TWI627430B - Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects - Google Patents

Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects Download PDF

Info

Publication number
TWI627430B
TWI627430B TW106120325A TW106120325A TWI627430B TW I627430 B TWI627430 B TW I627430B TW 106120325 A TW106120325 A TW 106120325A TW 106120325 A TW106120325 A TW 106120325A TW I627430 B TWI627430 B TW I627430B
Authority
TW
Taiwan
Prior art keywords
vibration
image
millimeter
millimeter wave
unit
Prior art date
Application number
TW106120325A
Other languages
Chinese (zh)
Other versions
TW201905489A (en
Inventor
wen-long Liang
wen-xiong Lin
Xin-Wei Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW106120325A priority Critical patent/TWI627430B/en
Application granted granted Critical
Publication of TWI627430B publication Critical patent/TWI627430B/en
Publication of TW201905489A publication Critical patent/TW201905489A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一種可精確偵測生物動態特徵或物件微動的裝置,其包含:一振動感測器,該振動感測器設有一毫米波訊號產生器、一發射單元以及一接收單元,該發射單元與接收單元分別與該毫米波訊號產生器電性連接;一處理單元,該處理單元與該振動感測器的毫米波訊號產生器電性連接;其中,該振動感測器與處理單元可根據雷達測距及數位取樣的原理運算並重建該待測物的振動訊號;藉此,本發明除了可具有較佳的穿透力,從而也可應用於生物體的動態偵測之外,更可透過毫米波具有較短波長的特性,達到在近距離內偵測、分辨物體之細微振動的效果,而可提高振動偵測的精確度與精細度,進而可大幅提高產品的應用範圍與實用性。 A device capable of accurately detecting a biological dynamic characteristic or a micro-movement of an object includes a vibration sensor provided with a millimeter wave signal generator, a transmitting unit, and a receiving unit. The transmitting unit and the receiving unit Electrically connected to the millimeter-wave signal generator respectively; a processing unit electrically connected to the millimeter-wave signal generator of the vibration sensor; wherein the vibration sensor and the processing unit can measure distance based on radar And the principle of digital sampling to calculate and reconstruct the vibration signal of the object under test; thus, the present invention can not only have better penetrating power, so that it can also be applied to the dynamic detection of living organisms, and it can also transmit millimeter waves It has the characteristics of short wavelength, which can achieve the effect of detecting and resolving the fine vibration of objects in a short distance, and can improve the accuracy and fineness of vibration detection, which can greatly improve the application range and practicability of the product.

Description

可精確偵測生物動態特徵或物件微動的裝置 Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects

本發明係關於一種感測裝置,特別是一種振動感測裝置。 The invention relates to a sensing device, in particular to a vibration sensing device.

振動感測器可用於監控物體的運動狀態,典型的應用包括地震感測、機械故障的早期偵測或預防以及物體或人員的移動偵測等等,其通常係透過量測該物體振動時所產生的位移、速度、加速度或其它動態力量如壓電或壓阻(應變)等物理量來計算出振動的相關資訊或參數,以機電變換原理來區分,常見的振動感測器包含有渦電流式、電容式、光電式及壓電式等各種不同的型式。 Vibration sensors can be used to monitor the motion status of objects. Typical applications include seismic sensing, early detection or prevention of mechanical failures, and motion detection of objects or people. They are usually used to measure the vibration of an object. The generated displacement, velocity, acceleration, or other dynamic forces, such as piezoelectricity or piezoresistance (strain), are used to calculate the relevant information or parameters of vibration. They are distinguished by the principle of electromechanical transformation. Common vibration sensors include eddy current type , Capacitive, photoelectric and piezoelectric types.

然而,習知的振動感測器仍具有以下值得改進之處:首先,其通常僅適合感測較大幅度或範圍的振動,在偵測的精細度上仍有不足;其次,習知的振動感測器不論是接觸式或非接觸式,皆不具備穿透物體表面的能力,故無法適用於生物動態特徵的偵測(例如人體內部心臟活動狀態的偵測),應用範圍較為有限;此外,習知的振動感測器僅能提供物體振動狀態的數據,無法以視覺化的方式呈現物體影像及其振動狀態,進一步限制了產品的實用性。 However, the conventional vibration sensor still has the following improvements: first, it is generally only suitable for sensing a large amplitude or range of vibration, and there is still insufficient detection accuracy; second, the conventional vibration sensor Whether it is a contact type or a non-contact type, the sensor does not have the ability to penetrate the surface of the object, so it cannot be applied to the detection of biological dynamic characteristics (such as the detection of the state of heart activity in the human body), and the application range is relatively limited; The conventional vibration sensor can only provide data of the vibration state of the object, and cannot display the image of the object and its vibration state in a visual manner, which further limits the practicality of the product.

是故,如何針對上述缺失加以改進,即為本案申請人所欲解決之技術困難點所在。 Therefore, how to improve the above-mentioned shortcomings is the technical difficulty that the applicant of this case wants to solve.

有鑑於現有振動感測器中所存在的上述問題,因此本發明之目的在於發展一種可提高偵測精確度的振動感測裝置。 In view of the above problems existing in the existing vibration sensors, an object of the present invention is to develop a vibration sensing device capable of improving detection accuracy.

本發明之另一目的,在於發展一種可偵測生物動態特徵的振動感測裝置。 Another object of the present invention is to develop a vibration sensing device capable of detecting biological dynamic characteristics.

本發明之又一目的,在於發展一種可顯示待測物之振動模擬影像之振動感測裝置。 Another object of the present invention is to develop a vibration sensing device capable of displaying a vibration simulation image of a test object.

為達成以上之目的,本發明係提供一種可精確偵測生物動態特徵或物件微動的裝置,包含:一振動感測器,該振動感測器設有一毫米波訊號產生器、一發射單元以及一接收單元,該發射單元與接收單元分別與該毫米波訊號產生器電性連接;一處理單元,該處理單元與該振動感測器的毫米波訊號產生器電性連接;其中,該振動感測器的毫米波訊號產生器係透過該發射單元以一預定的取樣頻率對一產生振動的待測物發射毫米波測試訊號,再透過該接收單元接收每一次發射的毫米波測試訊號碰觸該待測物後反射所形成的毫米波反射訊號,而使該處理單元可根據雷達測距及數位取樣的原理運算並重建該待測物的振動訊號。 In order to achieve the above object, the present invention provides a device capable of accurately detecting biological dynamic features or micro-movement of an object, including: a vibration sensor, the vibration sensor is provided with a millimeter wave signal generator, a transmitting unit and a A receiving unit, the transmitting unit and the receiving unit are electrically connected to the millimeter wave signal generator; a processing unit, the processing unit is electrically connected to the millimeter wave signal generator of the vibration sensor; wherein, the vibration sensing The millimeter-wave signal generator of the transmitter transmits a millimeter-wave test signal to a test object that generates vibration at a predetermined sampling frequency through the transmitting unit, and then receives each transmitted millimeter-wave test signal through the receiving unit to touch the test object. The millimeter wave reflection signal formed by the reflection of the measured object enables the processing unit to calculate and reconstruct the vibration signal of the measured object based on the principles of radar ranging and digital sampling.

其中,該取樣頻率大於該待測物的振動頻率。 The sampling frequency is greater than the vibration frequency of the test object.

其中,該發射單元與接收單元兩者構成多輸入多輸出波束成型(MIMO beamforming)智慧型天線模組。 The transmitting unit and the receiving unit constitute a MIMO beamforming smart antenna module.

其中,還包含有一影像紀錄單元,該影像紀錄單元與該處理單元電性連接,該影像紀錄單元係用以擷取該待測物的一真實影像。 The image recording unit is electrically connected to the processing unit. The image recording unit is used to capture a real image of the object to be measured.

進一步的,該處理單元內設有一振動影像後製模組,用以 根據該待測物的振動訊號與真實影像,後製並產生一模擬該待測物之振動狀態的振動模擬影像。 Further, the processing unit is provided with a post-processing module for vibrating images for Based on the vibration signal and the real image of the test object, a vibration simulation image is generated and generated to simulate the vibration state of the test object.

進一步的,還包含有一影像輸出裝置,用以顯示該振動模擬影像。 Furthermore, an image output device is included to display the vibration simulation image.

進一步的,具有一3D深度視覺模組用以替代該影像紀錄單元,該3D深度視覺模組與該處理單元電性連接。 Further, a 3D depth vision module is used to replace the image recording unit, and the 3D depth vision module is electrically connected to the processing unit.

藉此,本發明除了可具有較佳的穿透力,從而也可應用於生物體的動態偵測之外,更可透過毫米波具有較短波長的特性,達到在近距離內偵測、分辨物體之細微振動的效果,而可提高振動偵測的精確度與精細度,進而可大幅提高產品的應用範圍與實用性。 In this way, in addition to having better penetrating power, which can also be applied to the dynamic detection of living organisms, the invention can also transmit millimeter waves with short wavelength characteristics to achieve detection and resolution in a short distance. The effect of fine vibration of the object can improve the accuracy and fineness of vibration detection, which can greatly improve the application range and practicality of the product.

〔本發明〕 〔this invention〕

1‧‧‧振動感測器 1‧‧‧Vibration Sensor

11‧‧‧毫米波訊號產生器 11‧‧‧ millimeter wave signal generator

12‧‧‧發射單元 12‧‧‧ launch unit

13‧‧‧接收單元 13‧‧‧Receiving unit

2‧‧‧待測物 2‧‧‧ DUT

3‧‧‧處理單元 3‧‧‧ processing unit

31‧‧‧振動影像後製模組 31‧‧‧Vibration image post-production module

4‧‧‧影像紀錄單元 4‧‧‧Image recording unit

5‧‧‧影像輸出裝置 5‧‧‧Image output device

6‧‧‧3D深度視覺模組 6‧‧‧3D Deep Vision Module

61‧‧‧光源 61‧‧‧light source

62‧‧‧第一影像感測器 62‧‧‧The first image sensor

63‧‧‧第二影像感測器 63‧‧‧Second image sensor

D1~D5‧‧‧距離 D1 ~ D5‧‧‧Distance

S1‧‧‧毫米波測試訊號 S1‧‧‧ millimeter wave test signal

S2‧‧‧毫米波反射訊號 S2‧‧‧ millimeter wave reflection signal

第一圖係本發明之一實施例的結構方塊示意圖。 The first diagram is a schematic structural block diagram of an embodiment of the present invention.

第二圖係本發明之一實施例對待測物發射第1次毫米波測試訊號之動作示意圖。 The second figure is a schematic diagram of the operation of transmitting the first millimeter wave test signal of the object under test according to an embodiment of the present invention.

第三圖係本發明之一實施例對待測物發射第2次毫米波測試訊號之動作示意圖。 The third diagram is a schematic diagram of the second millimeter wave test signal emitted by the object under test according to an embodiment of the present invention.

第四圖係本發明之一實施例重建待測物之完整振動訊號的示意圖。 The fourth diagram is a schematic diagram of reconstructing the complete vibration signal of the object under test according to an embodiment of the present invention.

第五圖係本發明之一實施例其影像輸出裝置顯示待測物之振動模擬影像之動作示意圖。 The fifth diagram is a schematic diagram of an image output device displaying a vibration simulation image of a test object according to an embodiment of the present invention.

第六圖係本發明其第二實施例之結構方塊示意圖。 The sixth diagram is a block diagram of the structure of the second embodiment of the present invention.

第七圖係本發明其第二實施例之3D深度視覺模組的結構組成方塊示意圖。 The seventh diagram is a block diagram of the structure and composition of the 3D depth vision module according to the second embodiment of the present invention.

請參閱第一圖所示係為本發明之可精確偵測生物動態特徵或物件微動的裝置之一實施例的結構方塊示意圖,該裝置包含:一振動感測器1,該振動感測器1設有一毫米波(millimeter wave)訊號產生器11、一發射單元12以及一接收單元13,該發射單元12與接收單元13分別與該毫米波訊號產生器11電性連接,請再配合參閱第三圖所示,該毫米波訊號產生器11係用以產生一可供偵測一待測物2之振動狀態的毫米波測試訊號S1;其中,該毫米波訊號產生器11所產生的毫米波測試訊號S1其頻帶可介於57~77GHz,在本實施例中,該毫米波測試訊號S1的頻率較佳係為77GHz,此外,該發射單元12或接收單元13具體可為天線,更具體地,該發射單元12或接收單元13實際上可以是單一個天線或是由複數個天線所構成的天線陣列,較佳地,該發射單元12或接收單元13的天線可以是具備波束成型(beamforming)功能的天線或天線陣列,在本實施例中,該發射單元12係包含有3個天線,該接收單元13則包含有4個天線,亦即,在本發明的一個實施例中,該發射單元12與接收單元13兩者整體可以是由7根天線所構成的多輸入多輸出波束成型(MIMO beamforming)智慧型天線模組,藉此,以提高訊號的收發效果,當然,該發射單元12或接收單元13之天線數量與類型並不以上述所列舉者為限;一處理單元3,該處理單元3與該振動感測器1的毫米波訊號產生器11電性連接,該處理單元3具體可以是控制器或處理器,例如微控制器(MCU)、中央處理器(CPU)、圖型處理器(GPU)或數位訊號處 理器(DSP,包括影像處理器,Image Processor)等等,此外,該處理單元3內可進一步設有一振動影像後製模組31,該振動影像後製模組31具體可為軟體應用程序;一影像輸出裝置5,該影像輸出裝置5與該處理單元3電性連接,該影像輸出裝置5具體可以是各種顯示螢幕(Display)或投影光機例如CRT、LCD、OLED、DLP(Digital Light Processing,數位光處理)或LCoS(Liquid Crystal on Silicon,液晶覆矽)等等;此外,請再配合參閱第五圖所示,在本發明的一些實施例中,還可以進一步包含有一影像紀錄單元4如攝影鏡頭,該影像紀錄單元4與該處理單元3電性連接,其用途將在後面加以描述;請參閱第二圖至第四圖所示,假設一個在靜止狀態下的待測物2(例如尚未運轉時的馬達)與該振動感測器1之間具有一距離或間距D(此時該間距D之實際數值可以是一個有待求解的未知數),當該待測物2開始以一定的頻率及振幅大小產生振動時(例如該馬達在運轉後產生了(細微的)振動),此時,本發明可透過以下的工作原理來偵測出該待測物2的振動:首先,請參閱第二圖與第三圖,該振動感測器1其毫米波訊號產生器11可透過該發射單元12以一預定的取樣率或取樣頻率(sampling rate or sampling frequency)對該待測物2發射該毫米波測試訊號S1,其中,為了正確地偵測且完整而不失真地重建或還原該待測物2所產生的振動訊號,該取樣率或取樣頻率須大於該待測物2的振動頻率,一般而言,該取樣頻率通常可設定為一足夠大的預定數值,以確保本發明能夠正確地量測待測物2之振動,舉例來說,若該待測物2的振動頻率為20Hz,則可將該 取樣率或取樣頻率設定為1kHz或10kHz,亦即,令該毫米波訊號產生器11每秒對該待測物2發射1000次或10000次的毫米波測試訊號S1,第二圖係例示該毫米波訊號產生器11發射第1次毫米波測試訊號S1的情況,其中,該毫米波測試訊號S1碰觸待測物2後會反射而形成一毫米波反射訊號S2,如此一來,該處理單元3即可根據雷達測距的原理,計算出當下該待測物2與振動感測器1之間的距離D1;同樣的,第三圖係例示該該毫米波訊號產生器11發射第2次毫米波測試訊號S1的情況,該處理單元3也可計算出當下該待測物2與振動感測器1之間的距離D2,餘此類推,請再參閱第四圖所示,本發明可再依照與前述相同的原理,使該處理單元3分別計算出根據其餘的毫米波測試訊號S1及對應的毫米波反射訊號S2所偵測到的距離D3、D4、D5…,如此一來,本發明即可以數位取樣的方法重建或還原該待測物2的振動訊號,並可正確地獲取該待測物2其振動訊號的重要參數例如振幅(即該待測物2距該振動感測器1的最遠距離D max與最近距離D min兩者之差的一半,)與振動頻率,從而使本發明可達到偵測物件之振動、顫動或微動等動態特徵之目的,當然,該處理單元3也可計算出前述該待測物2在靜止時與該振動感測器1之間的間距D(即該待測物2距該振動感測器1的最遠距離D max與最近距離D min兩者之和的一半,),而無需先停止待測物2(如馬達)的運轉(而且,有些待測物2如人體心臟的振動也無法令其先停止運轉再來偵測)。 Please refer to the first figure, which is a structural block diagram of an embodiment of a device capable of accurately detecting biological dynamic features or micro-movement of an object according to the present invention. The device includes: a vibration sensor 1, the vibration sensor 1 A millimeter wave signal generator 11, a transmitting unit 12, and a receiving unit 13 are provided. The transmitting unit 12 and the receiving unit 13 are electrically connected to the millimeter wave signal generator 11, respectively. Please refer to the third section for cooperation. As shown in the figure, the millimeter-wave signal generator 11 is used to generate a millimeter-wave test signal S1 capable of detecting a vibration state of an object 2 to be measured; among them, the millimeter-wave signal generated by the millimeter-wave signal generator 11 The frequency band of the signal S1 may be between 57 and 77 GHz. In this embodiment, the frequency of the millimeter wave test signal S1 is preferably 77 GHz. In addition, the transmitting unit 12 or the receiving unit 13 may be an antenna, more specifically, The transmitting unit 12 or the receiving unit 13 may actually be a single antenna or an antenna array composed of a plurality of antennas. Preferably, the antenna of the transmitting unit 12 or the receiving unit 13 may be provided with beam forming (beamf orming) function. In this embodiment, the transmitting unit 12 includes 3 antennas, and the receiving unit 13 includes 4 antennas. That is, in an embodiment of the present invention, the The transmitting unit 12 and the receiving unit 13 as a whole may be a multiple-input multiple-output beamforming (MIMO beamforming) smart antenna module composed of 7 antennas, so as to improve the signal transmission and reception effect. Of course, the transmitting unit The number and type of the antennas of the 12 or the receiving unit 13 are not limited to those listed above. A processing unit 3 is electrically connected to the millimeter wave signal generator 11 of the vibration sensor 1. The processing unit 3 can be a controller or processor, such as a microcontroller (MCU), a central processing unit (CPU), a graphics processor (GPU), or a digital signal processor (DSP, including an image processor, Image Processor), etc. In addition, the processing unit 3 may further be provided with a vibration image post-production module 31, and the vibration image post-production module 31 may specifically be a software application program; an image output device 5, the image output device 5 and the processing unit 3 The image output device 5 can be various display screens (Display) or projection light machines such as CRT, LCD, OLED, DLP (Digital Light Processing, Digital Light Processing) or LCoS (Liquid Crystal on Silicon). In addition, please refer to FIG. 5 for further cooperation. In some embodiments of the present invention, an image recording unit 4 such as a photographing lens may be further included. The image recording unit 4 is electrically connected to the processing unit 3. , Its purpose will be described later; please refer to the second to fourth figures, assuming that a DUT 2 (such as a motor when it is not running) in a stationary state has a vibration sensor 1 between A distance or distance D (the actual value of the distance D at this time may be an unknown to be solved), when the DUT 2 starts to vibrate at a certain frequency and amplitude (for example, the motor generates ( (Fine) vibration), at this time, the present invention can detect the vibration of the DUT 2 through the following working principle: First, please refer to the second and third figures, the millimeter wave of the vibration sensor 1 Signal production The transmitter 11 can transmit the millimeter wave test signal S1 to the DUT 2 through the transmitting unit 12 at a predetermined sampling rate or sampling frequency. Among them, for correct detection and completeness without distortion To reconstruct or restore the vibration signal generated by the DUT 2, the sampling rate or sampling frequency must be greater than the vibration frequency of the DUT 2. Generally speaking, the sampling frequency can usually be set to a sufficiently large predetermined value. To ensure that the present invention can accurately measure the vibration of the DUT 2, for example, if the vibration frequency of the DUT 2 is 20 Hz, the sampling rate or sampling frequency can be set to 1 kHz or 10 kHz, that is, Let the millimeter-wave signal generator 11 transmit the millimeter-wave test signal S1 to the object 2 to be tested 1000 times or 10,000 times per second. The second figure illustrates that the millimeter-wave signal generator 11 transmits the first millimeter-wave test signal S1. In this case, the millimeter wave test signal S1 will be reflected after touching the object 2 to form a millimeter wave reflection signal S2. In this way, the processing unit 3 can calculate the current DUT 2 The distance D1 between the vibration sensors 1 is the same; the third diagram illustrates the case where the millimeter-wave signal generator 11 emits the second millimeter-wave test signal S1. The processing unit 3 can also calculate the current waiting time. The distance D2 between the measurement object 2 and the vibration sensor 1, and so on. Please refer to the fourth figure again. The present invention can further make the processing unit 3 calculate the The distances D3, D4, D5, etc. detected by the millimeter wave test signal S1 and the corresponding millimeter wave reflection signal S2. In this way, the present invention can reconstruct or restore the vibration signal of the DUT 2 by digital sampling. An important parameter such as the amplitude of the vibration signal of the DUT 2 (ie, half the difference between the maximum distance D max and the closest distance D min of the DUT 2 from the vibration sensor 1) can be correctly obtained. ) And the vibration frequency, so that the present invention can achieve the purpose of detecting dynamic characteristics such as vibration, chattering or fretting of the object. Of course, the processing unit 3 can also calculate the aforementioned object to be measured 2 and the vibration sensing when it is stationary. The distance D between the sensors 1 (that is, half of the sum of the farthest distance D max and the shortest distance D min between the object 2 and the vibration sensor 1, ), Without having to stop the operation of the DUT 2 (such as a motor) first (and some of the DUT 2 such as the vibration of the human heart cannot stop it first and then detect it).

可以注意的是,請繼續參閱第二圖與第五圖所示,在本發明的一些實施例中,藉由進一步設置有該影像紀錄單元4,其可用以擷取該待測物2之實物影像,如此一來,該振動影像後製模組31可再根據該待測 物2的振動訊號與實物影像,後製並產生一可精確模擬該待測物2之振動狀態的振動模擬影像,並將該振動模擬影像傳送至該影像輸出裝置5,而可供操作人員或使用者觀看,如此,本發明不僅可偵測待測物2的振動,還可進一步用影像或圖像來模擬該待測物2的振動狀態,故本發明可應用於工程上對於重要組件或部件之運作狀態的監控或是醫學上對於人體或動物之各種生物特徵的檢查診斷等領域或重要場合(當然,本發明的用途並不以上述所列舉者為限),從而可擴展本發明的應用範圍並提升其實用性。 It may be noted that please continue to refer to the second and fifth figures. In some embodiments of the present invention, the image recording unit 4 is further provided, which can be used to capture the actual object 2 Image, so that the vibration image post-production module 31 can The vibration signal of the object 2 and the real image are post-produced and generated a vibration simulation image that can accurately simulate the vibration state of the object 2 to be measured, and the vibration simulation image is transmitted to the image output device 5 for the operator or The user sees that in this way, the present invention can not only detect the vibration of the object 2 but also use images or images to simulate the vibration state of the object 2, so the present invention can be applied to engineering for important components or Fields or important occasions such as monitoring the operating state of components or medically examining various biological characteristics of humans or animals (of course, the application of the present invention is not limited to those listed above), so that the present invention can be extended. Application range and increase its practicality.

請參閱第一圖所示,藉由本發明利用由毫米波訊號產生器11所組成的振動感測器1來偵測物體的振動,除了可具有較佳的穿透力,從而也可應用於生物體的動態偵測之外,更重要的是可透過毫米波具有較短波長的特性,達到在近距離內偵測、分辨物體之細微振動的效果,以77GHz的毫米波訊號產生器11為例,其可偵測到距離它僅有25公分的待測物2之0.05mm振幅的振動,使本發明可提高振動偵測的精確度與精細度,進而可大幅提高本發明的實用性。 Please refer to the first figure. By using the vibration sensor 1 composed of the millimeter wave signal generator 11 to detect the vibration of an object, the present invention can have better penetrating power and can also be applied to living things. In addition to the dynamic detection of the body, it is more important that the millimeter wave has a short wavelength characteristic, which can achieve the effect of detecting and resolving fine vibrations of objects in a short distance. Take the 77GHz millimeter wave signal generator 11 as an example. It can detect the vibration of the 0.05mm amplitude of the object to be measured 2 which is only 25 cm away, so that the present invention can improve the accuracy and fineness of the vibration detection, and can greatly improve the practicability of the present invention.

此外,請再參閱第六圖所示為本發明的第二實施例,其與如第五圖所揭示的實施例相比,差別在於具有一3D深度視覺模組6用以替代該影像紀錄單元4,該3D深度視覺模組6與該處理單元3電性連接,現有的3D深度視覺成像原理可大致區分為立體視覺(stereo vision)、結構光(structured light)以及時差測距(time of flight,TOF,又稱飛行測距)等數種,在本實施例中,該3D深度視覺模組6係優選採用TOF 3D深度視覺模組,藉此,俾使本發明可具有較佳的反應速度且適用於各種不同的環境,同時還可降低後續應用之演算法的複雜度,請再配合參閱第七圖所示係為 一種TOF 3D深度視覺模組其細部結構之實施例,在此實施例中,該3D深度視覺模組6具有一光源61、一第一影像感測器62以及一第二影像感測器63,一般而言,依照測距原理以及是否具備擷取實物影像之功能等差異,一個TOF 3D深度視覺模組最少可以僅由兩顆影像感測器所構成,或者,也可以僅由一個光發射器(如本實施例的光源61)搭配一顆影像感測器(如本實施例的第一影像感測器62)所構成,其中,後者的單一顆影像感測器僅是作為光接收器之用,並不具備擷取影像之功能,對此,在如第七圖所揭示的實施例中,還可以再額外增設另一顆影像感測器(即該第二影像感測器63),以作為成像之用,更具體地,該光源61可以是紅外線光源如遠紅外線發射器或是雷射光源如VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔面發射雷射),該第一影像感測器62與第二影像感測器63可以是CMOS影像感測器,藉此,該3D深度視覺模組6即可同時提供輔助測距及擷取該待測物2之實物影像等功能,進而可提升本發明之應用效益。 In addition, please refer to FIG. 6 again, which shows a second embodiment of the present invention. Compared with the embodiment disclosed in FIG. 5, the difference lies in having a 3D depth vision module 6 to replace the image recording unit. 4. The 3D depth vision module 6 is electrically connected to the processing unit 3. The existing 3D depth vision imaging principle can be roughly divided into stereo vision, structured light, and time of flight. , TOF, also known as flight ranging), in this embodiment, the 3D depth vision module 6 is preferably a TOF 3D depth vision module, thereby enabling the present invention to have a better response speed It is suitable for a variety of different environments, and can also reduce the complexity of the algorithm for subsequent applications. Please refer to the system shown in Figure 7 for more details. An embodiment of the detailed structure of a TOF 3D depth vision module. In this embodiment, the 3D depth vision module 6 has a light source 61, a first image sensor 62, and a second image sensor 63. Generally speaking, according to the ranging principle and whether it has the function of capturing physical images, a TOF 3D depth vision module can be composed of at least two image sensors, or it can be composed of only one light transmitter. (Such as the light source 61 in this embodiment) with an image sensor (such as the first image sensor 62 in this embodiment), wherein the single image sensor of the latter is only used as a light receiver It does not have the function of capturing images. For this reason, in the embodiment disclosed in FIG. 7, another image sensor (ie, the second image sensor 63) can be added. For imaging purposes, more specifically, the light source 61 may be an infrared light source such as a far-infrared emitter or a laser light source such as a VCSEL (Vertical Cavity Surface Emitting Laser). The first image sensing 62 and second image sensor 63 Be a CMOS image sensor, whereby the 3D depth perception module 6 and can also provide assistance ranging capturing an image of the physical functions of the DUT 2, and thus can improve the effectiveness of the application of the present invention.

惟上列詳細說明係針對本發明之較佳實施例的具體說明,該等實施例並非用以限制本發明之專利範圍,而凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 However, the above detailed descriptions are specific descriptions of the preferred embodiments of the present invention. These embodiments are not intended to limit the patent scope of the present invention. Any equivalent implementation or change that does not depart from the spirit of the present invention should Included in the patent scope of this case.

Claims (3)

一種可精確偵測生物動態特徵或物件微動的裝置,其包含:一振動感測器,該振動感測器設有一毫米波訊號產生器、一發射單元以及一接收單元,該發射單元與接收單元分別與該毫米波訊號產生器電性連接;一處理單元,該處理單元與該振動感測器的毫米波訊號產生器電性連接;一影像紀錄單元,該影像紀錄單元與該處理單元電性連接,該影像紀錄單元係用以擷取該待測物的一真實影像,又該處理單元內設有一振動影像後製模組,用以根據該待測物的振動訊號與真實影像,後製並產生一模擬該待測物之振動狀態的振動模擬影像;其中,該振動感測器的毫米波訊號產生器係透過該發射單元以一預定的取樣頻率對一產生振動的待測物發射毫米波測試訊號,再透過該接收單元接收每一次發射的毫米波測試訊號碰觸該待測物後反射所形成的毫米波反射訊號,而使該處理單元可根據雷達測距及數位取樣的原理運算並重建該待測物的振動訊號。A device capable of accurately detecting a biological dynamic characteristic or a micro-movement of an object includes a vibration sensor provided with a millimeter wave signal generator, a transmitting unit, and a receiving unit. The transmitting unit and the receiving unit Electrically connected to the millimeter wave signal generator respectively; a processing unit electrically connected to the millimeter wave signal generator of the vibration sensor; an image recording unit, the image recording unit and the processing unit are electrically connected Connected, the image recording unit is used to capture a real image of the object to be measured, and a vibration image post-processing module is provided in the processing unit, which is used to post-process according to the vibration signal of the object and the real image. And generate a vibration simulation image that simulates the vibration state of the test object; wherein the millimeter wave signal generator of the vibration sensor transmits a millimeter of a test object that generates vibration through the transmitting unit at a predetermined sampling frequency Wave test signal, and then receive the millimeter wave test signal transmitted by the receiving unit every time the millimeter wave test signal touches the DUT and is reflected. So that the operation processing unit may reconstruct the vibration signal and the analyte in accordance with principles of radar range and digital sampling. 如申請專利範圍第1項所述之可精確偵測生物動態特徵或物件微動的裝置,其中還包含有一影像輸出裝置,用以顯示該振動模擬影像。The device capable of accurately detecting biological dynamic features or micro-movement of an object, as described in item 1 of the scope of patent application, further includes an image output device for displaying the vibration simulation image. 如申請專利範圍第1項所述之可精確偵測生物動態特徵或物件微動的裝置,其中具有一3D深度視覺模組用以替代該影像紀錄單元,該3D深度視覺模組與該處理單元電性連接。As described in item 1 of the scope of patent application, the device capable of accurately detecting biological dynamic features or object micro-movements has a 3D depth vision module to replace the image recording unit. The 3D depth vision module is electrically connected to the processing unit. Sexual connection.
TW106120325A 2017-06-19 2017-06-19 Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects TWI627430B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106120325A TWI627430B (en) 2017-06-19 2017-06-19 Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106120325A TWI627430B (en) 2017-06-19 2017-06-19 Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects

Publications (2)

Publication Number Publication Date
TWI627430B true TWI627430B (en) 2018-06-21
TW201905489A TW201905489A (en) 2019-02-01

Family

ID=63256166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120325A TWI627430B (en) 2017-06-19 2017-06-19 Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects

Country Status (1)

Country Link
TW (1) TWI627430B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674425B (en) * 2018-07-09 2019-10-11 佐臻股份有限公司 Device for accurately establishing the relative and absolute position of the 3D space in the space
TWI699542B (en) * 2018-10-12 2020-07-21 崴鼎農業科技股份有限公司 Biodetection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083411A (en) * 2019-06-12 2020-12-15 佐臻股份有限公司 Device capable of accurately establishing 3D relative and absolute positions of map data in space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239736B1 (en) * 1999-04-21 2001-05-29 Interlogix, Inc. Range-gated radar motion detector
US20060279239A1 (en) * 2005-06-08 2006-12-14 Samsung Electronics Co., Ltd. Apparatus and method for controlling motor
CN1937954A (en) * 2004-03-26 2007-03-28 佳能株式会社 Biological information monitoring apparatus
CN101441107A (en) * 2007-11-23 2009-05-27 上海工程技术大学 Data analysis processing method in ultrasonic wave non-contact object vibration measurement
TW201323908A (en) * 2011-12-07 2013-06-16 Ind Tech Res Inst Radar wave sensing apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239736B1 (en) * 1999-04-21 2001-05-29 Interlogix, Inc. Range-gated radar motion detector
CN1937954A (en) * 2004-03-26 2007-03-28 佳能株式会社 Biological information monitoring apparatus
US20060279239A1 (en) * 2005-06-08 2006-12-14 Samsung Electronics Co., Ltd. Apparatus and method for controlling motor
CN101441107A (en) * 2007-11-23 2009-05-27 上海工程技术大学 Data analysis processing method in ultrasonic wave non-contact object vibration measurement
TW201323908A (en) * 2011-12-07 2013-06-16 Ind Tech Res Inst Radar wave sensing apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674425B (en) * 2018-07-09 2019-10-11 佐臻股份有限公司 Device for accurately establishing the relative and absolute position of the 3D space in the space
TWI699542B (en) * 2018-10-12 2020-07-21 崴鼎農業科技股份有限公司 Biodetection system

Also Published As

Publication number Publication date
TW201905489A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
CN106843475A (en) A kind of method and system for realizing virtual reality interaction
TWI627430B (en) Device capable of accurately detecting biological dynamic characteristics or micro-movement of objects
EP2595402B1 (en) System for controlling light enabled devices
JP2019530049A (en) Resonance localization by tactile transducer device
US20080100588A1 (en) Tactile-feedback device and method
JP2009268622A5 (en)
WO2005077258A1 (en) Eyeshot detection device using distance image sensor
CN109223030B (en) Handheld three-dimensional ultrasonic imaging system and method
CN110740689B (en) Ultrasonic diagnostic apparatus and method of operating the same
WO2020116085A1 (en) Estimation apparatus, estimation method, and estimation program
JP2018014078A5 (en)
EP2345908A2 (en) Automatic adjustment of scan angle, scan depth and scan speed in an ultrasound system
CN108089187B (en) Positioning device and positioning method
KR101562210B1 (en) Ultrasonic diagnostic apparatus, display apparatus for displaying ultrasonic image and method for operating of ultrasonic diagnostic apparatus
WO2021147191A1 (en) Strain mode analysis method and related device
WO2014133360A1 (en) Ultrasonic diagnostic apparatus and method therefor
WO2007144608A2 (en) Apparatus and method for determining and imaging mechanical properties and external and internal geometry of a medium
CN104412123A (en) System and method for 3d ultrasound volume measurements
JP6625760B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
KR102660559B1 (en) Ultrasound probe, ultrasound imaging apparatus, ultrasound imaging system, and method for controlling thereof
KR20160021558A (en) Driving method of ultrasonic transducer, and ultrasonic apparatus
JP2015128554A (en) Ultrasonic diagnostic equipment
Long et al. Clinical acceptance testing and scanner comparison of ultrasound shear wave elastography
JP4484140B2 (en) Field measurement system, wave source exploration method, and wave source exploration program
JP2019208591A (en) Ultrasonic diagnostic apparatus and automatic storage control program

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees
MM4A Annulment or lapse of patent due to non-payment of fees