TWI626806B - Charging circuit and capacitive power conversion circuit and charging control method thereof - Google Patents

Charging circuit and capacitive power conversion circuit and charging control method thereof Download PDF

Info

Publication number
TWI626806B
TWI626806B TW106104841A TW106104841A TWI626806B TW I626806 B TWI626806 B TW I626806B TW 106104841 A TW106104841 A TW 106104841A TW 106104841 A TW106104841 A TW 106104841A TW I626806 B TWI626806 B TW I626806B
Authority
TW
Taiwan
Prior art keywords
conversion
charging
power
circuit
current
Prior art date
Application number
TW106104841A
Other languages
Chinese (zh)
Other versions
TW201814993A (en
Inventor
黃宗偉
林水木
黃威仁
佘憲治
陳登政
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US15/598,956 priority Critical patent/US10177588B2/en
Priority to EP17177090.2A priority patent/EP3297146B1/en
Publication of TW201814993A publication Critical patent/TW201814993A/en
Application granted granted Critical
Publication of TWI626806B publication Critical patent/TWI626806B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Abstract

一種用以對一電池提供一充電電流之充電電路,包含一電源發送單元以及一電容式電源轉換電路。該電源發送單元將一輸入電源轉換為一直流輸出電流並調節該直流輸出電流於一預設之輸出電流位準;該電容式電源轉換電路包括一具有複數轉換開關之轉換開關電路,其與一或複數轉換電容器耦接,以及一轉換控制電路,用以於複數轉換時段中,對應操作該複數轉換開關,使該一或複數轉換電容器週期性地對應耦接於一或複數分壓節點、該直流輸出電壓、以及該接地點其中之一對節點之間,而經由該一或複數分壓節點中之一節點產生該充電電流,其中該充電電流之位準為該預設之輸出電流位準之一預設之增流倍數。 A charging circuit for providing a charging current to a battery includes a power transmitting unit and a capacitive power conversion circuit. The power transmitting unit converts an input power into a DC output current and adjusts the DC output current to a preset output current level. The capacitive power conversion circuit includes a transfer switch circuit having a plurality of transfer switches. Or a complex conversion capacitor, and a conversion control circuit for correspondingly operating the complex conversion switch during the complex conversion period, so that the one or complex conversion capacitor is periodically correspondingly coupled to one or a plurality of voltage dividing nodes, the The DC output voltage and one of the pair of nodes of the ground point generate the charging current through one of the one or more voltage dividing nodes, where the level of the charging current is the preset output current level One of the preset boosting times.

Description

充電電路及其電容式電源轉換電路與充電控制方法 Charging circuit, capacitive power conversion circuit and charging control method

本發明係有關一種充電電路,特別是指一種可倍增電流之充電電路。本發明也有關於用於充電電路中之電容式電源轉換電路與充電控制方法。 The invention relates to a charging circuit, in particular to a charging circuit capable of multiplying current. The invention also relates to a capacitive power conversion circuit and a charging control method used in a charging circuit.

第1圖揭示一種先前技術之充電電路(充電電路1),其包含一具有直接充電能力之電源適配器(adaptor)11,可提供充電電流IBAT經由一纜線20(例如USB纜線)以及一負載開關40(load switch)對一電池50進行恆定電流(CC,constant current)充電。然而第1圖中所示之先前技術,在使用例如USB纜線等標準纜線的情況下,其纜線的電流限額一般來說相對較低,例如約為5A或以下,充電時間因而較長。若欲加速充電時間而提高充電電流(例如8A或以上),則必須使用線徑較粗的專用快速充電纜線,除了因使用非標準纜線造成使用者的不便之外,快速充電纜線也因為線徑較粗不易撓曲而不便於使用。 FIG. 1 illustrates a prior art charging circuit (charging circuit 1), which includes a power adapter 11 with direct charging capability, and can provide a charging current IBAT via a cable 20 (such as a USB cable) and a load A switch 40 (load switch) charges a battery 50 with a constant current (CC). However, in the prior art shown in Figure 1, when a standard cable such as a USB cable is used, the current limit of the cable is generally relatively low, for example, about 5A or less, so the charging time is longer. . If you want to speed up the charging time and increase the charging current (for example, 8A or more), you must use a special fast charging cable with a thicker diameter. In addition to the inconvenience caused by the use of non-standard cables, the fast charging cable also has It is not easy to use because the wire diameter is thick and it is not easy to bend.

第2圖揭示另一種先前技術之充電電路(充電電路2),其包含一切換式充電電路60,可將電源適配器11所提供之電源(例如但不限於USB PD之5V或9V或12V之VBUS)轉換為充電電流IBAT,而對電池50進行恆定電流(CC,constant current)充電。第2圖中所示之先前技術之缺點在於,在切換式充電電路60中,難以選用合適規格之電感器與開關(未示出)來兼顧充電電流量、電流漣波 幅度、開關導通電阻、能量轉換效率等各種參數的最佳化,導致設計最佳化不易達成。 FIG. 2 shows another charging circuit (charging circuit 2) of the prior art, which includes a switching charging circuit 60, which can supply the power provided by the power adapter 11 (such as, but not limited to, 5V or 9V or 12V VBUS of USB PD) ) Is converted into a charging current IBAT, and the battery 50 is charged with a constant current (CC, constant current). The disadvantage of the prior art shown in FIG. 2 is that in the switching charging circuit 60, it is difficult to select an inductor and a switch (not shown) of appropriate specifications to take into account the amount of charging current and current ripple. The optimization of various parameters such as the amplitude, the on-resistance of the switch, and the energy conversion efficiency makes design optimization difficult to achieve.

本發明相較於第1圖之先前技術,其優點在於可提供倍增的充電電流對電池充電,可縮短充電時間,卻又可以使用如USB纜線等標準纜線,在相對較低的纜線電流下操作,方便使用者之應用,而本發明相較於第2圖之先前技術而言,具有無需電感器,縮小尺寸,降低成本,以及零件選用易於最佳化以達最佳能量轉換效率等優點。 Compared with the prior art of FIG. 1, the present invention has the advantage that it can provide a multiplied charging current to charge the battery and shorten the charging time. However, it can use standard cables such as USB cables. Operation under current is convenient for users. Compared with the prior art of FIG. 2, the present invention has no inductor, reduces size, reduces cost, and is easy to optimize parts selection to achieve the best energy conversion efficiency. Etc.

就其中一個觀點言,本發明提供了一種充電控制方法,用以控制一充電電路,以對一電池提供一充電電源,該充電電源包括一充電電壓以及一充電電流,該充電電路包含一電源發送單元,以及一或複數電容式電源轉換電路,其中該電源發送單元將一輸入電源轉換為一直流輸出電源,該直流輸出電源包括一直流輸出電壓以及一直流輸出電流;其中該電容式電源轉換電路包括一轉換開關電路,包括複數轉換開關,與一或複數轉換電容器耦接;該充電控制方法包含以下步驟:以該電源發送單元調節該直流輸出電流於一預設之輸出電流位準;以及以該電容式電源轉換電路將該直流輸出電源轉換為該充電電源,使得該充電電流之位準為該預設之輸出電流位準之一預設之增流倍數(current scale-up factor),其中該充電電流大於該直流輸出電流;其中將該直流輸出電源轉換為該充電電源之步驟包括:於複數轉換時段中,對應操作該複數轉換開關,使該一或複數轉換電容器週期性地對應耦接於一或複數分壓節點、該直流輸出電壓、以及該接地點其中之一對節點之間,其中該充電電源耦接於該一或複數分壓節點中之一節點。 In one aspect, the present invention provides a charging control method for controlling a charging circuit to provide a battery with a charging power source. The charging power source includes a charging voltage and a charging current. The charging circuit includes a power transmitting circuit. Unit, and one or more capacitive power conversion circuits, wherein the power transmitting unit converts an input power into a DC output power, the DC output power includes a DC output voltage and a DC output current; wherein the capacitive power conversion circuit The charging control method includes the following steps: adjusting the DC output current to a preset output current level by the power transmitting unit; and The capacitive power conversion circuit converts the DC output power into the charging power so that the level of the charging current is a preset current scale-up factor, which is one of the preset output current levels, where The charging current is greater than the DC output current; wherein the DC output power The step of converting to the charging power source includes: correspondingly operating the complex conversion switch during the complex conversion period, so that the one or more conversion capacitors are correspondingly coupled to one or more voltage dividing nodes, the DC output voltage, and the periodically The ground point is between one pair of nodes, and the charging power source is coupled to one of the one or more voltage dividing nodes.

在一較佳實施例中,將該直流輸出電源轉換為該充電電源之步驟更包括:產生一同步控制訊號;以及根據該同步控制訊號,控制該複數電容式電源轉換電路之各複數轉換時段之間為同步。 In a preferred embodiment, the step of converting the DC output power into the charging power further includes: generating a synchronous control signal; and controlling each of the multiple conversion periods of the complex capacitive power conversion circuit according to the synchronous control signal. Time is synchronized.

在一較佳實施例中,將該直流輸出電源轉換為該充電電源之步驟更包括:於該電容式電源轉換電路中,在任一轉換時段中,於該一或複數分壓節點、該直流輸出電壓、以及該接地點其中之任一對節點之間,至多耦接於該複數轉換電容器之一。 In a preferred embodiment, the step of converting the DC output power into the charging power further includes: in the capacitive power conversion circuit, in any conversion period, at the one or more voltage division nodes, the DC output The voltage and any pair of nodes of the ground point are coupled at most to one of the complex conversion capacitors.

在一較佳實施例中,該電容式電源轉換電路包括一第一電容式電源轉換電路,該轉換電容器包括一第一轉換電容器,該複數轉換時段包括一第一轉換時段以及一第二轉換時段;其中將該直流輸出電源轉換為該充電電源之步驟更包括:操作該第一電容式電源轉換電路之該複數轉換開關,使該第一轉換電容器之第一端於該第一轉換時段與該第二轉換時段中分別對應切換於該直流輸出電壓與該充電電壓之間,且使該第一轉換電容器之第二端於該第一轉換時段與該第二轉換時段中分別對應切換於該充電電壓與該接地點之間;其中該充電電流之位準為該預設之輸出電流位準之二倍。 In a preferred embodiment, the capacitive power conversion circuit includes a first capacitive power conversion circuit, the conversion capacitor includes a first conversion capacitor, and the complex conversion period includes a first conversion period and a second conversion period. ; Wherein the step of converting the DC output power into the charging power further includes: operating the complex conversion switch of the first capacitive power conversion circuit, so that the first end of the first conversion capacitor and the The second conversion period is respectively switched between the DC output voltage and the charging voltage, and the second end of the first conversion capacitor is respectively switched to the charging during the first conversion period and the second conversion period. Between the voltage and the ground point; wherein the level of the charging current is twice the level of the preset output current.

在一較佳實施例中,該轉換電容器更包括一第二轉換電容器;其中將該直流輸出電源轉換為該充電電源之步驟更包括:操作該第一電容式電源轉換電路之該複數轉換開關,使該第二轉換電容器之第一端於該第二轉換時段與該第一轉換時段中分別對應切換於該直流輸出電壓與該充電電壓之間,且使該第二轉換電容器之第二端於該第二轉換時段與該第一轉換時段中分別對應切換於該充電電壓與該接地點之間。 In a preferred embodiment, the conversion capacitor further includes a second conversion capacitor; wherein the step of converting the DC output power into the charging power further includes: operating the complex conversion switch of the first capacitive power conversion circuit, The first end of the second conversion capacitor is switched between the DC output voltage and the charging voltage respectively in the second conversion period and the first conversion period, and the second end of the second conversion capacitor is switched between The second conversion period and the first conversion period are respectively switched between the charging voltage and the ground point.

在一較佳實施例中,該充電控制方法更包含:感測該直流輸出電流或該充電電流而產生一電流相關訊號;以及以該電源發送單元根據該電流相關訊號而調節該直流輸出電流於該預設之輸出電流位準。 In a preferred embodiment, the charging control method further includes: sensing the DC output current or the charging current to generate a current-related signal; and using the power transmitting unit to adjust the DC output current in accordance with the current-related signal. The preset output current level.

就另一個觀點言,本發明也提供了一種充電電路,包含受上述充電控制方法所控制的該電源發送單元與對應之該電容式電源轉換電路;以及一纜線,用以耦接該電源發送單元與該電容式電源轉換電路。 According to another aspect, the present invention also provides a charging circuit including the power transmitting unit and the corresponding capacitive power conversion circuit controlled by the charging control method; and a cable for coupling the power transmitting Unit and the capacitive power conversion circuit.

在一較佳實施例中,該纜線係符合通用序列匯流排供電規範的纜線(USB PD cable),其包含一電源線,其中該電源線用以傳送該直流輸出電源。 In a preferred embodiment, the cable is a cable conforming to the universal serial bus power supply specification (USB PD cable), which includes a power cable, wherein the power cable is used to transmit the DC output power.

在一較佳實施例中,該纜線包含一訊號線,其中該訊號線用以傳送該電流相關訊號。 In a preferred embodiment, the cable includes a signal line, wherein the signal line is used to transmit the current-related signal.

就另一個觀點言,本發明也提供了一種用於一充電電路之電容式電源轉換電路,其中該充電電路用以對一電池提供一充電電源,該充電電源包括一充電電壓以及一充電電流,該充電電路包含一電源發送單元,其中該電源發送單元將一輸入電源轉換為一直流輸出電源,該直流輸出電源包括一直流輸出電壓以及一直流輸出電流;其中該電源發送單元調節該直流輸出電流於一預設之輸出電流位準;該電容式電源轉換電路包括:一轉換開關電路,包括複數轉換開關,與一或複數轉換電容器耦接;以及一轉換控制電路,用以產生一開關控制訊號,用以於複數轉換時段中,對應操作該複數轉換開關,使該一或複數轉換電容器週期性地對應耦接於一或複數分壓節點、該直流輸出電壓、以及一接地點其中之一對節點之間,使得該充電電流之位準為該預設之輸出電流位準之一預設之增流倍數(current scale-up factor),其中該充電電流大於該直流輸出電流;其中該充電電源耦接於該一或複數分壓節點中之一節點。 In another aspect, the present invention also provides a capacitive power conversion circuit for a charging circuit. The charging circuit is used to provide a battery with a charging power source. The charging power source includes a charging voltage and a charging current. The charging circuit includes a power transmitting unit, wherein the power transmitting unit converts an input power into a DC output power, and the DC output power includes a DC output voltage and a DC output current; wherein the power transmitting unit regulates the DC output current At a preset output current level; the capacitive power conversion circuit includes: a transfer switch circuit including a complex transfer switch coupled to one or a plurality of transfer capacitors; and a transfer control circuit for generating a switch control signal For correspondingly operating the complex conversion switch during the complex conversion period, so that the one or complex conversion capacitor is periodically correspondingly coupled to one of a pair of one or more voltage dividing nodes, the DC output voltage, and a ground point Between nodes, so that the level of the charging current is the preset output current The quasi-one preset fold increase flow (current scale-up factor), wherein the charging current is larger than the DC output current; wherein the charging power supply coupled to the one or a plurality of partial pressure of one of the nodes in the node.

在一較佳實施例中,該轉換控制電路更產生一同步控制訊號,且根據該同步控制訊號,控制該複數電容式電源轉換電路之各複數轉換時段之間為同步。 In a preferred embodiment, the conversion control circuit further generates a synchronization control signal, and controls synchronization between each of the plurality of conversion periods of the plurality of capacitive power conversion circuits according to the synchronization control signal.

在一較佳實施例中,在任一轉換時段中,於該一或複數分壓節點、該直流輸出電壓、以及該接地點其中之任一對節點之間,至多耦接於該複數轉換電容器之一。 In a preferred embodiment, during any conversion period, at most one of the pair of nodes of the one or more voltage dividing nodes, the DC output voltage, and the ground point is coupled to the plurality of conversion capacitors. One.

在一較佳實施例中,該電容式電源轉換電路包括一第一電容式電源轉換電路,該轉換電容器包括一第一轉換電容器,該複數轉換時段包括一第一轉換時段以及一第二轉換時段;其中該轉換控制電路控制該複數轉換開關,使該第一轉換電容器之第一端於該第一轉換時段與該第二轉換時段中分別對應切換而電性連接於該直流輸出電壓與該充電電壓之間,且使該第一轉換電容器之第二端於該第一轉換時段與該第二轉換時段中分別對應切換而電性連接於該充電電壓與該接地點之間;其中該充電電流之位準為該預設之輸出電流位準之二倍。 In a preferred embodiment, the capacitive power conversion circuit includes a first capacitive power conversion circuit, the conversion capacitor includes a first conversion capacitor, and the complex conversion period includes a first conversion period and a second conversion period. ; Wherein the conversion control circuit controls the plurality of conversion switches so that the first end of the first conversion capacitor is correspondingly switched between the first conversion period and the second conversion period and is electrically connected to the DC output voltage and the charging Between the voltage and the second end of the first conversion capacitor is switched between the first conversion period and the second conversion period respectively and is electrically connected between the charging voltage and the ground point; wherein the charging current The level is twice the preset output current level.

在一較佳實施例中,該轉換電容器更包括一第二轉換電容器;其中該轉換控制電路控制該複數轉換開關,使該第二轉換電容器之第一端於該第二轉換時段與該第一轉換時段中分別對應切換而電性連接於該直流輸出電壓與該充電電壓之間,且使該第二轉換電容器之第二端於該第二轉換時段與該第一轉換時段中分別對應切換而電性連接於該充電電壓與該接地點之間。 In a preferred embodiment, the conversion capacitor further includes a second conversion capacitor; wherein the conversion control circuit controls the plurality of conversion switches, so that the first end of the second conversion capacitor is connected to the first conversion period during the second conversion period. The switching period is correspondingly switched and electrically connected between the DC output voltage and the charging voltage, and the second end of the second conversion capacitor is switched correspondingly during the second conversion period and the first conversion period. It is electrically connected between the charging voltage and the ground point.

在一較佳實施例中,該轉換控制電路更感測該直流輸出電流或該充電電流,而產生一電流相關訊號,其中該電源發送單元根據該電流相關訊號而調節該直流輸出電流於該預設之輸出電流位準。 In a preferred embodiment, the conversion control circuit further senses the DC output current or the charging current to generate a current-related signal, wherein the power transmitting unit adjusts the DC output current to the pre-measurement according to the current-related signal. Set the output current level.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 Detailed descriptions will be provided below through specific embodiments to make it easier to understand the purpose, technical content, features and effects of the present invention.

1,2,3,4,5‧‧‧充電電路 1,2,3,4,5‧‧‧Charging circuit

10‧‧‧電源發送單元 10‧‧‧ Power Transmission Unit

11‧‧‧電源適配器 11‧‧‧ Power Adapter

20‧‧‧纜線 20‧‧‧cable

21‧‧‧電源線 21‧‧‧Power cord

22‧‧‧訊號線 22‧‧‧Signal line

30A,30B,30’,30”‧‧‧電容式電源轉換電路 30A, 30B, 30 ’, 30” ‧‧‧Capacitive power conversion circuit

31A,31B,31’,31”‧‧‧轉換開關電路 31A, 31B, 31 ’, 31” ‧‧‧transfer switch circuit

32A,32B,32’,32”‧‧‧轉換控制電路 32A, 32B, 32 ’, 32” ‧‧‧Conversion control circuit

40‧‧‧負載開關 40‧‧‧Load Switch

50‧‧‧電池 50‧‧‧ battery

60‧‧‧切換式充電電路 60‧‧‧Switching charging circuit

CA1-CAN‧‧‧轉換電容器 CA1-CAN‧‧‧ Conversion Capacitor

CB1-CBN‧‧‧轉換電容器 CB1-CBN‧‧‧ Conversion Capacitor

CTRLA,CTRLB‧‧‧開關控制訊號 CTRLA, CTRLB‧‧‧Switch control signal

IBAT‧‧‧充電電流 IBAT‧‧‧Charging current

IDC‧‧‧直流輸出電流 IDC‧‧‧DC output current

ISENA,ISENB‧‧‧電流相關訊號 ISENA, ISENB‧‧‧ Current related signals

NDA1-NDAM‧‧‧分壓節點 NDA1-NDAM‧‧‧Divided voltage node

NDB1-NDBM‧‧‧分壓節點 NDB1-NDBM ‧‧‧ Divided Voltage Node

SW11-14,SW21-24‧‧‧轉換開關 SW11-14, SW21-24‧‧‧ transfer switch

SYNC‧‧‧同步控制訊號 SYNC‧‧‧Synchronous control signal

VBUS‧‧‧直流輸出電壓 VBUS‧‧‧DC output voltage

VBAT‧‧‧充電電壓 VBAT‧‧‧Charging voltage

第1圖顯示一種先前技術之充電電路之示意圖。 Figure 1 shows a schematic diagram of a prior art charging circuit.

第2圖顯示一種先前技術之充電電路之示意圖。 Figure 2 shows a schematic diagram of a prior art charging circuit.

第3圖顯示本發明之充電電路之一實施例的示意圖。 FIG. 3 is a schematic diagram of an embodiment of a charging circuit of the present invention.

第4圖顯示本發明之充電電路之一實施例的示意圖。 FIG. 4 shows a schematic diagram of an embodiment of a charging circuit of the present invention.

第5圖顯示本發明之充電電路及其中電容式電源轉換電路之一實施例的示意圖。 FIG. 5 shows a schematic diagram of an embodiment of a charging circuit and a capacitive power conversion circuit of the present invention.

第6圖顯示本發明之充電電路中,電容式電源轉換電路之一實施例的示意圖。 FIG. 6 is a schematic diagram of an embodiment of a capacitive power conversion circuit in a charging circuit of the present invention.

請參閱第3圖,圖中所示為本發明之充電電路的一種實施例(充電電路3)的示意圖,充電電路3用以對一電池50提供一充電電源,其包括一充電電流IBAT;充電電路3包含一電源發送單元10以及一電容式電源轉換電路30A。電源發送單元10將一輸入電源(未示出)轉換為一直流輸出電源,該直流輸出電源包括一直流輸出電壓VBUS以及一直流輸出電流IDC,所述電源發送單元10可例如為一電源適配器,將交流形式之輸入電源轉換為前述之直流輸出電源,或可為一直流直流轉換電路,將來自例如行動電源(power bank)之輸入電源轉換為前述之直流輸出電源;電源發送單元10調節該直流輸出電流IDC於一預設之輸出電流 位準。在一實施例中,電源發送單元10可支持恆定電流直接充電模式,不經過電容式電源轉換電路30A的控制而直接對電池50充電(相關線路未示出)。電容式電源轉換電路30A將直流輸出電源轉換為充電電源,其中該充電電源包括一充電電壓VBAT以及一充電電流IBAT;電容式電源轉換電路30A包括一轉換開關電路31A,其包括複數轉換開關(未示出),與一轉換電容器(例如第3圖中之CA1)或複數轉換電容器(例如第3圖中之CA1-CAN,其中N為自然數)耦接;以及一轉換控制電路32A,用以產生一開關控制訊號CTRLA,用以於複數轉換時段中,對應操作複數轉換開關,使一或複數轉換電容器CA1或CA1-CAN週期性地對應耦接於一或複數分壓節點(例如對應第3圖中之NDA1或NDA1-NDAM,其中M為自然數)、該直流輸出電壓VBUS、以及接地點GND其中之一對節點或複數對節點之間,使得該充電電流IBAT之位準為該直流輸出電流IDC之預設輸出電流位準之一預設之增流倍數(current scale-up factor)K,K為大於1之實數,其中該充電電流IBAT大於該直流輸出電流IDC;其中該充電電源耦接於該一或複數分壓節點中之一節點(例如對應第3圖中之NDA1),而經由該節點產生該充電電流IBAT。在一實施例中,電容式電源轉換電路30A例如但不限於可包含除法式的電荷泵(divider charge pump)。 Please refer to FIG. 3, which shows a schematic diagram of an embodiment of the charging circuit (charging circuit 3) of the present invention. The charging circuit 3 is used to provide a charging power to a battery 50, which includes a charging current IBAT; charging The circuit 3 includes a power transmitting unit 10 and a capacitive power conversion circuit 30A. The power transmitting unit 10 converts an input power (not shown) into a DC output power. The DC output power includes a DC output voltage VBUS and a DC output current IDC. The power transmitting unit 10 may be, for example, a power adapter. The input power in the form of AC is converted into the aforementioned DC output power, or may be a direct current DC conversion circuit that converts input power from, for example, a power bank into the aforementioned DC output power; the power transmitting unit 10 adjusts the DC Output current IDC at a preset output current Level. In one embodiment, the power transmitting unit 10 may support a constant current direct charging mode, and directly charge the battery 50 without the control of the capacitive power conversion circuit 30A (the related lines are not shown). The capacitive power conversion circuit 30A converts a DC output power into a charging power, wherein the charging power includes a charging voltage VBAT and a charging current IBAT; the capacitive power conversion circuit 30A includes a transfer switch circuit 31A, which includes a plurality of transfer switches (not (Shown), coupled with a conversion capacitor (such as CA1 in FIG. 3) or a complex conversion capacitor (such as CA1-CAN in FIG. 3, where N is a natural number); and a conversion control circuit 32A for Generate a switch control signal CTRLA for correspondingly operating the complex conversion switch during the complex conversion period, so that one or the complex conversion capacitor CA1 or CA1-CAN is correspondingly coupled to the one or the complex voltage dividing node periodically (for example, corresponding to the third NDA1 or NDA1-NDAM in the picture, where M is a natural number), the DC output voltage VBUS, and one or more pairs of nodes of the ground point GND, so that the level of the charging current IBAT is the DC output One of the preset output current levels of the current IDC is a preset current scale-up factor K, where K is a real number greater than 1, where the charging current IBAT is greater than the DC output current IDC Wherein the charging power supply coupled to one of the one or plurality of sub-nodes (e.g. NDA1 corresponding to the FIG. 3) in the pressure node, and generate the charging current IBAT via the node. In one embodiment, the capacitive power conversion circuit 30A may include, for example, but not limited to, a divider charge pump.

需說明的是:因電路零件的本身之寄生效應或是零件間相互的匹配不一定為理想,因此,雖然欲使充電電流IBAT之位準為該預設之輸出電流位準之一預設之增流倍數K,但實際產生的充電電流IBAT之位準可能並不是預設之輸出電流位準之準確的K倍,而僅是接近K倍,因此本案說明書或申請專利範圍中所述「為…一預設之增流倍數K」,可容許在實施上出現誤差,而非必須為極端準確的K倍,下同。此外值得注意的是,在具有複數分壓節點的實施例中,所述之增流倍數K,會隨著充電電源耦接之節點而有所不同;而在僅有一個分壓 節點的實施例中,增流倍數K為2,亦即充電電流IBAT之位準為該預設之輸出電流位準之2倍,但在其他實施例中,K不限於為整數。 It should be noted that, due to the parasitic effect of the circuit parts themselves or the mutual matching between the parts, it is not necessarily ideal. Therefore, although the level of the charging current IBAT is intended to be preset to one of the preset output current levels Increase current multiplier K, but the actual level of charging current IBAT may not be the exact K times of the preset output current level, but only close to K times. Therefore, the “ … A preset current-increasing multiple K ”may allow errors in implementation, rather than having to be an extremely accurate K-fold, the same below. It is also worth noting that, in the embodiment having a plurality of voltage dividing nodes, the current-increasing multiplier K will be different depending on the node to which the charging power source is coupled; while there is only one voltage dividing node In the embodiment of the node, the current increase multiple K is 2, that is, the level of the charging current IBAT is twice the preset output current level, but in other embodiments, K is not limited to an integer.

請繼續參閱第3圖,在一實施例中,本發明之充電電路(例如充電電路3)中,電源發送單元10更藉由一纜線20而耦接於電容式電源轉換電路(例如電容式電源轉換電路30A),其中纜線20可為例如但不限於符合通用序列匯流排供電規範(USB PD)或通用序列匯流排規範(USB)的纜線,其包含電源線21與訊號線22,其中電源線21用以傳送直流輸出電源。 Please continue to refer to FIG. 3. In one embodiment, in the charging circuit (for example, charging circuit 3) of the present invention, the power transmitting unit 10 is further coupled to a capacitive power conversion circuit (for example, a capacitive type) through a cable 20. Power conversion circuit 30A), wherein the cable 20 may be, for example, but not limited to, a cable complying with the Universal Serial Bus Power Supply Specification (USB PD) or the Universal Serial Bus Specification (USB), which includes a power line 21 and a signal line 22, The power line 21 is used for transmitting DC output power.

請繼續參閱第3圖,在一實施例中,轉換控制電路(例如轉換控制電路32A)偵測直流輸出電流IDC而產生一電流相關訊號(例如ISENA),電源發送單元10則根據電流相關訊號ISENA而調節直流輸出電流IDC於一預設之輸出電流位準。在另一實施例中,所述之電流相關訊號ISENA亦可藉由偵測充電電流IBAT而得。在一較佳實施例中,轉換控制電路藉由訊號線22以傳送電流相關訊號ISENA至電源發送單元10。需說明的是,前述之纜線20在其他實施例中可以省略。 Please continue to refer to FIG. 3. In one embodiment, the conversion control circuit (eg, the conversion control circuit 32A) detects a DC output current IDC to generate a current-related signal (eg, ISANA), and the power transmitting unit 10 is based on the current-related signal ISANA The DC output current IDC is adjusted at a preset output current level. In another embodiment, the current-related signal ISENA can also be obtained by detecting the charging current IBAT. In a preferred embodiment, the conversion control circuit transmits the current-related signal ISANA to the power transmitting unit 10 through the signal line 22. It should be noted that the aforementioned cable 20 may be omitted in other embodiments.

本發明之充電電路可包含複數之電容式電源轉換電路,舉例而言,請參閱第4圖,圖中顯示本發明之充電電路的一種實施例(充電電路4)的示意圖,在一實施例中,充電電路4更包含一電容式電源轉換電路30B,其可與電容式電源轉換電路30A並聯耦接而共同產生前述之充電電源。在具有複數電容式電源轉換電路之實施例中,可降低充電電壓之漣波並降低充電路徑上之等效電阻而提升轉換效率。在一較佳實施例中,轉換控制電路(例如轉換控制電路32A或轉換控制電路32B)更可產生或接收一同步控制訊號SYNC,且根據同步控制訊號SYNC,控制複數電容式電源轉換電路(例如電容式電源轉換電路30A與30B)之各複數轉換時段之間為同步;所述之「同步」係指各複數轉換時段之相位之間具 有預設之相位關係,例如但不限於同相、反相、交錯(interleaving)相位或其他形式之相位關係。 The charging circuit of the present invention may include a plurality of capacitive power conversion circuits. For example, please refer to FIG. 4, which shows a schematic diagram of an embodiment (charging circuit 4) of the charging circuit of the present invention. In one embodiment, The charging circuit 4 further includes a capacitive power conversion circuit 30B, which can be coupled in parallel with the capacitive power conversion circuit 30A to collectively generate the aforementioned charging power. In the embodiment having a complex capacitive power conversion circuit, the ripple of the charging voltage can be reduced and the equivalent resistance on the charging path can be reduced to improve the conversion efficiency. In a preferred embodiment, the conversion control circuit (for example, the conversion control circuit 32A or the conversion control circuit 32B) can further generate or receive a synchronization control signal SYNC, and control the complex capacitive power conversion circuit (for example, according to the synchronization control signal SYNC) Capacitive power conversion circuits 30A and 30B) are synchronized between complex conversion periods; the term “synchronization” means that the phases of each complex conversion period have There are preset phase relationships, such as but not limited to in-phase, reverse phase, interleaving phase, or other forms of phase relationships.

在一具有複數轉換電容器(例如第3圖中之CA1-CAN)之實施例中,以複數轉換電容器週期性地對應耦接於前述之複數對節點之間時,在任一時刻,各複數轉換電容器之間皆無並聯耦接,換言之,在任一轉換時段中,於前述之一或複數分壓節點、直流輸出電源、以及接地點其中之任一對節點之間,至多耦接於複數轉換電容器之一。 In an embodiment having a complex conversion capacitor (such as CA1-CAN in FIG. 3), when the complex conversion capacitor is periodically correspondingly coupled between the aforementioned complex pair nodes, each complex conversion capacitor is at any time There is no parallel coupling between them. In other words, during any conversion period, at most one of the foregoing or a plurality of voltage-dividing nodes, a DC output power source, and a ground point is coupled to one of the plurality of conversion capacitors. .

請參閱第5圖,圖中所示為本發明之充電電路(例如充電電路3)中,電容式電源轉換電路的一種實施例(電容式電源轉換電路30’)的示意圖,本實施例之電容式電源轉換電路30’中,轉換開關電路31’包括複數轉換開關(例如圖中所示之SW11、SW12、SW13以及SW14),耦接於轉換電容器CA1;而在本實施例中,如前述之複數轉換時段則包括一第一轉換時段以及一第二轉換時段;其中轉換控制電路32’控制該複數轉換開關SW11、SW12、SW13以及SW14,使轉換電容器CA1之第一端於該第一轉換時段與該第二轉換時段中分別對應切換而電性連接於該直流輸出電壓VBUS與該充電電壓VBAT之間,且使該轉換電容器CA1之第二端於該第一轉換時段與該第二轉換時段中分別對應切換而電性連接於該充電電壓VBAT與該接地點GND之間,使得該充電電流IBAT之位準為該預設之輸出電流位準之2倍。 Please refer to FIG. 5, which shows a schematic diagram of an embodiment of a capacitive power conversion circuit (capacitive power conversion circuit 30 ′) in a charging circuit (for example, charging circuit 3) of the present invention. In the power conversion circuit 30 ′, the transfer switch circuit 31 ′ includes a plurality of transfer switches (such as SW11, SW12, SW13, and SW14 shown in the figure), which are coupled to the transfer capacitor CA1. In this embodiment, as described above, The complex conversion period includes a first conversion period and a second conversion period. The conversion control circuit 32 'controls the plurality of conversion switches SW11, SW12, SW13, and SW14 so that the first end of the conversion capacitor CA1 is in the first conversion period. Correspondingly switched in the second conversion period and electrically connected between the DC output voltage VBUS and the charging voltage VBAT, and the second end of the conversion capacitor CA1 is switched between the first conversion period and the second conversion period The corresponding switching is electrically connected between the charging voltage VBAT and the ground point GND, so that the level of the charging current IBAT is twice the preset output current level.

請參閱第6圖,圖中所示為本發明之充電電路(例如充電電路3)中,電容式電源轉換電路的一種實施例(電容式電源轉換電路30”)的示意圖,電容式電源轉換電路30”與前述實施例電容式電源轉換電路30’相似,其不同之處在於,轉換開關電路31”更包括複數轉換開關例如圖中所示之SW21、SW22、SW23以及SW24,耦接於另一轉換電容器CA2,轉換控制電路32”控制轉換電容器CA1 之耦接方式與前述相同,而轉換控制電路32”更控制轉換開關SW21、SW22、SW23以及SW24,使轉換電容器CA2之第一端於該第二轉換時段與該第一轉換時段中分別對應切換而電性連接於該直流輸出電壓VBUS與該充電電壓VBAT之間,且使轉換電容器CA2之第二端於該第二轉換時段與該第一轉換時段中分別對應切換而電性連接於該充電電壓VBAT與該接地點GND之間;換言之,CA1與CA2在前述節點對之間之切換互為反相。 Please refer to FIG. 6, which shows a schematic diagram of an embodiment of a capacitive power conversion circuit (capacitive power conversion circuit 30 ") in a charging circuit (such as charging circuit 3) of the present invention. The capacitive power conversion circuit 30 "is similar to the capacitive power conversion circuit 30 'of the previous embodiment, except that the transfer switch circuit 31" further includes a plurality of transfer switches such as SW21, SW22, SW23, and SW24 shown in the figure, which are coupled to another Conversion capacitor CA2, conversion control circuit 32 "controls conversion capacitor CA1 The coupling method is the same as above, and the transfer control circuit 32 "further controls the transfer switches SW21, SW22, SW23, and SW24, so that the first end of the transfer capacitor CA2 is switched correspondingly in the second conversion period and the first conversion period. And is electrically connected between the DC output voltage VBUS and the charging voltage VBAT, and the second end of the conversion capacitor CA2 is correspondingly switched between the second conversion period and the first conversion period and is electrically connected to the charging Between the voltage VBAT and the ground point GND; in other words, the switching between CA1 and CA2 between the aforementioned node pairs is opposite to each other.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用;舉其中一例,控制不同數量之轉換電容器之電容式電源轉換電路可以合併使用,例如本發明之充電電路可包含複數電容式電源轉換電路,其中一電容式電源轉換電路可耦接控制一轉換電容器,而另一電容式電源轉換電路則可耦接控制複數轉換電容器。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,轉換電容器切換耦接時之極性可以依需求而有所變化,例如時而為正時而為負,可藉此增加增流倍數K之變化範圍或解析度。又如,前述之同步控制訊號亦可為一外部提供之同步控制訊號,仍可達成複數電容式電源轉換電路之間之同步操作。又例如,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。 The present invention has been described above with reference to the preferred embodiments, but the above is only for making those skilled in the art easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. The described embodiments are not limited to separate applications, and can also be applied in combination. For one example, the capacitive power conversion circuits that control different numbers of conversion capacitors can be used in combination. For example, the charging circuit of the present invention may include multiple capacitive power supplies. A conversion circuit. One of the capacitive power conversion circuits can be coupled to control a conversion capacitor, and the other capacitive power conversion circuit can be coupled to control a plurality of conversion capacitors. In addition, under the same spirit of the present invention, those skilled in the art can think about various equivalent changes and various combinations. For example, the polarity of the switching capacitors can be changed according to requirements, such as sometimes being positive Sometimes it is negative, which can increase the range or resolution of the boosting factor K. For another example, the aforementioned synchronous control signal can also be an externally provided synchronous control signal, and can still achieve synchronous operation between multiple capacitive power conversion circuits. For another example, the term "processing or calculation according to a signal or generating an output result" in the present invention is not limited to the signal itself, but also includes performing voltage-current conversion, current-voltage conversion on the signal when necessary, and / Or proportional conversion, etc., and then process or calculate according to the converted signal to produce an output result. It can be seen that, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations, which are not listed here. Therefore, the scope of the invention should cover the above and all other equivalent variations.

Claims (15)

一種充電控制方法,用以控制一充電電路,以對一電池提供一充電電源,該充電電源包括一充電電壓以及一充電電流,該充電電路包含一電源發送單元,以及一或複數電容式電源轉換電路,其中該電源發送單元將一輸入電源轉換為一直流輸出電源,該直流輸出電源包括一直流輸出電壓以及一直流輸出電流;其中該電容式電源轉換電路包括一轉換開關電路,包括複數轉換開關,與一或複數轉換電容器耦接;該充電控制方法包含以下步驟:以該電源發送單元調節該直流輸出電流於一預設之輸出電流位準;以及以該電容式電源轉換電路將該直流輸出電源轉換為該充電電源,使得該充電電流之位準為該預設之輸出電流位準之一預設之增流倍數(current scale-up factor),其中該充電電流大於該直流輸出電流;其中將該直流輸出電源轉換為該充電電源之步驟包括:於複數轉換時段中,對應操作該複數轉換開關,使該一或複數轉換電容器週期性地對應耦接於一或複數分壓節點、該直流輸出電壓、以及該接地點其中之一對節點之間,其中該充電電源耦接於該一或複數分壓節點中之一節點。A charging control method for controlling a charging circuit to provide a charging power to a battery. The charging power includes a charging voltage and a charging current. The charging circuit includes a power transmitting unit and one or more capacitive power conversions. A circuit in which the power transmitting unit converts an input power into a DC output power, the DC output power includes a DC output voltage and a DC output current; wherein the capacitive power conversion circuit includes a transfer switch circuit including a complex transfer switch Is coupled to one or a plurality of conversion capacitors; the charging control method includes the following steps: adjusting the DC output current to a preset output current level by the power transmitting unit; and outputting the DC output by the capacitive power conversion circuit The power source is converted into the charging power source, so that the level of the charging current is a preset current scale-up factor of one of the preset output current levels, wherein the charging current is greater than the DC output current; The step of converting the DC output power into the charging power includes: During the complex conversion period, the complex conversion switch is operated correspondingly, so that the one or complex conversion capacitor is periodically correspondingly coupled between one or more pairs of nodes, the DC output voltage, and the ground point, The charging power source is coupled to one of the one or more voltage dividing nodes. 如申請專利範圍第1項所述之充電控制方法,其中將該直流輸出電源轉換為該充電電源之步驟更包括:產生一同步控制訊號;以及根據該同步控制訊號,控制該複數電容式電源轉換電路之各複數轉換時段之間為同步。The charging control method according to item 1 of the scope of patent application, wherein the step of converting the DC output power into the charging power further includes: generating a synchronous control signal; and controlling the plurality of capacitive power conversions according to the synchronous control signal. The complex conversion periods of the circuit are synchronized. 如申請專利範圍第1項所述之充電控制方法,其中將該直流輸出電源轉換為該充電電源之步驟更包括:於該電容式電源轉換電路中,在任一轉換時段中,於該一或複數分壓節點、該直流輸出電壓、以及該接地點其中之任一對節點之間,至多耦接於該複數轉換電容器之一。The charging control method according to item 1 of the scope of patent application, wherein the step of converting the DC output power into the charging power further includes: in the capacitive power conversion circuit, in any conversion period, in the one or more The voltage-dividing node, the DC output voltage, and any pair of nodes of the ground point are coupled at most to one of the complex conversion capacitors. 如申請專利範圍第1項所述之充電控制方法,其中該電容式電源轉換電路包括一第一電容式電源轉換電路,該轉換電容器包括一第一轉換電容器,該複數轉換時段包括一第一轉換時段以及一第二轉換時段;其中將該直流輸出電源轉換為該充電電源之步驟更包括:操作該第一電容式電源轉換電路之該複數轉換開關,使該第一轉換電容器之第一端於該第一轉換時段與該第二轉換時段中分別對應切換於該直流輸出電壓與該充電電壓之間,且使該第一轉換電容器之第二端於該第一轉換時段與該第二轉換時段中分別對應切換於該充電電壓與該接地點之間;其中該充電電流之位準為該預設之輸出電流位準之二倍。The charging control method according to item 1 of the scope of patent application, wherein the capacitive power conversion circuit includes a first capacitive power conversion circuit, the conversion capacitor includes a first conversion capacitor, and the complex conversion period includes a first conversion Time period and a second conversion period; wherein the step of converting the DC output power into the charging power source further comprises: operating the plurality of transfer switches of the first capacitive power conversion circuit, so that the first end of the first conversion capacitor is at The first conversion period and the second conversion period are respectively switched between the DC output voltage and the charging voltage, and the second end of the first conversion capacitor is switched between the first conversion period and the second conversion period. Zhong respectively switches between the charging voltage and the ground point; wherein the level of the charging current is twice the level of the preset output current. 如申請專利範圍第4項所述之充電控制方法,其中該轉換電容器更包括一第二轉換電容器;其中將該直流輸出電源轉換為該充電電源之步驟更包括:操作該第一電容式電源轉換電路之該複數轉換開關,使該第二轉換電容器之第一端於該第二轉換時段與該第一轉換時段中分別對應切換於該直流輸出電壓與該充電電壓之間,且使該第二轉換電容器之第二端於該第二轉換時段與該第一轉換時段中分別對應切換於該充電電壓與該接地點之間。The charging control method according to item 4 of the scope of patent application, wherein the conversion capacitor further includes a second conversion capacitor; wherein the step of converting the DC output power into the charging power further includes: operating the first capacitive power conversion The multiple conversion switch of the circuit causes the first end of the second conversion capacitor to switch between the DC output voltage and the charging voltage respectively during the second conversion period and the first conversion period, and enables the second The second end of the conversion capacitor is respectively switched between the charging voltage and the ground point during the second conversion period and the first conversion period. 如申請專利範圍第1項所述之充電控制方法,更包含:感測該直流輸出電流或該充電電流而產生一電流相關訊號;以及以該電源發送單元根據該電流相關訊號而調節該直流輸出電流於該預設之輸出電流位準。The charging control method according to item 1 of the scope of patent application, further comprising: sensing the DC output current or the charging current to generate a current-related signal; and adjusting the DC output by the power transmitting unit according to the current-related signal The current is at the preset output current level. 一種充電電路,包含受第1至6項任一項所述之充電控制方法所控制的該電源發送單元與對應之該電容式電源轉換電路;以及一纜線,用以耦接該電源發送單元與該電容式電源轉換電路。A charging circuit comprising the power transmitting unit and the corresponding capacitive power conversion circuit controlled by the charging control method according to any one of items 1 to 6; and a cable for coupling the power transmitting unit And the capacitive power conversion circuit. 如申請專利範圍第7項所述之充電電路,其中該纜線係符合通用序列匯流排供電規範的纜線(USB PD cable),其包含一電源線,其中該電源線用以傳送該直流輸出電源。The charging circuit as described in item 7 of the scope of patent application, wherein the cable is a USB PD cable that conforms to the universal serial bus power supply specification, which includes a power cord, wherein the power cord is used to transmit the DC output power supply. 如申請專利範圍第8項所述之充電電路,其中該纜線包含一訊號線,其中該訊號線用以傳送該電流相關訊號。The charging circuit according to item 8 of the scope of patent application, wherein the cable includes a signal line, wherein the signal line is used to transmit the current-related signal. 一種用於一充電電路之電容式電源轉換電路,其中該充電電路用以對一電池提供一充電電源,該充電電源包括一充電電壓以及一充電電流,該充電電路包含一電源發送單元,其中該電源發送單元將一輸入電源轉換為一直流輸出電源,該直流輸出電源包括一直流輸出電壓以及一直流輸出電流;其中該電源發送單元調節該直流輸出電流於一預設之輸出電流位準;該電容式電源轉換電路包括:一轉換開關電路,包括複數轉換開關,與一或複數轉換電容器耦接;以及一轉換控制電路,用以產生一開關控制訊號,用以於複數轉換時段中,對應操作該複數轉換開關,使該一或複數轉換電容器週期性地對應耦接於一或複數分壓節點、該直流輸出電壓、以及一接地點其中之一對節點之間,使得該充電電流之位準為該預設之輸出電流位準之一預設之增流倍數(current scale-up factor),其中該充電電流大於該直流輸出電流;其中該充電電源耦接於該一或複數分壓節點中之一節點。A capacitive power conversion circuit for a charging circuit. The charging circuit is used to provide a charging power to a battery. The charging power includes a charging voltage and a charging current. The charging circuit includes a power transmitting unit. The power transmitting unit converts an input power into a DC output power. The DC output power includes a DC output voltage and a DC output current. The power transmitting unit adjusts the DC output current to a preset output current level. The capacitive power conversion circuit includes: a transfer switch circuit including a complex transfer switch coupled to one or more transfer capacitors; and a transfer control circuit for generating a switch control signal for corresponding operations during the complex conversion period The complex conversion switch enables the one or more conversion capacitors to be correspondingly coupled to one or more of the voltage division nodes, the DC output voltage, and a pair of nodes of a ground point periodically, so that the charging current level Current scal which is one of the preset output current levels e-up factor), wherein the charging current is greater than the DC output current; wherein the charging power source is coupled to one of the one or more voltage dividing nodes. 如申請專利範圍第10項所述之電容式電源轉換電路,其中該轉換控制電路更產生一同步控制訊號,且根據該同步控制訊號,控制該複數電容式電源轉換電路之各複數轉換時段之間為同步。The capacitive power conversion circuit according to item 10 of the scope of patent application, wherein the conversion control circuit further generates a synchronous control signal, and controls between the multiple conversion periods of the multiple capacitive power conversion circuit according to the synchronous control signal. For synchronization. 如申請專利範圍第10項所述之電容式電源轉換電路,其中在任一轉換時段中,於該一或複數分壓節點、該直流輸出電壓、以及該接地點其中之任一對節點之間,至多耦接於該複數轉換電容器之一。The capacitive power conversion circuit according to item 10 of the scope of patent application, wherein, in any conversion period, between any one of the pair of nodes of the one or more voltage division nodes, the DC output voltage, and the ground point, At most is coupled to one of the complex conversion capacitors. 如申請專利範圍第10項所述之電容式電源轉換電路,其中該電容式電源轉換電路包括一第一電容式電源轉換電路,該轉換電容器包括一第一轉換電容器,該複數轉換時段包括一第一轉換時段以及一第二轉換時段;其中該轉換控制電路控制該複數轉換開關,使該第一轉換電容器之第一端於該第一轉換時段與該第二轉換時段中分別對應切換而電性連接於該直流輸出電壓與該充電電壓之間,且使該第一轉換電容器之第二端於該第一轉換時段與該第二轉換時段中分別對應切換而電性連接於該充電電壓與該接地點之間;其中該充電電流之位準為該預設之輸出電流位準之二倍。The capacitive power conversion circuit according to item 10 of the scope of patent application, wherein the capacitive power conversion circuit includes a first capacitive power conversion circuit, the conversion capacitor includes a first conversion capacitor, and the complex conversion period includes a first A conversion period and a second conversion period; wherein the conversion control circuit controls the plurality of conversion switches so that the first end of the first conversion capacitor is switched correspondingly between the first conversion period and the second conversion period; Is connected between the DC output voltage and the charging voltage, and the second end of the first conversion capacitor is switched correspondingly during the first conversion period and the second conversion period, and is electrically connected between the charging voltage and the Between ground points; where the level of the charging current is twice the preset output current level. 如申請專利範圍第13項所述之電容式電源轉換電路,其中該轉換電容器更包括一第二轉換電容器;其中該轉換控制電路控制該複數轉換開關,使該第二轉換電容器之第一端於該第二轉換時段與該第一轉換時段中分別對應切換而電性連接於該直流輸出電壓與該充電電壓之間,且使該第二轉換電容器之第二端於該第二轉換時段與該第一轉換時段中分別對應切換而電性連接於該充電電壓與該接地點之間。The capacitive power conversion circuit according to item 13 of the scope of patent application, wherein the conversion capacitor further includes a second conversion capacitor; wherein the conversion control circuit controls the plurality of conversion switches so that the first end of the second conversion capacitor is at The second conversion period and the first conversion period are switched correspondingly and electrically connected between the DC output voltage and the charging voltage, and the second end of the second conversion capacitor is connected to the second conversion period and the The first switching periods are correspondingly switched and are electrically connected between the charging voltage and the ground point. 如申請專利範圍第10項所述之電容式電源轉換電路,其中該轉換控制電路更感測該直流輸出電流或該充電電流,而產生一電流相關訊號,其中該電源發送單元根據該電流相關訊號而調節該直流輸出電流於該預設之輸出電流位準。The capacitive power conversion circuit according to item 10 of the application, wherein the conversion control circuit further senses the DC output current or the charging current to generate a current-related signal, and the power transmitting unit is based on the current-related signal. And adjust the DC output current to the preset output current level.
TW106104841A 2016-09-20 2017-02-15 Charging circuit and capacitive power conversion circuit and charging control method thereof TWI626806B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/598,956 US10177588B2 (en) 2016-09-20 2017-05-18 Charging circuit and capacitive power conversion circuit and charging control method thereof
EP17177090.2A EP3297146B1 (en) 2016-09-20 2017-06-21 Charging circuit and capacitive power conversion circuit and charging control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662396897P 2016-09-20 2016-09-20
US62/396,897 2016-09-20

Publications (2)

Publication Number Publication Date
TW201814993A TW201814993A (en) 2018-04-16
TWI626806B true TWI626806B (en) 2018-06-11

Family

ID=59152666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106104841A TWI626806B (en) 2016-09-20 2017-02-15 Charging circuit and capacitive power conversion circuit and charging control method thereof

Country Status (2)

Country Link
CN (2) CN107846048B (en)
TW (1) TWI626806B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777559B (en) * 2020-12-04 2022-09-11 立錡科技股份有限公司 Charging system, power supply system and dual mode power conversion circuit thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626806B (en) * 2016-09-20 2018-06-11 立錡科技股份有限公司 Charging circuit and capacitive power conversion circuit and charging control method thereof
TWI671974B (en) * 2018-02-13 2019-09-11 立錡科技股份有限公司 Charging circuit and power conversion circuit thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW533614B (en) * 2001-08-06 2003-05-21 Jin-Shing Luo Solar energy power source supplier using power capacitor
TWI227958B (en) * 2003-10-20 2005-02-11 Compal Electronics Inc Device of the bridge battery charging circuit
TW201603444A (en) * 2014-07-09 2016-01-16 On Bright Electronics Shanghai Charge control circuit, flyback type power source transformation system and charge control method
US20160149478A1 (en) * 2013-03-15 2016-05-26 Arctic Sand Technologies, Inc. Reconfigurable switched capacitor power converter techniques

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340147B (en) * 2007-07-05 2011-03-23 立锜科技股份有限公司 Apparatus and method for suppressing input current burst of voltage converter in pre-charging mode
CN202145618U (en) * 2011-08-05 2012-02-15 王忠达 Bidirectional DC/DC converter
TWI501516B (en) * 2013-01-31 2015-09-21 Leadtrend Tech Corp Device for detecting an average output current of a power converter and related method thereof
TWI538379B (en) * 2014-04-04 2016-06-11 立錡科技股份有限公司 Isolated Power Supply Circuit with Programmable Function and Control Method Thereof
JP6447095B2 (en) * 2014-12-19 2019-01-09 富士電機株式会社 Switching power supply circuit
TWI626806B (en) * 2016-09-20 2018-06-11 立錡科技股份有限公司 Charging circuit and capacitive power conversion circuit and charging control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW533614B (en) * 2001-08-06 2003-05-21 Jin-Shing Luo Solar energy power source supplier using power capacitor
TWI227958B (en) * 2003-10-20 2005-02-11 Compal Electronics Inc Device of the bridge battery charging circuit
US20160149478A1 (en) * 2013-03-15 2016-05-26 Arctic Sand Technologies, Inc. Reconfigurable switched capacitor power converter techniques
TW201603444A (en) * 2014-07-09 2016-01-16 On Bright Electronics Shanghai Charge control circuit, flyback type power source transformation system and charge control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777559B (en) * 2020-12-04 2022-09-11 立錡科技股份有限公司 Charging system, power supply system and dual mode power conversion circuit thereof

Also Published As

Publication number Publication date
CN206619917U (en) 2017-11-07
TW201814993A (en) 2018-04-16
CN107846048B (en) 2020-09-01
CN107846048A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
EP3297146B1 (en) Charging circuit and capacitive power conversion circuit and charging control method thereof
TWI626806B (en) Charging circuit and capacitive power conversion circuit and charging control method thereof
US10181744B2 (en) Capacitive power conversion circuit and charging control method thereof
US10797500B2 (en) Charger circuit and capacitive power conversion circuit and charging control method thereof
JP5126300B2 (en) DC-AC power converter
EP2784922A3 (en) Power Supply System and Image Forming Apparatus Having Power Supply System
TW201134071A (en) Primary side current controller and related power supply
US9407133B1 (en) Active power conditioner
US9590510B1 (en) Cable IR drop compensation
TW201249081A (en) Power supply apparatus
US10644531B1 (en) Adaptable power rectifier for wireless charger system
CN102237725A (en) Inductive rotating transmission devices with ripple compensation for computer tomographs
TW201526492A (en) Electrical conversion
WO2017068815A1 (en) Power conversion device and control method thereof
CN104242488B (en) Wireless power transmission device and method
CN107846049B (en) Charging circuit, capacitive power supply conversion circuit thereof and charging control method
KR101693700B1 (en) Bidirectional Power Converter
Hasanah et al. DC-DC converter for USB-C power adapter in residential DC electricity
KR101266281B1 (en) Ac to ac converter using voltage control method
TW201205259A (en) Computer system
US10536024B2 (en) Battery charging system
US20170201173A1 (en) Filter and method for direct rectification grid-powered power supplies
CN107846143B (en) Capacitive power conversion circuit and charging control method
CN108519506B (en) Device and system for measuring effective value of current
CN107332255A (en) A kind of power factor regulation device