TWI627355B - Air compression device - Google Patents

Air compression device Download PDF

Info

Publication number
TWI627355B
TWI627355B TW105127554A TW105127554A TWI627355B TW I627355 B TWI627355 B TW I627355B TW 105127554 A TW105127554 A TW 105127554A TW 105127554 A TW105127554 A TW 105127554A TW I627355 B TWI627355 B TW I627355B
Authority
TW
Taiwan
Prior art keywords
cooling
air
wall
compressor
cooler
Prior art date
Application number
TW105127554A
Other languages
Chinese (zh)
Other versions
TW201713856A (en
Inventor
Masaru Kuromitsu
Yoji Takashima
Akira Takahashi
Genpei Tanaka
Toru Mizufune
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Publication of TW201713856A publication Critical patent/TW201713856A/en
Application granted granted Critical
Publication of TWI627355B publication Critical patent/TWI627355B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Abstract

本申請案係揭示一種空氣壓縮裝置,其具備將空氣壓縮而產生壓縮空氣之壓縮機、及規定供壓縮空氣流入之內部空間之冷卻器。冷卻器包含設置有第1散熱片之第1空腔形成面。壓縮機包含設置有第2散熱片之第2空腔形成面。第1空腔形成面及第2空腔形成面係形成容許自壓縮機與冷卻器吸取熱之冷卻空氣流動的冷卻管道。第1散熱片及第2散熱片係朝冷卻管道內突出。The present application discloses an air compressing device including a compressor that compresses air to generate compressed air, and a cooler that defines an internal space into which compressed air flows. The cooler includes a first cavity forming surface on which the first fin is provided. The compressor includes a second cavity forming surface on which the second fin is provided. The first cavity forming surface and the second cavity forming surface form a cooling duct that allows the cooling air that sucks heat from the compressor and the cooler to flow. The first fins and the second fins protrude into the cooling duct.

Description

空氣壓縮裝置Air compression device

本發明係關於產生壓縮空氣之空氣壓縮裝置。The present invention relates to an air compression device that produces compressed air.

產生壓縮空氣之空氣壓縮裝置已於多種用途被利用。藉由搭載於車輛(例如鐵路車輛)之空氣壓縮裝置產生之壓縮空氣亦存在供給至使制動力作用於車輛之制動器裝置或開閉驅動車輛門之空壓機器之情況。 專利文獻1及2係提案一種空氣壓縮裝置之設計,於產生壓縮空氣之壓縮機附近配置冷卻器。壓縮空氣自壓縮機向冷卻器供給。冷卻器可有效地冷卻壓縮空氣。 冷卻器之溫度藉由流動於冷卻器之內部之壓縮空氣而變高。專利文獻1及2係提案為了促使源自冷卻器之散熱而於冷卻器設置散熱片。專利文獻1及2之散熱片係朝與壓縮機之相反方向突出。為了將自空氣壓縮裝置之外部獲取之外部空氣導向冷卻器之散熱片周圍,產生自冷卻器之散熱片之強制性散熱,外部空氣之流動路徑必須與用以冷卻壓縮機之冷卻空氣之流動路徑設為不同。該情形,空氣壓縮裝置之構造複雜化。設計者亦可依賴源自冷卻器之散熱片之自然散熱進行自冷卻器之散熱。該情形時,不需要冷卻器之散熱片用之不同流動路徑,但自冷卻器之散熱效率變低。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開平8-261182號公報 [專利文獻2]日本專利特開2003-90291號公報Air compression devices that generate compressed air have been utilized in a variety of applications. The compressed air generated by the air compression device mounted on a vehicle (for example, a railway vehicle) may be supplied to a pneumatic device that applies a braking force to the brake device of the vehicle or opens and closes the vehicle door. Patent Documents 1 and 2 propose a design of an air compressing device in which a cooler is disposed in the vicinity of a compressor that generates compressed air. Compressed air is supplied from the compressor to the cooler. The cooler effectively cools the compressed air. The temperature of the cooler becomes high by the compressed air flowing inside the cooler. Patent Documents 1 and 2 propose to provide fins to the cooler in order to promote heat dissipation from the cooler. The heat sinks of Patent Documents 1 and 2 protrude in the opposite direction to the compressor. In order to guide the external air taken from the outside of the air compression device around the heat sink of the cooler, the forced heat dissipation from the heat sink of the cooler is generated, and the flow path of the external air must be the flow path of the cooling air used to cool the compressor. Set to different. In this case, the construction of the air compression device is complicated. The designer can also rely on the natural heat dissipation from the heat sink of the cooler to dissipate heat from the cooler. In this case, different flow paths for the fins of the cooler are not required, but the heat dissipation efficiency from the cooler is lowered. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei 8-261182 (Patent Document 2) Japanese Patent Laid-Open Publication No. 2003-90291

本發明之目的在於提供不需要冷卻空氣之複雜流動路徑,而具有可使冷卻器及壓縮機同時有效冷卻之冷卻構造的空氣壓縮裝置。 本發明之一態樣之空氣壓縮裝置係具備:壓縮機,其產生壓縮空氣;及冷卻器,其形成供上述壓縮空氣流入之內部空間。上述冷卻器包含設置有第1散熱片之第1空腔形成面。上述壓縮機包含設置有第2散熱片之第2空腔形成面。上述第1空腔形成面及上述第2空腔形成面係形成容許自上述壓縮機與上述冷卻器吸取熱之冷卻空氣流動之冷卻管道。上述第1散熱片及上述第2散熱片係朝上述冷卻管道內突出。It is an object of the present invention to provide an air compression device having a cooling structure that allows the cooler and the compressor to be effectively cooled simultaneously without requiring a complicated flow path for cooling air. An air compressing apparatus according to an aspect of the present invention includes: a compressor that generates compressed air; and a cooler that forms an internal space into which the compressed air flows. The cooler includes a first cavity forming surface on which the first fin is provided. The compressor includes a second cavity forming surface on which the second fin is provided. The first cavity forming surface and the second cavity forming surface form a cooling duct that allows cooling air that absorbs heat from the compressor and the cooler to flow. The first fins and the second fins protrude into the cooling duct.

<第1實施形態> 於上述之先前技術下,供壓縮空氣流動之冷卻器之本體部係位於冷卻器之散熱片與壓縮機之散熱片之間。因此,通過共通之流動路徑被供給之冷卻空氣若冷卻了冷卻器之散熱片與壓縮機之散熱片,則冷卻器之本體部碰撞冷卻空氣之流體,引起例如亂流。此使冷卻效率降低。此外,因冷卻器之散熱片遠離壓縮機之散熱片,故為了充分冷卻該等散熱片,必須設置具有大的送風能力之送風裝置。本發明人等開發了即便使用小型之送風裝置,除壓縮機外亦可用以有效冷卻壓縮空氣之冷卻技術。於第1實施形態中,說明例示性冷卻技術。 圖1係第1實施形態之空氣壓縮裝置100之概念圖。參照圖1,說明空氣壓縮裝置100。 空氣壓縮裝置100具備壓縮機200及冷卻器300。冷卻器300係配置於壓縮機200附近。且,冷卻器300安裝於壓縮機200。壓縮機200包含位於與冷卻器300對向之部位之第2空腔形成面210。 冷卻器300包含位於與壓縮機200之第2空腔形成面210對向之部位之第1空腔形成面310。於第2空腔形成面210之上側,形成上連接面224,於下側形成下連接面225。於第1空腔形成面310之上側,形成上連接面334,於下側形成下連接面335。且,壓縮機200之上連接面224與冷卻器300之上連接面334彼此結合。又,壓縮機200之下連接面225與冷卻器300之下連接面335彼此結合。 第2空腔形成面210及第1空腔形成面310係協動且規定具有延伸於水平方向之空間之冷卻管道400。即,第2空腔形成面210及第1空腔形成面310係均為管道切半後之形狀者。冷卻管道400內之空間之形狀亦可為任意形狀,但於第1實施形態中,形成為剖面矩形狀。因此,第1空腔形成面310具有朝下之第1上表面310a、自第1上表面310a之深處端部朝下方延伸之第1側面310b、連接於第1側面310b之下端且朝上之第1下表面310c。第1側面310b較第1上表面310a及第1下表面310c之各者更長。然而,第1側面310b亦可較第1上表面310a及第1下表面310c更短。該情形,散熱片成為自第1側面310b突出者,亦可自第1上表面310a及第1下表面310c中的一者突出。又第2空腔形成面210具有朝下之第2上表面210a、自第2上表面210a之深處端部朝下方延伸之第2側面210b、連接於第2側面210b之下端且朝上之第2下表面210c。第2側面210b較第2上表面210a及第2下表面210c之各者更長。然而,第1側面310b亦可較第1上表面310a及第1下表面310c之各者更短。該情形,散熱片成為自第2側面210b突出者,亦可自第1上表面310a及第1下表面310c中的一者突出。該情形,亦包含於第1空腔形成面310中,散熱片設置於第1側面310b,於第2空腔形成面210中,散熱片設置於第2上表面210a者等。 另,若冷卻管道400內之空間形成為例如剖面圓形狀,則第1空腔形成面310及第2空腔形成面210形成為彎曲狀。該情形,散熱片亦可朝冷卻管道400內之空間之剖面內之中心突出。或,若冷卻管道400內之空間形成為例如剖面三角形狀,則第1空腔形成面310及第2空腔形成面210係傾斜而形成。該情形,第1空腔形成面310及第2空腔形成面210成為傾斜面彼此對向者。又,該情形,散熱片亦可朝冷卻管道400之中心突出。 再者,第1空腔形成面310及第2空腔形成面210亦可如本實施形態所示為正對者,但即便未正對,只要一至複數個面(包含平面、傾斜面、彎曲面)中至少一部分為彼此對向者即可,亦可為於各空腔形成面210、310之間介隔其他構件者。又,於本實施形態中,冷卻管道400係由第1空腔形成面310及第2空腔形成面210構成,亦可為包含其他構件者。 又,第1空腔形成面310及第2空腔形成面210亦可如本實施形態所示,為配置於彼此對向之位置者,但第1空腔形成面310及第2空腔形成面210又可為近接配置於相同平面或大致相同平面上者。例如,若冷卻管道400內之空間形成為剖面矩形狀,則亦可為於四周內側面中之一內側面鄰接配置有第1空腔形成面310及第2空腔形成面210者。該情形,對於其他內側面,亦可為藉由其他構件而構成者。 壓縮機200係壓縮空氣,產生壓縮空氣。壓縮機200亦可為一般渦卷式壓縮機。取而代之,壓縮機200亦可為一般旋轉式壓縮機。進而取而代之,壓縮機構200亦可為一般擺動式壓縮機。進而取而代之,壓縮機構200亦可為一般往復動式壓縮機。本實施形態之原理並未限定於壓縮機200之特定構造。 自壓縮機200噴出之壓縮空氣朝冷卻器300供給。於冷卻器300內,形成有供壓縮空氣流入之內部空間301。壓縮空氣亦可通過橫穿冷卻管道400而延伸之省略圖示之管構件,而自壓縮機200向冷卻器300之內部空間301供給。取而代之,壓縮空氣亦可通過繞過冷卻管道400之管構件,而自壓縮機200向冷卻器300之內部空間301供給。本實施形態之原理並未限定於自壓縮機200朝冷卻器300之壓縮空氣之特定供給路徑。 冷卻空氣向冷卻管道400供給。被稱為多葉式風扇裝置、後彎式風扇裝置、交叉流動式風扇裝置或螺旋槳式風扇裝置之多種送風裝置亦可被用於朝冷卻管道400供給冷卻空氣。本實施形態之原理並未限定於朝冷卻管道400之冷卻空氣之特定供給技術。另,亦可為使送風裝置之驅動部(馬達等)與壓縮機等其他裝置之驅動部共用者,但藉由與其他裝置之驅動部個別獨立地設置送風裝置之驅動部,可於其他裝置停止之期間內亦使風扇旋轉並朝冷卻管道輸送冷卻空氣,且可提高冷卻效率。 冷卻器300進而包含自第1空腔形成面310之第1側面310b朝壓縮機200之第2空腔形成面210中第2側面210b突出之第1散熱片320。壓縮機200進而包含自第2空腔形成面210之第2側面210b朝冷卻器300之第1空腔形成面310中第1側面310b突出之第2散熱片220。散熱片320、220一起朝冷卻管道400內突出。 冷卻空氣流入冷卻管道400內。冷卻空氣於流動於冷卻管道400內之期間,自散熱片320、220吸取熱。其結果,冷卻器300及壓縮機200一起被冷卻。 冷卻管道400藉由形成於冷卻器300之第1空腔形成面310、與形成於壓縮機200之第2空腔形成面210而形成,因而,空氣壓縮裝置100無需用以冷卻該等之寬闊空間。因此,設計者可對空氣壓縮裝置100賦予較小之尺寸值。 <第2實施形態> 設計空氣壓縮裝置之設計者亦可對與第1實施形態相關說明之散熱片賦予多種形狀。於第2實施形態中,說明散熱片之例示性形狀。 圖2A及圖2B係散熱片101、102之概略立體圖。參照圖1至圖2B,說明散熱片101、102。 設計空氣壓縮裝置(未圖示)之設計者亦可將散熱片101、102之形狀賦予至參照圖1說明之第2散熱片220、第1散熱片320。取而代之,設計者亦可使散熱片101、102自參照圖2說明之冷卻管道400A之內壁面突出。 如圖2A所示,散熱片101具有於與冷卻空氣之流動方向大致平行而延伸之平坦面。因此,冷卻空氣可沿散熱片101之平坦面順利地流動。 如圖2B所示,散熱片102具有於冷卻空氣之流動方向延伸之起伏面。散熱片102較散熱片101具有更廣之與冷卻空氣之接觸面積,故冷卻空氣可自散熱片102吸取大量的熱。 <第3實施形態> 空氣壓縮裝置亦可具有配置於冷卻管道內部之間隔壁。若冷卻管道之內部空間藉由間隔壁被劃分成複數個較小空間,則流動於冷卻管道內之冷卻空氣被整流。其結果,冷卻空氣可自壓縮機及冷卻器內之壓縮空氣吸取大量的熱。於第3實施形態中,說明具有間隔壁之例示空氣壓縮裝置。 圖3係第3實施形態之空氣壓縮裝置100A之概念圖。參照圖3,說明空氣壓縮裝置100A。與第1實施形態共通之符號意指附有該符號之要件與第1實施形態功能性地共通。因此,第1實施形態之說明被援用於附有共通符號之要件。 與第1實施形態同樣,空氣壓縮裝置100A具備壓縮機200及冷卻器300。第1實施形態之說明援用於該等要件。 空氣壓縮裝置100A進而具備配置於第2散熱片220及第1散熱片320間之間隔壁410。與於冷卻管道400內沿水平方向突出之散熱片220、320不同,間隔壁410係於冷卻管道400內沿垂直方向延伸,將冷卻管道400之內部空間劃分成左流動空間411與右流動空間412。左流動空間411被規定於間隔壁410與冷卻器300之第1空腔形成面310之間。右流動空間412被規定於間隔壁410與壓縮機200之第2空腔形成面210之間。冷卻空氣流入左流動空間411與右流動空間412。 間隔壁410亦可抵接於第2散熱片220及第1散熱片320各者之前端緣,亦可不抵接。間隔壁410若抵接於於右流動空間412內突出之第2散熱片220,則第2散熱片220將右流動空間412上下劃分。間隔壁410若抵接於於左流動空間411內突出之第1散熱片320,則第1散熱片320將左流動空間411上下劃分。該情形,因將第2散熱片220及第1散熱片320之熱釋出至間隔壁410,故冷卻空氣可自壓縮機200及冷卻器300內之壓縮空氣有效地吸取熱。間隔壁410若遠離散熱片220、320中至少一者,則散熱片220、320間之熱傳遞變得難以產生。 間隔壁410亦可由與散熱片220、320中一者或兩者相同之材料形成。取而代之,間隔壁410亦可由與散熱片220、320不同之材料形成。例如,設計者亦可選擇較用於散熱片220、320之材料具有更低熱傳導率之材料作為間隔壁410之材料。該情形,因於壓縮機200與冷卻器300之間往來之熱較小,故壓縮機200與冷卻器300之間之複雜熱干擾變得難以產生。該情形,使與壓縮機200及冷卻器300之熱相關之控制容易化。 <第4實施形態> 設計空氣壓縮裝置之設計者係可對冷卻器賦予多種構造及多種形狀。於第4實施形態中,說明例示性冷卻器。 圖4係第4實施形態之冷卻器300B之概略立體圖。參照圖3及圖4,說明冷卻器300B。 冷卻器300B具備第1空腔形成面310形成於外表面之外殼體330、及止回閥340。外殼體330為大致矩形之箱。壓縮空氣流入外殼體330內。止回閥340自外殼體330朝上方突出。壓縮空氣通過止回閥340,自外殼體330之內部排氣。冷卻器300B可利用作為參照圖3說明之冷卻器300。 外殼體330包含上游面331、及與上游面331相反側之下游面332。冷卻空氣自上游面331向下游面332流動。上游面331及下游面332之高度尺寸(垂直方向)較上游面331及下游面332之寬度尺寸(水平方向)更大。 外殼體330包含上游面331與下游面332之間之連接面333。連接面333係連接於壓縮機(未圖示)、或連接於配置在壓縮機與外殼體330之間之間隔構件(未圖示)。 連接面333包含位於第1空腔形成面310之上側之上連接面334、及位於第1空腔形成面310之下側之下連接面335。冷卻空氣流入上連接面334與下連接面335之間由第1空腔形成面310劃分之流動區域。上連接面334與下連接面335大致位於同一平面上。上連接面334及下連接面335連接於壓縮機、或連接於配置在壓縮機與外殼體330之間之間隔構件。藉由第1空腔形成面310劃分之流動區域係自上連接面334及下連接面335凹設。 外殼體330包含於流動區域內突出之複數片第1散熱片336。複數片第1散熱片336自上游面331向下游面332延伸。複數片第1散熱片336各者之前端緣與上連接面334及下連接面335大致位於同一平面上。複數片第1散熱片336各者之前端緣亦可與壓縮機、或與配置於壓縮機與外殼體330之間之間隔構件接觸。 外殼體330包含於流動區域之大致中心突出之流入筒337。壓縮空氣通過由流入筒337包圍之流入口338,向外殼體330之內部空間流入。由於流動於流動區域內之冷卻空氣自規定流動區域之第1空腔形成面310及複數片第1散熱片336吸取熱,故將流向外殼體330之內部空間之壓縮空氣有效冷卻。 圖5係顯示冷卻器300B之內部構造之概略剖視圖。參照圖5,進而說明冷卻器300B。 外殼體330包含上壁351、下壁352、上游壁353、及下游壁354。止回閥340之外壁係於由上壁351與上游壁353規定之角隅部之附近,與上壁351一體形成。上壁351於上游壁353之上端與下游壁354之上端之間大致水平而延伸。下壁352於上游壁353之下端與下游壁354之下端之間大致水平而延伸。上游壁353及下游壁354係大致垂直而延伸。 外殼體330包含使由上壁351、下壁352、上游壁353及下游壁354包圍之大致矩形狀之內部空間予以區隔,而規定複數條流路之複數個間隔壁。複數個間隔壁包含直線狀之上間隔壁361、直線狀之下間隔壁362、及大致τ字型之中央間隔壁363。 上間隔壁361自上游壁353大致水平而延伸。上間隔壁361之前端部自下游壁354遠離。 下間隔壁362於上間隔壁361之下方大致水平而延伸。下間隔壁362之兩端部分別自上游壁353及下游壁354遠離。 中央間隔壁363形成於上間隔壁361與下間隔壁362之間。中央間隔壁363包含直線壁364及彎曲壁365。直線壁364自下游壁354大致水平而延伸。直線壁364之前端部自上游壁353遠離。彎曲壁365於流入口338之附近,自直線壁364朝下方延伸,其後朝下游壁354彎曲。彎曲壁365之前端部自下游壁354遠離。直線壁364及彎曲壁365係部分包圍流入口338。 外殼體330係於藉由上壁351、下壁352、上游壁353及下游壁354包圍之大致矩形狀之內部空間內,規定第1內部流路371、第2內部流路372、第3內部流路373、第4內部流路374、及第5內部流路375。 第1內部流路371係由直線壁364與彎曲壁365規定。第1內部流路371與流入口338連接,且朝下游壁354延伸。自流入口338流入之壓縮空氣沿第1內部流路371流動,且朝向下游壁354。 第2內部流路372係由中央間隔壁363與下間隔壁362規定。第3內部流路373係由下間隔壁362與下壁352規定。到達第1內部流路371之終端之壓縮空氣通過彎曲壁365之前端部與下游壁354之間之空隙,朝下方流動。壓縮空氣之一部分於隨後通過第2內部流路372,朝上游壁353流動。壓縮空氣之其他部分通過第3內部流路373,朝上游壁353流動。 到達第3內部流路373之終端之壓縮空氣通過下間隔壁362與上游壁353之間之空隙,朝上方流動,且與第2內部流路372之終端之壓縮空氣合流。第2內部流路372之終端之壓縮空氣通過直線壁364與上游壁353之間之空隙朝上方流動,且流入第4內部流路374。 壓縮空氣於隨後沿第4內部流路374流動,且朝向下游壁354。到達第4內部流路374之終端之壓縮空氣通過上間隔壁361與下游壁354之間之空隙朝上方流動,且流入第5內部流路375。 壓縮空氣於隨後沿第5內部流路375流動,且朝向上游壁353。壓縮空氣最終自配置於第5內部流路375之終端附近之止回閥340排氣。 由上壁351、下壁352、上游壁353及下游壁354包圍之大致矩形狀之內部空間位於形成有供冷卻空氣流動之流動區域之第1空腔形成面310之內側。壓縮空氣之流路成為於由上壁351、下壁352、上游壁353及下游壁354包圍之大致矩形狀之內部空間內蜿蜒之流路。因此,熱交換面積變長。因此,壓縮空氣藉由冷卻空氣有效地冷卻。 壓縮空氣之冷卻結果亦於外殼體330之內壁面發生冷凝。冷凝水在重力之作用下朝下方流動,最終積存於最下方之流路(第3內部流路373)。然而,壓縮空氣之流路未經由第3內部流路373,而於流入口338與止回閥340之間連通。因此,壓縮空氣可通過第2內部流路372,朝向止回閥340,因而不易於冷卻器300B內產生壓縮空氣之堵塞。 <第5實施形態> 設計空氣壓縮裝置之設計者亦可選擇渦卷式壓縮機作為壓縮機。於第5實施形態中,說明例示性渦卷式壓縮機。 圖6係第5實施形態之渦卷式壓縮機200C之概略展開立體圖。參照圖3及圖6,說明渦卷式壓縮機200C。 渦卷式壓縮機200C可作為參照圖3說明之壓縮機200加以利用。渦卷式壓縮機200C具備保持框體230、搖動旋轉體240、及蓋體250。 保持框體230包含腳部231、外殼體232及軸部233。腳部231固定於基座(未圖示)。外殼體232連接於腳部231之上端,且整體性地規定圓形之收納空間239。搖動旋轉體240收納於收納空間239內。 外殼體232包含環壁261、上弧壁262、下弧壁263、流入壁264、及流出壁265。環壁261包含外表面266、及與外表面266相反側之內表面267。軸部233自外表面266突出。內表面267與搖動旋轉體240對向。 上弧壁262自描繪圓形輪廓之環壁261之外緣之上部向蓋體250突出。下弧壁263自環壁261之外緣之下部向蓋體250突出。上弧壁262、下弧壁263及環壁261與蓋體250協動,規定供收納搖動旋轉體240之收納空間239。 流入壁264連接上弧壁262之一端部(圖6中近前側之端部)與下弧壁263之一端部(圖6中近前側之端部)。流入壁264自上弧壁262之一端部及下弧壁263之一端部,相對於軸部233之突出方向大致直角而突出。流入壁264具有大致C型之剖面。流入壁264與蓋體250協動,規定供冷卻空氣流入之流入口。 流出壁265形成於上弧壁262之另一端部(圖6中內側之端部)與下弧壁263之另一端部(圖6中內側之端部)之間。流出壁265自上弧壁262及下弧壁263,朝與流入壁264之相反方向突出。與流入壁264同樣,流出壁265具有大致C型之剖面。流出壁265與蓋體250協動,規定供冷卻空氣流出之流出口。 軸部233包含圓筒部234、及旋轉軸235。圓筒部234係自環壁261之外表面266突出。於圓筒部234內之空間,收納有將旋轉軸235之旋轉運動轉換成搖動旋轉體240之搖動旋轉運動之轉換機構(未圖示)。已知之用於渦卷式壓縮機之多種技術亦可用於轉換機構。本實施形態之原理並未限定於轉換機構之特定構造。 旋轉軸235係接收馬達或其他驅動源產生之驅動力。旋轉軸235於圓筒部234內,連接於上述之轉換機構。 搖動旋轉體240包含第1圓板241、第2圓板242、可動渦形管243、及複數片散熱片244。第1圓板241配置於環壁261之內表面267之附近。第2圓板242與第1圓板241之間形成間隙且與第1圓板241平行配置。第2圓板242配置於第1圓板241與蓋體250之間。渦卷狀之可動渦形管243自第2圓板242朝蓋體250突出。複數片散熱片244將第1圓板241與第2圓板242之間之空間分割為具有狹窄剖面之複數條流路。形成於複數片散熱片244間之空間係作為用以冷卻可動渦形管243之冷卻流路而發揮功能。 第1圓板241係連接於圓筒部234內之轉換機構。其結果,搖動旋轉體240之搖動旋轉係藉由旋轉軸235之旋轉而引起。搖動旋轉體240之搖動旋轉之間,可動渦形管243之中心係繞著旋轉軸235之旋轉中心軸回旋。 自藉由流入壁264與蓋體250規定之流入口流入之冷卻空氣通過藉由複數片散熱片244細分化之空間,自藉由流出壁265與蓋體250規定之流出口排氣。其結果,搖動旋轉體240被有效冷卻。 圖7係蓋體250之概略立體圖。參照圖3、圖6及圖7,說明蓋體250。 如圖6所示,蓋體250包含環蓋板251及收納壁252。環蓋板251及收納壁252係整體具有圓形剖面。環蓋板251係直徑較收納壁252更大。環壁251包含內表面253、及與內表面253相反側之外表面254。內表面253密接於上弧壁262及下弧壁263之端面。 如圖6所示,收納壁252包含周壁255及端壁256。周壁255係沿旋轉軸235之軸方向,自環蓋板251之外表面254突出。周壁255係規定供收納第2圓板242及可動渦形管243之具有大致圓形剖面之收納空間。周壁255包圍第2圓板242。端壁256係封閉藉由周壁255規定之收納空間之端部。 如圖7所示,蓋體250包含自端壁256向第2圓板242突出之渦卷狀之固定渦形管257。固定渦形管257係形成與可動渦形管243互補之渦卷狀之空間。可動渦形管243插入渦卷狀空間,與固定渦形管257咬合。搖動旋轉體240之搖動旋轉期間,空氣被固定渦形管257與可動渦形管243壓縮,成為壓縮空氣。 如圖7所示,於端壁256形成噴出口258。噴出口258位於固定渦形管257之大致中心。於渦卷式壓縮機200C內被壓縮之壓縮空氣自噴出口258排氣。 如圖6所示,蓋體250包含垂直壁271、272。垂直壁271自環蓋板251之外周面向環蓋板251之徑向外側突出,且密接於流入壁264之2個端面。藉此,形成用以冷卻搖動旋轉體240而流入之冷卻空氣用之流入口。垂直壁272於與垂直壁271相反之方向中,自環蓋板251之外周面向環蓋板251之徑向外側突出。垂直壁272密接於流出壁265之2個端面。藉此,形成使冷卻搖動旋轉體240後之冷卻空氣排出之流出口。 如圖6所示,蓋體250包含上邊界壁273及下邊界壁274。上邊界壁273之下表面成為第2空腔形成面210之第2上表面210a。上邊界壁273自環蓋板251之外表面254及端壁256突出,並規定供用以冷卻固定渦形管257之冷卻空氣流動之區域之上側邊界。下邊界壁274位於上邊界壁273之下方。下邊界壁274之上表面成為第2空腔形成面210之第2下表面210c。與上邊界壁273同樣,下邊界壁274自環蓋板251之外表面254及端壁256突出。下邊界壁274規定供用以冷卻固定渦形管257之冷卻空氣流動之區域之下側邊界。 蓋體250包含複數片第2散熱片220C。複數片散熱片220C係於上邊界壁273與下邊界壁274之間,自環蓋板251之外表面254及收納壁252之端壁256突出。即,環蓋板251之外表面254及收納壁252之端壁256係成為第2空腔形成面210之第2側面210b。 <第6實施形態> 設計者可基於與第4實施形態及第5實施形態相關說明之技術原理,設計多種空氣壓縮裝置。於第6實施形態中,說明例示之空氣壓縮裝置。 圖8係第6實施形態之空氣壓縮裝置100D之概略展開立體圖。參照圖3、圖4、圖7及圖8,說明空氣壓縮裝置100D。與第4實施形態或第5實施形態共通之符號意指附有該符號之要件與第4實施形態或第5實施形態功能性地共通。因此,第4實施形態或第5實施形態之說明被援用於附有共通符號之要件。 空氣壓縮裝置100D具備與第4實施形態相關說明之冷卻器300B。第4實施形態之說明援用於冷卻器300B。即,冷卻管道400係藉由冷卻器300B中的第1空腔形成面310、蓋體250之環蓋板251之外表面254及端壁256、上邊界壁273之下表面、及下邊界壁274之上表面而形成。 空氣壓縮裝置100D進而具備與第5實施形態相關說明之渦卷式壓縮機200C。第5實施形態之說明援用於渦卷式壓縮機200C。 空氣壓縮裝置100D進而具備間隔壁410D。間隔壁410D由隔熱構件構成。間隔壁410D被夾於冷卻器300B之複數片第1散熱片336之前端緣與渦卷式壓縮機200C之複數片第2散熱片220C之前端緣間。間隔壁410D因具有較第1散熱片336及第2散熱片220C更低之熱傳導率,故渦卷式壓縮機200C與冷卻器300B之間之熱之往來係變得不易產生。 空氣壓縮裝置100D進而具備供給管420。於間隔壁410D之大致中心,形成插通孔413。供給管420被插入插通孔413。 供給管420包含上游端421及下游端422。上游端421被插入渦卷式壓縮機200C之噴出口258(參照圖7)。下游端422被插入冷卻器300B之流入口338(參照圖4)。因此,壓縮空氣係通過供給管420,自渦卷式壓縮機200C朝冷卻器300B供給。供給管420之兩端因藉由渦卷式壓縮機200C及冷卻器300B保持,故未於噴出口258及流入口338中產生過高之應力。 如第5實施形態相關所說明,用以冷卻可動渦形管243之冷卻空氣之流動路徑被規定於保持框體230與蓋體250之間。用以冷卻固定渦形管257(參照圖7)及冷卻器300B內之壓縮空氣之冷卻空氣之流動路徑係由形成於冷卻器300B之第1空腔形成面310與形成於蓋體250之第2空腔形成面210規定。因此,配置於2條流動路徑之間之可動渦形管243及固定渦形管257被有效冷卻。 <第7實施形態> 根據第6實施形態之技術原理,藉由2條流動路徑之間之固定渦形管及可動渦形管之配置,固定渦形管及可動渦形管被有效冷卻。共通之送風機亦可被利用於朝2條流動路徑供給冷卻空氣。該情形,設計者可對空氣壓縮裝置賦予較小尺寸。於第7實施形態中,說明使用共通之送風機,朝2條流動路徑供給冷卻空氣之例示性空氣壓縮裝置。 圖9係第7實施形態之空氣壓縮裝置100E之概略立體圖。參照圖8及圖9,說明空氣壓縮裝置100E。與第6實施形態共通之符號意指附有該符號之要件與第6實施形態功能性地共通。因此,第6實施形態之說明被援用於附有共通符號之要件。 與第6實施形態同樣,空氣壓縮裝置100E具備渦卷式壓縮機200C(參照圖9)、冷卻器300B(參照圖9)、間隔壁410D(參照圖8)、及供給管420(參照圖8)。第6實施形態之說明援用於該等要件。 如圖9所示,空氣壓縮裝置100E具備基座110。保持框體230之腳部231(參照圖8)係被規定於基座110。冷卻器300B係介隔間隔壁410D(參照圖8)而固定於蓋體250。因此,渦卷式壓縮機200C及冷卻器300B被穩定地安裝於基座110上。 空氣壓縮裝置100E具備送風機430與第1引導框440。送風機430產生冷卻空氣。第1引導框440配置於由渦卷式壓縮機200C與冷卻器300B形成之組裝體與送風機430之間。第1引導框440係將送風機430產生之冷卻空氣封入送風機430、與由渦卷式壓縮機200C及冷卻器300B形成之組裝體之間。即,第1引導框440構成將冷卻空氣引導至冷卻管道400之上游引導部。藉由第1引導框440,使冷卻空氣集中流入參照圖8說明之2條流動路徑。 圖10A係第1引導框440之概略立體圖。圖10B係第1引導框440之概略性後視圖。參照圖8至圖10B,說明第1引導框440。 如圖9所示,第1引導框440包含安裝箱441與襯墊442。如圖10A所示,安裝箱441包含周壁443、第1安裝壁444及第2安裝壁445。 如圖10A所示,周壁443規定大致矩形狀之外周輪廓。如圖9所示,送風機430安裝於第1安裝壁444。如圖10A所示,於第1安裝壁444形成大致圓形之開口部446。送風機430通過開口部446,將冷卻空氣送入第1引導框440內。如圖10B所示,於第2安裝壁445形成大致矩形之開口部447。襯墊442安裝於第2安裝壁445之外表面,包圍開口部447。 如圖8所示,冷卻器300B包含與連接面333相反側之外表面339。圖8顯示點P01與點P02。點P01係指上游面331與外表面339之間之角隅線之上端。點P02係指上游面331與外表面339之間之角隅線之下端。 如圖8所示,渦卷式壓縮機200C之流入壁264包含上游面281、凹面282及平坦面283。若將冷卻器300B安裝於渦卷式壓縮機200C,則上游面281與冷卻器300B之上游面331位於大致同一平面上。凹面282自上游面281大致直角而彎曲,成為供用以冷卻可動渦形管243之冷卻空氣流入之流入口的內周面。平坦面283係於與凹面282之相反側,自上游面281直角彎曲且大致垂直而延伸。圖8顯示為點P03與點P04。點P03係指平坦面283與上游面281之間之角隅線之下端。點P04係指平坦面283與上游面281之間之角隅線之上端。 若將冷卻器300B安裝於渦卷式壓縮機200C,則形成以點P01~點P04作為角隅部之矩形框狀之區域。與第6實施形態相關而說明之冷卻空氣之2條流動路徑,具有藉由利用點P01~點P04規定之矩形框狀之區域而形成之開口作為上游端。利用點P01~點P04規定之矩形區域係與形成於第1引導框440之第2安裝壁445之矩形狀之開口部447互補。由點P01~點P04規定之矩形區域亦可嵌入開口部447。由於開口部447由襯墊442包圍,因而送風機430產生之冷卻空氣不會自第1引導框440漏出,可流入2條流動路徑。 <第8實施形態> 設計者亦可將用以驅動壓縮機之多種裝置、配置及構造組裝於空氣壓縮裝置中。於第8實施形態中,說明用以驅動壓縮機之例示驅動技術。 圖11係第8實施形態之空氣壓縮裝置100F之概略立體圖。參照圖7、圖8及圖11,說明空氣壓縮裝置100F。與第7實施形態共通之符號意指附有該符號之要件與第7實施形態功能性地共通。因此,第7實施形態之說明被援用於附有共通符號之要件。 與第7實施形態同樣,空氣壓縮裝置100F具備基座100(參照圖11)、渦卷式壓縮機200C(參照圖11)、冷卻器300B(參照圖11)、間隔壁410D(參照圖8)、供給管420(參照圖8)、送風機430(參照圖11)、及第1引導框440(參照圖11)。第7實施形態之說明援用於該等要件。 如圖9所示,渦卷式壓縮機200C包含吸入管280。藉由吸入管280規定之流路與固定渦形管257(參照圖7)及可動渦形管243(參照圖8)所咬合之空間(即,由保持框體230與蓋體250包圍之空間)相連。 如圖11所示,空氣壓縮裝置100F具備過濾管120。過濾管120包含過濾部121與可撓性管122。可撓性管122之基端連接於吸入管280(參照圖9)。過濾部121安裝於可撓性管122之前端部。若渦卷式壓縮機200C被驅動,則吸入管280及可撓性管122內產生負壓環境。其結果,過濾部121周圍之空氣通過可撓性管122及吸入管280,流入固定渦形管257(參照圖7)及可動渦形管243(參照圖8)所咬合之空間。此時,過濾部121自流入之空氣中除去異物。固定渦形管257及可動渦形管243壓縮所流入之空氣,並產生壓縮空氣。 如圖11所示,空氣壓縮裝置100F具備框體500。框體500包含第1支柱510、第2支柱520、第3支柱530、第4支柱540、第1樑材550、第2樑材560、及底板570。底板570為大致矩形狀。底板570橫置於基座110之下方。第1支柱510、第2支柱520、第3支柱530及第4支柱540自底板570之4個角隅部朝上方延伸。第1支柱510及第3支柱530排列於底板570之1條對角線上。第2支柱520及第4支柱540排列於底板570之另1條對角線上。第1樑材550於第1支柱510與第2支柱520之間大致水平而延伸。第2樑材560於第3支柱530與第4支柱540之間大致水平而延伸。第1樑材550與第2樑材560大致平行而延伸。基座110固定於第1樑材550及第2樑材560上。 如圖11所示,空氣壓縮裝置100F具備馬達610及傳遞機構620。基座110包含上表面111、及與上表面111相反側之下表面112。渦卷式壓縮機200C固定於上表面111,另一方面,馬達610固定於下表面112。渦卷式壓縮機200C及馬達610係垂直排列,因而設計空氣壓縮裝置100F之設計者可對水平面上之框體500之面積賦予較小值。 傳遞機構620包含上滑輪621、下滑輪622、張力滑輪623、及環狀帶624。馬達610包含與渦卷式壓縮機200C之旋轉軸235大致平行而延伸之馬達軸611。上滑輪621安裝於旋轉軸235。下滑輪622安裝於馬達軸611。環狀帶624捲繞上滑輪621與下滑輪622。張力滑輪623對環狀帶624賦予適當張力。 若馬達610作動,則馬達軸611旋轉。其結果,使與安裝於馬達軸611之下滑輪622咬合之環狀帶624環繞,而使上滑輪621旋轉。因安裝有上滑輪621之旋轉軸235旋轉,故固定渦形管257(參照圖7)及可動渦形管243(參照圖8)對渦卷式壓縮機200C內之空氣壓縮,並產生壓縮空氣。 <第9實施形態> 設計者係可使用與第8實施形態相關說明之框體,設計保護壓縮機或其他機器之多種框體。於第9實施形態中,說明例示框體構造。 圖12A係第9實施形態之空氣壓縮裝置100G之概略立體圖。圖12B係空氣壓縮裝置100G之其他又一者之概略立體圖。參照圖8、圖11至圖12B,說明空氣壓縮裝置100G。與第8實施形態共通之符號意指附有該符號之要件與第8實施形態功能性地共通。因此,第8實施形態之說明被援用於附有共通符號之要件。 與第8實施形態同樣,空氣壓縮裝置100G具備基座110(參照圖11)、過濾管120(參照圖11)、渦卷式壓縮機200C(參照圖11)、冷卻器300B(參照圖11)、間隔壁410D(參照圖8)、供給管420(參照圖8)、送風機430(參照圖11)、第1引導框440(參照圖11)、馬達610(參照圖11)、及傳遞機構620(參照圖11)。第8實施形態之說明援用於該等要件。 如圖12A所示,空氣壓縮裝置100G進而具備框體700。參照圖11說明之框體500係作為框體700之一部分而使用。 如圖12A所示,框體700包含頂板710。頂板710安裝於第1支柱510(參照圖11)、第2支柱520(參照圖11)、第3支柱530(參照圖11)及第4支柱540(參照圖11)之上端。因此,頂板710於底板570(參照圖12B)及基座110(參照圖11)上大致水平地橫置。 框體700包含右面板720(參照圖12A)與左面板730(參照圖12B)。右面板720蓋住由底板570(參照圖12B)、頂板710(參照圖12A)、第1支柱510(參照圖11)及第4支柱540(參照圖11)包圍之空間。左面板730蓋住由底板570、頂板710、第2支柱520(參照圖11)及第3支柱530(參照圖11)包圍之空間。 如圖12A所示,框體700包含上罩體740與下罩體750。上罩體740蓋住由頂板710、第1樑材550(參照圖11)、第1支柱510(參照圖11)及第2支柱520(參照圖11)包圍之空間。送風機430(參照圖11)及第1引導框440(參照圖11)配置於上罩體740與渦卷式壓縮機200C之間。下罩體750蓋住由底板570(參照圖11)、第1樑材550(參照圖11)、第1支柱510(參照圖11)及第2支柱520(參照圖11)包圍之空間。下罩體750包含保持框751與複數片檐板752。保持框751係由沿底板570、第1樑材550、第1支柱510及第2支柱520之板材形成。複數片檐板752由保持框751保持。複數片檐板752之各者於由保持框751包圍之空間內大致水平而延伸。複數片檐板752排列於垂直方向。 如參照圖11說明,渦卷式壓縮機200C通過過濾管120而抽吸。框體700外之空氣(外氣)通過形成於複數片檐板752之間之空隙,而被吸入過濾管120。同樣,送風機430亦通過形成於複數片檐板752之間之空隙,抽吸外氣並產生冷卻空氣。 如圖12B所示,空氣壓縮裝置100G具備冷卻裝置810、除濕裝置820及控制盤830。冷卻裝置810係於上罩體740之相反側,安裝於框體700。除濕裝置820及控制盤830係於下罩體750之相反側,安裝於框體700。 渦卷式壓縮機200C(參照圖11)所產生之壓縮空氣通過冷卻器300B(參照圖11),朝冷卻裝置810供給。冷卻裝置810因配置於框體700外,故壓縮空氣於冷卻裝置810中,藉由外氣而被有效地冷卻。其後,壓縮空氣供給至除濕裝置820。除濕裝置820對壓縮空氣除濕。除濕後之壓縮空氣供給於儲存壓縮空氣之貯槽或多種空壓機器。控制盤830控制馬達610(參照圖11)、送風機430(參照圖11)或其他裝置之動作。 <第10實施形態> 設計者亦可對框體賦予用以將送風機所產生之冷卻空氣排氣之多種構造。於第10實施形態中,說明具有排氣功能之例示框體構造。 圖13係第10實施形態之排氣構造130之概略立體圖。參照圖8、圖11、圖12A及圖13,說明排氣構造130。 如圖13所示,排氣構造130具備排氣板760及第2引導框770。排氣板760係部分地封閉由底板570(參照圖11)、頂板710(參照圖12A)、第3支柱530(參照圖11)及第4支柱540(參照圖11)所包圍之空間。排氣板760位於與上罩體740(參照圖12A)之相反側。排氣板760係作為框體700(參照圖12A)之一部分而使用。 如圖13所示,排氣板760包含外表面761及與外表面761相反側之內表面762。外表面761形成框體700(參照圖12A)之外表面之一部分。內表面762係部分地規定供收納渦卷式壓縮機200C(參照圖11)之收納空間。冷卻裝置810安裝於外表面761。第2引導框770安裝於內表面762。 如圖13所示,第2引導框770包含箱部771與襯墊772。箱部771包含周壁773與對向壁774。周壁773自排氣板760朝內側突出。周壁773包含下游緣775與矩形緣776。下游緣775鄰接於排氣板760。矩形緣776包圍對向壁774。對向壁774與排氣板760對向。 於對向壁774,形成大致矩形狀之開口部777。襯墊772沿規定開口部777之緣部,安裝於對向壁774。以襯墊772包圍參照圖8說明之冷卻空氣之2條流動路徑之下游端之方式,使第2引導框770連接於渦卷式壓縮機200C及冷卻器300B。 圖14係空氣壓縮裝置100G之概略立體圖。冷卻裝置810自圖14所示之空氣壓縮裝置100G去除。參照圖12B至圖14,說明空氣壓縮裝置100G。 如圖14所示,於排氣板760形成排氣口769。排氣口769延伸於水平方向。第2引導框770之下游緣775(參照圖13)包圍排氣口769。 如圖12B所示,冷卻裝置810具備供壓縮空氣流入之蜿蜒狀之管路811。管路811係沿水平方向大致筆直延伸,且沿垂直方向反復彎曲。 排氣口769(參照圖14)朝管路811(參照圖12B)之延伸設置區域開口。因此,管路811暴露於通過第2引導框770(參照圖13)之開口部777(參照圖13)及排氣板760(參照圖14)之排氣口769(參照圖14)排氣之冷卻空氣中。其結果,沿蜿蜒管811流動之壓縮空氣被有效地冷卻。 <第11實施形態> 具有低剛性之管構件適於產生振動之環境下。然而,若於空氣壓縮裝置之框體內產生循環之強空氣流,則因可撓性之管構件搖動,故存在設計者選擇具有高剛性之管構件之情形。與第10實施形態相關說明之排氣原理由於於空氣壓縮裝置之框體內未產生循環之強空氣流,故設計者亦可利用至少部分具有可撓性之管構件。於第11實施形態中,說明使用可撓性之樹脂管,引導壓縮空氣之例示框體構造。 圖15係空氣壓縮裝置100G之概略立體圖。參照圖12B及圖15,說明空氣壓縮裝置100G。 如圖15所示,空氣壓縮裝置100G具備樹脂管140。樹脂管140連接於冷卻器300B之止回閥340與冷卻裝置810(參照圖12B)之蜿蜒管811(參照圖12B)。因此,壓縮空氣藉由樹脂管140而自冷卻器300B向冷卻裝置810引導。樹脂管140亦可由聚四氟乙烯或其他適當之耐熱樹脂形成。樹脂管140於冷卻空氣所流動之區域之外延伸設置。因此,樹脂管140不易因冷卻空氣而搖動。本實施形態之原理未限定於用於樹脂管140之特定材料。 設計者可根據與上述多種實施形態相關說明之設計原理,設計多種空氣壓縮裝置。亦可將與上述多種實施形態中之一者相關說明之多種特徵中之一部分應用於與其他又一者之實施形態相關說明之空氣壓縮裝置。 [實施形態之概要] 此處,對上述實施形態進行概述。 本發明之一態樣之空氣壓縮裝置係具備:壓縮機,其產生壓縮空氣;及冷卻器,其形成供上述壓縮空氣流入之內部空間。上述冷卻器包含設置有第1散熱片之第1空腔形成面。上述壓縮機包含設置有第2散熱片之第2空腔形成面。上述第1空腔形成面及上述第2空腔形成面形成容許自上述壓縮機與上述冷卻器吸取熱之冷卻空氣流動之冷卻管道。上述第1散熱片及上述第2散熱片係朝上述冷卻管道內突出。 根據上述構成,壓縮空氣流入冷卻器之內部空間。冷卻器之第1空腔形成面及壓縮機之第2空腔形成面因形成容許冷卻空氣流動之冷卻管道,故不需要為了確保用以冷卻冷卻器及壓縮機之空間而設置廣闊之空間。且,設於第1空腔形成面之第1散熱片及設於第2空腔形成面之第2散熱片係一起突出於上述冷卻管道內,因而由供給至冷卻管道之冷卻空氣強制性且有效地冷卻。第1散熱片及第2散熱片由於由於共通之冷卻管道內流動之冷卻空氣冷卻,故設計者亦可不對空氣壓縮裝置賦予冷卻空氣之複雜流動路徑。 於上述構成中,上述第1空腔形成面及第2空腔形成面亦可配置於彼此對向之位置。即,該空氣壓縮裝置具備:壓縮機,其產生壓縮空氣;及冷卻器,其形成供上述壓縮空氣流入之內部空間。上述冷卻器包含位於與上述壓縮機對向之部位之第1空腔形成面、及設於上述第1空腔形成面之第1散熱片。上述壓縮機包含與上述冷卻器之上述第1空腔形成面對向之第2空腔形成面、及設於上述第2空腔形成面之第2散熱片。上述第1空腔形成面及上述第2空腔形成面形成容許自上述壓縮機與上述冷卻器吸取熱之冷卻空氣流動之冷卻管道。上述第1散熱片及上述第2散熱片係朝上述冷卻管道內突出。 根據上述構成,上述第1空腔形成面及第2空腔形成面由於配置於彼此對向之位置,故可藉由上述第1空腔形成面及第2空腔形成面構成上述冷卻管道之至少2側面,可簡易地構成該冷卻管道。 於上述構成中,空氣壓縮裝置亦可進而具備配置於上述第1散熱片與上述第2散熱片之間之間隔壁。上述間隔壁亦可將上述冷卻管道內之上述冷卻空氣之流動空間劃分成供上述第1散熱片突出之第1流動空間、與供上述第2散熱片突出之第2流動空間。 根據上述構成,因間隔壁配置於第1散熱片與第2散熱片之間,故冷卻管道內之冷卻空氣被整流。因此,因可使冷卻管道內之冷卻空氣之流動阻力下降,故冷卻器內之壓縮空氣及壓縮機被有效地冷卻。 於上述構成中,上述間隔壁亦可具有較上述第1散熱片及上述第2散熱片更低之熱傳導率。 根據上述構成,間隔壁因具有較第1散熱片及第2散熱片更低之熱傳導率,故於壓縮機與冷卻器之間往來之熱變小。 於上述構成中,空氣壓縮裝置亦可進而具備產生上述冷卻空氣之送風機、及將上述冷卻空氣引導向上述冷卻管道之上游引導部。 根據上述構成,上游引導部因將藉由送風機產生之冷卻空氣引導向冷卻管道,故冷卻器內之壓縮空氣及壓縮機係被有效地冷卻。 於上述構成中,上述壓縮機亦可為具有固定渦形管、及與上述固定渦形管協動且產生上述壓縮空氣之可動渦形管之渦卷式壓縮機。上述渦卷式壓縮機亦可規定用以冷卻上述可動渦形管之冷卻流路。上述固定渦形管及上述可動渦形管亦可配置於上述冷卻管道與上述冷卻流路之間。上述上游引導部亦可包含包圍上述冷卻管道之上游端與上述冷卻流路之上游端之第1引導框。 根據上述構成,上游引導部因包含包圍冷卻管道之上游端與冷卻流路之上游端之第1引導框,故藉由送風機產生之冷卻空氣被導入冷卻管道及冷卻流路。因於冷卻管道與冷卻流路之間配置固定渦形管及可動渦形管,故冷卻器內之壓縮空氣、固定渦形管及可動渦形管被有效地冷卻。 於上述構成中,空氣壓縮裝置亦可進而具備:框體,其形成有供上述冷卻空氣排氣之排氣口;及第2引導框,其配置於上述排氣口與上述渦卷式壓縮機之間,將自上述冷卻管道之下游端及上述冷卻流路之下游端排氣之上述冷卻空氣引導向上述排氣口。上述第2引導框亦可包含:襯墊,其包圍上述冷卻管道及上述冷卻流路之上述下游端;及下游緣,其包圍上述排氣口。 根據上述構成,第2引導框之襯墊包圍冷卻管道之下游端與冷卻流路之下游端,且第2引導框之下游緣包圍排氣口,因而冷卻空氣自框體有效地被排氣。 於上述構成中,上述框體亦可包含第1壁及與上述第1壁相反側之第2壁。上述送風機及上述第1引導框亦可配置於上述第1壁與上述渦卷式壓縮機之間。上述第2引導框亦可安裝於上述第2壁。 根據上述構成,送風機及第1引導框係配置於第1壁與渦卷式壓縮機之間,且,第2引導框安裝於上述第2壁,因此藉由送風機產生之冷卻空氣通過第1引導框、冷卻管道、冷卻流路及第2引導框,自排氣口有效地排氣。 於上述構成中,空氣壓縮裝置亦可進而具備:冷卻裝置,其包含暴露於自上述排氣口排氣之上述冷卻空氣中之管路;及至少部分可撓性之引導管,其自上述冷卻器向上述管路引導上述壓縮空氣。 根據上述構成,引導管係至少部分可撓性,因而可根據空氣壓縮裝置產生之振動而變形,故空氣壓縮裝置之振動變得不易對引導管及連接於引導管之部位帶來破壞性負荷。 上述空氣壓縮裝置不需設置冷卻空氣之複雜流動路徑,即可一起有效地冷卻冷卻器及壓縮機。<First Embodiment> Under the above prior art, The body of the cooler for the flow of compressed air is located between the fins of the cooler and the fins of the compressor. therefore, If the cooling air supplied through the common flow path cools the fins of the cooler and the heat sink of the compressor, Then the body of the cooler collides with the fluid of the cooling air, Causes, for example, turbulence. This reduces the cooling efficiency. In addition, Because the heat sink of the cooler is away from the heat sink of the compressor, Therefore, in order to fully cool the heat sinks, It is necessary to provide a blower having a large air supply capability. The present inventors have developed even a small air blowing device, In addition to the compressor, it can also be used to effectively cool the compressed air. In the first embodiment, An exemplary cooling technique is illustrated.  Fig. 1 is a conceptual diagram of an air compressing device 100 according to a first embodiment. Referring to Figure 1, The air compressing device 100 will be described.  The air compressor 100 includes a compressor 200 and a cooler 300. The cooler 300 is disposed in the vicinity of the compressor 200. And, The cooler 300 is mounted to the compressor 200. The compressor 200 includes a second cavity forming surface 210 located at a portion opposed to the cooler 300.  The cooler 300 includes a first cavity forming surface 310 located at a portion opposed to the second cavity forming surface 210 of the compressor 200. On the upper side of the second cavity forming surface 210, Forming an upper connecting surface 224, A lower connecting surface 225 is formed on the lower side. On the upper side of the first cavity forming surface 310, Forming an upper connecting surface 334, A lower connecting surface 335 is formed on the lower side. And, The connecting surface 224 above the compressor 200 and the upper connecting surface 334 of the cooler 300 are coupled to each other. also, The lower connecting surface 225 of the compressor 200 and the lower connecting surface 335 of the cooler 300 are coupled to each other.  The second cavity forming surface 210 and the first cavity forming surface 310 are associated with each other and define a cooling duct 400 having a space extending in the horizontal direction. which is, The second cavity forming surface 210 and the first cavity forming surface 310 are each a shape in which the pipe is cut in half. The shape of the space in the cooling duct 400 can also be any shape. However, in the first embodiment, It is formed into a rectangular cross section. therefore, The first cavity forming surface 310 has a first upper surface 310a facing downward, a first side surface 310b extending downward from an end portion of the first upper surface 310a, The first lower surface 310c is connected to the lower end of the first side surface 310b and faces upward. The first side surface 310b is longer than each of the first upper surface 310a and the first lower surface 310c. however, The first side surface 310b may be shorter than the first upper surface 310a and the first lower surface 310c. In this case, The heat sink is protruded from the first side surface 310b, It is also possible to protrude from one of the first upper surface 310a and the first lower surface 310c. Further, the second cavity forming surface 210 has a second upper surface 210a facing downward, a second side surface 210b extending downward from an end portion of the second upper surface 210a, The second lower surface 210c is connected to the lower end of the second side surface 210b and faces upward. The second side surface 210b is longer than each of the second upper surface 210a and the second lower surface 210c. however, The first side surface 310b may be shorter than each of the first upper surface 310a and the first lower surface 310c. In this case, The heat sink is protruded from the second side surface 210b, It is also possible to protrude from one of the first upper surface 310a and the first lower surface 310c. In this case, Also included in the first cavity forming surface 310, The heat sink is disposed on the first side 310b, In the second cavity forming surface 210, The heat sink is provided on the second upper surface 210a or the like.  another, If the space in the cooling duct 400 is formed, for example, in a circular cross section, Then, the first cavity forming surface 310 and the second cavity forming surface 210 are formed in a curved shape. In this case, The fins may also protrude toward the center of the section of the space within the cooling duct 400. or, If the space inside the cooling duct 400 is formed into, for example, a cross-sectional triangular shape, Then, the first cavity forming surface 310 and the second cavity forming surface 210 are formed to be inclined. In this case, The first cavity forming surface 310 and the second cavity forming surface 210 are inclined surfaces facing each other. also, In this case, The heat sink may also protrude toward the center of the cooling duct 400.  Furthermore, The first cavity forming surface 310 and the second cavity forming surface 210 may be the same as shown in the embodiment. But even if it’s not right, As long as one to a plurality of faces (including planes, Inclined surface, At least a part of the curved faces are opposite to each other, It is also possible to form a surface 210 for each cavity, 310 between the other components. also, In this embodiment, The cooling duct 400 is composed of a first cavity forming surface 310 and a second cavity forming surface 210. Can also be included in other components.  also, The first cavity forming surface 310 and the second cavity forming surface 210 may be as shown in this embodiment. In order to be placed in a position opposite to each other, However, the first cavity forming surface 310 and the second cavity forming surface 210 may be disposed in close proximity on the same plane or substantially the same plane. E.g, If the space inside the cooling duct 400 is formed into a rectangular cross section, Alternatively, the first cavity forming surface 310 and the second cavity forming surface 210 may be disposed adjacent to one of the inner side surfaces of the four sides. In this case, For the other inside, It can also be constructed by other components.  The compressor 200 is compressed air, Produces compressed air. The compressor 200 can also be a general scroll compressor. Instead, The compressor 200 can also be a general rotary compressor. And instead, The compression mechanism 200 can also be a general swing compressor. And instead, The compression mechanism 200 can also be a general reciprocating compressor. The principle of this embodiment is not limited to the specific structure of the compressor 200.  The compressed air ejected from the compressor 200 is supplied toward the cooler 300. In the cooler 300, An internal space 301 through which compressed air flows is formed. The compressed air may also pass through a tube member (not shown) that extends across the cooling duct 400. The compressor 200 is supplied to the internal space 301 of the cooler 300. Instead, Compressed air can also pass through the tubular members of the cooling duct 400. The compressor 200 is supplied to the internal space 301 of the cooler 300. The principle of the present embodiment is not limited to a specific supply path of compressed air from the compressor 200 toward the cooler 300.  Cooling air is supplied to the cooling duct 400. Known as a multi-leaf fan unit, Rear curved fan unit, A plurality of air supply devices of the cross flow fan device or the propeller fan device may also be used to supply cooling air to the cooling duct 400. The principle of this embodiment is not limited to the specific supply technique of the cooling air toward the cooling duct 400. another, It is also possible to share the driving unit (motor or the like) of the air blowing device with the driving unit of another device such as a compressor. However, by separately providing the driving portion of the air blowing device independently of the driving portion of the other device, The fan can also be rotated and the cooling air can be delivered to the cooling duct during the period in which the other device is stopped. And can improve the cooling efficiency.  The cooler 300 further includes a first fin 320 that protrudes from the first side face 310b of the first cavity forming surface 310 toward the second side face 210b of the second cavity forming surface 210 of the compressor 200. The compressor 200 further includes a second fin 220 that protrudes from the second side surface 210b of the second cavity forming surface 210 toward the first side surface 310b of the first cavity forming surface 310 of the cooler 300. Heat sink 320, 220 protrudes together into the cooling duct 400.  Cooling air flows into the cooling duct 400. Cooling air flows during the flow in the cooling duct 400, Since the heat sink 320, 220 absorbs heat. the result, The cooler 300 and the compressor 200 are cooled together.  The cooling duct 400 is formed on the first cavity forming surface 310 of the cooler 300, And formed on the second cavity forming surface 210 of the compressor 200, thus, The air compression device 100 does not need to be used to cool such a wide space. therefore, The designer can assign a smaller size value to the air compression device 100.  <Second Embodiment> The designer who designs the air compressing device can also apply various shapes to the heat sink described in connection with the first embodiment. In the second embodiment, Explain the illustrative shape of the heat sink.  2A and 2B are heat sinks 101, A schematic perspective view of 102. Referring to Figures 1 to 2B, Description of the heat sink 101, 102.  The designer of the design air compression device (not shown) can also use the heat sink 101, The shape of 102 is given to the second heat sink 220 described with reference to FIG. The first heat sink 320. Instead, The designer can also make the heat sink 101, 102 protrudes from the inner wall surface of the cooling duct 400A explained with reference to FIG.  As shown in Figure 2A, The heat sink 101 has a flat surface that extends substantially parallel to the flow direction of the cooling air. therefore, The cooling air can smoothly flow along the flat surface of the fins 101.  As shown in Figure 2B, The heat sink 102 has an undulating surface extending in the flow direction of the cooling air. The heat sink 102 has a wider contact area with the cooling air than the heat sink 101. Therefore, the cooling air can absorb a large amount of heat from the heat sink 102.  <Third Embodiment> The air compressing device may have a partition wall disposed inside the cooling duct. If the internal space of the cooling duct is divided into a plurality of smaller spaces by the partition wall, Then the cooling air flowing in the cooling duct is rectified. the result, Cooling air draws a large amount of heat from the compressed air in the compressor and cooler. In the third embodiment, An exemplary air compression device having a partition wall is illustrated.  Fig. 3 is a conceptual diagram of an air compressing device 100A according to a third embodiment. Referring to Figure 3, The air compressing device 100A will be described. The symbol common to the first embodiment means that the requirement of the symbol is functionally common to the first embodiment. therefore, The description of the first embodiment is applied to the requirement of a common symbol.  Similar to the first embodiment, The air compressor 100A includes a compressor 200 and a cooler 300. The description of the first embodiment is applied to these requirements.  The air compressing device 100A further includes a partition wall 410 disposed between the second heat sink 220 and the first heat sink 320. a heat sink 220 protruding in a horizontal direction in the cooling duct 400, 320 different, The partition wall 410 extends in the vertical direction inside the cooling duct 400. The internal space of the cooling duct 400 is divided into a left flow space 411 and a right flow space 412. The left flow space 411 is defined between the partition wall 410 and the first cavity forming surface 310 of the cooler 300. The right flow space 412 is defined between the partition wall 410 and the second cavity forming surface 210 of the compressor 200. Cooling air flows into the left flow space 411 and the right flow space 412.  The partition wall 410 may also abut against the front edge of each of the second heat sink 220 and the first heat sink 320. Can not be reached. When the partition wall 410 abuts against the second heat sink 220 protruding in the right flow space 412, Then, the second heat sink 220 divides the right flow space 412 up and down. When the partition wall 410 abuts against the first heat sink 320 protruding in the left flow space 411, Then, the first heat sink 320 divides the left flow space 411 up and down. In this case, Since the heat of the second heat sink 220 and the first heat sink 320 is released to the partition wall 410, Therefore, the cooling air can effectively extract heat from the compressed air in the compressor 200 and the cooler 300. If the partition wall 410 is away from the heat sink 220, At least one of 320, Heat sink 220, The heat transfer between 320 becomes difficult to produce.  The partition wall 410 can also be connected to the heat sink 220, One or the same material of 320 is formed. Instead, The partition wall 410 can also be connected to the heat sink 220, 320 different materials are formed. E.g, The designer can also choose to use the heat sink 220, The material of 320 has a lower thermal conductivity material as the material of the partition wall 410. In this case, Because the heat between the compressor 200 and the cooler 300 is small, Therefore, complicated thermal interference between the compressor 200 and the cooler 300 becomes difficult to generate. In this case, The control relating to the heat of the compressor 200 and the cooler 300 is facilitated.  <Fourth Embodiment> A designer who designs an air compression device can apply various structures and various shapes to the cooler. In the fourth embodiment, An illustrative cooler is illustrated.  Fig. 4 is a schematic perspective view of a cooler 300B according to a fourth embodiment. Referring to Figures 3 and 4, The cooler 300B will be described.  The cooler 300B includes a first cavity forming surface 310 formed on the outer surface of the outer casing 330, And a check valve 340. The outer casing 330 is a substantially rectangular box. The compressed air flows into the outer casing 330. The check valve 340 protrudes upward from the outer casing 330. Compressed air passes through check valve 340, Exhaust from the inside of the outer casing 330. The cooler 300B can utilize the cooler 300 as explained with reference to FIG.  The outer casing 330 includes an upstream surface 331, And a downstream surface 332 on the opposite side of the upstream surface 331. Cooling air flows from the upstream surface 331 to the downstream surface 332. The height dimension (vertical direction) of the upstream surface 331 and the downstream surface 332 is larger than the width dimension (horizontal direction) of the upstream surface 331 and the downstream surface 332.  The outer casing 330 includes a connection surface 333 between the upstream surface 331 and the downstream surface 332. The connecting surface 333 is connected to a compressor (not shown), Or connected to a spacer member (not shown) disposed between the compressor and the outer casing 330.  The connecting surface 333 includes a connecting surface 334 located above the upper side of the first cavity forming surface 310, And a connecting surface 335 located below the lower side of the first cavity forming surface 310. The cooling air flows into a flow region defined by the first cavity forming surface 310 between the upper connecting surface 334 and the lower connecting surface 335. The upper connecting surface 334 and the lower connecting surface 335 are substantially on the same plane. The upper connecting surface 334 and the lower connecting surface 335 are connected to the compressor, Or connected to a spacing member disposed between the compressor and the outer casing 330. The flow area defined by the first cavity forming surface 310 is recessed from the upper connecting surface 334 and the lower connecting surface 335.  The outer casing 330 includes a plurality of first fins 336 protruding in the flow region. The plurality of first fins 336 extend from the upstream surface 331 toward the downstream surface 332. The front edge of each of the plurality of first fins 336 is substantially flush with the upper connecting surface 334 and the lower connecting surface 335. The front end of each of the plurality of first fins 336 may also be coupled to a compressor, Or in contact with a spacer member disposed between the compressor and the outer casing 330.  The outer casing 330 includes an inflow cylinder 337 that protrudes substantially at the center of the flow region. Compressed air passes through an inflow port 338 surrounded by an inflow cartridge 337. The inner space of the outer casing 330 flows in. Since the cooling air flowing in the flow area absorbs heat from the first cavity forming surface 310 of the predetermined flow area and the plurality of first fins 336, Therefore, the compressed air flowing to the inner space of the outer casing 330 is effectively cooled.  Fig. 5 is a schematic cross-sectional view showing the internal structure of the cooler 300B. Referring to Figure 5, Further, the cooler 300B will be described.  The outer casing 330 includes an upper wall 351, Lower wall 352, Upstream wall 353, And a downstream wall 354. The outer wall of the check valve 340 is adjacent to the corner portion defined by the upper wall 351 and the upstream wall 353. It is formed integrally with the upper wall 351. The upper wall 351 extends substantially horizontally between the upper end of the upstream wall 353 and the upper end of the downstream wall 354. The lower wall 352 extends substantially horizontally between the lower end of the upstream wall 353 and the lower end of the downstream wall 354. The upstream wall 353 and the downstream wall 354 extend substantially perpendicularly.  The outer casing 330 is comprised by the upper wall 351, Lower wall 352, The substantially rectangular inner space surrounded by the upstream wall 353 and the downstream wall 354 is partitioned. A plurality of partition walls of a plurality of flow paths are defined. The plurality of partition walls include a linear upper partition wall 361, a straight lower partition wall 362, And a central partition 363 of approximately τ-shaped.  The upper partition wall 361 extends substantially horizontally from the upstream wall 353. The front end of the upper partition wall 361 is away from the downstream wall 354.  The lower partition wall 362 extends substantially horizontally below the upper partition wall 361. Both ends of the lower partition wall 362 are away from the upstream wall 353 and the downstream wall 354, respectively.  A center partition wall 363 is formed between the upper partition wall 361 and the lower partition wall 362. The central partition 363 includes a linear wall 364 and a curved wall 365. The linear wall 364 extends generally horizontally from the downstream wall 354. The front end of the straight wall 364 is away from the upstream wall 353. The curved wall 365 is near the inflow port 338, Extending downward from the straight wall 364, It is then bent toward the downstream wall 354. The front end of the curved wall 365 is remote from the downstream wall 354. The linear wall 364 and the curved wall 365 portion partially surround the inflow port 338.  The outer casing 330 is attached to the upper wall 351, Lower wall 352, The upper wall 353 and the downstream wall 354 are surrounded by a substantially rectangular inner space. The first internal flow path 371 is defined, The second internal flow path 372, The third internal flow path 373, The fourth internal flow path 374, And a fifth internal flow path 375.  The first internal flow path 371 is defined by the linear wall 364 and the curved wall 365. The first internal flow path 371 is connected to the inflow port 338. And extending toward the downstream wall 354. The compressed air flowing in from the inflow inlet 338 flows along the first internal flow path 371. And facing the downstream wall 354.  The second internal flow path 372 is defined by the central partition 363 and the lower partition 362. The third internal flow path 373 is defined by the lower partition wall 362 and the lower wall 352. The compressed air reaching the terminal end of the first internal flow path 371 passes through the gap between the front end portion of the curved wall 365 and the downstream wall 354. Flowing downwards. One portion of the compressed air then passes through the second internal flow path 372, Flows toward the upstream wall 353. The other part of the compressed air passes through the third internal flow path 373, Flows toward the upstream wall 353.  The compressed air reaching the terminal end of the third internal flow path 373 passes through the gap between the lower partition wall 362 and the upstream wall 353. Flowing upwards, And it merges with the compressed air at the terminal of the second internal flow path 372. The compressed air at the end of the second internal flow path 372 flows upward through the gap between the linear wall 364 and the upstream wall 353. And it flows into the 4th internal flow path 374.  The compressed air then flows along the fourth internal flow path 374, And facing the downstream wall 354. The compressed air reaching the terminal end of the fourth internal flow path 374 flows upward through the gap between the upper partition wall 361 and the downstream wall 354, And it flows into the 5th internal flow path 375.  The compressed air then flows along the fifth internal flow path 375, And facing the upstream wall 353. The compressed air is finally exhausted from the check valve 340 disposed near the end of the fifth internal flow path 375.  By the upper wall 351, Lower wall 352, The substantially rectangular inner space surrounded by the upstream wall 353 and the downstream wall 354 is located inside the first cavity forming surface 310 on which the flow region through which the cooling air flows is formed. The flow path of the compressed air is formed by the upper wall 351, Lower wall 352, The upstream wall 353 and the downstream wall 354 surround the flow path in the substantially rectangular inner space. therefore, The heat exchange area becomes longer. therefore, The compressed air is effectively cooled by the cooling air.  The cooling of the compressed air also condenses on the inner wall surface of the outer casing 330. The condensate flows downward under the action of gravity. Finally, it is accumulated in the lowermost flow path (the third internal flow path 373). however, The flow path of the compressed air does not pass through the third internal flow path 373. The inlet 338 is in communication with the check valve 340. therefore, The compressed air can pass through the second internal flow path 372. Facing the check valve 340, Therefore, it is not easy to generate a blockage of compressed air in the cooler 300B.  <Fifth Embodiment> A designer who designs an air compressor can also select a scroll compressor as a compressor. In the fifth embodiment, An exemplary scroll compressor will be described.  Fig. 6 is a schematic exploded perspective view of a scroll compressor 200C according to a fifth embodiment. Referring to Figures 3 and 6, A scroll compressor 200C will be described.  The scroll compressor 200C can be utilized as the compressor 200 described with reference to FIG. The scroll compressor 200C is provided with a holding frame 230, Shaking the rotating body 240, And a cover 250.  The holding frame 230 includes a foot 231, The outer casing 232 and the shaft portion 233. The leg portion 231 is fixed to a base (not shown). The outer casing 232 is coupled to the upper end of the leg portion 231. The circular storage space 239 is defined in its entirety. The rocking rotating body 240 is housed in the housing space 239.  The outer casing 232 includes a ring wall 261, Upper arc wall 262, Lower arc wall 263, Flowing into the wall 264, And the outflow wall 265. The ring wall 261 includes an outer surface 266, And an inner surface 267 on the opposite side of the outer surface 266. The shaft portion 233 protrudes from the outer surface 266. The inner surface 267 is opposed to the rocking body 240.  The upper arc wall 262 protrudes from the upper portion of the outer edge of the annular wall 261 that depicts the circular contour toward the cover 250. The lower arc wall 263 protrudes from the lower portion of the outer edge of the annular wall 261 toward the lid body 250. Upper arc wall 262, The lower arc wall 263 and the ring wall 261 cooperate with the cover body 250, A storage space 239 for accommodating the rocking body 240 is defined.  The inflow wall 264 is connected to one end portion (the end portion on the near side in FIG. 6) of the upper arc wall 262 and one end portion (the end portion on the near front side in FIG. 6) of the lower arc wall 263. The inflow wall 264 is from one end of the upper arc wall 262 and one end of the lower arc wall 263, It protrudes at a substantially right angle with respect to the protruding direction of the shaft portion 233. The inflow wall 264 has a generally C-shaped cross section. The inflow wall 264 cooperates with the cover 250, An inlet for supplying cooling air is provided.  The outflow wall 265 is formed between the other end portion (the inner end portion in FIG. 6) of the upper arc wall 262 and the other end portion (the inner end portion in FIG. 6) of the lower arc wall 263. The outflow wall 265 is from the upper arc wall 262 and the lower arc wall 263. Prominent in the opposite direction to the inflow wall 264. Like the inflow wall 264, The outflow wall 265 has a generally C-shaped cross section. The outflow wall 265 cooperates with the cover 250, An outlet for supplying cooling air is provided.  The shaft portion 233 includes a cylindrical portion 234, And a rotating shaft 235. The cylindrical portion 234 protrudes from the outer surface 266 of the ring wall 261. In the space inside the cylindrical portion 234, A conversion mechanism (not shown) that converts the rotational motion of the rotating shaft 235 into a rocking rotational motion of the rocking rotating body 240 is accommodated. A variety of techniques known for scroll compressors are also available for the conversion mechanism. The principle of this embodiment is not limited to the specific configuration of the conversion mechanism.  The rotating shaft 235 receives a driving force generated by a motor or other driving source. The rotating shaft 235 is inside the cylindrical portion 234, Connected to the above conversion mechanism.  The rocking rotating body 240 includes a first circular plate 241, The second circular plate 242, Movable scroll tube 243, And a plurality of fins 244. The first circular plate 241 is disposed in the vicinity of the inner surface 267 of the annular wall 261. A gap is formed between the second circular plate 242 and the first circular plate 241 and arranged in parallel with the first circular plate 241. The second circular plate 242 is disposed between the first circular plate 241 and the lid 250. The scroll-shaped movable scroll 243 protrudes from the second circular plate 242 toward the lid body 250. The plurality of fins 244 divide the space between the first disc 241 and the second disc 242 into a plurality of flow paths having a narrow cross section. The space formed between the plurality of fins 244 functions as a cooling flow path for cooling the movable scroll 243.  The first circular plate 241 is a conversion mechanism that is connected to the cylindrical portion 234. the result, The rocking rotation of the rocking body 240 is caused by the rotation of the rotating shaft 235. Shaking between the rotating rotation of the rotating body 240, The center of the movable scroll 243 is swirled about the central axis of rotation of the rotating shaft 235.  The cooling air flowing in from the inflow port defined by the inflow wall 264 and the cover body 250 passes through a space subdivided by a plurality of fins 244, The exhaust is exhausted from the outflow port defined by the outflow wall 265 and the cover 250. the result, The rocking body 240 is effectively cooled.  FIG. 7 is a schematic perspective view of the cover 250. Referring to Figure 3, Figure 6 and Figure 7, The cover 250 is explained.  As shown in Figure 6, The cover 250 includes a ring cover 251 and a housing wall 252. The ring cover plate 251 and the housing wall 252 have a circular cross section as a whole. The ring cover 251 is larger in diameter than the receiving wall 252. The annular wall 251 includes an inner surface 253, And an outer surface 254 opposite the inner surface 253. The inner surface 253 is in close contact with the end faces of the upper arc wall 262 and the lower arc wall 263.  As shown in Figure 6, The housing wall 252 includes a peripheral wall 255 and an end wall 256. The peripheral wall 255 is along the axis of the rotation axis 235, The outer surface 254 protrudes from the outer cover plate 251. The peripheral wall 255 defines a storage space having a substantially circular cross section for accommodating the second circular plate 242 and the movable scroll 243. The peripheral wall 255 surrounds the second circular plate 242. The end wall 256 closes the end of the storage space defined by the peripheral wall 255.  As shown in Figure 7, The cover 250 includes a scroll-shaped fixed scroll 257 that protrudes from the end wall 256 toward the second circular plate 242. The fixed scroll 257 forms a scroll-shaped space complementary to the movable scroll 243. The movable scroll tube 243 is inserted into the spiral space, Engages with the fixed scroll 257. During the shaking rotation of the rotating body 240, The air is compressed by the fixed scroll 257 and the movable scroll 243, Become compressed air.  As shown in Figure 7, A discharge port 258 is formed in the end wall 256. The discharge port 258 is located substantially at the center of the fixed scroll 257. The compressed air compressed in the scroll compressor 200C is exhausted from the discharge port 258.  As shown in Figure 6, The cover 250 includes a vertical wall 271, 272. The vertical wall 271 protrudes from the outer circumferential surface of the ring cover plate 251 toward the radially outer side of the ring cover plate 251, And close to the two end faces of the inflow wall 264. With this, An inflow port for cooling air flowing in to swing the rotating body 240 is formed. The vertical wall 272 is in the opposite direction to the vertical wall 271, The outer circumference of the ring cover plate 251 protrudes outward in the radial direction of the ring cover plate 251. The vertical wall 272 is in close contact with the two end faces of the outflow wall 265. With this, An outflow port for discharging the cooling air after cooling the rocking body 240 is formed.  As shown in Figure 6, The cover 250 includes an upper boundary wall 273 and a lower boundary wall 274. The lower surface of the upper boundary wall 273 serves as the second upper surface 210a of the second cavity forming surface 210. The upper boundary wall 273 protrudes from the outer surface 254 and the end wall 256 of the ring cover 251. The upper side boundary of the region where the cooling air for cooling the fixed scroll 257 flows is specified. The lower boundary wall 274 is located below the upper boundary wall 273. The upper surface of the lower boundary wall 274 becomes the second lower surface 210c of the second cavity forming surface 210. Like the upper boundary wall 273, The lower boundary wall 274 protrudes from the outer surface 254 and the end wall 256 of the ring cover 251. The lower boundary wall 274 defines a side boundary below the region where the cooling air for cooling the fixed scroll 257 flows.  The cover 250 includes a plurality of second fins 220C. A plurality of fins 220C are between the upper boundary wall 273 and the lower boundary wall 274. The outer surface 254 of the ring cover 251 and the end wall 256 of the housing wall 252 protrude. which is, The outer surface 254 of the ring cover 251 and the end wall 256 of the housing wall 252 are the second side faces 210b of the second cavity forming surface 210.  <Sixth embodiment> The designer can based on the technical principles described in connection with the fourth embodiment and the fifth embodiment. Design a variety of air compression devices. In the sixth embodiment, An exemplary air compression device is illustrated.  Fig. 8 is a schematic exploded perspective view showing the air compressing device 100D of the sixth embodiment. Referring to Figure 3, Figure 4, Figure 7 and Figure 8, The air compressing device 100D will be described. The symbol common to the fourth embodiment or the fifth embodiment means that the requirement of the symbol is functionally common to the fourth embodiment or the fifth embodiment. therefore, The description of the fourth embodiment or the fifth embodiment is applied to the requirement of a common symbol.  The air compressor 100D includes a cooler 300B described in connection with the fourth embodiment. The description of the fourth embodiment is applied to the cooler 300B. which is, The cooling duct 400 is formed by the first cavity forming surface 310 in the cooler 300B, The outer surface 254 and the end wall 256 of the ring cover 251 of the cover 250, The lower surface of the upper boundary wall 273, And the upper surface of the lower boundary wall 274 is formed.  The air compressor 100D further includes a scroll compressor 200C described in connection with the fifth embodiment. The description of the fifth embodiment is applied to the scroll compressor 200C.  The air compressing device 100D further includes a partition wall 410D. The partition wall 410D is composed of a heat insulating member. The partition wall 410D is sandwiched between the front edge of the plurality of first fins 336 of the cooler 300B and the front edge of the plurality of second fins 220C of the scroll compressor 200C. The partition wall 410D has a lower thermal conductivity than the first heat sink 336 and the second heat sink 220C. Therefore, the heat exchange between the scroll compressor 200C and the cooler 300B becomes less likely to occur.  The air compressing device 100D further includes a supply pipe 420. At the approximate center of the partition 410D, The insertion hole 413 is formed. The supply tube 420 is inserted into the insertion hole 413.  The supply tube 420 includes an upstream end 421 and a downstream end 422. The upstream end 421 is inserted into the discharge port 258 of the scroll compressor 200C (refer to Fig. 7). The downstream end 422 is inserted into the inflow port 338 of the cooler 300B (refer to FIG. 4). therefore, Compressed air passes through the supply tube 420, The self-scrolling compressor 200C is supplied to the cooler 300B. Both ends of the supply pipe 420 are held by the scroll compressor 200C and the cooler 300B. Therefore, excessive stress is not generated in the discharge port 258 and the inflow port 338.  As described in the fifth embodiment, The flow path for cooling the cooling air of the movable scroll 243 is defined between the holding frame 230 and the cover 250. The flow path of the cooling air for cooling the fixed scroll 257 (see FIG. 7) and the compressed air in the cooler 300B is formed by the first cavity forming surface 310 formed in the cooler 300B and the cover 250. 2 cavity forming surface 210 is specified. therefore, The movable scroll 243 and the fixed scroll 257 disposed between the two flow paths are effectively cooled.  <Seventh embodiment> According to the technical principle of the sixth embodiment, By the arrangement of the fixed scroll tube and the movable scroll tube between the two flow paths, The fixed scroll and the movable scroll are effectively cooled. A common blower can also be utilized to supply cooling air to the two flow paths. In this case, The designer can give the air compression device a smaller size. In the seventh embodiment, Explain the use of a common blower, An exemplary air compression device that supplies cooling air to two flow paths.  Fig. 9 is a schematic perspective view of an air compressing device 100E according to a seventh embodiment. Referring to Figures 8 and 9, The air compressing device 100E will be described. The symbol common to the sixth embodiment means that the requirement of the symbol is functionally common to the sixth embodiment. therefore, The description of the sixth embodiment is applied to the requirement of a common symbol.  Similar to the sixth embodiment, The air compressor 100E includes a scroll compressor 200C (see FIG. 9), Cooler 300B (refer to Figure 9), Partition wall 410D (refer to Figure 8), And a supply pipe 420 (see Fig. 8). The description of the sixth embodiment is applied to these requirements.  As shown in Figure 9, The air compressing device 100E includes a base 110. The leg portion 231 (see FIG. 8) of the holding frame 230 is defined in the base 110. The cooler 300B is fixed to the lid 250 via a partition wall 410D (see FIG. 8). therefore, The scroll compressor 200C and the cooler 300B are stably mounted on the susceptor 110.  The air compressing device 100E includes a blower 430 and a first guide frame 440. The blower 430 generates cooling air. The first guide frame 440 is disposed between the assembly formed by the scroll compressor 200C and the cooler 300B and the blower 430. The first guiding frame 440 seals the cooling air generated by the blower 430 into the blower 430, Between the assembly formed by the scroll compressor 200C and the cooler 300B. which is, The first guide frame 440 constitutes an upstream guide that guides the cooling air to the cooling duct 400. With the first guiding frame 440, The cooling air is concentrated into the two flow paths described with reference to FIG.  FIG. 10A is a schematic perspective view of the first guide frame 440. FIG. 10B is a schematic rear view of the first guide frame 440. Referring to Figures 8 to 10B, The first guide frame 440 will be described.  As shown in Figure 9, The first guide frame 440 includes a mounting box 441 and a pad 442. As shown in FIG. 10A, The mounting box 441 includes a peripheral wall 443, The first mounting wall 444 and the second mounting wall 445.  As shown in FIG. 10A, The peripheral wall 443 defines a substantially rectangular outer peripheral contour. As shown in Figure 9, The blower 430 is attached to the first mounting wall 444. As shown in FIG. 10A, A substantially circular opening portion 446 is formed in the first mounting wall 444. The blower 430 passes through the opening portion 446, The cooling air is sent into the first guide frame 440. As shown in FIG. 10B, A substantially rectangular opening portion 447 is formed in the second mounting wall 445. The gasket 442 is mounted on the outer surface of the second mounting wall 445. The opening 447 is surrounded.  As shown in Figure 8, The cooler 300B includes an outer surface 339 opposite to the joint surface 333. Figure 8 shows point P01 and point P02. Point P01 refers to the upper end of the corner line between the upstream surface 331 and the outer surface 339. Point P02 refers to the lower end of the corner line between the upstream surface 331 and the outer surface 339.  As shown in Figure 8, The inflow wall 264 of the scroll compressor 200C includes an upstream surface 281, Concave surface 282 and flat surface 283. If the cooler 300B is attached to the scroll compressor 200C, Then, the upstream surface 281 and the upstream surface 331 of the cooler 300B are located on substantially the same plane. The concave surface 282 is bent at a substantially right angle from the upstream surface 281. The inner peripheral surface of the inflow port for supplying cooling air to cool the movable scroll 243 is provided. The flat surface 283 is attached to the opposite side of the concave surface 282. The upstream surface 281 is bent at a right angle and extends substantially perpendicularly. Figure 8 shows point P03 and point P04. Point P03 refers to the lower end of the corner line between the flat surface 283 and the upstream surface 281. Point P04 refers to the upper end of the corner line between the flat surface 283 and the upstream surface 281.  If the cooler 300B is attached to the scroll compressor 200C, Then, a rectangular frame-shaped region having the corner P01 to the point P04 as the corner portion is formed. Two flow paths of cooling air described in connection with the sixth embodiment, An opening formed by a rectangular frame-shaped region defined by points P01 to P04 is used as an upstream end. The rectangular region defined by the point P01 to the point P04 is complementary to the rectangular opening 447 formed in the second mounting wall 445 of the first guide frame 440. A rectangular region defined by a point P01 to a point P04 may be embedded in the opening portion 447. Since the opening portion 447 is surrounded by the gasket 442, Therefore, the cooling air generated by the blower 430 does not leak from the first guide frame 440. It can flow into 2 flow paths.  <Eighth Embodiment> The designer can also use various devices for driving the compressor, The configuration and construction are assembled in an air compression device. In the eighth embodiment, An illustrative drive technique for driving a compressor is illustrated.  Fig. 11 is a schematic perspective view of an air compressing device 100F according to the eighth embodiment. Referring to Figure 7, Figure 8 and Figure 11, The air compressing device 100F will be described. The symbol common to the seventh embodiment means that the requirement of the symbol is functionally common to the seventh embodiment. therefore, The description of the seventh embodiment is applied to the requirement of a common symbol.  Similar to the seventh embodiment, The air compressing device 100F includes a susceptor 100 (see FIG. 11), Scroll compressor 200C (refer to Figure 11), Cooler 300B (refer to FIG. 11), Partition wall 410D (refer to Figure 8), Supply pipe 420 (refer to FIG. 8), The blower 430 (refer to FIG. 11), And the first guide frame 440 (see FIG. 11). The description of the seventh embodiment is applied to these requirements.  As shown in Figure 9, The scroll compressor 200C includes a suction pipe 280. The space defined by the suction pipe 280 and the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (refer to FIG. 8) are engaged (ie, It is connected by a space in which the holding frame 230 is surrounded by the cover 250.  As shown in Figure 11, The air compressing device 100F is provided with a filter tube 120. The filter tube 120 includes a filter portion 121 and a flexible tube 122. The base end of the flexible tube 122 is connected to the suction tube 280 (see Fig. 9). The filter unit 121 is attached to the front end of the flexible tube 122. If the scroll compressor 200C is driven, Then, a negative pressure environment is generated in the suction pipe 280 and the flexible pipe 122. the result, The air around the filter portion 121 passes through the flexible tube 122 and the suction tube 280. The space in which the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (see FIG. 8) are engaged is engaged. at this time, The filter unit 121 removes foreign matter from the inflowing air. The fixed scroll 257 and the movable scroll 243 compress the air flowing in, And generate compressed air.  As shown in Figure 11, The air compressing device 100F includes a housing 500. The frame 500 includes a first pillar 510, The second pillar 520, The third pillar 530, The fourth pillar 540, First beam 550, The second beam 560, And a bottom plate 570. The bottom plate 570 has a substantially rectangular shape. The bottom plate 570 is placed transversely below the base 110. The first pillar 510, The second pillar 520, The third pillar 530 and the fourth pillar 540 extend upward from the four corner portions of the bottom plate 570. The first pillar 510 and the third pillar 530 are arranged on one diagonal line of the bottom plate 570. The second pillar 520 and the fourth pillar 540 are arranged on the other diagonal line of the bottom plate 570. The first beam 550 extends substantially horizontally between the first pillar 510 and the second pillar 520. The second beam 560 extends substantially horizontally between the third pillar 530 and the fourth pillar 540. The first beam member 550 extends substantially parallel to the second beam member 560. The susceptor 110 is fixed to the first beam 550 and the second beam 560.  As shown in Figure 11, The air compressing device 100F includes a motor 610 and a transmission mechanism 620. The base 110 includes an upper surface 111, And a lower surface 112 opposite to the upper surface 111. The scroll compressor 200C is fixed to the upper surface 111, on the other hand, Motor 610 is secured to lower surface 112. The scroll compressor 200C and the motor 610 are vertically arranged. Thus, the designer of the design air compressing device 100F can assign a smaller value to the area of the frame 500 on the horizontal surface.  The transmission mechanism 620 includes an upper pulley 621, Lower pulley 622, Tension pulley 623, And an endless belt 624. The motor 610 includes a motor shaft 611 that extends substantially parallel to the rotating shaft 235 of the scroll compressor 200C. The upper pulley 621 is attached to the rotating shaft 235. The lower pulley 622 is attached to the motor shaft 611. The endless belt 624 is wound around the upper pulley 621 and the lower pulley 622. The tension pulley 623 imparts an appropriate tension to the endless belt 624.  If the motor 610 is activated, Then the motor shaft 611 rotates. the result, Surrounding the endless belt 624 that is engaged with the pulley 622 mounted under the motor shaft 611, The upper pulley 621 is rotated. Due to the rotation of the rotating shaft 235 on which the upper pulley 621 is mounted, Therefore, the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (see FIG. 8) compress the air in the scroll compressor 200C. And generate compressed air.  <Ninth Embodiment> A designer can use the housing described in connection with the eighth embodiment. Design a variety of enclosures to protect compressors or other machines. In the ninth embodiment, The illustrated frame structure is illustrated.  Fig. 12A is a schematic perspective view of an air compressing device 100G according to a ninth embodiment. Fig. 12B is a schematic perspective view of still another of the air compressing device 100G. Referring to Figure 8, Figure 11 to Figure 12B, The air compressing device 100G will be described. The symbol common to the eighth embodiment means that the requirement of the symbol is functionally common to the eighth embodiment. therefore, The description of the eighth embodiment is applied to the requirement of a common symbol.  Similar to the eighth embodiment, The air compressing device 100G includes a susceptor 110 (see FIG. 11), Filter tube 120 (refer to FIG. 11), Scroll compressor 200C (refer to Figure 11), Cooler 300B (refer to FIG. 11), Partition wall 410D (refer to Figure 8), Supply pipe 420 (refer to FIG. 8), The blower 430 (refer to FIG. 11), First guiding frame 440 (refer to FIG. 11), Motor 610 (refer to FIG. 11), And a transmission mechanism 620 (refer to FIG. 11). The description of the eighth embodiment is applied to these requirements.  As shown in FIG. 12A, The air compressing device 100G further includes a housing 700. The frame 500 described with reference to Fig. 11 is used as a part of the frame 700.  As shown in FIG. 12A, The frame 700 includes a top plate 710. The top plate 710 is attached to the first pillar 510 (see FIG. 11), The second pillar 520 (see FIG. 11), The upper ends of the third pillar 530 (see FIG. 11) and the fourth pillar 540 (see FIG. 11). therefore, The top plate 710 is horizontally horizontally placed on the bottom plate 570 (see FIG. 12B) and the base 110 (see FIG. 11).  The housing 700 includes a right panel 720 (refer to FIG. 12A) and a left panel 730 (refer to FIG. 12B). The right panel 720 covers the bottom plate 570 (refer to FIG. 12B), Top plate 710 (refer to FIG. 12A), The space surrounded by the first pillar 510 (see FIG. 11) and the fourth pillar 540 (see FIG. 11). The left panel 730 covers the bottom plate 570, Top plate 710, The space surrounded by the second pillar 520 (see FIG. 11) and the third pillar 530 (see FIG. 11).  As shown in FIG. 12A, The frame 700 includes an upper cover 740 and a lower cover 750. The upper cover 740 covers the top plate 710, First beam 550 (see Fig. 11), The space surrounded by the first pillar 510 (see FIG. 11) and the second pillar 520 (see FIG. 11). The blower 430 (see FIG. 11) and the first guide frame 440 (see FIG. 11) are disposed between the upper cover 740 and the scroll compressor 200C. The lower cover 750 covers the bottom plate 570 (refer to FIG. 11), First beam 550 (see Fig. 11), The space surrounded by the first pillar 510 (see FIG. 11) and the second pillar 520 (see FIG. 11). The lower cover 750 includes a holding frame 751 and a plurality of jaws 752. The holding frame 751 is along the bottom plate 570, First beam 550, The plates of the first pillar 510 and the second pillar 520 are formed. The plurality of jaws 752 are held by the holding frame 751. Each of the plurality of jaws 752 extends substantially horizontally within the space enclosed by the retaining frame 751. The plurality of jaws 752 are arranged in the vertical direction.  As explained with reference to FIG. 11, The scroll compressor 200C is sucked by the filter tube 120. The air outside the frame 700 (outside air) passes through a gap formed between the plurality of rafts 752. It is sucked into the filter tube 120. same, The blower 430 also passes through a gap formed between the plurality of jaws 752. The outside air is pumped and cooling air is generated.  As shown in FIG. 12B, The air compressing device 100G is provided with a cooling device 810, Dehumidification device 820 and control panel 830. The cooling device 810 is attached to the opposite side of the upper cover 740. Installed in the frame 700. The dehumidifying device 820 and the control panel 830 are attached to the opposite side of the lower cover 750. Installed in the frame 700.  The compressed air generated by the scroll compressor 200C (refer to FIG. 11) passes through the cooler 300B (refer to FIG. 11). It is supplied to the cooling device 810. The cooling device 810 is disposed outside the frame 700. Therefore, the compressed air is in the cooling device 810, It is effectively cooled by external air. Thereafter, The compressed air is supplied to the dehumidifying device 820. The dehumidification device 820 dehumidifies the compressed air. The dehumidified compressed air is supplied to a storage tank for storing compressed air or a plurality of air compressors. The control panel 830 controls the motor 610 (refer to FIG. 11), The operation of the blower 430 (see Fig. 11) or other devices.  <Tenth Embodiment> A designer may also provide a plurality of structures for venting cooling air generated by a blower to a casing. In the tenth embodiment, An exemplary frame structure having an exhaust function will be described.  Fig. 13 is a schematic perspective view of the exhaust structure 130 of the tenth embodiment. Referring to Figure 8, Figure 11, Figure 11, Figure 12A and Figure 13, The exhaust structure 130 will be described.  As shown in Figure 13, The exhaust structure 130 includes an exhaust plate 760 and a second guide frame 770. The exhaust plate 760 is partially closed by the bottom plate 570 (refer to FIG. 11), Top plate 710 (refer to FIG. 12A), The space surrounded by the third pillar 530 (see FIG. 11) and the fourth pillar 540 (see FIG. 11). The exhaust plate 760 is located on the opposite side of the upper cover 740 (refer to FIG. 12A). The exhaust plate 760 is used as a part of the casing 700 (refer to FIG. 12A).  As shown in Figure 13, The venting plate 760 includes an outer surface 761 and an inner surface 762 on the opposite side of the outer surface 761. The outer surface 761 forms a portion of the outer surface of the frame 700 (refer to FIG. 12A). The inner surface 762 partially defines a storage space for housing the scroll compressor 200C (see FIG. 11). The cooling device 810 is mounted to the outer surface 761. The second guide frame 770 is mounted to the inner surface 762.  As shown in Figure 13, The second guide frame 770 includes a box portion 771 and a pad 772. The box portion 771 includes a peripheral wall 773 and a facing wall 774. The peripheral wall 773 protrudes inward from the exhaust plate 760. The peripheral wall 773 includes a downstream edge 775 and a rectangular edge 776. The downstream edge 775 is adjacent to the exhaust plate 760. A rectangular rim 776 encloses the opposing wall 774. The opposing wall 774 is opposed to the exhaust plate 760.  On the opposite wall 774, An opening portion 777 having a substantially rectangular shape is formed. The pad 772 is along the edge of the prescribed opening 777, Installed on the opposite wall 774. The manner in which the downstream end of the two flow paths of the cooling air described with reference to FIG. 8 is surrounded by the gasket 772, The second guide frame 770 is connected to the scroll compressor 200C and the cooler 300B.  Fig. 14 is a schematic perspective view of the air compressing device 100G. The cooling device 810 is removed from the air compression device 100G shown in FIG. Referring to Figures 12B to 14, The air compressing device 100G will be described.  As shown in Figure 14, An exhaust port 769 is formed in the exhaust plate 760. The exhaust port 769 extends in the horizontal direction. The downstream edge 775 (see FIG. 13) of the second guide frame 770 surrounds the exhaust port 769.  As shown in FIG. 12B, The cooling device 810 is provided with a weir-like pipe 811 through which compressed air flows. The pipe 811 extends substantially straight in the horizontal direction. And repeatedly bend in the vertical direction.  The exhaust port 769 (see FIG. 14) is open to the extension region of the pipe 811 (see FIG. 12B). therefore, The pipe 811 is exposed to the cooling air exhausted through the opening 777 (see FIG. 13) of the second guide frame 770 (see FIG. 13) and the exhaust port 769 (see FIG. 14) of the exhaust plate 760 (see FIG. 14). in. the result, The compressed air flowing along the manifold 811 is effectively cooled.  <Eleventh Embodiment> A pipe member having low rigidity is suitable for an environment in which vibration is generated. however, If a circulating strong air flow is generated in the frame of the air compression device, Then the flexible tube member is shaken, Therefore, there is a case where the designer selects a pipe member having high rigidity. The exhaust principle explained in connection with the tenth embodiment is because a strong air flow does not occur in the casing of the air compressing device. Therefore, the designer can also utilize at least a portion of the flexible tubular member. In the eleventh embodiment, Explain the use of flexible resin tubes, An exemplary frame structure for directing compressed air.  Fig. 15 is a schematic perspective view of an air compressing device 100G. Referring to FIG. 12B and FIG. 15, The air compressing device 100G will be described.  As shown in Figure 15, The air compressing device 100G is provided with a resin tube 140. The resin pipe 140 is connected to the check valve 340 of the cooler 300B and the manifold 811 of the cooling device 810 (refer to FIG. 12B) (refer to FIG. 12B). therefore, The compressed air is guided from the cooler 300B to the cooling device 810 by the resin tube 140. The resin tube 140 may also be formed of polytetrafluoroethylene or other suitable heat resistant resin. The resin tube 140 extends beyond the area where the cooling air flows. therefore, The resin tube 140 is not easily shaken by the cooling air. The principle of this embodiment is not limited to the specific material used for the resin tube 140.  The designer can follow the design principles described in relation to the various embodiments described above, Design a variety of air compression devices. One of the various features described in relation to one of the various embodiments described above may also be applied to an air compression device as described in connection with the other embodiments.  [Outline of Embodiment] Here, The above embodiments are summarized.  An air compression device according to an aspect of the present invention has: compressor, It produces compressed air; And cooler, It forms an internal space into which the above-mentioned compressed air flows. The cooler includes a first cavity forming surface on which the first fin is provided. The compressor includes a second cavity forming surface on which the second fin is provided. The first cavity forming surface and the second cavity forming surface form a cooling duct that allows cooling air that absorbs heat from the compressor and the cooler to flow. The first fins and the second fins protrude into the cooling duct.  According to the above composition, Compressed air flows into the interior of the cooler. The first cavity forming surface of the cooler and the second cavity forming surface of the compressor form a cooling duct that allows cooling air to flow. Therefore, it is not necessary to provide a wide space in order to secure the space for cooling the cooler and the compressor. And, The first heat sink provided on the first cavity forming surface and the second heat sink provided on the second cavity forming surface protrude together in the cooling duct. The cooling air supplied to the cooling duct is thus forced and efficiently cooled. The first fin and the second fin are cooled by the cooling air flowing in the common cooling duct. Therefore, the designer may not impart a complicated flow path of cooling air to the air compression device.  In the above composition, The first cavity forming surface and the second cavity forming surface may be disposed at positions facing each other. which is, The air compression device has: compressor, It produces compressed air; And cooler, It forms an internal space into which the above-mentioned compressed air flows. The cooler includes a first cavity forming surface at a portion facing the compressor, And a first heat sink provided on the first cavity forming surface. The compressor includes a second cavity forming surface that faces the first cavity of the cooler, And a second heat sink provided on the second cavity forming surface. The first cavity forming surface and the second cavity forming surface form a cooling duct that allows cooling air that absorbs heat from the compressor and the cooler to flow. The first fins and the second fins protrude into the cooling duct.  According to the above composition, The first cavity forming surface and the second cavity forming surface are disposed at positions facing each other. Therefore, at least two side faces of the cooling duct can be formed by the first cavity forming surface and the second cavity forming surface. The cooling duct can be easily constructed.  In the above composition, The air compressing device may further include a partition wall disposed between the first heat sink and the second heat sink. The partition wall may divide the flow space of the cooling air in the cooling duct into a first flow space in which the first heat sink protrudes, And a second flow space in which the second heat sink is protruded.  According to the above composition, The partition wall is disposed between the first heat sink and the second heat sink. Therefore, the cooling air in the cooling duct is rectified. therefore, Because the flow resistance of the cooling air in the cooling duct can be lowered, Therefore, the compressed air and compressor in the cooler are effectively cooled.  In the above composition, The partition wall may have a lower thermal conductivity than the first heat sink and the second heat sink.  According to the above composition, The partition wall has a lower thermal conductivity than the first heat sink and the second heat sink. Therefore, the heat between the compressor and the cooler becomes smaller.  In the above composition, The air compressing device may further comprise a blower for generating the cooling air, And guiding the cooling air to an upstream guiding portion of the cooling duct.  According to the above composition, The upstream guide guides the cooling air generated by the blower to the cooling duct. Therefore, the compressed air and compressor in the cooler are effectively cooled.  In the above composition, The compressor may also have a fixed scroll, And a scroll compressor that cooperates with the fixed scroll and generates the movable scroll of the compressed air. The scroll compressor may also define a cooling flow path for cooling the movable scroll. The fixed scroll tube and the movable scroll tube may be disposed between the cooling duct and the cooling flow path. The upstream guide portion may include a first guide frame surrounding an upstream end of the cooling duct and an upstream end of the cooling flow path.  According to the above composition, The upstream guide portion includes a first guide frame surrounding an upstream end of the cooling duct and an upstream end of the cooling flow path. Therefore, the cooling air generated by the blower is introduced into the cooling duct and the cooling flow path. Since the fixed scroll tube and the movable scroll tube are disposed between the cooling duct and the cooling flow path, Therefore, the compressed air in the cooler, The fixed scroll and the movable scroll are effectively cooled.  In the above composition, The air compression device can further comprise: framework, Forming an exhaust port for exhausting the cooling air; And the second guide frame, It is disposed between the exhaust port and the scroll compressor. The cooling air exhausted from the downstream end of the cooling duct and the downstream end of the cooling flow path is guided to the exhaust port. The second guiding frame may also include: pad, Surrounding the cooling pipe and the downstream end of the cooling flow path; And the downstream edge, It surrounds the above exhaust port.  According to the above composition, The pad of the second guiding frame surrounds the downstream end of the cooling pipe and the downstream end of the cooling flow path, And the downstream edge of the second guiding frame surrounds the exhaust port, Therefore, the cooling air is effectively exhausted from the frame.  In the above composition, The frame body may include a first wall and a second wall opposite to the first wall. The blower and the first guide frame may be disposed between the first wall and the scroll compressor. The second guide frame may be attached to the second wall.  According to the above composition, The blower and the first guide frame are disposed between the first wall and the scroll compressor. And, The second guide frame is attached to the second wall, Therefore, the cooling air generated by the blower passes through the first guide frame, Cooling pipe, Cooling flow path and second guide frame, Exhaust from the exhaust port effectively.  In the above composition, The air compression device can further comprise: Cooling device, It includes a pipeline exposed to the above-described cooling air exhausted from the exhaust port; And at least a portion of the flexible guide tube, The compressed air is guided from the cooler to the pipeline.  According to the above composition, The guiding tube is at least partially flexible, Therefore, it can be deformed according to the vibration generated by the air compression device. Therefore, the vibration of the air compressing device becomes less likely to cause a destructive load on the guide pipe and the portion connected to the guide pipe.  The above air compression device does not need to provide a complicated flow path of cooling air. Together, the cooler and compressor can be effectively cooled together.

100‧‧‧空氣壓縮裝置100‧‧‧Air compression device

100A‧‧‧空氣壓縮裝置100A‧‧‧Air compression device

100D‧‧‧空氣壓縮裝置100D‧‧‧Air compression device

100E‧‧‧空氣壓縮裝置100E‧‧‧Air compression device

100F‧‧‧空氣壓縮裝置100F‧‧‧Air compression device

100G‧‧‧空氣壓縮裝置100G‧‧‧Air compression device

101‧‧‧散熱片101‧‧‧ Heat sink

102‧‧‧散熱片102‧‧‧ Heat sink

110‧‧‧基座110‧‧‧Base

111‧‧‧上表面111‧‧‧Upper surface

112‧‧‧下表面112‧‧‧ lower surface

120‧‧‧過濾管120‧‧‧Filter tube

121‧‧‧過濾部121‧‧‧Filter Department

122‧‧‧可撓性管122‧‧‧Flexible tube

130‧‧‧排氣構造130‧‧‧Exhaust structure

140‧‧‧樹脂管140‧‧‧ resin tube

200‧‧‧壓縮機200‧‧‧Compressor

200C‧‧‧渦卷式壓縮機200C‧‧‧ scroll compressor

210‧‧‧第2空腔形成面210‧‧‧2nd cavity forming surface

210a‧‧‧第2上表面210a‧‧‧2nd upper surface

210b‧‧‧第2側面210b‧‧‧2nd side

210c‧‧‧第2下表面210c‧‧‧2nd lower surface

220‧‧‧第2散熱片220‧‧‧2nd heat sink

220C‧‧‧第2散熱片220C‧‧‧2nd heat sink

224‧‧‧上連接面224‧‧‧Upper connection surface

225‧‧‧下連接面225‧‧‧ lower connection surface

230‧‧‧保持框體230‧‧‧ Keep the frame

231‧‧‧腳部231‧‧‧ feet

232‧‧‧外殼體232‧‧‧Outer casing

233‧‧‧軸部233‧‧‧Axis

234‧‧‧圓筒部234‧‧‧Cylinder

235‧‧‧旋轉軸235‧‧‧Rotary axis

239‧‧‧收納空間239‧‧‧ Storage space

240‧‧‧搖動旋轉體240‧‧‧Shake the rotating body

241‧‧‧第1圓板241‧‧‧1st round

242‧‧‧第2圓板242‧‧‧2nd round

243‧‧‧可動渦形管243‧‧‧ movable scroll

244‧‧‧散熱片244‧‧‧ Heat sink

250‧‧‧蓋體250‧‧‧ cover

251‧‧‧環蓋板251‧‧‧ ring cover

252‧‧‧收納壁252‧‧‧ 收纳 wall

253‧‧‧內表面253‧‧‧ inner surface

254‧‧‧外表面254‧‧‧ outer surface

255‧‧‧周壁255‧‧‧Wall

256‧‧‧端壁256‧‧‧End wall

257‧‧‧固定渦形管257‧‧‧Fixed scroll

258‧‧‧噴出口258‧‧‧Spray outlet

261‧‧‧環壁261‧‧‧

262‧‧‧上弧壁262‧‧‧Upper arc wall

263‧‧‧下弧壁263‧‧‧ lower arc wall

264‧‧‧流入壁264‧‧‧Inflow wall

265‧‧‧流出壁265‧‧‧ outflow wall

266‧‧‧外表面266‧‧‧ outer surface

267‧‧‧內表面267‧‧‧ inner surface

271‧‧‧垂直壁271‧‧‧ vertical wall

272‧‧‧垂直壁272‧‧‧ vertical wall

273‧‧‧上邊界壁273‧‧‧Upper boundary wall

274‧‧‧下邊界壁274‧‧‧ Lower boundary wall

280‧‧‧吸入管280‧‧‧Inhalation tube

281‧‧‧上游面281‧‧‧ upstream

282‧‧‧凹面282‧‧‧ concave

283‧‧‧平坦面283‧‧‧flat surface

300‧‧‧冷卻器300‧‧‧ cooler

300B‧‧‧冷卻器300B‧‧‧cooler

301‧‧‧內部空間301‧‧‧Internal space

310‧‧‧第1空腔形成面310‧‧‧1st cavity forming surface

310a‧‧‧第1上表面310a‧‧‧1st upper surface

310b‧‧‧第1側面310b‧‧‧1st side

310c‧‧‧第1下表面310c‧‧‧1st lower surface

320‧‧‧第1散熱片320‧‧‧1st heat sink

330‧‧‧外殼體330‧‧‧Outer casing

331‧‧‧上游面331‧‧‧ upstream

332‧‧‧下游面332‧‧‧ downstream surface

333‧‧‧連接面333‧‧‧ Connection surface

334‧‧‧上連接面334‧‧‧Upper connection surface

335‧‧‧下連接面335‧‧‧ lower connection surface

336‧‧‧第1散熱片336‧‧‧1st heat sink

337‧‧‧流入筒337‧‧‧Inflow tube

338‧‧‧流入口338‧‧‧flow entrance

339‧‧‧外表面339‧‧‧ outer surface

340‧‧‧止回閥340‧‧‧ check valve

351‧‧‧上壁351‧‧‧Upper wall

352‧‧‧下壁352‧‧‧The lower wall

353‧‧‧上游壁353‧‧‧ upstream wall

354‧‧‧下游壁354‧‧‧ downstream wall

361‧‧‧上間隔壁361‧‧‧ upper partition

362‧‧‧下間隔壁362‧‧‧ lower partition

363‧‧‧中央間隔壁363‧‧‧Central partition

364‧‧‧直線壁364‧‧‧Linear wall

365‧‧‧彎曲壁365‧‧‧Bending wall

371‧‧‧第1內部流路371‧‧‧1st internal flow path

372‧‧‧第2內部流路372‧‧‧2nd internal flow path

373‧‧‧第3內部流路373‧‧‧3rd internal flow path

374‧‧‧第4內部流路374‧‧‧4th internal flow path

375‧‧‧第5內部流路375‧‧‧5th internal flow path

400‧‧‧冷卻管道400‧‧‧Cooling pipe

400A‧‧‧冷卻管道400A‧‧‧Cooling pipe

410‧‧‧間隔壁410‧‧‧ partition wall

410D‧‧‧間隔壁410D‧‧‧ partition wall

411‧‧‧左流動空間411‧‧‧left flow space

412‧‧‧右流動空間412‧‧‧Right flow space

413‧‧‧插通孔413‧‧‧ inserted through hole

420‧‧‧供給管420‧‧‧Supply tube

421‧‧‧上游端421‧‧‧ upstream end

422‧‧‧下游端422‧‧‧ downstream end

430‧‧‧送風機430‧‧‧Air blower

440‧‧‧第1引導框440‧‧‧1st lead frame

441‧‧‧安裝箱441‧‧‧Installation box

442‧‧‧襯墊442‧‧‧ cushion

443‧‧‧周壁443‧‧‧Walls

444‧‧‧第1安裝壁444‧‧‧1st mounting wall

445‧‧‧第2安裝壁445‧‧‧2nd mounting wall

446‧‧‧開口部446‧‧‧ openings

447‧‧‧開口部447‧‧‧ openings

500‧‧‧框體500‧‧‧ frame

510‧‧‧第1支柱510‧‧‧1st pillar

520‧‧‧第2支柱520‧‧‧2nd pillar

530‧‧‧第3支柱530‧‧‧3rd pillar

540‧‧‧第4支柱540‧‧‧4th pillar

550‧‧‧第1樑材550‧‧‧1st beam material

560‧‧‧第2樑材560‧‧‧2nd beam

570‧‧‧底板570‧‧‧floor

610‧‧‧馬達610‧‧‧Motor

611‧‧‧馬達軸611‧‧‧Motor shaft

620‧‧‧傳遞機構620‧‧‧Transmission agency

621‧‧‧上滑輪621‧‧‧Upper pulley

622‧‧‧下滑輪622‧‧‧Lower pulley

623‧‧‧張力滑輪623‧‧‧Tension pulley

624‧‧‧環狀帶624‧‧‧Ring belt

700‧‧‧框體700‧‧‧ frame

710‧‧‧頂板710‧‧‧ top board

720‧‧‧右面板720‧‧‧right panel

730‧‧‧左面板730‧‧‧left panel

740‧‧‧上罩體740‧‧‧Upper cover

750‧‧‧下罩體750‧‧‧Under cover

751‧‧‧保持框751‧‧‧ Keep box

752‧‧‧檐板752‧‧‧檐板

760‧‧‧排氣板760‧‧‧Exhaust plate

761‧‧‧外表面761‧‧‧ outer surface

762‧‧‧內表面762‧‧‧ inner surface

769‧‧‧排氣口769‧‧‧Exhaust port

770‧‧‧第2引導框770‧‧‧2nd guide frame

771‧‧‧箱部771‧‧‧Box Department

772‧‧‧襯墊772‧‧‧ cushion

773‧‧‧周壁773‧‧‧Weibi

774‧‧‧對向壁774‧‧‧ opposite wall

775‧‧‧下游緣775‧‧‧ downstream edge

776‧‧‧矩形緣776‧‧‧Rectangular edge

777‧‧‧開口部777‧‧‧ openings

810‧‧‧冷卻裝置810‧‧‧Cooling device

811‧‧‧管路811‧‧‧ pipeline

820‧‧‧除濕裝置820‧‧‧Dehumidification device

830‧‧‧控制盤830‧‧‧Control panel

P01~P04‧‧‧點P01~P04‧‧‧ points

圖1係第1實施形態之空氣壓縮裝置之概念圖。 圖2A係可利用於圖1所示之空氣壓縮裝置之散熱片之概略立體圖(第2實施形態)。 圖2B係可利用於圖1所示之空氣壓縮裝置之散熱片之概略立體圖(第2實施形態)。 圖3係第3實施形態之空氣壓縮裝置之概念圖。 圖4係第4實施形態之冷卻器之概略立體圖。 圖5係圖4所示之冷卻器之概略剖視圖。 圖6係第5實施形態之渦卷式壓縮機之概略展開立體圖。 圖7係圖6所示之渦卷式壓縮機之蓋體之概略立體圖。 圖8係第6實施形態之空氣壓縮裝置之概略展開立體圖。 圖9係第7實施形態之空氣壓縮裝置之概略立體圖。 圖10A係圖9所示之空氣壓縮裝置之引導框之概略立體圖。 圖10B係圖10A所示之引導框之概略後視圖。 圖11係第8實施形態之空氣壓縮裝置之概略立體圖。 圖12A係第9實施形態之空氣壓縮裝置之概略立體圖。 圖12B係圖12A所示之空氣壓縮裝置之另一者之概略立體圖。 圖13係第10實施形態之排氣構造之概略立體圖。 圖14係具有圖13所示之排氣構造之空氣壓縮裝置之概略立體圖。 圖15係圖14所示之空氣壓縮裝置之概略立體圖(第11實施形態)。Fig. 1 is a conceptual diagram of an air compressing device according to a first embodiment. Fig. 2A is a schematic perspective view of a heat sink which can be used in the air compressing device shown in Fig. 1 (second embodiment). Fig. 2B is a schematic perspective view of a heat sink which can be used in the air compressing device shown in Fig. 1 (second embodiment). Fig. 3 is a conceptual diagram of an air compressing device according to a third embodiment. Fig. 4 is a schematic perspective view of a cooler according to a fourth embodiment. Figure 5 is a schematic cross-sectional view of the cooler shown in Figure 4. Fig. 6 is a schematic exploded perspective view showing the scroll compressor of the fifth embodiment. Fig. 7 is a schematic perspective view showing the cover of the scroll compressor shown in Fig. 6. Fig. 8 is a schematic exploded perspective view showing the air compressing device of the sixth embodiment. Fig. 9 is a schematic perspective view of an air compressing device according to a seventh embodiment. Fig. 10A is a schematic perspective view of a guide frame of the air compressing device shown in Fig. 9. Fig. 10B is a schematic rear view of the guide frame shown in Fig. 10A. Fig. 11 is a schematic perspective view of an air compressing apparatus according to an eighth embodiment. Fig. 12A is a schematic perspective view of an air compressing device according to a ninth embodiment. Fig. 12B is a schematic perspective view showing the other of the air compressing device shown in Fig. 12A. Fig. 13 is a schematic perspective view showing an exhaust structure of a tenth embodiment. Fig. 14 is a schematic perspective view of an air compressing device having the exhaust structure shown in Fig. 13. Fig. 15 is a schematic perspective view of the air compressing device shown in Fig. 14 (the eleventh embodiment).

Claims (8)

一種空氣壓縮裝置,其包含:壓縮機,其產生壓縮空氣;及冷卻器,其形成供上述壓縮空氣流入之內部空間;且上述冷卻器包含設有第1散熱片之第1空腔形成面;上述壓縮機包含設有第2散熱片之第2空腔形成面;上述第1空腔形成面及上述第2空腔形成面係形成容許自上述壓縮機與上述冷卻器吸取熱之冷卻空氣之流動的冷卻管道;上述第1散熱片及上述第2散熱片朝上述冷卻管道內突出;上述第1空腔形成面及第2空腔形成面係配置於彼此對向之位置;上述空氣壓縮裝置進而包含配置於上述第1散熱片與上述第2散熱片之間之間隔壁;且上述間隔壁係將上述冷卻管道內之上述冷卻空氣之流動空間劃分成供上述第1散熱片突出之第1流動空間、及供上述第2散熱片突出之第2流動空間。An air compressing device comprising: a compressor that generates compressed air; and a cooler that forms an internal space into which the compressed air flows; and the cooler includes a first cavity forming surface on which the first fin is disposed; The compressor includes a second cavity forming surface on which the second heat sink is provided, and the first cavity forming surface and the second cavity forming surface form a cooling air that allows heat to be taken from the compressor and the cooler. a cooling duct that flows; the first fin and the second fin protrude into the cooling duct; the first cavity forming surface and the second cavity forming surface are disposed at positions facing each other; and the air compressing device Further, the partition wall includes a partition wall disposed between the first heat sink and the second heat sink; and the partition wall divides a flow space of the cooling air in the cooling duct into a first one for protruding the first heat sink The flow space and the second flow space in which the second heat sink is protruded. 如請求項1之空氣壓縮裝置,其中上述間隔壁具有較上述第1散熱片及上述第2散熱片更低之熱傳導率。The air compressing device of claim 1, wherein the partition wall has a lower thermal conductivity than the first heat sink and the second heat sink. 如請求項1或2之空氣壓縮裝置,其進而包含:送風機,其產生上述冷卻空氣;及上游引導部,其將上述冷卻空氣引導至上述冷卻管道。The air compressing device of claim 1 or 2, further comprising: a blower that generates the cooling air; and an upstream guide that guides the cooling air to the cooling duct. 如請求項3之空氣壓縮裝置,其中上述壓縮機係包含固定渦形管及與上述固定渦形管協作而產生上述壓縮空氣之可動渦形管之渦卷式壓縮機;上述渦卷式壓縮機規定用以冷卻上述可動渦形管之冷卻流路;上述固定渦形管及上述可動渦形管配置於上述冷卻管道與上述冷卻流路之間;上述上游引導部包含包圍上述冷卻管道之上游端與上述冷卻流路之上游端之第1引導框。The air compressing device of claim 3, wherein the compressor comprises a fixed scroll tube and a scroll compressor that cooperates with the fixed scroll tube to generate the movable scroll of the compressed air; the scroll compressor a cooling flow path for cooling the movable scroll; the fixed scroll and the movable scroll are disposed between the cooling pipe and the cooling flow path; and the upstream guiding portion includes an upstream end surrounding the cooling pipe And a first guide frame at an upstream end of the cooling flow path. 如請求項4之空氣壓縮裝置,其進而包含:框體,其形成供上述冷卻空氣排氣之排氣口;及第2引導框,其配置於上述排氣口與上述渦卷式壓縮機之間,將自上述冷卻管道之下游端及上述冷卻流路之下游端排放之上述冷卻空氣引導至上述排氣口;且上述第2引導框包含包圍上述冷卻管道及上述冷卻流路之上述下游端之襯墊、及包圍上述排氣口之下游緣。The air compressing device of claim 4, further comprising: a frame body forming an exhaust port for exhausting the cooling air; and a second guide frame disposed at the exhaust port and the scroll compressor Leading the cooling air discharged from the downstream end of the cooling duct and the downstream end of the cooling flow path to the exhaust port; and the second guiding frame includes the downstream end surrounding the cooling duct and the cooling flow path a gasket and a downstream edge surrounding the exhaust port. 如請求項5之空氣壓縮裝置,其中上述框體包含第1壁、及與上述第1壁相反側之第2壁;且上述送風機及上述第1引導框配置於上述第1壁與上述渦卷式壓縮機之間;上述第2引導框安裝於上述第2壁。The air compressing device according to claim 5, wherein the frame body includes a first wall and a second wall opposite to the first wall; and the air blower and the first guide frame are disposed on the first wall and the scroll The second guide frame is attached to the second wall. 如請求項5之空氣壓縮裝置,其進而包含:冷卻裝置,其包含暴露於自上述排氣口排放之上述冷卻空氣中的管路;及至少部分可撓性之引導管,其自上述冷卻器將上述壓縮空氣向上述管路引導。The air compressing device of claim 5, further comprising: a cooling device comprising a conduit exposed to said cooling air discharged from said exhaust port; and an at least partially flexible guiding tube from said cooler The compressed air is guided to the above piping. 如請求項6之空氣壓縮裝置,其進而包含:冷卻裝置,其包含暴露於自上述排氣口排放之上述冷卻空氣中的管路;及至少部分可撓性之引導管,其自上述冷卻器向上述管路引導上述壓縮空氣。The air compressing device of claim 6, further comprising: a cooling device including a conduit exposed to the cooling air discharged from the exhaust port; and an at least partially flexible guide tube from the cooler The compressed air is guided to the above piping.
TW105127554A 2015-08-28 2016-08-26 Air compression device TWI627355B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015169758 2015-08-28

Publications (2)

Publication Number Publication Date
TW201713856A TW201713856A (en) 2017-04-16
TWI627355B true TWI627355B (en) 2018-06-21

Family

ID=58187312

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105127554A TWI627355B (en) 2015-08-28 2016-08-26 Air compression device

Country Status (4)

Country Link
JP (1) JP6743030B2 (en)
CN (1) CN107923379B (en)
TW (1) TWI627355B (en)
WO (1) WO2017038673A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210180751A1 (en) * 2019-12-16 2021-06-17 Bharat Barney Patel Portable, cryogenic fluid pump apparatus with associated instrumentation, conduit legs and accessories

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053922A1 (en) * 2001-09-19 2003-03-20 Anest Iwata Corporation Scroll-type fluid machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261182A (en) * 1995-03-20 1996-10-08 Tokico Ltd Scroll type fluid machine
JPH08319966A (en) * 1995-05-24 1996-12-03 Tokico Ltd Scroll type fluid machine
JP2008157179A (en) * 2006-12-26 2008-07-10 Anest Iwata Corp Scroll fluid machine
JP5422609B2 (en) * 2011-06-10 2014-02-19 株式会社日立産機システム Scroll type fluid machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053922A1 (en) * 2001-09-19 2003-03-20 Anest Iwata Corporation Scroll-type fluid machine

Also Published As

Publication number Publication date
JPWO2017038673A1 (en) 2018-06-14
CN107923379A (en) 2018-04-17
CN107923379B (en) 2019-07-12
JP6743030B2 (en) 2020-08-19
WO2017038673A1 (en) 2017-03-09
TW201713856A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
KR101401186B1 (en) Outdoor unit for air conditioner
JP5452908B2 (en) Oil-free screw compressor
TWI651497B (en) dehumidifier
CN111148401B (en) Hand-held electronic device
TWI627355B (en) Air compression device
KR20130069667A (en) Low ice pneumatic motor exhaust muffler
JP4912703B2 (en) Package type compressor
JP2007270665A (en) Package type compressor
JP2008088845A (en) Compressor
CN107022969B (en) A kind of dust exhaust apparatus
JP2006112353A (en) Package type compressor
JP2016136006A (en) Pump device
JP7208064B2 (en) Package type compressor
CN108026771A (en) The compressor or vacuum pump of this method of methods and applications for cooling down compressor or vacuum pump
TWI791060B (en) Dehumidifier
JP2017091711A (en) Battery cooling device
KR20130075384A (en) Housing for blowing fan
JP2020180591A (en) Blower and housing for blower
JPH0372330B2 (en)
JP4521664B2 (en) Package type compressor
JP3242490U (en) small air supply
JP6770954B2 (en) Air compressor
JP7307962B2 (en) radial turbo engine
CN110475972B (en) Scroll fluid machine having a plurality of scroll members
KR100593075B1 (en) The barrier structure of air conditioner outdoor unit