TWI626136B - 用於形成成形之預成型物之方法 - Google Patents

用於形成成形之預成型物之方法 Download PDF

Info

Publication number
TWI626136B
TWI626136B TW102147256A TW102147256A TWI626136B TW I626136 B TWI626136 B TW I626136B TW 102147256 A TW102147256 A TW 102147256A TW 102147256 A TW102147256 A TW 102147256A TW I626136 B TWI626136 B TW I626136B
Authority
TW
Taiwan
Prior art keywords
preform
resin binder
fiber
vacuum
thermoplastic
Prior art date
Application number
TW102147256A
Other languages
English (en)
Other versions
TW201433433A (zh
Inventor
羅柏 布萊克伯恩
詹姆斯 伊斯伯瑞
山繆 希爾
Original Assignee
塞特工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 塞特工業公司 filed Critical 塞特工業公司
Publication of TW201433433A publication Critical patent/TW201433433A/zh
Application granted granted Critical
Publication of TWI626136B publication Critical patent/TWI626136B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • B29C51/145Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets having at least one layer of textile or fibrous material combined with at least one plastics layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/542Placing or positioning the reinforcement in a covering or packaging element before or during moulding, e.g. drawing in a sleeve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Abstract

本發明揭示用於在樹脂灌注之前使乾燥預成型物材料成形之方法。待成形之起始材料為乾燥纖維材料之預成型物坯料(例如扁平薄片)。該成形製程為真空成型製程,其依賴於控制真空壓力及變形速度以產生具有三維組態之成形之預成型物。本文所述之成形製程的目的為使自動化製程能夠替代習知手工鋪疊操作。

Description

用於形成成形之預成型物之方法
近年來,在諸如航空太空與汽車工業中使用纖維增強之聚合物複合材料已變得愈加盛行。此等複合材料在惡劣環境中展示高強度以及抗腐蝕特性。另外,當與由金屬建構之類似部件相比時,該等材料之輕質特性為尤其有利的。
纖維增強之聚合物複合材料在傳統上由預浸體製造,該預浸體由用諸如環氧樹脂之可固化基質樹脂浸漬纖維而形成。預浸體中之樹脂含量相對較高,通常為20重量%至50重量%。多層片預浸體可切割成適於鋪疊之尺寸,接著隨後組裝且在模製工具中成形。在預浸體無法容易地調適成模製工具之形狀的情況下,可對預浸體加熱以使其逐漸變形成模製表面之形狀。
最近,纖維增強之聚合物複合材料藉由使用液體模製製程製造,該製程涉及樹脂灌注技術,其包括樹脂轉注模製(Resin Transfer Molding;RTM)、液體樹脂灌注(Liquid Resin Infusion;LRI)、真空輔助樹脂轉注模製(Vacuum Assisted Resin Transfer Molding;VARTM)、可撓性上模具樹脂灌注(Resin Infusion with Flexible Tooling;RIFT)、真空輔助樹脂灌注(Vacuum Assisted Resin Infusion;VARI)、樹脂膜灌注(Resin Film Infusion;RFI)、受控大氣壓樹脂灌注(Controlled Atmospheric Pressure Resin Infusion;CAPRI)、VAP(真空輔助製程)、單線注入(Single Line Injection;SLI) 及恆壓灌注(Constant Pressure Infusion;CPI)以及其他技術。在樹脂灌注製程中,首先將乾燥黏合纖維配置在模中作為預成型物,隨後直接原位注入或灌注液體基質樹脂。如本文中所用,術語「經黏合之」意謂已施加黏合劑。預成型物通常由一或多層(例如層片)以堆疊配置組裝之乾燥纖維材料組成,其中在樹脂灌注之前,通常使用粉末、網紗或膜黏合劑以維持所要的幾何形狀。在樹脂灌注之後,根據固化循環固化經樹脂灌注之預成型物以提供最終複合物品。樹脂灌注不僅用於製造形狀複雜之小部件,而且現亦用於製造飛機之大部件,諸如整個機翼。
在樹脂灌注中,製造待用樹脂灌注之預成型物為關鍵要素-預成型物在本質上為等候樹脂之結構部件。過去通常使用手工鋪疊來形成具有精細之幾何形狀的複合預成型物。然而,此被視為具有在部件之間存在變化之高風險的費時操作。因此,仍需要改良乾燥纖維預成型物的製造以供後續樹脂灌注。
本發明係關於在樹脂灌注之前乾燥預成型物材料之成形。待成形之起始材料為乾燥、黏合、纖維材料之預成型物坯料(例如扁平薄片)。該成形製程為真空成型製程,其依賴於控制真空壓力及變形速度以產生具有三維組態之成形之預成型物。本文所述之成形製程的目的為使高度可控之製程能夠替代習知之手工鋪疊操作。
11‧‧‧隔膜
12‧‧‧預成型物
13‧‧‧外殼
14‧‧‧模製區塊
15‧‧‧真空
31‧‧‧模製區塊
32‧‧‧模具外殼
33‧‧‧真空管線
41‧‧‧可撓性上隔膜
42‧‧‧可撓性下隔膜
43‧‧‧模製區塊
44‧‧‧預成型物
圖1A至1D說明根據一實施例用於使扁平預成型物成形之真空成型製程。
圖2A至2C說明經由中間切削加工步驟製造成形之預成型物的方法。
圖3展示根據一個實例含有用於使預成型物成形之模的模具外 殼。
圖4說明用於形成具有L形橫截面之預成型物的裝置。
圖5展示藉由實施圖4中所說明之裝置所製造之表示縱樑部分的成形之預成型物。
待成形之預成型物坯料為由複數個以堆疊配置組裝之纖維層(或層片)構成的扁平薄片。藉由使用黏合劑黏結使預成型物之纖維層固持在適當位置(亦即「穩定」)以維持對齊且穩定纖維層。藉由使用黏合劑,在儲存、運輸及處理期間,可防止乾燥纖維材料磨損或扯斷。此外,基質樹脂之注入或灌注可能需要加壓注入,其可能造成纖維之局部位移或預成型物不穩定。因此,在此加壓注入期間,黏合劑將纖維固持在適當位置。
本文所用之術語「穩定」或「穩定的」意謂多片、多層或多層片之纖維層或織物的穩定,使得其可經成形或變形而不磨損、拆散、扯斷、彎折、起皺或以其他方式降低纖維層或織物之完整性。
真空成型製程
真空成型製程涉及雙隔膜裝置,該裝置包括上隔膜與下隔膜,該等隔膜置放於模具外殼之上(參見圖1A)。模具加工腔室含有單個(如圖所示)或多個具有表示最終結構所要之形狀的三維非平面表面之模。另外,模具外殼經由真空裝置(例如真空泵)連接至真空源。該等隔膜為可撓性的且可為諸如橡膠、聚矽氧、耐綸之材料或斷裂伸長率(elongation to failure)在100%以上之類似材料的彈性或非彈性可變形薄片。作為初始步驟,將扁平之預成型物置放於該等可撓性薄片之間。每一隔膜附接至框上以經由受支撐之周邊維持所要的隔膜形狀。
接著將其間具有預成型物之隔膜置於模具外殼上(圖1B)。經由機械夾鉗機構將隔膜框密封至模具外殼,以便形成由下隔膜及模具外殼 所限定之氣密式密封腔室,且在隔膜之間界定密封之凹穴。經由閥連接將隔膜之間的密封凹穴連接至合適的真空構件。然後,將隔膜之間的密封腔穴部分抽空以移除空氣。在此階段,預成型物經緊緊固持在隔膜之間。
在隔膜之間施加真空壓力,以達成預成型物中之纖維層片之穩定性,以確保層片之間固結,且避免在成形期間纖維材料之不良變形或起皺。此外,在隔膜之間選擇性地施加真空度以便在維持適當預成型物穩定性的同時達成纖維材料之可控層間剪切。使預成型物穩定為重要的,以便在高溫下維持良好之纖維對齊及均一之層片厚度。合適的真空壓力平衡了預成型物之穩定性及使預成型物變形成所要形狀之能力。在一個實施例中,隔膜之間的真空壓力經設定為低於1個大氣壓,較佳低於800毫巴,例如500毫巴。
如本文中所用,術語「真空壓力」包括低於1個大氣壓(或低於1013毫巴)之真空壓力。
然後,進行加熱以使預成型物中之黏合劑能夠軟化。例如可藉由將隔膜及模具外殼之總成置放於烘箱中,或藉由使用紅外線加熱燈陣列或加熱墊進行加熱。預成型物中之黏合劑在環境溫度(20℃至25℃)下呈固相,一經加熱即軟化且允許纖維層片成型。成型溫度由預成型物中纖維材料層片之間的黏合劑之黏度指示。優化黏合劑之黏度以降低預成型物中之剪應力,從而允許該等層片移動而不產生纖維變形及/或皺褶。適合於本文之目的的黏合劑含有熱固性樹脂及熱塑性樹脂之摻合物,且可佔低於預成型物質量之20%,較佳低於預成型物質量之10%,更佳在預成型物質量之2%至6%範圍內。在某些實施例中,黏合劑組合物含有充足之熱塑性內含物以使得能夠在高溫下成功變形,且可以粉末形式傳遞。最低變形溫度為使黏合劑軟化成熔融狀態從而允許纖維預成型物層片變形的溫度。在此階段之較佳黏合劑 黏度可低於100,000,000m.Pa,較佳低於10,000,000m.Pa,更佳低於3,000,000m.Pa。一旦預成型物已經達到最優變形溫度,即以1毫巴/15分鐘或更快之預定速率將模具外殼抽空,直至外殼已達到低於980毫巴絕對壓力但低於模具外殼中之真空壓力,更佳地低於900毫巴絕對壓力且理想地低於850毫巴絕對壓力的所要真空度,在整個變形時間內維持加熱。當模具外殼抽空時,其間夾有預成型物之隔膜經拉向模,且與模表面之形狀貼合。
當達到模具外殼所要的真空度時,降低隔膜之間的真空壓力至低於模具外殼之間的真空度之真空度,以確保預成型物之完全壓實。此亦使操作員能調整預成型物之壓實,且從而調整預成型物之處理及滲透率特徵。此時,冷卻預成型物。
接著將成形之預成型物冷卻至低於黏合劑之軟化溫度。此時,預成型物中之黏合劑重新變硬,且預成型物保持其新形成之幾何形狀。當達到冷卻溫度時,藉由通入大氣來解除隔膜之間的真空,上隔膜經抬離下隔膜,且移除成形之預成型物(圖1D)。接著向模具外殼中重新引入空氣,且準備重複真空成型製程。所移除之預成型物將保持其所要的形狀以供後續樹脂灌注。
上述雙隔膜配置藉由使得能夠在隔膜之間設定降低之壓實壓力,藉此由於摩擦力較低而提高相鄰層片相互跨越的遷移率,從而有助於纖維預成型物之變形。兩層隔膜之間的減壓亦使摩擦接觸力最小,以使得隔膜可獨立於預成型物進行拉伸。在本文所揭示之真空成型製程中,在變形之後,一旦在模具外殼中已經施加完全真空度,即可完全壓實成所要的半徑形狀。能夠控制成型中之壓實程度、成型速率及黏合劑之剪切行為使得半徑幾何形狀得以改良。
上述真空成型製程不需要具有匹配的上下模製部件的複雜模具。取而代之,真空成型製程依賴於控制真空壓力、溫度及變形速 度。隔膜之間及模具外殼中之真空率可經優化以避免形成過多的皺褶、纖維變形及控制半徑厚度。
習知地,對結構部件進行固化後切削加工,以達成最終部件之幾何形狀。一般使用八軸銑床進行此類操作。因為製造製程之此階段為待執行之最後加工步驟中之一者,所以其呈現高風險。在此階段期間所造成之損害會導致該部件遭廢棄。此外,該操作一般亦為極費時的。
因此,可藉由在製造預成型物坯料之後但在經由上述真空成型製程成形之前包含切削加工步驟來進一步優化成形之預成型物的製造。由此確保可以自動化方式進行高效且簡單之切削加工,而非在進行固化後切削加工之情況下在複雜機器中對三維預成型物進行複雜的程式化及安置。此切削加工步驟可經由將扁平之預成型物坯料預固結成對於穩定及邊緣品質所要的壓實程度來達成。
圖2A至2C說明用於製造成形之預成型物的方法,該方法具有中間切削加工步驟。參看圖2A,藉由鋪疊複數個纖維層來製造預成型物材料(亦即預成型物坯料)之大扁平薄片,該等纖維層在鋪設時固結或隨後壓實或固結。接著藉由切削加工將預成型物薄片切割成所要的圖案,參見圖2B。參看圖2C,接著經由上述真空成型製程使經圖案化之薄片成形,以產生非平面的三維組態,例如具有L形橫截面之結構。成形之預成型物之最終幾何形狀取決於所使用之模組態。
本文所述之真空成型製程允許以自動化方式有效且高效地製造三維預成型物,進而實現較大部件再現性及大規模製造。作為一實例,此製程適合於製造航空太空加強結構,諸如用於機翼蒙皮之縱樑之彎曲的L形部分、C形或U形翼樑。此外,經由真空成型製程可實現快速變形,例如在5分鐘至15分鐘循環內,使由33層片含有5重量%之黏合劑的碳纖維織物組成之扁平的預成型物坯料變形成L形或U形結 構。
預成型物材料
在本文中,預成型物為構成複合物之加強組分的乾燥纖維或乾燥纖維層之總成,且呈適合於諸如RTM之樹脂灌注應用的形式。
待成形之扁平的預成型物坯料由多層或多層片纖維材料組成,纖維材料可包括非編織墊、編織物、針織物及非捲曲織物。「墊」為由隨機配置之纖維製造的非編織織物,隨機配置之纖維諸如短切纖維長絲(以製造短切股墊)或施加黏合劑以維持其形態之盤繞長絲(以製造連續股墊)。合適的織物包括具有方向上或非方向上對齊的纖維且呈網、絲束、帶、紗布、編帶及其類似形式的織物。纖維層或織物中之纖維可為有機纖維或無機纖維,或其混合物。有機纖維係選自韌性或硬性聚合物,諸如芳族聚醯胺(包括克維拉(Kevlar))、高模數聚乙烯(PE)、聚酯、聚對伸苯基苯并二噁唑(PBO)及其雜合組合。無機纖維包括由碳(包括石墨)、玻璃(包括E玻璃纖維或S玻璃纖維)、石英、氧化鋁、氧化鋯、碳化矽及其他陶瓷製造之纖維。為製造諸如飛機之主要部件的高強度複合結構,預成型物纖維較佳具有3500兆帕(或500ksi)之抗張強度。
根據一個實施例,為形成預成型物坯料,向各纖維層(例如織物層片)施加黏合劑組合物,接著藉由堆疊將複數個經塗佈之纖維層組裝以達到所要的厚度。可在鋪疊纖維層之前或期間向纖維層施加黏合劑。可藉由手工鋪疊製程或自動化鋪疊製程進行纖維層之組裝,自動化鋪疊製程諸如自動鋪帶技術(automated tape laying;ATL)及自動纖維鋪放技術(automated fiber placement;AFP)或堆積纖維或層片呈寬的良好或預製備形式之其他自動化方法。接著藉由施加熱及壓力將纖維層堆疊固結或壓實。當採用自動化鋪疊時,在鋪疊期間進行壓實。在壓實期間,在室溫下為固體之黏合劑一經加熱即軟化,且當施加固 結壓力時,允許織物層片相互黏合。一些黏合劑需要在黏合劑冷卻時維持固結壓力。
黏合劑系統
用於黏結預成型物坯料中之纖維層的黏合劑可呈多種形式,包括粉末、噴霧、液體、糊狀物、膜、纖維及非編織網紗。黏合劑材料可選自熱塑性聚合物、熱固性樹脂及其組合。在某些實施例中,黏合劑可採用由熱塑性材料或熱固性材料,或熱塑性材料與熱固性材料之摻合物形成的聚合物纖維之形式。在其他實施例中,黏合劑為熱塑性纖維(亦即由熱塑性材料形成之纖維)及熱固性纖維(亦即由熱固性材料形成之纖維)之混合物。該等聚合物纖維可作為非編織網紗併入預成型物坯料中,非編織網紗由插入預成型物之纖維層之間的隨機配置之聚合物纖維所構成。
作為一實例,黏合劑材料可為呈粉末形式之環氧樹脂。作為另一實例,黏合劑材料可為一或多種熱塑性聚合物與一或多種熱固性樹脂之呈粉末形式的摻合物。作為另一實例,黏合劑材料為由熱塑性纖維構成之非編織網紗。
若以噴霧形式施加,則黏合劑材料可適當地溶解於諸如二氯甲烷之溶劑中。當使用溶劑時,需要隨後移除溶劑。呈膜形式時,可將黏合劑樹脂組合物沈積(例如藉由澆鑄)至離型紙上以形成膜,接著將該膜轉移至預成型物之纖維層上。呈粉末形式時,可將黏合劑撒佈於纖維層上。當聚合物纖維之非編織網紗用作黏合劑材料時,在預成型物鋪疊期間,將各網紗插入相鄰纖維層之間。
較佳地,以預成型物之總重量計,纖維預成型物中之黏合劑的量等於或小於約20重量%,較佳為0.5重量%至10重量%,更佳為0.5重量%至6重量%。
在一較佳實施例中,黏合劑為不含任何催化劑、固化劑或交聯 劑之樹脂組合物,其可在預成型物製造溫度(例如在鋪疊及成形期間之溫度)下活化,且其在預成型物製造溫度下固有地具熱穩定性。
適合作為黏合劑材料之熱塑性材料包括選自以下之一或多種熱塑性聚合物:聚酯、聚醯胺、聚醯亞胺、聚碳酸酯、聚胺基甲酸酯、聚(甲基丙烯酸甲酯)、聚苯乙烯、聚芳族物、聚酯醯胺、聚醯胺醯亞胺、聚醚醯亞胺、芳族聚醯胺、聚芳酯、聚丙烯酸酯、聚(酯)碳酸酯、聚(甲基丙烯酸甲酯/丙烯酸丁酯)、聚碸、其共聚物及組合。
在一個實施例中,熱塑性材料為具有由下式表示之芳基碸單元的聚芳基碸聚合物:
較佳地,聚芳基碸聚合物之平均分子量(Mn)在2,000至20,000範圍內。聚芳基碸聚合物亦可具有可與環氧基或固化劑發生反應之反應性末端基,諸如胺或羥基。合適的聚芳基碸包括聚醚碸(PES)、聚醚醚碸(PEES)及其共聚物(PES-PEES)。尤其合適的聚芳基碸聚合物為具有末端胺基之PES-PEES共聚物。
適合作為黏合劑材料之熱固性材料可選自由以下組成之群:環氧樹脂、雙順丁烯二醯亞胺樹脂、甲醛縮合物樹脂(包括甲醛酚樹脂)、氰酸酯樹脂、異氰酸酯樹脂、酚系樹脂及其混合物。環氧樹脂可為選自由以下組成之群的一或多種化合物之單或聚縮水甘油基衍生物:芳族二胺、芳族單一級胺、胺基苯酚、多羥基苯酚、多羥基醇及聚羧酸。尤其合適的環氧樹脂為多官能環氧樹脂,包括二官能、三官能及四官能環氧樹脂。
根據一個實施例,黏合劑為含有一或多種多官能環氧樹脂及具有反應性末端基之聚芳基碸聚合物的樹脂組合物,且具有大約80℃至90℃之軟化點。
已發現熱塑性聚合物及熱固性樹脂之某些組合對於摻合物之流量控制及可撓性具有協同效應。熱塑性組分用於為摻合物提供流量控制,超出通常低黏度之熱固性樹脂,且確保黏合劑優先潤濕預成型物中之纖維表面。熱塑性組分亦為摻合物提供可撓性,超出通常脆性的熱固性樹脂。
預成型物中之黏合劑適合與有待藉由諸如RTM之液體樹脂灌注技術注入預成型物中之多種基質樹脂一起使用。此外,所選擇之黏合劑與待注入預成型物中之基質樹脂在化學上及物理上相容。
當將乾燥預成型物用於諸如RTM之樹脂注入製程中時,需要黏合劑不在纖維層表面上形成不可滲透性膜,該不可滲透性膜在樹脂注入循環期間可能阻止基質樹脂令人滿意地穿透預成型物材料之厚度。
提供以下實例用於說明根據本文所述之真空成型製程的實施例形成預成型物之方法。此實例僅出於說明之目的,且不應解釋為限制隨附申請專利範圍之範疇。
實例
藉由鋪疊33層片碳纖維織物來形成扁平之預成型物坯料(600×200mm)。在鋪疊之前,使用粉末撒佈法將呈粉末形式之5gsm樹脂黏合劑沈積於織物層片之每一側上。使用熱及壓力將上面撒佈有粉末之織物層片鋪疊且壓製在一起,其中在大氣壓下經由施加真空來壓實層片之乾燥堆疊,隨後將其加熱至130℃持續15分鐘,隨後冷卻至室溫,且移除真空固結。此操作稱為預成型步驟。
此黏合劑含有多官能環氧樹脂及PES-PEES共聚物之混合物,且具有約90℃之軟化點。
根據上述預成型製程將扁平之預成型物坯料固結。裝置包括含有模製區塊之模具外殼(參見圖3)及兩個由聚矽氧橡膠製成之可撓性薄片(上隔膜及下隔膜)。此裝置用於形成具有L形橫截面之成形的預 成型物,且由圖4說明。此預成型物組態適合於製造飛機機翼中之縱樑部分。
最初,將其間夾有扁平之預成型物的隔膜置放於模具外殼上。將隔膜框夾至模具外殼之周邊,由此形成藉由下隔膜及模具外殼所限定之真空緊密密封,及上隔膜與下隔膜之間的密封凹穴。
然後,經由施加真空源自上隔膜與下隔膜之間移除空氣,直至真空壓力已達到500毫巴。此時,預成型物坯料由兩層隔膜穩固支撐。
接著將模具裝置置於烘箱中,且以5℃/分鐘之速率加熱至140℃。在加熱期間,模具外殼敞開於大氣壓中以確保腔室內無空氣膨脹。
一旦預成型物溫度已達到140℃,則抽空模具外殼。以100毫巴/分鐘之速率移除空氣,直至模具外殼中之真空壓力低於10毫巴。此時,隔膜連同預成型物一起經拉向模表面,且最終貼合至表面上。在此整個時間內維持加熱。
當模具外殼內達到完全真空(低於10毫巴)時,降低隔膜之間的壓力直至穩定,處於低於10毫巴之真空壓力下。此時,停止加熱且使預成型物冷卻。在冷卻期間,模具外殼中之真空維持低於10毫巴。
當預成型物冷卻至40℃時,藉由通入大氣來解除隔膜之間的真空,且抬升上隔膜。隨後自模具裝置移除成形之預成型物。在移除成形之預成型物之後,向模具外殼中重新引入空氣。
所得預成型物展示於圖5中。其具有彎曲之L形部分,L形部分在其長度上之曲率半徑為8.5m。
用於預固結之扁平的預成型物之成形製程的循環時間為15分鐘-自開始加熱扁平之預成型物坯料直至建立最終形狀。

Claims (14)

  1. 一種用於使纖維預成型物成形之方法,其包含:(a)提供實質上扁平之纖維預成型物,該纖維預成型物包含由樹脂黏合劑相互黏結之纖維層的總成;(b)提供可撓性上隔膜及可撓性下隔膜,該等隔膜由彈性材料形成且為不透氣的;(c)提供其中安置有模之外殼,該模具有非平面之模製表面;(d)藉由在該等隔膜之間形成密封凹穴,以氣密式方式將該纖維預成型物固持在該上隔膜與該下隔膜之間;(e)將其間具有該預成型物之該等隔膜安置於在該外殼之上,以便界定由該下隔膜及該外殼所限定之密封腔室,且以使得該下隔膜安置於該模製表面之上;(f)自該等隔膜之間移除空氣,以建立低於950毫巴且低於該外殼中之壓力的真空壓力;(g)加熱該纖維預成型物至高於該樹脂黏合劑之軟化點之溫度;(h)藉由在維持加熱的同時以1毫巴/15分鐘或更快之速率移除空氣直至達到950毫巴或低於950毫巴之真空壓力從而在該下隔膜與該外殼之間的密封腔室內部形成真空,由此將其間具有該預成型物之該等隔膜拉向該模製表面,且最終貼合至該模製表面上,藉此形成成形之預成型物;(i)降低該等隔膜之間的真空壓力至10毫巴或低於10毫巴;(j)冷卻該成形之預成型物至低於該樹脂黏合劑之軟化溫度的溫度;(k)解除該等隔膜之間的真空;(l)自該經冷卻之預成型物移除該上隔膜,同時維持該下隔膜與該外殼之間的該密封腔室內部的真空;及(m)自該下隔膜移除該經冷卻之成形之預成型物。
  2. 如請求項1之方法,其中進行加熱步驟(g)直至該樹脂黏合劑之黏度在低於1.0×108m.Pa範圍內。
  3. 如請求項1之方法,其中該纖維預成型物中之樹脂黏合劑的總量以該纖維預成型物之總重量計為0.5重量%至10重量%。
  4. 如請求項1之方法,其進一步包含在步驟(d)之前,根據圖案切削加工該實質上扁平之纖維預成型物。
  5. 如請求項1之方法,其中該纖維預成型物包含複數個以堆疊配置鋪疊之纖維層,且向每一纖維層之至少一個表面施加該樹脂黏合劑。
  6. 如請求項5之方法,其中該等纖維層為織物層、帶層或絲束層。
  7. 如請求項1之方法,其中該樹脂黏合劑包含熱塑性組分或熱固性組分或二者。
  8. 如請求項7之方法,其中該樹脂黏合劑包含熱塑性組分及熱固性組分,且熱塑性組分包含聚芳基碸聚合物且該熱固性組分包含一或多種環氧樹脂。
  9. 如請求項8之方法,其中該聚芳基碸聚合物為具有末端胺基之聚醚碸(PES)與聚醚醚碸(PEES)的共聚物。
  10. 如請求項1之方法,其中該樹脂黏合劑包含選自以下之熱塑性聚合物:聚酯、聚醯胺、聚醯亞胺、聚碳酸酯、聚胺基甲酸酯、聚(甲基丙烯酸甲酯)、聚苯乙烯、聚芳族物、聚酯醯胺、聚醯胺醯亞胺、聚醚醯亞胺、芳族聚醯胺、聚芳酯、聚丙烯酸酯、聚(酯)碳酸酯、聚(甲基丙烯酸甲酯/丙烯酸丁酯)、聚碸、其共聚物及組合。
  11. 如請求項1之方法,其中該樹脂黏合劑係呈粉末、液體、糊狀物或膜形式。
  12. 如請求項1之方法,其中該樹脂黏合劑係呈聚合物纖維形式,該等聚合物纖維為熱塑性纖維與熱固性纖維之混合物,或為由熱塑性聚合物與熱固性聚合物之摻合物形成之纖維。
  13. 如請求項1之方法,其中該樹脂黏合劑係呈聚合物纖維形式,該等聚合物纖維係由熱塑性聚合物與熱固性聚合物之摻合物形成。
  14. 如請求項1之方法,其中該樹脂黏合劑係呈包含隨機配置之聚合物纖維之非編織網紗形式,該等隨機配置之聚合物纖維係由選自熱塑性聚合物、熱固性聚合物及其組合之一或多種聚合物形成。
TW102147256A 2012-12-20 2013-12-19 用於形成成形之預成型物之方法 TWI626136B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??1223032.2 2012-12-20
GBGB1223032.2A GB201223032D0 (en) 2012-12-20 2012-12-20 Method for forming shaped preform

Publications (2)

Publication Number Publication Date
TW201433433A TW201433433A (zh) 2014-09-01
TWI626136B true TWI626136B (zh) 2018-06-11

Family

ID=47682294

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147256A TWI626136B (zh) 2012-12-20 2013-12-19 用於形成成形之預成型物之方法

Country Status (15)

Country Link
US (1) US9259859B2 (zh)
EP (1) EP2909014B1 (zh)
JP (1) JP6161175B2 (zh)
KR (1) KR102085014B1 (zh)
CN (1) CN104812556B (zh)
AU (1) AU2013361406B2 (zh)
BR (1) BR112015012130B1 (zh)
CA (1) CA2895813C (zh)
ES (1) ES2604906T3 (zh)
GB (1) GB201223032D0 (zh)
MX (1) MX361646B (zh)
MY (1) MY182139A (zh)
RU (1) RU2635623C2 (zh)
TW (1) TWI626136B (zh)
WO (1) WO2014100328A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2676780B1 (de) * 2012-06-18 2017-08-02 Technische Universität Dresden Verfahren zur Herstellung eines schichtförmigen Halbzeuges
DE102013019806B4 (de) * 2013-11-27 2015-06-03 Daimler Ag Verfahren zum Umformen eines zweidimensionalen Faserhalbzeugs
US10583615B2 (en) 2014-06-30 2020-03-10 Cytec Industries Inc. Dry fibrous tape for manufacturing preform
FR3027546B1 (fr) 2014-10-24 2017-07-21 Porcher Ind Meches poudrees par procede electrostatique
FR3027839B1 (fr) * 2014-10-31 2017-09-08 Plastic Omnium Cie Systeme de preformage de feuille plastique a moyens de plaquage actionnables sequentiellement
BR112017012644B1 (pt) * 2014-12-18 2022-04-19 Cytec Industries Inc Processo de fabricação para produzir um artigo moldado por infusão de resina líquida, composição curável, artigo moldado curado, e, uso de uma composição curável
DE102015117857A1 (de) * 2015-10-20 2017-04-20 Siempelkamp Maschinen- Und Anlagenbau Gmbh Verfahren zum Herstellen eines Bauteils aus einem Faserverbundwerkstoff
CA3011973A1 (en) * 2016-01-21 2017-07-27 Cytec Industries Inc. Fabrication of complex-shaped composite structures
FR3047196B1 (fr) * 2016-02-02 2018-09-28 Coriolis Group Procede de realisation de preformes tridimensionnelles par formage de preformes initiales avec des voiles
FR3055574B1 (fr) * 2016-09-02 2018-10-05 Porcher Ind Structure fibreuse et preforme 3d pour piece composite
GB2554476A (en) * 2016-09-21 2018-04-04 Suzlon Energy Ltd A method of forming a component
GB201620227D0 (en) * 2016-11-29 2017-01-11 Cytec Ind Inc Automated fabrication of fibrous preform
MX2019009414A (es) * 2017-02-08 2020-01-15 Cytec Industrial Mat (Derby) Limited Conformado con doble diafragma de materiales compuestos, ensamblajes para el conformado y materiales compuestos resultantes.
CN109795137A (zh) * 2017-11-16 2019-05-24 中国商用飞机有限责任公司 用于在树脂材料工件的模制中固定加强纤维的方法及装置
DE102017220899A1 (de) * 2017-11-23 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Faserverbundbauteils und Faserverbundbauteil
DE102018201902A1 (de) 2018-02-07 2019-08-08 Ford Global Technologies, Llc Vorrichtung und Verfahren zur Serienfertigung von zumindest teilweise faserverstärkten Spritzgussbauteilen
GB201805320D0 (en) * 2018-03-29 2018-05-16 Mclaren Automotive Ltd Diaphragm forming
RU2688716C1 (ru) * 2018-05-24 2019-05-22 Общество с ограниченной ответственностью "Композит Сольюшен" Способ изготовления крупногабаритного композитного изделия методом вакуумной инфузии и композитная силовая балка мостовой секции для сборно-разборного мостового сооружения
EP3587091A1 (en) * 2018-06-25 2020-01-01 The Boeing Company Ply location templates for double diaphragm vacuum bagging system
NL2021422B1 (en) * 2018-08-03 2020-02-12 Boeing Co Ply location templates for double diaphragm vacuum bagging systems
US10875264B2 (en) 2018-06-25 2020-12-29 The Boeing Company Ply location templates for double diaphragm vacuum bagging systems
US10875263B2 (en) 2018-06-25 2020-12-29 The Boeing Company Ply location templates for double diaphragm vacuum bagging systems
CN109111089B (zh) * 2018-07-30 2021-08-13 东莞市轩驰智能科技有限公司 成型装置及成型方法
US11660828B2 (en) * 2018-08-07 2023-05-30 The Boeing Company Composite fabrication system with alternating air pressure control
FR3085131B1 (fr) 2018-08-27 2020-11-13 Safran Procede de mise en forme par compactage d'une preforme fibreuse pour la fabrication d'une piece en materiau composite
FR3085297B1 (fr) * 2018-08-29 2020-11-06 Safran Procede de fabrication d'une piece composite de turbomachine
US11285678B2 (en) * 2018-10-16 2022-03-29 The Boeing Company Modular tool inserts for composite part manufacturing and related methods
WO2020172608A1 (en) 2019-02-22 2020-08-27 Cytec Industries Inc. Fabrication of three-dimensional structures from preform blanks
FR3094265B1 (fr) * 2019-03-27 2022-01-28 Safran Aircraft Engines Outillage de preformage d’une preforme fibreuse et procede de preformage d’une preforme fibreuse
US11780178B2 (en) 2019-05-31 2023-10-10 Cytec Industries Inc. Controlled shear vacuum forming for shaping preforms
GB201908265D0 (en) * 2019-06-10 2019-07-24 Rolls Royce Plc Lay-up apparatus
FR3098749B1 (fr) 2019-07-19 2023-01-20 Institut De Recherche Tech Materiaux Mettalurgie Procedes Procédé de fabrication de préformes pour matériaux composites
GB201913332D0 (en) * 2019-09-16 2019-10-30 Blade Dynamics Ltd A container comprising fibre material for a fibre-reinforced composite component
CN110774613B (zh) * 2019-09-17 2021-08-17 北京玻钢院复合材料有限公司 一种双马来酰亚胺树脂基复合材料、天线罩及其制备方法
US11511500B2 (en) * 2019-10-04 2022-11-29 The Boeing Company Molding system and methods for forming structures
WO2021132752A1 (ko) * 2019-12-24 2021-07-01 코오롱데크컴퍼지트 주식회사 복합재 제작용 프리폼 성형 장치 및 복합재 제작용 프리폼 성형 방법
US11220072B2 (en) 2020-01-02 2022-01-11 The Boeing Company Molding system and methods for forming structures
FR3108871A1 (fr) * 2020-04-07 2021-10-08 Airbus Operations Procede de fabrication d’une preforme ensachee d’un composant en materiau composite et procede de fabrication dudit composant
FR3118723B1 (fr) 2021-01-14 2023-08-11 Hexcel Reinforcements Procédés et dispositifs de formage de matériaux composites
EP4137288A1 (en) * 2021-08-17 2023-02-22 Siemens Gamesa Renewable Energy A/S Mold arrangement for producing a preform element of a wind turbine blade, and method for manufacturing preforms for a wind turbine blade
CN113829648B (zh) * 2021-08-26 2023-04-04 中国航空制造技术研究院 一种复合材料叶片rtm成型方法
EP4183543A1 (en) * 2021-11-22 2023-05-24 Siemens Gamesa Renewable Energy A/S Method for manufacturing a preform element made of preform building material for a wind turbine blade
CN115230126A (zh) * 2022-07-27 2022-10-25 常州新创航空科技有限公司 一种双隔膜预成型设备及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410599A2 (en) * 1989-07-24 1991-01-30 Imperial Chemical Industries Plc Method of forming thermoformable composite material
WO2002002299A1 (en) * 2000-07-04 2002-01-10 Drdf Technologies Limited Moulding of composite materials
TW530107B (en) * 1997-05-06 2003-05-01 Cytec Tech Corp Preforms for moulding process and resins therefor
US20050008862A1 (en) * 1999-12-02 2005-01-13 Joseph Brian E. Carbon foam composite tooling and methods for using the same
TW200600305A (en) * 2004-05-11 2006-01-01 Nestle Waters Man & Technology Process and device for manufacturing a plastic preform
TW200643249A (en) * 2004-12-23 2006-12-16 Messier Bugatti A method of making a fiber preform for manufacturing parts of a composite material of the carbon/carbon type incorporating ceramic particles, and products obtained thereby

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065340A (en) * 1977-04-28 1977-12-27 The United States Of America As Represented By The National Aeronautics And Space Administration Composite lamination method
SU1685738A1 (ru) * 1988-09-26 1991-10-23 Саратовское электроагрегатное производственное объединение Вакуум-формовочна машина дл изготовлени изделий из термопластов
US5037599A (en) * 1989-06-26 1991-08-06 Basf Aktiengesellschaft Single diaphragm forming of drapeable thermoplastic impregnated composite materials
US5578158A (en) * 1994-03-01 1996-11-26 Massachusetts Institute Of Technology Method and system for forming a composite product from a thermoformable material
US5817265A (en) 1995-10-03 1998-10-06 Dow-United Technologies Composite Products, Inc. Method for precision preforming of complex composite articles
GB9907204D0 (en) * 1999-03-30 1999-05-26 Woolstencroft David H A composite
US7300894B2 (en) * 2002-12-30 2007-11-27 University Of Maine Composites pressure resin infusion system (ComPRIS)
US7306450B2 (en) * 2004-09-29 2007-12-11 The Boeing Company Apparatuses, systems, and methods for manufacturing composite parts
US20060266472A1 (en) * 2005-05-06 2006-11-30 Kipp Michael D Vacuum bagging methods and systems
WO2007109855A1 (en) * 2006-03-28 2007-10-04 Crc For Advanced Composite Structures Limited Welding of functional components to polymer composite components
US7862322B2 (en) 2006-04-25 2011-01-04 Florida State University Research Foundation Resin infusion between double flexible tooling system
GB0702781D0 (en) * 2007-02-13 2007-03-21 Airbus Uk Ltd Method of processing a composite material
GB2452298B (en) * 2007-08-30 2010-01-13 Gkn Aerospace Services Ltd Composite structure
JP5315713B2 (ja) * 2008-02-12 2013-10-16 東レ株式会社 Frp製部材用プリフォームの製造方法
JP2009286006A (ja) * 2008-05-29 2009-12-10 Toyota Motor Corp バキューム成形装置
US8652371B2 (en) * 2008-11-20 2014-02-18 Cytec Technology Corp. Constant pressure infusion process for resin transfer molding
FR2950833A1 (fr) 2009-10-01 2011-04-08 Airbus Operations Sas Procede et dispositif pour la fabrication automatisee de preformes seches circulaires

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410599A2 (en) * 1989-07-24 1991-01-30 Imperial Chemical Industries Plc Method of forming thermoformable composite material
TW530107B (en) * 1997-05-06 2003-05-01 Cytec Tech Corp Preforms for moulding process and resins therefor
US20050008862A1 (en) * 1999-12-02 2005-01-13 Joseph Brian E. Carbon foam composite tooling and methods for using the same
WO2002002299A1 (en) * 2000-07-04 2002-01-10 Drdf Technologies Limited Moulding of composite materials
TW200600305A (en) * 2004-05-11 2006-01-01 Nestle Waters Man & Technology Process and device for manufacturing a plastic preform
TW200643249A (en) * 2004-12-23 2006-12-16 Messier Bugatti A method of making a fiber preform for manufacturing parts of a composite material of the carbon/carbon type incorporating ceramic particles, and products obtained thereby

Also Published As

Publication number Publication date
WO2014100328A1 (en) 2014-06-26
KR102085014B1 (ko) 2020-03-05
KR20150096484A (ko) 2015-08-24
BR112015012130B1 (pt) 2021-07-13
EP2909014A1 (en) 2015-08-26
US9259859B2 (en) 2016-02-16
RU2635623C2 (ru) 2017-11-14
BR112015012130A2 (pt) 2017-07-11
MY182139A (en) 2021-01-18
CA2895813A1 (en) 2014-06-26
GB201223032D0 (en) 2013-02-06
ES2604906T3 (es) 2017-03-09
MX2015007284A (es) 2015-08-12
AU2013361406A1 (en) 2015-04-16
RU2015129498A (ru) 2017-01-25
CN104812556B (zh) 2017-05-03
JP2016503098A (ja) 2016-02-01
TW201433433A (zh) 2014-09-01
MX361646B (es) 2018-12-13
JP6161175B2 (ja) 2017-07-12
EP2909014B1 (en) 2016-09-07
US20140175709A1 (en) 2014-06-26
CA2895813C (en) 2020-04-07
AU2013361406B2 (en) 2017-05-04
CN104812556A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
TWI626136B (zh) 用於形成成形之預成型物之方法
AU2017209441B2 (en) Fabrication of complex-shaped composite structures
WO2008099207A1 (en) Method of processing a composite material
JP4670313B2 (ja) Frp成形用強化繊維基材の賦形方法
JP4631395B2 (ja) Frp成形用強化繊維基材の賦形方法
US11780178B2 (en) Controlled shear vacuum forming for shaping preforms
US11945176B2 (en) Mechanical shaping of composite materials

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees