TWI626434B - Method for measuring the visual factor of an energy body to an object - Google Patents

Method for measuring the visual factor of an energy body to an object Download PDF

Info

Publication number
TWI626434B
TWI626434B TW104144116A TW104144116A TWI626434B TW I626434 B TWI626434 B TW I626434B TW 104144116 A TW104144116 A TW 104144116A TW 104144116 A TW104144116 A TW 104144116A TW I626434 B TWI626434 B TW I626434B
Authority
TW
Taiwan
Prior art keywords
factor
distance
center position
visual
cube
Prior art date
Application number
TW104144116A
Other languages
Chinese (zh)
Other versions
TW201723442A (en
Inventor
Bo-Ting Lin
Shu-Ping Lin
E Manuel Mark Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW104144116A priority Critical patent/TWI626434B/en
Publication of TW201723442A publication Critical patent/TW201723442A/en
Application granted granted Critical
Publication of TWI626434B publication Critical patent/TWI626434B/en

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本創作提供了一種能量體對物體的視因子量測方法,至少包括有 下列步驟:提供一立體視覺裝置、一能量體、至少一環境物體以及一運算裝置,該能量體為一第一立方體,該等環境物體具有複數個第二立方體;該第一立方體投射出一能量至該些第二立方體其中之一;以該立體視覺裝置量測第一立方體距該立體視覺裝置的一第一距離,以該立體視覺裝置量測第二立方體距該立體視覺裝置的一第二距離;該立體視覺裝置與該運算裝置電訊連接;以該運算裝置使用該第一距離與第二距離計算第一立方體距第二立方體的一第三距離;並以該運算裝置使用該第三距離計算該能量對應之一第一視因子值。透過上述方法,可以得到該立體空間中任意能量體對任意物體的視因子值,即能量體對任意物體投射能量的幾何特徵值。若以上述量測方法與熱像儀等溫度量測裝置結合量測運算,可以量測能量體對任意物體的視因子值,更可以量測任意物體對溫度量測裝置的視因子值,以計算能量體投射至任意物體並反射至溫度量測裝置的能量值,更可以更精確地量測任意物體之溫度數據。 This creation provides a method for measuring the apparent factor of an energy body to an object, including at least The following steps: providing a stereoscopic device, an energy body, at least one environmental object, and an arithmetic device, the energy body being a first cube, the environmental objects having a plurality of second cubes; the first cube projecting an energy And one of the second cubes; measuring, by the stereoscopic device, a first distance from the stereoscopic device, and measuring, by the stereoscopic device, a second cube from a second of the stereoscopic device a distance between the stereoscopic device and the computing device; wherein the computing device uses the first distance and the second distance to calculate a third distance of the first cube from the second cube; and using the third distance by the computing device A first visual factor value corresponding to the energy is calculated. Through the above method, the visual factor value of any energy body in any space in the stereoscopic space, that is, the geometric characteristic value of the energy body to the energy of any object can be obtained. If the above measurement method is combined with the temperature measuring device such as a thermal imager, the visual factor value of the energy body to any object can be measured, and the visual factor value of any object to the temperature measuring device can be measured. Calculate the energy value of the energy body projected onto any object and reflected to the temperature measuring device, and more accurately measure the temperature data of any object.

Description

能量體對物體的視因子量測方法 Method for measuring the visual factor of an energy body to an object

本發明關於一種能量體對物體的視因子量測方法,特別是指一種能量投射的幾何關係之視因子環境參數,可以使立體空間溫度量測更為精確的視因子量測方法。 The invention relates to a method for measuring the visual factor of an energy body to an object, in particular to a visual factor environmental parameter of a geometric relationship of energy projection, and a method for measuring a visual factor of a stereoscopic space temperature measurement more accurately.

近年來,隨著紅外線熱像裝置的應用蓬勃發展,由於紅外線熱像裝置提供非接觸、非入侵、非破壞且不帶有害輻射的量測溫度的方式,且經過校正之後的紅外線熱像裝置其精準度能夠達到正負2%。 In recent years, with the development of infrared thermal imaging devices, infrared thermal imaging devices provide non-contact, non-invasive, non-destructive and non-harmful radiation measurement methods, and the corrected infrared thermal imaging device Accuracy can reach plus or minus 2%.

然而目前之量測溫度方式在某些情況下卻不精確,其原因來自於某些環境參數並未納入考量,例如:待測物放射率、量測距離、空間中濕度和物體之間的互相影響等等。為了解決上述問題,實務上的作法多是利用人工輸入環境參數進行校正,但是卻沒有考慮環境幾何所造成之因素。 However, the current measurement temperature method is inaccurate in some cases, because the environmental parameters are not taken into consideration, such as: the emissivity of the analyte, the measurement distance, the humidity in the space, and the mutual interaction between the objects. Influence and so on. In order to solve the above problems, the practice is mostly to use manual input of environmental parameters for correction, but does not consider the factors caused by environmental geometry.

例如中華民國第I486565號專利「輻射溫度計之雷射調整裝置、雷射調整系統及其雷射調整方法」所揭示之一種紅外線溫度計雷射調整結構,使雷射調整裝置可以快速及精確地調整到正確位置。其利用熱輻射裝置感測溫度資訊,並且利用裝置中心的雷射裝置進行單一像素的距離感測,再將溫度與距離結合得到單一像素的正確溫度值。然而,上述方法 雖然可以得到單一像素的溫度資訊,然而無法計算整個立體空間中任意兩像素間的熱輻射關係。 For example, an infrared thermometer laser adjustment structure disclosed in the Patent No. I486565 of the Republic of China, "Laser Adjustment Device for Radiation Thermometer, Laser Adjustment System and Laser Adjustment Method", enables the laser adjustment device to be quickly and accurately adjusted to The correct location. It uses the heat radiation device to sense the temperature information, and uses the laser device at the center of the device to perform distance sensing of a single pixel, and then combines the temperature with the distance to obtain the correct temperature value of a single pixel. However, the above method Although the temperature information of a single pixel can be obtained, the thermal radiation relationship between any two pixels in the entire stereoscopic space cannot be calculated.

又如中華民國專利第I485396號專利「高適應性熱特性量測系統及其方法」所揭示之一種能在無需實際點亮或施加任何電源於一待測元件的情況下,迅速量測出待測元件所具有之各種熱特性數值的方法。其利用熱特性量測系統得到待測元件的溫度分佈並產生熱影像。然而,上述方法提供了待測元件的性質量測而非準確溫度之量測,且其雖然揭示了在固定的距離下之量測方法,卻無法自動化適應不同的距離進行量測。 Another method disclosed in the "Highly Adaptive Thermal Characteristic Measurement System and Method" of the Patent No. I485396 of the Republic of China Patent No. I485396 can quickly measure the situation without actually lighting or applying any power to a component to be tested. A method of measuring various thermal property values of an element. It uses a thermal property measurement system to obtain the temperature distribution of the component under test and generate a thermal image. However, the above method provides a measure of the quality of the component to be tested rather than an accurate temperature measurement, and although it reveals a measurement method at a fixed distance, it cannot automatically adapt to different distances for measurement.

有鑑於上述提到的溫度量測方法所存在的缺點,本案創作人秉持精益求精的良善動機,提出一種能量體對物體的視因子量測方法,利用能量體、物體的性質並加入視因子於熱輻射的計算,可以得到更精確的物體之溫度量測值。 In view of the shortcomings of the above-mentioned temperature measurement methods, the creators of this case uphold the good motive of excellence, and propose a method for measuring the visual factor of the energy body to the object, using the properties of the energy body and the object and adding the visual factor to The calculation of thermal radiation can obtain a more accurate temperature measurement of the object.

為了達到上述目的,本創作係採取以下之技術手段予以達成,其中,本創作之能量體對物體的視因子量測方法,其包括有下列步驟:提供一立體視覺裝置、一能量體、至少一環境物體以及一運算裝置,該能量體為第一立方體,該等環境物體具有複數個第二立方體;該第一立方體投射出一能量至該些第二立方體其中之一;以該立體視覺裝置量測第一立方體距該立體視覺裝置的一第一距離,以該立體視覺裝置量測第二立方體距該立體視覺裝置的一第二距離;該立體視覺裝置與該運算裝置電訊連接;以該運算裝置使用該第一距離與第二距離計算第一立方體距第二立 方體的一第三距離;並以該運算裝置使用該第三距離計算該能量對應之一第一視因子值。 In order to achieve the above object, the present invention is achieved by the following technical means, wherein the method for measuring the visual factor of the object of the present invention comprises the following steps: providing a stereoscopic device, an energy body, at least one An environmental object and an arithmetic device, the energy body being a first cube, the environmental objects having a plurality of second cubes; the first cube projecting an energy to one of the second cubes; Measuring a first distance from the first cube to the stereoscopic device, and measuring, by the stereoscopic device, a second distance from the stereoscopic device; the stereoscopic device is in telecommunication connection with the computing device; The device calculates the first cube distance from the second distance using the first distance and the second distance a third distance of the square body; and the first visual factor value corresponding to the energy is calculated by the computing device using the third distance.

在本創作較佳實施例中,在該立體視覺裝置的探測方向及範圍內,該第一立方體具有至少一第一發散面,另具有至多一第二發散面以及一第三發散面,該第一發散面、第二發散面以及第三發散面分別相互不平行;在該立體視覺裝置的探測方向及範圍內,該第二立方體具有至少一第一接收面,另具有至多一第二接收面以及一第三接收面,該第一接收面、第二接收面以及第三接收面分別相互不平行;該第一發散面中心位置對該第一接收面中心位置定義有一第一視因子,該第一發散面中心位置對該第二接收面中心位置定義有一第二視因子,該第一發散面中心位置對該第三接收面中心位置定義有一第三視因子,該第二發散面中心位置對該第一接收面中心位置定義有一第四視因子,該第二發散面中心位置對該第二接收面中心位置定義有一第五視因子,該第二發散面中心位置對該第三接收面中心位置定義有一第六視因子,該第三發散面中心位置對該第一接收面中心位置定義有一第七視因子,該第三發散面中心位置對該第二接收面中心位置定義有一第八視因子,該第三發散面中心位置對該第三接收面中心位置定義有一第九視因子。 In a preferred embodiment of the present invention, the first cube has at least one first diverging surface, and at most one second diverging surface and a third diverging surface, in the detection direction and range of the stereoscopic device. The first diverging surface, the second diverging surface and the third diverging surface are not parallel to each other; the second cube has at least one first receiving surface and at most one second receiving surface in the detecting direction and range of the stereoscopic device And a third receiving surface, the first receiving surface, the second receiving surface and the third receiving surface are not parallel to each other; the first diverging surface center position defines a first viewing factor for the first receiving surface center position, The first divergent surface center position defines a second viewing factor for the second receiving surface center position, and the first diverging surface center position defines a third viewing factor for the third receiving surface center position, the second divergent surface center position Defining a fourth visual factor for the first receiving surface center position, the second divergent surface center position defining a fifth visual factor for the second receiving surface center position, the second The center position of the ground surface defines a sixth visual factor for the central position of the third receiving surface, and the central position of the third divergent surface defines a seventh visual factor for the central position of the first receiving surface, and the central position of the third divergent surface is The second receiving surface center position defines an eighth viewing factor, and the third divergent surface center position defines a ninth viewing factor for the third receiving surface center position.

在本創作較佳實施例中,該第一視因子值為該第一視因子、該第二視因子、該第三視因子、該第四視因子、該第五視因子、該第六視因子、該第七視因子、該第八視因子以及該第九視因子之和。 In a preferred embodiment of the present invention, the first view factor is the first view factor, the second view factor, the third view factor, the fourth view factor, the fifth view factor, and the sixth view factor. The sum of the factor, the seventh visual factor, the eighth visual factor, and the ninth visual factor.

在本創作較佳實施例中,該等發散面中心位置分別對該等接收面中心位置之延伸方向相距有一第三距離,該等發散面中心位置之平面 垂直向量與該延伸方向具有小於90度之一第一夾角,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第二夾角。 In a preferred embodiment of the present invention, the center positions of the divergent surfaces are respectively separated by a third distance from the extending direction of the center positions of the receiving surfaces, and the plane of the center position of the divergent surfaces The vertical vector has a first angle of less than 90 degrees with the extending direction, and the plane perpendicular vector of the center positions of the receiving faces has a second angle of less than 90 degrees with the extending direction.

在本創作較佳實施例中,該等視因子與該第三距離平方成反比,且分別與該第一夾角的餘弦及該第二夾角的餘弦成正比。 In a preferred embodiment of the present invention, the visual factors are inversely proportional to the square of the third distance, and are respectively proportional to the cosine of the first angle and the cosine of the second angle.

在本創作較佳實施例中,該運算裝置更包括一儲存單元,用以儲存量測資料。 In a preferred embodiment of the present invention, the computing device further includes a storage unit for storing measurement data.

在本創作另一較佳實施例中,提供一立體視覺裝置、一能量體、至少一環境物體、二運算裝置以及一溫度量測裝置,該能量體為第一立方體,該等環境物體具有複數個第二立方體;該第一立方體投射出一能量至該些第二立方體其中之一;以該立體視覺裝置量測該第一立方體距該立體視覺裝置的一第一距離,以該立體視覺裝置量測該第二立方體距該立體視覺裝置的一第二距離,以該立體視覺裝置量測該溫度量測裝置距該立體視覺裝置的一第四距離;該立體視覺裝置與該第一運算裝置電訊連接,該溫度量測裝置與該第二運算裝置電訊連接,該第一運算裝置與該第二運算裝置電訊連接;以該第一運算裝置使用該第一距離與該第二距離計算該第一立方體距該第二立方體的一第三距離,以該第一運算裝置使用該第一距離與該第四距離計算該第一立方體距該溫度量測裝置的一第五距離,以該第一運算裝置使用該第二距離與該第四距離計算該第二立方體距該溫度量測裝置的一第六距離;並以該第一運算裝置使用該第三距離計算該能體對應該等環境物體之一第一視因子值,並以該第一運算裝置使用該第六距離計算該等環境物體對應溫度量測裝置之一第二視因子值。 In another preferred embodiment of the present invention, a stereoscopic device, an energy body, at least one environmental object, two arithmetic devices, and a temperature measuring device are provided. The energy body is a first cube, and the environmental objects have a plurality of a second cube; the first cube projects an energy to one of the second cubes; and the stereoscopic device measures a first distance from the stereoscopic device to the stereoscopic device Measuring a second distance of the second cube from the stereoscopic device, and measuring, by the stereo vision device, a fourth distance of the temperature measuring device from the stereoscopic device; the stereoscopic device and the first computing device a telecommunication connection, the temperature measuring device is in telecommunication connection with the second computing device, the first computing device is in telecommunication connection with the second computing device; and the first computing device calculates the first using the first distance and the second distance a third distance from the second cube to the second cube, and the first computing device calculates the first cube from the temperature using the first distance and the fourth distance a fifth distance of the measuring device, wherein the first computing device calculates the sixth distance of the second cube from the temperature measuring device by using the second distance and the fourth distance; and uses the first computing device The third distance calculates a first visual factor value corresponding to one of the environmental objects of the energy body, and uses the sixth distance to calculate a second visual factor value of the corresponding temperature measuring device of the environmental objects by the first computing device. .

在本創作較佳實施例中,該溫度量測裝置係與該立體視覺裝置為一體。 In a preferred embodiment of the present invention, the temperature measuring device is integral with the stereoscopic device.

在本創作較佳實施例中,在該立體視覺裝置的一探測方向及範圍內,該第一立方體至少有一第一發散面,至多可探測到該第一立方體有另一第二發散面以及一第三發散面,該第一發散面、第二發散面以及第三發散面相互不平行;在該立體視覺裝置的該一探測方向及範圍內,該第二立方體至少有一第一接收面,至多可探測到該第二立方體有另一第二接收面以及一第三接收面,該第一接收面、第二接收面以及第三接收面相互不平行;該第一發散面中心位置對該第一接收面中心位置定義有一第一視因子,該第一發散面中心位置對該第二接收面中心位置定義有一第二視因子,該第一發散面中心位置對該第三接收面中心位置定義有一第三視因子,該第二發散面中心位置對該第一接收面中心位置定義有一第四視因子,該第二發散面中心位置對該第二接收面中心位置定義有一第五視因子,該第二發散面中心位置對該第三接收面中心位置定義有一第六視因子,該第三發散面中心位置對該第一接收面中心位置定義有一第七視因子,該第三發散面中心位置對該第二接收面中心位置定義有一第八視因子,該第三發散面中心位置對該第三接收面中心位置定義有一第九視因子。 In a preferred embodiment of the present invention, the first cube has at least one first diverging surface in a detecting direction and a range of the stereoscopic device, and at least the second cube has another second divergent surface and a a third diverging surface, the first diverging surface, the second diverging surface, and the third diverging surface are not parallel to each other; in the detecting direction and the range of the stereoscopic device, the second cube has at least one first receiving surface, at most Detecting that the second cube has another second receiving surface and a third receiving surface, the first receiving surface, the second receiving surface, and the third receiving surface are not parallel to each other; the first divergent surface center position is opposite A receiving surface center position defines a first viewing factor, the first divergent surface center position defines a second viewing factor for the second receiving surface center position, and the first divergent surface center position defines the third receiving surface center position There is a third visual factor, the second divergent surface center position defines a fourth visual factor for the first receiving surface center position, and the second divergent surface center position is opposite to the second receiving surface center A fifth visual factor is defined. The second divergent surface center position defines a sixth visual factor for the third receiving surface center position, and the third divergent surface center position defines a seventh viewing position for the first receiving surface center position. The factor, the third divergent surface center position defines an eighth viewing factor for the second receiving surface center position, and the third diverging surface center position defines a ninth viewing factor for the third receiving surface center position.

在本創作較佳實施例中,該第一視因子值為該第一視因子、該第二視因子、該第三視因子、該第四視因子、該第五視因子、該第六視因子、該第七視因子、該第八視因子以及該第九視因子之和。 In a preferred embodiment of the present invention, the first view factor is the first view factor, the second view factor, the third view factor, the fourth view factor, the fifth view factor, and the sixth view factor. The sum of the factor, the seventh visual factor, the eighth visual factor, and the ninth visual factor.

在本創作較佳實施例中,該等發散面中心位置分別對該等接收面中心位置之延伸方向相距有一第三距離,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第一夾角,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第二夾角。 In a preferred embodiment of the present invention, the center positions of the divergent surfaces are respectively separated by a third distance from the extending direction of the center positions of the receiving surfaces, and the plane vertical vector of the center positions of the diverging surfaces has less than 90 degrees with the extending direction. One of the first angles, and the plane perpendicular vector of the center positions of the receiving faces has a second angle of less than 90 degrees with the extending direction.

在本創作較佳實施例中,在該立體視覺裝置的該一探測方向及範圍內,該第二立方體至少有一第四發散面,至多可探測到該第二立方體有另一第五發散面以及一第六發散面,該第四發散面、第五發散面以及第六發散面相互不平行;該溫度量測裝置定義有一第四接收面;該第四發散面中心位置對該第四接收面中心位置定義有一第十視因子,該第五發散面中心位置對該第四接收面中心位置定義有一第十一視因子,該第六發散面中心位置對該第四接收面中心位置定義有一第十二視因子。 In a preferred embodiment of the present invention, the second cube has at least a fourth divergence surface in the detection direction and range of the stereoscopic device, and at least the second cube has another fifth divergence surface and a sixth diverging surface, the fourth diverging surface, the fifth diverging surface and the sixth diverging surface are not parallel to each other; the temperature measuring device defines a fourth receiving surface; the fourth divergent surface center position is the fourth receiving surface The central position defines a tenth viewing factor, and the fifth divergent surface center position defines an eleventh viewing factor for the fourth receiving surface center position, and the sixth divergent surface center position defines a first position for the fourth receiving surface center position Twelve visual factors.

在本創作較佳實施例中,該第二視因子值為該第十視因子、該第十一視因子以及該第十二視因子之和。 In a preferred embodiment of the present invention, the second visual factor value is a sum of the tenth visual factor, the eleventh visual factor, and the twelfth visual factor.

在本創作較佳實施例中,該等發散面中心位置分別對該第四接收面中心位置之延伸方向相距有一第六距離,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第三夾角,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第四夾角。 In a preferred embodiment of the present invention, the center positions of the divergent surfaces respectively have a sixth distance from the extending direction of the center position of the fourth receiving surface, and the plane vertical vector of the center position of the divergent surfaces has less than 90 One of the third angles, and the plane perpendicular vector of the center positions of the receiving faces has a fourth angle of less than 90 degrees with the extending direction.

在本創作較佳實施例中,該溫度量測裝置量測該等環境物體的一具誤差溫度值,以該第二運算裝置記錄該具誤差溫度值,並將該具誤差溫度值傳送至第一運算裝置,可使用該第一運算裝置使用該第一視因子值與該第二視因子值修正該具誤差溫度值,以取得一修正溫度值。故本創作較佳實施例可用於,在能量體投射能量至環境物體過程中,以修正溫度量測裝置對於該等環境物體的溫度量測值。 In a preferred embodiment of the present invention, the temperature measuring device measures an error temperature value of the environmental objects, records the error temperature value with the second computing device, and transmits the error temperature value to the first An arithmetic device can use the first visual device to correct the error temperature value using the first visual factor value and the second visual factor value to obtain a corrected temperature value. Therefore, the preferred embodiment of the present invention can be used to correct the temperature measurement value of the temperature measuring device for the environmental objects during the process of projecting energy into the environmental object.

在本創作另一較佳實施例中,提供一二維視覺溫測裝置、一能量體、至少一環境物體以及一運算裝置,該二維視覺溫測裝置係具有二維影像取得及溫度量測的能力,該能量體為第一立方體,該等環境物體具 有複數個第二立方體;該第一立方體投射出一能量至該些第二立方體其中之一;該二維視覺溫測裝置與該運算裝置電訊連接;在一第一時間,該二維視覺溫測裝置移動至一第一位置用以取得立體空間之一第一二維點狀影像;在一第二時間,該二維視覺溫測裝置移動至一第二位置用以取得立體空間之一第二二維點狀影像;該運算裝置將該些二維點狀影像進行分析,用以取得該能量體與該等環境物體在立體空間之三維點狀影像,並計算該第一立方體距該二維視覺溫測裝置的一第一距離,並計算該第二立方體距該二維視覺溫測裝置的一第二距離;以該運算裝置使用該第一距離與該第二距離計算該第一立方體距該第二立方體的一第三距離;並以該運算裝置使用該第三距離計算該能體對應該等環境物體之一第一視因子值,並以該運算裝置使用該第二距離計算該等環境物體對應立體視覺溫測裝置之一第二視因子值。 In another preferred embodiment of the present invention, a two-dimensional visual temperature measuring device, an energy body, at least one environmental object, and an arithmetic device are provided. The two-dimensional visual temperature measuring device has two-dimensional image acquisition and temperature measurement. Ability, the energy body is the first cube, and the environmental objects have There is a plurality of second cubes; the first cube projects an energy to one of the second cubes; the two-dimensional visual temperature measuring device is telecommunicationally connected to the computing device; at a first time, the two-dimensional visual temperature The measuring device moves to a first position for acquiring a first two-dimensional point image of the three-dimensional space; at a second time, the two-dimensional visual temperature measuring device moves to a second position for obtaining one of the three-dimensional space a two-dimensional point image; the computing device analyzes the two-dimensional point image to obtain a three-dimensional point image of the energy body and the environmental objects in a three-dimensional space, and calculates the first cube distance from the two a first distance of the visual temperature sensing device, and calculating a second distance of the second cube from the two-dimensional visual temperature measuring device; and calculating, by the computing device, the first cube by using the first distance and the second distance a third distance from the second cube; and the third distance is used by the computing device to calculate a first visual factor value of the energy object corresponding to one of the environmental objects, and the second distance is calculated by the computing device Environmental and other objects corresponding to one of a stereoscopic view of a second temperature sensing device factor value.

在本創作較佳實施例中,在該立體視覺裝置的一探測方向及範圍內,該第一立方體至少有一第一發散面,至多可探測到該第一立方體有另一第二發散面以及一第三發散面,該第一發散面、第二發散面以及第三發散面相互不平行;在該立體視覺裝置的該一探測方向及範圍內,該第二立方體至少有一第一接收面,至多可探測到該第二立方體有另一第二接收面以及一第三接收面,該第一接收面、第二接收面以及第三接收面相互不平行;該第一發散面中心位置對該第一接收面中心位置定義有一第一視因子,該第一發散面中心位置對該第二接收面中心位置定義有一第二視因子,該第一發散面中心位置對該第三接收面中心位置定義有一第三視因子,該第二發散面中心位置對該第一接收面中心位置定義有一第四視因子,該第二發散面中心位置對該第二接收面中心位置定義有一第五視因 子,該第二發散面中心位置對該第三接收面中心位置定義有一第六視因子,該第三發散面中心位置對該第一接收面中心位置定義有一第七視因子,該第三發散面中心位置對該第二接收面中心位置定義有一第八視因子,該第三發散面中心位置對該第三接收面中心位置定義有一第九視因子。 In a preferred embodiment of the present invention, the first cube has at least one first diverging surface in a detecting direction and a range of the stereoscopic device, and at least the second cube has another second divergent surface and a a third diverging surface, the first diverging surface, the second diverging surface, and the third diverging surface are not parallel to each other; in the detecting direction and the range of the stereoscopic device, the second cube has at least one first receiving surface, at most Detecting that the second cube has another second receiving surface and a third receiving surface, the first receiving surface, the second receiving surface, and the third receiving surface are not parallel to each other; the first divergent surface center position is opposite A receiving surface center position defines a first viewing factor, the first divergent surface center position defines a second viewing factor for the second receiving surface center position, and the first divergent surface center position defines the third receiving surface center position There is a third visual factor, the second divergent surface center position defines a fourth visual factor for the first receiving surface center position, and the second divergent surface center position is opposite to the second receiving surface center The fifth set is defined with a view because The second divergent surface center position defines a sixth visual factor for the third receiving surface center position, and the third divergent surface center position defines a seventh visual factor for the first receiving surface center position, the third divergence The face center position defines an eighth viewing factor for the second receiving face center position, and the third diverging face center position defines a ninth viewing factor for the third receiving face center position.

在本創作較佳實施例中,該第一視因子值為該第一視因子、該第二視因子、該第三視因子、該第四視因子、該第五視因子、該第六視因子、該第七視因子、該第八視因子以及該第九視因子之和。 In a preferred embodiment of the present invention, the first view factor is the first view factor, the second view factor, the third view factor, the fourth view factor, the fifth view factor, and the sixth view factor. The sum of the factor, the seventh visual factor, the eighth visual factor, and the ninth visual factor.

在本創作較佳實施例中,該等發散面中心位置分別對該等接收面中心位置之延伸方向相距有一第三距離,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第一夾角,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第二夾角。 In a preferred embodiment of the present invention, the center positions of the divergent surfaces are respectively separated by a third distance from the extending direction of the center positions of the receiving surfaces, and the plane vertical vector of the center positions of the diverging surfaces has less than 90 degrees with the extending direction. One of the first angles, and the plane perpendicular vector of the center positions of the receiving faces has a second angle of less than 90 degrees with the extending direction.

在本創作較佳實施例中,在該立體視覺裝置的該一探測方向及範圍內,該第二立方體至少有一第四發散面,至多可探測到該第二立方體有另一第五發散面以及一第六發散面,該第四發散面、第五發散面以及第六發散面相互不平行;該立體視覺溫測裝置定義有一第五接收面;該第四發散面中心位置對該第五接收面中心位置定義有一第十三視因子,該第五發散面中心位置對該第五接收面中心位置定義有一第十四視因子,該第六發散面中心位置對該第五接收面中心位置定義有一第十五視因子。 In a preferred embodiment of the present invention, the second cube has at least a fourth divergence surface in the detection direction and range of the stereoscopic device, and at least the second cube has another fifth divergence surface and a sixth diverging surface, the fourth diverging surface, the fifth diverging surface and the sixth diverging surface are not parallel to each other; the stereoscopic temperature measuring device defines a fifth receiving surface; the fourth divergent surface center position is for the fifth receiving The plane center position defines a thirteenth view factor, and the fifth divergence plane center position defines a fourteenth view factor for the fifth receiving face center position, and the sixth divergence plane center position defines the fifth receiving face center position There is a fifteenth visual factor.

在本創作較佳實施例中,該第二視因子值為該第十三視因子、該第十四視因子以及該第十五視因子之和。 In a preferred embodiment of the present invention, the second visual factor value is the sum of the thirteenth visual factor, the fourteenth visual factor, and the fifteenth visual factor.

在本創作較佳實施例中,該等發散面中心位置分別對該第五接收面中心位置之延伸方向相距有一第二距離,該等發散面中心位置之平 面垂直向量與該延伸方向具有小於90度之一第五夾角,且該第五接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第六夾角。 In a preferred embodiment of the present invention, the center positions of the divergent surfaces are respectively separated by a second distance from the extending direction of the center position of the fifth receiving surface, and the center position of the divergent surfaces is flat. The face vertical vector has a fifth angle of less than 90 degrees with the extending direction, and the plane perpendicular vector of the center position of the fifth receiving face has a sixth angle of less than 90 degrees with the extending direction.

在本創作較佳實施例中,該二維視覺溫測裝置量測該等環境物體的一具誤差溫度值,以該運算裝置記錄該具誤差溫度值,可使用該運算裝置使用該第一視因子值與該第二視因子值修正該具誤差溫度值,以取得一修正溫度值。故本創作較佳實施例可用於,在能量體投射能量至環境物體過程中,以修正二維視覺溫測裝置對於該等環境物體的溫度量測值。 In a preferred embodiment of the present invention, the two-dimensional visual temperature measuring device measures an error temperature value of the environmental objects, and the operating device records the error temperature value, and the first viewing device can be used by the computing device. The factor value and the second factor factor value correct the error temperature value to obtain a corrected temperature value. Therefore, the preferred embodiment of the present invention can be used to correct the temperature measurement value of the two-dimensional visual temperature measuring device for the environmental objects during the process of projecting energy into the environmental object.

1‧‧‧能量體 1‧‧‧ energy body

11‧‧‧第一立方體 11‧‧‧ first cube

111‧‧‧第一發散面 111‧‧‧First divergence

112‧‧‧第二發散面 112‧‧‧Second divergence

113‧‧‧第三發散面 113‧‧‧ Third divergence

2‧‧‧環境物體 2‧‧‧Environmental objects

21‧‧‧第二立方體 21‧‧‧ second cube

211‧‧‧第一接收面 211‧‧‧First receiving surface

212‧‧‧第二接收面 212‧‧‧second receiving surface

213‧‧‧第三接收面 213‧‧‧ Third receiving surface

214‧‧‧第四發散面 214‧‧‧Four divergence

215‧‧‧第五發散面 215‧‧‧ fifth divergence

216‧‧‧第六發散面 216‧‧‧ sixth divergence

3‧‧‧立體視覺裝置 3‧‧‧ stereo vision device

4,4c,4d‧‧‧運算裝置 4, 4c, 4d‧‧‧ arithmetic device

4a‧‧‧第一運算裝置 4a‧‧‧First computing device

4b‧‧‧第二運算裝置 4b‧‧‧second computing device

5‧‧‧溫度量測裝置 5‧‧‧Temperature measuring device

54‧‧‧第四接收面 54‧‧‧Fourth receiving surface

6‧‧‧二維視覺溫測裝置 6‧‧‧Two-dimensional visual temperature measuring device

65‧‧‧第五接收面 65‧‧‧ fifth receiving surface

7‧‧‧範圍 7‧‧‧Scope

101~128‧‧‧步驟 101~128‧‧‧Steps

S1‧‧‧第一距離 S 1 ‧‧‧first distance

S’1‧‧‧第一位移距離 S' 1 ‧‧‧First displacement distance

S2‧‧‧第二距離 S 2 ‧‧‧Second distance

S’2‧‧‧第二位移距離 S' 2 ‧‧‧Second displacement distance

S3‧‧‧第三距離 S 3 ‧‧‧ third distance

S4‧‧‧第四距離 S 4 ‧‧‧fourth distance

S5‧‧‧第五距離 S 5 ‧‧‧ fifth distance

S6‧‧‧第六距離 S 6 ‧‧‧ sixth distance

θ i‧‧‧第一夾角 θ i ‧‧‧first angle

θ j‧‧‧第二夾角 θ j ‧‧‧second angle

θ k‧‧‧第三夾角 θ k ‧‧‧ third angle

θ p‧‧‧第四夾角 θ p ‧‧‧fourth angle

q ‧‧‧第五夾角 q ‧‧‧The fifth angle

r ‧‧‧第六夾角 r ‧‧‧The sixth angle

T 1‧‧‧第一時間 T 1 ‧‧‧First time

T 2‧‧‧第一時間 T 2 ‧‧‧First time

P 1‧‧‧第一位置 P 1 ‧‧‧ first position

P 2‧‧‧第二位置 P 2 ‧‧‧second position

圖1為本創作能量體對物體的視因子量測方法第一實施例之方法流程圖;圖2為本創作能量體對物體的視因子量測方法第一實施例之系統架構圖;圖3為本創作能量體對物體的視因子量測方法之能量體與環境物體關係示意圖;圖4為本創作能量體對物體的視因子量測方法第二實施例之方法流程圖;圖5為本創作能量體對物體的視因子量測方法第二實施例之系統架構圖;圖6為本創作能量體對物體的視因子量測方法第二實施例之溫度量測裝置與環境物體關係示意圖;圖7為本創作能量體對物體的視因子量測方法第三實施例之方法流程圖;圖8為本創作能量體對物體的視因子量測方法第三實施例之系統架構圖;圖9為本創作能量體對物體的視因子量測方法第三實施例之二維視覺溫測裝置與環境物體關係示意圖。 FIG. 1 is a flow chart of a method for the first embodiment of the method for measuring the visual factor of an energy body to an object; FIG. 2 is a system architecture diagram of the first embodiment of the method for measuring the visual factor of an energy body to an object; A schematic diagram of the relationship between the energy body and the environmental object of the visual factor measurement method of the object of the creation energy; FIG. 4 is a flow chart of the method for the second embodiment of the method for measuring the visual factor of the energy body to the object; FIG. The system architecture diagram of the second embodiment of the method for measuring the visual factor of the energy body to the object; FIG. 6 is a schematic diagram showing the relationship between the temperature measuring device and the environmental object of the second embodiment of the method for measuring the apparent factor of the energy body to the object; 7 is a flow chart of a method for the third embodiment of the method for measuring the apparent factor of the energy body to the object; FIG. 8 is a system architecture diagram of the third embodiment of the method for measuring the visual factor of the energy body to the object; A schematic diagram of the relationship between the two-dimensional visual temperature measuring device and the environmental object of the third embodiment of the present invention.

為達成上述目的及功效,本創作所採用之技術手段及構造,茲繪圖就本創作較佳實施例詳加說明其特徵與功能如下,俾利完全了解,但須注意的是,該等內容不構成本發明的限定。 In order to achieve the above objectives and effects, the technical means and structure adopted by this creation are described in detail in the preferred embodiment of the present creation. The features and functions are as follows, and the full understanding is made, but it should be noted that the contents are not It constitutes a limitation of the present invention.

請同時參閱圖1、圖2所示,其為本創作能量體對物體的視因子量測方法之第一實施例的方法流程圖及系統架構圖。能量體對物體的視因子量測方法,包括以下步驟: 步驟101:提供一立體視覺裝置3、一能量體1、至少一環境物體2以及一運算裝置4。於一立體空間中設置該立體視覺裝置3,該立體視覺裝置3用以取得該立體空間之三維點狀影像,即具有三維空間資訊的點雲。該立體空間中具有該能量體1以及該等環境物體2,該能量體1可以為該立體空間中任意一第一立方體11,該等環境物體2可以為一任意可吸收及反射能量之結構物,該等環境物體2可視為由複數個第二立方體21排列而成。該立體視覺裝置3與該運算裝置4電訊連接。較佳的,該運算裝置可更包括一儲存單元41,用以儲存量測資料。 Please refer to FIG. 1 and FIG. 2 at the same time, which is a flowchart and a system architecture diagram of the first embodiment of the method for measuring the visual factor of the energy body to the object. The method for measuring the visual factor of an energy body to an object includes the following steps: Step 101: Providing a stereoscopic device 3, an energy body 1, at least one environmental object 2, and an arithmetic device 4. The stereoscopic device 3 is disposed in a three-dimensional space, and the stereoscopic device 3 is configured to obtain a three-dimensional point image of the three-dimensional space, that is, a point cloud having three-dimensional spatial information. The energy body 1 and the environmental objects 2 may be in the three-dimensional space, and the energy body 1 may be any one of the first cubes 11 in the three-dimensional space, and the environmental objects 2 may be any structure capable of absorbing and reflecting energy. The environmental objects 2 can be regarded as being arranged by a plurality of second cubes 21. The stereoscopic device 3 is in telecommunication connection with the computing device 4. Preferably, the computing device further includes a storage unit 41 for storing measurement data.

步驟102:以該立體視覺裝置3量測該第一立方體11距該立體視覺裝置3的一第一距離S1,並以該立體視覺裝置3量測該第二立方體21距該立體視覺裝置3的一第二距離S2Step 102: Measure a first distance S 1 of the first cube 11 from the stereoscopic device 3 by using the stereoscopic device 3, and measure the second cube 21 from the stereoscopic device 3 by the stereoscopic device 3 A second distance S 2 .

步驟103:以該運算裝置4使用該第一距離S1及該第二距離S2計算該第一立方體11與該第二立方體21相距的一第三距離S3Step 103: Calculate a third distance S 3 between the first cube 11 and the second cube 21 by using the first distance S 1 and the second distance S 2 by the computing device 4 .

步驟104:以該運算裝置4使用該第三距離S3計算一視因子值(圖中未示)。由於輻射(熱輻射)的傳遞方式是由物體的表面傳達到另一物體的表面,因此在分析物體間的熱輻射時,需要考量到物體的大小、空間 中的距離和方向,方可得到物體表面熱交換的量值。上述所提到之物體的大小、空間中的距離和方向等幾何關係則稱之為視因子,對一個散射的灰體而言(表面積趨近無限小),視因子可定義如公式(1)所示: Step 104: Calculate a visual factor value (not shown) by the computing device 4 using the third distance S 3 . Since the radiation (heat radiation) is transmitted from the surface of the object to the surface of another object, when analyzing the heat radiation between the objects, it is necessary to consider the size of the object, the distance and direction in the space, and then obtain the object. The amount of surface heat exchange. The geometric relationship between the size of the object mentioned above, the distance and the direction in space is called the visual factor, and for a scattering gray body (the surface area is infinitely small), the visual factor can be defined as the formula (1). Shown as follows:

其中,dA及dAj分別代表表面積趨近無限小的i表面及j表面,代表自i表面至j表面的視因子。 Where dA and dA j represent the surface of the i surface and the surface of j which are infinitely small, respectively. Represents the visual factor from the i surface to the j surface.

請更參閱圖3所示,其為本創作能量體對物體的視因子量測方法之能量體與環境物體關係示意圖。該運算裝置4將該運算裝置4計算的該第三距離S3及該立體視覺裝置3取得的該第一立方體11與該第二立方體21的立體幾何資訊進行分析。在該立體視覺裝置3的一探測方向與範圍7,該第一立方體11具有至少一第一發散面111,另具有至多一第二發散面112以及一第三發散面113,該第一發散面111、第二發散面112以及第三發散面113分別相互不平行。在該立體視覺裝置3的該探測方向與範圍7內,該第二立方體21具有至少一第一接收面211,另具有至多一第二接收面212以及一第三接收面213,該第一接收面211、第二接收面212以及第三接收面213分別相互不平行。其中該等發散面中心位置分別對該等接收面中心位置相距有一第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)(圖中未示),若該第一立方體11及該第二立方體21體積足夠小,或若該第一立方體11及該第二立方體21相距足夠遠,該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)約可以該第一立方體11中心位置與該第二立方體21中心位置相距的一延伸方向之第三距離S3計算,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第一夾角θ i,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第二夾角θ j。該第一發散面 111中心位置對該第一接收面211中心位置定義有一第一視因子(圖中未示),該第一發散面111中心位置對該第二接收面212中心位置定義有一第二視因子(圖中未示),該第一發散面111中心位置對該第三接收面213中心位置定義有一第三視因子(圖中未示),該第二發散面112中心位置對該第一接收面211中心位置定義有一第四視因子(圖中未示),該第二發散面112中心位置對該第二接收面212中心位置定義有一第五視因子(圖中未示),該第二發散面112中心位置對該第三接收面213中心位置定義有一第六視因子(圖中未示),該第三發散面113中心位置對該第一接收面211中心位置定義有一第七視因子(圖中未示),該第三發散面113中心位置對該第二接收面212中心位置定義有一第八視因子(圖中未示),該第三發散面113中心位置對該第三接收面213中心位置定義有一第九視因子(圖中未示)。該第一立方體對應該第二立方體的該第一視因子值即為該第一視因子、該第二視因子、該第三視因子、該第四視因子、該第五視因子、該第六視因子、該第七視因子、該第八視因子以及該第九視因子之總和。其中,該等視因子與該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)平方成反比,亦或該等視因子與該第三距離S3平方成反比,且分別與該第一夾角θ i的餘弦及該第二夾角θ j的餘弦成正比。當該第一立方體的體積趨近於無限小時,該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)趨近於該第三距離S3,該些視因子可以被表示如公式(2)所示: Please refer to FIG. 3, which is a schematic diagram of the relationship between the energy body and the environmental object of the method for measuring the visual factor of the object. The arithmetic unit 4 analyzes the third distance S 3 calculated by the arithmetic unit 4 and the solid geometry information of the first cube 11 and the second cube 21 acquired by the stereoscopic device 3 . In a detecting direction and range 7 of the stereoscopic device 3, the first cube 11 has at least one first diverging surface 111, and at least one second diverging surface 112 and a third divergent surface 113, the first divergent surface 111. The second divergent surface 112 and the third divergent surface 113 are not parallel to each other, respectively. In the detection direction and range 7 of the stereoscopic device 3, the second cube 21 has at least one first receiving surface 211, and at least one second receiving surface 212 and a third receiving surface 213, the first receiving The surface 211, the second receiving surface 212, and the third receiving surface 213 are not parallel to each other, respectively. The center positions of the divergent surfaces are respectively separated by a third distance from the center of the receiving surfaces (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) (not shown), if the first cube 11 and the second cube 21 are sufficiently small, or if the first cube 11 and the second The cubes 21 are far enough apart, the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) may be calculated by a third distance S 3 of an extending direction of the center position of the first cube 11 and the center position of the second cube 21 , the plane vertical vector of the center position of the divergent planes and the extending direction There is a first angle θ i of less than 90 degrees, and a plane vertical vector of the center positions of the receiving faces has a second angle θ j of less than 90 degrees with the extending direction. The central position of the first divergent surface 111 defines a first visual factor (not shown) for the central position of the first receiving surface 211, and the central position of the first divergent surface 111 defines a central position of the second receiving surface 212. a second viewing factor (not shown), the central position of the first divergent surface 111 defines a third visual factor (not shown) for the central position of the third receiving surface 213, and the central position of the second divergent surface 112 is The central position of the first receiving surface 211 defines a fourth visual factor (not shown), and the central position of the second divergent surface 112 defines a fifth visual factor (not shown) for the central position of the second receiving surface 212. The central position of the second divergent surface 112 defines a sixth visual factor (not shown) for the central position of the third receiving surface 213, and the central position of the third divergent surface 113 defines a central position of the first receiving surface 211. a seven-view factor (not shown), the center position of the third divergent surface 113 defines an eighth viewing factor (not shown) for the central position of the second receiving surface 212, and the center of the third divergent surface 113 is The center of the third receiving surface 213 defines a ninth viewing factor (not shown). The first view factor value corresponding to the second cube corresponding to the first cube is the first view factor, the second view factor, the third view factor, the fourth view factor, the fifth view factor, the first The sum of the six visual factors, the seventh visual factor, the eighth visual factor, and the ninth visual factor. Wherein the visual factors and the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3- 8 , S 3-9 ) is inversely proportional to the square, or the apparent factors are inversely proportional to the square of the third distance S 3 , and are respectively proportional to the cosine of the first angle θ i and the cosine of the second angle θ j . When the volume of the first cube approaches infinity, the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3 -7 , S 3-8 , S 3-9 ) approach the third distance S 3 , and the visual factors can be expressed as shown in formula (2):

其中,為該些視因子;S3為該第三距離;θ i為該第一夾角;θ j為該第二夾角; 為圓周率;dA j 為該些接收面的微小面積。 among them, For the visual factors; S 3 is the third distance; θ i is the first angle; θ j is the second angle; is the pi; dA j is the small area of the receiving surfaces.

請同時參閱圖4、圖5所示,其為本創作能量體對物體的視因子量測方法之第二實施例的方法流程圖及系統架構圖。能量體對物體的視因子量測方法,包括以下步驟: 步驟111:提供一立體視覺裝置3、一能量體1、至少一環境物體2、一第一運算裝置4a、一第二運算裝置4b、以及一溫度量測裝置5。 於一立體空間中設置該立體視覺裝置3,該立體視覺裝置3用以取得該立體空間之三維點狀影像。該立體空間中具有該能量體1以及該等環境物體2,該能量體1可以為該立體空間中任意一第一立方體11,該等環境物體2可以為一任意可吸收及反射能量之結構物,該等環境物體2可視為由複數個第二立方體21排列而成。該立體視覺裝置3與該第一運算裝置4a電訊連接,該溫度量測裝置5與該第二運算裝置4b電訊連接,該第一運算裝置4a與該第二運算裝置4b電訊連接。較佳的,該第一運算裝置4a可更包括一儲存單元41,用以儲存量測資料。 Please refer to FIG. 4 and FIG. 5 at the same time, which is a flowchart and a system architecture diagram of a second embodiment of the method for measuring the visual factor of the energy body to the object. The method for measuring the visual factor of an energy body to an object includes the following steps: Step 111: Providing a stereoscopic device 3, an energy body 1, at least one environmental object 2, a first computing device 4a, a second computing device 4b, and a temperature measuring device 5. The stereoscopic device 3 is disposed in a three-dimensional space, and the stereoscopic device 3 is configured to acquire a three-dimensional point image of the three-dimensional space. The energy body 1 and the environmental objects 2 may be in the three-dimensional space, and the energy body 1 may be any one of the first cubes 11 in the three-dimensional space, and the environmental objects 2 may be any structure capable of absorbing and reflecting energy. The environmental objects 2 can be regarded as being arranged by a plurality of second cubes 21. The stereoscopic device 3 is electrically connected to the first computing device 4a. The temperature measuring device 5 is electrically connected to the second computing device 4b. The first computing device 4a is electrically connected to the second computing device 4b. Preferably, the first computing device 4a further includes a storage unit 41 for storing measurement data.

步驟112:以該立體視覺裝置3量測第一立方體11距該立體視覺裝置3的一第一距離S1,並以該立體視覺裝置3量測第二立方體21距該立體視覺裝置3的一第二距離S2,另以該立體視覺裝置3量測該立體視覺裝置3距該溫度量測裝置5的一第四距離S4Step 112: Measure a first distance S 1 of the first cube 11 from the stereoscopic device 3 with the stereoscopic device 3, and measure the second cube 21 from the stereoscopic device 3 with the stereoscopic device 3 The second distance S 2 is further measured by the stereo vision device 3 by a fourth distance S 4 from the temperature measuring device 5 .

步驟113:以該第一運算裝置4a使用該第一距離S1及該第二距離S2計算該第一立方體11與該第二立方體21相距的一第三距離S3,並以該第一運算裝置4a使用該第一距離S1及該第四距離S4計算該第一立方體11與該溫度量測裝置5相距的一第五距離S5,並以該第一運算裝置4a使用該第二距離S2及該第四距離S4計算該第二立方體21與該溫度量測裝置5相距的一第六距離S6Step 113: Calculate a third distance S 3 between the first cube 11 and the second cube 21 by using the first distance S 1 and the second distance S 2 by the first computing device 4a, and use the first distance The computing device 4a calculates a fifth distance S 5 of the first cube 11 from the temperature measuring device 5 by using the first distance S 1 and the fourth distance S 4 , and uses the first computing device 4 a The second distance S 2 and the fourth distance S 4 calculate a sixth distance S 6 of the second cube 21 from the temperature measuring device 5 .

步驟114:以該第一運算裝置4a使用該第三距離S3計算一第一視因子值(圖中未示)。請更加參閱圖3所示,該第一運算裝置4a將該第一運算裝置4a計算的該第三距離S3及該立體視覺裝置3取得的該第一立方體11與該第二立方體21的立體幾何資訊進行分析。在該立體視覺裝置3的一探測方向與範圍7內,該第一立方體11具有至少一第一發散面111,另具有至多一第二發散面112以及一第三發散面113,該第一發散面111、第二發散面112以及第三發散面113分別相互不平行。在該立體視覺裝置3的該探測方向與範圍7,而該第二立方體21具至少一第一接收面211,另具有至多一第二接收面212以及一第三接收面213,該第一發散面111、第二發散面112以及第三發散面113分別相互不平行。其中該等發散面中心位置分別對該等接收面中心位置相距有一第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)(圖中未示),若該第一立方體11及該第二立方體21體積足夠小,或若該第一立方體11及該第二立方體21相距足夠遠,該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)約可以該第一立方體11中心位置與該第二立方體21中心位置相距的一延伸方向之第三距離S3計算,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第一夾角θ i,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第二夾角θ j。該第一發散面111中心位置對該第一接收面211中心位置定義有一第一視因子(圖中未示),該第一發散面111中心位置對該第二接收面212中心位置定義有一第二視因子(圖中未示),該第一發散面111中心位置對該第三接收面213中心位置定義有一第三視因子(圖中未示),該第二發散面112中心位置對該第一接收面211中心位置定義有一第四視因子(圖中未示),該第二發散面112中心位置對該第二接收面212中心位置定義有一第五視因子(圖中未示),該第二發散面112中心位置對該第三接收面213中心位 置定義有一第六視因子(圖中未示),該第三發散面113中心位置對該第一接收面211中心位置定義有一第七視因子(圖中未示),該第三發散面113中心位置對該第二接收面212中心位置定義有一第八視因子(圖中未示),該第三發散面113中心位置對該第三接收面213中心位置定義有一第九視因子(圖中未示)。該第一立方體11對應該第二立方體21的該第一視因子值即為該第一視因子、該第二視因子、該第三視因子、該第四視因子、該第五視因子、該第六視因子、該第七視因子、該第八視因子以及該第九視因子之總和。 其中,該等視因子與該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)平方成反比,亦或等視因子與該第三距離S3平方成反比,且分別與該第一夾角θ i的餘弦及該第二夾角θ j的餘弦成正比。當該第一立方體11的體積趨近於無限小時,該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)趨近於該第三距離S3,以該公式(2)計算該些視因子。 Step 114: Calculate a first visual factor value (not shown) by using the third distance S 3 by the first computing device 4a. Please further refer to FIG. 3, S 3 and the stereoscopic vision means 3 acquires the distance of the third computing device 4a the first arithmetic means for calculating a first perspective 4a of the first 11 and the second cube of the cube 21 Geometric information for analysis. In a detecting direction and range 7 of the stereoscopic device 3, the first cube 11 has at least one first diverging surface 111, and at most one second diverging surface 112 and a third divergent surface 113, the first divergence The surface 111, the second divergent surface 112, and the third divergent surface 113 are not parallel to each other, respectively. In the detecting direction and range 7 of the stereoscopic device 3, the second cube 21 has at least one first receiving surface 211, and at least one second receiving surface 212 and a third receiving surface 213, the first divergence The surface 111, the second divergent surface 112, and the third divergent surface 113 are not parallel to each other, respectively. The center positions of the divergent surfaces are respectively separated by a third distance from the center of the receiving surfaces (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) (not shown), if the first cube 11 and the second cube 21 are sufficiently small, or if the first cube 11 and the second The cubes 21 are far enough apart, the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) may be calculated by a third distance S 3 of an extending direction of the center position of the first cube 11 and the center position of the second cube 21 , the plane vertical vector of the center position of the divergent planes and the extending direction There is a first angle θ i of less than 90 degrees, and a plane vertical vector of the center positions of the receiving faces has a second angle θ j of less than 90 degrees with the extending direction. The central position of the first divergent surface 111 defines a first visual factor (not shown) for the central position of the first receiving surface 211, and the central position of the first divergent surface 111 defines a central position of the second receiving surface 212. a second viewing factor (not shown), the central position of the first divergent surface 111 defines a third visual factor (not shown) for the central position of the third receiving surface 213, and the central position of the second divergent surface 112 is The central position of the first receiving surface 211 defines a fourth visual factor (not shown), and the central position of the second divergent surface 112 defines a fifth visual factor (not shown) for the central position of the second receiving surface 212. The central position of the second divergent surface 112 defines a sixth visual factor (not shown) for the central position of the third receiving surface 213, and the central position of the third divergent surface 113 defines a central position of the first receiving surface 211. a seven-view factor (not shown), the center position of the third divergent surface 113 defines an eighth viewing factor (not shown) for the central position of the second receiving surface 212, and the center of the third divergent surface 113 is The center of the third receiving surface 213 defines a ninth viewing factor (not shown). The first view factor value corresponding to the first cube 11 corresponding to the second cube 21 is the first view factor, the second view factor, the third view factor, the fourth view factor, the fifth view factor, The sum of the sixth visual factor, the seventh visual factor, the eighth visual factor, and the ninth visual factor. Wherein the visual factors and the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3- 8 , S 3-9 ) is inversely proportional to the square, or the equal-view factor is inversely proportional to the square of the third distance S 3 , and is proportional to the cosine of the first angle θ i and the cosine of the second angle θ j , respectively. When the volume of the first cube 11 approaches infinity, the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) approaching the third distance S 3 , and calculating the visual factors by the formula (2).

步驟115:以該第一運算裝置4a使用該第六距離S6計算一第二視因子值(圖中未示)。請更加參閱圖6所示,其為本創作能量體對物體的視因子量測方法第二實施例之溫度量測裝置與環境物體關係示意圖。該第一運算裝置4a將該第一運算裝置4a計算的該第六距離S6及該立體視覺裝置3取得的該第二立方體21及該溫度量測裝置5的立體幾何資訊進行分析。在該立體視覺裝置3的一探測方向與範圍7內,該第二立方體21具有至少一第四發散面214,另具有至多一第五發散面215以及一第六發散面216,該第四發散面214、第五發散面215以及第六發散面216分別相互不平行。而該溫度量測裝置5定義有一第四接收面54,其中該等發散面中心位置分別對該第四接收面54中心位置相距有一第六距離(S6-1,S6-2,S6-3)(圖中未示),若該第二立方體21體積足夠小,或若該第二立方體21與溫度量測裝置5相距足夠遠,該第六距離(S6-1,S6-2,S6-3)約可以該第二立方體21中心位置與該第 四接收面54中心位置相距的一延伸方向之第六距離S6計算,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第三夾角 k ,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第四夾角 p 。該第四發散面214中心位置對該第四接收面54中心位置定義有一第十視因子(圖中未示),該第五發散面215中心位置對該第四接收面54中心位置定義有一第十一視因子(圖中未示),該第六發散面216中心位置對該第四接收面54中心位置定義有一第十二視因子(圖中未示)。該第二立方體21對應該溫度量測裝置5的該第二視因子值即為該第十視因子、該第十一視因子以及該第十二視因子之總和。其中,該等視因子與該第六距離(S6-1,S6-2,S6-3)平方成反比,亦或該等視因子與該第六距離S6平方成反比,且分別與該第三夾角 k 的餘弦及該第四夾角 p 的餘弦成正比。當該第二立方體21的體積趨近於無限小時,該第六距離(S6-1,S6-2,S6-3)趨近於該第六距離S6,該些視因子可以被表示如公式(3)所示: Step 115: the first computing device to use the sixth distance S 6 calculates a second value depending on the factor (not shown) 4a. Please refer to FIG. 6 , which is a schematic diagram of the relationship between the temperature measuring device and the environmental object in the second embodiment of the method for measuring the visual factor of the object. Information of the three-dimensional geometry and the sixth distance S 6 stereoscopic device 4a the first computing means calculates the first computing device 4a. 3 of the obtained cube 21 and the second temperature measuring device 5 is analyzed. In a detecting direction and range 7 of the stereoscopic device 3, the second cube 21 has at least one fourth diverging surface 214, and at most one fifth diverging surface 215 and a sixth diverging surface 216, the fourth divergence The face 214, the fifth divergence surface 215, and the sixth divergence surface 216 are not parallel to each other, respectively. The temperature measuring device 5 defines a fourth receiving surface 54, wherein the center positions of the diverging surfaces respectively have a sixth distance from the center of the fourth receiving surface 54 (S 6-1 , S 6-2 , S 6 -3 ) (not shown), if the second cube 21 is small enough, or if the second cube 21 is far enough away from the temperature measuring device 5, the sixth distance (S 6-1 , S 6- 2 , S 6-3 ) can be calculated by a sixth distance S 6 of an extending direction of the center position of the second cube 21 and the center of the fourth receiving surface 54 , the plane vertical vector of the center position of the divergent planes The extending direction has a third angle k of less than 90 degrees, and the plane vertical vector of the center positions of the receiving faces has a fourth angle p of less than 90 degrees with the extending direction. The central position of the fourth diverging surface 214 defines a tenth viewing factor (not shown) for the central position of the fourth receiving surface 54. The central position of the fifth divergent surface 215 defines a central position of the fourth receiving surface 54. An eleven-view factor (not shown), the center position of the sixth diverging surface 216 defines a twelfth visual factor (not shown) for the center position of the fourth receiving surface 54. The second visual factor value of the second cube 21 corresponding to the temperature measuring device 5 is the sum of the tenth visual factor, the eleventh visual factor, and the twelfth visual factor. Wherein the visual factors are inversely proportional to the square of the sixth distance (S 6-1 , S 6-2 , S 6-3 ), or the visual factors are inversely proportional to the square of the sixth distance S 6 , and respectively It is proportional to the cosine of the third angle k and the cosine of the fourth angle p . When the volume of the second cube 21 approaches infinity, the sixth distance (S 6-1 , S 6-2 , S 6-3 ) approaches the sixth distance S 6 , and the visual factors can be Expressed as shown in equation (3):

其中,為該些視因子;S 6為該第六距離; k 為該第三夾角; p 為該第四夾角; 為圓周率;dA p 為該第四接收面的微小面積。 among them, For these visual factors; S 6 is the sixth distance; k is the third angle; p is the fourth angle; is the pi; dA p is the small area of the fourth receiving surface.

在本創作第二實施例中,可更包括一步驟116:該溫度量測裝置5量測該等環境物體21的一具誤差溫度值(圖中未示),以該第二運算裝置4b記錄該具誤差溫度值,並將該具誤差溫度值傳送至第一運算裝置4a,可使用該第一運算裝置4a使用該第一視因子值與該第二視因子值修正該具誤差溫度值,以取得一修正溫度值(圖中未示)。 In the second embodiment of the present invention, a step 116 may be further included: the temperature measuring device 5 measures an error temperature value (not shown) of the environmental objects 21, and records the second computing device 4b. The error temperature value is transmitted, and the error temperature value is transmitted to the first computing device 4a, and the first operating device 4a can be used to correct the error temperature value using the first visual factor value and the second visual factor value. To obtain a corrected temperature value (not shown).

值得一的是,該立體視覺裝置3與該溫度量測裝置5亦可以結合為一體形成一立體視覺溫測裝置(圖中未示),其視因子量測方式及原理與上述第一實施例及第二實施例相同,不再一一贅述。 It is worth noting that the stereoscopic device 3 and the temperature measuring device 5 can also be combined to form a stereoscopic visual temperature measuring device (not shown), and the visual factor measuring method and principle are compared with the first embodiment described above. The same as the second embodiment, the details will not be described again.

請同時參閱圖7、圖8所示,其為本創作能量體對物體的視因子量測方法之第三實施例的方法流程圖及系統架構圖。能量體對物體的視因子量測方法,包括以下步驟: 步驟121:提供一二維視覺溫測裝置6、一能量體1、至少一環境物體2以及一運算裝置4d。該立體空間中具有該能量體1以及該等環境物體2,該能量體1可以為該立體空間中任意一第一立方體11,該等環境物體2可以為一任意可吸收及反射能量之結構物,該等環境物體2可視為由複數個第二立方體21排列而成。該二維視覺溫測裝置6與該運算裝置4d電訊連接。較佳的,該運算裝置4d可更包括一儲存單元41,用以儲存量測資料。 Please refer to FIG. 7 and FIG. 8 at the same time, which is a flowchart and a system architecture diagram of a third embodiment of the method for measuring the visual factor of the energy body to the object. The method for measuring the visual factor of an energy body to an object includes the following steps: Step 121: Providing a two-dimensional visual temperature measuring device 6, an energy body 1, at least one environmental object 2, and an arithmetic device 4d. The energy body 1 and the environmental objects 2 may be in the three-dimensional space, and the energy body 1 may be any one of the first cubes 11 in the three-dimensional space, and the environmental objects 2 may be any structure capable of absorbing and reflecting energy. The environmental objects 2 can be regarded as being arranged by a plurality of second cubes 21. The two-dimensional visual temperature measuring device 6 is electrically connected to the computing device 4d. Preferably, the computing device 4d further includes a storage unit 41 for storing measurement data.

步驟122:在一第一時間T 1,該二維視覺溫測裝置6移動至一第一位置P 1用以取得立體空間之一第一二維點狀影像(圖中未示),並以該運算裝置4d計算在該第一時間T 1第一立方體11距該二維視覺溫測裝置6的第一距離S1,以及第二立方體21距該二維視覺溫測裝置6的第二距離S2。。 Step 122: At a first time T 1 , the two-dimensional visual temperature measuring device 6 moves to a first position P 1 for acquiring a first two-dimensional point image (not shown) of the three-dimensional space, and the arithmetic unit 4d calculates a first time T 1 in the first two-dimensional vision cube 11 from the temperature sensing means is a first distance 6 S 1, and a second two-dimensional vision cube 21 from the temperature sensing means a second distance of 6 S 2 . .

步驟123:在一第二時間T 2,該二維視覺溫測裝置6移動一位移向量(圖中未示)至一第二位置P 2用以取得立體空間之一第二二維點狀影像(圖中未示),並以該運算裝置4d計算在該第二時間T 2第一立方體11距該二維視覺溫測裝置6相距有一第一位移距離S’1,以及第二立方體21距該二維視覺溫測裝置6相距有一第二位移距離S’2Step 123: At a second time T 2 , the two-dimensional visual temperature measuring device 6 moves a displacement vector (not shown) to a second position P 2 for acquiring a second two-dimensional point image of the three-dimensional space. (not shown), and calculated by the computing device 4d, at the second time T 2, the first cube 11 is spaced from the two-dimensional visual temperature measuring device 6 by a first displacement distance S' 1 and the second cube 21 is The two-dimensional visual temperature measuring device 6 is spaced apart by a second displacement distance S' 2 .

步驟124:該運算裝置4d將該第一二維點狀影像與該第二二維點狀影像進行分析,用以取得該能量體1與該等環境物體2在立體空間之三維點狀影像。 Step 124: The computing device 4d analyzes the first two-dimensional point image and the second two-dimensional point image to obtain a three-dimensional point image of the energy body 1 and the environmental objects 2 in a three-dimensional space.

步驟125:以該運算裝置4d使用該第一距離S1及該第二距離S2計算該第一立方體11與該第二立方體21相距的一第三距離S3Step 125: Calculate a third distance S 3 between the first cube 11 and the second cube 21 by using the first distance S 1 and the second distance S 2 by the computing device 4 d .

步驟126:以該運算裝置4d使用該第三距離S3計算一第一視因子值(圖中未示)。請參閱圖3所示,該運算裝置4d將該第三距離S3及該運算裝置4d取得的該第一立方體11與該第二立方體21的立體幾何資訊進行分析。在該立體視覺裝置3的探測方向及範圍7內,該第一立方體11具有至少一第一發散面111,另具有至多一第二發散面112以及一第三發散面113,該第一發散面111、第二發散面112以及第三發散面113分別相互不平行。而該第二立方體21具有至少一第一接收面211,另具有至多一第二接收面212以及一第三接收面213,該第一接收面211、第二接收面212以及第三接收面231分別相互不平行。其中該等發散面中心位置分別對該等接收面中心位置相距有一第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)(圖中未示),若該第一立方體11及該第二立方體21體積足夠小,或若該第一立方體11及該第二立方體21相距足夠遠,該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)約可以該第一立方體11中心位置與該第二立方體21中心位置相距的一延伸方向之第三距離S3計算,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第一夾角θ i,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第二夾角θ j。該第一發散面111中心位置對該第一接收面211中心位置定義有一第一視因子(圖中未示),該第一發散面111中心位置對該第二接收面212中心位置定義有一第二視因子(圖中未示),該第一發散面111中心位置對該第三接收面213中 心位置定義有一第三視因子(圖中未示),該第二發散面112中心位置對該第一接收面211中心位置定義有一第四視因子(圖中未示),該第二發散面112中心位置對該第二接收面212中心位置定義有一第五視因子(圖中未示),該第二發散面112中心位置對該第三接收面213中心位置定義有一第六視因子(圖中未示),該第三發散面113中心位置對該第一接收面211中心位置定義有一第七視因子(圖中未示),該第三發散面113中心位置對該第二接收面212中心位置定義有一第八視因子(圖中未示),該第三發散面113中心位置對該第三接收面213中心位置定義有一第九視因子(圖中未示)。該第一立方體11對應該第二立方體21的該第一視因子值即為該第一視因子、該第二視因子、該第三視因子、該第四視因子、該第五視因子、該第六視因子、該第七視因子、該第八視因子以及該第九視因子之總和。其中,該等視因子與該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)平方成反比,亦或等視因子與該第三距離S3平方成反比,且分別與該第一夾角θ i的餘弦及該第二夾角θ j的餘弦成正比。當該第一立方體11的體積趨近於無限小時,該第三距離(S3-1,S3-2,S3-3,S3-4,S3-5,S3-6,S3-7,S3-8,S3-9)趨近於該第三距離S3,以該公式(2)計算該些視因子。 Step 126: the arithmetic unit 4d to the third distance S is calculated using a first view factor value (not shown) 3. See figure, 4d which the third distance calculating means and said arithmetic device 3 S 4d obtaining the first analysis cube 11 and the second three-dimensional geometry information cube 21 3. In the detection direction and range 7 of the stereoscopic device 3, the first cube 11 has at least one first divergent surface 111, and at least one second divergent surface 112 and a third divergent surface 113, the first divergent surface 111. The second divergent surface 112 and the third divergent surface 113 are not parallel to each other, respectively. The second cube 21 has at least one first receiving surface 211 , and at least one second receiving surface 212 and a third receiving surface 213 . The first receiving surface 211 , the second receiving surface 212 , and the third receiving surface 231 . They are not parallel to each other. The center positions of the divergent surfaces are respectively separated by a third distance from the center of the receiving surfaces (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) (not shown), if the first cube 11 and the second cube 21 are sufficiently small, or if the first cube 11 and the second The cubes 21 are far enough apart, the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) may be calculated by a third distance S 3 of an extending direction of the center position of the first cube 11 and the center position of the second cube 21 , the plane vertical vector of the center position of the divergent planes and the extending direction There is a first angle θ i of less than 90 degrees, and a plane vertical vector of the center positions of the receiving faces has a second angle θ j of less than 90 degrees with the extending direction. The central position of the first divergent surface 111 defines a first visual factor (not shown) for the central position of the first receiving surface 211, and the central position of the first divergent surface 111 defines a central position of the second receiving surface 212. a second viewing factor (not shown), the central position of the first divergent surface 111 defines a third visual factor (not shown) for the central position of the third receiving surface 213, and the central position of the second divergent surface 112 is The central position of the first receiving surface 211 defines a fourth visual factor (not shown), and the central position of the second divergent surface 112 defines a fifth visual factor (not shown) for the central position of the second receiving surface 212. The central position of the second divergent surface 112 defines a sixth visual factor (not shown) for the central position of the third receiving surface 213, and the central position of the third divergent surface 113 defines a central position of the first receiving surface 211. a seven-view factor (not shown), the center position of the third divergent surface 113 defines an eighth viewing factor (not shown) for the central position of the second receiving surface 212, and the center of the third divergent surface 113 is The center of the third receiving surface 213 defines a ninth viewing factor (not shown). The first view factor value corresponding to the first cube 11 corresponding to the second cube 21 is the first view factor, the second view factor, the third view factor, the fourth view factor, the fifth view factor, The sum of the sixth visual factor, the seventh visual factor, the eighth visual factor, and the ninth visual factor. Wherein the visual factors and the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3- 8 , S 3-9 ) is inversely proportional to the square, or the equal-view factor is inversely proportional to the square of the third distance S 3 , and is proportional to the cosine of the first angle θ i and the cosine of the second angle θ j , respectively. When the volume of the first cube 11 approaches infinity, the third distance (S 3-1 , S 3-2 , S 3-3 , S 3-4 , S 3-5 , S 3-6 , S 3-7 , S 3-8 , S 3-9 ) approaching the third distance S 3 , and calculating the visual factors by the formula (2).

步驟127:以該運算裝置4d使用該第二距離S2計算一第二視因子值(圖中未示)。請更參閱圖9所示,其為本創作能量體對物體的視因子量測方法第三實施例之二維視覺溫測裝置與環境物體關係示意圖。該運算裝置4d將該第二距離S2及該二維視覺溫測裝置6取得的該二維視覺溫測裝置6與該第二立方體21的立體幾何資訊進行分析。而該第二立方體21定義有分別相互不平行的一第四發散面214、一第五發散面215以及一第六發散面216,而該二維視覺溫測裝置6定義有一第五接收面65,其中該等發散面中心位置分別對第五接收面65中心位置相距有一第二距離(S2-1,S2-2, S2-3)(圖中未示),若該第二立方體21體積足夠小,或若該第二立方體21與該二維視覺溫測裝置6相距足夠遠,該第二距離(S2-1,S2-2,S2-3)約可以該第二立方體21中心位置與該第五接收面65中心位置相距的一延伸方向之第二距離S2計算,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第五夾角 q ,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第六夾角 r 。該第四發散面214中心位置對該第五接收面65中心位置定義有一第十三視因子(圖中未示),該第五發散面215中心位置對該第五接收面65中心位置定義有一第十四視因子(圖中未示),該第六發散面216中心位置對該第五接收面65中心位置定義有一第十五視因子(圖中未示)。該第二立方體21對應該二維視覺溫測裝置6的該第二視因子值即為該第十三視因子、該第十四視因子以及該第十五視因子之總和。其中,該等視因子與該第二距離(S2-1,S2-2,S2-3)平方成反比,亦或該等視因子與該第二距離S2平方成反比,且分別與該第五夾角 q 的餘弦及該第六夾角 r 的餘弦成正比。當該第二立方體21的體積趨近於無限小時,該第二距離(S2-1,S2-2,S2-3)趨近於該第二距離S2,該些視因子可以被表示如公式(4)所示。 Step 127: Calculate a second visual factor value (not shown) by using the second distance S 2 by the computing device 4d. Please refer to FIG. 9 , which is a schematic diagram of the relationship between the two-dimensional visual temperature measuring device and the environmental object in the third embodiment of the method for measuring the visual factor of the object. The computing device 4d analyzes the second distance S 2 and the two-dimensional visual temperature measuring device 6 obtained by the two-dimensional visual temperature measuring device 6 and the geometrical information of the second cube 21 . The second cube 21 defines a fourth diverging surface 214, a fifth diverging surface 215 and a sixth diverging surface 216 which are not parallel to each other, and the two-dimensional visual temperature measuring device 6 defines a fifth receiving surface 65. Wherein the center positions of the divergent surfaces are respectively spaced apart from the center of the fifth receiving surface 65 by a second distance (S 2-1 , S 2-2 , S 2-3 ) (not shown), if the second cube 21 is small enough, or if the second cube 21 is far enough away from the two-dimensional visual temperature measuring device 6, the second distance (S 2-1 , S 2-2 , S 2-3 ) can be about the second Calculating a second distance S 2 of an extending direction of the center position of the cube 21 from the center of the fifth receiving surface 65, the plane vertical vector of the center position of the divergent planes having a fifth angle q less than 90 degrees with the extending direction And the plane vertical vector of the center position of the receiving faces has a sixth angle r of less than 90 degrees with the extending direction. The central position of the fourth divergent surface 214 defines a thirteenth viewing factor (not shown) for the central position of the fifth receiving surface 65. The central position of the fifth divergent surface 215 defines a central position of the fifth receiving surface 65. A fourteenth viewing factor (not shown), the central position of the sixth diverging surface 216 defines a fifteenth viewing factor (not shown) for the central position of the fifth receiving surface 65. The second visual factor corresponding to the second cube 21 corresponding to the two-dimensional visual temperature sensing device 6 is the sum of the thirteenth visual factor, the fourteenth visual factor, and the fifteenth visual factor. Wherein the visual factors are inversely proportional to the square of the second distance (S 2-1 , S 2-2 , S 2-3 ), or the visual factors are inversely proportional to the square of the second distance S 2 , and respectively It is proportional to the cosine of the fifth angle q and the cosine of the sixth angle r . When the volume of the second cube 21 approaches infinity, the second distance (S 2-1 , S 2-2 , S 2-3 ) approaches the second distance S 2 , and the visual factors can be The representation is as shown in equation (4).

其中,為該些視因子;S 2為該第二距離; q 為該第五夾角; r 為該第六夾角; 為圓周率;dA r 為該第五接收面的微小面積。 among them, For these visual factors; S 2 is the second distance; q is the fifth angle; r is the sixth angle; is the pi; dA r is the small area of the fifth receiving surface.

在本創作第三實施例中,可更包括一步驟128:該二維視覺溫測裝置6量測該等環境物體21的一具誤差溫度值(圖中未示),以該運算裝置4d記錄該具誤差溫度值,可使用該運算裝置4c使用該第一視因子值與該第二視因子值修正該具誤差溫度值,以取得一修正溫度值(圖中未示)。 In the third embodiment of the present invention, a step 128 may be further included: the two-dimensional visual temperature measuring device 6 measures an error temperature value (not shown) of the environmental objects 21, and records the operation device 4d. The error temperature value can be corrected by using the first visual factor value and the second visual factor value by the computing device 4c to obtain a corrected temperature value (not shown).

因此,透過上述方法,可以得到該立體空間中任意一立方體對應任意另一立方體之間的視因子值,其計算方式及原理與上述分析方法相同,故不再一一贅述。 Therefore, through the above method, the visual factor value between any one of the cubes corresponding to any other cube can be obtained, and the calculation method and principle thereof are the same as the above analysis method, and therefore will not be further described.

綜合上述,可以看出本創作提出之能量體對物體的視因子量測方法,及物體對溫度量測裝置的視因子量測方法,與習用技術相較,確實解決了習知熱像儀雖然能夠接收紅外線波長資訊,並將其轉換為溫度,然而若不知所量測物體之距離及其物理性質、材質則無法得到所量測物體之正確溫度的問題,在溫度量測時加入視因子輔助量測,可以得到更精確的溫度數據。 Based on the above, it can be seen that the method for measuring the visual factor of the energy body to the object proposed by the present invention and the method for measuring the visual factor of the object to the temperature measuring device are compared with the conventional technology, and indeed the conventional thermal imager is solved. It can receive infrared wavelength information and convert it into temperature. However, if you do not know the distance of the measured object and its physical properties and materials, you can't get the correct temperature of the measured object. Add the visual factor to the temperature measurement. Measurements allow for more accurate temperature data.

經過上述的詳細說明,已充分顯示本創作具有實施的進步性,且為前所未見的新創作,完全符合發明專利要件,爰依法提出申請。 惟以上所述僅為本創作的較佳實施例而已,當不能用以限定本創作實施的範圍,亦即依本創作專利範圍所作的均等變化與修飾,皆應屬於本發明專利涵蓋的範圍內。 After the above detailed description, it has been fully shown that the creation has progressive progress, and the new creations that have never been seen before, fully comply with the requirements of the invention patent, and apply in accordance with the law. However, the above description is only for the preferred embodiment of the present invention, and should not be used to limit the scope of the present invention, that is, the equivalent changes and modifications according to the scope of the present invention should be within the scope of the present invention. .

Claims (9)

一種能量體對物體的視因子量測方法,其包括有下列步驟:(a)提供一立體視覺裝置、一能量體、至少一環境物體以及一運算裝置,該立體視覺裝置用以取得一立體空間之三維點狀影像,該立體視覺裝置與該能量體相距有一第一距離,該立體視覺裝置與該等環境物體相距有一第二距離;該能量體為一第一立方體,該等環境物體具有複數個第二立方體,該立體視覺裝置與該運算裝置電訊連接;(b)該第一立方體投射出一能量至該複數個第二立方體其中之一;(c)該運算裝置使用該第一距離及該第二距離,用以計算該能量體與該等環境物體相距有一第三距離;(d)該運算裝置使用該第三距離計算該第二立方體所擷取該能量形成一第一視因子值,其計算方式如下列公式所示: 其中,dAr及dAj分別代表表面積趨近無限小的i表面及j表面,代表自i表面至j表面的視因子;其中,在該立體視覺裝置的探測方向及範圍內,該第一立方體具有至少一第一發散面,另具有至多一第二發散面以及一第三發散面,該第一發散面、第二發散面以及第三發散面分別相互不平行,該第二立方體具有至少一第一接收面,另具有至多一第二接收面以及一第三接收面,該第一接收面、第二接收面以及第三接收面分別相互不平行;該第一發散面中心位置對該第一接收面中心位置定義有一第一視因子,該第一發散面中心位置對該第二接收面中心位置定義有 一第二視因子,該第一發散面中心位置對該第三接收面中心位置定義有一第三視因子,該第二發散面中心位置對該第一接收面中心位置定義有一第四視因子,該第二發散面中心位置對該第二接收面中心位置定義有一第五視因子,該第二發散面中心位置對該第三接收面中心位置定義有一第六視因子,該第三發散面中心位置對該第一接收面中心位置定義有一第七視因子,該第三發散面中心位置對該第二接收面中心位置定義有一第八視因子,該第三發散面中心位置對該第三接收面中心位置定義有一第九視因子;其中該第一視因子值為該第一視因子、該第二視因子、該第三視因子、該第四視因子、該第五視因子、該第六視因子、該第七視因子、該第八視因子以及該第九視因子之和。 A method for measuring a visual factor of an energy body to an object includes the following steps: (a) providing a stereoscopic device, an energy body, at least one environmental object, and an arithmetic device for acquiring a stereoscopic space a three-dimensional point-like image, the stereoscopic device is spaced from the energy body by a first distance, the stereoscopic device is at a second distance from the environmental objects; the energy body is a first cube, and the environmental objects have a plurality of a second cube, the stereoscopic device is in telecommunication connection with the computing device; (b) the first cube projects an energy to one of the plurality of second cubes; (c) the computing device uses the first distance and The second distance is used to calculate that the energy body has a third distance from the environmental objects; (d) the computing device uses the third distance to calculate the energy extracted by the second cube to form a first visual factor value , its calculation method is as shown in the following formula: Where dA r and dA j represent the surface of the i surface and the surface of j which are infinitely small, respectively. Representing a viewing factor from the i-surface to the j-surface; wherein, in the detection direction and range of the stereoscopic device, the first cube has at least one first divergent surface, and at least one second divergent surface and a third divergence The first diverging surface, the second diverging surface, and the third diverging surface are not parallel to each other, and the second cube has at least one first receiving surface, and at most one second receiving surface and a third receiving surface. The first receiving surface, the second receiving surface, and the third receiving surface are not parallel to each other; the first diverging surface center position defines a first viewing factor for the first receiving surface center position, and the first diverging surface center position is The second receiving surface center position defines a second viewing factor, the first divergent surface center position defines a third viewing factor for the third receiving surface center position, and the second divergent surface center position is the first receiving surface center position Defining a fourth visual factor, the second divergent surface center position defines a fifth visual factor for the second receiving surface center position, and the second divergent surface center position is connected to the third connection The plane center position defines a sixth view factor, and the third divergence plane center position defines a seventh view factor for the first receiving face center position, and the third divergence face center position defines a first position for the second receiving face center position An eight-view factor, the third divergent surface center position defines a ninth view factor for the third receiving face center position; wherein the first view factor value is the first view factor, the second view factor, the third view a sum of the factor, the fourth view factor, the fifth view factor, the sixth view factor, the seventh view factor, the eighth view factor, and the ninth view factor. 如申請專利範圍第1項所述的能量體對物體的視因子量測方法,其中該等發散面中心位置分別對該等接收面中心位置之延伸方向相距有一第三距離,與該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第一夾角,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第二夾角,該等視因子與該第三距離平方成反比,且分別與該第一夾角的餘弦及該第二夾角的餘弦成正比。 The method for measuring the visual factor of an energy body to an object according to claim 1, wherein the center positions of the divergent surfaces are respectively separated by a third distance from the extending direction of the center positions of the receiving surfaces, and the divergent surfaces The plane vertical vector of the central position has a first angle of less than 90 degrees with the extending direction, and the plane perpendicular vector of the center position of the receiving surfaces has a second angle of less than 90 degrees with the extending direction, the visual factors The square of the third distance is inversely proportional to each other and is proportional to the cosine of the first angle and the cosine of the second angle. 如申請專利範圍第1項所述的能量體對物體的視因子量測方法,其中該運算裝置更包括一儲存單元,用以儲存量測資料。 The method for measuring a visual factor of an energy body to an object according to claim 1, wherein the computing device further comprises a storage unit for storing the measurement data. 如申請專利範圍第1項所述的能量體對物體的視因子量測方法,其中該步驟(d)之後,更包括有下列步驟:(e)提供一溫度量測裝置,該立體視覺裝置與該溫度量測裝置相距有一第四距離;(f)該運算裝置使用該第一距離及該第四距離,用以計算該能量體與該溫度量測裝置相距有一第五距離; (g)該運算裝置使用該第二距離及該第四距離,用以計算該等環境物體與該溫度量測裝置相距有一第六距離;(h)該第二立方體接收該能量加以反射,形成一反射能量;(i)該溫度量測裝置擷取該反射能量;(j)該運算裝置使用該第六距離計算該溫度量測裝置所擷取該反射能量形成一第二視因子值。 The method for measuring the apparent factor of an energy body to an object according to claim 1, wherein after the step (d), the method further comprises the following steps: (e) providing a temperature measuring device, and the stereoscopic device The temperature measuring device has a fourth distance from each other; (f) the computing device uses the first distance and the fourth distance to calculate that the energy body has a fifth distance from the temperature measuring device; (g) the computing device uses the second distance and the fourth distance to calculate that the environmental objects are at a sixth distance from the temperature measuring device; (h) the second cube receives the energy for reflection to form a reflection energy; (i) the temperature measuring device captures the reflected energy; (j) the computing device uses the sixth distance to calculate the reflected energy of the temperature measuring device to form a second visual factor value. 如申請專利範圍第4項所述的能量體對物體的視因子量測方法,其中該溫度量測裝置係與該立體視覺裝置為一體。 The method for measuring a visual factor of an energy body to an object according to claim 4, wherein the temperature measuring device is integrated with the stereoscopic device. 如申請專利範圍第4項所述的能量體對物體的視因子量測方法,其中在該立體視覺裝置的探測方向及範圍內,該第二立方體具有至少一第四發散面,另具有至多一第五發散面以及一第六發散面,該第四發散面、第五發散面以及第六發散面分別相互不平行;該溫度量測裝置有一第四接收面,且該些發散面對應該溫度量測裝置;該第四發散面中心位置對該第四接收面中心位置定義有一第十視因子,該第五發散面中心位置對該第四接收面中心位置定義有一第十一視因子,該第六發散面中心位置對該第四接收面中心位置定義有一第十二視因子;其中該第二視因子值為該第十視因子、該第十一視因子以及該第十二視因子之和。 The method for measuring a visual factor of an energy body to an object according to claim 4, wherein the second cube has at least one fourth divergent surface and at most one in a detection direction and a range of the stereoscopic device. a fifth diverging surface and a sixth diverging surface, the fourth diverging surface, the fifth diverging surface and the sixth diverging surface are not parallel to each other; the temperature measuring device has a fourth receiving surface, and the divergent surfaces are facing the temperature a measuring device; the fourth diverging surface center position defines a tenth viewing factor for the fourth receiving surface center position, and the fifth diverging surface center position defines an eleventh viewing factor for the fourth receiving surface center position, The sixth divergence center position defines a twelfth visual factor for the fourth receiving surface center position; wherein the second visual factor value is the tenth visual factor, the eleventh visual factor, and the twelfth visual factor with. 如申請專利範圍第6項所述的能量體對物體的視因子量測方法,其中該等發散面中心位置分別對該第四接收面中心位置之延伸方向相距有一第六距離,該等發散面中心位置之平面垂直向量與該延伸方向具有小於90度之一第三夾角,且該等接收面中心位置之平面垂直向量與該延伸方向具有小於90度之一第四夾角。 The method for measuring the apparent factor of an energy body to an object according to claim 6, wherein the center positions of the divergent surfaces respectively have a sixth distance from the extending direction of the center position of the fourth receiving surface, and the divergent surfaces The plane vertical vector of the center position has a third angle of less than 90 degrees with the extending direction, and the plane perpendicular vector of the center positions of the receiving faces has a fourth angle of less than 90 degrees with the extending direction. 如申請專利範圍第7項所述的能量體對物體的視因子量測方法,其中該等視因子與該第六距離平方成反比,且分別與該第三夾角的餘弦及該第四夾角的餘弦成正比。 The method for measuring a visual factor of an energy body to an object according to claim 7, wherein the visual factors are inversely proportional to a square of the sixth distance, and respectively are cosines of the third angle and the fourth angle The cosine is proportional. 如申請專利範圍第1或4項所述的能量體對物體的視因子量測方法,其中更包括有下列步驟:(k)將該立體視覺裝置以一時間移動一位移向量,使該立體視覺裝置位於一位移位置,該位移位置與該能量體相距有一第一位移距離,該位移位置與該等環境物體相距有一第二位移距離;(l)重複步驟(c)。 The method for measuring a visual factor of an energy body to an object according to claim 1 or 4, further comprising the steps of: (k) moving the stereoscopic device by a displacement vector for a time to make the stereoscopic vision The device is located at a displacement position, the displacement position being spaced from the energy body by a first displacement distance, the displacement position being spaced apart from the environmental objects by a second displacement distance; (1) repeating step (c).
TW104144116A 2015-12-28 2015-12-28 Method for measuring the visual factor of an energy body to an object TWI626434B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104144116A TWI626434B (en) 2015-12-28 2015-12-28 Method for measuring the visual factor of an energy body to an object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104144116A TWI626434B (en) 2015-12-28 2015-12-28 Method for measuring the visual factor of an energy body to an object

Publications (2)

Publication Number Publication Date
TW201723442A TW201723442A (en) 2017-07-01
TWI626434B true TWI626434B (en) 2018-06-11

Family

ID=60047960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104144116A TWI626434B (en) 2015-12-28 2015-12-28 Method for measuring the visual factor of an energy body to an object

Country Status (1)

Country Link
TW (1) TWI626434B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876700A (en) * 2009-12-29 2010-11-03 北京航空航天大学 Radiation intensity-based method for simulating radiation transfer of complex terrain area
CN102235911A (en) * 2010-04-20 2011-11-09 北京师范大学 Method for detecting thermal radiation directivity of urban goal
CN104406686A (en) * 2014-12-10 2015-03-11 西北师范大学 Estimation method of incident radiation of solar shortwaves under complex terrain conditions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876700A (en) * 2009-12-29 2010-11-03 北京航空航天大学 Radiation intensity-based method for simulating radiation transfer of complex terrain area
CN102235911A (en) * 2010-04-20 2011-11-09 北京师范大学 Method for detecting thermal radiation directivity of urban goal
CN104406686A (en) * 2014-12-10 2015-03-11 西北师范大学 Estimation method of incident radiation of solar shortwaves under complex terrain conditions

Also Published As

Publication number Publication date
TW201723442A (en) 2017-07-01

Similar Documents

Publication Publication Date Title
CN103926058B (en) The method using autocollimatic plane mirror measurement optical axis in Aspherical-surface testing
US10321114B2 (en) Testing 3D imaging systems
JP6580761B1 (en) Depth acquisition apparatus and method using polarization stereo camera
Hijazi et al. Influence of camera’s optical axis non-perpendicularity on measurement accuracy of two-dimensional digital image correlation
Zhang et al. Three-dimensional shape measurement for an underwater object based on two-dimensional grating pattern projection
EP3194883B1 (en) Method and relevant device for measuring distance with auto-calibration and temperature compensation
WO2018120168A1 (en) Visual detection method and system
TW201310004A (en) Correlation arrangement device of digital images
Wang et al. An improved measurement model of binocular vision using geometrical approximation
Chen et al. Optical 3-D profilometry for measuring semiconductor wafer surfaces with extremely variant reflectivities
Zhiqiang et al. An experimental method for eliminating effect of rigid out-of-plane motion on 2D-DIC
Jin et al. Accurate intrinsic calibration of depth camera with cuboids
Krefer et al. A method for generating 3D thermal models with decoupled acquisition
CN107643213B (en) A kind of high temperature strain measurement method for eliminating off face Influence of Displacement
CN105181646A (en) Computer vision based transparent medium refractivity measurement method
CN108303040A (en) A kind of three-dimension measuring system and application method based on plane compound eye and coaxial configuration light
TWI626434B (en) Method for measuring the visual factor of an energy body to an object
Chen et al. An Average Error‐Ellipsoid Model for Evaluating TLS Point‐Cloud Accuracy
Gao et al. Full‐field deformation measurement by videogrammetry using self‐adaptive window matching
Lavieri et al. Image-based measurement system for regular waves in an offshore basin
RU2556310C2 (en) Device for remote measurement of geometric parameters of profiled objects
CN105628338A (en) Full field of view visual line error calibration method for infrared seeker
Dolereit et al. Calibration of shared flat refractive stereo systems
Ristanto et al. Development of laboratory devices for real-time measurement of object 3D position using stereo cameras
Long et al. Investigation of ice shape measurement technique based on laser sheet and machine vision in icing wind tunnel