟技藝者決定。
一旦表現,本發明的雙特異性單鏈抗體分子可依據技藝中的標準程序加以純化,該等程序包括硫酸銨沉澱作用、親和管柱、管柱層析、凝膠電泳等;參見美國紐約施普林格-維雷格(Springer-Verlag)公司(1982年)出版之Scopes所著“蛋白質純化作用(Protein Purification)”乙書。對於藥學用途而言,較佳為均一性至少約90至95%之實質上純的多肽,及均一性最佳為98至99%或更高。一旦如所欲地經部分純化或純化至均一性之後,本發明的雙特異性單鏈抗體分子可用於治療(包括體外)或用於開發與進行分析程序。此外,用於自培養中回收本發明的雙特異性單鏈抗體分子之方法實例,係詳述於所附實例中。該回收作用亦可藉由用於分離本發明可與人類及非黑猩猩靈長類CD3ε的一個表位結合之雙特異性單鏈抗體分子之一種方法進行,該方法包括下列步驟:
(a)將多肽與最多具有27個胺基酸之CD3ε細胞外域的N端片段接觸,該N端片段包含胺基酸序列麩醯胺-天冬胺酸-甘胺酸-天冬醯胺-麩胺酸-麩胺酸-甲硫胺酸-甘胺酸(序列辨識編號341)或麩醯胺-天冬胺酸-甘胺酸-天冬醯胺-麩胺酸-麩胺酸-異白胺酸-甘胺酸(序列辨識編號342)及經由其C端固定在一固相;
(b)自該片段洗提所結合的多肽;及
(c)自(b)的洗提液中分離多肽。
藉由本發明的上述方法所分離出的多肽較佳為人類來源。
應理解該方法或本發明的雙特異性單鏈抗體分子之分離作用,係自多個候選多肽分離出對於在其N端包含胺基酸序列麩醯胺-天冬胺酸-甘胺酸-天冬醯胺-麩胺酸-麩胺酸-甲硫胺酸-甘胺酸(序列辨識編號341)或麩醯胺-天冬胺酸-甘胺酸-天冬醯胺-麩胺酸-麩胺酸-異白胺酸-甘胺酸(序列辨識編號342)之CD3ε細胞外域片段具有相同特異性的一或多種不同多肽之方法,以及用於自溶液中純化多肽之一種方法。用於自溶液中純化雙特異性單鏈抗體分子的後者方法之一個非限制性實例,係例如自培養上清液或自該培養的製備物純化以重組方式表現之雙特異性單鏈抗體分子。如上述,該方法中所用的片段係靈長類CD3ε分子之細胞外域的N端片段。不同物種的CD3ε分子之細胞外域的胺基酸序列,係示於序列辨識編號1、3、5與7。N端八聚體的兩種形式係示於序列辨識編號341與342。較佳地,該N端係自由地可供用於與待藉由本發明方法辨識的多肽之結合作用。在本發明的上下文中,“自由地可供用於”一詞係理解為並無附加的基序例如His標籤。該His標籤對於藉由本發明方法辨識的結合分子之干擾作用,係述於所附第6與20例。
根據該方法,該片段係經由其C端而固定在一固相。嫻熟技藝者可依所用之本發明的方法實施例,容易且不需任何創新努力地選擇一種適宜的固相支撐體。固相支撐體的實例包括但不限於基質例如珠子(例如瓊脂糖珠、瓊脂糖凝膠珠、聚苯乙烯珠、葡聚糖珠)、平皿(培養平皿或多孔式平皿)以及已知的晶片如來自畢亞寇(Biacore)者。用於將片段固定/固定化在該固相支撐體上之方式與方法之選擇,係依所選擇的固相支撐體而定。常用的固定/固定化方法係經由一種N-羥基琥珀醯亞胺(NHS)酯之偶合作用。用於固定/固定化之該偶合作用以及任擇方法背後的化學原理,係嫻熟技藝者所知,如來自學術出版(Academic Press)有限公司(1996年)出版之Hermanson所著“生物共軛技術(Bioconjugate Techniques)”乙書。為固定/固定化在層析支撐體上,通常使用下列方式:NHS活化型瓊脂糖凝膠(如奇異(GE)生命科學-安瑪西亞(Amersham)公司的HiTrap-NHS)、CnBr活化型瓊脂糖凝膠(如奇異(GE)生命科學-安瑪西亞(Amersham)公司)、NHS活化型葡聚糖珠(西克瑪(Sigma)公司)或活化型聚甲基丙烯酸酯。該等試劑亦可以分批方式使用。此外,包含氧化鐵的葡聚糖珠子(如可自美天旎(Miltenyi)公司取得)可以分批方式使用。該等珠子可與一磁體組合使用,以自溶液中分離該等珠子。可藉由使用NHS活化型羧甲基葡聚糖,將多肽固定在一種畢亞寇(Biacore)晶片(如CM5晶片)上。適當的固相支撐體的其他實例為胺反應性多孔式平皿(例如能肯(Nunc)ImmobilizerTM平皿)。
依據該方法,CD3ε細胞外域的該片段可直接或經由可為連接子或另一種蛋白質/多肽部分之一段胺基酸,而與固相支援體偶合。任擇地,CD3ε的細胞外域可經由一或多種轉接子分子而間接偶合。
與固定化表位結合的一種肽或多肽之洗提方式與方法,係技藝中所熟知者。對於用於自洗提液中分離所識別出的多肽之方法而言,此亦為真。
用於自多種候選多肽分離出對於在其N端包含胺基酸序列麩醯胺-天冬胺酸-甘胺酸-天冬醯胺-麩胺酸-麩胺酸-X-甘胺酸(X為甲硫胺酸或異白胺酸)之CD3ε細胞外域片段具有相同特異性的一或多種不同多肽之一種方法,可包括用於選擇抗原特異性實體之下列方法中的一或多個步驟:CD3ε特異性結合域可選自抗體衍生譜中。可基於標準程序,例如冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版及由Barbas、Burton、Scott及Silverman編輯之“噬菌體顯現:實驗室手冊(Phage顯現:A Laboratory Manual)”乙書所揭露者,建構噬菌體顯現庫。抗體庫中的抗體片段形式可為scFv,但一般亦可為一種Fab片段或甚至一種單域抗體片段。為分離抗體片段,可使用未接觸過抗原的(nave)抗體片段庫。為了在後續治療用途中選擇潛在的低免疫抗原性結合實體,人類抗體片段庫可能有利於直接選擇人類抗體片段。在一些情況下,其等可形成合成抗體庫之基礎(Knappik等人於期刊“J Mol. Biol.”2000年第296期第57 ff頁乙文)。對應形式可為Fab、scFv(如後述)或域抗體(dAb,如Holt等於期刊“Trends Biotechnol.”2003年第21期第484 ff頁乙文中所綜述者)。
技藝中亦已知,在許多情況下並無對抗標的抗原之免疫人類抗體來源可利用。因此,以標的抗原讓動物產生免疫,及自動物組織如脾臟或PBMC分離出個別的抗體庫。可將N端片段生物素化或共價連接至蛋白質如KLH或牛血清白蛋白(BSA)。依據常用的方法,係以囓齒動物進行免疫接種作用。非人類來源的一些免疫抗體譜可能因為其他原因而特別有利,如因為存在衍生自駱羊物種的單域抗體(VHH)(如Muyldermans於期刊“J Biotechnol.”第74期第277頁乙文;DeGenst等人於期刊“Dev Como Immunol.”2006年第30期第187 ff頁乙文中所述)。因此,該抗體庫的對應形式可為Fab、scFv(如後述)或單域抗體(VHH)。
在一個可能的方法中,以例如表現跨膜EpCAM的全細胞進行來自balb/c×C57黑色雜交的10週大F1小鼠之免疫接種,其中EpCAM係以轉譯融合方式在N端表現成熟CD3ε鏈的N端1至27個胺基酸。任擇地,可使用1-27CD3ε-Fc融合蛋白進行小鼠的免疫接種(對應方法係述於所附第2例中)。在加強行免疫接種作用之後,可抽取血樣,及在例如FACS分析中測定對抗CD3陽性T細胞的抗體血清滴定度。經免疫接種的動物之血清滴定度,通常顯著高於未經免疫接種的動物。
經免疫接種的動物可形成建構免疫抗體庫之基礎。該庫的實例包括噬菌體顯現庫。一般可基於標準程序,例如冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版及由Barbas、Burton、Scott及Silverman編輯之“噬菌體顯現:實驗室手冊(Phage顯現:A Laboratory Manual)”乙書中所揭露者,建構該等庫。
由於產生後續可富化之更多變化的抗體庫,以供選擇期間結合子之用,非人類抗體亦可經由噬菌體顯現而擬人化。
在噬菌體顯現方法中,顯現抗體庫之任一噬菌體庫形成使用個別抗原作為標的分子而選擇結合實體之基礎。分離具抗原特異性的抗原結合噬菌體之核心步驟,係稱作淘選。因在噬菌體表面顯現抗體片段,該通用方法稱作噬菌體顯現。一種較佳的選擇方法係使用與噬菌體所顯現的scFv的N端轉譯融合之小型蛋白,諸如絲狀噬菌體N2域。技藝中所知的另一種顯現方法係核糖體顯現方法,其可用於分離結合實體(Groves與Osbourn於期刊“Expert Opin Biol Ther.”2005年第5期第125 ff頁乙文;Lipovsek與Pluckthun於期刊“J Immunol Methods”2004年第290期第52ff頁乙文所綜述)。為證實scFv噬菌體顆粒與1-27 CD3ε-Fc融合蛋白之結合作用,可藉由PEG(聚乙二醇),自個別的培養上清液中收集具有所選殖的scFv譜之噬菌體庫。scFv噬菌體顆粒可與固定化CD3εFc融合蛋白一起培養。可將固定化CD3εFc融合蛋白塗佈在一固相上。可洗提結合實體,而洗提液可用於感染新的未被感染之細菌宿主。可就羧苄青黴素抗性,再次篩選經編碼人類scFv片段的噬菌體質體複本成功地轉導之細菌宿主,及接著以例如VCMS13輔助噬菌體感染,而開始第二輪的抗體顯現與試管中篩選。通常進行總共4至5輪的篩選。可使用流動式細胞測量分析,在具有與表面顯現的EpCAM融合之N端CD3ε序列的CD3ε陽性JurkaT細胞、HPBall細胞、PBMC或經轉染的真核細胞上,測試所分離的結合實體之結合作用(參見所附第4例)。
上述方法較佳可為其中CD3ε細胞外域的片段係由具有序列辨識編號2、4、6或8中任一者所示的胺基酸序列之一種多肽的一或多個片段所組成之一種方法。該片段的長度更佳為8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27個胺基酸殘基。
辨識一種雙特異性單鏈抗體分子之該方法,可為篩檢包含與人類及非黑猩猩靈長類CD3ε的表位結合之跨物種特異性結合域之多種雙特異性單鏈抗體分子之一種方法。任擇地,該辨識方法係包含與人類及非黑猩猩靈長類CD3ε的表位結合之跨物種特異性結合域之雙特異性單鏈抗體分子之一種純化/分離方法。
此外,本發明提供一種組成物,其包含本發明的一種雙特異性單鏈抗體分子或藉由上述揭露的方法所生產之一種雙特異性單鏈抗體。該組成物較佳為一種藥學組成物。
本發明亦提供在此所界定或依據在此所界定的方法所生產之一種特異性單鏈抗體分子,其中該雙特異性單鏈抗體分子係用於預防、治療或改善癌症。該癌症較佳為一種固態腫瘤,更佳為一種癌症或前列腺癌。該雙特異性單鏈較佳進一步包括適合的載劑、安定劑及/或賦形劑配方。此外,該雙特異性單鏈抗體分子較佳適於與一種附加藥物組合投藥。該藥物可為一種非蛋白質化合物或一種白質化合物,及可與在此所界定之雙特異性單鏈抗體分子同時或非同時投藥。
依據本發明,“藥學組成物”一詞係有關於用於投藥至一病患及較佳為一人類病患之組成物。本發明之特佳的藥學組成物,係包括導向對抗鄰近序列無關性CD3表位及對抗其而產生之雙特異性單鏈抗體。該藥學組成物較佳包括載劑、安定劑及/或賦形劑之適宜配方。在一個較佳實施例中,該藥學組成物包括用於非經腸、透皮、管腔內、動脈內、脊髓腔內及/或鼻內投藥作用或直接注射至組織中之組成物。特別預期該組成物係經由輸注或注射作用而投藥至一病患。可藉由不同方式達成適宜組成物之投藥作用,如藉由靜脈內、腹膜內、皮下、肌內、局部或皮內投藥。特別地,本發明提供適宜組成物之不間斷投藥作用。不間斷亦即連續投藥作用之一個非限制性實例,可藉由病患所佩戴之測量流入病患體內的治療劑之小型泵系統而實現。本發明之包含導向對抗鄰近序列無關性CD3表位及對抗其而產生的雙特異性單鏈抗體之藥學組成物,可藉由使用該泵系統而投藥。該泵系統係技藝中所通知,及通常仰賴定期更換含有待輸注的治療劑之藥匣。當更換該泵系統中的藥匣時,可能隨之發生在其他情況下不間斷地流入病患體內的治療劑之暫時中斷。在該情況下,在本發明的藥學構件與方法之意涵內,仍將替換藥匣之前的投藥階段與替換藥匣之後的投藥階段,視為一起構成該治療劑之“不間斷的投藥作用”。
本發明之導向對抗鄰近序列無關性CD3表位及對抗其而產生的該等雙特異性單鏈抗體之連續或不間斷投藥作用,可藉由包括用於自儲器中驅出流體的一種流體驅動裝置與用於致動該驅動裝置的一種致動裝置之流體輸送裝置或小型泵系統,而以靜脈內或皮下方式投藥。用於皮下投藥作用的泵系統,可包括用於穿透病患皮膚及將適宜的組成物輸送進入病患體內的針頭或插管。該泵系統可直接固定或連接在獨立於靜脈、動脈或血管的病患皮膚上,藉此容許泵系統與病患皮膚直接接觸。泵系統可為小型尺寸及具有一個小型容積的儲器。作為一個非限制性實例,待投藥之適宜藥學組成物所用的儲容器容積可介於0.1與50毫升之間。
連續投藥作用可為藉由貼在皮膚上及每隔一段時間更換貼片之方式進行的透皮投藥作用。嫻熟技藝者知悉適合該目的之用於輸送藥物的貼片系統。應察知透皮投藥作用特別適於不間斷投藥,因為可在例如緊鄰用盡的第一個貼片之皮膚表面上及在即將除去用盡的第一個貼片之前,替換一個新的第二個貼片,而有利地同時完成用盡的第一個貼片之更換。不會發生流動中斷與電池故障的問題。
特別包含導向對抗鄰近序列無關性CD3表位及對抗其而產生的雙特異性單鏈抗體之本發明的組成物,可進一步包含一種藥學上可接受的載劑。適宜的藥學載劑之實例係技藝中所熟知者,及包括溶液,例如經磷酸鹽緩衝的鹽水溶液、水、乳劑如油/水乳劑、各類潤濕劑、無菌溶液、脂質體等。包含該等載劑的組成物可藉由熟知的習用方法配製。配方可包含碳水化合物、緩衝液、胺基酸及/或表面活性劑。碳水化合物可為非還原性糖類,較佳為海藻糖、蔗糖、八硫酸鹽、山梨糖醇或木糖醇。該等配方可在具有及/或不具有泵系統之情況下,用於靜脈內或皮下之連續投藥作用。胺基酸可為帶電的胺基酸,較佳為離胺酸、離胺酸乙酸鹽、精胺酸、麩胺酸鹽及/或組胺酸。表面活性劑可為分子量較佳高於1.2KD的清潔劑及/或分子量較佳高於3KD的聚醚。較佳的清潔劑之非限制性實例為吐溫(Tween)20、吐溫(Tween)40、吐溫(Tween)60、吐溫(Tween)80或吐溫(Tween)85。較佳的聚醚之非限制性實例為PEG 3000、PEG 3350、PEG 4000或PEG 5000。本發明所用的緩衝系統的pH值較佳為5至9,及可包含檸檬酸鹽、琥珀酸鹽、磷酸鹽、組胺酸及乙酸鹽。本發明的組成物能以一適宜劑量投藥至個體,該劑量例如可在進階式劑量研究中,藉由投予遞增劑量之展現對於非黑猩猩靈長類例如獼猴的此述跨物種特異性之本發明的雙特異性單鏈抗體分子而確定。如上述,展現此述跨物種特異性之本發明的雙特異性單鏈抗體分子,可有利地以相同形式用於非黑猩猩靈長類的臨床前試驗及作為人類的藥物。該等組成物亦可與其他蛋白質或非蛋白質藥物組合投藥。該等藥物亦可與包含在此所界定之本發明的雙特異性單鏈抗體分子之組成物同時投藥,或以適時界定的間隔與劑量在該多肽投藥之前或之後分開投藥。劑量療程將由主治醫師與臨床因素而決定。如醫療技藝中所熟知者,用於任一病患的劑量可能取決於多種因素,包括病患體型、體表面積、年齡、待投藥的特定化合物、性別、投藥時間與途徑、整體健康狀況及同時投藥的其他藥物。用於非經腸投藥的製劑包括無菌的含水或非水溶液、懸液劑及乳劑。非水溶劑的實例為丙二醇、聚乙二醇、植物油如橄欖油及注射用有機酯類如油酸乙酯。含水載劑包括水、醇/水溶液、乳劑或懸液劑,包括鹽水與緩衝基質。非經腸載體包括氯化鈉溶液、林格氏(Ringer)葡萄糖、葡萄糖與氯化鈉、乳酸化林格氏(Ringer)液或非揮發性油。靜脈內載體包括流體與營養補充劑、電解質補充劑(例如該等以林格氏(Ringer)葡萄糖為基礎者)等。防腐劑及其他添加劑亦可存在,例如抗微生物劑、抗氧化劑、螯合劑、惰性氣體等。此外,本發明的組成物可包含蛋白質載劑,如較佳為人類來源之血清白蛋白或免疫球蛋白。預期除了在此所界定之本發明的雙特異性單鏈抗體分子之外,本發明的組成物亦可包含生物活性劑,依該組成物的預期用途而定。該等藥劑可為作用在胃腸系統的藥物、作用為細胞抑制劑的藥物、防止高尿酸血症的藥物、抑制免疫反應的藥物(如皮質類固醇)、調節發炎反應的藥物、作用在循環系統的藥物及/或技藝中已知的藥劑諸如細胞介素。
在此所界定之藥學組成物的生物活性,可藉由例如下列實例及WO 99/54440或Schlereth等(於期刊“Cancer Immunol. Immunother.”第20期(2005年)第1-12頁)乙文中所述的細胞毒性分析而測定。如用於此之“效力”或“活體內效力”,係指依據例如標準化NCI反應標準所判定之對於本發明的藥學組成物之治療反應。使用本發明的藥學組成物之治療成果或活體內效力,係指該組成物對於其預期目的之效用,亦即該組成物達成其所欲效應即清除病理性細胞如腫瘤細胞之能力。可藉由針對個別疾病實體所建立的標準方法監測活體內效力,該等方法包括但不限於白細胞計數、示差法、螢光活化細胞分選術、骨髓穿刺。另外,可以使用各種的疾病特異性臨床化學參數及其他確立的標準方法。此外,可使用電腦輔助式斷層攝影術、X-射線、核磁共振斷層攝影術(例如以美國國家癌症研究所(NCI)的標準為基礎之反應評估[NCI贊助的國際研究小組Cheson BD、Horning SJ、Coiffier B、Shipp MA、Fisher RI、Connors JM、Lister TA、Vose J、Grillo-Lopez A、Hagenbeek A、Cabanillas F、Klippensten D、Hiddemann W、Castellino R、Harris NL、Armitage JO、Carter W、Hoppe R、Canellos GP於期刊“J Clin Oncol.”1999年4月第17(4)期第1244頁之“非霍奇金氏淋巴瘤的標準化反應標準之國際研討會報告(Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas)”乙文])、正子發射斷層攝影掃描、白細胞計數、示差法、螢光活化細胞分選術、骨髓穿刺、淋巴結活組織檢驗/組織學與各種癌症特異性的臨床化學參數(例如乳酸鹽脫氫酶)及其他確立的標準方法。
在開發藥物諸如本發明的藥學組成物所面臨之另一重大挑戰,係藥物動力學性質之可預測的調節作用。為此建立候選藥物的藥物動力學廓型,亦即影響一特定藥物治療一特定病況的能力之藥物動力學參數廓型。影響一藥物治療一特定疾病實體的能力之藥物動力學參數,包括但不限於:半衰期、分佈體積、肝臟首渡代謝作用及血清結合程度。一特定藥劑的效力可受到上述各參數之影響。
“半衰期”係指所投予藥物中的50%經過生物歷程如代謝、排泄等而被排除所需之時間。
“肝臟首渡代謝作用”係指一藥物在與肝臟首次接觸之際亦即在其首次通過肝臟期間被代謝之傾向。
“分佈體積”係指一藥物在全身各個區室如細胞內與細胞外間隙、組織與器官等之留置程度,及該藥物在該等區室中的分佈。
“血清結合程度”係指一藥物與血清蛋白質諸如白蛋白交互作用與結合而導致該藥物生物活性減低或喪失之傾向。
藥物動力學參數亦包括所投予的一特定量藥物之生物可利用性、滯後時間(Tlag)、Tmax、吸收率、多發性及/或Cmax。
“生物可利用性”係指血液區室中的藥物量。
“滯後時間”係指介於藥物投藥作用與其在血液及血漿中被檢測與測量出之間之時間延遲。
“Tmax”係該藥物達到最大血液濃度之時間,而“Cmax”係一特定藥物所能達到的最大血液濃度。達到該藥物的生物效應所需的血液或組織濃度之時間,係受所有參數之影響。可在上述非黑猩猩靈長類的臨床前動物試驗中,測定展現跨物種特異性的雙特異性單鏈抗體之藥物動力學參數,亦述於如Schlereth等人的發表文獻(期刊“Cancer Immunol. Immunother.”第20期(2005年)第1-12頁乙文)中。
如用於此之“毒性”一詞,係指藥物在不良事件或嚴重的不良事件中所顯露的毒性效應。該等副作用可能係指在投藥之後缺乏藥物的全身耐受性及/或缺乏局部耐受性。毒性亦可包括藥物引起的致畸胎或致癌效應。
如用於此之“安全性”、“活體內安全性”或“耐受性”一詞,係界定為一藥物的投藥作用未在投藥後(局部耐受性)直接引發及在藥物的較長施用期間引發嚴重不良事件。可在例如治療與後續追蹤期間,定期評估“安全性”、“活體內安全性”或“耐受性”。測量項目包括臨床評估如器官表現,及篩檢檢驗異常部份。可進行臨床評估,及依據NCI-CTC及/或MedDRA標準而記錄/標記偏離正常之發現。器官表現可包括如不良事件通用術語標準第3.0版(CTCAE)中所列之標準,諸如過敏反應/免疫學、血液/骨髓、心律失常、凝結等。可測試的檢驗參數例如包括血液學、臨床化學、凝結廓型與尿液分析及檢查其他體液諸如血清、血漿、淋巴或脊髓液、液體等。因此可藉由例如體檢、成像技術(亦即超聲波、X-射線、CT掃描、磁共振成像(MRI))、技術設備(亦即心電圖)的其他測量、生命徵象,藉由測量檢驗參數及記錄不良事件,而評估安全性。例如,可藉由組織病理學及/或組織化學的方法,檢查如本發明的用途與方法中之非黑猩猩靈長類的不良事件。
如用於此之“有效與無毒性劑量”一詞,係指在此所界定之雙特異性單鏈抗體的可耐受劑量,該劑量係高至足以導致病理性細胞的清除、腫瘤的消滅、腫瘤的縮小或疾病的穩定,而不會或實質上不會引發重大的毒性效應。可藉由例如技藝中之進階式劑量研究,測定該有效與無毒性劑量,及其應低於引發嚴重不良事件(劑量相關毒性(DLT))之劑量。
在例如生物技術衍生藥劑之臨床前安全性評估S6(Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6)、ICH三方協調準則(ICH Harmonised Tripartite Guideline)、1997年7月16日的ICH指導委員會會議(ICH Steering Committee meeting)中,亦提及上述辭彙。
此外,本發明係有關於包含本發明或依據本發明的方法所生產的雙特異性單鏈抗體分子之一種藥學組成物,以用於預防、治療或改善癌症。該癌症較佳為一種固態腫瘤,較佳為一種癌或前列腺癌。該藥學組成物較佳進一步包含載劑、安定劑及/或賦形劑之適宜配方。
本發明的另一部份係有關於如上所界定或依據如上所界定的方法生產之雙特異性單鏈抗體分子/多肽,用於製備一種用於預防、治療或改善一疾病的藥學組成物之用途。該疾病較佳為癌症。該癌症更佳為一種固態腫瘤,較佳為一種癌或前列腺癌。
在本發明之雙特異性單鏈抗體分子的用途之另一個較佳實施例中,該藥學組成物係適合與一種附加的藥物組合投藥,亦即作為協同療法的一部分。在該協同療法中,一種活性劑可選擇性地納入與本發明的雙特異性單鏈抗體分子相同之藥學組成物中,或可納入分開的藥學組成物中。在後者的情況下,該分開的藥學組成物係適於在包含本發明的雙特異性單鏈抗體分子之該藥學組成物投藥之前、同時或之後投藥。附加的藥物或藥學組成物可為一種非蛋白質化合物或一種蛋白質化合物。在附加藥物係一種蛋白質化合物的情況下,該蛋白質化合物可有利地提供免疫作用細胞一種活化訊號。
該蛋白質化合物或非蛋白質化合物較佳可與本發明的雙特異性單鏈抗體分子、上述所界定的核酸分子、上述所界定的載體或上述所界定的宿主同時或不同時投予。
本發明的另一方面係有關於在有需要的一個體中用於預防、治療或改善一疾病之一種方法,該方法包括投予一有效量之本發明的藥學組成物之步驟。該疾病較佳為癌症。該癌症較佳為一種固態腫瘤,較佳為一種癌或前列腺癌。
在本發明方法之另一較佳實施例中,該藥學組成物係適合與一種附加的藥物組合投藥,亦即作為協同療法的一部分。在該協同療法中,一種活性劑可選擇性地納入與本發明的雙特異性單鏈抗體分子相同之藥學組成物中,或可納入分開的藥學組成物中。在後者的情況下,該分開的藥學組成物係適於在包含本發明的雙特異性單鏈抗體分子之該藥學組成物投藥之前、同時或之後投藥。附加的藥物或藥學組成物可為一種非蛋白質化合物或一種蛋白質化合物。在附加藥物係一種蛋白質化合物的情況下,該蛋白質化合物可有利地提供免疫作用細胞一種活化訊號。
該蛋白質化合物或非蛋白質化合物較佳可與本發明的雙特異性單鏈抗體分子、上述所界定的核酸分子、上述所界定的載體或上述所界定的宿主同時或不同時投予。
在本發明的上述方法中,該個體較佳為人類。
在另一方面,本發明係有關於一種套組,其包含本發明的一種雙特異性單鏈抗體分子、本發明的一種核酸分子、本發明的一種載體或本發明的一種宿主。
該等與其他實施例係揭露與涵蓋於本發明的說明與實例中。免疫學中的重組技術與方法係述於如冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版之Sambrook等人的“分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)”乙書第三版;學術出版(Academic Press)有限公司於1997年出版之Lefkovits所著“免疫學方法手冊,完整技術資源手冊(Immunology Methods Manual,The Comprehensive Sourcebook of Techniques)”乙書;冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2002年出版之Golemis所著“蛋白質-蛋白質交互作用:分子選殖手冊(Protein-Protein Interactions:A Molecular Cloning Manual)”乙書。有關如本發明所用之抗體、方法、用途及化合物中任一者之其他文獻,可使用例如電子裝置而自公共圖書館與資料庫取得。例如,可使用在網際網路上可取得之公共資料庫“Medline”,例如http://www.ncbi.nlm.nih.gov/PubMed/medline.html。其他資料庫與網址係熟知技藝者所知,諸如http://www.ncbi.nlm.nih.gov/或列在EMBL服務主頁http://www.embl.de/services/index.html,及亦可使用例如http://www.google.com而取得。
圖式顯示: 第1圖
靈長類CD3ε的N端1至27個胺基酸與一種異源可溶性蛋白質之融合。
第2圖
該圖式顯示在ELISA分析中所測量之四重複試樣的平均吸收值,該ELISA分析係在暫態轉染的293細胞之上清液中,檢測由融合至人類IgG1的鉸鏈與Fc γ部分之成熟人類CD3ε鏈的N端1至27個胺基酸及C端六組胺酸標籤所組成的建構體之存在。標示為“27 aa huCD3E”的第一管柱顯示該建構體的平均吸收值,標示為“無關SN”的第二管柱顯示經作為陰性對照組的無關建構體轉染之293細胞上清液的平均值。該建構體所得數值與陰性對照組所得數值之比較,清楚地證實重組建構體之存在。
第3圖
該圖式顯示在ELISA分析中所測量之四重複試樣的平均吸收值,該ELISA分析係檢測以細胞周質表現型單鏈抗體的粗製品形式存在之跨物種特異性抗CD3結合分子與由融合至人類IgG1的鉸鏈與Fc γ部分之成熟人類CD3ε鏈的N端1至27個胺基酸及C端六組胺酸標籤所組成的建構體之結合作用。從左到右的管柱係顯示稱作A2J HLP、I2C HLP E2M HLP、F7O HLP、G4H HLP、H2C HLP、E1L HLP、F12Q HLP、F6A HLP及H1E HLP之特異性的平均吸收值。標示為“陰性對照組”的最右側管柱,係顯示作為陰性對照組的一種鼠抗人類CD3抗體的單鏈製品之平均吸收值。抗CD3特異性所得數值與陰性對照組所得數值之比較,清楚地證實抗CD3特異性與成熟人類CD3ε鏈的N端1至27個胺基酸之強力結合作用。
第4圖
靈長類CD3ε的N端1至27個胺基酸與一種異源的膜結合蛋白之融合。
第5圖
在FACS分析中所測試的不同轉染體之直方重疊圖,係檢測由食蟹猴EpCAM分別與人類、狨猿、獠狨、松鼠猴及家豬CD3ε鏈的N端1至27個胺基酸所組成的重組型跨膜融合蛋白之存在。從左至右及從上至下的直方重疊圖,係分別顯示表現分別包含人類27聚體、狨猿27聚體、獠狨27聚體、松鼠猴27聚體及豬27聚體的建構體之轉染體結果。在個別的重疊圖中,細線代表以含有2% FCS而非抗Flag M2抗體的PBS培養之作為陰性對照組的試樣,而粗線係顯示與抗Flag M2抗體培養之試樣。對於各建構體而言,直方重疊圖顯示抗Flag M2抗體與轉染體結合,其清楚地證實該重組建構體在轉染體上表現。
第6圖
在FACS分析中所測試的不同轉染體之直方重疊圖,係檢測以細胞周質表現型單鏈抗體的粗製品形式存在之跨物種特異性抗CD3結合分子與融合至食蟹猴EpCAM的人類、狨猿、獠狨及松鼠猴CD3ε鏈N端1至27個胺基酸之結合作用。
第6A圖:
從左至右及從上至下的直方重疊圖係顯示表現包含人類27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6B圖:
從左至右及從上至下的直方重疊圖係顯示表現包含狨猿27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6C圖:
從左至右及從上至下的直方重疊圖係顯示表現包含獠狨27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2CHLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6D圖:
從左至右及從上至下的直方重疊圖係顯示表現包含松鼠猴27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6E圖:
從左至右及從上至下的直方重疊圖係顯示表現包含豬27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
在個別的重疊圖中,細線係代表以一種鼠抗人類CD3抗體的單鏈製品培養之作為陰性對照組的試樣,而粗線係顯示與所示個別的抗CD3結合分子培養之試樣。考量第5圖中所示之建構體對於豬27聚體轉染體缺乏結合作用及表現水平,直方重疊圖顯示所測試之具完全跨物種特異性的人類雙特異性單鏈抗體之抗CD3特異性,對於表現分別包含與食蟹猴EpCAM融合的人類、狨猿、獠狨及松鼠猴CD3ε鏈N端1至27個胺基酸的重組跨膜融合蛋白之細胞,具有特異性與強力的結合作用,及因此顯示該抗CD3結合分子之跨多種靈長類物種的特異性。
第7圖
用於檢測轉染型鼠EL4 T細胞上的人類CD3ε之FACS分析。圖示分析顯示一個直方重疊圖。粗線顯示與人類CD3抗體UCHT-1培養的轉染型細胞。細線代表以小鼠IgG1同型對照組培養的細胞。抗CD3抗體UCHT1的結合作用清楚地顯示,人類CD3ε鏈在轉染型鼠EL4 T細胞的細胞表面上之表現作用。
第8圖
在丙胺酸掃描實驗中,具跨物種特異性的抗CD3抗體與丙胺酸突變體結合。在個別的圖式中,自左到右的柱狀顯示針對野生型轉染體(WT)及位置1至27的所有丙胺酸突變體所計算之對數尺度任意單位的結合值。結合值係使用下列公式計算:
在該方程式中,“數值_試樣”係指如圖式中所示之一種特異性抗CD3抗體與一種特異性丙胺酸突變體的結合程度之任意單位的結合值,“試樣”係指在一種特異性丙胺酸掃描轉染體上分析所得之一種特異性抗CD3抗體的幾何平均螢光值,“陰性_對照組”係指在一種特異性丙胺酸突變體上分析所得之陰性對照的幾何平均螢光值,UCHT-1係指在一種特異性丙胺酸突變體上分析所得之UCHT-1抗體的幾何平均螢光值,WT係指在野生型轉染體上分析所得之一種特異性抗CD3抗體的幾何平均螢光值,x係指個別的轉染體,y係指個別的抗CD3抗體及wt係指個別的野生型轉染體。個別的丙胺酸突變位置係以野生型胺基酸的單一字母代碼與該位置的數字標示。
第8A圖:
該圖式顯示以嵌合IgG分子形式表現的跨物種特異性抗CD3抗體A2J HLP之結果。當位置4(天冬醯胺)、位置23(蘇胺酸)及位置25(異白胺酸)突變成丙胺酸時,觀察到結合活性降低。當位置1(穀胺醯胺)、位置2(天冬胺酸)、位置3(甘胺酸)及位置5(麩胺酸鹽)突變成丙胺酸時,觀察到結合作用完全喪失。
第8B圖:
該圖式顯示以嵌合IgG分子形式表現的跨物種特異性抗CD3抗體E2M HLP之結果。當位置4(天冬醯胺)、位置23(蘇胺酸)及位置25(異白胺酸)突變成丙胺酸時,觀察到結合活性降低。當位置1(穀胺醯胺)、位置2(天冬胺酸鹽)、位置3(甘胺酸)及位置5(麩胺酸鹽)突變成丙胺酸時,觀察到結合作用完全喪失。
第8C圖:
該圖式顯示以嵌合IgG分子形式表現的跨物種特異性抗CD3抗體H2C HLP之結果。當位置4(天冬醯胺)突變成丙胺酸時,觀察到結合活性降低。當位置1(穀胺醯胺)、位置2(天冬胺酸)、位置3(甘胺酸)及位置5(穀胺酸)突變成丙胺酸穀胺醯胺時,觀察到結合作用完全喪失。
第8D圖:
顯示以在細胞周質表現的單鏈抗體形式所測試之跨物種特異性抗CD3抗體F12Q HLP之結果。當位置1(穀胺醯胺)、位置2(天冬胺酸)、位置3(甘胺酸)及位置5(麩胺酸鹽)突變成丙胺酸時,觀察到結合作用完全喪失。
第9圖
FACS分析檢測跨物種特異性抗CD3結合分子H2C HLP與具有及不具有N端His6標籤的人類CD3之結合作用。
在檢測跨物種特異性的結合分子H2C HLP的結合作用之FACS分析中,繪製所測試經野生型人類CD3ε鏈(左側直方圖)或具有N端His6標籤的人類CD3ε鏈(右側直方圖)轉染的EL4細胞系之直方重疊圖。試樣係與作為陰性對照組的適當同型對照組(細線)、作為陽性對照組的抗人類CD3抗體UCHT-1(虛線)及嵌合IgG分子形式的跨物種特異性抗CD3抗體H2C HLP(粗線)培養。
直方重疊圖顯示UCHT-1抗體與二種轉染體的結合作用係與同型對照組相當,證實該二種重組建構體之表現。直方重疊圖亦顯示抗CD3結合分子H2C HLP僅與野生型人類CD3ε鏈結合,而不與His6-人類CD3ε鏈結合。該等結果證實游離的N端係跨物種特異性抗CD3結合分子H2C HLP之結合作用所必需。
第10圖
所指定跨物種特異性的雙特異性單鏈建構體與經人類MCSP D3轉染的CHO細胞、人類CD3+ T細胞系HPB-ALL、經食蟹猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119 LnPx之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表以2微克/毫升的純化蛋白質培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第11圖
所指定跨物種特異性的雙特異性單鏈建構體與經人類MCSP D3轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經食蟹猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119 LnPx之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表以2微克/毫升的純化蛋白質培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第12圖
所指定跨物種特異性的雙特異性單鏈建構體與經人類MCSP D3轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經食蟹猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119 LnPx之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表以2微克/毫升的純化單體蛋白質培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第13圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)係使用受激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第14圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)與B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第15圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)與B)係使用受激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第16圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)係使用受激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第17圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)係使用受 激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第18(1)-(3)圖
藉由測量分別在37℃與4℃與50%人類血漿培養24小時或在細胞毒性試驗前即刻加入附加的50%人類血漿或者未添加血漿情況下培養之所指定的單鏈建構體試樣引發之細胞毒性,測試MCSP與D3跨物種特異性的雙特異性單鏈抗體之血漿安定性。使用經人類MCSP轉染的CHO細胞作為標的細胞系,及使用受激型CD4-/5 CD56-人類PBMC作為作用細胞。如第19例所述進行該分析。
第19a-f圖
在B-NHL病患(第3表的第1、7、23、30、31及33號病患)周邊血液中之絕對T細胞計數(未填滿的正方形)的初始下降與恢復(亦即重新分佈),該等病患在靜脈內輸注辨識習用的鄰近序列相關性CD3表位之CD3結合分子CD19 x CD3之起始階段期間,實質上並無循環的CD19陽性標的B細胞(填滿的三角形)。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD19 x CD3劑量係示於病患編號旁的括弧內。
第20圖
(A)第19號B-NHL病患(第3表)之重複性T細胞重新分佈(未填滿的正方形),該病患並無循環的CD19陽性標的B細胞 (填滿的三角形),在以5微克/平方公尺/24小時的起始劑量輸注1天及接著以驟增至15微克/平方公尺/24小時的劑量連續靜脈內輸注CD19 x CD3之情況下,發生CNS症狀。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。循環T細胞自以5微克/平方公尺/24小時開始治療所觸發的第一次重新分佈事件恢復之後,自5至15微克/平方公尺/24小時之劑量逐步增加觸發第二次T細胞重新分佈事件,其亦合併發生主要為精神混亂與定向力障礙之CNS症狀。
(B)一名B-NHL病患之重複性T細胞重新分佈,該病患在重複靜脈內大量輸注1.5微克/平方公尺的CD19 x CD3之情況下,發生CNS症狀。絕對細胞計數係以每微升血液1000個細胞之單位示之。各次大量投藥的輸注時間為2至4小時。垂直箭頭指出大量輸注作用之開始。在各次大量投藥開始時之數據點,係顯示在大量輸注開始之前的T細胞計數。各次的大量輸注作用觸發一次T細胞重新分佈事件,接著T細胞計數在下一次大量輸注之前恢復。最後,第三次T細胞重新分佈事件在該病患中合併發生CNS症狀。
第21圖
無循環CD19陽性標的B細胞(填滿的三角形)之第20號B-NHL病患(第3表),在迅速增加CD19 x CD3輸注之起始期間,亦即流速在治療的頭24小時內自幾乎0逐漸增加至15微克/平方公尺/24小時之複合型T細胞重新分佈模式(未填滿的正方形)。絕對細胞計數係以每微升血液1000個細胞之單 位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD19xCD3劑量係示於病患編號旁的括弧內。在由第一次曝露於CD19xCD3所觸發的首次重新分佈之後,T細胞在循環血液中重現,其中之一部份因迅速增加階段期間之CD19 x CD3水平的持續增加而再度消失。
第22圖
具有顯著數目的循環CD19陽性標的B(淋巴瘤)細胞(填滿的三角形)之第13號B-NHL病患(第3表),在CD19 x CD3治療期間之T細胞與B細胞計數。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD19xCD3劑量係示於病患編號旁的括弧內。在開始輸注CD19 x CD3之際,T細胞(未填滿的正方形)自循環中完全消失,及並未重現直至循環CD19陽性B(淋巴瘤)細胞(填滿的三角形)自周邊血液減除為止。
第23圖
第24號B-NHL病患(第3表)之重複性T細胞重新分佈(未填滿的正方形),該病患實質上並無循環CD19陽性標的B細胞(填滿的三角形),及在未添加藥物安定化作用所需的HAS之CD19 x CD3輸注作用起始之際,發生CNS症狀(上圖)。循環T細胞首次自初始重新分佈恢復之後,因缺乏安定化HAS所引起的不均勻藥物流量觸發第二次T細胞重新分佈事件,及其合併發生主要為精神混亂與定向力障礙之CNS症狀。當同一名病患正確地以含有供藥物安定用的附加HSA之CD19 x CD3溶液重新開始時,未觀察到重複性T細 胞重新分佈(下圖)及該病患並未再度發生任一CNS症狀。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD19 x CD3劑量係示於病患編號旁的括弧內。
第24圖
藉由與鄰近序列相關性CD3表位的單價結合作用所引發之T細胞附著內皮細胞的模型。一種習用的CD3結合分子與其CD3ε上的鄰近序列相關性表位之單價交互作用,可導致CD3構形的一種異位變化,接著將Nck2募集至CD3ε的胞質域(Gil於期刊“Cell”第109期(2002年)第901-912頁乙文)。因Nck2經由PINCH與ILK而直接連接整合子(Legate等人(2006年)於期刊“Nat Rev Mol Cell Biol”第7期第20頁乙文),在經由一種習用的CD3結合分子(如第13例之CD19 x CD3)與其CD3ε上的鄰近序列相關性表位之結合作用所導致之CD3構形的異位變化之後,將Nck2募集至CD3ε的胞質域之作用,可經由內而外的訊號傳導,藉由將T細胞表面上的整合子暫時轉換成為其等黏著性較高的異構體,而增加T細胞對於內皮細胞的黏著性。
第25圖
用於如第14例所述之食蟹猴活體內研究的CD33-AF5 VH-VL x I2C VH-VL試驗物質之細胞毒性活性。在一種標準的51 鉻釋出分析中,以遞增濃度的CD33-AF5 VH-VL x I2C VH-VL,測定CD33陽性標的細胞之特異性分解作用。分析時間為18小時。使用獼猴T細胞系4119 LnPx作為作用 細胞的來源。經食蟹猴CD33轉染的CHO細胞係作為標的細胞。作用細胞相對於標的細胞之比例(E:T比)為10:1。自劑量反應曲線計算而得半極大標的細胞分解作用所需的CD33-AF5 VH-VL x I2C VH-VL濃度(EC50)之數值為2.7奈克/毫升。
第26A-B圖
(A)經由如第14例所述之CD33-AF5 VH-VL x I2C VH-VL的靜脈內連續輸注作用,自食蟹猴周邊血液以具劑量與時間依賴性方式減除CD33陽性單核細胞之作用。在上述治療期間後,二種食蟹猴中的各者在各劑量水平之絕對的循環CD33陽性單核細胞計數相對於基線(亦即100%)之百分比,係以柱狀顯示。劑量水平(亦即輸注流速)係示於柱狀下方。在以30微克/平方公尺/24小時的劑量治療七天之第1與2號動物中,觀察到並無循環CD33陽性單核細胞的減除作用。在以60微克/平方公尺/24小時的劑量治療七天之第3與4號動物中,循環CD33陽性單核細胞計數分別降為基線的68%與40%。以240微克/平方公尺/24小時治療3天之後,周邊血液中的循環CD33陽性單核細胞幾乎完全減除(第5與6號動物)。以1000微克/平方公尺/24小時治療1天之後,周邊血液中的循環CD33陽性單核細胞已經完全減除(第7與8號動物)。
(B)二種食蟹猴在以120微克/平方公尺/24小時的CD33-AF5 VH-VL x I2C VH-VL連續輸注14天期間,其周邊血液中之T細胞與CD33單核細胞計數之歷程。絕對細胞計數係 以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD33單核細胞在開始輸注之頭12個小時期間的初始移動之後,相對於進一步輸注期間的個別基線計數,其周邊血液中CD33單核細胞(填滿的三角形)減除三分之二(第26B(2)圖:第10號動物)及50%(第26B(1)圖:第9號動物)。循環T細胞計數(未填滿的正方形)顯示有限的初始下降,接著在循環CD33陽性單核標的細胞仍存在之期間恢復。
第27圖
用於如第15例所述之食蟹猴活體內研究的MCSP-G4 VH-VL x I2C VH-VL試驗物質之細胞毒性活性。在一種標準的51 鉻釋出分析中,以遞增濃度的MCSP-G4 VH-VL x I2C VH-VL,測定MCSP陽性標的細胞之特異性分解作用。分析時間為18小時。使用獼猴T細胞系4119 LnPx作為作用細胞的來源。經食蟹猴MCSP轉染的CHO細胞係作為標的細胞。作用細胞相對於標的細胞之比例(E:T比)為10:1。自劑量反應曲線計算而得半極大標的細胞分解作用所需的MCSP-G4 VH-VL x I2C VH-VL濃度(EC50)之數值為1.9奈克/毫升。
第28(1)-(2)圖
在靜脈內輸注辨識實質上鄰近序列無關性CD3表位的CD3結合分子MCSP-G4 VHVL x I2C VH-VL之起始階段期間,在食蟹猴周邊血液中並無絕對T細胞計數下降及後續恢復(亦即重新分佈)之初始事件。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開 始之前的基線計數。MCSP-G4 VHVL x I2C VH-VL劑量係示於動物編號旁的括弧內。在已知食蟹猴循環血液中不存在MCSP陽性標的細胞之情況下,經由標的細胞所媒介之CD3交聯作用並未引發T細胞重新分佈(亦即絕對T細胞計數下降與後續恢復之初始事件)。此外,藉由使用辨識一種實質上鄰近序列無關性CD3表位之CD3結合分子如MCSP-G4 VH-VL x I2C VH-VL,可避免經由T細胞通過僅與一個CD3結合位點的專有交互作用而接收之一訊號所引發的T細胞重新分佈(亦即絕對T細胞計數下降與後續恢復之初始事件)。
第29(1)-(12)圖
所指定之跨物種特異性的雙特異性單鏈建構體與經人類CD33轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、分別經獼猴CD33與獼猴PBMC轉染的CHO細胞之FACS結合分析。FACS染色作用係如第16.4例所述進行。粗線代表細胞係以5微克/毫升的純化雙特異性單鏈建構體培養,或與表現跨物種特異性的雙特異性抗體建構體之轉染細胞的細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組。直方重疊圖就各個跨物種特異性的雙特異性單鏈建構體,顯示該建構體與人類及獼猴CD33以及與人類及獼猴CD3之特異性結合作用。
第30(1)-(8)圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的CD33特異性單鏈建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第16.5例所述進行該分析。該等圖清楚地證實各建構體分別對於對抗經人類與獼猴CD33轉染的CHO細胞之人類與獼猴作用細胞的細胞毒性活性之強力募集作用。
第31圖
用於監控稱作E292F3 HL x I2 CHL之跨物種特異性的雙特異性單鏈分子純化作用之SDS PAGE凝膠與西方墨點法。來自洗提液、細胞培養上清液(SN)及管柱流出物(FT)之試樣,係如所示分析。使用一種蛋白質標記(M)作為尺寸參考基準。在SDS PAGE凝膠中之一個分子量介於50與60kDa之間的明顯蛋白質帶狀,證實藉由第17.2例所述之單一步驟的純化方法,將跨物種特異性的雙特異性單鏈分子有效地純化至非常高的純度。用於檢測組胺酸6標籤之西方墨點法,確認洗提液中之蛋白質帶狀為跨物種特異性的雙特異性單鏈分子。在該敏感的檢測方法中之流出物試樣的微弱訊號進一步顯示,藉由該純化方法幾乎完全地擷取雙特異性單鏈分子。
第32圖
用於監控稱作V207C12 HL x H2C HL之跨物種特異性的雙特異性單鏈分子純化作用之SDS PAGE凝膠與西方墨點法。來自洗提液、細胞培養上清液(SN)及管柱流出物(FT)之試樣,係如所示分析。使用一種蛋白質標記(M)作為尺寸參考基準。在SDS PAGE凝膠中之一個分子量介於50與60kDa之間的明顯蛋白質帶狀,證實藉由第17.2例所述之單一步驟的純化方法,將跨物種特異性的雙特異性單鏈分子有效地純化至非常高的純度。用於檢測組胺酸6標籤之西方墨點法,確認洗提液中之蛋白質帶狀為跨物種特異性的雙特異性單鏈分子。在該敏感的檢測方法中之流出物試樣的微弱訊號進一步顯示,藉由該純化方法幾乎完全地擷取雙特異性單鏈分子。
第33圖
用於監控稱作AF5HLxF12QHL之跨物種特異性的雙特異性單鏈分子純化作用之SDS PAGE凝膠與西方墨點法。來自洗提液、細胞培養上清液(SN)及管柱流出物(FT)之試樣,係如所示分析。使用一種蛋白質標記(M)作為尺寸參考基準。在SDS PAGE凝膠中之一個分子量介於50與60kDa之間的明顯蛋白質帶狀,證實藉由第17.2例所述之單一步驟的純化方法,將跨物種特異性的雙特異性單鏈分子有效地純化至非常高的純度。用於檢測組胺酸6標籤之西方墨點法,確認洗提液中之蛋白質帶狀為跨物種特異性的雙特異性單鏈分子。在該敏感的檢測方法中之流出物試樣的訊號,可由因上清液中的高濃度雙特異性單鏈分子而造成親和管柱飽和解釋之。
第34圖
AF5HLxI2CHL於50%獼猴血清中之標準曲線。上圖顯示針對述於第18.2例之分析所產生的標準曲線。
下圖顯示AF5HLxI2CHL於50%獼猴血清中的品管試樣之結果。高與中QC試樣的回收率高於90%,而低QC試樣則高於80%。
因此,該分析容許檢測之血清試樣中的AF5HLxI2CHL範圍,係自10奈克/毫升至200奈克/毫升(稀釋前)。
第35圖
MCSP-G4 HL x I2C HL於50%獼猴血清中之標準曲線。上圖顯示針對述於第18.2例之分析所產生的標準曲線。
下圖顯示MCSP-G4 HL x I2C HL於50%獼猴血清中的品管試樣之結果。高與中QC試樣的回收率高於98%,而低QC試樣則高於85%。
因此,該分析容許檢測之血清試樣中的MCSP-G4 HL x I2C HL範圍,係測自10奈克/毫升至200奈克/毫升(稀釋前)。
第36圖
一種抗Flag抗體與CHO細胞之FACS結合分析,該CHO細胞係經融合至食蟹猴EpCAM之所指定物種的CD3ε之N端1-27個胺基酸轉染。如第19.1例所述進行FACS染色作用。粗線代表以抗Flag抗體培養之細胞。填滿的直方圖反映陰性對照組。使用具有2% FCS的PBS作為陰性對照組。直方圖顯示抗Flag抗體與所有轉染體之強力與相當的結合作用,其係表示經轉染的建構體之強力與相等的表現作用。
第37圖
I2C IgG1建構體與CHO細胞之FACS結合分析,該CHO細胞係表現融合至食蟹猴EpCAM之所指定物種的CD3ε之N端1-27個胺基酸。如第19.3例所述進行FACS染色作用。粗線代表細胞係以50微升之表現I2C IgG1建構體的細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用表現融合至食蟹猴EpCAM之豬CD3ε的N端1-27個胺基酸之細胞作為陰性對照組。相較於陰性對照組,該直方圖清楚地證實I2C IgG1建構體與人類、狨猿、獠狨及松鼠猴之CD3ε的N端1-27個胺基酸之結合作用。
第38圖
如第19.2例所述的I2C IgG1建構體與分別如第6.1例及第5.1例所述之具有與不具有N端His6標籤的人類CD3之FACS結合分析。粗線代表細胞係如所示分別以抗人類CD3抗體UCHT-1、五組胺酸(penta-His)抗體(凱傑(Qiagen)公司)及表現I2C IgG1建構體的細胞之細胞培養上清液培養。填滿的直方圖係反映作為陰性對照組的細胞,其係與一種無關的鼠IgG1抗體培養。
上方二個直方重疊圖顯示UCHT-1抗體與該二轉染體之結合作用係可與同型對照組相比,其證實該二重組建構體之表現作用。中間的直方重疊圖顯示五組胺酸(penta his)抗體與表現His6-人類CD3ε鏈(His6-CD3)的細胞結合,但不與表現野生型CD3ε鏈(WT-CD3)的細胞結合。下方的直方重疊圖顯示I2C IgG1建構體與野生型人類CD3ε鏈結合,但不與His6-人類CD3ε鏈結合。該等結果證實游離的N端係跨物種特異性抗CD3結合分子I2C與CD3ε鏈的結合作用所必需。
第39a-1圖
所指定跨物種特異性的雙特異性單鏈建構體分別與經人類MCSP D3轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經獼猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119 LnPX之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表細胞係分別以2微克/毫升的純化雙特異性單鏈建構體培養,或與含有該雙特異性單鏈建構體的細胞上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組,以進行與T細胞系之結合作用。使用一種具有無關標的特異性之單鏈建構體作為陰性對照組,以進行與經MCSP D3轉染的CHO細胞之結合作用。直方重疊圖就各個跨物種特異性的雙特異性單鏈建構體,顯示該建構體與人類及獼猴MCSP D3以及與人類及獼猴CD3之特異性結合作用。
第40a-d圖
藉由重新導向所示標的細胞系之所指定跨物種特異性的MCSP D3特異性單鏈建構體所引發之細胞毒性活性。作用細胞及作用細胞相對於標的之比例,亦如所示使用。如第11例所述進行該分析。該等圖清楚地證實各建構體對於細胞毒性活性的強力募集作用。
第41a-b圖
所指定跨物種特異性的雙特異性單鏈建構體分別與經人類CD33轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經獼猴CD33與獼猴PBMC轉染的CHO細胞之FACS結合分析。如第21.2例所述進行FACS染色作用。粗線代表細胞係以表現跨物種特異性的雙特異性抗體建構體的轉染細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組。直方重疊圖就各個跨物種特異性的雙特異性單鏈建構體,顯示該建構體與人類及獼猴CD33以及與人類及獼猴CD3之特異性結合作用。
第42圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的CD33特異性單鏈建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第21.3例所述進行該分析。該等圖清楚地證實各建構體分別對於對抗經人類與獼猴CD33轉染的CHO細胞之人類與獼猴作用細胞的細胞毒性活性之強力募集作用。
第43圖
在每週靜脈內大量輸注PBS/5% HAS及PBS/5% HAS加上劑量為1.6、2.0、3.0及4.5微克/公斤的單鏈EpCAM/CD3雙特異性抗體建構體之情況下,黑猩猩之T細胞重新分佈。各次大量投藥作用的輸注時間為2小時。垂直箭頭指出大量輸注之開始。各次大量投藥開始時之數據點,係顯示在大量輸注開始之前的T細胞計數。辨識一種習用的鄰近序列相關性CD3表位之單鏈EpCAM/CD3雙特異性抗體建構體之各次大量輸注作用,觸發一次T細胞重新分佈事件,之後T細胞在下一次大量輸注之前恢復至基線數值。
第44圖
來自所選擇殖株之含有帶Flag標籤之scFv蛋白片段的周質製劑之CD3特異性ELISA分析。在ELISA平皿中之已塗覆可溶性人類CD3ε(aa 1-27)-Fc融合蛋白及附加地以PBS3% BSA阻斷之孔中,添加可溶性scFv蛋白片段的周質製劑。依序藉由一種單株抗Flag-生物素標記的抗體及過氧化酶複合型鏈黴菌卵白素進行檢測。ELISA係藉由一種ABTS受質溶液顯影。藉由ELISA讀數器,在405nm測量OD數值(y軸)。殖株名稱係示於x軸。
第45圖
來自所選擇殖株之含有帶Flag標籤之scFv蛋白片段的周質製劑之ELISA分析。在ELISA平皿中之已塗覆huIgG1(西克瑪(Sigma)公司)而非塗覆人類CD3ε(aa 1-27)-Fc融合蛋白及以PBS中的3% BSA阻斷之孔中,添加第44圖之可溶性scFv蛋白片段的相同周質製劑。
依序藉由一種單株抗Flag-生物素標記的抗體及過氧化酶複合型鏈黴菌卵白素進行檢測。ELISA係藉由一種ABTS受質溶液顯影。藉由ELISA讀數器,在405nm測量OD數值(y軸)。殖株名稱係示於x軸。
第46(1)-(4)圖
所指定跨物種特異性的雙特異性單鏈建構體分別與經人類PSMA轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經獼猴PSMA轉染的CHO細胞及一種獼猴T細胞系4119 LnPx之FACS結合分析。如第24.4例所述進行FACS染色作用。粗線代表以細胞培養上清液培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第47(1)-(2)圖
藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈建構體所引發之細胞毒性活性。A)與B)係使用移除CD56的未受激型人類PBMC作為作用細胞,使用經人類PSMA轉染的CHO細胞作為標的細胞。如第24.5例所述進行該分析。
第48(1)-(2)圖
藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈建構體所引發之細胞毒性活性。A)與B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經獼猴PSMA轉染的CHO細胞作為標的細胞。如第24.5例所述進行該分析。
第49a-e圖
所指定跨物種特異性的雙特異性單鏈建構體分別與人類PSMA陽性前列腺癌細胞系LNCaP、人類CD3+T細胞系HPB-ALL及獼猴T細胞系4119 LnPx之FACS結合分析。如第24.7例所述進行FACS染色作用。粗線代表細胞係以表現跨物種特異性的雙特異性抗體建構體的轉染細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用細胞培養基作為陰性對照組。就所示的各個跨物種特異性的雙特異性單鏈建構體,直方重疊圖顯示該建構體與人類PSMA及與人類及獼猴CD3之結合作用。
第50(1)-(3)圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第24.8例所述進行該分析。該等圖清楚地證實,所示建構體對於對抗由人類前列腺癌細胞系LNCaP或獼猴T細胞系4119LnPx所例示的PSMA陽性癌細胞之人類或獼猴作用T細胞的細胞毒性活性之強力募集作用。
第51a-c圖
所指定跨物種特異性的雙特異性單鏈建構體與PSMA陽性細胞之FACS結合分析。如第24.7例所述進行FACS染色作用。就所示的各個跨物種特異性的雙特異性單鏈建構體,直方重疊圖顯示該建構體與人類PSMA及與人類及獼猴CD3之結合作用。
第52A-B圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第24.8例所述進行該分析。該等圖清楚地證實,所示建構體對於對抗PSMA陽性細胞之人類或獼猴作用T細胞的細胞毒性活性之強力募集作用。
第53a-d圖
如第25.1例所述,所指定跨物種特異性的雙特異性單鏈建構體與表現所指定人類/大鼠PSMA嵌合體的CHO細胞之FACS結合分析。如第25.2例所述進行FACS染色作用。粗線代表細胞係以表現雙特異性抗體建構體的轉染細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組。使用細胞培養基作為陰性對照組。就各個雙特異性單鏈建構體,直方重疊圖顯示該建構體與嵌合建構體huPSMArat140-169、huPSMArat191-258、huPSMArat281-284、huPSMArat683-690及huPSMArat716-750之特異性結合作用。相較於其他雙特異性單鏈建構體所得的訊號,雙特異性單鏈抗體建構體PM84-D7 x I2C、PM29-G1 x I2C及PM49-B9 x I2C清楚地缺少與嵌合建構體huPSMArat300-344之結合作用。而且,相較於其他雙特異性單鏈建構體所得的訊號,雙特異性單鏈抗體建構體PM34-C7 x I2C清楚地缺少與建構體huPSMArat598-617之結合作用。
第54圖
PSMA BiTE抗體PM 76-A9 x I2C之PSMA標的結合子scFv MP9076-A9與跨越人類PSMA的細胞外域及與其等的鄰近肽重疊14個胺基酸之15聚體肽之結合作用。肽的編號係標示於X軸。使用His檢測作用之ELISA訊號,係標示於Y軸。
第55圖
PSMA BiTE抗體PM 76-B10 x I2C之PSMA標的結合子scFv MP9076-B10與跨越人類PSMA的細胞外域及與其等的鄰近肽重疊14個胺基酸之15聚體肽之結合作用。肽的編號係標示於X軸。使用His檢測作用之ELISA訊號,係標示於Y軸。
第56圖
PSMA BiTE抗體PM F1-A10 x I2C之PSMA標的結合子scFv F1-A10與跨越人類PSMA的細胞外域及與其等的鄰近肽重疊14個胺基酸之15聚體肽之結合作用。肽的編號係標示於X軸。使用His檢測作用之ELISA訊號,係標示於Y軸。
第57圖
scFv MP 9076-A9、MP 9076-B10及F1-A10之可能的優勢表位。以虛線圍繞人類PSMA的三維結構中之可能的核心結合胺基酸。以色彩編碼表示scFv及個別的表位。Davis等人於2005年(期刊“PNAS”第102期第5981-6頁乙文)報導人類PSMA的晶體結構。
本發明另外藉由下列例證性質的非限制性實例加以說明,以提供對於本發明及其眾多優點之更佳瞭解。
實例 1.辨識非人類靈長類的血液試樣中之CD3ε序列
在CD3ε辨識作用中,使用下列非人類靈長類的血液試樣:白鬢狨(Callithrix jacchus)、棉冠獠狨(Saguinus oedipus)及松鼠猴(Saimiris ciureus)。依據製造廠商的操作程序(凱傑(Qiagen)公司的QIAamp RNA血液迷你套組)製備之經肝素處理的新鮮全血液試樣,以用於分離全細胞RNA。依據已發表的操作程序,將所分離的mRNA轉錄成cDNA。簡言之,10微升的沉澱RNA與1.2微升的10×六核苷酸混合物(羅奇(Roche)公司)於70℃培養10分鐘,及儲存在冰上。添加由4微升的5×SuperScript II緩衝液、0.2微升的0.1M二硫蘇糖醇、0.8微升的SuperScript II(英杰(Invitrogene)公司)、1.2微升的去氧核糖核苷三磷酸(25μM)、0.8微升的RNA酶抑制劑(羅奇(Roche)公司)及1.8微升的無DNA酶與RNA酶的水(羅斯(Roth)公司)所組成之反應混合物。反應混合物在室溫培養10分鐘,接著在42℃培養50分鐘及在90℃培養5分鐘。在冰上將反應冷卻,然後加入0.8微升的RNA酶H(1單位/微升,羅奇(Roche)公司)及在37℃培養20分鐘。
來自各個物種的第一股cDNA進行分開的35個循環之聚合酶鏈反應,該反應係使用Taq DNA聚合酶(西克瑪(Sigma)公司)及根據資料庫研究而設計之下列引子組合:正向引子5'-AGAGTTCTGGGCCTCTGC-3'(序列辨識編號253);反向引子5'-CGGATGGGCTCATAGTCTG-3'(序列辨識編號254)。所擴增的550鹼基對帶狀進行凝膠純化(凱傑(Qiagen)公司的凝膠萃取套組)及定序(德國維特史特坦(Vaterstetten)的Sequiserve公司,見序列清單)。
白鬢狨(Callithrix jacchus)的CD3ε
核苷酸
CAGGACGGTAATGAAGAAATGGGTGATACTACACAGAACCCATATAAAGTTTCCATCTCAGGAACCACAGTAACACTGACATGCCCTCGGTATGATGGACATGAAATAAAATGGCTCGTAAATAGTCAAAACAAAGAAGGTCATGAGGACCACCTGTTACTGGAGGACTTTTCGGAAATGGAGCAAAGTGGTTATTATGCCTGCCTCTCCAAAGAGACTCCCGCAGAAGAGGCGAGCCATTATCTCTACCTGAAGGCAAGAGTGTGTGAGAACTGCGTGGAGGTGGAT
胺基酸(序列辨識編號3)
QDGNEEMGDTTQNPYKVSISGTTVTLTCPRYDGHEIKWLVNSQNKEGHEDHLLLEDFSEMEQSGYYACLSKETPAEEASHYLYLKARVCENCVEVD
棉冠獠狨(Saguinus oedipus)的CD3ε
核苷酸
CAGGACGGTAATGAAGAAATGGGTGATACTACACAGAACCCATATAAAGTTTCCATCTCAGGAACCACAGTAACACTGACATGCCCTCGGTATGATGGACATGAAATAAAATGGCTTGTAAATAGTCAAAACAAAGAAGGTCATGAGGACCACCTGTTACTGGAGGATTTTTCGGAAATGGAGCAAAGTGGTTATTATGCCTGCCTCTCCAAAGAGACTCCCGCAGAAGAGGCGAGCCATTATCTCTACCTGAAGGCAAGAGTGTGTGAGAACTGCGTGGAGGTGGAT
胺基酸(序列辨識編號5)
QDGNEEMGDTTQNPYKVSISGTTVTLTCPRYDGHEIKWLVNSQNKEGHEDHLLLEDFSEMEQSGYYACLSKETPAEEASHYLYLKARVCENCVEVD
松鼠猴(Saimiris ciureus)的CD3ε
核苷酸
CAGGACGGTAATGAAGAGATTGGTGATACTACCCAGAACCCATATAAAGTTTCCATCTCAGGAACCACAGTAACACTGACATGCCCTCGGTATGATGGACAGGAAATAAAATGGCTCGTAAATGATCAAAACAAAGAAGGTCATGAGGACCACCTGTTACTGGAAGATTTTTCAGAAATGGAACAAAGTGGTTATTATGCCTGCCTCTCCAAAGAGACCCCCACAGAAGAGGCGAGCCATTATCTCTACCTGAAGGCAAGAGTGTGTGAGAACTGCGTGGAGGTGGAT
胺基酸(序列辨識編號7)
QDGNEEIGDTTQNPYKVSISGTTVTLTCPRYDGQEIKWLVNDQNKEGHEDHLLLEDFSEMEQSGYYACLSKETPTEEASHYLYLKARVCENCVEVD
2 .與人及不同的非黑猩猩靈長類之CD3ε的N端1至27個胺基酸結合之跨物種特異性單鏈抗體片段(scFv)之產生 2.1使用藉由與一種異源可溶性蛋白融合而自其天然的CD3鄰近序列分離之CD3ε的N端之小鼠免疫接種作用
以帶有人及/或松鼠猴(Saimiris㊣ciureus)成熟CD3ε鏈最靠N端的1至27個胺基酸之CD3ε-Fc融合蛋白(1-27 CD3-Fc),進行來自balb/c×C57黑色雜交的十週大F1小鼠之免疫接種。為此目的,在每隻小鼠中以腹膜內方式注射位於300微升PBS中的40微克1-27 CD3-Fc融合蛋白與10奈莫耳經硫代酸鹽修飾的CpG-寡核苷酸(5'-tccatgacgttcctgatgct-3')。小鼠在21天、42天及選擇性地63天後,以相同方式進行加強免疫接種。第一次加強免疫接種之10天後,抽取血液試樣,及藉由ELISA測試對抗1-27 CD3-Fc融合蛋白的抗體血清滴定度。此外,依據標準操作程序,以流動式細胞測量術測試對抗CD3陽性人類T細胞系HPBall的滴定度。接受免疫接種的動物中之血清滴定度,係顯著高於未接受免疫接種的動物。
2.2.免疫鼠抗體scFv庫之產生:建構組合抗體庫與噬菌體顯現
在最後一次注射之3天後,依據標準操作程序採集鼠脾細胞,以用於製備全RNA。
使用VK與VH特異性引子,在鼠脾RNA上藉由RT-PCR建構鼠免疫球蛋白(Ig)輕鏈(κ)可變區域(VK)與Ig重鏈可變區域(VH)的DNA片段庫。根據標準操作程序合成cDNA。
引子的設計方式係產生供所擴增的重鏈V片段用之5'-XhoI與3'-BstEII辨識位點,及供所擴增的VK DNA片段用之5'-SacI與3'-SpeI辨識位點。
為進行VH DNA片段的PCR擴增作用,八種不同的5'-VH家族特異性引子(MVH1(GC)AG GTG CAG CTC GAG GAG TCA GGA CCT(序列辨識編號344);MVH2 GAG GTC CAG CTC GAG CAG TCT GGA CCT(序列辨識編號345);MVH3 CAG GTC CAA CTC GAG CAG CCT GGG GCT(序列辨識編號346);MVH4 GAG GTT CAG CTC GAG CAG TCT GGG GCA(序列辨識編號347);MVH5 GA(AG)GTG AAG CTC GAG GAG TCT GGA GGA(序列辨識編號348);MVH6 GAG GTG AAG CTT CTC GAG TCT GGA GGT(序列辨識編號349);MVH7 GAA GTG AAG CTC GAG GAG TCT GGG GGA(序列辨識編號350);MVH8 GAG GTT CAG CTC GAG CAG TCT GGA GCT(序列辨識編號351))各與一種3'-VH引子(3’MuVHBstEII tga gga gac ggt gac cgt ggt ccc ttg gcc cca g(序列辨識編號352))組合;為進行VK鏈片段的PCR擴增作用,7種不同的5'-VK家族特異性引子(MUVK1 CCA GTT CCG AGC TCG TTG TGA CTC AGG AAT CT(序列辨識編號353);MUVK2 CCA GTT CCG AGC TCG TGT TGA CGC AGC CGC CC(序列辨識編號354);MUVK3 CCA GTT CCG AGC TCG TGC TCA CCC AGT CTC CA(序列辨識編號355);MUVK4 CCA GTT CCG AGC TCC AGA TGA CCC AGT CTC CA(序列辨識編號356);MUVK5 CCA GAT GTG AGC TCG TGA TGA CCC AGA CTC CA(序列辨識編號357);MUVK6 CCA GAT GTG AGC TCG TCA TGA CCC AGT CTC CA(序列辨識編號358);MUVK7 CCA GTT CCG AGC TCG TGA TGA CAC AGT CTC C A(序列辨識編號359))各與一種3'-VK引子(3’MuVkHindIII/BsiW1 tgg tgc act agt cgt acg ttt gat ctc aag ctt ggt ccc(序列辨識編號360))組合。
使用下列PCR程式進行擴增:在94℃變性20秒;在52℃進行引子黏合50秒及在72℃進行引子延伸作用60秒,及進行40個循環,接著在72℃進行最終延伸作用10分鐘。
450奈克的κ輕鏈片段(SacI-SpeI分解型)與1400奈克的噬菌體質體pComb3H5Bhis(SacI-SpeI分解型;大型片段)連接。所得的組合抗體庫然後藉由電穿孔作用(2.5千伏(kV),0.2公分間隙的光析管,25uFD,200歐姆(Ohm),佰歐瑞(Biorad)公司的基因脈衝(gene-pulser)電穿孔儀)而轉型進入300微升的電勝任型大腸桿菌(Escherichia coli)XL1藍色細胞中,產生超過107個獨立殖株的庫容量。在1小時的表現型表現作用之後,在100毫升的液體超級肉湯(SB)培養中過夜,及選擇pComb3H5Bhis載體所編碼之具羧苄青黴素抗性的陽性轉型體。然後藉由離心收集細胞,及使用商品化的質體製備套組(凱傑(Qiagen)公司)進行質體製備作用。
2800奈克之含有VK庫(XhoI-BstEII分解型;大型片段)的該質體DNA與900奈克的重鏈V片段(XhoI-BstEII分解型)連接,然後再一次藉由電穿孔(2.5千伏,0.2公分間隙的光析管,25uFD,200歐姆)轉型進入2等份的300微升電勝任型大腸桿菌(E. coli)XL1藍色細胞中,產生超過107個獨立殖株的總VH-VK scFv(單鏈可變片段)庫容量。
在表現型表現及對羧苄青黴素的緩慢適應之後,將含有該抗體庫的大腸桿菌(E. coli)細胞轉移至SB-羧苄青黴素(50微克/毫升)選擇培養基中。然後以1012個輔助噬菌體VCSM13顆粒之感染性劑量,感染含有該抗體庫的大腸桿菌(E. coli)細胞,而導致絲狀M13噬菌體之產生與釋出,其中噬菌體顆粒含有編碼鼠scFv片段的單股pComb3H5BHis-DNA及顯現作為噬菌體外殼蛋白III的轉譯融合物之對應scFv蛋白。之後,將顯現該抗體庫之噬菌體庫用於選擇抗原結合實體。
2.3.以噬菌體顯現為基礎之CD3特異性結合子的選擇作用
藉由PEG8000/氯化鈉沉澱與離心作用,自個別的培養上清液收集具有所選殖的scFv譜之噬菌體庫。將大約1011至1012個scFv噬菌體顆粒再懸浮於0.4毫升的PBS/0.1% BSA中,及在緩慢攪拌下,與105至107個Jurkat細胞(一種CD3陽性人類T細胞系)在冰上培養1小時。該等JurkaT細胞事先在以胎牛血清(10%)、穀胺醯胺及青黴素/鏈黴素富化的RPMI培養基中生長,藉由離心作用收集,以PBS沖洗及再懸浮於PBS/1% FCS(含有疊氮化鈉)中。藉由以至多5次的PBS/1% FCS(含有疊氮化鈉)的清洗步驟,除去未與JurkaT細胞特異性地結合的scFv噬菌體。在清洗之後,藉由將細胞再懸浮於pH 2.2的鹽酸-甘胺酸(培養10分鐘後進行渦漩)而自細胞洗提出結合實體,及在pH 12的2M Tris中和作用之後,該洗提液用於感染新鮮未被感染的大腸桿菌(E. coli)XL1藍色之培養(OD600>0.5)。對於含有經編碼人類scFv片段的噬菌體質體複本成功地轉導的大腸桿菌細胞之大腸桿菌培養,再次進行羧苄青黴素抗性之選擇,之後以VCMS 13輔助噬菌體感染,而開始第二回的抗體顯現與試管中選擇作用。通常總共進行4至5回的選擇作用。
2.4. CD3特異性結合子之篩選
在選擇作用之後,自大腸桿菌(E. coli)培養中分離對應於4與5回淘選之質體DNA。為產生可溶性scFv蛋白,自質體(XhoI-SpeI)切除VH-VL-DNA片段。該等片段經由相同限制位點選殖進入質體pComb3H5BFlag/His中,該質體與原始pComb3H5BHis不同之處,係在於表現建構體(例如scFv)包括位於scFv與His6標籤之間的一個Flag標籤(TGDYKDDDDK)及刪除附加的噬菌體蛋白。在連接之後,將各質體DNA庫(不同回次的淘選作用)轉型進入100微升的熱休克勝任型大腸桿菌(E. coli)TG1或XL1藍色中,及塗覆在羧苄青黴素LB-瓊脂上。將單一菌落挑選置入100微升的LB羧苄青黴素(50微克/毫升)。
經含有VL與VH片段之pComb3H5BHis轉型的大腸桿菌(E. coli)在切除基因III片段及以1mM IPTG誘發之後,產生足量的可溶性scFv。由於一種適宜的訊息序列,該scFv鏈被輸出至周質及在該處折疊成為功能構形。
自轉型平皿挑選用於周質小型製劑之單一大腸桿菌(E. coli)TG1細菌菌落,在增補20mM氯化鎂與50微克/毫升的羧苄青黴素之SB培養基(如10毫升)中生長,及在收集之後再溶於PBS(如1毫升)中。藉由4回合之-70℃冷凍與37℃解凍,藉由溫度休克而破壞細菌外膜,而包括scFv在內的可溶性周質蛋白被釋出至上清液中。藉由離心除去完整細胞與細胞碎屑之後,收集含有人抗人類CD3-scFv的上清液及用於進一步的檢驗。
2.5.CD3特異性結合子之辨識
藉由真核細胞的流動式細胞測量術,測試所分離的scFv之結合作用,真核細胞在其等的表面上表現一種在其N端顯現CD3ε的頭27個N端胺基酸之異源性蛋白。
如第4例所述,人類T細胞受體複合體之成熟CD3ε鏈N端序列的頭1-27個胺基酸(胺基酸序列:QDGNEEMGGITQ TPYKVSISGTTVILT序列辨識編號2)係與跨膜蛋白EpCAM的N端融合,藉此該N端係位於細胞外表面。此外,在N端1-27 CD3ε序列與EpCAM序列之間插入一個FLAG表位。該融合產物在人類胚腎(HEK)細胞與中國倉鼠卵巢(CHO)細胞中表現。
顯現其他靈長類物種的成熟CD3ε之最靠近N端的27個胺基酸之真核細胞,係以相同方式製備:松鼠猴(Saimiri sciureus)(松鼠猴)(CD3ε的N端胺基酸序列:QDGNEEIGDTTQNPYKVSISGTTVTLT序列辨識編號8)、白鬢狨(Callithrix jacchus)(CD3ε的N端胺基酸序列:QDGNEEMGDTTQNPYKVSISGTTVTLT序列辨識編號4)及棉冠獠狨(Saguinus oedipus)(CD3ε的N端胺基酸序列:QDGNEEMGDTTQNPYKVSISGTTVTLT序列辨識編號6)。
以50微升的上清液或以位於50微升之含有2% FCS的PBS中之5微克/毫升的純化建構體培養2.5×105個細胞,以用於流動式細胞測量術。以位於50微升之含有2% FCS的PBS中之2微克/毫升的抗His抗體(德國西爾登(Hilden)的凱傑(Qiagen)公司之無BSA的五組胺酸(Penta-His)抗體),檢測建構體的結合作用。使用在50微升之含有2% FCS(德國漢堡(Hamburg)的迪耶諾瓦(Dianova)公司)的PBS中以1:100稀釋之R-藻紅素複合型親和純化F(ab')2片段、山羊抗小鼠IgG(具Fc-γ片段特異性),作為第二步驟的試劑。在FACSscan(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量該等試樣。
人及不同靈長類(如松鼠猴(Saimiri sciureus)、白鬢狨(Callithrix jacchus)、棉冠獠狨(Saguinus oedipus))的初代T細胞之結合作用,均藉由前一段落所述的流動式細胞測量術確認。
2.6.非人類CD3ε的特異性scFv之人類/擬人化同等物之產生
比對鼠抗CD3 scFv的VH區域與人類抗體生殖系胺基酸序列。選擇與非人類VH同源性最近的人類抗體生殖系VH序列,及進行該二胺基酸序列的直接比對。一些非人類VH的骨架殘基,係與人類VH骨架區域不同(“不同骨架位置”)。該等殘基中的一部份,可能有助於該抗體與其標的之結合作用與活性。
為建構含有鼠類CDR及在不同於所選擇的人類VH序列之每個骨架位置具有二種可能性(人類與母鼠胺基酸殘基)之庫,而合成退化性寡核苷酸。該等寡核苷酸在不同的位置納入人類殘基的機率為75%,而納入鼠類殘基的機率為25%。對於一種人類VH而言,必須合成在約具有20個核苷酸的終端段重疊之例如6個的該等寡核苷酸。為此目的,每第二個引子皆為反意引子。將後續選殖作用所需之寡核苷酸內的限制位點刪除。
該等引子的長度可為60至90個核苷酸,依跨越整個V序列所需的引子數目而定。
等量(如在20微升的PCR反應中之1微升的各引子(引子儲液為20至100μM))混合例如6個的該等引子,及添加至由PCR緩衝液、核苷酸及Taq聚合酶所組成的PCR混合物中。在PCR循環器中,該混合物於94℃培養3分鐘,於65℃培養1分鐘,於62℃培養1分鐘,於59℃培養1分鐘,於56℃培養1分鐘,於52℃培養1分鐘,於50℃培養1分鐘,然後於72℃培養10分鐘。該產物然後進行瓊脂糖凝膠電泳,及依據標準方法自凝膠中分離尺寸為200至400的產物。
然後使用該PCR產物作為標準PCR反應的模板,該PCR反應使用納入適宜的N端與C端選殖限制位點之引子。依據標準方法,藉由瓊脂糖凝膠電泳分離具有正確尺寸的DNA片段(對VH而言約為350個核苷酸)。依此方式,擴增足量的VH DNA片段。該VH片段如今則為在個別的不同骨架位置,各具有不同量的人類與鼠類殘基的VH片段之庫(擬人化VH庫)。對於鼠抗CD3 scFv的VL區域進行相同程序(擬人化VL庫)。
擬人化VH庫然後與噬菌體顯現載體pComb3H5Bhis中的擬人化VL庫合併而形成功能性scFv庫,及在絲狀噬菌體上顯現之後,如上述有關親代非人類(鼠類)抗CD3 scFv者,自該庫選擇、篩選、辨識及確認抗CD3結合子。然後分析單一殖株的有利性質與胺基酸序列。較佳為與人類生殖系V片段的胺基酸序列同源性最接近的該等scFv;特別是其中VH的CDR I與II以及VLκ的CDR I與II或者VLλ的CDR I與II中之至少一種CDR,顯示與所有人類生殖系V片段之最接近的個別CDR之胺基酸序列同一性超過80%的該等scFv。如下列第9、16及24例中所述,將抗CD3scFv轉化為重組雙特異性單鏈抗體。
3.與IgGl的Fc部分融合之人類CD3ε鏈N端1至27個胺基酸 的重組型融合蛋白(1-27 CD3-Fc)之產生 3.1. 1-27 CD3-Fc之選殖與表現作用
藉由依據標準操作程序的基因合成作用,獲得與人類免疫球蛋白IgG1的鉸鏈與Fcγ區域以及一個六組胺酸標籤融合之人類CD3ε鏈的1-27個N端胺基酸之編碼序列(該重組融合蛋白的cDNA序列與胺基酸序列係列於序列辨識編號230與229)。設計該基因合成片段,使其首先含有用於該建構體的真核表現作用之一個Kozak位點,接著含有一種具19個胺基酸的免疫球蛋白引導肽,接著在框架中含有成熟人類CD3ε鏈的細胞外部分之頭27個胺基酸的編碼序列,接著在框架中含有人類IgG1的鉸鏈區域與Fcγ部分的編碼序列,接著在框架中含有六組胺酸標籤的編碼序列與一個終止密碼子(第1圖)。亦設計該基因合成片段,藉此在編碼該融合蛋白的cDNA開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的EcoRI與3’端的SalI。依據標準操作程序,經由EcoRI與SalI,將基因合成片段選殖進入稱作pEF-DHFR的質體(pEF-DHFR係述於Mack等人於期刊“Proc. Natl. Acad. Sci. USA”第92期(1995年)第7021-7025頁乙文及Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)。依據製造廠商的操作程序,在FreeStyle 293表現系統(德國卡爾斯魯厄(Karlsruhe)的英杰(Invitrogene)公司)的轉染作用中,使用一種序列經驗證的質體。3天後,收集轉染體的細胞培養上清液,及在ELISA分析中測試重組建構體之存在。具Fc-γ片段特異性的羊抗人類IgG抗體(自英國薩福克郡(Suffolk)紐馬克(New market)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.)取得)在PBS中稀釋至5微克/毫升,及以每孔100微升的量塗覆在MaxiSorp的96孔式ELISA平皿(德國威斯巴登(Wiesbaden)的能肯公司(Nunc GmbH & Co. KG))及於4℃過夜。以含有0.05%吐溫(Tween)20的PBS(PBS/Tween)沖洗各孔,及在室溫以位於PBS中的3% BSA(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH)之級分V的牛白蛋白)阻斷60分鐘。之後,再次以PBS/吐溫(Tween)清洗各孔,然後以細胞培養上清液在室溫中培養60分鐘。在清洗之後,各孔以在含有1% BSA的PBS中稀釋1:500之過氧化物酶複合型抗His6抗體(德國曼海姆(Mannheim)的羅奇診斷學公司(Roche Diagnostics GmbH)、羅奇應用科學(Roche Applied Science)公司),在室溫中培養60分鐘。之後,依據製造廠商的操作程序,以200微升PBS/吐溫(Tween)清洗各孔,及加入100微升的SIGMAFAST OPD(SIGMAFAST OPD[鄰苯二胺二鹽酸鹽])受質溶液(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))。藉由添加100微升的1M硫酸而終止反應。使用PowerWaveX微量平皿分光光度計(美國佛蒙特州威努斯基(Winooski)的拜爾泰克儀器(BioTek Instruments)股份有限公司),在490nm測量顏色反應,及減去在620nm的背景吸光。如第2圖所示,相較於作為陰性對照組之假轉染HEK 293細胞的無關上清液,可清楚地檢測到該建構體之存在。
3.2.跨物種特異性單鏈抗體與1-27 CD3-Fc之結合分析
在ELISA分析中,測試具有CD3ε特異性之周質表現的跨物種特異性單鏈抗體粗製品與1-27 CD3-Fc之結合作用。具Fc-γ片段特異性的羊抗人IgG抗體(自英國薩福克郡(Suffolk)紐馬克(New market)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.)取得)在PBS中稀釋至5微克/毫升,及以每孔100微升的量塗覆在MaXiSorp的96孔式ELISA平皿(德國威斯巴登(Wiesbaden)的能肯公司(Nunc GmbH & Co. KG))及於4℃過夜。以含有0.05%吐溫(Tween)20的PBS(PBS/Tween)沖洗各孔,及在室溫以含有3% BSA(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH)之級分V的牛白蛋白)的PBS阻斷60分鐘。之後,以PBS/Tween清洗各孔,及以表現1-27 CD3-Fc建構體之細胞的上清液在室溫中培養60分鐘。以PBS/Tween清洗各孔,及以上述之周質表現的跨物種特異性單鏈抗體粗製品在室溫中培養60分鐘。在清洗之後,各孔以在含有1% BSA的PBS中稀釋1:10000之過氧化物酶複合型抗Flag M2抗體(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH)),在室溫中培養60分鐘。依據製造廠商的操作程序,以PBS/Tween及100微升的SIGMAFAST OPD(SIGMAFAST OPD[鄰苯二胺二鹽酸鹽])受質溶液(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))清洗各孔。藉由添加100微升的1M硫酸而終止顏色反應,及使用PowerWaveX微量平皿分光光度計(美國佛蒙特州威努斯基(Winooski)的拜爾泰克儀器(BioTek Instruments)股份有限公司)在490nm測量,及減去在620nm的背景吸光。相較於一種鼠抗CD3單鏈抗體而言,觀察到具CD3ε特異性的跨物種特異性人類單鏈抗體與1-27 CD3-Fc建構體之強力結合作用(第3圖)。
4.來自不同的非黑猩猩靈長類CD3ε的N端1至27個胺基酸與來自食蟹猴的EpCAM融合之重組型跨膜融合蛋白(1-27 CD3-EpCAM)之產生 4.1. 1-27 CD3-EpCAM之選殖與表現作用
自不同的非黑猩猩靈長類(狨猿、獠狨、松鼠猴)及豬中分離CD3ε。藉由依據標準操作程序的基因合成作用,獲得與帶有Flag標籤的食蟹猴EpCAM的N端融合之成熟人類、普通狨猿(白鬢狨(Callithrix jacchus))、棉冠獠狨(Saguinus oedipus)、普通松鼠猴(松鼠猴(Saimiri sciureus))及家豬(Sus scrofa,作為陰性對照組)之CD3ε鏈的1-27個N端胺基酸之編碼序列。該重組型融合蛋白的cDNA序列與胺基酸序列係列於序列辨識編號231至240)。設計該基因合成片段,使其首先含有一個BsrGI位點以容許在正確的閱讀框架中與已經存在於標的表現載體中之一個具19個胺基酸的免疫球蛋白引導肽之編碼序列融合,接著在框架中含有成熟CD3ε鏈的細胞外部分之N端1至27個胺基酸的編碼序列,接著在框架中含有一個Flag標籤的編碼序列,接著在框架中含有成熟食蟹猴EpCAM跨膜蛋白的編碼序列(第4圖)。亦設計該基因合成片段,藉此在編碼該融合蛋白的cDNA末端引入一個限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的BsrGI與3'端的SalI。依據標準操作程序,經由BsrGI與SalI,將基因合成片段選殖進入稱作pEF-DHFR質體之衍生物(pEF-DHFR係述於Mack等人於期刊“Proc. Natl. Acad. Sci. USA”第92期(1995年)第7021-7025頁乙文),其已含有具19個胺基酸的免疫球蛋白引導肽之編碼序列。依據製造廠商的操作程序,使用MATra-A試劑(德國哥廷根(Gottingen)的IBA公司)及將12微克的質體DNA用於175毫升細胞培養瓶中之附著293-HEK細胞,而以序列經驗證的質體暫態轉染293-HEK細胞。細胞培養3天後,依據標準操作程序,經由FACS分析測試轉染體在細胞表面之重組跨膜蛋白的表現作用。為此目的,數份2.5×105個細胞在含有2%FCS的PBS中與5微克/毫升的抗Flag M2抗體(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))培養。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測結合的抗體。該等試樣在FACScalibur(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量。可清楚地檢測到分別由食蟹猴EpCAM與人類、狨猿、獠狨、松鼠猴及豬的CD3ε鏈的1-27個N端胺基酸所組成之帶有Flag標籤的重組跨膜融合蛋白在轉染細胞之表現作用(第5圖)。
4.2.跨物種特異性抗CD3單鏈抗體與1-27 CD3-EpCAM之結合作用
周質表現型跨物種特異性抗CD3單鏈抗體的粗製品與分別融合至食蟹猴Ep-CAM的人類、狨猿、獠狨、松鼠猴CD3ε鏈的1-27個N端胺基酸之結合作用,係在依據標準操作程序的FACS分析中測試。為此目的,數份2.5×105個細胞與周質表現型跨物種特異性抗CD3單鏈抗體的粗製品(如上述依據標準操作程序製備)培養,及以一種單鏈鼠抗人類CD3抗體作為陰性對照組。在含有2% FCS的50微升PBS中,使用5微克/毫升的五組胺酸(Penta-His)抗體(德國希爾德斯海姆(Hildesheim)的凱傑(Qiagen)公司)作為二級抗體。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測抗體的結合作用。該等試樣在FACScalibur(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量。如第6圖(A至E)所示,觀察到單鏈抗體與表現由融合至食蟹猴EpCAM的人類、狨猿、獠狨、松鼠猴CD3ε的1-27個N端胺基酸所組成的重組跨膜融合蛋白之轉染體之結合作用。未觀察到跨物種特異性的特異性單鏈抗體與作為陰性對照組之由融合至食蟹猴EpCAM的豬1-27N端CD3ε所組成的融合蛋白之結合作用。顯示抗CD3單鏈抗體的多種靈長類跨物種特異性。抗Flag M2抗體與跨物種特異性的特異性單鏈抗體所獲得之訊號相當,顯示跨物種特異性的特異性單鏈抗體與CD3ε的N端1至27個胺基酸之強力結合活性。
5.藉由經人類CD3ε鏈轉染的小鼠細胞及其丙胺酸突變體之丙胺酸掃描進行跨物種特異性抗CD3單鏈抗體之結合分析 5.1.人類野生型CD3ε的選殖與表現作用
藉由依據標準操作程序的基因合成作用,獲得人類CD3ε鏈之編碼序列(cDNA序列與人類CD3ε鏈的胺基酸序列係列於序列辨識編號242與241)。設計該基因合成片段,使其含有用於該建構體的真核表現作用之一個Kozak位點,及在編碼人類CD3ε鏈的cDNA開始端與末端含有限制酶切位點。在下列選殖程序中使用所引入之5'端的EcoRI與3'端的SalI之限制酶切位點。然後依據標準操作程序,經由EcoRI與SalI,將基因合成片段選殖進入稱作pEF-NEO的質體中。pEF NEO係藉由習用的分子選殖作用,以新黴素抗性的cDNA置換DHFR的cDNA而自pEF DHFR所衍生(Mack等人於期刊“Proc. Natl. Acad. Sci. USA”第92期(1995年)第7021-7025頁乙文)。使用一種序列經驗證的質體,以轉染在37℃、95%濕度及7%二氧化碳的條件下在RPMI中培養的鼠類T細胞系EL4(ATCC編號為TIB-39),該RPMI含有安定化L-穀胺醯胺及增補10% FCS、1%青黴素/鏈黴素、1%HEPES、1%丙酮酸鹽、1%非必需胺基酸(皆來自德國柏林的拜爾克隆姆(Biochrom AG)公司)。依據製造廠商的操作程序,以SuperFect轉染試劑(德國西爾登(Hilden)的凱傑(Qiagen)公司)與2微克的質體DNA進行轉染作用。24小時後,以PBS清洗細胞,及再次培養於含有供進行選擇用之600微克/毫升的G418(奧地利柏斯澄(Pasching)的PAA實驗室公司)之前述細胞培養基中。轉染作用之後16至20天,觀察到抗性細胞的過度生長。再過7至14天後,依據標準操作程序藉由FACS分析,測試細胞表現人類CD3ε之作用。2.5×105個細胞與5微克/毫升的抗人類CD3抗體UCHT-1(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)在含有2% FCS的PBS中培養。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測抗體的結合作用。該等試樣在FACScalibur(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量。人類野生型CD3在經轉染的EL4細胞之表現作用,係示於第7圖中。
5.2.作為IgG1抗體之跨物種特異性抗CD3單鏈抗體之選殖與表現作用
為提供檢測跨物種特異性單鏈抗CD3抗體的結合作用之改良方法,將H2C HLP、A2J HLP與E2M HLP轉化為具有鼠類IgG1與人類λ恒定區域之IgG1抗體。藉由依據標準操作程序之基因合成作用,獲得編碼個別IgG抗體的重鏈與輕鏈之cDNA序列。設計用於各特異性之基因合成片段,使其首先含有容許建構體的真核表現的Kozak位點,接著含有具19個胺基酸的免疫球蛋白引導肽(序列辨識編號244與243),接著在框架中含有個別重鏈可變區域或個別輕鏈可變區域之編碼序列,接著在框架中含有分別為鼠類IgG1的重鏈恒定區域之編碼序列(序列辨識編號246與245)或人類λ的輕鏈恒定區域之編碼序列(序列辨識編號248與247)。在編碼該融合蛋白的cDNA開始端與末端引入限制酶切位點。在下列選殖程序中使用5'端的EcoRI與3'端的SalI之限制酶切位點。依據標準操作程序,經由EcoRI與SalI,將基因合成片段選殖進入用於重鏈建構體之稱作pEF DHFR的質體(Mack等人於期刊“Proc. Natl. Acad. Sci. USA”第92期(1995年)第7021-7025頁乙文)及用於輕鏈建構體之pEF ADA(pEF ADA係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)。依據製造廠商的操作程序,在FreeStyle 293表現系統(德國卡爾斯魯厄(Karlsruhe)的英杰(Invitrogene)公司)之個別輕鏈與重鏈建構體的共轉染作用中,使用一種序列經驗證的質體。3天後,收集轉染體的細胞培養上清液,及用於丙胺酸掃描實驗中。
5.3.用於丙胺酸掃描之人類CD3ε的丙胺酸突變體之選殖與表現作用
藉由基因合成作用,分別將成熟人類CD3ε鏈細胞外域之1至27個胺基酸中的各胺基酸之人類CD3ε野生型序列的一個密碼子,換為一個編碼丙胺酸的密碼子(GCC),而獲得編碼人類CD3ε鏈的27個cDNA片段。除了所置換的密碼子之外,該cDNA片段係與前述人類野生型CD3cDNA片段相同。相較於上述的人類野生型CD3 cDNA片段,在各建構體中僅置換一個密碼子。在cDNA片段中引入限制酶切位點EcoRI與SalI之位置,係與野生型建構體相同。將所有的丙胺酸掃描建構體轉殖進入pEF NEO中,及將序列經驗證的質體轉染進入EL4細胞。如上述進行轉染體的轉染與選擇作用。結果,獲得一組的表現建構體,其中人類CD3ε鏈的第一個胺基酸,即位置1的穀胺醯胺(Q、Gln)被丙胺酸置換。被丙胺酸置換的最後一個胺基酸,係位於成熟人類野生型CD3ε的位置27之蘇胺酸(T、Thr)。針對介於穀胺醯胺1與蘇胺酸27之間的各胺基酸,產生將一個野生型胺基酸置換為丙胺酸之個別的轉染體。
5.4.丙胺酸掃描實驗
在丙胺酸掃描實驗中,測試5.2中所述嵌合IgG抗體及具有CD3ε特異性之跨物種特異性單鏈抗體。依據標準操作程序,藉由FACS分析,測試該等抗體與經5.3所述人類CD3ε的丙胺酸突變建構體轉染的EL4細胞系之結合作用。個別轉染體的2.5×105個細胞係與含有嵌合IgG抗體的50微升細胞培養上清液培養,或與50微升的周質表現型單鏈抗體的粗製品培養。對於與周質表現型單鏈抗體的粗製品培養之試樣而言,在含有2% FCS的50微升PBS中,使用5微克/毫升的Flag M2抗體(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))作為二級抗體。對於與嵌合IgG抗體培養的試樣而言,則不需要二級抗體。對於所有試樣而言,係以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測抗體分子的結合作用。該等試樣在FACScalibur(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量。檢測出嵌合IgG分子或跨物種特異性單鏈抗體與經人類CD3ε的丙胺酸突變體轉染的EL4細胞系之示差性結合作用。分別使用同型對照組或具有不相關特異性之周質表現型單鏈抗體的粗製品,作為陰性對照組。使用UCHT-1抗體作人類CD3ε的丙胺酸突變體表現水平之陽性對照組。經成熟CD3ε鏈在位置15的酪胺酸、在位置17的纈胺酸、在位置19的異白胺酸、在位置24的纈胺酸或在位置26的白胺酸等胺基酸的丙胺酸突變體轉染之EL4細胞系,由於表現水平非常低(數據未顯示)而未加以評估。跨物種特異性單鏈抗體及嵌合IgG形式的單鏈抗體與經人類CD3ε丙胺酸突變體轉染的EL4細胞系之結合作用,係以自所有個別試樣的幾何平均螢光值減去個別陰性對照組的幾何平均螢光值所得之任意單位的相對結合作用形式示於第8圖(A-D)中。為補償不同的表現水平,將一特定轉染體的所有試樣值除以個別轉染體之UCHT-1抗體的幾何平均螢光值。為與一特異性野生型試樣值比較,最後將個別特異性的所有試樣值除以野生型試樣值,藉此將野生型試樣值設為1任意單位的結合作用。
所用之計算係詳示於下列公式中:
在該方程式中,“數值_試樣”係指如第8圖(A-D)所示之一種特異性抗CD3抗體與一種特異性丙胺酸突變體的結合程度之任意單位的結合值,“試樣”係指在一種特異性丙胺酸掃描轉染體上分析所得之一種特異性抗CD3抗體的幾何平均螢光值,“陰性_對照組”係指在一種特異性丙胺酸突變體上分析所得之陰性對照組的幾何平均螢光值,UCHT-1係指在一種特異性丙胺酸突變體上分析所得之UCHT-1抗體的幾何平均螢光值,WT係指在野生型轉染體上分析所得之一種特異性抗CD3抗體的幾何平均螢光值,x係指個別的轉染體,y係指個別的抗CD3抗體及wt係指個別的野生型轉染體。
如第8圖(A-D)中所示,對於成熟CD3ε鏈之位置4的天冬醯胺、位置23的蘇胺酸及位置25的異白胺酸等胺基酸,IgG抗體A2J HLP顯示結合作用之顯著喪失。對於成熟CD3ε鏈之位置1的穀胺醯胺、位置2的天冬胺酸、位置3的甘胺酸及位置5的麩胺酸鹽等胺基酸,觀察到IgG抗體A2J HLP結合作用之完全喪失。對於成熟CD3ε鏈之位置4的天冬醯胺、位置23的蘇胺酸及位置25的異白胺酸等胺基酸,IgG抗體E2M HLP顯示結合作用之顯著喪失。對於成熟CD3ε鏈之位置1的穀胺醯胺、位置2的天冬胺酸、位置3的甘胺酸及位置5的麩胺酸鹽等胺基酸,IgG抗體E2M HLP顯示結合作用之完全喪失。對於成熟CD3ε鏈之位置4的天冬醯胺胺基酸,IgG抗體H2C HLP顯示結合作用之中等喪失;及對於成熟CD3ε鏈的位置1的穀胺醯胺、位置2的天冬胺酸、位置3的甘胺酸及位置5的麩胺酸鹽等胺基酸,顯示結合作用之完全喪失。對於成熟CD3ε鏈之位置1的穀胺醯胺、位置2的天冬胺酸、位置3的甘胺酸及位置5的麩胺酸鹽等胺基酸,單鏈抗體F12Q HLP顯示結合作用實質上完全喪失。
6.跨物種特異性抗CD3結合分子H2C HLP與轉染進入鼠類T細胞系EL4之具有與不具有N端His6標籤的人類CD3ε鏈之結合分析 6.1.具有N端六組胺酸標籤(His6標籤)的人類CD3ε鏈之選殖與表現作用
藉由基因合成作用,獲得編碼具有N端His6標籤之人類CD3ε鏈的cDNA片段。設計該基因合成片段,使其首先含有用於該建構體的真核表現作用之一個Kozak位點,接著在框架中含有一種具19個胺基酸的免疫球蛋白引導肽,接著在框架中含有His6標籤的編碼序列,接著在框架中含有成熟人類CD3ε鏈的編碼序列(該建構體的cDNA與胺基酸序列係列於序列辨識編號256與255)。亦設計該基因合成片段,藉此在該cDNA的開始端與末端含有限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的EcoRI與3'端的SalI。依據標準操作程序,經由EcoRI與SalI,將基因合成片段選殖進入稱作pEF-NEO的質體(如上述)。使用一種序列經驗證的質體,轉染鼠類T細胞系EL4。如上述進行轉染體的轉染與選擇作用。細胞培養34天後,將轉染體用於後述分析中。
6.2.跨物種特異性抗CD3結合分子H2C HLP與具有及不具有N端His6標籤的人類CD3ε鏈之結合作用
測試具有CD3ε特異性的結合特異性H2C HLP之嵌合IgG抗體與具有及不具有N端His6標籤的人類CD3ε之結合作用。依據標準操作程序,藉由FACS分析,測試抗體與分別經His6-人類CD3ε及野生型人類CD3ε轉染的EL4細胞系之結合作用。轉染體的2.5×105個細胞係與含有嵌合IgG抗體之50微升的細胞培養上清液培養,或與50微升之位於含有2% FCS的PBS中之5微克/毫升的個別對照組抗體培養。分別使用一種適宜的同型對照組作為陰性對照組,及使用CD3特異性抗體UCHT-1作為建構體表現作用的陽性對照組。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測抗體的結合作用。該等試樣在FACScalibur(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量。相較於經野生型人類CD3ε轉染的EL4細胞系,檢測出具有結合特異性H2C HLP的嵌合IgG與具有N端His6標籤的人類CD3ε之結合作用清楚地喪失。該等結果顯示CD3ε的游離N端,係跨物種特異性抗CD3結合特異性H2CHLP與人類CD3ε鏈的結合作用所必需(第9圖)。
7.人類MCSP的C端、跨膜及截短型細胞外域之選殖與表現作用
藉由依據標準操作程序之基因合成作用,獲得人類MCSP的C端、跨膜及截短型細胞外域(胺基酸1538-2322)之編碼序列(用於表現人類MCSP的C端、跨膜及截短型細胞外域(稱作人類D3)的重組建構體之cDNA序列與胺基酸序列係列於序列辨識編號250與249)。設計該基因合成片段,使其首先含有容許該建構體的真核表現作用之一個Kozak位點,接著含有一種具19個胺基酸的免疫球蛋白引導肽,接著在框架中含有一個FLAG標籤,接著在框架中含有用於選殖目的之數個限制酶切位點及編碼一個具9個胺基酸的人工連接子(SRTRSGSQL)之一序列,接著在框架中含有人類MCSP的C端、跨膜及截短型細胞外域之編碼序列及一個終止密碼子。在該cDNA的開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的EcoRI與3'端的SalI。依據標準操作程序,以EcoRI與SalI分解該片段,及選殖進入pEF-DHFR(pEF-DHFR係述於Mack等人於期刊“Proc. Natl. Acad. Sci. USA”第92期(1995年)第7021-7025頁乙文)。使用一種序列經驗證的質體,以轉染CHO/dhfr-細胞(ATCC編號CRL 9096)。細胞在37℃、95%濕度及7%二氧化碳的培養器之RPMI 1640中培養,RPMI 1640含有安定化穀胺醯胺及增補10% FCS、1%青黴素/鏈黴素(皆來自德國柏林的拜爾克隆姆(Biochrom AG)公司)及來自細胞培養級試劑(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))的儲備溶液之核苷,使得最終濃度為腺嘌呤核苷10微克/毫升、去氧腺嘌呤核苷10微克/毫升及胸腺嘧啶核苷10微克/毫升。依據製造廠商的操作程序,以PolyFect轉染試劑(德國西爾登(Hilden)的凱傑(Qiagen)公司)與5微克的質體DNA進行轉染作用。在培養24小時後,以PBS清洗細胞一次,及再次培養於含有安定化穀胺醯胺與1%青黴素/鏈黴素之RPMI 1640中。因此,該細胞培養基並未含有核苷,及藉此在經轉染的細胞上進行選擇作用。轉染作用之後約14天,觀察到抗性細胞的過度生長。再過7至14天後,藉由FACS分析,測試該建構體的表現作用。2.5×105個細胞與在含有2% FCS的PBS中稀釋至5微克/毫升之50微升的一種抗Flag-M2抗體(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))培養。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測抗體的結合作用。該等試樣在FACScalibur(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量。
8.獼猴MCSP的C端、跨膜及截短型細胞外域之選殖與表現作用
使用下列反應條件:在94℃進行3分鐘之循環1次,在94℃進行0.5分鐘、在52℃進行0.5分鐘及在72℃進行1.75分鐘之循環40次;在72℃進行3分鐘之末端循環,藉由獼猴皮膚cDNA(德國海德堡(Heidelberg)的BioCat公司型錄編號C1534218-Cy-BC)之一組三個的聚合酶鏈反應,製得獼猴MCSP的C端、跨膜及截短型細胞外域(稱作獼猴D3)的cDNA序列。使用下列引子:
正向引子:5'-GATCTGGTCTACACCATCGAGC-3'(序列辨識編號361)
反向引子:5'-GGAGCTGCTGCTGGCTCAGTGAGG-3'(序列辨識編號362)
正向引子:5'-TTCCAGCTGAGCATGTCTGATGG-3'(序列辨識編號363)
反向引子:5'-CGATCAGCATCTGGGCCCAGG-3'(序列辨識編號364)
正向引子:5'-GTGGAGCAGTTCACTCAGCAGGACC-3'(序列辨識編號365)
反向引子:5'-GCCTTCACACCCAGTACTGGCC-3'(序列辨識編號366)
該等PCR產生三個重疊的片段(A:1-1329、B:1229-2428、C:1782-2547),使用PCR引子,依據標準操作程序將其等分離與定序,藉此提供自獼猴MCSP的cDNA序列之C端域編碼序列上游74鹼基對至終止密碼子下游121鹼基對之一個具2547鹼基對的部分(獼猴MCSP的該部分之cDNA序列與胺基酸序列係列於序列辨識編號252與251)。使用另一個PCR以融合前述反應A與B的PCR產物,其使用下列反應條件:在94℃進行3分鐘之循環1次,在94℃進行1分鐘、在52℃進行1分鐘及在72℃進行2.5分鐘之循環10次;在72℃進行3分鐘之末端循環。使用下列引子:
正向引子:5'-tcccgtacgagatctggatcccaattggatggcggactcgtgctgttctcacacagagg-3'(序列辨識編號367)
反向引子:5'-agtgggtcgactcacacccagtactggccattcttaagggcaggg-3'(序列辨識編號368)
設計用於該PCR的引子,以在編碼獼猴MCSP的C端、跨膜及截短型細胞外域之cDNA片段的開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的MfeI與3'端的SalI。藉由置換獼猴MCSP的C端、跨膜及截短型細胞外域,經由MfeI與SalI,將PCR片段轉殖進入含有前述質體pEF-DHFR(pEF-DHFR係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)的EcoRI/MfeI片段之Blulescript質體中。該基因合成片段含有免疫球蛋白引導肽與Flag標籤以及人工連接子(SRTRSGSQL)的編碼序列,該人工連接子係位於編碼獼猴MCSP的C端、跨膜及截短型細胞外域之cDNA片段5'端的框架中。使用該載體以轉染CHO/dhfr-細胞(ATCC編號CRL 9096)。細胞在37℃、95%濕度及7%二氧化碳的培養器之RPMI 1640中培養,RPMI 1640含有安定化穀胺醯胺及增補10% FCS、1%青黴素/鏈黴素(皆來自德國柏林的拜爾克隆姆(Biochrom AG)公司)及來自細胞培養級試劑(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH)的儲備溶液之核苷,使得最終濃度為腺嘌呤核苷10微克/毫升、去氧腺嘌呤核苷10微克/毫升及胸腺嘧啶核苷10微克/毫升。依據製造廠商的操作程序,以PolyFect轉染試劑(德國西爾登(Hilden)的凱傑(Qiagen)公司)與5微克的質體DNA進行轉染作用。在培養24小時後,以PBS清洗細胞一次,及再次培養於含有安定化穀胺醯胺與1%青黴素/鏈黴素之RPMI 1640中。因此,該細胞培養基並未含有核苷,及藉此在經轉染的細胞上進行選擇作用。轉染作用之後約14天,觀察到抗性細胞的過度生長。再過7至14天後,經由FACS分析,測試該重組建構體的表現作用。數份2.5×105個細胞與在含有2% FCS的PBS中稀釋至5微克/毫升之50微升的一種抗Flag-M2抗體(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))培養。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測結合的抗體。該等試樣在FACScalibur(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量。
9. MCSP與CD3跨物種特異性的雙特異性單鏈分子之產生與特性分析
雙特異性單鏈抗體分子各包含對於人類與非黑猩猩靈長類CD3ε具有跨物種特異性的一個結合域以及對於人類與非黑猩猩靈長類MCSP具有跨物種特異性的一個結合域,其設計係述於下列第1表中:
藉由基因合成作用,而獲得含有對於人類與獼猴MCSP D3具有跨物種特異性的可變重鏈(VH)域與可變輕鏈(VL)域及對於人類與獼猴CD3具有跨物種特異性的VH域與VL域之前述建構體。設計該基因合成片段,使其首先含有用於該建構體的真核表現之一個Kozak位點,接著含有具19個胺基酸的免疫球蛋白引導肽,接著在框架中含有個別雙特異性單鏈抗體分子的編碼序列,接著在框架中含有組胺酸6標籤的編碼序列與一個終止密碼子。亦設計該基因合成片段,藉此引入適宜的N端與C端限制酶切位點。依據標準操作程序(美國紐約的冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版之Sambrook所著“分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)”乙書第三版),經由該等限制酶切位點將基因合成片段選殖進入稱作pEF-DHFR的質體(pEF-DHFR係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)中。該等建構體係藉由電穿孔作用,穩定或暫態地轉染進入缺乏DHFR的CHO細胞(ATCC編號CRL 9096)中;或任擇地依據標準操作程序,以暫態的方式轉染進入HEK 293(ATCC編號CRL-1573之人類胚腎細胞)中。
依據Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在缺乏DHFR的CHO細胞(ATCC編號CRL 9096)中進行真核蛋白的表現作用。藉由添加遞增濃度的胺基甲葉酸(MTX)至最終濃度為20nM MTX,而引發該建構體的基因擴增作用。在靜止培養兩代之後,該等細胞在裝有不含核苷的HyQ PF CHO液態大豆培養基(含4.0mM的L-穀胺醯胺與0.1%的普朗尼克(Pluronic)F-68;海克隆(HyClone)公司)的滾瓶中培養七天後收集。藉由離心移除細胞,及將含有所表現的蛋白質之上清液儲存於-20℃。
使用AktaR Explorer System(GE健康系統(GE Health System)公司)與UnicornR軟體,以進行層析。依據製造廠商提供的操作程序,使用裝載氯化鋅的Fractogel EMD chelate(默克(Merck)公司),進行固定化金屬親和力層析(“IMAC”)。管柱係以緩衝液A(20mM磷酸鈉緩衝液、pH 7.2、0.1M氯化鈉)平衡,及細胞培養上清液(500毫升)係以3毫升/分鐘的流速施用至管柱(10毫升)。使用緩衝液A清洗管柱,以除去未結合的試樣。使用如下之二步驟梯度的緩衝液B(20mM磷酸鈉緩衝液、pH 7.2、0.1M氯化鈉、0.5M咪唑),洗提結合的蛋白:
第1步驟:位於6倍管柱體積中的20%緩衝液B
第2步驟:位於6倍管柱體積中的100%緩衝液B
將第2步驟所洗提出的蛋白質分液匯集,以進行進一步純化作用。所有化學製品皆為研究等級及自西克瑪(Sigma)公司(德國達森霍芬(Deisenhofen))或默克(Merck)公司(德國達姆斯塔德(Darmstadt))購得。
使用經Equi-緩衝液(25mM檸檬酸鹽、200mM離胺酸、5%甘油、pH 7.2)平衡的HiLoad 16/60 Superdex 200製備級管柱(奇異/安瑪西亞(GE/Amersham)公司),進行凝膠過濾層析。以標準的SDS-PAGE與西方墨點法,檢測洗提出的蛋白質試樣(流速為1毫升/分鐘)。在純化之前,進行該管柱之分子量測定校準(西克瑪(Sigma)公司MW GF-200之分子量標記套組)。在OD280nm測定蛋白質濃度。
在還原條件下,在以預製的4-12% Bis Tris凝膠(英杰(Invitrogene)公司)進行之DS PAGE中,分析純化後的雙特異性單鏈抗體蛋白。依據製造廠商提供的操作程序,進行試樣的製備與應用。以多重標記(MultiMark)蛋白質標準(英杰(Invitrogene)公司)確定分子量。使用膠態的考馬斯(Coomassie)(英杰(Invitrogene)公司操作程序),進行凝膠的染色作用。藉由SDS-PAGE測得所分離的蛋白純度高於95%。
如藉由經磷酸鹽緩衝的鹽水(PBS)中之凝膠過濾作用所測定,雙特異性單鏈抗體在天然狀態下的分子量約為52kDa。依據該方法純化所有的建構體。
依據製造廠商提供的操作程序,使用Optitran BA-S83膜與英杰(Invitrogene)公司的墨點模組(Blot Module),進行西方墨點法。為檢測雙特異性單鏈抗體蛋白抗體,使用一種抗組胺酸標籤抗體(凱傑(Qiagen)公司之五組胺酸(Penta-His))。使用一種經鹼性磷酸酶(AP)(西克瑪(Sigma)公司)標記的山羊抗小鼠Ig抗體作為二級抗體,及使用BCIP/NBT(西克瑪(Sigma)公司)作為受質。在52kD檢測出對應於純化後的雙特異性單鏈抗體之單一帶狀。
任擇地,建構體係在缺乏DHFR的CHO細胞中暫態表現。簡言之,在轉染作用前一天,在37℃、95%濕度及7%二氧化碳的培養箱中,在3毫升的RPMI 1640全培養基中培養各建構體的4×105個細胞,RPMI 1640全培養基含有安定化穀胺醯胺及增補10%胎牛血清、1%青黴素/鏈黴素及來自細胞培養級試劑(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH)的儲備溶液之核苷,使得最終濃度為腺嘌呤核苷10微克/毫升、去氧腺嘌呤核苷10微克/毫升及胸腺嘧啶核苷10微克/毫升。依據製造廠商的操作程序,使用Fugene 6轉染試劑(羅奇(Roche)公司之#11815091001)進行轉染。將94微升OptiMEM培養基(英杰(Invitrogene)公司)與6微升Fugene 6混合,及在室溫培養5分鐘。之後,添加各建構體的1.5微克DNA,在室溫混合與培養15分鐘。同時,使用1×PBS清洗缺乏DHFR的CHO細胞,及再懸浮於1.5毫升的RPMI 1640全培養基中。以600微升的RPMI 1640全培養基稀釋轉染混合物,添加至細胞,及於37℃、95%濕度及7%二氧化碳中培養過夜。轉染次日,將各方法的培養體積增至5毫升RPMI 1640全培養基。培養3天後,收集上清液。
10. MCSP與CD3跨物種特異性的雙特異性抗體之流動式細 胞測量型結合分析
為測試跨物種特異性的雙特異性抗體建構體在分別與人類及獼猴MCSP D3與CD3的結合能力方面之功能性,進行FACS分析。為此目的,使用經人類MCSP D3轉染的CHO細胞(如第7例所述)及人類CD3陽性T細胞白血病細胞系HPB-ALL(德國布倫維格(Braunschweig)微生物及細胞培養收藏所(DSMZ)之ACC483),以測試與人類抗原的結合作用。藉由使用所產生的獼猴MCSP D3轉染體(如第8例所述)與獼猴T細胞系4119LnPx(承蒙愛朗根-紐倫堡(Erlangen-Nuernberg)衛生研究所病毒系之Fickenscher教授友好提供;發表於Knappe A等人及Fickenscher H.於期刊“Blood”2000年第95期第3256-61頁乙文),測試與獼猴抗原的結合反應性。個別細胞系的200,000個細胞在冰上與50微升之跨物種特異性的雙特異性抗體建構體之純化蛋白(2微克/毫升),或與表現跨物種特異性的雙特異性抗體建構體之轉染型細胞的細胞培養上清液,培養30分鐘。細胞以含有2% FCS的PBS清洗二次,及使用一種鼠類抗His抗體(凱傑(Qiagen)公司的五組胺酸(Penta-His)抗體在含有2% FCS的50微升PBS中以1:20稀釋),檢測建構體的結合作用。清洗之後,使用在含有2% FCS的PBS中以1:100稀釋之一種與藻紅素複合的Fcγ特異性抗體(迪耶諾瓦(Dianova)公司),檢測所結合的抗His抗體。使用未經轉染的CHO細胞之上清液,作為與T細胞系結合作用之陰性對照組。使用具有不相關的標的特異性之單鏈建構體,作為與經MCSP-D3轉染的CHO細胞結合作用之陰性對照組。
在FACS-Calibur裝置上進行流動式細胞測量術;使用CellQuest軟體,以獲取及分析數據(德國海德堡(Heidelberg)的必帝生物科學(Becton Dickinson biosciences)公司)。如“現行免疫學操作程序(Current Protocols in Immunology)”乙書(Coligan、Kruisbeek、Margulies、Shevach與Strober所著及由威立資訊網路(Wiley-Interscience)公司於2002年出版)中所述,進行FACS染色作用與螢光強度之測量。
如第10、11、12及39圖所示,清楚地檢測出具有對於MCSP D3的跨物種特異性及對於人類與獼猴CD3的跨物種特異性之上述單鏈分子的雙特異性結合作用。在FACS分析中,相對於個別的陰性對照組,所有的建構體均顯示與CD3及MCSP D3的結合作用。證實雙特異性抗體對於人類與獼猴的CD3與MCSP D3抗原之跨物種特異性。
11. MCSP與CD3跨物種特異性的雙特異性單鏈抗體之生物活性
使用第7與8例中所述的MCSP D3陽性細胞系,藉由鉻51(51Cr)釋出試管內細胞毒性分析,分析所產生的雙特異性單鏈抗體之生物活性。如個別圖式中所說明,使用移除CD4/CD56的受激型人類PBMC、受激型人類PBMC或獼猴T細胞系4119LnPx作為作用細胞。
如下產生經移除CD4/CD56的受激型PBMC:使用最終濃度為1微克/毫升的商品化抗CD3特異性抗體(例如OKT3、Othoclone),在37℃塗覆培養皿(直徑145毫米,奧地利克雷斯米斯(Kremsmnste)的葛萊娜第一生化(Greiner Bio-One)股份有限公司)1小時。藉由一個PBS清洗步驟,除去未結合的蛋白質。依據標準操作程序,藉由Ficoll梯度離心作用,自外周血(30至50毫升人血)中分離出新鮮的PBMC。將位於120毫升之含有安定化穀胺醯胺/10% FCS/20單位/毫升的IL-2(開隆(Chiron)公司之Proleukin)的RPMI 1640中之3-5×107個PBMC,添加至經預塗的培養皿中,及受激2天。在第三天,收集細胞,及以RPMI 1640清洗一次。添加IL-2至最終濃度為20單位/毫升,及細胞在上述相同的細胞培養基中再培養一天。依據標準操作程序去除CD4+T細胞與CD56+NK細胞,而富集CD8+細胞毒性T淋巴細胞(CTL)。
以PBS清洗標的細胞二次,及在最終體積為100微升之含有50% FCS的RPMI中,在37℃以11.1MBq的51Cr標記45分鐘。接著以5毫升RPMI清洗經標記的標的細胞三次,然後用於細胞毒性分析中。該分析係在96孔式平皿中,在總體積250微升之具有E:T比率為10:1之1微克/毫升的跨物種特異性的雙特異性單鏈抗體分子之增補型RPMI(如上)中進行,及施用其20個三倍稀釋物。若使用含有跨物種特異性的雙特異性單鏈抗體分子之上清液,則分別在獼猴與人類細胞毒性分析中施用其21個二倍稀釋物及20個三倍稀釋物。分析時間為18小時,及係以與最大細胞溶解作用(加入Triton-X)與自發溶解作用(不含作用細胞)之間的差值相關之上清液中所釋出的鉻相對值,測量細胞毒性。所有測量均以四重複進行。上清液中的鉻活性之測量,係以Wizard 3"γ計數器(德國科隆(Koln)的伯森生物科技(Perkin Elmer Life Sciences)股份有限公司)進行。實驗資料之分析係以供視窗(Windows)用的Prism 4(美國加州聖地牙哥的GraphPad軟體股份有限公司4.02版本)進行。該軟體所測定的S形劑量反應曲線,典型地具有高於0.90的R2值。藉由分析程式計算所得的EC50,係用於生物活性之比較。
如第13至17圖及第40圖所示,所產生的所有跨物種特異性的雙特異性單鏈抗體建構體,均證實藉由移除CD4/CD56的受激型人類PBM所引發之對抗人類MCSP D3陽性標的細胞之細胞毒性活性,及藉由獼猴T細胞系4119LnPx所引發之對抗獼猴MCSP D3陽性標的細胞之細胞毒性活性。
12.MCSP與CD3跨物種特異性的雙特異性單鏈抗體之血漿安定性
藉由在37℃與4℃之50%的人類血漿中培養雙特異性單鏈抗體24小時後測試生物活性,而分析所產生的雙特異性單鏈抗體在人類血漿中之安定性。在鉻51(51Cr)釋出試管內細胞毒性分析中,使用MCSP陽性CHO細胞系(表現如第14或15例所選殖的MCSP)作為標的及受激型CD8陽性T細胞作為作用細胞,而分析生物活性。
藉由上述分析程式計算所得的EC50值,係用於比較在50%的人類血漿中分別於37℃和4℃培養24小時之雙特異性單鏈抗體與未添加血漿或在分析前方與同量血漿混合的雙特異性單鏈抗體之生物活性。
如第18圖與第2表所示,相較於未添加血漿或在測定生物活性前方與同量血漿混合之對照組,G4 H-L×I2C H-L、G4 H-L×H2C H-L及G4 H-L×F12Q H-L雙特異性抗體之生物活性並未顯著降低。
13.在循環標的細胞不存在下之因首次曝露於導向習用亦即鄰近序列相關性CD3表位的CD3結合分子所導致之循環T細胞重新分佈係治療起始相關性不良事件之主要風險因子 罹患B細胞非霍奇金氏(Hodgkin)淋巴瘤(B-NHL)的病患在以習用CD3結合分子治療起始之後之T細胞重新分佈
習用的CD19xCD3結合分子,係一種具雙特異性串聯scFv形式的CD3結合分子(Loffler(於2000年期刊“Blood”第95期第6號乙文)或WO99/54440)。其係由導向(i)正常與惡性人類B細胞表面的CD19及(ii)人類T細胞上的CD3之二種不同的結合部分所組成。藉由將T細胞上的CD3與B細胞上的CD19交聯,該建構體觸發正常與惡性B細胞因T細胞的細胞毒性活性之重新導向型分解作用。該種習用CD3結合分子所辨識的CD3表位係位於CD3ε鏈,其中當其嵌入ε鏈的其餘部分及經ε鏈與CD3γ或δ鏈的異二聚化作用維持在正確位置時才具有正確構形。該高度鄰近序列相關性表位與一種習用的CD3結合分子(如見Loffler(於2000年期刊“Blood”第95期第6號乙文)或WO99/54440)之交互作用,即使當其以純單價方式發生及未具有任何交聯作用時,可誘發CD3構形的一種異位變化,導致曝露出CD3ε胞質域內之在其他情況下隱藏的一個富含脯胺酸區域。一旦曝露,該富含脯胺酸區域可募集訊號轉導分子Nck2,其可進一步觸發細胞內訊號。雖然其並不足以全面地活化T細胞,因全面的T細胞活化作用明確地需要T細胞表面上的數種CD3分子之交聯作用,如藉由B細胞表面的數種CD19分子而與T細胞的數種CD3分子結合之數種抗CD3分子的交聯作用,然而習用CD3結合分子與其等CD3ε上的鄰近序列相關性表位之純單價式交互作用,對於T細胞的訊號傳導方面仍非毫無作用。在不受限於理論之下,當在人類中輸注單價的習用CD3結合分子(技藝中所知)時,可引發一些T細胞反應,即使在並無循環標的細胞可供CD3交聯作用之該等病例亦然。在實質上並無循環的CD19陽性B細胞之B-NHL病患中,靜脈內輸注單價的習用CD19xCD3結合分子之一項重要的T細胞反應,係治療開始後之T細胞重新分佈。在一項階段I臨床試驗中已發現,在並無循環的CD19陽性標的B細胞之所有個體中,該T細胞反應係發生在靜脈內輸注CD19xCD3結合分子之起始階段期間,及實質上與CD19xCD3結合分子之劑量無關(第19圖)。然而,已發現因CD19xCD3結合分子曝露之驟然增加而在該等病患中所觸發的T細胞重新分佈反應,係與在治療開始時T細胞初次曝露於CD19xCD3結合分子所觸發者實質上相同(第20A圖),甚至CD19xCD3結合分子曝露之逐漸增加仍可對於循環T細胞產生重新分佈效應(第21圖)。此外,已發現在100%的所有接受治療個體中,在缺乏藉由習用CD3結合分子如CD19xCD3結合分子所觸發的循環標的細胞情況下,該實質上與劑量無關之T細胞重新分佈反應(如WO 99/54440所揭露),係治療起始相關性不良事件之一個主要風險因子。
依據研究作程序,在一個開放標籤、多中心之第I階段病患間劑量漸增式試驗中,招募患有經組織學確認之復發型無痛B細胞非霍奇金氏(Hodgkin)-淋巴瘤(B-NHL)包括套膜細胞淋巴瘤之病患。
該研究程序係獲得所有參與中心之獨立的道德委員會核准,及告知相關主管機關。具有CT掃描所記錄之可測量性疾病(至少一病灶公分),方可納入該研究。病患藉由一個攜帶式迷你泵系統,以恆定流速(亦即劑量水平)連續靜脈內輸注4星期,而領受習用的CD19xCD3結合分子。病患在治療的頭二星期住院,然後出院及在家繼續接受治療。4星期後,提供並無疾病惡化證據之病患繼續再治療4星期。至此已測試0.5、1.5、5、15、30及60微克/平方公尺/24小時等6種不同的劑量水平,及尚未達到最大耐受劑量(MTD)。若未觀察到研究程序界定為DLT(劑量相關毒性)之不良事件,世代係各由三名病患所組成。在最初的三名病患發生一項DLT之情況下,則將該世代擴大為六名病患,及在不發生第二項DLT之情況下,容許進一步地漸增劑量。因此,在不發生DLT之具有3名病患的世代或在發生一項DLT之具有6名病患的世代,其劑量水平係視為安全。終止所有發生DLT的病患中之研究治療。在數個附加的世代中,以15與30微克/平方公尺/24小時,測試在頭24小時期間之不同的治療起始模式:(i)在頭24小時的5微克/平方公尺/24小時之後,逐步增加至15微克/平方公尺/24小時的維持劑量(病患世代15-逐步型);(ii)將流速自幾乎0均勻地連續增加至15或30微克/平方公尺/24小時(15-迅速增加型與30-迅速增加型病患世代);及(iii)自最初即以維持劑量開始(15-無變化型、30-無變化型及60-無變化型病患世代)。劑量水平為0.5、1.5及5微克/平方公尺/24小時之病患世代,自最初即以維持劑量開始(亦即無變化型起始作用)。
藉由如下之四色FACS分析,測定周邊血液中的絕對B細胞與T細胞計數之時間歷程:
血液試樣之收集與例行分析
在15-迅速增加型、15-無變化型、30-迅速增加型、30-無變化型及60-無變化型病患世代中,在CD19xCD3結合分子(如WO 99/54440中所揭露)輸注開始之前及開始之後0.75、2、6、12、24、30、48小時以及在治療第8、15、17、22、24、29、36、43、50、57天及在習用的CD19xCD3結合分子輸注結束後4星期,使用含有EDTA的VacutainerTM試管(必帝(Becton Dickinson)公司)獲取血液試樣(6毫升),及於4℃送往分析。在15-逐步型病患世代中,在CD19xCD3結合分子輸注開始之前及開始之後6、24、30、48小時以及在治療第8、15、22、29、36、43、50、57天及在習用的CD19xCD3結合分子輸注結束後4星期,獲取血液試樣(6毫升)。在0.5、1.5及5微克/平方公尺/24小時之劑量水平,在CD19xCD3結合分子輸注開始之前及開始之後6、24、48小時以及在治療第8、15、22、29、36、43、50、57天及在習用的CD19xCD3結合分子輸注結束後4星期獲取血液試樣(6毫升)。在一些情況下,該等時間點因操作因素而有些微變化。在血液試樣收集後之24至48小時內進行淋巴細胞亞群之FACS分析。經由庫爾特(Coulter)計數器TM(庫爾特(Coulter)公司)之示差血液分析,測定血液試樣中之白血球亞群的絕對數目。
自血液試樣分離PBMC
藉由一種改良型FicollTM梯度分離操作程序,進行PBMC(周邊血液單核細胞)的分離作用。在室溫中,將血液轉移至預先裝有3毫升BiocollTM溶液(拜爾克隆姆(Biochrom)公司)之10毫升LeucosepTM試管(葛萊娜(Greiner)公司)中。在一種水平式離心機中,以未減速的情況在1700xg與22℃進行離心15分鐘。將BiocollTM層上方的PBMC分離,以FACS緩衝液(PBS/2% FBS[胎牛血清;拜爾克隆姆(Biochrom)公司])清洗一次,進行離心,及再懸浮於FACS緩衝液中。所有清洗步驟中之離心作用,係在一種水平式離心機中,以800xg與4℃進行4分鐘。若需要,所分離的PBMC藉由在3毫升的紅血球分解緩衝液(8.29克的氯化銨、1.00克的碳酸氫鉀、0.037克的EDTA及1.0公升的二次蒸餾水、pH7.5)及室溫中培養5分鐘,接著進行一個以FACS緩衝液清洗的步驟,而進行紅血球之分解作用。
使用對抗細胞表面分子之經螢光標示的抗體之PBMC染色作用
依據製造廠商之建議,使用來自英杰(Invitrogene)公司(1型錄編號MHCD1301、2型錄編號MHCD1401)、達科(Dako)公司(5型錄編號C7224)或必帝(Becton Dickinson)公司(3型錄編號555516、4型錄編號345766)之單株抗體。使用下列抗體染色5x105至1x106個細胞:抗CD131/抗CD142(FITC)x抗CD563(PE)x抗CD34(PerCP)x抗CD195(APC)。細胞在V形96孔多重滴定平皿(葛萊娜(Greiner)公司)中呈片狀沈澱,及移除上清液。將細胞片狀沈澱物再懸浮於總體積100微升之含有在FACS緩衝液中稀釋的特異性抗體。在4℃及黑暗中進行培養30分鐘。之後,以FACS緩衝液清洗試樣二次,及將細胞片狀沈澱物再懸浮於FACS緩衝液中,以進行流動式細胞測量分析。
藉由FACS進行經染色的淋巴細胞之流動式細胞測量檢測
以四色BD FACSCaliburTM(必帝(Becton Dickinson)公司)進行數據收集。就各測量而言,取得所界定的淋巴細胞亞群之1x104個細胞。以CellQuest ProTM程式(必帝(Becton Dickinson)公司)進行統計分析,而獲得淋巴細胞亞群百分比,及將細胞表面分子的表現強度分級。之後,藉由FACS所測定之相對於淋巴細胞總數(亦即經由CD13/14染色作用之B細胞加上T細胞加上NK細胞及排除任一髓樣細胞)的單淋巴細胞子集百分比,係與來自示差血液分析的淋巴細胞計數相關化,以計算T細胞(CD3+、CD56-、CD13/14-)與B細胞(CD19+、CD13/14-)的絕對細胞數目。
在治療開始時實質上並無循環的CD19陽性B細胞之所有該等病患,其在習用的CD19xCD3結合分子(如WO 99/54440中所揭露)治療的起始階段期間之T細胞重新分佈係示於(第19圖)。為進行比較,具有顯著數目的循環CD19陽性B細胞之一名病患,其在CD19xCD3結合分子的治療起始階段期間之T細胞重新分佈的代表性實例係示於第22圖。
在該二情況(亦即實質上並無循環的B細胞或具有許多循環的B細胞)下,循環T細胞計數在治療開始時迅速減少。然而,在循環的B細胞不存在下,T細胞傾向於在非常早期即重現於循環血液中;而在治療開始時具有顯著數目的循環B細胞之該等病患中,T細胞重現於循環血液之時點,通常延遲直至該等循環的B細胞被減除為止。因此,T細胞重新分佈模式的主要差異,係在於T細胞重現於循環血液中之動力學。
在治療4星期後,而對於亦領受附加的4星期之病患係在治療8星期後,加上所有病例皆在治療結束後4星期,由中央審察放射科進行以CT掃描為基礎的效能評估。所有已知病灶(包括脾臟腫大)之消失及/或尺寸正常化,加上在骨髓浸潤病例中之自骨髓清除淋巴瘤細胞,係計為完全反應(CR)。自各個預先界定的標的病灶之二個最大直徑的積之和(SPD)基線減少至少50%,係界定為部份反應(PR);減少至少25%則視為微小反應(MR)。進行性疾病(PD)係界定為SPD自基線增加。SPD自基線偏差+50%與-25%之間係視為疾病穩定(SD)。
34名病患之病患人口統計學、所領受劑量及臨床結果係彙總於第3表中。CD19xCD3結合分子的臨床抗腫瘤活性清楚地具有劑量相關性:自5微克/平方公尺/24小時以上觀察到自周邊血液一致性減除循環CD19陽性B(淋巴瘤)細胞之作用。在15微克/平方公尺/24小時與30微克/平方公尺/24小時之劑量,首度記錄目標性臨床反應(PR與CR),以及B淋巴瘤細胞自浸潤的骨髓部份與完全移除之病例。最後,在60微克/平方公尺/24小時之劑量,反應率增加至100%(PR與CR)及在所有可評估的病例中皆自骨髓完全清除B淋巴瘤細胞。
大部分的病患對於CD19xCD3結合分子的耐受度良好。不論因果關係,將34名病患中最常見之等級1至4級的不良事件彙總於第4表。與CD19xCD3結合分子相關的不良事件通常為暫時性及完全可逆。尤其,實質上並無循環的CD19陽性B細胞之2名病患(第3表中之第19與24號病患),即因與CD19xCD3結合分子輸注起始階段之重複性T細胞重新分佈相關的CNS不良事件(主要症狀為精神混亂與定向力障礙),而提前終止其等的治療。
該等病患之一(第19號)係在15-逐步型世代中。其在頭24小時領受5微克/平方公尺/24小時的CD19xCD3結合分子,接著驟增至15微克/平方公尺/24小時的維持劑量。對應的T細胞重新分佈模式顯示在以5微克/平方公尺/24小時開始輸注之際,循環T細胞計數迅速地減少,接著T細胞提前重現於實質上並無循環的CD19陽性B細胞之循環血液中。結果,當在24小時後將CD19xCD3結合分子劑量自5增加至15微克/平方公尺/24小時之時,周邊T細胞計數已完全恢復。因此,該劑量步驟可觸發如第20A圖中所示之第二次T細胞重新分佈事件。該重複性T細胞重新分佈係與該名病患的CNS副作用(主要症狀為精神混亂與定向力障礙)相關,而該副作用導致輸注作用之停止。亦在先前B-NHL病患的階段I臨床試驗中,觀察到重複性T細胞重新分佈與該CNS不良事件之間的關係,該等病患以每次2至4小時的重複性大量輸注方式領受CD19xCD3結合分子(如WO 99/54440中所揭露),之後通常有2天的無治療期間(第20B圖)。各個單一大量輸注作用觸發由循環的T細胞計數快速減少及T細胞在下一次大量輸注之前恢復所組成之一次T細胞重新分佈事件。總計,在21名病患中的5名觀察到與重複性T細胞重新分佈相關的CNS不良事件。第20B圖顯示來自大量輸注試驗的一名病患之代表性實例,其在第三次T細胞重新分佈事件之後發生CNS症狀。典型地,在大量輸注試驗中發生CNS不良事件之病患,亦具有低的循環B細胞計數。
來自連續輸注試驗之第二名病患(第24號)係在15-無變化型世代中,其因為與CD19xCD3結合分子的輸注起始階段期間之重複性T細胞重新分佈相關的CNS不良事件(主要症狀為精神混亂與定向力障礙),而提前終止治療。因出錯,該病患領受一次CD19xCD3結合分子輸注作用而未添加藥物安定化作用所需的HSA。所造成的不均勻藥物流量觸發重複性而非單次T細胞重新分佈事件(第23A圖),結果因為發生CNS症狀而必須停止輸注。然而,當同一名病患以含有供藥物安定化用的附加HAS之CD19xCD3結合分子溶液(如WO 99/54440中所揭露)正確地重新開始時,未觀察到重複性T細胞重新分佈,及該名病患並未再發生任一CNS症狀(第23B圖)。因為該病患實質上亦無循環的B細胞,循環的T細胞對於如所觀察到之即使細微的藥物曝露變化,能以快速的重新分佈動力學反應之。在實質上並無循環標的細胞之病患中,與T細胞重新分佈相關的CNS不良事件,可由T細胞對於內皮細胞之黏著性的暫時性增加,接著循環T細胞與血管壁之大量且同時的附著作用,及如所觀察到之循環血液中的T細胞數目之連續下降而解釋。T細胞與血管壁之大量且同時的連接作用,可造成內皮滲透性與內皮細胞活化作用之增加。內皮滲透性增加之結果,係流體自血管內區室移至間質組織區室包括CNS間質。藉由所連接的T細胞之內皮細胞活化作用可具有促凝血效應(Monaco等人於期刊“J Leukoc Biol”第71期(2002年)第659-668頁乙文),及可能干擾血流(包括腦血流)尤其在微血管微循環方面。因此,在實質上並無循環標的細胞的病患中,與T細胞重新分佈相關的CNS不良事件,可為微血管滲漏及/或經由T細胞與內皮細胞的附著而干擾微血管微循環之結果。大部分的病患可忍受一次T細胞重新分佈事件所造成的內皮壓力,而重複性T細胞重新分佈所造成的內皮壓力增強通常引發CNS不良事件。一次以上的T細胞重新分佈事件,可能僅在循環T細胞計數基線低的病患中較不具風險。然而,在對於該等事件的感受性增加之罕見病例中,由一次T細胞重新分佈事件所造成的有限內皮壓力亦可引發CNS不良事件,如在CD19xCD3結合分子的大量輸注試驗中之21名病患中的一名所觀察到。
在不受限於理論之下,在實質上並無循環標的細胞的病患中,T細胞對於內皮細胞的黏著性之暫時性增加,可由對於一種習用的CD3結合分子如CD19xCD3結合分子(如WO 99/54440)與其CD3ε上的鄰近序列相關性表位之單價交互作用造成CD3構形的異位變化,及接著將Nck2募集至CD3ε胞質域的作用之T細胞反應而解釋。當Nck2經由PINCH與ILK(第28圖)而與整合子直接連接時,在經由一種習用CD3結合分子如CD19xCD3結合分子與其CD3ε上的鄰近序列相關性表位之結合作用所造成之CD3構形的異位變化之後,將Nck2募集至CD3ε胞質域之作用,可經由內而外的訊號傳導,藉由將T細胞表面上的整合子暫時轉換成為其等黏著性較高的異構體,而增加T細胞對於內皮細胞之黏著性。
b治療8週後之PR狀態在7週無治療間之後,經過相同劑量的4週附加治療循環後變成CR狀態
n.e.:因為治療期間少於七天而無法評估
n.d.:未測定(浸潤型,但在治療結束時未進行第二次生檢)
n.i.:在治療開始時並非浸潤型
所用的縮寫如下:AE為不良事件;AP為鹼性磷酸酶;LDH為乳酸鹽去氫酶;CRP為C-反應性蛋白質;ALT為丙胺酸轉胺酶;AST為天冬胺酸鹽轉胺酶;GGT為γ-麩胺醯基轉移酶;尚未納入來自第34號病患的附加治療循環之AE數據。
如上所解釋,可與鄰近序列相關性表位結合之習用CD3結合分子(如WO 99/54440中所揭露),雖然具有功能,但在病患中導致引發CNS不良事件之非所欲的T細胞重新分佈效應。相反地,本發明的結合分子藉由與CD3ε鏈的鄰近序列無關性N端1至27個胺基酸結合,並未導致該等T細胞重新分佈效應。結果,相較於習用的CD3結合分子,本發明的CD3結合分子具有較佳的安全性廓型。
14.藉由辨識表面標的抗原而引發T細胞所媒介的標的細胞分解作用之本發明的雙特異性CD3結合分子在活體內減除標的抗原陽性細胞 辨識CD33作為標的抗原之本發明的一種雙特異性CD3結合分子自食蟹猴周邊血液減除CD33陽性的循環單核細胞
藉由在CHO細胞表現序列辨識編號268的編碼核苷酸序列,而產生CD33-AF5 VH-VL x I2C VH-VL(胺基酸序列:序列辨識編號267)。將基因合成作用所產生的DNA片段插入表現作用載體pEF-DHFR(Raum等人於期刊“Cancer Immunol Immunother”(2001年)第50(3)期第141-150頁乙文)的多重選殖位址之前,(i)包含一個嵌入Kozak共通序列內的開始密碼子之一種N端免疫球蛋白重鏈引導子及(ii)依序為一個C端His6標籤與一個終止密碼子之編碼序列,均在框架中與序列辨識編號268的核苷酸序列連接。如所述(Mack等人於期刊“PNAS”(1995年)第92期第7021-7025頁乙文),進行DHFR缺乏型CHO細胞之穩定轉染作用、在培養上清液中分泌CD3結合分子CD33-AF5 VH-VL x I2C VH-VL之DHFR-陽性轉染體的選擇作用及用於增加表現水平之以胺基甲葉酸進行的基因擴增作用。用於食蟹猴之CD33-AF5VH-VL x I2C VH-VL的分析SEC廓型揭露,該試驗物質幾乎完全由單體所組成。如第16.5例中所述,使用經食蟹猴CD33轉染的CHO細胞作為標的細胞及獼猴T細胞系4119LnPx作為作用細胞的來源(第25圖),在細胞毒性分析中測量試驗物質的效力。作用細胞T細胞之半極大標的細胞分解作用所需的CD33-AF5 VH-VL x I2C VH-VL濃度(EC50),經測定為2.7奈克/毫升。
藉由以不同流速(亦即劑量水平)的CD3結合分子CD33-AF5 VHVL x 12C VH-VL之連續靜脈內輸注作用,治療年輕(約3歲大)的成年食蟹猴(Macaca fascicularis),以研究周邊血液中的循環CD33陽性單核細胞之減除作用。該情況係相當於以習用的CD3結合分子CD19xCD3(對於B細胞上的CD19及T細胞上的CD3具特異性)治療具有循環CD19陽性標的B細胞之B-NHL病患(如見WO 99/54440)。自周邊血液減除循環的CD19陽性標的B細胞之作用,已成為習用CD3結合分子(如WO 99/54440所提供之CD19xCD3)在患有CD19陽性B細胞惡性瘤如B-NHL的病患中之一般臨床效能的有效替代。同樣地,周邊血液中的循環CD33陽性單核細胞之減除作用,係視為本發明的CD33導向型雙特異性CD3結合分子如CD33-AF5 VH-V L x I 2 C V H-VL在患有CD33陽性髓樣惡性瘤如AML(急性髓樣白血病)的病患中之一般臨床效能的有效替代。
依據如下之史維弗(Swivel)方法進行連續輸注:使用一個靜脈導管,經由猴的股靜脈進入尾側腔靜脈而插入導管。該導管係穿過皮下至背側肩區,及在後側肩胛骨取出。然後將一管通過一護套與一保護彈簧。該護套係緊固在動物周圍,及導管經由該管而與一輸注泵連接。
在治療開始之前,以48毫升/24小時連續七天輸注不具有試驗物質的投藥溶液(1.25M離胺酸、0.1%吐溫(Tween)80、pH 7),以讓動物適應輸注條件。藉由以待測試的各個別劑量水平所需之量(亦即CD33-AF5 VH-VL x I2C VH-VL的流速),在投藥溶液中添加CD33-AF5 VH-VL x I2C VH-VL試驗物質,而開始治療。在整個適應與治療階段,每天更換輸注儲器。除了120微克/平方公尺/24小時劑量水平之動物領受14天的治療之外,規劃的治療期間為七天。
分別藉由四色或三色FACS分析,測定循環T細胞與CD33陽性單核細胞之絕對計數的時間歷程。
血液試樣之收集與例行分析
在MCSP-G4 VH-VL x I2C VH-VL連續輸注開始之前及開始之後0.75、2、6、12、24、30、48、72小時以及在治療七天與14天後(及在120微克/平方公尺/24小時劑量水平治療9天後),使用含有EDTA的VacutainerTM試管(必帝(Becton Dickinson)公司)獲取血液試樣(1毫升),及於4℃送往分析。在一些情況下,該等時間點因操作因素而有些微變化。在血液試樣收集後之24至48小時內進行淋巴細胞亞群之FACS分析。經由例行性獸醫實驗中之示差血液分析,測定血液試樣中之白血球亞群的絕對數目。
自血液試樣分離PBMC
以上述第13例所述操作程序之類似方式,依所用體積作修正,而分離PBMC(周邊血液單核細胞)。
使用對抗細胞表面分子之經螢光標示的抗體之PBMC染色作用
自必帝(Becton Dickinson)公司(1型錄編號345784、2型錄編號556647、3型錄編號552851、6型錄編號557710)、貝克曼庫爾特(Beckman Coulter)公司(4型錄編號IM2470)及美天旎(Miltenyi)公司(5型錄編號130-091-732)取得與食蟹猴抗原反應之單株抗體,及依據製造廠商之建議使用。以下列抗體組合染色5x105至1x106個細胞:抗CD141(FITC)x抗CD562(PE)x抗CD33(PerCP)x抗CD194(APC)及抗CD141(FITC)x抗CD335(PE)x抗CD166(Alexa Fluor 647TM)。如上述第13例所述,進行附加的步驟。
藉由FACS進行經染色的淋巴細胞之流動式細胞測量檢測
以四色BDFA CSCaliburTM(必帝(Becton Dickinson)公司)進行數據收集。就各測量而言,取得所界定的淋巴細胞亞群之1x104個細胞。以CellQuest ProTM程式(必帝(Becton Dickinson)公司)進行統計分析,而獲得淋巴細胞亞群百分比,及將細胞表面分子的表現強度分級。之後,藉由FACS所測定之相對於淋巴細胞總數(亦即經由CD14染色作用之B細胞加上T細胞加上NK細胞及排除髓樣細胞)的單淋巴細胞子集百分比,係與來自示差血液分析的淋巴細胞計數相關化,以計算T細胞(CD3+、CD56-、CD14-)的絕對細胞數目。藉由將來自示差血液分析的單核細胞計數乘以FACS所測定之CD33陽性單核細胞(CD33+、CD14+)相對於所有單核細胞(CD14+)的對應比例,而計算CD33陽性單核細胞的絕對數目。
各由2隻食蟹猴所組成的4個世代,在以世代內劑量漸增方式自30至60至240及至1000微克/平方公尺/24小時的CD33-AF5 VH-VL x I2C VH-VL治療結束時,循環CD33陽性單核細胞絕對計數相較於基線(亦即100%)之百分比,係示於第26A圖。
如第26A圖中所示,連續靜脈內輸注CD33-AF5 VH-VL x I2C VH-VL,係以劑量依賴性方式誘發循環CD33陽性單核細胞之減少。雖然在30微克/平方公尺/24小時尚未檢測到循環CD33陽性單核細胞之減少,在以60微克/平方公尺/24小時治療七天之後,可觀察到朝向CD33陽性單核細胞計數減少之第一個趨勢。在以240微克/平方公尺/24小時治療3天之後,幾乎完全減除周邊血液中之循環CD33陽性單核細胞。其在1000微克/平方公尺/24小時更快達成,在該劑量治療1天之後,已完成減除周邊血液中之循環CD33陽性單核細胞之作用。第26B圖所示的結果確認該項發現,第26B圖證實在經120微克/平方公尺/24小時的CD33-AF5 VH-VL x I2C VH-VL連續輸注14天所治療的二隻食蟹猴中,相較於個別的基線,循環CD33陽性單核細胞減少三分之二與50%。
該結果係本發明整體的CD3結合分子及本發明的雙特異性CD33導向型CD3結合分子,用於治療CD33陽性惡性瘤特別是AML的臨床效能之清楚訊號。此外,在循環標的細胞(亦即CD33陽性單核細胞)存在下,在以CD33-AF5VH-VL x I2C VH-VL治療的起始階段期間之T細胞重新分佈,似乎不如第22圖中所示在具有顯著數目的循環標的細胞(亦即CD19陽性B細胞)的B-NHL病患中以如WO 99/54440所述習用CD19xCD3建構體治療的起始階段之T細胞重新分佈顯著。雖然T細胞在開始輸注CD19xCD3時即從循環中完全消失,及並未重現直至周邊血液中的循環CD19陽性標的B細胞減除為止(第22圖);循環T細胞在開始輸注CD33-AF5 VH-VL x I2C VH-VL時之初始消失並不完全,及在循環CD33陽性標的細胞仍存在期間,T細胞計數即恢復(第26B圖)。其確認本發明的CD3結合分子(導向對抗與產生對抗人類與非黑猩猩靈長類CD3ε鏈的一表位及為序列辨識編號2、4、6或8所提供之片段或全長胺基酸序列的一部份)藉由辨識一鄰近序列無關性CD3表位所顯示之T細胞重新分佈廓型,係優於辨識一鄰近序列相關性CD3表位之習用CD3結合分子,如WO 99/54440所提供的結合分子。
15.本發明之導向實質上鄰近序列無關性CD3表位的CD3結合分子藉由在循環標的細胞不存在下引發較少的循環T細胞重新分佈而降低治療起始相關性不良事件之風險 以本發明之一種代表性跨物種特異性CD3結合分子降低食蟹猴在治療起始後之T細胞重新分佈
藉由在CHO細胞中表現序列辨識編號194的編碼核苷酸序列,而產生MCSP-G4 VH-VL x I2C VH-VL(胺基酸序列:序列辨識編號193)。在將基因合成作用所產生的DNA片段插入表現作用載體pEF-DHFR(Raum等人於期刊“Cancer Immunol Immunother”(2001年)第50(3)期第141-150頁乙文)的多重選殖位址之前,(i)包含一個嵌入Kozak共通序列內的開始密碼子之一種N端免疫球蛋白重鏈引導子及(ii)依序為一個C端His6標籤與一個終止密碼子之編碼序列,均在框架中與序列辨識編號194的核苷酸序列連接。如所述(Mack等人於期刊“Proc. Natl. Acad. Sci. USA”第92期(1995年)第7021-7025頁乙文),進行DHFR缺乏型CHO細胞之穩定轉染作用、在培養上清液中分泌CD3結合分子MCSP-G4 VH-VL x I2C VH-VL之DHFR-陽性轉染體的選擇作用及以胺基甲葉酸進行之用於增加表現水平的基因擴增作用。在一個200公升的發酵槽中,生產用於治療食蟹猴的試驗物質。收穫物之蛋白質純化作用,係基於標定MCSP-G4 V H-VL x I2C VH-VL的C端His6標籤之IMAC親和力層析及藉由製備級粒徑排除層析(SEC)。不含內毒素的試驗物質之最終總產量為40毫克。試驗物質係由70%的單體、30%的二聚體及少量高級多聚體所組成。如第11例中所述,使用經食蟹猴MCSP轉染的CHO細胞作為標的細胞及獼猴T細胞系4119LnPx作為作用細胞的來源(第27圖),在細胞毒性分析中測量試驗物質的效力。作用細胞T細胞之半極大標的細胞分解作用所需的MCSP-G4 VH-VL x I2C VH-VL濃度(EC50),經測定為1.9奈克/毫升。
藉由以不同流速(亦即劑量水平)的CD3結合分子MCSP-G4 VH-VL x I2C VH-VL之連續靜脈內輸注作用,治療年輕(約3歲大)的成年食蟹猴(Macaca fascicularis),以研究在循環標的細胞不存在下之循環T細胞在治療起始後的重新分佈。雖然CD3結合分子MCSP-G4 VH-VL x I2C VH-VL可同時辨識食蟹猴MCSP與食蟹猴CD3,然而並無循環血液細胞表現MCSP。因此,在循環血液中唯一可能的交互作用,係MCSP-G4 VH-VL x I2C VH-VL的CD3特異性臂與T細胞上的CD3之結合作用。該情況係相當於如第13例所述以習用CD3結合分子(對於B細胞上的CD19及T細胞上的CD3具特異性之CD19xCD3)治療並無循環的CD19陽性標的B細胞之B-NHL病患。
依據如下之史維弗(Swivel)方法進行連續輸注:使用一個靜脈導管,經由猴的股靜脈進入尾側腔靜脈而插入導管。該導管係穿過皮下至背側肩區,及在後側肩胛骨取出。然後將一管通過一護套與一保護彈簧。該護套係緊固在動物周圍,及導管經由該管而與一輸注泵連接。
在治療開始之前,以48毫升/24小時連續七天輸注不具有試驗物質的投藥溶液(1.25M離胺酸、0.1%吐溫(Tween)80、pH 7),以讓動物適應輸注條件。藉由以待測試的各個別劑量水平所需之量(亦即MCSP-G4 VH-VL x I2C VH-VL的流速),在投藥溶液中添加MCSP-G4 VH-VL x I2C VH-VL試驗物質,而開始治療。在整個適應與治療階段,每天更換輸注儲器。治療期間為七天。
藉由四色FACS分析,測定周邊血液中的絕對T細胞計數之時間歷程。
血液試樣之收集與例行分析
在MCSP-G4 VH-VL x I2C VH-VL連續輸注開始之前及開始之後0.75、2、6、12、24、30、48、72小時以及在治療七天後,使用含有EDTA的VacutainerTM試管(必帝(Becton Dickinson)公司)獲取血液試樣(1毫升),及於4℃送往分析。在一些情況下,該等時間點因操作因素而有些微變化。在血液試樣收集後之24至48小時內進行淋巴細胞亞群之FACS分析。經由例行性獸醫實驗中之示差血液分析,測定血液試樣中之白血球亞群的絕對數目。
自血液試樣分離PBMC
以上述第13例所述操作程序之類似方式,依所用體積作修正,而分離PBMC。
使用對抗細胞表面分子之經螢光標示的抗體之PBMC染色作用
自必帝(Becton Dickinson)公司(1型錄編號345784、2型錄編號556647、3型錄編號552851)與貝克曼庫爾特(Beckman Coulter)公司(4型錄編號IM2470)取得與食蟹猴抗原反應之單株抗體,及依據製造廠商之建議使用。以下列抗體組合染色5x105至1x106個細胞:抗CD141(FITC)x抗CD562(PE)x抗CD33(PerCP)x抗CD194(APC)。如上述第13例所述,進行附加的步驟。
藉由FACS進行經染色的淋巴細胞之流動式細胞測量檢測
以四色BD FACSCaliburTM(必帝(Becton Dickinson)公司)進行數據收集。就各測量而言,取得所界定的淋巴細胞亞群之1x104個細胞。以CellQuest ProTM程式(必帝(Becton Dickinson)公司)進行統計分析,而獲得淋巴細胞亞群百分比,及將細胞表面分子的表現強度分級。之後,藉由FACS所測定之相對於淋巴細胞總數(亦即經由CD14染色作用之B細胞加上T細胞加上NK細胞及排除髓樣細胞)的單淋巴細胞子集百分比,係與來自示差血液分析的淋巴細胞計數相關化,以計算T細胞(CD3+、CD56-、CD14-)的絕對細胞數目。
在食蟹猴中以60、240及1000微克/平方公尺/24小時的MCSP-G4 VH-VL x I2C VH-VL劑量水平治療的起始階段期間之T細胞重新分佈,係示於第28圖。該等動物在治療起始階段期間全然未顯示T細胞重新分佈之徵兆,亦即在治療起始之際,T細胞計數係增加而非減少。鑑於在以對抗鄰近序列相關性CD3表位的習用CD3結合分子(如WO 99/54440中所述之CD19xCD3建構體)治療起始時,在並無循環標的細胞之100%所有病患中,一致觀察到T細胞重新分佈;證實在以導向對抗與產生對抗如序列辨識編號2、4、6或8中任一者或其片段的胺基酸序列所界定之人類與非黑猩猩靈長類CD3ε鏈的一表位之本發明CD3結合分子治療起始時,在循環標的細胞不存在下,可觀察到顯著較少的T細胞重新分佈。其係明顯地與導向對抗鄰近序列相關性CD3表位之CD3結合分子如WO 99/54440中所述之建構體相反。如(尤其)序列辨識編號2、4、6或8(或該等序列的片段)中之任一者所提供之對抗鄰近序列無關性CD3表位的結合分子,提供該顯著較少(有害與非所欲)的T細胞重新分佈。因為在以CD3結合分子治療的起始階段期間之T細胞重新分佈係CNS不良事件之一主要風險因子,在此所提供及可辨識鄰近序列無關性CD3表位之CD3結合分子所具有的優點,係顯著優於技藝中所知及導向對抗鄰近序列相關性CD3表位之CD3結合分子。誠然,經MCSP-G4 VH-VL x I2C VH-VL治療的食蟹猴,並未顯示CNS症狀的任一徵兆。
在本發明中提供CD3表位的鄰近序列無關性,及係對應於CD3ε的頭27個N端胺基酸或該27個胺基酸段之片段。該鄰近序列無關性表位,係自其在CD3複合體內的天然環境取出及與異源性胺基酸序列融合而未喪失其結構完整性。如在此所提供及產生(與導向)對抗鄰近序列無關性CD3表位之抗CD3結合分子,提供在T細胞重新分佈方面之出乎意料的臨床改進,因此,提供較有利的安全性廓型。在不受限於理論之下,因其等的CD3表位具鄰近序列無關性,形成一個自主性自給自足的亞域而對於CD3複合體的其餘部份並無太多影響,在此所提供之CD3結合分子在CD3構形中所引發的異位變化,係少於如WO 99/54440中所提供分子辨識鄰近序列相關性CD3表位之習用CD3結合分子(如WO 99/54440中所提供之分子)。結果(再次不受限於理論),亦減少藉由在此所提供之CD3結合分子所引發的細胞內NcK2募集作用,造成T細胞整合子的異構重整轉換較少及T細胞與內皮細胞的附著作用較少。本發明的CD3結合分子(導向對抗與產生對抗如在此所界定之鄰近序列無關性表位)之製劑,較佳實質上由單體分子所組成。該等單體分子在避免T細胞重新分佈方面更有效(優於二聚體或多聚體分子),因此避免在治療起始階段期間的CNS不良事件之風險。
16. CD33與CD3跨物種特異性的雙特異性單鏈分子之產生與特性分析 16.1.產生表現人類CD33之CHO細胞
藉由依據標準操作程序之基因合成作用,製得如發表於基因庫(GenBank)(登錄號NM_001772)之人類CD33的編碼序列。設計該基因合成片段,使其首先含有用於該建構體的真核表現之一個Kozak位點,接著含有具19個胺基酸的免疫球蛋白引導肽,接著在框架中含有成熟人類CD33蛋白質的編碼序列,接著在框架中含有絲胺酸甘胺酸雙肽的編碼序列、一個組胺酸6標籤的編碼序列及一個終止密碼子(該建構體的cDNA與胺基酸序列係列於序列辨識編號305與306)。亦設計該基因合成片段,藉此在該片段的開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的EcoRI與3’端的SalI。依據標準操作程序,經由EcoRI與SalI,將基因合成片段選殖進入稱作pEF-DHFR的質體(pEF-DHFR係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)。依據標準操作程序(美國紐約的冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版之Sambrook所著“分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)”乙書第三版),進行前述程序。將具有序列經驗證的核苷酸序列之一殖株轉染進入DHFR缺乏型CHO細胞中,以進行該建構體的真核表現作用。如Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在DHFR缺乏型CHO細胞(ATCC編號CRL 9096)中進行真核蛋白的表現作用。藉由增加胺基甲葉酸(MTX)的濃度至最終濃度至多為20nM MTX,而引發該建構體的基因擴增作用。
16.2.產生表現獼猴CD33的細胞外域之CHO細胞
依據標準操作程序,藉由自獼猴骨髓所製備的cDNA之一組三個的聚合酶鏈反應,製得獼猴CD33的cDNA序列。使用下列反應條件:在94℃進行3分鐘之循環1次,接著在94℃進行1分鐘、在53℃進行1分鐘及在72℃進行2分鐘之循環35次;接著在72℃進行3分鐘之末端循環,及使用下列引子:
1.正向引子:5'-gaggaattcaccatgccgctgctgctactgctgcccctgctgtgggcaggggccctggctatgg-3'(序列辨識編號369)反向引子:5'-gatttgtaactgtatttggtacttcc-3'(序列辨識編號370)
2.正向引子:5'-attccgcctccttggggatcc-3'(序列辨識編號371)反向引子:5'-gcataggagacattgagctggatgg-3'(序列辨識編號372)
3.正向引子:5'-gcaccaacctgacctgtcagg-3'(序列辨識編號373)反向引子:5'-agtgggtcgactcactgggtcctgacctctgagtattcg-3'(序列辨識編號374)
該等PCR產生三個重疊的片段,使用PCR引子,依據標準操作程序將其等分離與定序,藉此提供獼猴CD33的cDNA序列自成熟蛋白質之密碼子+2的第二核苷酸至密碼子+340的第三核苷酸之部分。為產生用於表現獼猴CD33之一建構體,藉由依據標準操作程序之基因合成作用製得cDNA片段(該建構體的cDNA與胺基酸序列係列於序列辨識編號307與308)。在該建構體中,將獼猴CD33自成熟CD33蛋白質的胺基酸+3至+340之編碼序列融合進入人類CD33的編碼序列中,以置換胺基酸+3至+340的人類編碼序列。設計該基因合成片段,使其含有用於該建構體的真核表現之一個Kozak位點,及在含有編碼獼猴CD33的實質上整個細胞外域、獼猴CD33跨膜域及一個獼猴-人類嵌合型細胞內CD33域的cDNA之該片段的開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的XbaI與3'端的SalI。然後經由XbaI與SalI,將基因合成片段選殖進入稱作pEF-DHFR的質體(pEF-DHFR係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)。使用該質體之一種序列經驗證的殖株,以轉染如上述之CHO/dhfr-細胞。
16.3.產生CD33與CD3跨物種特異性的雙特異性抗體分子跨物種特異性結合分子之選殖
一般而言,雙特異性抗體分子各包含對於人類與非黑猩猩靈長類CD3ε具有跨物種特異性之具結合特異性的一域以,及對於人類與非黑猩猩靈長類CD33具有跨物種特異性之具結合特異性的一域,其設計係述於下列第5表中:
藉由基因合成作用,獲得含有對於人類與獼猴CD33具有跨物種特異性的可變輕鏈(L)域與可變重鏈(H)域及對於人類與獼猴CD3具有跨物種特異性的VH與VL組合物之前述建構體。設計該基因合成片段,及以第9例所述用於MCSP與CD3跨物種特異性單鏈分子之類似方式,進行真核蛋白質表現作用。CD33與CD3跨物種特異性單鏈分子之表現作用與純化作用亦如此。
在西方墨點法中,在52kD檢測出對應於純化後的雙特異性抗體之單一帶狀。
16.4. CD33與CD3跨物種特異性的雙特異性抗體之流動式細胞測量型結合分析
為測試跨物種特異性的雙特異性抗體建構體在分別與人類及獼猴CD33及CD3的結合能力方面之功能性,以第10例所述用於分析MCSP D3與CD3跨物種特異性的雙特異性抗體之類似的分析方式,使用表現人類與獼猴CD33細胞外域的CHO細胞(見第16.1與16.2例),進行FACS分析。
如第29圖所示,清楚地檢測出本發明的CD3結合分子對於人類與非黑猩猩靈長類CD3之特異性結合作用。在FACS分析中,相較於個別的陰性對照組,所有建構體皆顯示與CD3及CD33之結合作用。證實雙特異性抗體對於人類及獼猴CD3與CD33抗原之跨物種特異性。
16.5. CD33與CD3跨物種特異性的雙特異性抗體之生物活性
使用第16.1與16.2例中所述的CD33陽性細胞系,藉由鉻51(51Cr)釋出試管內細胞毒性分析,分析所產生的雙特異性單鏈抗體之生物活性。如個別圖式中所說明,使用移除CD4/CD56的受激型人類PBMC或獼猴T細胞系4119LnPx作為作用細胞。以第11例所述用於MCSP與CD3跨物種特異性的雙特異性抗體之生物活性分析的類似設置,使用表現人類或獼猴CD33細胞外域之CHO細胞(見第16.1與16.2例)作為標的細胞,進行細胞毒性分析。
如第30圖所示,所產生的所有跨物種特異性的雙特異性單鏈抗體建構體,均證實藉由移除CD4/CD56的受激型人類PBM所引發之對抗人類CD33陽性標的細胞之細胞毒性活性,及藉由獼猴T細胞系4119LnPx所引發之對抗獼猴CD33陽性標的細胞之細胞毒性活性。
17.藉由以對應於N端1至27個胺基酸的鄰近序列無關性CD3ε表位為基礎的親和力程序之跨物種特異性的雙特異性單鏈分子純化作用 17.1顯現所分離之對應於N端1至27個胺基酸的鄰近序列無關性人類CD3ε表位之親和力管柱之產生
用於表現由融合至上述人類免疫球蛋白IgG1的鉸鏈與Fcγ區域之人類CD3ε鏈N端1至27個胺基酸所組成之建構體1-27 CD3-Fc(第3例;該重組融合蛋白之cDNA序列與胺基酸序列係列於序列辨識編號230與229)之質體,經轉染進入DHFR缺乏型CHO細胞,以進行該建構體的真核表現作用。如Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在DHFR缺乏型CHO細胞中進行真核蛋白質的表現作用。藉由增加胺基甲葉酸(MTX)的濃度至最終濃度至多為20nM MTX,而引發該建構體的基因擴增作用。在靜止培養兩代之後,該等細胞在裝有不含核苷的HyQ PF CHO液態大豆培養基(含4.0mM的L-穀胺醯胺與0.1%的普朗尼克(Pluronic)F-68;海克隆(HyClone)公司)的滾瓶中培養七天後收集。藉由離心移除細胞,及將含有所表現的蛋白之上清液儲存於-20℃。為分離該融合蛋白,依據標準操作程序,使用對於牛、馬及小鼠血清蛋白的交叉反應極微之一種商品化親和純化型山羊抗人類IgG fc片段特異性抗體(歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.)),製備一種山羊抗人類fc親和力管柱。使用該親和力管柱,在kta Explorer系統(奇異安瑪西亞(GE Amersham)公)上,自細胞培養上清液分離該融合蛋白,及以檸檬酸洗提。將洗提液中和與濃縮。在不含胺的偶合緩衝液中透析之後,將純化的融合蛋白偶合至一個經N-羥基-琥珀醯亞胺NHS活化的1毫升HiTrap管柱(奇異安瑪西亞(GE Amersham)公司)。
在偶合作用後,阻斷剩餘的NHS基,及清洗該管柱及存放於含有0.1%疊氮化鈉之5℃儲存緩衝液中。
17.2使用人類CD3肽親和力管柱純化跨物種特異性的雙特異性單鏈分子
將表現跨物種特異性的雙特異性單鏈分子之細胞的細胞培養上清液200毫升,經0.2微米的無菌過濾,及使用kta Explorer系統(奇異安瑪西亞(GE Amersham)公司)而施用至CD3肽親和力管柱。
然後以pH 7.4之經磷酸鹽緩衝的鹽水PBS清洗該管柱,以將未結合的試樣洗出。以含有20mM檸檬酸與1M氯化鈉之pH 3.0的酸性緩衝液進行洗提。所洗提出的蛋白質立即以分液收集器的收集管中所含有之pH 8.3的1M三羥基甲基胺TRIS中和。
藉由SDS PAGE與西方墨點法進行蛋白質分析。
在SDS PAGE中,使用4-12%的BisTris凝膠(英杰(Invitrogene)公司)。運行的緩衝液為1 x MES-SDS-Puffer(英杰(Invitrogene)公司)。施用15微升的預染型精確蛋白質標準(Sharp Protein Standard)(英杰(Invitrogene)公司)作為蛋白質標準。電泳在最高200伏特120毫安培進行60分鐘。以去礦物質水清洗凝膠,及以考馬斯(Coomassie)染色1小時。凝膠在去礦物質水中去染3小時。以新基因(Syngene)公司的一種凝膠成像系統拍照。
在西方墨點法中,產生雙重的SDS PAGE凝膠,及將蛋白質電漬至一種硝化纖維素膜上。該膜以位於PBS中的2%牛血清白蛋白阻斷,及與一種生物素化鼠類五組胺酸(penta his)抗體(凱傑(Qiagen)公司)培養。使用一種鏈黴菌卵白素鹼性磷酸酶軛合物(達科(DAKO)公司)作為次發性試劑。以BCIP/NBT受質溶液(皮爾斯(Pierce)公司)顯現墨點。
如第31、32及33圖中所證實,使用如上述之人類CD3肽親和力管柱,促成自細胞培養上清液中高度有效地純化雙特異性單鏈分子。該雙特異性單鏈分子中所含有的跨物種特異性抗CD3單鏈抗體,因此可經由其等的特異性結合性質,促成用於該跨物種特異性的雙特異性單鏈分子之一種有效與通用的單步驟純化方法,而毋需連接僅供純化目的用之任一標籤。
18.用於跨物種特異性的雙特異性單鏈分子之通用藥物動力學分析 18.1生產用於藥物動力學分析之1-27 CD3-Fc
藉由依據標準操作程序之基因合成作用,製得與人類免疫球蛋白IgG1鉸鏈與Fcγ區域融合之人類CD3ε鏈的N端1至27個胺基酸之編碼序列(該重組融合蛋白之cDNA序列與胺基酸序列係列於序列辨識編號309與310)。設計該基因合成片段,使其首先含有用於該建構體的真核表現之一個Kozak位點,接著含有具19個胺基酸的免疫球蛋白引導肽,接著在框架中含有成熟人類CD3ε鏈細胞外部分的頭27個胺基酸之編碼序列,接著在框架中含有人類IgG1的鉸鏈區域與Fcγ部分之編碼序列及一個終止密碼子。如上文第3.1例,亦設計與選殖該基因合成片段。將具有序列經驗證的核苷酸序列之一殖株轉染進入DHFR缺乏型CHO細胞,以進行該建構體的真核表現作用。如上文第9例所述,在DHFR缺乏型CHO細胞中進行真核蛋白質之表現作用。為分離該融合蛋白,依據標準操作程序,使用對於牛、馬及小鼠血清蛋白質的交叉反應極微之一種商品化親和純化型山羊抗人類IgG fc片段特異性抗體(歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.)),製備一種山羊抗人類fc親和力管柱。使用該親和力管柱,在kta Explorer系統(奇異安瑪西亞(GE Amersham)公)上,自細胞培養上清液分離該融合蛋白,及以檸檬酸洗提。將洗提液中和與濃縮。
18.2用於跨物種特異性的雙特異性單鏈分子之藥物動力學分析
該分析係在塞克特成像(Sektor Imager)裝置(MSD)測量的碳平皿上,以使用釕標示檢測作用的ECL-ELISA技術為基礎。在第一步驟中,使用第18.1例中所述的50奈克/毫升之純化1-27 CD3-Fc,以5微升/孔塗覆碳平皿(型錄編號L15xB-3之96孔式MSD高結合平皿)。該平皿然後於25℃乾燥過夜。之後在振盪作用(700rpm)下,在25℃培養器中,以150微升/孔之位於PBS中的5% BSA(帕塞爾與羅瑞(Paesel & Lorei)公司編號100568)阻斷1小時。在下一個步驟中,該平皿以含有0.05%吐溫(Tween)的PBS清洗三次。藉由該分析中待檢測之個別跨物種特異性的雙特異性單鏈分子自100奈克/毫升開始之1:4系列稀釋作用,產生在位於PBS中的50%獼猴血清中之標準曲線。依所預期的試樣血清濃度而定,在位於PBS中的50%獼猴血清中,自1奈克/毫升至50奈克/毫升之個別跨物種特異性的雙特異性單鏈分子製備品管(QC)試樣。將標準、QC或未知試樣以10微升/孔轉移至碳平皿,在振盪作用(700rpm)下,在25℃培養器中培養90分鐘。之後,該平皿以含有0.05%吐溫(Tween)的PBS清洗三次。為進行檢測,添加25微升/孔的五組胺酸(Penta-His)-生物素抗體(凱傑(Qiagen)公司,在含有0.05%吐溫(Tween)的PBS中為200微克/毫升),及在振盪作用(700rpm)下,在25℃培養器中培養1小時。在第二個檢測步驟中,添加25微升/孔的鏈黴菌卵白素-SulfoTag溶液(MSD;型錄編號R32AD-1;批號W0010903),及在振盪作用(700rpm)下,在25℃培養器中培養1小時。之後,該平皿以含有0.05%吐溫(Tween)的PBS清洗三次。最後,添加150微升/孔的MSD讀取緩衝液(MSD,型錄編號R9ZC-1),及該平皿在塞克特成像(Sektor Imager)裝置(MSD)中讀數。
第34與35圖證實就跨物種特異性的雙特異性單鏈分子而言,檢測獼猴血清試樣中之跨物種特異性的雙特異性單鏈分子之可行性。在該雙特異性單鏈分子中含有跨物種特異性抗CD3單鏈抗體,因此經由其等的特異性結合性質,可促成用於檢測跨物種特異性的雙特異性單鏈分子之高度敏感的通用分析。如上所說明之分析可用於藥物開發所需之正規毒物學研究,及可輕易地修改而用於測量與跨物種特異性的雙特異性單鏈分子之臨床應用相關的病患試樣。
19.來自不同的非黑猩猩靈長類CD3ε之N端1至27個胺基酸與來自食蟹猴的EpCAM融合之重組型跨膜融合蛋白(1-27 CD3-EpCAM)之產生 19.1 1-27 CD3-EpCAM之選殖與表現作用
自不同的非黑猩猩靈長類(狨猿、獠狨、松鼠猴)及豬分離CD3ε。藉由依據標準操作程序之基因合成作用,製得與帶有FLAG標籤的食蟹猴EpCAM的N端融合之成熟人類、普通狨猿(白鬢狨(Callithrix jacchus))、棉冠獠狨(Saguinus oedipus)、普通松鼠猴(Saimiri sciureus)及家豬(Sus scrofa;作為陰性對照組)CD3ε鏈的N端1至27個胺基酸之編碼序列(該重組融合蛋白的cDNA序列與胺基酸序列係列於序列辨識編號231至240)。設計該基因合成片段,使其首先含有BsrGI位址以容許在正確的讀取框架中與已存在於標的表現載體中之具19個胺基酸的免疫球蛋白引導肽之編碼序列融合,接著在框架中含有成熟CD3ε鏈的細胞外部分之N端1至27個胺基酸的編碼序列,接著在框架中含有一個Flag標籤的編碼序列,接著在框架中含有成熟食蟹猴EpCAM跨膜蛋白質的編碼序列。亦設計該基因合成片段,藉此在編碼該融合蛋白的cDNA末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的BsrGI與3'端的SalI。依據標準操作程序,經由BsrGI與SalI,將基因合成片段選殖進入稱作pEF-DHFR質體(pEF-DHFR係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)的衍生物中,其已含有具19個胺基酸的免疫球蛋白引導肽之編碼序列。使用序列經驗證的質體轉染DHFR缺乏型CHO細胞,以進行該建構體的真核表現作用。如Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在DHFR缺乏型CHO細胞中進行真核蛋白質的表現作用。藉由增加胺基甲葉酸(MTX)的濃度至最終濃度至多為20nM MTX,而引發該建構體的基因擴增作用。
依據標準操作程序,經由FACS分析,測試轉染體之重組型跨膜蛋白質的細胞表面表現作用。就該目的而言,2.5x105個細胞與在含有2% FCS的PBS中之5微克/毫升的抗Flag M2抗體(德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH))50微升培養。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測結合的抗體。在FACScalibur裝置上進行流動式細胞測量術,使用CellQuest軟體以獲取及分析數據(德國海德堡(Heidelberg)的必帝生物科學(Becton Dickinson biosciences)公司)。如“現行免疫學操作程序(Current Protocols in Immunology)”乙書(Coligan、Kruisbeek、Margulies、Shevach與Strober所著及由威立資訊網路(Wiley-Interscience)公司於2002年出版)中所述,進行FACS染色作用與螢光強度之測量。
清楚地檢測出由食蟹猴EpCAM與人類、狨猿、獠狨、松鼠猴及豬的CD3ε鏈的N端1至27個胺基酸所組成之帶有FLAG標籤的重組型跨膜融合蛋白分別在轉染細胞上之表現作用(第36圖)。
19.2一種IgG1抗體形式的跨物種特異性抗CD3單鏈抗體I2C H之選殖與表現作用
為提供檢測跨物種特異性單鏈抗CD3抗體的結合作用之改進方式,將I2C VHVL特異性轉化為具有鼠類IgG1與鼠類κ恆定區域之IgG1抗體。藉由依據標準操作程序之基因合成作用,製得編碼IgG抗體重鏈之cDNA序列。設計該基因合成片段,使其首先含有一個Kozak位址以容許該建構體的真核表現作用,接著含有具19個胺基酸的免疫球蛋白引導肽,接著在框架中含有重鏈可變區域或輕鏈可變區域的編碼序列,接著在框架中分別含有如發表於基因庫(GenBank)(登錄號AB097849)之鼠類IgG1的重鏈恆定區域之編碼序列或如發表於基因庫(GenBank)(登錄號D14630)的鼠類κ輕鏈恆定區域之編碼序列
在編碼該融合蛋白的cDNA開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的EcoRI與3'端的SalI。依據標準操作程序,經由EcoRI與SalI,將基因合成片段選殖進入用於重鏈建構體之稱作pEF-DHFR的質體(pEF-DHFR係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)中及用於輕鏈建構體之pEFADA(pEFADA係述於Raum等人之上述引文)中。使用序列經驗證的質體,將個別的輕鏈與重鏈建構體共轉染進入DHFR缺乏型CHO細胞中,以進行該建構體的真核表現作用。如Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在DHFR缺乏型CHO細胞中進行真核蛋白質的表現作用。藉由增加胺基甲葉酸(MTX)的濃度至最終濃度至多為20nM MTX及脫氧助間型黴素(dCF)至最終濃度至多300nM dCF,而引發該建構體的基因擴增作用。在靜止培養兩代之後,收集細胞培養上清液及用於後續實驗中。
19.3一種IgG1抗體形式的跨物種特異性抗CD3單鏈抗體I2C HL與1-27 CD3-EpCAM之結合作用
依據標準操作程序,藉由FACS分析,測試所產生的I2C IgG1建構體與如第19.1例所述分別與食蟹猴Ep-CAM稠合之人類、狨猿、獠狨及松鼠猴CD3ε鏈的N端1至27個胺基酸之結合作用。就該目的而言,數份2.5x105細胞與含有如第19.2例所述I2C IgGl建構體之細胞培養上清液50微升培養。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(New market)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測抗體的結合作用。在FACScalibur裝置上進行流動式細胞測量術,使用CellQueSt軟體以獲取及分析數據(德國海德堡(Heidelberg)的必帝生物科學(Becton Dickinson biosciences)公司)。如“現行免疫學操作程序(Current Protocols in Immunology)”乙書(Coligan、Kruisbeek、Margulies、Shevach與Strober所著及由威立資訊網路(Wiley-Interscience)公司於2002年出版)中所述,進行FACS染色作用與螢光強度之測量。
如第37圖所示,相較於由融合至食蟹猴EpCAM之豬CD3ε的N端1至27個胺基酸所組成之陰性對照組,觀察到I2C IgGl建構體與表現由融合至食蟹猴EpCAM之人類、狨猿、獠狨或松鼠猴CD3ε的N端1至27個胺基酸所組成之重組型跨膜融合蛋白的轉染體之結合作用。因此證實I2C之多種靈長類跨物種特異性。以抗Flag M2抗體與I2C IgGl建構體所得之訊號係可相比的,顯示具跨物種特異性的特異性I2C與CD3ε的N端1至27個胺基酸之強力結合活性。
20.跨物種特異性抗CD3結合分子I2C與具有或不具有N端His6標籤的人類CD3ε鏈之結合作用
測試具有如第19.2例所述結合特異性I2C之一種CD3ε特異性的嵌合IgG1抗體與具有或不具有N端His6標籤的人類CD3ε鏈之結合作用。依據標準操作程序,藉由FACS分析,測試該抗體分別與如第6.1例所述經His6-人類CD3ε及如第5.1例所述經野生型人類CD3ε轉染的EL4細胞系之結合作用。轉染體的2.5x105細胞與含有I2C IgG1建構體的細胞培養上清液50微升培養,或與在含有2% FCS的PBS中之5微克/毫升的個別對照組抗體50微升培養。分別使用一種適宜的同型對照組作為陰性對照組,及使用CD3特異性抗體UCHT-1作為建構體表現作用的陽性對照組。以五組胺酸(penta his)抗體(凱傑(Qiagen)公司)進行His6標籤的檢測作用。以在含有2% FCS(英國薩福克郡(Suffolk)紐馬克(Newmarket)的歐洲傑克森免疫研究股份有限公司(Jackson ImmunoResearch Europe Ltd.))的PBS中稀釋1:100之R-藻紅素複合型親和純化F(ab')2片段、具Fc-γ片段特異性的山羊抗小鼠IgG,檢測抗體的結合作用。在FACScalibur裝置上進行流動式細胞測量術,使用CellQuest軟體以獲取及分析數據(德國海德堡(Heidelberg)的必帝生物科學(Becton Dickinson biosciences)公司)。如“現行免疫學操作程序(Current Protocols in Immunology)”乙書(Coligan、Kruisbeek、Margulies、Shevach與Strober所著及由威立資訊網路(Wiley-Interscience)公司於2002年出版)中所述,進行FACS染色作用與螢光強度之測量。
抗人類CD3抗體UCHT-1與該二轉染體之可相比的結合作用,證實該等建構體的表現水平約略相等。五組胺酸(penta his)抗體的結合作用確認該His6標籤存在於His6-人類CD3建構體上,但不存在於野生型建構體上。
相較於經野生型人類CD3ε轉染的EL4細胞系,檢測出I2C IgG1建構體明顯喪失對於具有一個N端His6標籤的人類CD3ε之結合作用。該等結果顯示CD3ε的游離N端,係具跨物種特異性的抗CD3結合特異性I2C與人類CD3ε鏈之結合作用所必需(第28圖)。
21.CD33與CD3跨物種特異性的雙特異性單鏈分子之產生 21.1CD33與CD3跨物種特異性的雙特異性單鏈分子之產生
一般而言,雙特異性單鏈抗體分子各包含對於人類與獼猴CD3ε具有跨物種特異性之具結合特異性的一域,以及對於人類與獼猴CD33具有跨物種特異性之具結合特異性的一域,其設計係述於下列第6表中:
藉由基因合成作用,獲得含有對於人類與獼猴CD33具有跨物種特異性的可變輕鏈(L)域與可變重鏈(H)域及對於人類與獼猴CD3具有跨物種特異性的CD3特異性VH與VL組合物之前述建構體。以第9例所述用於MCSP與CD3跨物種特異性單鏈分子之類似程序,設計該基因合成片段。將具有序列經驗證的核苷酸序列之一殖株轉染進入DHFR缺乏型CHO細胞中,以進行該建構體的真核表現作用。亦如第9例針對MCSP與CD3跨物種特異性單鏈分子所述者,在DHFR缺乏型CHO細胞中進行真核蛋白質表現作用,及用於後續實驗中。
21.2 CD33與CD3跨物種特異性的雙特異性抗體之流動式細胞測量型結合分析
為測試跨物種特異性的雙特異性抗體建構體在分別與人類及獼猴CD33與CD3的結合能力方面之功能性,以第10例所述用於分析MCSP D3與CD3跨物種特異性的雙特異性抗體之類似的分析方式,使用表現人類與獼猴CD33細胞外域的CHO細胞(見第16.1與16.2例),進行FACS分析。
如第41圖所示,清楚地檢測出如上述單鏈分子的特異性結合作用,該單鏈分子具有對於CD33的跨物種特異性及具有對於人類與非黑猩猩靈長類CD3的跨物種特異性。在FACS分析中,相較於個別的陰性對照組,所有的建構體皆顯示與CD3及CD33之結合作用。證實雙特異性抗體對於人類及獼猴CD3與CD33抗原之跨物種特異性。
21.3 CD33與CD3跨物種特異性的雙特異性單鏈抗體之生物活性
使用第16.1與16.2例中所述之CD33陽性細胞系,藉由鉻51(51Cr)釋出試管內細胞毒性分析,分析所產生的雙特異性單鏈抗體之生物活性。如個別圖式中所說明,使用移除CD4/CD56的受激型人類PBMC或獼猴T細胞系4119LnPx作為作用細胞。以第11例所述用於MCSP與CD3跨物種特異性的雙特異性抗體之生物活性分析的類似程序,使用表現人類或獼猴CD33細胞外域之CHO細胞(見第16.1與16.2例)作為標的細胞,進行細胞毒性分析。
如第42圖所示,所產生的所有跨物種特異性的雙特異性單鏈抗體建構體,均證實藉由移除CD4/CD56的受激型人類PBM所引發之對抗人類CD33陽性標的細胞之細胞毒性活性,及藉由獼猴T細胞系4119LnPx所引發之對抗獼猴CD33陽性標的細胞之細胞毒性活性。
22.在曝露於一種導向不存在於循環血液細胞中的一標的分子之習用雙特異性CD3結合分子時之循環黑猩猩T細胞的重新分佈
單一雄性黑猩猩進行靜脈內單鏈EpCAM/CD3雙特異性抗體建構體(Schlereth(2005年)於期刊“Cancer Res”第65期第2882頁乙文)之劑量漸增作用。如習用的單鏈CD19/CD3雙特異性抗體建構體(Loffler(於2000年期刊Blood”第95期第6號乙文)或WO 99/54440),該EpCAM/CD3建構體的CD3臂亦導向對抗人類與黑猩猩CD3之一習用的鄰近序列相關性表位。在第0天,該動物領受50毫升之不含有試驗物質的PBS/5% HSA,接著分別在第7、14、21及28天領受50毫升之PBS/5% HSA加上1.6、2.0、3.0及4.5微克/公斤的單鏈EpCAM/CD3雙特異性抗體建構體。每次投藥作用的輸注時間為2小時。為進行每週的輸注作用,以肌內投予的2至3毫克/公斤的泰勒卓(Telazol)讓黑猩猩鎮定安靜,予以插管及在維持穩定的平均血壓情況下,置於異氟烷/氧氣麻醉作用。在另一肢放置靜脈內導管,以第43圖中所示用於循環血液細胞的FACS分析之時間點收集(肝素化)全血試樣。在標準的紅血球分解作用之後,以與黑猩猩CD2反應之一種經FITC標示的抗體(必帝(Becton Dickinson)公司)將T細胞染色,藉由流動式細胞測量術測定淋巴細胞總數中的T細胞百分比。如第43圖所示,每次的單鏈EpCAM/CD3雙特異性抗體建構體投藥作用皆引發循環T細胞的迅速減少,如在實質上並無循環標的B(淋巴瘤)細胞之B-NHL病患投予單鏈CD19/CD3雙特異性抗體建構體所觀察到者。因在人類與黑猩猩的循環血液中並無EpCAM陽性標的細胞,在曝露於單鏈EpCAM/CD3雙特異性抗體建構體時之循環T細胞減少,可全部歸因於在任一標的細胞所媒介的交聯作用不存在下,T細胞經由建構體的CD3臂與一習用的鄰近序列相關性CD3表位之單純交互作用所接收之一訊號。如同在實質上並無循環標的B(淋巴瘤)細胞的B-NHL病患中經由其等曝露於單鏈CD19/CD3雙特異性抗體建構體所引發的T細胞重新分佈,在曝露於單鏈EpCAM/CD3雙特異性抗體建構體的黑猩猩中之T細胞重新分佈,可由在CD3與一鄰近序列相關性CD3表位的結合事件之後,CD3的一構形變化進一步造成T細胞與血管內皮的黏著性之暫時性增加(見第13例)而解釋。該項發現確認,導向鄰近序列相關性CD3表位之習用CD3結合分子,僅經由該交互作用,可導致周邊血液T細胞的重新分佈模式,其係與如第13例所述人類CNS不良事件之風險相關。
23. scFv殖株與人類CD3εN端之特異性結合作用 23.1在大腸桿菌( E. coli )XL1藍色中之scFv建構體的細菌表現作用
如先前所提及者,經含有VL與VH片段之pComb3H5BHis轉型的大腸桿菌(E. coli),在切除基因III片段及以1mM IPTG誘發之後,產生足量的可溶性scFv。該ScFv鏈被輸出至周質,及在該處折疊成為功能構形。
選擇下列scFv殖株用於該實驗:
i)如WO 2004/106380中所述之ScFv 4-10、3-106、3-114、3-148、4-48、3-190及3-271。
ii)來自此述之人類抗CD3ε結合殖株H2C、F12Q及I2C之ScFv。
為製備周質製劑,細菌細胞係經容許周質表現作用之含有scFv的個別質體轉型,及在增補20mM氯化鎂與50微克/毫升的羧苄青黴素的SB培養基中生長,及在收集之後再溶於PBS中。藉由4回合之-70℃冷凍與37℃解凍,藉由溫度休克而破壞細菌外膜,而包括scFv在內的可溶性周質蛋白被釋出至上清液中。藉由離心除去完整細胞與細胞碎屑之後,收集含有人抗人類CD3-scFv的上清液,及用於進一步的檢驗。該等含有scFv的粗製上清液進一步命名為周質製劑(PPP)。
23.2 scFv與人類CD3ε(aa 1-27)-Fc融合蛋白之結合作用
藉由在96孔式塑膠平皿(能肯(Nunc)公司,最大吸收型(maxisorb))的孔中塗覆人類CD3ε(aa 1-27)-Fc融合蛋白,典型地在4℃過夜,而進行ELISA實驗。然後移除抗原塗覆溶液,該等孔以PBS/0.05%吐溫(Tween)20清洗一次之後,以PBS/3% BSA阻斷至少一小時。在移除該阻斷溶液之後,在孔中添加PPP與對照組溶液,及典型地在室溫中培養一小時。然後以PBS/0.05%吐溫(Tween)20清洗孔三次。使用一種經生物素標示的抗FLAG標籤抗體(西克瑪(Sigma)公司之M2抗Flag-Bio,典型的最終濃度為1微克/毫升PBS),檢測與固定化抗原結合的scFv,及以一種經過氧化酶標示的鏈黴菌卵白素(迪耶諾瓦(Dianova)公司,1微克/毫升PBS)檢測。藉由添加ABTS受質溶液而發出訊號,及於波長405nm檢測。在塗覆人類IgG1(西克瑪(Sigma)公司)的ELISA平皿上,藉由相同試劑與相同時間進行相同的分析,而檢視該測試試樣與阻斷劑及/或人類CD3ε(aa 1-27)-Fc融合蛋白的人類IgG1部分之非特異性結合作用。使用PBS作為陰性對照組。
如第44圖所示,scFv H2C、F12Q及I2C在人類CD3ε(aa 1-27)-Fc融合蛋白上顯示強力結合訊號。人類scFv 3-106、3-114、3-148、3-190、3-271、4-10及4-48(如WO 2004/106380中所述)未顯示任何高於陰性對照組水平的顯著結合作用。
為排除scFv H2C、F12Q及I2C與經人類CD3ε(aa 1-27)-Fc融合蛋白塗覆的孔之陽性結合作用可能歸因於與BSA(作為阻斷劑)及/或人類CD3ε(aa 1-27)-Fc融合蛋白的人IgG1 Fc-γ部分的結合作用之可能性,平行進行第二個ELISA實驗。在第二個ELISA實驗中,所有參數皆與第一個ELISA實驗一致,除了在第二個ELISA實驗中係以人類IgG1(西克瑪(Sigma)公司)而非人類CD3ε(aa 1-27)-Fc融合蛋白進行。如第45圖所示,所測試的scFv中並無任一者顯示高於背景水平之與BSA及/或人IgG1的顯著結合作用。
總而言之,自該等結果所得的結論為辨識CD3ε的一個鄰近序列相關性表位之習用CD3結合分子(如WO 2004/106380中所揭露)並不以特異性方式與人類CD3ε(aa 1-27)區域結合;然而與CD3ε的一個鄰近序列無關性表位結合之scFv H2C、F12Q及I2C,則清楚地顯示與人類CD3ε的N端27個胺基酸之特異性結合作用。
24. PSMA與CD3跨物種特異性的雙特異性單鏈抗體分子之產生與特性分析 24.1人類PSMA抗原在CHO細胞之選殖與表現作用
使用人類PSMA抗原的序列('AY101595',智人(Homo sapiens)前列腺特異性膜抗原mRNA,完整cds,國家生物技術資訊中心(National Center for Biotechnology),http://www.ncbi.nlm.nih.gov/entrez),藉由依據標準操作程序的基因合成作用,製得一種合成分子。設計該基因合成片段,使其含有用於該建構體的真核表現之一個Kozak位點,及在該DNA的開始端與末端引入限制酶切位點。在選殖進入如Mack等人所述之稱作pEFDHFR的質體(Mack等人於期刊“PNAS”(1995年)第92期第7021-7025頁乙文及Raum等人於期刊“Cancer Immunol Immunother“(2001年)第50(3)期乙文)的步驟中,使用所引入的限制酶切位點,即5'端的XbaI與3'端的SalI。在序列經驗證之後,依下列方式使用該質體轉染CHO/dhfr-細胞。使用一種序列經驗證的質體,以轉染CHO/dhfr-細胞(ATCC編號CRL 9096;在37℃、95%濕度與7%二氧化碳的培養器中培養於自德國柏林的拜爾克隆姆(Biochrom AG)公司取得的含有安定化穀胺醯胺之RPMI 1640及增補均自德國柏林的拜爾克隆姆(Biochrom AG)公司取得的10% FCS、1%青黴素/鏈黴素及自德國妥夫克城(Taufkirchen)的西克瑪-艾爾迪希化學公司(Sigma-Aldrich Chemie GmbH)取得之最終濃度為10微克/毫升的腺嘌呤核苷、去氧腺嘌呤核苷10微克/毫升及胸腺嘧啶核苷10微克/毫升之細胞培養級試劑儲備溶液的核苷)。依據製造廠商的操作程序,以PolyFect轉染試劑(德國西爾登(Hilden)的凱傑(Qiagen)公司)與5微克的質體DNA進行轉染作用。在培養24小時後,以PBS清洗細胞一次,及再次培養於前述的細胞培養基中,除了該培養基並未增補核苷及使用經透析的FCS(自德國柏林的拜爾克隆姆(Biochrom AG)公司取得)之外。因此,該細胞培養基並未含有核苷,及藉此在經轉染的細胞上進行選擇作用。轉染作用之後約14天,觀察到抗性細胞的過度生長。再過7至14天後,經由FACS分析,測試到該轉染體之陽性重組建構體表現作用。如Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在DHFR缺乏型CHO細胞中進行真核蛋白質表現作用。藉由增加胺基甲葉酸(MTX)的濃度至最終濃度至多為20nM MTX,而引發該建構體的基因擴增作用。
24.2獼猴PSMA抗原在CHO細胞之選殖與表現作用
依據標準操作程序,藉由製備自獼猴前列腺的cDNA之一組五個的聚合酶鏈反應,製得獼猴PSMA(食蟹猴)的cDNA序列。使用下列反應條件:在94℃進行2分鐘之循環1次,接著在94℃進行1分鐘、在52℃進行1分鐘及在72℃進行1.5分鐘之循環40次;接著在72℃進行3分鐘之末端循環,及使用下列引子:
4.正向引子:5'-cactgtggcccaggttcgagg-3'(序列辨識編號375)反向引子:5'-gacataccacacaaattcaatacgg-3'(序列辨識編號376)
5.正向引子:5'-gctctgctcgcgccgagatgtgg-3'(序列辨識編號377)反向引子:5’-acgctggacaccacctccagg-3’(序列辨識編號378)
6.正向引子:5’-ggttctactgagtgggcagagg-3’(序列辨識編號379)反向引子:5'-acttgttgtggctgcttggagc-3'(序列辨識編號380)
7.正向引子:5'-gggtgaagtcctatccagatgg-3'(序列辨識編號381)反向引子:5'-gtgctctgcctgaagcaattcc-3’(序列辨識編號382)
8.正向引子:5'-ctcggcttcctcttcgggtgg-3'(序列辨識編號383)反向引子:5'-gcatattcatttgctgggtaacctgg-3'(序列辨識編號384)
該等PCR產生五個重疊的片段,使用PCR引子,依據標準操作程序將其等分離與定序,藉此提供編碼獼猴PSMA自成熟蛋白質的第3個密碼子至最後一個密碼子之cDNA序列。為產生用於表現獼猴PSMA之一建構體,藉由依據標準操作程序之基因合成作用,製得cDNA片段(該建構體的cDNA與胺基酸序列係列於序列辨識編號385與386)。在該建構體中,將獼猴PSMA自成熟PSMA蛋白的第3個胺基酸至最後一個胺基酸之編碼序列與接著的一個終止密碼子,在框架中與人類PSMA蛋白的頭二個胺基酸之編碼序列融合。設計該基因合成片段,使其含有用於該建構體的真核表現之一個Kozak位點,及在含有cDNA之片段的開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的XbaI與3'端的SalI。依據標準操作程序,經由XbaI與SalI,將基因合成片段選殖進入稱作pEF-DHFR的質體。前述程序係依據依據標準操作程序(美國紐約冷泉港的冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版之Sambrook之“分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)”乙書第三版)進行。將具有序列經驗證的核苷酸序列之一殖株轉染進入DHFR缺乏型CHO細胞中,以進行該建構體的真核表現作用。如Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在DHFR缺乏型CHO細胞中進行真核蛋白質的表現作用。藉由增加胺基甲葉酸(MTX)的濃度至最終濃度至多為20nM MTX,而引發該建構體的基因擴增作用。
24.3 PSMA與CD3跨物種特異性的雙特異性單鏈分子之產生
一般而言,雙特異性單鏈抗體分子各包含對於人類與獼猴CD3抗原具有結合特異性之一域,以及對於人類與獼猴PSMA抗原具有結合特異性之一域,其設計係說明於下列第7表中:
藉由基因合成作用,獲得含有對於人類與獼猴PSMA具有跨物種特異性的可變輕鏈(L)域與可變重鏈(H)域及對於人類與獼猴CD3具有跨物種特異性的CD3特異性VH與VL組合物之前述建構體。以第9例所述用於MCSP與CD3跨物種特異性單鏈分子之類似程序,設計該基因合成片段及進行真核蛋白質表現作用。任擇地,以依據標準操作程序之一暫時性方式,將建構體轉染進入DHFR缺乏型CHO細胞中。
24.4 PSMA與CD3跨物種特異性的雙特異性抗體之流動式細胞測量型結合分析
為測試跨物種特異性的雙特異性抗體建構體在與人類及獼猴PSMA及與人類及獼猴CD3的結合能力方面之功能性,進行FACS分析。為此目的,使用如第24.1例所述經人類PSMA轉染的CHO細胞及人類CD3陽性T細胞白血病細胞系HPB-ALL(德國布倫維格(Braunschweig)微生物及細胞培養收藏所(DSMZ)之ACC483),以測試與人類抗原的結合作用。藉由使用如第24.2例所述產生的獼猴PSMA轉染體及獼猴T細胞系4119LnPx(承蒙愛朗根-紐倫堡(Erlangen-Nuernberg)衛生研究所病毒系之Fickenscher教授友好提供;發表於Knappe A等人及Fickenscher H.於期刊“Blood”2000年第95期第3256-61頁乙文),以測試與獼猴抗原的結合反應性。以第10例所述之類似程序,進行流動式細胞測量分析。
如第46圖所示,清楚地檢測出所有PSMA式雙特異性單 鏈分子的結合能力。在FACS分析中,相較於使用培養基及1.與2.檢測抗體之陰性對照組,所有的建構體皆顯示與CD3及PSMA之結合作用。總而言之,清楚地證實雙特異性抗體對於人類及獼猴CD3及對於人類及獼猴PSMA之跨物種特異性。
24.5 PSMA與CD3跨物種特異性的雙特異性單鏈抗體之生物活性
使用第24.1與24.2例中所述的PSMA陽性細胞系,藉由鉻51釋出試管內細胞毒性分析,分析所產生的雙特異性單鏈抗體之生物活性。使用移除CD56的未受激型人類PBMC或獼猴T細胞系4119LnPx作為作用細胞。以第11例所述用於MCSP與CD3跨物種特異性的雙特異性抗體之生物活性分析的類似程序,進行細胞毒性分析。
如第47與48圖所示,所述之所有跨物種特異性的雙特異性單鏈抗體建構體,均顯示藉由移除CD56的未受激型人類PBMC所引發之對抗人類PSMA陽性標的細胞之細胞毒性活性,及藉由獼猴T細胞系4119LnPx所引發之對抗獼猴PSMA陽性標的細胞之細胞毒性活性。
24.6 PSMA與CD3跨物種特異性的雙特異性單鏈分子之產生
雙特異性單鏈抗體分子各包含與人類及與獼猴CD3抗原結合之一域以及與人類PSMA抗原結合之一域,其等之設計係說明於下列第8表:
藉由基因合成作用,獲得含有與人類及與獼猴CD3抗原結合的可變輕鏈(L)域與可變重鏈(H)域之組合物以及與人類PSMA抗原結合的可變輕鏈(L)域與可變重鏈(H)域之組合物之前述建構體。藉由淘選PSMA陽性人類前列腺癌細胞系LNCaP(ATCC編號CRL-1740)及接著藉由使用相同細胞系之FACS式篩檢陽性殖株,經由自一個scFv庫之噬菌體顯現,而獲得與人類PSMA抗原結合的可變輕鏈(L)域與可變重鏈(H)域之各組合物。設計上述所列的雙特異性單鏈抗體分子之基因合成片段,及以上文第24.3例所述之類似程序,分別進行第9例所述MCSP與CD3跨物種特異性單鏈分子之真核蛋白質表現作用。PSMA與CD3雙特異性單鏈抗體分子之表現作用與純化作用亦如此。
24.7 PSMA與CD3跨物種特異性的雙特異性抗體之流動式細胞測量型結合分析
為測試跨物種特異性的雙特異性抗體建構體在與PSMA及CD3的結合能力方面之功能性,進行FACS分析。為此目的,使用PSMA陽性細胞,以測試與人類抗原的結合作用。藉由使用獼猴T細胞系4119LnPx(承蒙愛朗根-紐倫堡(Erlangen-Nuernberg)衛生研究所病毒系之Fickenscher教授友好提供;發表於Knappe A等人及Fickenscher H.於期刊“Blood”2000年第95期第3256-61頁乙文),以測試與獼猴CD3的結合反應性。以第10例所述之類似程序,進行流動式細胞測量分析。
如第49圖與第51圖所示,清楚地檢測出所產生的單鏈分子與人類PSMA及與人類及非黑猩猩靈長類CD3的雙特異性結合作用。在FACS分析中,相較於陰性對照組,所示的所有建構體皆證實與CD3及PSMA結合。
24.8 PSMA與CD3跨物種特異性的雙特異性單鏈抗體之生物活性
使用PSMA陽性細胞系,藉由鉻51(51Cr)釋出試管內細胞毒性分析,分析所產生的雙特異性單鏈抗體之生物活性。使用移除CD4/CD56的受激型人類PBMC或獼猴T細胞系4119LnPx作為作用細胞。以第11例所述用於MCSP與CD3跨物種特異性的雙特異性抗體之生物活性分析的類似程序,進行細胞毒性分析。
如第50與52圖所示,所產生的跨物種特異性的雙特異性單鏈抗體建構體,證實對抗PSMA陽性標的細胞之細胞毒性活性。
24.9附加的PSMA與CD3跨物種特異性的雙特異性單鏈分子之產生
選擇人類抗體生殖系VH序列VH3 3-11(http://vbase.mrccpe.cam.ac.uk/)作為CDRH1(序列辨識編號394)、CDRH2(序列辨識編號395)及CDRH3(序列辨識編號396)之骨架鄰近序列。同樣地,選擇人類抗體生殖系VH序列VH1 1-02(http://vbase.mrc-cpe.cam.ac.uk/)作為CDRH1(序列辨識編號408)、CDRH2(序列辨識編號409)及CDRH3(序列辨識編號410)之骨架鄰近序列,以及選擇人類抗體生殖系VH序列VH1 1-03(http://vbase.mrc-cpe.cam.ac.uk/)作為CDRH1(序列辨識編號445)、CDRH2(序列辨識編號446)及CDRH3(序列辨識編號447)之骨架鄰近序列。就各個人類VH,必須合成在約15至20個核苷酸的終端段中重疊之數種退化性寡核苷酸。為此目的,每第二個引子係一種反意引子。就VH3 3-11而言,使用下列的寡核苷酸組:
5'PM3-VH-A-XhoI CCG GAT CTC GAG TCT GGC GGC GGA CTG GTG AAG CCT GGC GRG TCC CTG ARG CTG TCC TGT(序列辨識編號737)
3'PM3-VH-B CCA GTA CAT GTA GTA GTC GGA GAA GGT GAA GCC GGA GGC GRY ACA GGA CAG CYT CAG GGA(序列辨識編號738)
5'PM3-VH-C TAC TAC ATG TAC TGG RTC CGC CAG RCC CCT GRG AAG SGG CTG GAA TGG GTG KCC ATC ATC TCC GAC GGC(序列辨識編號739)
3'PM3-VH-D GGC GTT GTC CCG GGA GAT GGT GAA CCG GCC CTT GAT GAT GTC GGA GTA GTA GGT GTA GTA GCC GCC GTC GGA GAT GAT(序列辨識編號740)
5'PM3-VH-E TCC CGG GAC AAC GCC AAG AAC ARC CTG TAC CTG CAG ATG ARC TCC CTG ARG KCC GAG GAC ACC GCC RTG TAC TAC TGC RCC CGG GGC(序列辨識編號741)
3'PM3-VH-F-BstEII CGA TAC GGT GAC CAG GGT GCC CTG GCC CCA GTA ATC CAT GGC GCC GTG TCT CAG CAG AGG GAA GCC CCG GGY GCA GTA GTA(序列辨識編號742)
就VH11-02而言,寡核苷酸如下:
5'PM4-VH-A-XhoI CTT GAT CTC GAG TCT GGC GCC GAA STG RWG RAG CCT GGC GCC TCC GTG AAG STG TCC TGC AAG GCC TCC GGC TAC(序列辨識編號743)
3'PM4-VH-B CCA TTC CAG GCC CTG CYC AGG CSY CTG CCG CAS CCA GTT GAT GTC GAA GTA GGT GAA GGT GTA GCC GGA GGC CTT(序列辨識編號744)
5'PM4-VH-C CAG GGC CTG GAA TGG ATS GGC GGC ATC TCC CCT GGC GAC GGC AAC ACC AAC TAC AAC GAG AAC TTC AAG(序列辨識編號745)
3'PM4-VH-D AT GTA GGC GGT GGA GMT GGA CKT GTC TMT GGT CAK TGT GRC CYT GCC CTT GAA GTT CTC GTT GTA(序列辨識編號746)
5'PM4-VH-E C TCC ACC GCC TAC ATS SAG CTG TCC CGG CTG ASA TCT GAS GAC ACC GCC GTG TAC TWC TGC GCC AGG GAC GGC(序列辨識編號747)
3'PM4-VH-F-BstEII AGA CAC GGT CAC CGT GGT GCC CTG GCC CCA AGA GTC CAT GGC GTA GTA AGG GAA GTT GCC GTC CCT GGC GCA(序列辨識編號748)
就VH1 1-03而言,使用下列的寡核苷酸:
5'PM8-VH-A-XhoI CTT GAT CTC GAG TCC GGC SCT GAG STG RWG AAG CCT GGC GCC TCC GTG AAG RTG TCC TGC AAG GCC TCC GGC TAC(序列辨識編號749)
3'PM8-VH-B CCA TTC CAG 公分S CTG GCC GGG TKY CTG TYT CAC CCA GTG CAT CAC GTA GCC GGT GAA GGT GTA GCC GGA GGC CTT GCA(序列辨識編號750)
5'PM8-VH-C CCC GGC CAG SKG CTG GAA TGG ATS GGC TAC ATC AAC CCT TAC AAC GAC GTG ACC CGG TAC AAC GGC AAG TTC AAG(序列辨識編號751)
3'PM8-VH-D TTC CAT GTA GGC GGT GGA GGM GKA CKT GTC KCT GGT AAK GGT GRC TYT GCC CTT GAA CTT GCC GTT GTA(序列辨識編號752)
5'PM8-VH-E TCC ACC GCC TAC ATG GAA CTG TCC RGC CTG ASG TCT GAG GAC ACC GCC GTG TAC TAC TGC GCC AGG GGC(序列辨識編號753)
3'PM8-VH-F-BstEII CGA TAC GGT GAC CAG AGT GCC TCT GCC CCA GGA GTC GAA GTA GTA CCA GTT CTC GCC CCT GGC GCA GTA GTA(序列辨識編號754)
該等引子組中之各者跨越整個對應的VH序列。
在各組中以等量混合引子(如在20微升PCR反應中添加1微升的各引子(20至100μM的引子儲備溶液)),及添加至由PCR緩衝液、核苷酸及Taq聚合酶所組成之PCR混合物中。在PCR循環器中,該混合物於94℃培養3分鐘、於65℃培養1分鐘、於62℃培養1分鐘、於59℃培養1分鐘、於56℃培養1分鐘、於52℃培養1分鐘、於50℃培養1分鐘及於72℃培養10分鐘。之後,該產物依據標準方法進行瓊脂糖凝膠電泳,及自凝膠分離尺寸自200至400的產物。
然後在標準PCR反應中,使用各VH PCR產物作為模板,該標準PCR反應係使用在N端與C端引入適宜的選殖限制酶切位點之引子。依據標準方法,藉由瓊脂糖凝膠電泳分離正確尺寸的DNA片段(就VH而言約350個核苷酸)。依此方式擴增足量的VH DNA片段。
選擇人類抗體生殖系VL序列VkI L1(http://vbase.mrc-cpe.cam.ac.uk/)作為CDRL1(序列辨識編號389)、CDRL2(序列辨識編號390)及CDRL3(序列辨識編號391)之骨架鄰近序列。同樣地,選擇人類抗體生殖系VL序列VkII A17(http://vbase.mrc-cpe.cam.ac.uk/)作為CDRL1(序列辨識編號403)、CDRL2(序列辨識編號404)及CDRL3(序列辨識編號405)之骨架鄰近序列,以及選擇人類抗體生殖系VL序列VkII A1(http://vbase.mrc-cpe.cam.ac.uk/)作為CDRL1(序列辨識編號450)、CDRL2(序列辨識編號451)及CDRL3(序列辨識編號452)之骨架鄰近序列。就各個人類VL,必須合成在約15至20個核苷酸的終端段中重疊之數種退化性寡核苷酸。為此目的,每第二個引子係一種反意引子。就VkI L1而言,使用下列的寡核苷酸:
5'PM3-VL-A-SacI CTT GAT GAG CTC CAG ATG ACC CAG TCC CCC ARS TYC MTG TCC RCC TCC GTG GGC GAC AGA GTG ACC(序列辨識編號755)
3'PM3-VL-B GCC GGG CTT CTG CTG AWA CCA GGC CAC GTT GGT GTC CAC GTT CTG GGA GGC CTT GCA GGT GAY GGT CAC TCT GTC GCC(序列辨識編號756)
5'PM3-VL-C CAG CAG AAG CCC GGC MAG KCC CCT AAG KCC CTG ATC TAC TCC GCC TCC TAC CGG TAC TCT(序列辨識編號757)
3'PM3-VL-D CAG GGT GAA GTC GGT GCC GGA CYC GGA GCC GGA GAA CCG GKM AGG CAC GYC AGA GTA CCG GTA GGA(序列辨識編號758)
5'PM3-VL-E ACC GAC TTC ACC CTG ACC ATC TCC ARC STG CAG YCT GAG GAC YTC GCC RMG TAC TWC TGC CAG CAG TAC GAC(序列辨識編號759)
3'PM3-VL-F-BsiWI/SpeI CGA GTA ACT AGT CGT ACG CTT GAT TTC CAG CTT GGT CCC TCC GCC GAA GGT GTA AGG GTA GGA GTC GTA CTG CTG GCA(序列辨識編號760)
就VkII A17而言,寡核苷酸如下:
5'PM4-VL-A-SacI CTT GAT GAG CTC GTG ATG ACC CAG TCC CCC CTG TCC CTG CCT GTG AYC CTG GGC SAM公分G GCC TCC ATC TCC TGC CGG(序列辨識編號761)
3'PM4-VL-B AAA CCA GTG CAG GTA GGT ATT GCC GTT GGA GTG CAC CAG GGA CTG GGA GGA CCG GCA GGA GAT GGA GGC(序列辨識編號762)
5'PM4-VL-C ACC TAC CTG CAC TGG TTT CWG CAG ARG CCT GGC CAG TCC CCT ARG CKG CTG ATC TAC ACC GTG TCC AAC CGG(序列辨識編號763)
3'PM4-VL-D CAG GGT GAA GTC GGT GCC GGA GCC GGA GCC AGA GAA CCT GTC AGG CAC GCC GGA GAA CCG GTT GGA CAC GGT(序列辨識編號764)
5'PM4-VL-E GGC ACC GAC TTC ACC CTG AAG ATC TCC CGG GTG GAG GCC GAA GAT STG GGC GTG TAC TWT TGC TCC CAG TCC ACC(序列辨識編號765)
3'PM4-VL-F-BsiWI/SpeI ACT CAG ACT AGT CGT ACG CTT GAT TTC CAG CTT GGT CCC TCC GCC GAA GGT AGG CAC GTG GGT GGA CTG GGA GCA(序列辨識編號766)
就VkII A1而言,使用下列的寡核苷酸:
5'PM8-VL-A-SacI CTT GAT GAG CTC GTG ATG ACC CAG TCT CCA SYC TCC CTG SCT GTG ACT CTG GGC CAG CSG GCC TCC ATC TCT TGC CGG(序列辨識編號767)
3'PM8-VL-B CCA GTG CAT GAA GGT GTT GTC GTA GGA GTC GAT GGA CTC GGA GGC CCG GCA AGA GAT GGA GGC(序列辨識編號768)
5'PM8-VL-C ACC TTC ATG CAC TGG TWT CAG CAG ARG CCT GGC CAG YCT CCT MRC CKG CTG ATC TWC CGG GCC TCT ATC CTG GAA(序列辨識編號769)
3'PM8-VL-D CAG GGT GAA GTC GGT GCC GGA GCC AGA GCC GGA GAA CCG GKC AGG GAY GCC GGA TTC CAG GAT AGA GGC CCG(序列辨識編號770)
5'PM8-VL-E ACC GAC TTC ACC CTG AMA ATC TMC CST GTG GAG GCC GAS GAC GTG GSC RYC TAC TAC TGC CAC CAG(序列辨識編號771)
3'PM8-VL-F-BsiWI/SpeI ACT CAG ACT AGT CGT ACG CTT GAT TTC CAG CTT GGT CCC TCC GCC GAA GGT GTA AGG GTC CTC GAT GGA CTG GTG GCA GTA GTA(序列辨識編號772)
該等引子組中之各者跨越整個對應的VH序列。
在各組中以等量混合引子(如在20微升PCR反應中添加1微升的各引子(20至100μM的引子儲備溶液)),及添加至由PCR緩衝液、核苷酸及Taq聚合酶所組成之PCR混合物中。在PCR循環器中,該混合物於94℃培養3分鐘、於65℃培養1分鐘、於62℃培養1分鐘、於59℃培養1分鐘、於56℃培養1分鐘、於52℃培養1分鐘、於50℃培養1分鐘及於72℃培養10分鐘。之後,該產物依據標準方法進行瓊脂糖凝膠電泳,及自凝膠分離尺寸自200至400的產物。
然後在標準PCR反應中,使用各VH PCR產物作為模板,該標準PCR反應係使用在N端與C端引入適宜的選殖限制酶切位點之引子。依據標準方法,藉由瓊脂糖凝膠電泳分離正確尺寸的DNA片段(就VL而言約330個核苷酸)。依此方式擴增足量的VL DNA片段。
然後在噬菌體顯現載體pComb3H5Bhis中,分別將最終的VH3 3-11式VH PCR產物(亦即人類/擬人化VH譜)與最終的VkI L1式VL PCR產物(亦即人類/擬人化VL譜)合併,最終的VH1 1-02式VH PCR產物(亦即人類/擬人化VH譜)與最終的VkII A17式VL PCR產物(亦即人類/擬人化VL譜)合併,及最終的VH1 1-03式VH PCR產物(亦即人類/擬人化VH譜)與最終的VkII A1式VL PCR產物(亦即人類/擬人化VL譜)合併。來自三種不同的功能性scFv庫之該三種VH-VL組合物,在絲狀噬菌體上顯現之後,如下列所述地自其選擇、篩檢、識別及確認抗PSMA結合子:450奈克的輕鏈片段(SacI-SpeI分解型)與1400奈克的噬菌體質體pComb3H5Bhis(SacI-SpeI分解型;大型片段)連接。所得的組合抗體庫然後藉由電穿孔作用(2.5千伏,0.2公分間隙的光析管,25uFD,200歐姆,佰歐瑞(Biorad)公司的基因脈衝(gene-pulser)電穿孔儀)而轉型進入300微升的電勝任型大腸桿菌(Escherichia coli)XL1藍色細胞中,產生多於107個獨立殖株的庫容量。在1小時的表現型表現作用之後,在100毫升的液體超級肉湯(SB)培養中過夜,及選擇pComb3H5Bhis載體所編碼之具羧苄青黴素抗性的陽性轉型體。然後藉由離心收集細胞,及使用商品化的質體製備套組(凱傑(Qiagen)公司)進行質體製備作用。
2800奈克之含有VL庫(XhoI-BstEII分解型;大型片段)的該質體DNA與900奈克的重鏈V片段(XhoI-BstEII分解型)連接,及再一次藉由電穿孔(2.5千伏,0.2公分間隙的光析管,25uFD,200歐姆)轉型進入2等份的300微升電勝任型大腸桿菌(E. coli)XL1藍色細胞中,產生多於107個獨立殖株的總VH-VL scFv(單鏈可變片段)庫容量。
在表現型表現及對羧苄青黴素的緩慢適應之後,將含有該抗體庫的大腸桿菌(E. coli)胞轉移至SB-羧苄青黴素(含有50微克/毫升的羧苄青黴素之SB)選擇培養基中。然後以1012個輔助噬菌體VCSM13顆粒之感染性劑量,感染含有該抗體庫的大腸桿菌(E. coli)細胞,而導致絲狀M13噬菌體之產生與釋出,其中噬菌體顆粒含有編碼一個scFv片段的單股pComb3H5BHis-DNA及顯現作為噬菌體外殼蛋白III的轉譯融合物之對應scFv蛋白。顯現該抗體庫之噬菌體庫,係用於選擇抗原結合實體。
為此目的,藉由PEG8000/氯化鈉沉澱與離心作用,自個別的培養上清液收集具有所選殖的scFv譜之噬菌體庫。將大約1011至1012個scFv噬菌體顆粒再懸浮於0.4毫升的PBS/0.1%BSA中,及在緩慢攪拌下,與105至107個PSMA陽性人類前列腺癌細胞系LNCaP(ATCC編號CRL-1740)在冰上培養1小時。該等LNCaP細胞事先藉由離心收集,以PBS清洗及再懸浮於PBS/1% FCS(含有0.05%疊氮化鈉)中。藉由以至多5次的PBS/1% FCS(含有0.05%疊氮化鈉)清洗步驟,除去未與LNCaP細胞特異性地結合的scFv噬菌體。在清洗之後,藉由將細胞再懸浮於pH 2.2的鹽酸-甘胺酸(培養10分鐘後進行渦漩)而自細胞洗提出結合實體,及在pH 12的2M Tris中和作用之後,該洗提液用於感染新鮮未被感染的大腸桿菌(E. coli)XL1藍色培養(OD600>0.5)。對於含有經編碼一個人類/擬人化scFv片段的噬菌體質體複本成功轉導的大腸桿菌(E. coli)細胞之大腸桿菌培養,再次進行羧苄青黴素抗性之選擇,之後以VCMS 13輔助噬菌體感染而開始第二回的抗體顯現與試管中選擇作用。通常總共進行4至5回的選擇作用。
為篩檢PSMA特異性結合子,在選擇作用之後,自大腸桿菌(E. coli)培養中分離對應於4與5回淘選之質體DNA。為產生可溶性scFv蛋白,自質體(XhoI-SpeI)切除VH-VL-DNA片段。該等片段經由相同限制位點選殖進入質體pComb3H5BFlag/His中;該質體與原始pComb3H5BHis不同之處,在於表現建構體(例如scFv)包括位於scFv與His6標籤之間的一個Flag標籤(DYKDDDDK)及刪除附加的噬菌體蛋白。在連接之後,將各質體DNA庫(不同回次的淘選作用)轉型進入100微升的熱休克勝任型大腸桿菌(E. coli)TG1或XL1藍色中,及塗覆在羧苄青黴素LB-瓊脂上。將單一菌落挑選置入100微升的LB羧苄青黴素(50微克/毫升羧苄青黴素)。
經含有一個VL與VH片段之pComb3H5BFlag/His轉型的大腸桿菌(E. coli)在以1mM IPTG誘發之後,產生足量的可溶性scFv。由於一種適宜的訊息序列,該scFv鏈被輸出至周質,及在該處折疊成為功能構形。
自轉型平皿挑選用於周質小型製劑之單一大腸桿菌(E. coli)TG1細菌菌落,在增補20mM氯化鎂與50微克/毫升的羧苄青黴素的SB培養基(如10毫升)中生長,及在收集之後再溶於PBS(如1毫升)中。藉由4回合之-70℃冷凍與37℃解凍,藉由溫度休克而破壞細菌外膜,而包括scFv在內的可溶性周質蛋白被釋出至上清液中。藉由離心除去完整細胞與細胞碎屑之後,收集含有抗PSMA scFv的上清液,及如下用於辨識PSMA特異性結合子:藉由PSMA陽性人類前列腺癌細胞系LNCaP(ATCC編號CRL-1740)上之流動式細胞測量術,測試scFv與PSMA之結合作用。使用如上述之無任何細菌生長的一種周質小型製劑作為陰性對照組。
2.5×105個細胞係與50微升的scFv周質製劑培養,或以位於50微升之含有2% FCS的PBS中之5微克/毫升的純化scFv培養,以用於流動式細胞測量術。以位於50微升之含有2% FCS的PBS中之2微克/毫升的抗His抗體(德國西爾登(Hilden)的凱傑(Qiagen)公司之無BSA的五組胺酸(Penta-His)抗體),檢測scFv的結合使用。使用在50微升之含有2% FCS(德國漢堡(Hamburg)的迪耶諾瓦(Dianova)公司)的PBS中以1:100稀釋之R-藻紅素複合型親和純化F(ab')2片段、山羊抗小鼠IgG(具Fc-γ片段特異性),作為第二步驟的試劑。在FACSscan(德國海德堡(Heidelberg)的必帝生物科學(BD biosciences)公司)上測量該等試樣。
然後分析單一殖株的有利性質與胺基酸序列。藉由經由甘胺酸4絲胺酸1連接子將其等與本發明的CD3特異性scFv I2C(序列辨識編號185)或其他任一CD3特異性scFv連接,將PSMA特異性scFv轉化為重組型雙特異性單鏈抗體,而產生具有VHPSMA-(甘胺酸4絲胺酸1)3-VLPSMA-甘胺酸4絲胺酸1-VHCD3-(甘胺酸4絲胺酸1)3-VLCD3或VLPSMA-(甘胺酸4絲胺酸1)3-VHPSMA-甘胺酸4絲胺酸1-VHCD3-(甘胺酸4絲胺酸1)3-VLCD3之域排列或任擇的域排列之建構體。為在CHO細胞中表現,在將基因合成作用所產生的DNA片段插入表現作用載體pEF-DHFR(Raum等人於期刊“Cancer Immunol Immunother”(2001年)第50(3)期第141-150頁乙文)的多重選殖位址之前,(i)包含一個嵌入Kozak共通序列內的開始密碼子之一種N端免疫球蛋白重鏈引導子及(ii)依序為一個C端His6標籤與一個終止密碼子之編碼序列,均在框架中與編碼雙特異性單鏈抗體的核苷酸序列連接。如該實例的第24.6與24.7章所述,進行所產生的表現質體之轉染作用、蛋白質表現作用及跨物種特異性的雙特異性抗體建構體之純化作用。所有其他的先進程序皆依據標準操作程序(美國紐約冷泉港的冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版之Sambrook之“分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)”乙書第三版)進行。
藉由來自表現跨物種特異性的雙特異性抗體建構體之轉染細胞的培養上清液之流動式細胞測量型結合分析,進行功能性雙特異性單鏈抗體建構體之辨識。如該實例的第24.7章所述,在人類PSMA陽性前列腺癌細胞系LNCaP(ATCC編號CRL-1740)上進行流動式細胞測量分析。
僅選擇該等顯示與人類及獼猴CD3以及與PSMA的雙特異性結合作用之建構體,以供進一步使用。
如該實例的第24.8章所述,分析所產生之跨物種特異性的雙特異性單鏈抗體建構體藉由作用細胞T細胞所引發之對抗PSMA陽性標的細胞之細胞毒性活性。使用人類PSMA陽性前列腺癌細胞系LNCaP(ATCC編號CRL-1740)作為標的細胞來源。僅選擇對於作用細胞T細胞對抗PSMA陽性標的細胞之細胞毒性活性具有強效募集作用之該等建構體,以供進一步使用。
25.PSMA與CD3跨物種特異性的雙特異性單鏈抗體分子之表位定位 25.1產生表現人類/大鼠PSMA嵌合體之CHO細胞
為進行PSMA跨物種特異性的雙特異性單鏈抗體分子的結合表位之定位,以來自二種不同物種之PSMA產生嵌合PSMA蛋白。該方法之要求在於該抗體僅辨識來自一物種的PSMA蛋白。在此,使用不與所測試的PSMA跨物種特異性的雙特異性單鏈抗體分子結合之褐鼠(Rattus norvegicus)的PSMA,以與人類PSMA製成嵌合體。因此,在含有PSMA跨物種特異性的雙特異性單鏈抗體之結合表位區域產生一嵌合體,導致該單鏈抗體喪失與個別PSMA建構體結合之作用。
使用如發表於基因庫(GenBank)之人類PSMA的編碼序列(登錄號NM_004476)與大鼠PSMA的編碼序列(NM_057185,褐鼠(Rattus norvegicus)葉酸水解酶(Folh1),mRNA,國家生物技術資訊中心(National Center for Biotechnology),http://www.ncbi.nlm.nih.gov/entrez),以產生嵌合建構體。
設計及藉由依據標準操作程序的基因合成作用,產生一組七種的嵌合cDNA建構體。在建構體中,分別將第140至169個、第191至258個、第281至284個、第300至344個、第589至617個、第683至690個及第716至750個胺基酸之編碼序列片段,換為大鼠PSMA的同源序列。
如上述產生嵌合PSMA建構體,及其名稱係如下列第9表中所說明:
設計該基因合成片段,使其首先含有用於該建構體的真核表現之一個Kozak位點,接著含有嵌合PSMA蛋白的編碼序列,接著在框架中含有一個FLAG標籤的編碼序列及一個終止密碼子。亦設計該基因合成片段,以在該片段的開始端與末端引入限制酶切位點。在下列選殖程序中使用所引入的限制酶切位點,即5'端的EcoRI與3'端的SalI。藉由基因合成片段的編碼序列之靜默突變,移除非所欲的內限制酶切位點。依據標準操作程序,經由EcoRI與SalI,將基因合成片段選殖進入稱作pEF-DHFR的質體(pEF-DHFR係述於Raum等人於期刊“Cancer Immunol Immunother”第50期(2001年)第141-150頁乙文)中。前述程序係依據標準操作程序(美國紐約冷泉港的冷泉港實驗室出版(Cold Spring Harbor Laboratory Press)公司於2001年出版之Sambrook之“分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)”乙書第三版)進行。將具有序列經驗證的核苷酸序列之一殖株轉染進入DHFR缺乏型CHO細胞中,以進行該建構體的真核表現作用。如Kaufmann R. J.(1990年)於期刊“Methods Enzymol.”第185期第537-566頁乙文中所述,在DHFR缺乏型CHO細胞中進行真核蛋白質的表現作用。藉由增加胺基甲葉酸(MTX)的濃度至最終濃度至多為20nM MTX,而引發該建構體的基因擴增作用。
25.2用於PSMA與CD3跨物種特異性的雙特異性單鏈抗體分子的表位定位之使用嵌合PSMA蛋白之流動式細胞測量型結合分析
為測定PSMA跨物種特異性的雙特異性單鏈抗體建構體之結合表位,進行FACS分析。為此目的,使用如第25.1例所述之經人類/大鼠嵌合PSMA分子轉染的CHO細胞。表現雙特異性單鏈抗體建構體之CHO細胞的上清液之FACS分析,係如此述進行。使用一種鼠類五組胺酸(penta his)抗體,檢測PSMA跨物種特異性的雙特異性單鏈抗體建構體的結合作用,及使用一種與藻紅素複合的Fcγ-特異性抗體作為第二步驟的試劑。使用未經轉染的細胞之上清液作為陰性對照組。
如第53圖所示,所測試之所有PSMA跨物種特異性的雙特異性單鏈抗體建構體皆顯示與嵌合建構體huPSMArat140-169、huPSMArat191-258、huPSMArat281-284、huPSMArat683-690及huPSMArat716-750之結合作用。如第53圖進一步所示,PSMA跨物種特異性的雙特異性單鏈抗體建構體PM84-D7xI2C、PM29-G1xI2C及PM49-B9xI2C缺乏與建構體huPSMArat300-344之結合作用,其證實該等建構體的一個主要結合表位係存在於人類PSMA第300至344個胺基酸之區域。亦如第53圖所示,PSMA跨物種特異性的雙特異性單鏈抗體建構體PM34-C7xI2C缺乏與建構體huPSMArat598-617之結合作用,其證實該等建構體的一個主要結合表位係存在於人類PSMA第598至617個胺基酸之區域。
26使用肽掃描方法之表位定位
二種PSMA BiTE抗體PM 76-B10 x I2C與PM76-A9 x I2C對於大鼠PSMA具有交叉反應性,而將其等自藉由使用人類-大鼠PSMA嵌合體之定位作用中排除。同樣地,PSMA BiTE抗體PM F1-A10 x I2C對於人類-大鼠PSMA嵌合體之結合訊號太弱,而無法提供可信賴的表位定位作用。該三種PSMA BiTE抗體進行以肽掃描(Pepscan)為基礎之一種任擇的表位定位方法。肽掃描使用一特定蛋白質的重疊肽,及藉由酵素結合免疫吸附分析(ELISA),分析抗體與固定化肽的結合作用。使用PSMA BiTE抗體的表位定位實驗,係在派斯坎(Pepscan)公司(荷蘭雷里斯達(Lelystad))進行。該方法的詳細說明可見他處(Bernard等人2004年於期刊“J. Biol. Chem.”第279期第24313-22頁乙文;Teeling等人2006年於期刊“J Immunol.”第177期第362-71頁乙文)。
簡言之,合成693種不同的15聚體肽,其等跨越人類PSMA的整個細胞外胺基酸序列,及與各個鄰近的15聚體肽重疊14個胺基酸。在384孔式平皿形式的ELISA孔中塗覆該等肽。就該系列實驗而言,在大腸桿菌(E. coli)中製造候選的個別BiTE抗體之抗PSMA scFv(用於BiTE抗體PM 76-A9 x I2C之scFv MP 9076-A9;用於BiTE抗體PM 76-B10 x I2C之scFv MP 9076-B10;用於BiTE抗體PM F1-A10 x I2C之scFv F1-A10),及用於ELISA作為粗製周質萃取物。就該方面而言,將7毫升的粗製周質萃取物置於乾冰中運往派斯坎(Pepscan)公司(荷蘭)。在該分析中使用scFv對應物,以將擷取來自BiTE抗體的第二個非PSMA結合特異性訊號之風險降至最低,該項風險可能導致對於標的結合子的PSMA結合表位之判讀錯誤。scFv與該等肽培養,及使用一種抗His抗體檢測特異性結合作用。在384孔式ELISA讀數器中測量結合訊號。結果示於第54、55及56圖中。
在用於產生PSMA BiTE抗體之三種抗PSMA scFv抗體(用於BiTE抗體PM 76-A9 x I2C之scFv MP 9076-A9;用於BiTE抗體PM 76-B10 x I2C之scFv MP 9076-B10;用於BiTE抗體PM F1-A10 x I2C之scFv F1-A10)中,顯然其中二種(MP9076-A9與MP 9076-B10)係與人類PSMA之一種相似的優勢表位結合。該項發現係由該二種scFv抗體的近親同源性及其等六種CDR的序列一致性所支持。該等肽結合訊號指出,一核心表位係位於蘇胺酸334至蘇胺酸339之間。如第57圖所示,該序列係位於人類PSMA頂端域的一個暴露環中。就scFv F1-A10而言,可在序列LFEPPPPGYENVS(人類PSMA的第143至155個胺基酸)中檢測出一優勢表位,其亦位於該頂端域中。該三種抗體片段MP 9076-A9、MP9076-B10及F1-A10與離散肽之強力結合作用,顯示辨識一種直鏈蛋白質表位而非一種碳水化合物部份。
第1圖
靈長類CD3ε的N端1至27個胺基酸與一種異源可溶性蛋白質之融合。
第2圖
該圖式顯示在ELISA分析中所測量之四重複試樣的平均吸收值,該ELISA分析係在暫態轉染的293細胞之上清液中,檢測由融合至人類IgG1的鉸鏈與Fcγ部分之成熟人類CD3ε鏈的N端1至27個胺基酸及C端六組胺酸標籤所組成的建構體之存在。標示為“27 aa huCD3E”的第一管柱顯示該建構體的平均吸收值,標示為“無關SN”的第二管柱顯示經作為陰性對照組的無關建構體轉染之293細胞上清液的平均值。該建構體所得數值與陰性對照組所得數值之比較,清楚地證實重組建構體之存在。
第3圖
該圖式顯示在ELISA分析中所測量之四重複試樣的平均吸收值,該ELISA分析係檢測以細胞周質表現型單鏈抗體的粗製品形式存在之跨物種特異性抗CD3結合分子與由融合至人類IgG1的鉸鏈與Fcγ部分之成熟人類CD3ε鏈的N端1至27個胺基酸及C端六組胺酸標籤所組成的建構體之結合作用。從左到右的管柱係顯示稱作A2J HLP、I2C HLP E2M HLP、F7O HLP、G4H HLP、H2C HLP、E1L HLP、F12Q HLP、F6A HLP及H1E HLP之特異性的平均吸收值。標示為“陰性對照組”的最右側管柱,係顯示作為陰性對照組的一種鼠抗人類CD3抗體的單鏈製品之平均吸收值。抗CD3特異性所得數值與陰性對照組所得數值之比較,清楚地證實抗CD3特異性與成熟人類CD3ε鏈的N端1至27個胺基酸之強力結合作用。
第4圖
靈長類CD3ε的N端1至27個胺基酸與一種異源的膜結合蛋白之融合。
第5圖
在FACS分析中所測試的不同轉染體之直方重疊圖,係檢測由食蟹猴EpCAM分別與人類、狨猿、獠狨、松鼠猴及家豬CD3ε鏈的N端1至27個胺基酸所組成的重組型跨膜融合蛋白之存在。從左至右及從上至下的直方重疊圖,係分別顯示表現分別包含人類27聚體、狨猿27聚體、獠狨27聚體、松鼠猴27聚體及豬27聚體的建構體之轉染體結果。在個別的重疊圖中,細線代表以含有2% FCS而非抗Flag M2抗體的PBS培養之作為陰性對照組的試樣,而粗線係顯示與抗F1ag M2抗體培養之試樣。對於各建構體而言,直方重疊圖顯示抗Flag M2抗體與轉染體結合,其清楚地證實該重組建構體在轉染體上表現。
第6圖
在FACS分析中所測試的不同轉染體之直方重疊圖,係檢測以細胞周質表現型單鏈抗體的粗製品形式存在之跨物種特異性抗CD3結合分子與融合至食蟹猴EpCAM的人類、狨猿、獠狨及松鼠猴CD3ε鏈N端1至27個胺基酸之結合作用。
第6A圖:
從左至右及從上至下的直方重疊圖係顯示表現包含人類27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6B圖:
從左至右及從上至下的直方重疊圖係顯示表現包含狨猿27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6C圖:
從左至右及從上至下的直方重疊圖係顯示表現包含獠狨27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6D圖:
從左至右及從上至下的直方重疊圖係顯示表現包含松鼠猴27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
第6E圖:
從左至右及從上至下的直方重疊圖係顯示表現包含豬27聚體的1-27 CD3-EpCAM之轉染體分別以稱作H2C HLP、F12Q HLP、E2M HLP及G4H HLP的CD3特異性結合分子測試之結果。
在個別的重疊圖中,細線係代表以一種鼠抗人類CD3抗體的單鏈製品培養之作為陰性對照組的試樣,而粗線係顯示與所示個別的抗CD3結合分子培養之試樣。考量第5圖中所示之建構體對於豬27聚體轉染體缺乏結合作用及表現水平,直方重疊圖顯示所測試之具完全跨物種特異性的人類雙特異性單鏈抗體之抗CD3特異性,對於表現分別包含與食蟹猴EpCAM融合的人類、狨猿、獠狨及松鼠猴CD3ε鏈N端1至27個胺基酸的重組跨膜融合蛋白之細胞,具有特異性與強力的結合作用,及因此顯示該抗CD3結合分子之跨多種靈長類物種的特異性。
第7圖
用於檢測轉染型鼠EL4T細胞上的人類CD3ε之FACS分析。圖示分析顯示一個直方重疊圖。粗線顯示與人類CD3抗體UCHT-1培養的轉染型細胞。細線代表以小鼠IgG1同型對照組培養的細胞。抗CD3抗體UCHT1的結合作用清楚地顯示,人類CD3ε鏈在轉染型鼠EL4 T細胞的細胞表面上之表現作用。
第8圖
在丙胺酸掃描實驗中,具跨物種特異性的抗CD3抗體與丙胺酸突變體結合。在個別的圖式中,自左到右的柱狀顯示針對野生型轉染體(WT)及位置1至27的所有丙胺酸突變體所計算之對數尺度任意單位的結合值。結合值係使用下列公式計算:
在該方程式中,“數值_試樣”係指如圖式中所示之一種特異性抗CD3抗體與一種特異性丙胺酸突變體的結合程度之任意單位的結合值,“試樣”係指在一種特異性丙胺酸掃描轉染體上分析所得之一種特異性抗CD3抗體的幾何平均螢光值,“陰性_對照組”係指在一種特異性丙胺酸突變體上分析所得之陰性對照的幾何平均螢光值,UCHT-1係指在一種特異性丙胺酸突變體上分析所得之UCHT-1抗體的幾何平均螢光值,WT係指在野生型轉染體上分析所得之一種特異性抗CD3抗體的幾何平均螢光值,x係指個別的轉染體,y係指個別的抗CD3抗體及wt係指個別的野生型轉染體。個別的丙胺酸突變位置係以野生型胺基酸的單一字母代碼與該位置的數字標示。
第8A圖:
該圖式顯示以嵌合IgG分子形式表現的跨物種特異性抗CD3抗體A2J HLP之結果。當位置4(天冬醯胺)、位置23(蘇胺酸)及位置25(異白胺酸)突變成丙胺酸時,觀察到結合活性降低。當位置1(穀胺醯胺)、位置2(天冬胺酸)、位置3(甘胺酸)及位置5(麩胺酸鹽)突變成丙胺酸時,觀察到結合作用完全喪失。
第8B圖:
該圖式顯示以嵌合IgG分子形式表現的跨物種特異性抗CD3抗體E2M HLP之結果。當位置4(天冬醯胺)、位置23(蘇胺酸)及位置25(異白胺酸)突變成丙胺酸時,觀察到結合活性降低。當位置1(穀胺醯胺)、位置2(天冬胺酸鹽)、位置3(甘胺酸)及位置5(麩胺酸鹽)突變成丙胺酸時,觀察到結合作用完全喪失。
第8C圖:
該圖式顯示以嵌合IgG分子形式表現的跨物種特異性抗CD3抗體H2C HLP之結果。當位置4(天冬醯胺)突變成丙胺酸時,觀察到結合活性降低。當位置1(穀胺醯胺)、位置2(天冬胺酸)、位置3(甘胺酸)及位置5(穀胺酸)突變成丙胺酸穀胺醯胺時,觀察到結合作用完全喪失。
第8D圖:
顯示以在細胞周質表現的單鏈抗體形式所測試之跨物種特異性抗CD3抗體F12Q HLP之結果。當位置1(穀胺醯胺)、位置2(天冬胺酸)、位置3(甘胺酸)及位置5(麩胺酸鹽)突變成丙胺酸時,觀察到結合作用完全喪失。
第9圖
FACS分析檢測跨物種特異性抗CD3結合分子H2C HLP與具有及不具有N端His6標籤的人類CD3之結合作用。
在檢測跨物種特異性的結合分子H2C HLP的結合作用之FACS分析中,繪製所測試經野生型人類CD3ε鏈(左側直方圖)或具有N端His6標籤的人類CD3ε鏈(右側直方圖)轉染的EL4細胞系之直方重疊圖。試樣係與作為陰性對照組的適當同型對照組(細線)、作為陽性對照組的抗人類CD3抗體UCHT-1(虛線)及嵌合IgG分子形式的跨物種特異性抗CD3抗體H2C HLP(粗線)培養。
直方重疊圖顯示UCHT-1抗體與二種轉染體的結合作用係與同型對照組相當,證實該二種重組建構體之表現。直方重疊圖亦顯示抗CD3結合分子H2C HLP僅與野生型人類CD3ε鏈結合,而不與His6-人類CD3ε鏈結合。該等結果證實游離的N端係跨物種特異性抗CD3結合分子H2C HLP之結合作用所必需。
第10圖
所指定跨物種特異性的雙特異性單鏈建構體與經人類MCSP D3轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經食蟹猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119LnPx之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表以2微克/毫升的純化蛋白質培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第11圖
所指定跨物種特異性的雙特異性單鏈建構體與經人類MCSP D3轉染的CHO細胞、人類CD3+ T細胞系HPB-ALL、經食蟹猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119LnPx之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表以2微克/毫升的純化蛋白質培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第12圖
所指定跨物種特異性的雙特異性單鏈建構體與經人類MCSP D3轉染的CHO細胞、人類CD3+ T細胞系HPB-ALL、經食蟹猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119LnPx之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表以2微克/毫升的純化單體蛋白質培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第13圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)係使用激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第14圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)與B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第15圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)與B)係使用受激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第16圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)係使用受激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第17圖
由重新導向所示標的細胞系之所指定跨物種特異性的MCSP特異性單鏈建構體引發之細胞毒性活性。A)係使用受激型CD4-/CD56-人類PBMC作為作用細胞,使用經人類MCSP D3轉染的CHO細胞作為標的細胞。B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經食蟹猴MCSP D3轉染的CHO細胞作為標的細胞。如第11例所述進行該分析。
第18(1)-(3)圖
藉由測量分別在37℃與4℃與50%人類血漿培養24小時或在細胞毒性試驗前即刻加入附加的50%人類血漿或者未添加血漿情況下培養之所指定的單鏈建構體試樣引發之細胞毒性,測試MCSP與D3跨物種特異性的雙特異性單鏈抗體之血漿安定性。使用經人類MCSP轉染的CHO細胞作為標的細胞系,及使用受激型CD4-/5 CD56-人類PBMC作為作用細胞。如第19例所述進行該分析。
第19a-f圖
在B-NHL病患(第3表的第1、7、23、30、31及33號病患)周邊血液中之絕對T細胞計數(未填滿的正方形)的初始下降與恢復(亦即重新分佈),該等病患在靜脈內輸注辨識習用的鄰近序列相關性CD3表位之CD3結合分子CD19 x CD3之起始階段期間,實質上並無循環的CD19陽性標的B細胞(填滿的三角形)。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD19 x CD3劑量係示於病患編號旁的括弧內。
第20圖
(A)第19號B-NHL病患(第3表)之重複性T細胞重新分佈(未填滿的正方形),該病患並無循環的CD19陽性標的B細胞(填滿的三角形),在以5微克/平方公尺/24小時的起始劑量 輸注1天及接著以驟增至15微克/平方公尺/24小時的劑量連續靜脈內輸注CD19 x CD3之情況下,發生CNS症狀。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。循環T細胞自以5微克/平方公尺/24小時開始治療所觸發的第一次重新分佈事件恢復之後,自5至15微克/平方公尺/24小時之劑量逐步增加觸發第二次T細胞重新分佈事件,其亦合併發生主要為精神混亂與定向力障礙之CNS症狀。
(B)一名B-NHL病患之重複性T細胞重新分佈,該病患在重複靜脈內大量輸注1.5微克/平方公尺的CD19 x CD3之情況下,發生CNS症狀。絕對細胞計數係以每微升血液1000個細胞之單位示之。各次大量投藥的輸注時間為2至4小時。垂直箭頭指出大量輸注作用之開始。在各次大量投藥開始時之數據點,係顯示在大量輸注開始之前的T細胞計數。各次的大量輸注作用觸發一次T細胞重新分佈事件,接著T細胞計數在下一次大量輸注之前恢復。最後,第三次T細胞重新分佈事件在該病患中合併發生CNS症狀。
第21圖
無循環CD19陽性標的B細胞(填滿的三角形)之第20號B-NHL病患(第3表),在迅速增加CD19 x CD3輸注之起始期間,亦即流速在治療的頭24小時內自幾乎0逐漸增加至15微克/平方公尺/24小時之複合型T細胞重新分佈模式(未填滿的正方形)。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計 數。CD19xCD3劑量係示於病患編號旁的括弧內。在由第一次曝露於CD19xCD3所觸發的首次重新分佈之後,T細胞在循環血液中重現,其中之一部份因迅速增加階段期間之CD19 x CD3水平的持續增加而再度消失。
第22圖
具有顯著數目的循環CD19陽性標的B(淋巴瘤)細胞(填滿的三角形)之第13號B-NHL病患(第3表),在CD19 x CD3治療期間之T細胞與B細胞計數。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD19xCD3劑量係示於病患編號旁的括弧內。在開始輸注CD19 x CD3之際,T細胞(未填滿的正方形)自循環中完全消失,及並未重現直至循環CD19陽性B(淋巴瘤)細胞(填滿的三角形)自周邊血液減除為止。
第23圖
第24號B-NHL病患(第3表)之重複性T細胞重新分佈(未填滿的正方形),該病患實質上並無循環CD19陽性標的B細胞(填滿的三角形),及在未添加藥物安定化作用所需的HAS之CD19 x CD3輸注作用起始之際,發生CNS症狀(上圖)。循環T細胞首次自初始重新分佈恢復之後,因缺乏安定化HAS所引起的不均勻藥物流量觸發第二次T細胞重新分佈事件,及其合併發生主要為精神混亂與定向力障礙之CNS症狀。當同一名病患正確地以含有供藥物安定用的附加HSA之CD19 x CD3溶液重新開始時,未觀察到重複性T細胞重新分佈(下圖)及該病患並未再度發生任一CNS症狀。絕 對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。CD19 x CD3劑量係示於病患編號旁的括弧內。
第24圖
藉由與鄰近序列相關性CD3表位的單價結合作用所引發之T細胞附著內皮細胞的模型。一種習用的CD3結合分子與其CD3ε上的鄰近序列相關性表位之單價交互作用,可導致CD3構形的一種異位變化,接著將Nck2募集至CD3ε的胞質域(Gil於期刊“Cell”第109期(2002年)第901-912頁乙文)。因Nck2經由PINCH與ILK而直接連接整合子(Legate等人(2006年)於期刊“Nat Rev Mol Cell Biol”第7期第20頁乙文),在經由一種習用的CD3結合分子(如第13例之CD19 x CD3)與其CD3ε上的鄰近序列相關性表位之結合作用所導致之CD3構形的異位變化之後,將Nck2募集至CD3ε的胞質域之作用,可經由內而外的訊號傳導,藉由將T細胞表面上的整合子暫時轉換成為其等黏著性較高的異構體,而增加T細胞對於內皮細胞的黏著性。
第25圖
用於如第14例所述之食蟹猴活體內研究的CD33-AF5 VH-VL x I2C VH-VL試驗物質之細胞毒性活性。在一種標準的51 鉻釋出分析中,以遞增濃度的CD33-AF5 VH-VL x I2C VH-VL,測定CD33陽性標的細胞之特異性分解作用。分析時間為18小時。使用獼猴T細胞系4119 LnPx作為作用細胞的來源。經食蟹猴CD33轉染的CHO細胞係作為標的細 胞。作用細胞相對於標的細胞之比例(E:T比)為10:1。自劑量反應曲線計算而得半極大標的細胞分解作用所需的CD33-AF5 VH-VL x I2C VH-VL濃度(EC50)之數值為2.7奈克/毫升。
第26A-B圖
(A)經由如第14例所述之CD33-AF5 VH-VL x I2C VH-VL的靜脈內連續輸注作用,自食蟹猴周邊血液以具劑量與時間依賴性方式減除CD33陽性單核細胞之作用。在上述治療期間後,二種食蟹猴中的各者在各劑量水平之絕對的循環CD33陽性單核細胞計數相對於基線(亦即100%)之百分比,係以柱狀顯示。劑量水平(亦即輸注流速)係示於柱狀下方。在以30微克/平方公尺/24小時的劑量治療七天之第1與2號動物中,觀察到並無循環CD33陽性單核細胞的減除作用。在以60微克/平方公尺/24小時的劑量治療七天之第3與4號動物中,循環CD33陽性單核細胞計數分別降為基線的68%與40%。以240微克/平方公尺/24小時治療3天之後,周邊血液中的循環CD33陽性單核細胞幾乎完全減除(第5與6號動物)。以1000微克/平方公尺/24小時治療1天之後,周邊血液中的循環CD33陽性單核細胞已經完全減除(第7與8號動物)。
(B)二種食蟹猴在以120微克/平方公尺/24小時的CD33-AF5 VH-VL x I2C VH-VL連續輸注14天期間,其周邊血液中之T細胞與CD33單核細胞計數之歷程。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯 示在輸注開始之前的基線計數。CD33單核細胞在開始輸注之頭12個小時期間的初始移動之後,相對於進一步輸注期間的個別基線計數,其周邊血液中CD33單核細胞(填滿的三角形)減除三分之二(第26B(2)圖:第10號動物)及50%(第26B(1)圖:第9號動物)。循環T細胞計數(未填滿的正方形)顯示有限的初始下降,接著在循環CD33陽性單核標的細胞仍存在之期間恢復。
第27圖
用於如第15例所述之食蟹猴活體內研究的MCSP-G4 VH-VL x I2C VH-VL試驗物質之細胞毒性活性。在一種標準的51 鉻釋出分析中,以遞增濃度的MCSP-G4 VH-VL x I2C VH-VL,測定MCSP陽性標的細胞之特異性分解作用。分析時間為18小時。使用獼猴T細胞系4119 LnPx作為作用細胞的來源。經食蟹猴MCSP轉染的CHO細胞係作為標的細胞。作用細胞相對於標的細胞之比例(E:T比)為10:1。自劑量反應曲線計算而得半極大標的細胞分解作用所需的MCSP-G4 VH-VL x I2C VH-VL濃度(EC50)之數值為1.9奈克/毫升。
第28(1)-(2)圖
在靜脈內輸注辨識實質上鄰近序列無關性CD3表位的CD3結合分子MCSP-G4 VHVL x I2C VH-VL之起始階段期間,在食蟹猴周邊血液中並無絕對T細胞計數下降及後續恢復(亦即重新分佈)之初始事件。絕對細胞計數係以每微升血液1000個細胞之單位示之。第一個數據點係顯示在輸注開始之前的基線計數。MCSP-G4 VHVL x I2C VH-VL劑量係示於動物編號旁的括弧內。在已知食蟹猴循環血液中不存在MCSP陽性標的細胞之情況下,經由標的細胞所媒介之CD3交聯作用並未引發T細胞重新分佈(亦即絕對T細胞計數下降與後續恢復之初始事件)。此外,藉由使用辨識一種實質上鄰近序列無關性CD3表位之CD3結合分子如MCSP-G4 VH-VL x I2C VH-VL,可避免經由T細胞通過僅與一個CD3結合位點的專有交互作用而接收之一訊號所引發的T細胞重新分佈(亦即絕對T細胞計數下降與後續恢復之初始事件)。
第29(1)-(12)圖
所指定之跨物種特異性的雙特異性單鏈建構體與經人類CD33轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、分別經獼猴CD33與獼猴PBMC轉染的CHO細胞之FACS結合分析。FACS染色作用係如第16.4例所述進行。粗線代表細胞係以5微克/毫升的純化雙特異性單鏈建構體培養,或與表現跨物種特異性的雙特異性抗體建構體之轉染細胞的細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組。直方重疊圖就各個跨物種特異性的雙特異性單鏈建構體,顯示該建構體與人類及獼猴CD33以及與人類及獼猴CD3之特異性結合作用。
第30(1)-(8)圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的CD33特異性單鏈建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第16.5例所述進行該分析。該等圖清楚地證實各建構體分別對於對抗經人類與獼猴CD33轉染的CHO細胞之人類與獼猴作用細胞的細胞毒性活性之強力募集作用。
第31圖
用於監控稱作E292F3 HL x I2 CHL之跨物種特異性的雙特異性單鏈分子純化作用之SDS PAGE凝膠與西方墨點法。來自洗提液、細胞培養上清液(SN)及管柱流出物(FT)之試樣,係如所示分析。使用一種蛋白質標記(M)作為尺寸參考基準。在SDS PAGE凝膠中之一個分子量介於50與60kDa之間的明顯蛋白質帶狀,證實藉由第17.2例所述之單一步驟的純化方法,將跨物種特異性的雙特異性單鏈分子有效地純化至非常高的純度。用於檢測組胺酸6標籤之西方墨點法,確認洗提液中之蛋白質帶狀為跨物種特異性的雙特異性單鏈分子。在該敏感的檢測方法中之流出物試樣的微弱訊號進一步顯示,藉由該純化方法幾乎完全地擷取雙特異性單鏈分子。
第32圖
用於監控稱作V207C12 HL x H2C HL之跨物種特異性的雙特異性單鏈分子純化作用之SDS PAGE凝膠與西方墨點法。來自洗提液、細胞培養上清液(SN)及管柱流出物(FT)之試樣,係如所示分析。使用一種蛋白質標記(M)作為尺寸參考基準。在SDS PAGE凝膠中之一個分子量介於50與60kDa之間的明顯蛋白質帶狀,證實藉由第17.2例所述之單一步驟的純化方法,將跨物種特異性的雙特異性單鏈分子有效地純化至非常高的純度。用於檢測組胺酸6標籤之西方墨點法,確認洗提液中之蛋白質帶狀為跨物種特異性的雙特異性單鏈分子。在該敏感的檢測方法中之流出物試樣的微弱訊號進一步顯示,藉由該純化方法幾乎完全地擷取雙特異性單鏈分子。
第33圖
用於監控稱作AF5HLxF12QHL之跨物種特異性的雙特異性單鏈分子純化作用之SDS PAGE凝膠與西方墨點法。來自洗提液、細胞培養上清液(SN)及管柱流出物(FT)之試樣,係如所示分析。使用一種蛋白質標記(M)作為尺寸參考基準。在SDS PAGE凝膠中之一個分子量介於50與60kDa之間的明顯蛋白質帶狀,證實藉由第17.2例所述之單一步驟的純化方法,將跨物種特異性的雙特異性單鏈分子有效地純化至非常高的純度。用於檢測組胺酸6標籤之西方墨點法,確認洗提液中之蛋白質帶狀為跨物種特異性的雙特異性單鏈分子。在該敏感的檢測方法中之流出物試樣的訊號,可由因上清液中的高濃度雙特異性單鏈分子而造成親和管柱飽和解釋之。
第34圖
AF5HLxI2CHL於50%獼猴血清中之標準曲線。上圖顯示針對述於第18.2例之分析所產生的標準曲線。
下圖顯示AF5HLxI2CHL於50%獼猴血清中的品管試樣之結果。高與中QC試樣的回收率高於90%,而低QC試樣則高於80%。
因此,該分析容許檢測之血清試樣中的AF5HLxI2CHL範圍,係自10奈克/毫升至200奈克/毫升(稀釋前)。
第35圖
MCSP-G4 HL x I2C HL於50%獼猴血清中之標準曲線。上圖顯示針對述於第18.2例之分析所產生的標準曲線。
下圖顯示MCSP-G4 HL x I2C HL於50%獼猴血清中的品管試樣之結果。高與中QC試樣的回收率高於98%,而低QC試樣則高於85%。
因此,該分析容許檢測之血清試樣中的MCSP-G4 HL x I2C HL範圍,係測自10奈克/毫升至200奈克/毫升(稀釋前)。
第36圖
一種抗Flag抗體與CHO細胞之FACS結合分析,該CHO細胞係經融合至食蟹猴EpCAM之所指定物種的CD3ε之N端1-27個胺基酸轉染。如第19.1例所述進行FACS染色作用。粗線代表以抗Flag抗體培養之細胞。填滿的直方圖反映陰性對照組。使用具有2% FCS的PBS作為陰性對照組。直方圖顯示抗Flag抗體與所有轉染體之強力與相當的結合作用,其係表示經轉染的建構體之強力與相等的表現作用。
第37圖
I2C IgG1建構體與CHO細胞之FACS結合分析,該CHO細胞係表現融合至食蟹猴EpCAM之所指定物種的CD3ε之N端1-27個胺基酸。如第19.3例所述進行FACS染色作用。粗線代表細胞係以50微升之表現I2C IgG1建構體的細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用表現融合至食蟹猴EpCAM之豬CD3ε的N端1-27個胺基酸之細胞作為陰性對照組。相較於陰性對照組,該直方圖清楚地證實I2C IgG1建構體與人類、狨猿、獠狨及松鼠猴之CD3ε的N端1-27個胺基酸之結合作用。
第38圖
如第19.2例所述的I2C IgG1建構體與分別如第6.1例及第5.1例所述之具有與不具有N端His6標籤的人類CD3之FACS結合分析。粗線代表細胞係如所示分別以抗人類CD3抗體UCHT-1、五組胺酸(penta-His)抗體(凱傑(Qiagen)公司)及表現I2C IgG1建構體的細胞之細胞培養上清液培養。填滿的直方圖係反映作為陰性對照組的細胞,其係與一種無關的鼠IgG1抗體培養。
上方二個直方重疊圖顯示UCHT-1抗體與該二轉染體之結合作用係可與同型對照組相比,其證實該二重組建構體之表現作用。中間的直方重疊圖顯示五組胺酸(penta his)抗體與表現His6-人類CD3ε鏈(His6-CD3)的細胞結合,但不與表現野生型CD3ε鏈(WT-CD3)的細胞結合。下方的直方重疊圖顯示I2C IgG1建構體與野生型人類CD3ε鏈結合,但不與His6-人類CD3ε鏈結合。該等結果證實游離的N端係跨物種特異性抗CD3結合分子I2C與CD3ε鏈的結合作用所必需。
第39a-1圖
所指定跨物種特異性的雙特異性單鏈建構體分別與經人類MCSP D3轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經獼猴MCSP D3轉染的CHO細胞及獼猴T細胞系4119LnPx之FACS結合分析。如第10例所述進行FACS染色作用。粗線代表細胞係分別以2微克/毫升的純化雙特異性單鏈建構體培養,或與含有該雙特異性單鏈建構體的細胞上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組,以進行與T細胞系之結合作用。使用一種具有無關標的特異性之單鏈建構體作為陰性對照組,以進行與經MCSP D3轉染的CHO細胞之結合作用。直方重疊圖就各個跨物種特異性的雙特異性單鏈建構體,顯示該建構體與人類及獼猴MCSP D3以及與人類及獼猴CD3之特異性結合作用。
第40a-d圖
藉由重新導向所示標的細胞系之所指定跨物種特異性的MCSP D3特異性單鏈建構體所引發之細胞毒性活性。作用細胞及作用細胞相對於標的之比例,亦如所示使用。如第11例所述進行該分析。該等圖清楚地證實各建構體對於細胞毒性活性的強力募集作用。
第41a-b圖
所指定跨物種特異性的雙特異性單鏈建構體分別與經人類CD33轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經獼猴CD33與獼猴PBMC轉染的CHO細胞之FACS結合分析。如第21.2例所述進行FACS染色作用。粗線代表細胞係以表現跨物種特異性的雙特異性抗體建構體的轉染細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組。直方重疊圖就各個跨物種特異性的雙特異性單鏈建構體,顯示該建構體與人類及獼猴CD33以及與人類及獼猴CD3之特異性結合作用。
第42圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的CD33特異性單鏈建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第21.3例所述進行該分析。該等圖清楚地證實各建構體分別對於對抗經人類與獼猴CD33轉染的CHO細胞之人類與獼猴作用細胞的細胞毒性活性之強力募集作用。
第43圖
在每週靜脈內大量輸注PBS/5% HAS及PBS/5% HAS加上劑量為1.6、2.0、3.0及4.5微克/公斤的單鏈EpCAM/CD3雙特異性抗體建構體之情況下,黑猩猩之T細胞重新分佈。各次大量投藥作用的輸注時間為2小時。垂直箭頭指出大量輸注之開始。各次大量投藥開始時之數據點,係顯示在大量輸注開始之前的T細胞計數。辨識一種習用的鄰近序列相關性CD3表位之單鏈EpCAM/CD3雙特異性抗體建構體之各次大量輸注作用,觸發一次T細胞重新分佈事件,之後T細胞在下一次大量輸注之前恢復至基線數值。
第44圖
來自所選擇殖株之含有帶Flag標籤之scFv蛋白片段的周質製劑之CD3特異性ELISA分析。在ELISA平皿中之已塗覆可溶性人類CD3ε(aa 1-27)-Fc融合蛋白及附加地以PBS3% BSA阻斷之孔中,添加可溶性scFv蛋白片段的周質製劑。依序藉由一種單株抗Flag-生物素標記的抗體及過氧化酶複合型鏈黴菌卵白素進行檢測。ELISA係藉由一種ABTS受質溶液顯影。藉由ELISA讀數器,在405nm測量OD數值(y軸)。殖株名稱係示於x軸。
第45圖
來自所選擇殖株之含有帶Flag標籤之scFv蛋白片段的周質製劑之ELISA分析。在ELISA平皿中之已塗覆huIgG1(西克瑪(Sigma)公司)而非塗覆人類CD3ε(aa 1-27)-Fc融合蛋白及以PBS中的3% BSA阻斷之孔中,添加第44圖之可溶性scFv蛋白片段的相同周質製劑。
依序藉由一種單株抗Flag-生物素標記的抗體及過氧化酶複合型鏈黴菌卵白素進行檢測。ELISA係藉由一種ABTS受質溶液顯影。藉由ELISA讀數器,在405nm測量OD數值(y軸)。殖株名稱係示於x軸。
第46(1)-(4)圖
所指定跨物種特異性的雙特異性單鏈建構體分別與經人類PSMA轉染的CHO細胞、人類CD3+T細胞系HPB-ALL、經獼猴PSMA轉染的CHO細胞及一種獼猴T細胞系4119 LnPx之FACS結合分析。如第24.4例所述進行FACS染色作用。粗線代表以細胞培養上清液培養之細胞,後續係以抗his抗體及經PE標記的檢測抗體培養。直方圖細線係反映陰性對照組:僅以抗his抗體及檢測抗體培養之細胞。
第47(1)-(2)圖
藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈建構體所引發之細胞毒性活性。A)與B)係使用移除CD56的未受激型人類PBMC作為作用細胞,使用經人類PSMA轉染的CHO細胞作為標的細胞。如第24.5例所述進行該分析。
第48(1)-(2)圖
藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈建構體所引發之細胞毒性活性。A)與B)係使用獼猴T細胞系4119 LnPx作為作用細胞,使用經獼猴PSMA轉染的CHO細胞作為標的細胞。如第24.5例所述進行該分析。
第49a-e圖
所指定跨物種特異性的雙特異性單鏈建構體分別與人類PSMA陽性前列腺癌細胞系LNCaP、人類CD3+T細胞系HPB-ALL及獼猴T細胞系4119 LnPx之FACS結合分析。如第24.7例所述進行FACS染色作用。粗線代表細胞係以表現跨物種特異性的雙特異性抗體建構體的轉染細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用細胞培養基作為陰性對照組。就所示的各個跨物種特異性的雙特異性單鏈建構體,直方重疊圖顯示該建構體與人類PSMA及與人類及獼猴CD3之結合作用。
第50(1)-(3)圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈 建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第24.8例所述進行該分析。該等圖清楚地證實,所示建構體對於對抗由人類前列腺癌細胞系LNCaP或獼猴T細胞系4119LnPx所例示的PSMA陽性癌細胞之人類或獼猴作用T細胞的細胞毒性活性之強力募集作用。
第51a-c圖
所指定跨物種特異性的雙特異性單鏈建構體與PSMA陽性細胞之FACS結合分析。如第24.7例所述進行FACS染色作用。就所示的各個跨物種特異性的雙特異性單鏈建構體,直方重疊圖顯示該建構體與人類PSMA及與人類及獼猴CD3之結合作用。
第52A-B圖
該等圖顯示鉻釋出分析之結果,其係測量藉由重新導向所示標的細胞系之所指定跨物種特異性的雙特異性單鏈建構體所引發之細胞毒性活性。亦如所示使用作用細胞。如第24.8例所述進行該分析。該等圖清楚地證實,所示建構體對於對抗PSMA陽性細胞之人類或獼猴作用T細胞的細胞毒性活性之強力募集作用。
第53a-d圖
如第25.1例所述,所指定跨物種特異性的雙特異性單鏈建構體與表現所指定人類/大鼠PSMA嵌合體的CHO細胞之FACS結合分析。如第25.2例所述進行FACS染色作用。粗線代表細胞係以表現雙特異性抗體建構體的轉染細胞之細胞培養上清液培養。填滿的直方圖反映陰性對照組。使用未轉染的CHO細胞之上清液作為陰性對照組。使用細胞培養基作為陰性對照組。就各個雙特異性單鏈建構體,直方重疊圖顯示該建構體與嵌合建構體huPSMArat140-169、huPSMArat191-258、huPSMArat281-284、huPSMArat683-690及huPSMArat716-750之特異性結合作用。相較於其他雙特異性單鏈建構體所得的訊號,雙特異性單鏈抗體建構體PM84-D7 x I2C、PM29-G1 x I2C及PM49-B9 x I2C清楚地缺少與嵌合建構體huPSMArat300-344之結合作用。而且,相較於其他雙特異性單鏈建構體所得的訊號,雙特異性單鏈抗體建構體PM34-C7 x I2C清楚地缺少與建構體huPSMArat598-617之結合作用。
第54圖
PSMA BiTE抗體PM76-A9 x I2C之PSMA標的結合子scFv MP9076-A9與跨越人類PSMA的細胞外域及與其等的鄰近肽重疊14個胺基酸之15聚體肽之結合作用。肽的編號係標示於X軸。使用His檢測作用之ELISA訊號,係標示於Y軸。
第55圖
PSMABiTE抗體PM76-B10 x I2C之PSMA標的結合子scFv MP9076-B10與跨越人類PSMA的細胞外域及與其等的鄰近肽重疊14個胺基酸之15聚體肽之結合作用。肽的編號係標示於X軸。使用His檢測作用之ELISA訊號,係標示於Y軸。
第56圖
PSMA BiTE抗體PM F1-A10 x I2C之PSMA標的結合子scFv F1-A10與跨越人類PSMA的細胞外域及與其等的鄰近肽重疊14個胺基酸之15聚體肽之結合作用。肽的編號係標示於X軸。使用His檢測作用之ELISA訊號,係標示於Y軸。
第57圖
scFv MP 9076-A9、MP 9076-B10及F1-A10之可能的優勢表位。以虛線圍繞人類PSMA的三維結構中之可能的核心結合胺基酸。以色彩編碼表示scFv及個別的表位。Davis等人於2005年(期刊“PNAS”第102期第5981-6頁乙文)報導人類PSMA的晶體結構。
<110> 安進研究(慕尼黑)有限責任公司
<120> 跨物種特異性的PSMAxCD3雙特異性單鏈抗體
<140> 98133577
<141> 2009-10-02
<160> 1049
<170> PatentIn版本3.5
<210> 1
<211> 105
<212> PRT
<213> 智人(Homo sapiens)
<400> 1
<210> 2
<211> 27
<212> PRT
<213> 智人(Homo sapiens)
<400> 2
<210> 3
<211> 96
<212> PRT
<213> 白鬢狨(Callithrix jacchus)
<400> 3
<210> 4
<211> 27
<212> PRT
<213> 白鬢狨(Callithrix jacchus)
<400> 4
<210> 5
<211> 96
<212> PRT
<213> 棉冠獠狨(Saguinus oedipus)
<400> 5
<210> 6
<211> 27
<212> PRT
<213> 棉冠獠狨(Saguinus oedipus)
<400> 6
<210> 7
<211> 96
<212> PRT
<213> 松鼠猴(Saimiri sciureus)
<400> 7
<210> 8
<211> 27
<212> PRT
<213> 松鼠猴(Saimiri sciureus)
<400> 8
<210> 9
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> F6A之CDR-L1
<400> 9
<210> 10
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> F6A之CDR-L2
<400> 10
<210> 11
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> F6A之CDR-L3
<400> 11
<210> 12
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> F6A之CDR-H1
<400> 12
<210> 13
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> F6A之CDR-H2
<400> 13
<210> 14
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> F6A之CDR-H3
<400> 14
<210> 15
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> F6A之VH
<400> 15
<210> 16
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> F6A之VH
<400> 16
<210> 17
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> F6A之VL
<400> 17
<210> 18
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> F6A之VL
<400> 18
<210> 19
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> F6A之VH-P
<400> 19
<210> 20
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> F6A之VH-P
<400> 20
<210> 21
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> F6A之VL-P
<400> 21
<210> 22
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> F6A之VL-P
<400> 22
<210> 23
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> F6A之VH-VL
<400> 23
<210> 24
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> F6A之VH-VL
<400> 24
<210> 25
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> F6A之VH-VL-P
<400> 25
<210> 26
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> F6A之VH-VL-P
<400> 26
<210> 27
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> H2C之CDR-L1
<400> 27
<210> 28
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> H2C之CDR-L2
<400> 28
<210> 29
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> H2C之CDR-L3
<400> 29
<210> 30
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> H2C之CDR-H1
<400> 30
<210> 31
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> H2C之CDR-H2
<400> 31
<210> 32
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> H2C之CDR-H3
<400> 32
<210> 33
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> H2C之VH
<400> 33
<210> 34
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> H2C之VH
<400> 34
<210> 35
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> H2C之VL
<400> 35
<210> 36
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> H2C之VL
<400> 36
<210> 37
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> H2C之VH-P
<400> 37
<210> 38
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> H2C之VH-P
<400> 38
<210> 39
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> H2C之VL-P
<400> 39
<210> 40
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> H2C之VL-P
<400> 40
<210> 41
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> H2C之VH-VL
<400> 41
<210> 42
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> H2C之VH-VL
<400> 42
<210> 43
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> H2C之VH-VL-P
<400> 43
<210> 44
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> H2C之VH-VL-P
<400> 44
<210> 45
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> H1E之CDR-L1
<400> 45
<210> 46
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> H1E之CDR-L2
<400> 46
<210> 47
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> H1E之CDR-L3
<400> 47
<210> 48
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> H1E之CDR-H1
<400> 48
<210> 49
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> H1E之CDR-H2
<400> 49
<210> 50
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> H1E之CDR-H3
<400> 50
<210> 51
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> H1E之VH
<400> 51
<210> 52
<211> 374
<212> DNA
<213> 人工序列
<220>
<223> H1E之VH
<400> 52
<210> 53
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> H1E之VL
<400> 53
<210> 54
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> H1E之VL
<400> 54
<210> 55
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> H1E之VH-P
<400> 55
<210> 56
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> H1E之VH-P
<400> 56
<210> 57
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> H1E之VL-P
<400> 57
<210> 58
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> H1E之VL-P
<400> 58
<210> 59
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> H1E之VH-VL
<400> 59
<210> 60
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> H1E之VH-VL
<400> 60
<210> 61
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> H1E之VH-VL-P
<400> 61
<210> 62
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> H1E之VH-VL-P
<400> 62
<210> 63
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> G4H之CDR-L1
<400> 63
<210> 64
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> G4H之CDR-L2
<400> 64
<210> 65
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> G4H之CDR-L3
<400> 65
<210> 66
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> G4H之CDR-H1
<400> 66
<210> 67
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> G4H之CDR-H2
<400> 67
<210> 68
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> G4H之CDR-H3
<400> 68
<210> 69
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> G4H之VH
<400> 69
<210> 70
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> G4H之VH
<400> 70
<210> 71
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> G4H之VL
<400> 71
<210> 72
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> G4H之VL
<400> 72
<210> 73
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> G4H之VH-P
<400> 73
<210> 74
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> G4H之VH-P
<400> 74
<210> 75
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> G4H之VL-P
<400> 75
<210> 76
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> G4H之VL-P
<400> 76
<210> 77
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> G4H之VH-VL
<400> 77
<210> 78
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> G4H之VH-VL
<400> 78
<210> 79
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> G4H之VH-VL-P
<400> 79
<210> 80
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> G4H之VH-VL-P
<400> 80
<210> 81
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> A2J之CDR-L1
<400> 81
<210> 82
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> A2J之CDR-L2
<400> 82
<210> 83
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> A2J之CDR-L3
<400> 83
<210> 84
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> A2J之CDR-H1
<400> 84
<210> 85
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> A2J之CDR-H2
<400> 85
<210> 86
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> A2J之CDR-H3
<400> 86
<210> 87
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> A2J之VH
<400> 87
<210> 88
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> A2J之VH
<400> 88
<210> 89
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> A2J之VL
<400> 89
<210> 90
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> A2J之VL
<400> 90
<210> 91
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> A2J之VH-P
<400> 91
<210> 92
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> A2J之VH-P
<400> 92
<210> 93
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> A2J之VL-P
<400> 93
<210> 94
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> A2J之VL-P
<400> 94
<210> 95
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> A2J之VH-VL
<400> 95
<210> 96
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> A2J之VH-VL
<400> 96
<210> 97
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> A2J之VH-VL-P
<400> 97
<210> 98
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> A2J之VH-VL-P
<400> 98
<210> 99
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> E1L之CDR-L1
<400> 99
<210> 100
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> E1L之CDR-L2
<400> 100
<210> 101
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> E1L之CDR-L3
<400> 101
<210> 102
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> E1L之CDR-H1
<400> 102
<210> 103
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> E1L之CDR-H2
<400> 103
<210> 104
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> E1L之CDR-H3
<400> 104
<210> 105
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> E1L之VH
<400> 105
<210> 106
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> E1L之VH
<400> 106
<210> 107
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> E1L之VL
<400> 107
<210> 108
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> E1L之VL
<400> 108
<210> 109
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> E1L之VH-P
<400> 109
<210> 110
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> E1L之VH-P
<400> 110
<210> 111
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> E1L之VL-P
<400> 111
<210> 112
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> E1L之VL-P
<400> 112
<210> 113
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> E1L之VH-VL
<400> 113
<210> 114
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> E1L之VH-VL
<400> 114
<210> 115
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> E1L之VH-VL-P
<400> 115
<210> 116
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> E1L之VH-VL-P
<400> 116
<210> 117
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> E2M之CDR-L1
<400> 117
<210> 118
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> E2M之CDR-L2
<400> 118
<210> 119
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> E2M之CDR-L3
<400> 119
<210> 120
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> E2M之CDR-H1
<400> 120
<210> 121
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> E2M之CDR-H2
<400> 121
<210> 122
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> E2M之CDR-H3
<400> 122
<210> 123
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> E2M之VH
<400> 123
<210> 124
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> E2M之VH
<400> 124
<210> 125
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> E2M之VL
<400> 125
<210> 126
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> E2M之VL
<400> 126
<210> 127
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> E2M之VH-P
<400> 127
<210> 128
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> E2M之VH-P
<400> 128
<210> 129
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> E2M之VL-P
<400> 129
<210> 130
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> E2M之VL-P
<400> 130
<210> 131
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> E2M之VH-VL
<400> 131
<210> 132
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> E2M之VH-VL
<400> 132
<210> 133
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> E2M之VH-VL-P
<400> 133
<210> 134
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> E2M之VH-VL-P
<400> 134
<210> 135
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> F7O之CDR-L1
<400> 135
<210> 136
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> F7O之CDR-L2
<400> 136
<210> 137
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> F7O之CDR-L3
<400> 137
<210> 138
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> F7O之CDR-H1
<400> 138
<210> 139
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> F7O之CDR-H2
<400> 139
<210> 140
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> F7O之CDR-H3
<400> 140
<210> 141
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> F7O之VH
<400> 141
<210> 142
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> F7O之VH
<400> 142
<210> 143
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> F7O之VL
<400> 143
<210> 144
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> F7O之VL
<400> 144
<210> 145
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> F7O之VH-P
<400> 145
<210> 146
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> F7O之VH-P
<400> 146
<210> 147
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> F7O之VL-P
<400> 147
<210> 148
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> F7O之VL-P
<400> 148
<210> 149
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> F7O之VH-VL
<400> 149
<210> 150
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> F7O之VH-VL
<400> 150
<210> 151
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> F7O之VH-VL-P
<400> 151
<210> 152
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> F7O之VH-VL-P
<400> 152
<210> 153
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> F12Q之CDR-L1
<400> 153
<210> 154
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> F12Q之CDR-L2
<400> 154
<210> 155
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> F12Q之CDR-L3
<400> 155
<210> 156
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> F12Q之CDR-H1
<400> 156
<210> 157
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> F12Q之CDR-H2
<400> 157
<210> 158
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> F12Q之CDR-H3
<400> 158
<210> 159
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> F12Q之VH
<400> 159
<210> 160
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> F12Q之VH
<400> 160
<210> 161
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> F12Q之VL
<400> 161
<210> 162
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> F12Q之VL
<400> 162
<210> 163
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> F12Q之VH-P
<400> 163
<210> 164
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> F12Q之VH-P
<400> 164
<210> 165
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> F12Q之VL-P
<400> 165
<210> 166
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> F12Q之VL-P
<400> 166
<210> 167
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> F12Q之VH-VL
<400> 167
<210> 168
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> F12Q之VH-VL
<400> 168
<210> 169
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> F12Q之VH-VL-P
<400> 169
<210> 170
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> F12Q之VH-VL-P
<400> 170
<210> 171
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> I2C之CDR-L1
<400> 171
<210> 172
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> I2C之CDR-L2
<400> 172
<210> 173
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> I2C之CDR-L3
<400> 173
<210> 174
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> I2C之CDR-H1
<400> 174
<210> 175
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> I2C之CDR-H2
<400> 175
<210> 176
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> I2C之CDR-H3
<400> 176
<210> 177
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> I2C之VH
<400> 177
<210> 178
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> I2C之VH
<400> 178
<210> 179
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> I2C之VL
<400> 179
<210> 180
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> I2C之VL
<400> 180
<210> 181
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> I2C之VH-P
<400> 181
<210> 182
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> I2C之VH-P
<400> 182
<210> 183
<211> 109
<212> PRT
<213> 人工序列
<220>
<223> I2C之VL-P
<400> 183
<210> 184
<211> 327
<212> DNA
<213> 人工序列
<220>
<223> I2C之VL-P
<400> 184
<210> 185
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> I2C之VH-VL
<400> 185
<210> 186
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> I2C之VH-VL
<400> 186
<210> 187
<211> 249
<212> PRT
<213> 人工序列
<220>
<223> I2C之VH-VL-P
<400> 187
<210> 188
<211> 747
<212> DNA
<213> 人工序列
<220>
<223> I2C之VH-VL-P
<400> 188
<210> 189
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL x H2C VH-VL
<400> 189
<210> 190
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL x H2C VH-VL
<400> 190
<210> 191
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL x F12Q VH-VL
<400> 191
<210> 192
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL x F12Q VH-VL
<400> 192
<210> 193
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F6A VH-VL-P
<400> 193
<210> 194
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F6A VH-VL-P
<400> 194
<210> 195
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F6A VH-VL-P
<400> 195
<210> 196
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F6A VH-VL-P
<400> 196
<210> 197
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x H2C VH-VL-P
<400> 197
<210> 198
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x H2C VH-VL-P
<400> 198
<210> 199
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x H1E VH-VL-P
<400> 199
<210> 200
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x H1E VH-VL-P
<400> 200
<210> 201
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x G4H VH-VL-P
<400> 201
<210> 202
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x G4H VH-VL-P
<400> 202
<210> 203
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x A2J VH-VL-P
<400> 203
<210> 204
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x A2J VH-VL-P
<400> 204
<210> 205
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x E1L VH-VL-P
<400> 205
<210> 206
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x E1L VH-VL-P
<400> 206
<210> 207
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x E2M VH-VL-P
<400> 207
<210> 208
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x E2M VH-VL-P
<400> 208
<210> 209
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F7O VH-VL-P
<400> 209
<210> 210
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F7O VH-VL-P
<400> 210
<210> 211
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F12Q VH-VL
<400> 211
<210> 212
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x F12Q VH-VL
<400> 212
<210> 213
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x I2C VH-VL
<400> 213
<210> 214
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G4 VH-VL-P x I2C VH-VL
<400> 214
<210> 215
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL x H2C VH-VL
<400> 215
<210> 216
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL x H2C VH-VL
<400> 216
<210> 217
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL x F12Q VH-VL
<400> 217
<210> 218
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL x F12Q VH-VL
<400> 218
<210> 219
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL x I2C VH-VL
<400> 219
<210> 220
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL x I2C VH-VL
<400> 220
<210> 221
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL-P x H2C VH-VL-P
<400> 221
<210> 222
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-D2 VH-VL-P x H2C VH-VL-P
<400> 222
<210> 223
<211> 499
<212> PRT
<213> 人工序列
<220>
<223> MCSP-F9 VH-VL x H2C VH-VL
<400> 223
<210> 224
<211> 1497
<212> DNA
<213> 人工序列
<220>
<223> MCSP-F9 VH-VL x H2C VH-VL
<400> 224
<210> 225
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-F9 VH-VL-P x H2C VH-VL-P
<400> 225
<210> 226
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-F9 VH-VL-P x H2C VH-VL-P
<400> 226
<210> 227
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-F9 VH-VL-P x G4H VH-VL-P
<400> 227
<210> 228
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-F9 VH-VL-P x G4H VH-VL-P
<400> 228
<210> 229
<211> 267
<212> PRT
<213> 人工序列
<220>
<223> 1-27 CD3ε-Fc
<400> 229
<210> 230
<211> 858
<212> DNA
<213> 人工序列
<220>
<223> 1-27 CD3ε-Fc
<400> 230
<210> 231
<211> 333
<212> PRT
<213> 人工序列
<220>
<223> 人類1-27 CD3ε-EpCAM
<400> 231
<210> 232
<211> 1056
<212> DNA
<213> 人工序列
<220>
<223> 人類1-27 CD3ε-EpCAM
<400> 232
<210> 233
<211> 333
<212> PRT
<213> 人工序列
<220>
<223> 狨猿1-27 CD3ε-EpCAM
<400> 233
<210> 234
<211> 1056
<212> DNA
<213> 人工序列
<220>
<223> 狨猿1-27 CD3ε-EpCAM
<400> 234
<210> 235
<211> 333
<212> PRT
<213> 人工序列
<220>
<223> 獠狨1-27 CD3ε-EpCAM
<400> 235
<210> 236
<211> 1056
<212> DNA
<213> 人工序列
<220>
<223> 獠狨1-27 CD3ε-EpCAM
<400> 236
<210> 237
<211> 333
<212> PRT
<213> 人工序列
<220>
<223> 松鼠猴1-27 CD3ε-EpCAM
<400> 237
<210> 238
<211> 1056
<212> DNA
<213> 人工序列
<220>
<223> 松鼠猴1-27 CD3ε-EpCAM
<400> 238
<210> 239
<211> 333
<212> PRT
<213> 人工序列
<220>
<223> 豬1-27 CD3ε-EpCAM
<400> 239
<210> 240
<211> 1056
<212> DNA
<213> 人工序列
<220>
<223> 豬1-27 CD3ε-EpCAM
<400> 240
<210> 241
<211> 186
<212> PRT
<213> 智人(Homo sapiens)
<400> 241
<210> 242
<211> 621
<212> DNA
<213> 智人(Homo sapiens)
<400> 242
<210> 243
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> 具19個胺基酸的免疫球蛋白引導肽
<400> 243
<210> 244
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> 具19個胺基酸的免疫球蛋白引導肽之編碼序列
<400> 244
<210> 245
<211> 324
<212> PRT
<213> 鼠類(Mus musculus)
<400> 245
<210> 246
<211> 972
<212> DNA
<213> 鼠類(Mus musculus)
<400> 246
<210> 247
<211> 106
<212> PRT
<213> 智人(Homo sapiens)
<400> 247
<210> 248
<211> 318
<212> DNA
<213> 智人(Homo sapiens)
<400> 248
<210> 249
<211> 800
<212> PRT
<213> 智人(Homo sapiens)
<400> 249
<210> 250
<211> 2457
<212> DNA
<213> 智人(Homo sapiens)
<400> 250
<210> 251
<211> 807
<212> PRT
<213> 食蟹猴(Macaca fascicularis)
<220>
<221> misc_特徵
<222> (714)..(714)
<223> Xaa可為任何自然存在之胺基酸
<400> 251
<210> 252
<211> 2421
<212> DNA
<213> 食蟹猴(Macaca fascicularis)
<400> 252
<210> 253
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 用於CD3ε鏈的PCR引子-正向引子
<400> 253
<210> 254
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 用於CD3ε鏈的PCR引子-反向引子
<400> 254
<210> 255
<211> 192
<212> PRT
<213> 人工序列
<220>
<223> His6-人類CD3ε
<400> 255
<210> 256
<211> 633
<212> DNA
<213> 人工序列
<220>
<223> His6-人類CD3ε
<400> 256
<210> 257
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AH3 HL x H2C HL
<400> 257
<210> 258
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AH3 HL x H2C HL
<400> 258
<210> 259
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AH3 HL x F12Q HL
<400> 259
<210> 260
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AH3 HL x F12Q HL
<400> 260
<210> 261
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AH3 HL x I2C HL
<400> 261
<210> 262
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AH3 HL x I2C HL
<400> 262
<210> 263
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AF5 HL x H2C HL
<400> 263
<210> 264
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AF5 HL x H2C HL
<400> 264
<210> 265
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AF5 HL x F12Q HL
<400> 265
<210> 266
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AF5 HL x F12Q HL
<400> 266
<210> 267
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AF5 HL x I2C HL
<400> 267
<210> 268
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AF5 HL x I2C HL
<400> 268
<210> 269
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AC8 HL x H2C HL
<400> 269
<210> 270
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AC8 HL x H2C HL
<400> 270
<210> 271
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AC8 HL x F12Q HL
<400> 271
<210> 272
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AC8 HL x F12Q HL
<400> 272
<210> 273
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AC8 HL x I2C HL
<400> 273
<210> 274
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AC8 HL x I2C HL
<400> 274
<210> 275
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AH11 HL x H2C HL
<400> 275
<210> 276
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AH11 HL x H2C HL
<400> 276
<210> 277
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AH11 HL x F12Q HL
<400> 277
<210> 278
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AH11 HL x F12Q HL
<400> 278
<210> 279
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 AH11 HL x I2C HL
<400> 279
<210> 280
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 AH11 HL x I2C HL
<400> 280
<210> 281
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 B3 HL x H2C HL
<400> 281
<210> 282
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 B3 HL x H2C HL
<400> 282
<210> 283
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 B3 HL x F12Q HL
<400> 283
<210> 284
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 B3 HL x F12Q HL
<400> 284
<210> 285
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 B3 HL x I2C HL
<400> 285
<210> 286
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 B3 HL x I2C HL
<400> 286
<210> 287
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 F2 HL x H2C HL
<400> 287
<210> 288
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 F2 HL x H2C HL
<400> 288
<210> 289
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 F2 HL x F12Q HL
<400> 289
<210> 290
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 F2 HL x F12Q HL
<400> 290
<210> 291
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 F2 HL x I2C HL
<400> 291
<210> 292
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 F2 HL x I2C HL
<400> 292
<210> 293
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 B10 HL x H2C HL
<400> 293
<210> 294
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 B10 HL x H2C HL
<400> 294
<210> 295
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 B10 HL x F12Q HL
<400> 295
<210> 296
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 B10 HL x F12Q HL
<400> 296
<210> 297
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 B10 HL x I2C HL
<400> 297
<210> 298
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 B10 HL x I2C HL
<400> 298
<210> 299
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 E11 HL x H2C HL
<400> 299
<210> 300
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 E11 HL x H2C HL
<400> 300
<210> 301
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 E11 HL x F12Q HL
<400> 301
<210> 302
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 E11 HL x F12Q HL
<400> 302
<210> 303
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 E11 HL x I2C HL
<400> 303
<210> 304
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 E11 HL x I2C HL
<400> 304
<210> 305
<211> 1125
<212> DNA
<213> 智人(Homo sapiens)
<400> 305
<210> 306
<211> 374
<212> PRT
<213> 智人(Homo sapiens)
<400> 306
<210> 307
<211> 1083
<212> DNA
<213> 獼猴(Macaca sp.)
<400> 307
<210> 308
<211> 360
<212> PRT
<213> 獼猴(Macaca sp.)
<400> 308
<210> 309
<211> 843
<212> DNA
<213> 人工序列
<220>
<223> 1-27 CD3-Fc+引導子
<400> 309
<210> 310
<211> 280
<212> PRT
<213> 人工序列
<220>
<223> 1-27 CD3-Fc+引導子
<400> 310
<210> 311
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 UD H2C HL x AF5 HL
<400> 311
<210> 312
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 UD H2C HL x AF5 HL
<400> 312
<210> 313
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 UD F12Q HL x AF5 HL
<400> 313
<210> 314
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 UD F12Q HL x AF5 HL
<400> 314
<210> 315
<211> 505
<212> PRT
<213> 人工序列
<220>
<223> CD33 UD I2C HL x AF5 HL
<400> 315
<210> 316
<211> 1515
<212> DNA
<213> 人工序列
<220>
<223> CD33 UD I2C HL x AF5 HL
<400> 316
<210> 317
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-A9 HL x H2C HL
<400> 317
<210> 318
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-A9 HL x H2C HL
<400> 318
<210> 319
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-A9 HL x F12Q HL
<400> 319
<210> 320
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-A9 HL x F12Q HL
<400> 320
<210> 321
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-A9 HL x I2C HL
<400> 321
<210> 322
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-A9 HL x I2C HL
<400> 322
<210> 323
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-C8 HL x I2C HL
<400> 323
<210> 324
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-C8 HL x I2C HL
<400> 324
<210> 325
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-B8 HL x I2C HL
<400> 325
<210> 326
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-B8 HL x I2C HL
<400> 326
<210> 327
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-B7 HL x I2C HL
<400> 327
<210> 328
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-B7 HL x I2C HL
<400> 328
<210> 329
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G8 HL x I2C HL
<400> 329
<210> 330
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G8 HL x I2C HL
<400> 330
<210> 331
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-D5 HL x I2C HL
<400> 331
<210> 332
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-D5 HL x I2C HL
<400> 332
<210> 333
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-F7 HL x I2C HL
<400> 333
<210> 334
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-F7 HL x I2C HL
<400> 334
<210> 335
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G5 HL x I2C HL
<400> 335
<210> 336
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G5 HL x I2C HL
<400> 336
<210> 337
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-F8 HL x I2C HL
<400> 337
<210> 338
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-F8 HL x I2C HL
<400> 338
<210> 339
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> MCSP-G10 HL x I2C HL
<400> 339
<210> 340
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> MCSP-G10 HL x I2C HL
<400> 340
<210> 341
<211> 8
<212> PRT
<213> 智人(Homo sapiens)
<400> 341
<210> 342
<211> 8
<212> PRT
<213> 松鼠猴(Saimiri sciureus)
<400> 342
<210> 343
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 經硫代酸鹽修飾的CpG-寡核苷酸
<400> 343
<210> 344
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> MVH1
<400> 344
<210> 345
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> MVH2
<400> 345
<210> 346
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> MVH3
<400> 346
<210> 347
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> MVH4
<400> 347
<210> 348
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> MVH5
<400> 348
<210> 349
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> MVH6
<400> 349
<210> 350
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> MVH7
<400> 350
<210> 351
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> MVH8
<400> 351
<210> 352
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> MuVHBstEII
<400> 352
<210> 353
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> MUVK1
<400> 353
<210> 354
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> MUVK2
<400> 354
<210> 355
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> MUVK3
<400> 355
<210> 356
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> MUVK4
<400> 356
<210> 357
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> MUVK5
<400> 357
<210> 358
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> MUVK6
<400> 358
<210> 359
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> MUVK7
<400> 359
<210> 360
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> MuVkHindIII/BsiW1
<400> 360
<210> 361
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 361
<210> 362
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 362
<210> 363
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 363
<210> 364
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 364
<210> 365
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 365
<210> 366
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 366
<210> 367
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 367
<210> 368
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 368
<210> 369
<211> 64
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 369
<210> 370
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 370
<210> 371
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 371
<210> 372
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 372
<210> 373
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 373
<210> 374
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 374
<210> 375
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 375
<210> 376
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 376
<210> 377
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 377
<210> 378
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 378
<210> 379
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 379
<210> 380
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 380
<210> 381
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 381
<210> 382
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 382
<210> 383
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 正向引子
<400> 383
<210> 384
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 反向引子
<400> 384
<210> 385
<211> 2253
<212> DNA
<213> 人工序列
<220>
<223> 獼猴(macaque)PSMA(食蟹猴(Cynomolgus))
<400> 385
<210> 386
<211> 750
<212> PRT
<213> 人工序列
<220>
<223> 獼猴(macaque)PSMA(食蟹猴(Cynomolgus))
<400> 386
<210> 387
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 L
<400> 387
<210> 388
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-3 L
<400> 388
<210> 389
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 LCDR1
<400> 389
<210> 390
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 LCDR2
<400> 390
<210> 391
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 LCDR3
<400> 391
<210> 392
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 H
<400> 392
<210> 393
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PSMA-3 H
<400> 393
<210> 394
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 HCDR1
<400> 394
<210> 395
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 HCDR2
<400> 395
<210> 396
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 HCDR3
<400> 396
<210> 397
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 HL
<400> 397
<210> 398
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PSMA-3 HL
<400> 398
<210> 399
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PSMA-3 HL x I2C HL
<400> 399
<210> 400
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PSMA-3 HL x I2C HL
<400> 400
<210> 401
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 L
<400> 401
<210> 402
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> PSMA-4 L
<400> 402
<210> 403
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 LCDR1
<400> 403
<210> 404
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 LCDR2
<400> 404
<210> 405
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 LCDR3
<400> 405
<210> 406
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 H
<400> 406
<210> 407
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PSMA-4 H
<400> 407
<210> 408
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 HCDR1
<400> 408
<210> 409
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 HCDR2
<400> 409
<210> 410
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 HCDR3
<400> 410
<210> 411
<211> 246
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4 HL
<400> 411
<210> 412
<211> 738
<212> DNA
<213> 人工序列
<220>
<223> PSMA-4 HL
<400> 412
<210> 413
<211> 501
<212> PRT
<213> 人工序列
<220>
<223> PSMA-4HL x I2C HL
<400> 413
<210> 414
<211> 1503
<212> DNA
<213> 人工序列
<220>
<223> PSMA-4HL x I2C HL
<400> 414
<210> 415
<211> 106
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 L
<400> 415
<210> 416
<211> 318
<212> DNA
<213> 人工序列
<220>
<223> PSMA-6 L
<400> 416
<210> 417
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 LCDR1
<400> 417
<210> 418
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 LCDR2
<400> 418
<210> 419
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 LCDR3
<400> 419
<210> 420
<211> 122
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 H
<400> 420
<210> 421
<211> 366
<212> DNA
<213> 人工序列
<220>
<223> PSMA-6 H
<400> 421
<210> 422
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 HCDR1
<400> 422
<210> 423
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 HCDR2
<400> 423
<210> 424
<211> 13
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 HCDR3
<400> 424
<210> 425
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 LH
<400> 425
<210> 426
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PSMA-6 LH
<400> 426
<210> 427
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PSMA-6 LH x I2C HL
<400> 427
<210> 428
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PSMA-6 LH x I2C HL
<400> 428
<210> 429
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 L
<400> 429
<210> 430
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-7 L
<400> 430
<210> 431
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 LCDR1
<400> 431
<210> 432
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 LCDR2
<400> 432
<210> 433
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 LCDR3
<400> 433
<210> 434
<211> 115
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 H
<400> 434
<210> 435
<211> 345
<212> DNA
<213> 人工序列
<220>
<223> PSMA-7 H
<400> 435
<210> 436
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 HCDR1
<400> 436
<210> 437
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 HCDR2
<400> 437
<210> 438
<211> 6
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 HCDR3
<400> 438
<210> 439
<211> 237
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 LH
<400> 439
<210> 440
<211> 711
<212> DNA
<213> 人工序列
<220>
<223> PSMA-7 LH
<400> 440
<210> 441
<211> 491
<212> PRT
<213> 人工序列
<220>
<223> PSMA-7 LH x I2C HL
<400> 441
<210> 442
<211> 1473
<212> DNA
<213> 人工序列
<220>
<223> PSMA-7 LH x I2C HL
<400> 442
<210> 443
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 L
<400> 443
<210> 444
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> PSMA-8 L
<400> 444
<210> 445
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 LCDR1
<400> 445
<210> 446
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 LCDR2
<400> 446
<210> 447
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 LCDR3
<400> 447
<210> 448
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 H
<400> 448
<210> 449
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> PSMA-8 H
<400> 449
<210> 450
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 HCDR1
<400> 450
<210> 451
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 HCDR2
<400> 451
<210> 452
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 HCDR3
<400> 452
<210> 453
<211> 244
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 LH
<400> 453
<210> 454
<211> 732
<212> DNA
<213> 人工序列
<220>
<223> PSMA-8 LH
<400> 454
<210> 455
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PSMA-8 LH x I2C HL
<400> 455
<210> 456
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PSMA-8 LH x I2C HL
<400> 456
<210> 457
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 L
<400> 457
<210> 458
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-9 L
<400> 458
<210> 459
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 LCDR1
<400> 459
<210> 460
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 LCDR2
<400> 460
<210> 461
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 LCDR3
<400> 461
<210> 462
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 H
<400> 462
<210> 463
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PSMA-9 H
<400> 463
<210> 464
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 HCDR1
<400> 464
<210> 465
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 HCDR2
<400> 465
<210> 466
<211> 13
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 HCDR3
<400> 466
<210> 467
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 LH
<400> 467
<210> 468
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PSMA-9 LH
<400> 468
<210> 469
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PSMA-9 LH x I2C HL
<400> 469
<210> 470
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PSMA-9 LH x I2C HL
<400> 470
<210> 471
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 VL
<400> 471
<210> 472
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-10 VL
<400> 472
<210> 473
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 LCDR1
<400> 473
<210> 474
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 LCDR2
<400> 474
<210> 475
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 LCDR3
<400> 475
<210> 476
<211> 116
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 VH
<400> 476
<210> 477
<211> 348
<212> DNA
<213> 人工序列
<220>
<223> PSMA-10 VH
<400> 477
<210> 478
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 HCDR1
<400> 478
<210> 479
<211> 19
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 HCDR2
<400> 479
<210> 480
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 HCDR3
<400> 480
<210> 481
<211> 238
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 LH
<400> 481
<210> 482
<211> 714
<212> DNA
<213> 人工序列
<220>
<223> PSMA-10 LH
<400> 482
<210> 483
<211> 492
<212> PRT
<213> 人工序列
<220>
<223> PSMA-10 LH x I2C HL
<400> 483
<210> 484
<211> 1476
<212> DNA
<213> 人工序列
<220>
<223> PSMA-10 LH x I2C HL
<400> 484
<210> 485
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A VL
<400> 485
<210> 486
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-A VL
<400> 486
<210> 487
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A LCDR1
<400> 487
<210> 488
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A LCDR2
<400> 488
<210> 489
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A LCDR3
<400> 489
<210> 490
<211> 123
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A VH
<400> 490
<210> 491
<211> 369
<212> DNA
<213> 人工序列
<220>
<223> PSMA-A VH
<400> 491
<210> 492
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A HCDR1
<400> 492
<210> 493
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A HCDR2
<400> 493
<210> 494
<211> 14
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A HCDR3
<400> 494
<210> 495
<211> 245
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A LH
<400> 495
<210> 496
<211> 735
<212> DNA
<213> 人工序列
<220>
<223> PSMA-A LH
<400> 496
<210> 497
<211> 499
<212> PRT
<213> 人工序列
<220>
<223> PSMA-A LH x I2C HL
<400> 497
<210> 498
<211> 1497
<212> DNA
<213> 人工序列
<220>
<223> PSMA-A LH x I2C HL
<400> 498
<210> 499
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B VL
<400> 499
<210> 500
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-B VL
<400> 500
<210> 501
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B LCDR1
<400> 501
<210> 502
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B LCDR2
<400> 502
<210> 503
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B LCDR3
<400> 503
<210> 504
<211> 124
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B VH
<400> 504
<210> 505
<211> 372
<212> DNA
<213> 人工序列
<220>
<223> PSMA-B VH
<400> 505
<210> 506
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B HCDR1
<400> 506
<210> 507
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B HCDR2
<400> 507
<210> 508
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B HCDR3
<400> 508
<210> 509
<211> 246
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B LH
<400> 509
<210> 510
<211> 738
<212> DNA
<213> 人工序列
<220>
<223> PSMA-B LH
<400> 510
<210> 511
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> PSMA-B LH x I2C HL
<400> 511
<210> 512
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> PSMA-B LH x I2C HL
<400> 512
<210> 513
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C VL
<400> 513
<210> 514
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-C VL
<400> 514
<210> 515
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C LCDR1
<400> 515
<210> 516
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C LCDR2
<400> 516
<210> 517
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C LCDR3
<400> 517
<210> 518
<211> 126
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C VH
<400> 518
<210> 519
<211> 378
<212> DNA
<213> 人工序列
<220>
<223> PSMA-C VH
<400> 519
<210> 520
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C HCDR1
<400> 520
<210> 521
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C HCDR2
<400> 521
<210> 522
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C HCDR3
<400> 522
<210> 523
<211> 248
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C LH
<400> 523
<210> 524
<211> 744
<212> DNA
<213> 人工序列
<220>
<223> PSMA-C LH
<400> 524
<210> 525
<211> 502
<212> PRT
<213> 人工序列
<220>
<223> PSMA-C LH x I2C HL
<400> 525
<210> 526
<211> 1506
<212> DNA
<213> 人工序列
<220>
<223> PSMA-C LH x I2C HL
<400> 526
<210> 527
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D VL
<400> 527
<210> 528
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PSMA-D VL
<400> 528
<210> 529
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D LCDR1
<400> 529
<210> 530
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D LCDR2
<400> 530
<210> 531
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D LCDR3
<400> 531
<210> 532
<211> 119
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D VH
<400> 532
<210> 533
<211> 357
<212> DNA
<213> 人工序列
<220>
<223> PSMA-D VH
<400> 533
<210> 534
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D HCDR1
<400> 534
<210> 535
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D HCDR2
<400> 535
<210> 536
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D HCDR3
<400> 536
<210> 537
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D LH
<400> 537
<210> 538
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PSMA-D LH
<400> 538
<210> 539
<211> 496
<212> PRT
<213> 人工序列
<220>
<223> PSMA-D LH x I2C HL
<400> 539
<210> 540
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> PSMA-D LH x I2C HL
<400> 540
<210> 541
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E VL
<400> 541
<210> 542
<211> 336
<212> DNA
<213> 人工序列
<220>
<223> PSMA-E VL
<400> 542
<210> 543
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E LCDR1
<400> 543
<210> 544
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E LCDR2
<400> 544
<210> 545
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E LCDR3
<400> 545
<210> 546
<211> 125
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E VH
<400> 546
<210> 547
<211> 375
<212> DNA
<213> 人工序列
<220>
<223> PSMA-E VH
<400> 547
<210> 548
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E HCDR1
<400> 548
<210> 549
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E HCDR2
<400> 549
<210> 550
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E HCDR3
<400> 550
<210> 551
<211> 252
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E LH
<400> 551
<210> 552
<211> 756
<212> DNA
<213> 人工序列
<220>
<223> PSMA-E LH
<400> 552
<210> 553
<211> 506
<212> PRT
<213> 人工序列
<220>
<223> PSMA-E LH x I2C HL
<400> 553
<210> 554
<211> 1518
<212> DNA
<213> 人工序列
<220>
<223> PSMA-E LH x I2C HL
<400> 554
<210> 555
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F VL
<400> 555
<210> 556
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PSMA-F VL
<400> 556
<210> 557
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F LCDR1
<400> 557
<210> 558
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F LCDR2
<400> 558
<210> 559
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F LCDR3
<400> 559
<210> 560
<211> 124
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F VH
<400> 560
<210> 561
<211> 372
<212> DNA
<213> 人工序列
<220>
<223> PSMA-F VH
<400> 561
<210> 562
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F HCDR1
<400> 562
<210> 563
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F HCDR2
<400> 563
<210> 564
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F HCDR3
<400> 564
<210> 565
<211> 246
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F LH
<400> 565
<210> 566
<211> 738
<212> DNA
<213> 人工序列
<220>
<223> PSMA-F LH
<400> 566
<210> 567
<211> 500
<212> PRT
<213> 人工序列
<220>
<223> PSMA-F LH x I2C HL
<400> 567
<210> 568
<211> 1500
<212> DNA
<213> 人工序列
<220>
<223> PSMA-F LH x I2C HL
<400> 568
<210> 569
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J VL
<400> 569
<210> 570
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PSMA-J VL
<400> 570
<210> 571
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J LCDR1
<400> 571
<210> 572
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J LCDR2
<400> 572
<210> 573
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J LCDR3
<400> 573
<210> 574
<211> 119
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J VH
<400> 574
<210> 575
<211> 357
<212> DNA
<213> 人工序列
<220>
<223> PSMA-J VH
<400> 575
<210> 576
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J HCDR1
<400> 576
<210> 577
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J HCDR2
<400> 577
<210> 578
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J HCDR3
<400> 578
<210> 579
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J LH
<400> 579
<210> 580
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PSMA-J LH
<400> 580
<210> 581
<211> 496
<212> PRT
<213> 人工序列
<220>
<223> PSMA-J LH x I2C HL
<400> 581
<210> 582
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> PSMA-J LH x I2C HL
<400> 582
<210> 583
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L VL
<400> 583
<210> 584
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PSMA-L VL
<400> 584
<210> 585
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L LCDR1
<400> 585
<210> 586
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L LCDR2
<400> 586
<210> 587
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L LCDR3
<400> 587
<210> 588
<211> 119
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L VH
<400> 588
<210> 589
<211> 357
<212> DNA
<213> 人工序列
<220>
<223> PSMA-L VH
<400> 589
<210> 590
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L HCDR1
<400> 590
<210> 591
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L HCDR2
<400> 591
<210> 592
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L HCDR3
<400> 592
<210> 593
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L LH
<400> 593
<210> 594
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PSMA-L LH
<400> 594
<210> 595
<211> 496
<212> PRT
<213> 人工序列
<220>
<223> PSMA-L LH x I2C HL
<400> 595
<210> 596
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> PSMA-L LH x I2C HL
<400> 596
<210> 597
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 VL
<400> 597
<210> 598
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 99-A8 VL
<400> 598
<210> 599
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 LCDR1
<400> 599
<210> 600
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 LCDR2
<400> 600
<210> 601
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 LCDR3
<400> 601
<210> 602
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 VH
<400> 602
<210> 603
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 99-A8 VH
<400> 603
<210> 604
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 HCDR1
<400> 604
<210> 605
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 HCDR2
<400> 605
<210> 606
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 HCDR3
<400> 606
<210> 607
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 HL
<400> 607
<210> 608
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 99-A8 HL
<400> 608
<210> 609
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 99-A8 HL x I2C HL
<400> 609
<210> 610
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 99-A8 HL x I2C HL
<400> 610
<210> 611
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 VL
<400> 611
<210> 612
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 86-A10 VL
<400> 612
<210> 613
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 LCDR1
<400> 613
<210> 614
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 LCDR2
<400> 614
<210> 615
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 LCDR3
<400> 615
<210> 616
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 VH
<400> 616
<210> 617
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 86-A10 VH
<400> 617
<210> 618
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 HCDR1
<400> 618
<210> 619
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 HCDR2
<400> 619
<210> 620
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 HCDR3
<400> 620
<210> 621
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 HL
<400> 621
<210> 622
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 86-A10 HL
<400> 622
<210> 623
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 86-A10 HL x I2C HL
<400> 623
<210> 624
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 86-A10 HL x I2C HL
<400> 624
<210> 625
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 VL
<400> 625
<210> 626
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 86-B4-2 VL
<400> 626
<210> 627
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 LCDR1
<400> 627
<210> 628
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 LCDR2
<400> 628
<210> 629
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 LCDR3
<400> 629
<210> 630
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 VH
<400> 630
<210> 631
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 86-B4-2 VH
<400> 631
<210> 632
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 HCDR1
<400> 632
<210> 633
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 HCDR2
<400> 633
<210> 634
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 HCDR3
<400> 634
<210> 635
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 HL
<400> 635
<210> 636
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 86-B4-2 HL
<400> 636
<210> 637
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 86-B4-2 HL x I2C HL
<400> 637
<210> 638
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 86-B4-2 HL x I2C HL
<400> 638
<210> 639
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 VL
<400> 639
<210> 640
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 98-B4 VL
<400> 640
<210> 641
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 LCDR1
<400> 641
<210> 642
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 LCDR2
<400> 642
<210> 643
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 LCDR3
<400> 643
<210> 644
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 VH
<400> 644
<210> 645
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 98-B4 VH
<400> 645
<210> 646
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 HCDR1
<400> 646
<210> 647
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 HCDR2
<400> 647
<210> 648
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 HCDR3
<400> 648
<210> 649
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 HL
<400> 649
<210> 650
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 98-B4 HL
<400> 650
<210> 651
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 98-B4 HL x I2C HL
<400> 651
<210> 652
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 98-B4 HL x I2C HL
<400> 652
<210> 653
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 VL
<400> 653
<210> 654
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 86-C3 VL
<400> 654
<210> 655
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 LCDR1
<400> 655
<210> 656
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 LCDR2
<400> 656
<210> 657
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 LCDR3
<400> 657
<210> 658
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 VH
<400> 658
<210> 659
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 86-C3 VH
<400> 659
<210> 660
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 HCDR1
<400> 660
<210> 661
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 HCDR2
<400> 661
<210> 662
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 HCDR3
<400> 662
<210> 663
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 HL
<400> 663
<210> 664
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 86-C3 HL
<400> 664
<210> 665
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 86-C3 HL x I2C HL
<400> 665
<210> 666
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 86-C3 HL x I2C HL
<400> 666
<210> 667
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 VL
<400> 667
<210> 668
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 86-E12 VL
<400> 668
<210> 669
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 LCDR1
<400> 669
<210> 670
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 LCDR2
<400> 670
<210> 671
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 LCDR3
<400> 671
<210> 672
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 VH
<400> 672
<210> 673
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 86-E12 VH
<400> 673
<210> 674
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 HCDR1
<400> 674
<210> 675
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 HCDR2
<400> 675
<210> 676
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 HCDR3
<400> 676
<210> 677
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 HL
<400> 677
<210> 678
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 86-E12 HL
<400> 678
<210> 679
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 86-E12 HL x I2C HL
<400> 679
<210> 680
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 86-E12 HL x I2C HL
<400> 680
<210> 681
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 VL
<400> 681
<210> 682
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM F1-A10 VL
<400> 682
<210> 683
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 LCDR1
<400> 683
<210> 684
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 LCDR2
<400> 684
<210> 685
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 LCDR3
<400> 685
<210> 686
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 VH
<400> 686
<210> 687
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM F1-A10 VH
<400> 687
<210> 688
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 HCDR1
<400> 688
<210> 689
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 HCDR2
<400> 689
<210> 690
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 HCDR3
<400> 690
<210> 691
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 HL
<400> 691
<210> 692
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM F1-A10 HL
<400> 692
<210> 693
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM F1-A10 HL x I2C HL
<400> 693
<210> 694
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM F1-A10 HL x I2C HL
<400> 694
<210> 695
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 VL
<400> 695
<210> 696
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 99-F1 VL
<400> 696
<210> 697
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 LCDR1
<400> 697
<210> 698
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 LCDR2
<400> 698
<210> 699
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 LCDR3
<400> 699
<210> 700
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 VH
<400> 700
<210> 701
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 99-F1 VH
<400> 701
<210> 702
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 HCDR1
<400> 702
<210> 703
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 HCDR2
<400> 703
<210> 704
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 HCDR3
<400> 704
<210> 705
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 HL
<400> 705
<210> 706
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 99-F1 HL
<400> 706
<210> 707
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F1 HL x I2C HL
<400> 707
<210> 708
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 99-F1 HL x I2C HL
<400> 708
<210> 709
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 VL
<400> 709
<210> 710
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 99-F5 VL
<400> 710
<210> 711
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 LCDR1
<400> 711
<210> 712
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 LCDR2
<400> 712
<210> 713
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 LCDR3
<400> 713
<210> 714
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 VH
<400> 714
<210> 715
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 99-F5 VH
<400> 715
<210> 716
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 HCDR1
<400> 716
<210> 717
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 HCDR2
<400> 717
<210> 718
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 HCDR1
<400> 718
<210> 719
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 HL
<400> 719
<210> 720
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 99-F5 HL
<400> 720
<210> 721
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 99-F5 HL x I2C HL
<400> 721
<210> 722
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 VL
<400> 722
<210> 723
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM 86-F6 VL
<400> 723
<210> 724
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 LCDR1
<400> 724
<210> 725
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 LCDR2
<400> 725
<210> 726
<211> 10
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 LCDR3
<400> 726
<210> 727
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 VH
<400> 727
<210> 728
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM 86-F6 VH
<400> 728
<210> 729
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 HCDR1
<400> 729
<210> 730
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 HCDR2
<400> 730
<210> 731
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 HCDR3
<400> 731
<210> 732
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 HL
<400> 732
<210> 733
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM 86-F6 HL
<400> 733
<210> 734
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM 86-F6 HL x I2C HL
<400> 734
<210> 735
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM 86-F6 HL x I2C HL
<400> 735
<210> 736
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM99-F5 HL-I2C HL
<400> 736
<210> 737
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> 5'PM3-VH-A-XhoI
<400> 737
<210> 738
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> 3'PM3-VH-B
<400> 738
<210> 739
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 5'PM3-VH-C
<400> 739
<210> 740
<211> 78
<212> DNA
<213> 人工序列
<220>
<223> 3'PM3-VH-D
<400> 740
<210> 741
<211> 87
<212> DNA
<213> 人工序列
<220>
<223> 5'PM3-VH-E
<400> 741
<210> 742
<211> 81
<212> DNA
<213> 人工序列
<220>
<223> 3'PM3-VH-F-BstEII
<400> 742
<210> 743
<211> 75
<212> DNA
<213> 人工序列
<220>
<223> 5'PM4-VH-A-XhoI
<400> 743
<210> 744
<211> 75
<212> DNA
<213> 人工序列
<220>
<223> 3'PM4-VH-B
<400> 744
<210> 745
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 5'PM4-VH-C
<400> 745
<210> 746
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> 3'PM4-VH-D
<400> 746
<210> 747
<211> 73
<212> DNA
<213> 人工序列
<220>
<223> 5'PM4-VH-E
<400> 747
<210> 748
<211> 72
<212> DNA
<213> 人工序列
<220>
<223> 3'PM4-VH-F-BstEII
<400> 748
<210> 749
<211> 75
<212> DNA
<213> 人工序列
<220>
<223> 5'PM8-VH-A-XhoI
<400> 749
<210> 750
<211> 78
<212> DNA
<213> 人工序列
<220>
<223> 3'PM8-VH-B
<400> 750
<210> 751
<211> 75
<212> DNA
<213> 人工序列
<220>
<223> 5'PM8-VH-C
<400> 751
<210> 752
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 3'PM8-VH-D
<400> 752
<210> 753
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 5'PM8-VH-E
<400> 753
<210> 754
<211> 72
<212> DNA
<213> 人工序列
<220>
<223> 3'PM8-VH-F-BstEII
<400> 754
<210> 755
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 5'PM3-VL-A-SacI
<400> 755
<210> 756
<211> 78
<212> DNA
<213> 人工序列
<220>
<223> 3'PM3-VL-B
<400> 756
<210> 757
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> 5'PM3-VL-C
<400> 757
<210> 758
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 3'PM3-VL-D
<400> 758
<210> 759
<211> 72
<212> DNA
<213> 人工序列
<220>
<223> 5'PM3-VL-E
<400> 759
<210> 760
<211> 78
<212> DNA
<213> 人工序列
<220>
<223> 3'PM3-VL-F-BsiWI/SpeI
<400> 760
<210> 761
<211> 78
<212> DNA
<213> 人工序列
<220>
<223> 5'PM4-VL-A-SacI
<400> 761
<210> 762
<211> 69
<212> DNA
<213> 人工序列
<220>
<223> 3'PM4-VL-B
<400> 762
<210> 763
<211> 72
<212> DNA
<213> 人工序列
<220>
<223> 5'PM4-VL-C
<400> 763
<210> 764
<211> 72
<212> DNA
<213> 人工序列
<220>
<223> 3'PM4-VL-D
<400> 764
<210> 765
<211> 75
<212> DNA
<213> 人工序列
<220>
<223> 5'PM4-VL-E
<400> 765
<210> 766
<211> 75
<212> DNA
<213> 人工序列
<220>
<223> 3'PM4-VL-F-BsiWI/SpeI
<400> 766
<210> 767
<211> 78
<212> DNA
<213> 人工序列
<220>
<223> 5'PM8-VL-A-SacI
<400> 767
<210> 768
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> 3'PM8-VL-B
<400> 768
<210> 769
<211> 75
<212> DNA
<213> 人工序列
<220>
<223> 5'PM8-VL-C
<400> 769
<210> 770
<211> 72
<212> DNA
<213> 人工序列
<220>
<223> 3'PM8-VL-D
<400> 770
<210> 771
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> 5'PM8-VL-E
<400> 771
<210> 772
<211> 84
<212> DNA
<213> 人工序列
<220>
<223> 3'PM8-VL-F-BsiWI/SpeI
<400> 772
<210> 773
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-H
<400> 773
<210> 774
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-HCDR1
<400> 774
<210> 775
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-HCDR2
<400> 775
<210> 776
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-HCDR3
<400> 776
<210> 777
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM84D7-H
<400> 777
<210> 778
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-L
<400> 778
<210> 779
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-LCDR1
<400> 779
<210> 780
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-LCDR2
<400> 780
<210> 781
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-LCDR3
<400> 781
<210> 782
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> PM84D7-L
<400> 782
<210> 783
<211> 246
<212> PRT
<213> 人工序列
<220>
<223> PM84D7-HL
<400> 783
<210> 784
<211> 738
<212> DNA
<213> 人工序列
<220>
<223> PM84D7-HL
<400> 784
<210> 785
<211> 501
<212> PRT
<213> 人工序列
<220>
<223> PM84D7 HL x I2C HL
<400> 785
<210> 786
<211> 1503
<212> DNA
<213> 人工序列
<220>
<223> PM84D7 HL x I2C HL
<400> 786
<210> 787
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-H
<400> 787
<210> 788
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-HCDR1
<400> 788
<210> 789
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-HCDR2
<400> 789
<210> 790
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-HCDR3
<400> 790
<210> 791
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PM76A9-H
<400> 791
<210> 792
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-L
<400> 792
<210> 793
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-LCDR1
<400> 793
<210> 794
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-LCDR2
<400> 794
<210> 795
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-LCDR3
<400> 795
<210> 796
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM76A9-L
<400> 796
<210> 797
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PM76A9-HL
<400> 797
<210> 798
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PM76A9-HL
<400> 798
<210> 799
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PM76A9 HL x I2C HL
<400> 799
<210> 800
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM76A9 HL x I2C HL
<400> 800
<210> 801
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76A9-H密碼子
<400> 801
<210> 802
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76A9-L密碼子
<400> 802
<210> 803
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76A9-HL密碼子
<400> 803
<210> 804
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76A9 HL x I2C HL密碼子
<400> 804
<210> 805
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-H
<400> 805
<210> 806
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-HCDR1
<400> 806
<210> 807
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-HCDR2
<400> 807
<210> 808
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-HCDR3
<400> 808
<210> 809
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PM76B10-H
<400> 809
<210> 810
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-L
<400> 810
<210> 811
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-LCDR1
<400> 811
<210> 812
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-LCDR2
<400> 812
<210> 813
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-LCDR3
<400> 813
<210> 814
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM76B10-L
<400> 814
<210> 815
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PM76B10-HL
<400> 815
<210> 816
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PM76B10-HL
<400> 816
<210> 817
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PM76B10 HL x I2C HL
<400> 817
<210> 818
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM76B10 HL x I2C HL
<400> 818
<210> 819
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76B10-H密碼子
<400> 819
<210> 820
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76B10-L密碼子
<400> 820
<210> 821
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76B10-HL密碼子
<400> 821
<210> 822
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM76B10 HL x I2C HL密碼子
<400> 822
<210> 823
<211> 119
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-H
<400> 823
<210> 824
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-HCDR1
<400> 824
<210> 825
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-HCDR2
<400> 825
<210> 826
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-HCDR3
<400> 826
<210> 827
<211> 357
<212> DNA
<213> 人工序列
<220>
<223> PM34C7-H
<400> 827
<210> 828
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-L
<400> 828
<210> 829
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-LCDR1
<400> 829
<210> 830
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-LCDR2
<400> 830
<210> 831
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-LCDR3
<400> 831
<210> 832
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PM34C7-L
<400> 832
<210> 833
<211> 242
<212> PRT
<213> 人工序列
<220>
<223> PM34C7-HL
<400> 833
<210> 834
<211> 726
<212> DNA
<213> 人工序列
<220>
<223> PM34C7-HL
<400> 834
<210> 835
<211> 497
<212> PRT
<213> 人工序列
<220>
<223> PM34C7 HL x I2C HL
<400> 835
<210> 836
<211> 1491
<212> DNA
<213> 人工序列
<220>
<223> PM34C7 HL x I2C HL
<400> 836
<210> 837
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-H
<400> 837
<210> 838
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-HCDR1
<400> 838
<210> 839
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-HCDR2
<400> 839
<210> 840
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-HCDR3
<400> 840
<210> 841
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM49B9-H
<400> 841
<210> 842
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-L
<400> 842
<210> 843
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-LCDR1
<400> 843
<210> 844
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-LCDR2
<400> 844
<210> 845
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-LCDR3
<400> 845
<210> 846
<211> 336
<212> DNA
<213> 人工序列
<220>
<223> PM49B9-L
<400> 846
<210> 847
<211> 247
<212> PRT
<213> 人工序列
<220>
<223> PM49B9-HL
<400> 847
<210> 848
<211> 741
<212> DNA
<213> 人工序列
<220>
<223> PM49B9-HL
<400> 848
<210> 849
<211> 502
<212> PRT
<213> 人工序列
<220>
<223> PM49B9 HL x I2C HL
<400> 849
<210> 850
<211> 1506
<212> DNA
<213> 人工序列
<220>
<223> PM49B9 HL x I2C HL
<400> 850
<210> 851
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-H
<400> 851
<210> 852
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-HCDR1
<400> 852
<210> 853
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-HCDR2
<400> 853
<210> 854
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-HCDR3
<400> 854
<210> 855
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> PM29G1-H
<400> 855
<210> 856
<211> 112
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-L
<400> 856
<210> 857
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-LCDR1
<400> 857
<210> 858
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-LCDR2
<400> 858
<210> 859
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-LCDR3
<400> 859
<210> 860
<211> 336
<212> DNA
<213> 人工序列
<220>
<223> PM29G1-L
<400> 860
<210> 861
<211> 247
<212> PRT
<213> 人工序列
<220>
<223> PM29G1-HL
<400> 861
<210> 862
<211> 741
<212> DNA
<213> 人工序列
<220>
<223> PM29G1-HL
<400> 862
<210> 863
<211> 502
<212> PRT
<213> 人工序列
<220>
<223> PM29G1 HL x I2C HL
<400> 863
<210> 864
<211> 1506
<212> DNA
<213> 人工序列
<220>
<223> PM29G1 HL x I2C HL
<400> 864
<210> 865
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM29G1-H密碼子
<400> 865
<210> 866
<211> 336
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM29G1-L密碼子
<400> 866
<210> 867
<211> 741
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM29G1-H密碼子
<400> 867
<210> 868
<211> 1506
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM29G1 HL x I2C HL密碼子
<400> 868
<210> 869
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-H
<400> 869
<210> 870
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-HCDR1
<400> 870
<210> 871
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-HCDR2
<400> 871
<210> 872
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-HCDR3
<400> 872
<210> 873
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> PM08B6-H
<400> 873
<210> 874
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-L
<400> 874
<210> 875
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-LCDR1
<400> 875
<210> 876
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-LCDR2
<400> 876
<210> 877
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-LCDR3
<400> 877
<210> 878
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PM08B6-L
<400> 878
<210> 879
<211> 241
<212> PRT
<213> 人工序列
<220>
<223> PM08B6-HL
<400> 879
<210> 880
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> PM08B6-HL
<400> 880
<210> 881
<211> 496
<212> PRT
<213> 人工序列
<220>
<223> PM08B6 HL X I2C HL
<400> 881
<210> 882
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> PM08B6 HL X I2C HL
<400> 882
<210> 883
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08B6-H密碼子
<400> 883
<210> 884
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08B6-L密碼子
<400> 884
<210> 885
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08B6-HL密碼子
<400> 885
<210> 886
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08B6 HL x I2C HL密碼子
<400> 886
<210> 887
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-H
<400> 887
<210> 888
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-HCDR1
<400> 888
<210> 889
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-HCDR2
<400> 889
<210> 890
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-HCDR3
<400> 890
<210> 891
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> PM08E11-H
<400> 891
<210> 892
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-L
<400> 892
<210> 893
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-LCDR1
<400> 893
<210> 894
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-LCDR2
<400> 894
<210> 895
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-LCDR3
<400> 895
<210> 896
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PM08E11-L
<400> 896
<210> 897
<211> 241
<212> PRT
<213> 人工序列
<220>
<223> PM08E11-HL
<400> 897
<210> 898
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> PM08E11-HL
<400> 898
<210> 899
<211> 496
<212> PRT
<213> 人工序列
<220>
<223> PM08E11 HL X I2C HL
<400> 899
<210> 900
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> PM08E11 HL X I2C HL
<400> 900
<210> 901
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08E11-H密碼子
<400> 901
<210> 902
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08E11-L密碼子
<400> 902
<210> 903
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08E11-HL密碼子
<400> 903
<210> 904
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM08E11 HL x I2C HL密碼子
<400> 904
<210> 905
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-H
<400> 905
<210> 906
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-HCDR1
<400> 906
<210> 907
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-HCDR2
<400> 907
<210> 908
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-HCDR3
<400> 908
<210> 909
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> PM95H6-H
<400> 909
<210> 910
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-L
<400> 910
<210> 911
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-LCDR1
<400> 911
<210> 912
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-LCDR2
<400> 912
<210> 913
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-LCDR3
<400> 913
<210> 914
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PM95H6-L
<400> 914
<210> 915
<211> 241
<212> PRT
<213> 人工序列
<220>
<223> PM95H6-HL
<400> 915
<210> 916
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> PM95H6-HL
<400> 916
<210> 917
<211> 496
<212> PRT
<213> 人工序列
<220>
<223> PM95H6 HL X I2C HL
<400> 917
<210> 918
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> PM95H6 HL X I2C HL
<400> 918
<210> 919
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95H6-H密碼子
<400> 919
<210> 920
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95H6-L密碼子
<400> 920
<210> 921
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95H6-HL密碼子
<400> 921
<210> 922
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95H6 HL x I2C HL密碼子
<400> 922
<210> 923
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-H
<400> 923
<210> 924
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-HCDR1
<400> 924
<210> 925
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-HCDR2
<400> 925
<210> 926
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-HCDR3
<400> 926
<210> 927
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> PM95A8-H
<400> 927
<210> 928
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-L
<400> 928
<210> 929
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-LCDR1
<400> 929
<210> 930
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-LCDR2
<400> 930
<210> 931
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-LCDR3
<400> 931
<210> 932
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> PM95A8-L
<400> 932
<210> 933
<211> 241
<212> PRT
<213> 人工序列
<220>
<223> PM95A8-HL
<400> 933
<210> 934
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> PM95A8-HL
<400> 934
<210> 935
<211> 496
<212> PRT
<213> 人工序列
<220>
<223> PM95A8 HL X I2C HL
<400> 935
<210> 936
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> PM95A8 HL X I2C HL
<400> 936
<210> 937
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95A8-H密碼子
<400> 937
<210> 938
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95A8-HCDR1密碼子
<400> 938
<210> 939
<211> 723
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95A8-HCDR2密碼子
<400> 939
<210> 940
<211> 1488
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM95A8 HL x I2C HL密碼子
<400> 940
<210> 941
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-H
<400> 941
<210> 942
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-HCDR1
<400> 942
<210> 943
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-HCDR2
<400> 943
<210> 944
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-HCDR3
<400> 944
<210> 945
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PM07A12-H
<400> 945
<210> 946
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-L
<400> 946
<210> 947
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-LCDR1
<400> 947
<210> 948
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-LCDR2
<400> 948
<210> 949
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-LCDR3
<400> 949
<210> 950
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM07A12-L
<400> 950
<210> 951
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PM07A12-HL
<400> 951
<210> 952
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PM07A12-HL
<400> 952
<210> 953
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PM07A12 HL X I2C HL
<400> 953
<210> 954
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM07A12 HL X I2C HL
<400> 954
<210> 955
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07A12-H密碼子
<400> 955
<210> 956
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07A12-L密碼子
<400> 956
<210> 957
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07A12-HL密碼子
<400> 957
<210> 958
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07A12 HL x I2C HL密碼子
<400> 958
<210> 959
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-H
<400> 959
<210> 960
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-HCDR1
<400> 960
<210> 961
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-HCDR2
<400> 961
<210> 962
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-HCDR3
<400> 962
<210> 963
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PM07F8-H
<400> 963
<210> 964
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-L
<400> 964
<210> 965
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-LCDR1
<400> 965
<210> 966
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-LCDR2
<400> 966
<210> 967
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-LCDR3
<400> 967
<210> 968
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM07F8-L
<400> 968
<210> 969
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PM07F8-HL
<400> 969
<210> 970
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PM07F8-HL
<400> 970
<210> 971
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PM07F8 HL X I2C HL
<400> 971
<210> 972
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM07F8 HL X I2C HL
<400> 972
<210> 973
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07F8-H密碼子
<400> 973
<210> 974
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07F8-H密碼子
<400> 974
<210> 975
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07F8-H密碼子
<400> 975
<210> 976
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> 最佳化PM07F8 HL x I2C HL密碼子
<400> 976
<210> 977
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-H
<400> 977
<210> 978
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-HCDR1
<400> 978
<210> 979
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-HCDR2
<400> 979
<210> 980
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-HCDR3
<400> 980
<210> 981
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PM07E5-H
<400> 981
<210> 982
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-L
<400> 982
<210> 983
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-LCDR1
<400> 983
<210> 984
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-LCDR2
<400> 984
<210> 985
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-LCDR3
<400> 985
<210> 986
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM07E5-L
<400> 986
<210> 987
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PM07E5-HL
<400> 987
<210> 988
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PM07E5-HL
<400> 988
<210> 989
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PM07E5 HL X I2C HL
<400> 989
<210> 990
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM07E5 HL X I2C HL
<400> 990
<210> 991
<211> 121
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-H
<400> 991
<210> 992
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-HCDR1
<400> 992
<210> 993
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-HCDR2
<400> 993
<210> 994
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-HCDR3
<400> 994
<210> 995
<211> 363
<212> DNA
<213> 人工序列
<220>
<223> PM07D3-H
<400> 995
<210> 996
<211> 107
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-L
<400> 996
<210> 997
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-LCDR1
<400> 997
<210> 998
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-LCDR2
<400> 998
<210> 999
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-LCDR3
<400> 999
<210> 1000
<211> 321
<212> DNA
<213> 人工序列
<220>
<223> PM07D3-L
<400> 1000
<210> 1001
<211> 243
<212> PRT
<213> 人工序列
<220>
<223> PM07D3-HL
<400> 1001
<210> 1002
<211> 729
<212> DNA
<213> 人工序列
<220>
<223> PM07D3-HL
<400> 1002
<210> 1003
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PM07D3 HL X I2C HL
<400> 1003
<210> 1004
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM07D3 HL X I2C HL
<400> 1004
<210> 1005
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-H
<400> 1005
<210> 1006
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-HCDR1
<400> 1006
<210> 1007
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-HCDR2
<400> 1007
<210> 1008
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-HCDR3
<400> 1008
<210> 1009
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> PM26C9-H
<400> 1009
<210> 1010
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-L
<400> 1010
<210> 1011
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-LCDR1
<400> 1011
<210> 1012
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-LCDR2
<400> 1012
<210> 1013
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-LCDR3
<400> 1013
<210> 1014
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> PM26C9-L
<400> 1014
<210> 1015
<211> 244
<212> PRT
<213> 人工序列
<220>
<223> PM26C9-LH
<400> 1015
<210> 1016
<211> 732
<212> DNA
<213> 人工序列
<220>
<223> PM26C9-LH
<400> 1016
<210> 1017
<211> 498
<212> PRT
<213> 人工序列
<220>
<223> PM26C9 LH X I2C HL
<400> 1017
<210> 1018
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM26C9 LH X I2C HL
<400> 1018
<210> 1019
<211> 118
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-H
<400> 1019
<210> 1020
<211> 5
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-HCDR1
<400> 1020
<210> 1021
<211> 17
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-HCDR2
<400> 1021
<210> 1022
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-HCDR3
<400> 1022
<210> 1023
<211> 354
<212> DNA
<213> 人工序列
<220>
<223> PM26H4-H
<400> 1023
<210> 1024
<211> 111
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-L
<400> 1024
<210> 1025
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-LCDR1
<400> 1025
<210> 1026
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-LCDR2
<400> 1026
<210> 1027
<211> 9
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-LCDR3
<400> 1027
<210> 1028
<211> 333
<212> DNA
<213> 人工序列
<220>
<223> PM26H4-L
<400> 1028
<210> 1029
<211> 244
<212> PRT
<213> 人工序列
<220>
<223> PM26H4-LH
<400> 1029
<210> 1030
<211> 732
<212> DNA
<213> 人工序列
<220>
<223> PM26H4-LH
<400> 1030
<210> 1031
<211> 499
<212> PRT
<213> 人工序列
<220>
<223> PM26H4 LH X I2C HL
<400> 1031
<210> 1032
<211> 1494
<212> DNA
<213> 人工序列
<220>
<223> PM26H4 LH X I2C HL
<400> 1032
<210> 1033
<211> 2283
<212> DNA
<213> 人工序列
<220>
<223> huPSMArat140-169
<400> 1033
<210> 1034
<211> 760
<212> PRT
<213> 人工序列
<220>
<223> huPSMArat140-169
<400> 1034
<210> 1035
<211> 2283
<212> DNA
<213> 人工序列
<220>
<223> huPSMArat191-258
<400> 1035
<210> 1036
<211> 760
<212> PRT
<213> 人工序列
<220>
<223> huPSMArat191-258
<400> 1036
<210> 1037
<211> 2283
<212> DNA
<213> 人工序列
<220>
<223> huPSMArat281-284
<400> 1037
<210> 1038
<211> 760
<212> PRT
<213> 人工序列
<220>
<223> huPSMArat281-284
<400> 1038
<210> 1039
<211> 2283
<212> DNA
<213> 人工序列
<220>
<223> huPSMArat300-344
<400> 1039
<210> 1040
<211> 760
<212> PRT
<213> 人工序列
<220>
<223> huPSMArat300-344
<400> 1040
<210> 1041
<211> 2283
<212> DNA
<213> 人工序列
<220>
<223> huPSMArat598-617
<400> 1041
<210> 1042
<211> 760
<212> PRT
<213> 人工序列
<220>
<223> huPSMArat598-617
<400> 1042
<210> 1043
<211> 2283
<212> DNA
<213> 人工序列
<220>
<223> huPSMArat683-690
<400> 1043
<210> 1044
<211> 760
<212> PRT
<213> 人工序列
<220>
<223> huPSMArat683-690
<400> 1044
<210> 1045
<211> 2283
<212> DNA
<213> 人工序列
<220>
<223> huPSMArat716-750
<400> 1045
<210> 1046
<211> 760
<212> PRT
<213> 人工序列
<220>
<223> huPSMArat716-750
<400> 1046
<210> 1047
<211> 27
<212> PRT
<213> 馬來猴(Macaca fascicularis)
<400> 1047
<210> 1048
<211> 27
<212> PRT
<213> 馬來猴(Macaca fascicularis)
<400> 1048
<210> 1049
<211> 27
<212> PRT
<213> 恆河獼猴(Macaca mulatta)
<400> 1049

Claims (24)

  1. 一種雙特異性單鏈抗體分子,其包含一第一結合域及一第二結合域,該第一結合域係一抗原交互作用位點,其可與人類及白鬢狨(Callithrix jacchus)、棉冠獠狨(Saguinus oedipus)或松鼠猴(Saimiris ciureus)CD3ε(epsilon)鏈的一表位結合,其中該表位係由序列辨識編號2、4、6或8所組成的群組中所包含之胺基酸序列的一部份且至少包含胺基酸序列Gln-Asp-Gly-Asn-Glu,且該第二結合域可與人類及非人類之靈長類的前列腺特異性膜抗原(PSMA)結合。
  2. 如申請專利範圍第1項之雙特異性單鏈抗體分子,其中該第一結合域包含一VL區域,該VL區域包括選自下列之CDR-L1、CDR-L2及CDR-L3:(a)如序列辨識編號27所示之CDR-L1,如序列辨識編號28所示之CDR-L2及如序列辨識編號29所示之CDR-L3;(b)如序列辨識編號117所示之CDR-L1,如序列辨識編號118所示之CDR-L2及如序列辨識編號119所示之CDR-L3;以及(c)如序列辨識編號153所示之CDR-L1,如序列辨識編號154所示之CDR-L2及如序列辨識編號155所示之CDR-L3。
  3. 如申請專利範圍第1項之雙特異性單鏈抗體分子,其中該第一結合域包含一VH區域,該VH區域包括選自下列之CDR-H1、CDR-H2及CDR-H3:(a)如序列辨識編號12所示之CDR-H1,如序列辨識編號13所示之CDR-H2及如序列辨識編號14所示之CDR-H3;(b)如序列辨識編號30所示之CDR-H1,如序列辨識編號31所示之CDR-H2及如序列辨識編號32所示之CDR-H3;及(c)如序列辨識編號48所示之CDR-H1,如序列辨識編號49所示之CDR-H2及如序列辨識編號50所示之CDR-H3。(d)如序列辨識編號66所示之CDR-H1,如序列辨識編號67所示之CDR-H2及如序列辨識編號68所示之CDR-H3;(e)如序列辨識編號84所示之CDR-H1,如序列辨識編號85所示之CDR-H2及如序列辨識編號86所示之CDR-H3;(f)如序列辨識編號102所示之CDR-H1,如序列辨識編號103所示之CDR-H2及如序列辨識編號104所示之CDR-H3;(g)如序列辨識編號120所示之CDR-H1,如序列辨識編號121所示之CDR-H2及如序列辨識編號122所示之CDR-H3;(h)如序列辨識編號138所示之CDR-H1,如序列辨識編號139所示之CDR-H2及如序列辨識編號140所示之CDR-H3;(i)如序列辨識編號156所示之CDR-H1,如序列辨識編號157所示之CDR-H2及如序列辨識編號158所示之CDR-H3;及(j)如序列辨識編號174所示之CDR-H1,如序列辨識編號175所示之CDR-H2及如序列辨識編號176所示之CDR-H3。
  4. 如申請專利範圍第1項之雙特異性單鏈抗體分子,其中該第一結合域包含一VL區域,該VL區域係選自由序列辨識編號35、39、125、129、161或165所示之VL區域所組成之群組。
  5. 如申請專利範圍第1項之雙特異性單鏈抗體分子,其中該第一結合域包含一VH區域,該VH區域係選自由序列辨識編號15、19、33、37、51、55、69、73、87、91、105、109、123、127、141、145、159、163、177或181所示之VH區域所組成之群組。
  6. 如申請專利範圍第1至5項中任一項之雙特異性單鏈抗體分子,其中該第一結合域包含選自由下列所組成的群組中之VL區域與VH區域:(a)如序列辨識編號17或21所示之VL區域,及如序列辨識編號15或19所示之VH區域;(b)如序列辨識編號35或39所示之VL區域,及如序列辨識編號33或37所示之VH區域;(c)如序列辨識編號53或57所示之VL區域,及如序列辨識編號51或55所示之VH區域;(d)如序列辨識編號71或75所示之VL區域,及如序列辨識編號69或73所示之VH區域;(e)如序列辨識編號89或93所示之VL區域,及如序列辨識編號87或91所示之VH區域;(f)如序列辨識編號107或111所示之VL區域,及如序列辨識編號105或109所示之VH區域;(g)如序列辨識編號125或129所示之VL區域,及如序列辨識編號123或127所示之VH區域;(h)如序列辨識編號143或147所示之VL區域,及如序列辨識編號141或145所示之VH區域;(i)如序列辨識編號161或165所示之VL區域,及如序列辨識編號159或163所示之VH區域;及(j)如序列辨識編號179或183所示之VL區域,及如序列辨識編號177或181所示之VH區域。
  7. 如申請專利範圍第6項之雙特異性單鏈抗體分子,其中該第一結合域包含一胺基酸序列,該胺基酸序列係選自由序列辨識編號23、25、41、43、59、61、77、79、95、97、113、115、131、133、149、151、167、169、185或187所組成的群組。
  8. 如申請專利範圍第1項之雙特異性單鏈抗體分子,其中該雙特異性單鏈抗體分子包含一群組的下列序列作為第二結合域中的CDR H1、CDR H2、CDR H3、CDR L1、CDR L2及CDR L3,其等係選自:a)具序列辨識編號394-396之CDR H1-3及具序列辨識編號389-391之CDR L1-3;b)具序列辨識編號408-410之CDR H1-3及具序列辨識編號403-405之CDR L1-3;c)具序列辨識編號422-424之CDR H1-3及具序列辨識編號417-419之CDR L1-3;d)具序列辨識編號436-438之CDR H1-3及具序列辨識編號431-433之CDR L1-3;e)具序列辨識編號445-447之CDR H1-3及具序列辨識編號450-452之CDR L1-3;f)具序列辨識編號464-466之CDR H1-3及具序列辨識編號459-461之CDR L1-3;g)具序列辨識編號478-480之CDR H1-3及具序列辨識編號473-475之CDR L1-3;h)具序列辨識編號492-494之CDR H1-3及具序列辨識編號487-489之CDR L1-3;i)具序列辨識編號506-508之CDR H1-3及具序列辨識編號501-503之CDR L1-3;j)具序列辨識編號520-522之CDR H1-3及具序列辨識編號515-517之CDR L1-3;k)具序列辨識編號534-536之CDR H1-3及具序列辨識編號529-531之CDR L1-3;l)具序列辨識編號548-550之CDR H1-3及具序列辨識編號543-545之CDR L1-3;m)具序列辨識編號562-564之CDR H1-3及具序列辨識編號557-559之CDR L1-3;n)具序列辨識編號576-578之CDR H1-3及具序列辨識編號571-573之CDR L1-3;o)具序列辨識編號590-592之CDR H1-3及具序列辨識編號585-587之CDR L1-3;p)具序列辨識編號604-606之CDR H1-3及具序列辨識編號599-601之CDR L1-3;q)具序列辨識編號618-620之CDR H1-3及具序列辨識編號613-615之CDR L1-3;r)具序列辨識編號632-634之CDR H1-3及具序列辨識編號627-629之CDR L1-3;s)具序列辨識編號646-648之CDR H1-3及具序列辨識編號641-643之CDR L1-3;t)具序列辨識編號660-662之CDR H1-3及具序列辨識編號655-657之CDR L1-3;u)具序列辨識編號674-676之CDR H1-3及具序列辨識編號669-671之CDR L1-3;v)具序列辨識編號688-690之CDR H1-3及具序列辨識編號683-685之CDR L1-3;w)具序列辨識編號702-704之CDR H1-3及具序列辨識編號697-699之CDR L1-3;x)具序列辨識編號716-718之CDR H1-3及具序列辨識編號711-713之CDR L1-3;y)具序列辨識編號729-731之CDR H1-3及具序列辨識編號724-726之CDR L1-3;z)具序列辨識編號788-790之CDR H1-3及具序列辨識編號793-795之CDR L1-3;aa)具序列辨識編號806-808之CDR H1-3及具序列辨識編號811-813之CDR L1-3;ab)具序列辨識編號852-854之CDR H1-3及具序列辨識編號857-859之CDR L1-3;ac)具序列辨識編號838-840之CDR H1-3及具序列辨識編號843-845之CDR L1-3;ad)具序列辨識編號824-826之CDR H1-3及具序列辨識編號829-831之CDR L1-3;ae)具序列辨識編號774-776之CDR H1-3及具序列辨識編號779-781之CDR L1-3;af)具序列辨識編號688-690之CDR H1-3及具序列辨識編號683-685之CDR L1-3;ag)具序列辨識編號870-872之CDR H1-3及具序列辨識編號875-877之CDR L1-3;ah)具序列辨識編號888-890之CDR H1-3及具序列辨識編號893-895之CDR L1-3;ai)具序列辨識編號924-926之CDR H1-3及具序列辨識編號929-931之CDR L1-3;aj)具序列辨識編號1019-1021之CDR H1-3及具序列辨識編號1025-1027之CDR L1-3;ak)具序列辨識編號1006-1008之CDR H1-3及具序列辨識編號1011-1013之CDR L1-3;al)具序列辨識編號906-908之CDR H1-3及具序列辨識編號911-913之CDR L1-3;am)具序列辨識編號992-994之CDR H1-3及具序列辨識編號997-999之CDR L1-3;an)具序列辨識編號942-944之CDR H1-3及具序列辨識編號947-949之CDR L1-3;ao)具序列辨識編號960-962之CDR H1-3及具序列辨識編號965-967之CDR L1-3;ap)具序列辨識編號978-980之CDR H1-3及具序列辨識編號983-985之CDR L1-3。
  9. 如申請專利範圍第8項之雙特異性單鏈抗體分子,其中該結合域係依VH PSMA-VL PSMA-VH CD3-VL CD3或VL PSMA-VH PSMA-VH CD3-VL CD3之順序排列。
  10. 如申請專利範圍第8項之雙特異性單鏈抗體分子,其中該雙特異性單鏈抗體分子包含選自下列的一序列:(a)如序列辨識編號399、413、427、441、455、469、483、497、511、525、539、553、567、581、595、609、623、637、651、665、679、693、707、721、734、799、817、863、849、835、785、899、935、1017、1031、917、1003、953、971或989中任一者所示之一胺基酸序列;(b)如序列辨識編號400、414、428、442、456、470、484、498、512、526、540、554、568、582、596、610、624、638、652、666、680、694、708、736、735、800、818、864、850、836、786、882、900、936、1018、1032、918、1004、954、972、990、804、822、868、886、904、940、922、958或976中任一者所示的核酸序列所編碼之一胺基酸序列;及(c)與(a)或(b)的胺基酸序列至少90%相同之一胺基酸序列。
  11. 如申請專利範圍第10項之雙特異性單鏈抗體分子,其中該雙特異性單鏈抗體分子包含與(a)或(b)的胺基酸序列至少95%相同之一胺基酸序列。
  12. 如申請專利範圍第10項之雙特異性單鏈抗體分子,其中該雙特異性單鏈抗體分子包含與(a)或(b)的胺基酸序列至少96%相同之一胺基酸序列。
  13. 一種編碼如申請專利範圍第1至10項中任一項所界定之雙特異性單鏈抗體分子之核酸序列。
  14. 一種載體,其包含如申請專利範圍第13項所界定之一核酸序列。
  15. 如申請專利範圍第14項之載體,其中該載體進一步包含一調控序列,其係以可操作方式連接至如申請專利範圍第13項所界定的該核酸序列。
  16. 如申請專利範圍第15項之載體,其中該載體係一種表現載體。
  17. 一種經如申請專利範圍第14至16項中任一項所界定的載體轉型或轉染之宿主細胞。
  18. 一種用於生產如申請專利範圍第1至10項中任一項之雙特異性單鏈抗體分子之方法,該方法包括在容許如申請專利範圍第1至10項中任一項所界定之雙特異性單鏈抗體分子表現的條件下,培養如申請專利範圍第17項所界定之宿主細胞,及自培養物中回收所產生的多肽。
  19. 一種藥學組成物,其包含如申請專利範圍第1至10項中任一項之雙特異性單鏈抗體分子,或藉由如申請專利範圍第17項之方法生產之雙特異性單鏈抗體分子。
  20. 一種使用如申請專利範圍第1至10項中任一項或藉由如申請專利範圍第18項之方法所生產之雙特異性單鏈抗體分子於製備一藥物之用途,該藥物係用於治療或改善癌症。
  21. 如申請專利範圍第20項之用途,其中該癌症係一種固態腫瘤。
  22. 如申請專利範圍第21項之用途,其中該固態腫瘤係一種癌(carcinoma)或前列腺癌。
  23. 一種如申請專利範圍第1至10項中任一項所界定或藉由如申請專利範圍第18項所生產之雙特異性單鏈抗體分子,用於製備供治療或改善疾病用的藥學組成物之用途。
  24. 一種套組,其包含如申請專利範圍第1至10項中任一項所界定之一種雙特異性單鏈抗體分子、如申請專利範圍第13項所界定之一核酸分子、如申請專利範圍第14至16項中所界定之一載體或如申請專利範圍第17項所界定之一宿主細胞。
TW098133577A 2009-10-02 2009-10-02 跨物種特異性的PSMAxCD3雙特異性單鏈抗體 TWI629357B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098133577A TWI629357B (zh) 2009-10-02 2009-10-02 跨物種特異性的PSMAxCD3雙特異性單鏈抗體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098133577A TWI629357B (zh) 2009-10-02 2009-10-02 跨物種特異性的PSMAxCD3雙特異性單鏈抗體

Publications (2)

Publication Number Publication Date
TW201113374A TW201113374A (en) 2011-04-16
TWI629357B true TWI629357B (zh) 2018-07-11

Family

ID=44909568

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098133577A TWI629357B (zh) 2009-10-02 2009-10-02 跨物種特異性的PSMAxCD3雙特異性單鏈抗體

Country Status (1)

Country Link
TW (1) TWI629357B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177371A1 (en) * 2017-03-29 2018-10-04 Taipei Medical University Antigen-specific t cells and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089230A2 (en) * 2005-02-18 2006-08-24 Medarex, Inc. Human monoclonal antibodies to prostate specific membrane antigen (psma)
WO2006125481A1 (en) * 2005-05-27 2006-11-30 Universitätsklinikum Freiburg Monoclonal antibodies and single chain antibody fragments against cell-surface prostate specific membrane antigen
WO2007042261A2 (en) * 2005-10-11 2007-04-19 Micromet Ag Compositions comprising cross-species-specific antibodies and uses thereof
WO2008119566A2 (en) * 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific bispecific binders
WO2008119565A2 (en) * 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific binding domain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089230A2 (en) * 2005-02-18 2006-08-24 Medarex, Inc. Human monoclonal antibodies to prostate specific membrane antigen (psma)
WO2006125481A1 (en) * 2005-05-27 2006-11-30 Universitätsklinikum Freiburg Monoclonal antibodies and single chain antibody fragments against cell-surface prostate specific membrane antigen
WO2007042261A2 (en) * 2005-10-11 2007-04-19 Micromet Ag Compositions comprising cross-species-specific antibodies and uses thereof
WO2008119566A2 (en) * 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific bispecific binders
WO2008119565A2 (en) * 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific binding domain

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Buhler P et al., "A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells", Cancer Immunol Immunother., Vol.57(1) ,p.43-52, 2007/06/20
Buhler P et al., "A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells", Cancer Immunol Immunother., Vol.57(1) ,p.43-52, 2007/06/20 Buhler P et al., "Target-dependent T-cell activation by coligation with a PSMA x CD3 diabody induces lysis of prostate cancer cells", J Immunother., Vol.32(6), p.565-573, 2009/07 Katzenwadel A et al., "Construction and in vivo evaluation of an anti-PSA x anti-CD3 bispecific antibody for the immunotherapy of prostate cancer", Anticancer Research, Vol.20(3A), p.1551-1555, 2000 *
Buhler P et al., "Target-dependent T-cell activation by coligation with a PSMA x CD3 diabody induces lysis of prostate cancer cells", J Immunother., Vol.32(6), p.565-573, 2009/07
Katzenwadel A et al., "Construction and in vivo evaluation of an anti-PSA x anti-CD3 bispecific antibody for the immunotherapy of prostate cancer", Anticancer Research, Vol.20(3A), p.1551-1555, 2000

Also Published As

Publication number Publication date
TW201113374A (en) 2011-04-16

Similar Documents

Publication Publication Date Title
JP7273106B2 (ja) 異種間特異的psma×cd3二重特異性単鎖抗体
JP2021101715A (ja) 種間特異的結合ドメイン
JP6153862B2 (ja) 異種間特異的なPSMAxCD3二重特異性単鎖抗体
EP2352763B1 (en) Bispecific single chain antibodies with specificity for high molecular weight target antigens
EP2370467B1 (en) Cross-species-specific pscaxcd3, cd19xcd3, c-metxcd3, endosialinxcd3, epcamxc d3, igf-1rxcd3 or fapalpha xcd3 bispecific single chain antibody
EP2352765B1 (en) Cross-species-specific single domain bispecific single chain antibody
TWI629357B (zh) 跨物種特異性的PSMAxCD3雙特異性單鏈抗體