TWI625020B - Hybrid solar conversion system - Google Patents

Hybrid solar conversion system Download PDF

Info

Publication number
TWI625020B
TWI625020B TW106125085A TW106125085A TWI625020B TW I625020 B TWI625020 B TW I625020B TW 106125085 A TW106125085 A TW 106125085A TW 106125085 A TW106125085 A TW 106125085A TW I625020 B TWI625020 B TW I625020B
Authority
TW
Taiwan
Prior art keywords
conversion circuit
circuit
battery
conversion
electrically connected
Prior art date
Application number
TW106125085A
Other languages
Chinese (zh)
Other versions
TW201911697A (en
Inventor
黃銘鋒
江炫樟
林育志
Original Assignee
絜靜精微有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 絜靜精微有限公司 filed Critical 絜靜精微有限公司
Priority to TW106125085A priority Critical patent/TWI625020B/en
Application granted granted Critical
Publication of TWI625020B publication Critical patent/TWI625020B/en
Publication of TW201911697A publication Critical patent/TW201911697A/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本發明提供一種混合型太陽能轉換系統,其包括:一第一直流轉換電路;一第二直流轉換電路;一變壓電路;一第三直流轉換電路;一直流交流轉換電路;一切換開關;一電池;以及一控制電路執行下列步驟:偵測市電並網模式,則將太陽能板的能量反饋給市電;偵測非市電並網模式,則將太陽能板的能量反饋給負載;及判斷市電對電池充電模式,則將市電能量提供給電池充電。藉由本發明之實施,可以達成改善系統發電效率、簡化電路架構及降低系統電路成本之功效。The present invention provides a hybrid solar energy conversion system comprising: a first direct current conversion circuit; a second direct current conversion circuit; a transformer circuit; a third direct current conversion circuit; a direct current alternating current conversion circuit; a battery; and a control circuit performing the following steps: detecting the utility grid connection mode, feeding back the energy of the solar panel to the mains; detecting the non-commercial grid connection mode, feeding back the energy of the solar panel to the load; and judging the utility In the battery charging mode, the utility power is supplied to the battery for charging. Through the implementation of the present invention, the effects of improving system power generation efficiency, simplifying the circuit architecture, and reducing system circuit cost can be achieved.

Description

混合型太陽能轉換系統Hybrid solar energy conversion system

本發明為一種混合型太陽能轉換系統,特別係用於太陽能板、市電及負載間之電力轉換及管理之混合型太陽能轉換系統。 The invention relates to a hybrid solar energy conversion system, in particular to a hybrid solar energy conversion system for power conversion and management between solar panels, mains and loads.

如第1圖所示,為一種習知之太陽能轉換系統一,習知之太陽能轉換系統一,由於使用了四組DC/DC電源轉換器、兩組變壓器及整流電路、兩組DC/AC電源轉換器、一組AC/DC電源轉換器、一DSP控制電路及其他元件。從各種運作的效能分析來看,當在1.市電併網及電池充電:a.市電併網是η1xη2xη3,b.電池充電是η7;2.非市電併網及電池充電:a.非市電併網是η4xη5xη6,b.電池充電是η7;3.非市電併網及電池放電:η4xη5xη6xη7。習知之太陽能轉換系統一存在:a.電路系統架構龐大,b.成本高,c.需考量系統整合相容性,d.系統轉換效率低,及e.市電對電池充電器轉換器效率不高…等問題。 As shown in Fig. 1, a conventional solar energy conversion system, a conventional solar energy conversion system, uses four sets of DC/DC power converters, two sets of transformers and rectifier circuits, and two sets of DC/AC power converters. , a set of AC / DC power converters, a DSP control circuit and other components. From the performance analysis of various operations, when the grid is connected to the grid and the battery is charged: a. The grid connection is η1xη2xη3, b. The battery charge is η7; 2. The non-mains grid connection and battery charging: a. The net is η4xη5xη6, b. the battery charge is η7; 3. the non-commercial grid and battery discharge: η4xη5xη6xη7. The conventional solar energy conversion system exists: a. The circuit system architecture is huge, b. The cost is high, c. The system integration compatibility is considered, d. The system conversion efficiency is low, and e. The utility power is not efficient for the battery charger converter. …And other issues.

如第2圖所示,為一種習知之太陽能轉換系統二,習知之太陽能轉換系統二,由於使用了三組DC/DC電源轉換器、兩組變壓器、一組整流電路、一組DC/AC電源轉換器、一組AC/DC電源轉換器、一DSP控制電路及其他元件。從各種運作的效能分析來看,當在1.市電併網及電池充電:a.市電併網是η1xη2xη3,b.電池充電是η1xη2xη4xη5;2.非市電併網及電池充電: a.非市電併網是η1xη2xη3,b.電池充電是η1xη2xη4xη5;3.非市電併網及電池放電:a.非市電併網是η1xη2xη3,電池放電是η4xη5。習知之太陽能轉換系統二存在:a.電池端的應用轉換器成本高與及轉換器效率不高,b.非並網型應用於後端負載暫態響應不佳,及c.市電對電池充電器轉換器效率不高…等問題。 As shown in Fig. 2, it is a conventional solar energy conversion system. The conventional solar energy conversion system 2 uses three sets of DC/DC power converters, two sets of transformers, a set of rectifier circuits, and a set of DC/AC power supplies. Converter, a set of AC/DC power converters, a DSP control circuit and other components. From the performance analysis of various operations, when the grid is connected to the grid and the battery is charged: a. The grid connection is η1xη2xη3, b. The battery charge is η1xη2xη4xη5; 2. Non-mains grid connection and battery charging: a. Non-commercial grid is η1xη2xη3, b. Battery charging is η1xη2xη4xη5; 3. Non-commercial grid connection and battery discharge: a. Non-commercial grid is η1xη2xη3, battery discharge is η4xη5. The conventional solar energy conversion system 2 exists: a. the high cost of the application converter on the battery side and the low efficiency of the converter, b. the non-grid type is applied to the back end load transient response is not good, and c. the mains to the battery charger The converter is not efficient...etc.

本發明為一種混合型太陽能轉換系統,其主要係要解決太陽能板之電源轉換及管理效能的問題。 The invention relates to a hybrid solar energy conversion system, which mainly solves the problem of power conversion and management efficiency of solar panels.

本發明提供一種混合型太陽能轉換系統,其包括:一第一直流轉換電路,用以輸入一太陽能板電壓;一第二直流轉換電路,電性連接於第一直流轉換電路之輸出端;一變壓電路,電性連接於第二直流轉換電路之輸出端;一第三直流轉換電路,電性連接於變壓電路之輸出端;一直流交流轉換電路,電性連接於第三直流轉換電路之輸出端;一切換開關,電性連接於直流交流轉換電路之輸出端及一市電端及負載端;一電池,電性連接於第一直流轉換電路及第二直流轉換電路之間;以及一控制電路,電性連接於第一直流轉換電路、第三直流轉換電路、電路及切換開關,控制電路執行下列步驟:判斷市電併網型模式,當市電電壓與輸入之太陽能板電壓,兩電壓同時存在的情況下,則控制電路傳送一第一訊號給切換開關,將該直流交流轉換電路與市電連結並將太陽能板的能量反饋給市電;判斷非市電併網型模式,當市電電壓不存在的情況下,則控制電路將傳送一第二訊號給切換開關,將直流交流轉換電路與一負載連結並將太陽能板的能量反饋給負載;及判斷市電充電模式,當太陽能板沒有能量提供給電池時,則控制電路傳送第一控制訊號給切換開關, 將直流交流轉換電路與市電連結,又控制電路控制直流交流轉換電路與第二直流轉換電路動作,將市電能量提供給電池充電。 The present invention provides a hybrid solar energy conversion system, comprising: a first DC conversion circuit for inputting a solar panel voltage; and a second DC conversion circuit electrically connected to an output end of the first DC conversion circuit; a transformer circuit electrically connected to the output end of the second DC conversion circuit; a third DC conversion circuit electrically connected to the output end of the transformer circuit; a DC current conversion circuit electrically connected to the third DC conversion An output end of the circuit; a switch, electrically connected to the output end of the DC-AC conversion circuit and a mains terminal and the load end; a battery electrically connected between the first DC conversion circuit and the second DC conversion circuit; And a control circuit electrically connected to the first DC conversion circuit, the third DC conversion circuit, the circuit and the switch, and the control circuit performs the following steps: determining the utility grid connection mode, when the utility voltage and the input solar panel voltage, When both voltages exist at the same time, the control circuit transmits a first signal to the switch, and the DC-AC conversion circuit is connected with the mains and The energy of the solar panel is fed back to the mains; the non-commercial grid-connected mode is determined. When the mains voltage does not exist, the control circuit transmits a second signal to the switch to connect the DC-AC conversion circuit with a load and The energy of the solar panel is fed back to the load; and the mains charging mode is determined. When the solar panel has no energy to supply to the battery, the control circuit transmits the first control signal to the switch. The DC-AC conversion circuit is connected to the mains, and the control circuit controls the DC-AC conversion circuit and the second DC conversion circuit to supply the utility energy to the battery for charging.

藉由本發明之實施,至少可以達成下列之進步功效: With the implementation of the present invention, at least the following advancements can be achieved:

一、可以大幅降低電路成本與體積。 First, the circuit cost and volume can be greatly reduced.

二、可以提升電路系統的發電效率。 Second, it can improve the power generation efficiency of the circuit system.

三、體積縮小後可以更方便的進行裝置移動。 3. The device can be moved more conveniently after the volume is reduced.

100‧‧‧混合型太陽能轉換系統 100‧‧‧Hybrid Solar Conversion System

10‧‧‧第一直流轉換電路 10‧‧‧First DC conversion circuit

20‧‧‧第二直流轉換電路 20‧‧‧Second DC conversion circuit

30‧‧‧變壓電路 30‧‧‧Transformer circuit

40‧‧‧第三直流轉換電路 40‧‧‧ Third DC conversion circuit

50‧‧‧直流交流轉換電路 50‧‧‧DC AC conversion circuit

60‧‧‧切換開關 60‧‧‧Toggle switch

70‧‧‧電池 70‧‧‧Battery

71‧‧‧外加電池 71‧‧‧Additional battery

80‧‧‧控制電路 80‧‧‧Control circuit

91‧‧‧太陽能板 91‧‧‧ solar panels

92‧‧‧市電 92‧‧‧Power

93‧‧‧負載 93‧‧‧load

94‧‧‧第四直流轉換電路 94‧‧‧fourth DC conversion circuit

95‧‧‧輔助電力 95‧‧‧Auxiliary power

[第1圖]為習知之太陽能轉換系統一;[第2圖]為習知之太陽能轉換系統二;[第3A圖]為本發明之一種混合型太陽能轉換系統實施例之電路方塊圖;[第3B圖]為本發明之一種控制電路控制流程實施例圖;[第4圖]為本發明混合型太陽能轉換系統之市電並網模式實施例圖;[第5圖]為本發明混合型太陽能轉換系統之非市電並網模式實施例圖;[第6圖]為本發明混合型太陽能轉換系統之市電對電池充電模式實施例圖; [Fig. 1] is a conventional solar energy conversion system 1; [Fig. 2] is a conventional solar energy conversion system 2; [Fig. 3A] is a circuit block diagram of an embodiment of a hybrid solar energy conversion system of the present invention; 3B is a diagram of an embodiment of a control circuit control flow of the present invention; [Fig. 4] is a diagram of an embodiment of a commercial grid-connected mode of the hybrid solar energy conversion system of the present invention; [Fig. 5] is a hybrid solar energy conversion of the present invention. Embodiment diagram of a non-commercial grid-connected mode of the system; [FIG. 6] is a diagram of an embodiment of a utility-to-battery charging mode of the hybrid solar energy conversion system of the present invention;

如第3A圖所示,本實施例為一種混合型太陽能轉換系統100,其包括:一第一直流轉換電路10;一第二直流轉換電路20;一變壓 電路30;一第三直流轉換電路40;一直流交流轉換電路50;一切換開關60;一電池70;以及一控制電路80。 As shown in FIG. 3A, the present embodiment is a hybrid solar energy conversion system 100, including: a first DC conversion circuit 10; a second DC conversion circuit 20; The circuit 30; a third DC conversion circuit 40; a DC current conversion circuit 50; a switch 60; a battery 70; and a control circuit 80.

第一直流轉換電路10,用以輸入一太陽能板91(solar panel)之太陽能板電壓,第一直流轉換電路10可以為一太陽電池70充電控制器(PV Charger;Photovoltaic Charger)。 The first DC conversion circuit 10 is configured to input a solar panel voltage of a solar panel 91. The first DC conversion circuit 10 can be a solar charge controller (PV Charger; Photovoltaic Charger).

第二直流轉換電路20,電性連接於第一直流轉換電路10之輸出端;第二直流轉換電路20為一最大功率點跟蹤控制器MPPT Controller(Maximum Power Point Tracking Controller),MPPT控制器能夠即時偵測太陽能板91的發電電壓,並追蹤最高電壓電流值(VI),使系統以最大功率輸出對蓄電池70充電。MPPT控制器應用於太陽能光伏系統中,能協調太陽能電池70板、蓄電池70、負載93的工作。 The second DC conversion circuit 20 is electrically connected to the output end of the first DC conversion circuit 10; the second DC conversion circuit 20 is a Maximum Power Point Tracking Controller (MPPT Controller), and the MPPT controller can The power generation voltage of the solar panel 91 is instantly detected, and the highest voltage current value (VI) is tracked, so that the system charges the battery 70 with the maximum power output. The MPPT controller is used in a solar photovoltaic system to coordinate the work of the solar cell 70 board, the battery 70, and the load 93.

變壓電路30,電性連接於第二直流轉換電路20之輸出端,其主要是進行升壓動作,將太陽能板91輸出之電壓進行提升,以便與後續市電92或負載93匹配。 The transformer circuit 30 is electrically connected to the output end of the second DC conversion circuit 20, and mainly performs a boosting operation to boost the voltage output from the solar panel 91 to match the subsequent mains 92 or the load 93.

第三直流轉換電路40,電性連接於變壓電路30之輸出端,以使變壓電路30輸出之電壓,再次獲得更精準的調整及更穩定的輸出。 The third DC conversion circuit 40 is electrically connected to the output end of the transformer circuit 30 to enable the voltage output from the transformer circuit 30 to obtain more precise adjustment and a more stable output.

直流交流轉換電路50,電性連接於第三直流轉換電路40之輸出端,用以將第三直流轉換電路40輸出之直流電壓轉換成交流電壓,以便與市電92併網或提供給負載93使用。 The DC-to-AC conversion circuit 50 is electrically connected to the output end of the third DC conversion circuit 40 for converting the DC voltage outputted by the third DC conversion circuit 40 into an AC voltage for grid connection with the utility power 92 or for use by the load 93. .

切換開關60,電性連接於直流交流轉換電路50之輸出端及一市電92端及負載93端,切換開關60主要用以進行電力供應之切換,將太陽能板91輸出的電力切換成是進行市電92併網或者是供負載93使用。 The switch 60 is electrically connected to the output end of the DC-AC conversion circuit 50 and a mains 92 end and a load 93 end. The change-over switch 60 is mainly used for switching the power supply, and the power output from the solar panel 91 is switched to be a commercial power supply. 92 is connected to the grid or used for load 93.

電池70,電性連接於第一直流轉換電路10及第二直流轉換電路20之間,用以調節太陽能板91之輸出電力。 The battery 70 is electrically connected between the first DC conversion circuit 10 and the second DC conversion circuit 20 for adjusting the output power of the solar panel 91.

如第3A及第3B圖所示,控制電路80,其可以為一數位訊號處理DSP(Digital signal processing),控制電路80電訊連接於第一直流轉換電路10、第三直流轉換電路40、電路及切換開關60,控制電路80執行下列步驟: As shown in FIGS. 3A and 3B, the control circuit 80 can be a digital signal processing (DSP), and the control circuit 80 is telecommunicationly connected to the first DC conversion circuit 10, the third DC conversion circuit 40, and the circuit. And the switch 60, the control circuit 80 performs the following steps:

判斷市電併網型模式,控制電路80偵測市電電壓與輸入之太陽能板91電壓是否存在,當兩電壓同時存在的情況下,則控制電路80判斷電力轉換器操作在市電併網模式,此時控制電路80,傳送一第一控制訊號給一切換開關60,藉由切換開關60之第1接點與第2接點連接,將直流交流轉換電路50輸出之電力與市電92連結並將太陽能板91的能量反饋給市電92。 Determining the mains grid-connected mode, the control circuit 80 detects whether the mains voltage and the input solar panel 91 voltage are present. When the two voltages exist simultaneously, the control circuit 80 determines that the power converter is operating in the mains grid-connected mode. The control circuit 80 transmits a first control signal to a switch 60, and the first contact of the switch 60 is connected to the second contact, and the power output from the DC/DC converter circuit 50 is connected to the utility 92 and the solar panel is connected. The energy of 91 is fed back to the mains 92.

判斷非市電併網模式,控制電路80偵測市電電壓與輸入之太陽能板電壓是否存在,當市電電壓不存在的情況下,控制電路80則判斷電力轉換器操作在非市電併網模式,此時控制電路80將傳送一第二控制訊號給切換開關60,藉由切換開關60第2接點與第3接點的連接,將直流交流轉換電路50之輸出電力與負載93連結並將太陽能板91的能量反饋給負載93。 Determining the non-mains grid-connected mode, the control circuit 80 detects whether the mains voltage and the input solar panel voltage are present. When the mains voltage does not exist, the control circuit 80 determines that the power converter is operating in the non-mains grid-connected mode. The control circuit 80 transmits a second control signal to the switch 60, and the output of the DC-AC conversion circuit 50 is coupled to the load 93 by the connection of the second contact and the third contact of the switch 60, and the solar panel 91 is connected. The energy is fed back to the load 93.

判斷市電充電模式:偵測當太陽能板91沒有能量提供給電池70時,則控制電路80會送第一控制訊號給切換開關60與市電92連結,又控制電路80控制直流交流轉換電路50與第二直流轉換電路20動作,將市電92能量提供給電池70充電。 Judging the mains charging mode: detecting that when the solar panel 91 has no energy to be supplied to the battery 70, the control circuit 80 sends a first control signal to the switching switch 60 to be connected to the mains 92, and the control circuit 80 controls the DC alternating current converting circuit 50 and the The two DC conversion circuit 20 operates to supply the mains 92 energy to the battery 70 for charging.

本實施例之混合型太陽能轉換系統100,其可進一步包括一第四直流轉換電路94,其為一電池充電器,第四直流轉換電路94係電性連接於系統內 建的電池70,且又電性連接於外加電池71,藉此可以擴充系統內建電池70的能量。 The hybrid solar energy conversion system 100 of the present embodiment may further include a fourth DC conversion circuit 94, which is a battery charger, and the fourth DC conversion circuit 94 is electrically connected to the system. The built-in battery 70 is electrically connected to the external battery 71, whereby the energy of the built-in battery 70 of the system can be expanded.

本實施例之混合型太陽能轉換系統100,其又可進一步具有一輔助電力95,其電性連接於第一直流轉換電路10之輸入端或電池70之輸出端,輔助電力95可以藉由一例如USB(Universal Serial Bus)的連接端子與外界連結,藉此可以增加混合型太陽能轉換系統100在應用時的多樣性。 The hybrid solar energy conversion system 100 of the present embodiment may further have an auxiliary power source 95 electrically connected to the input end of the first DC conversion circuit 10 or the output end of the battery 70. The auxiliary power 95 may be provided by a For example, the connection terminal of the USB (Universal Serial Bus) is connected to the outside, whereby the diversity of the hybrid solar energy conversion system 100 can be increased.

如第4圖所示,有關市電併網型模式之動作說明如下:當太陽能板91電壓高於系統起動電壓設定值時,系統電源開始動作並喚醒控制電路80。控制電路80啟動後會去偵測系統輸出市電電壓,也就是直流交流轉換電路50之輸出端電壓與太陽能板輸入電壓,也就是第一直流轉換電路10之輸入電壓,是否兩者同時存在,且判斷電壓值是否操作在設定條件下,相關設定條件是一般逆變器規格要求下,需要滿足的流程操作之條件。 As shown in Fig. 4, the operation of the mains grid-connected mode is as follows: When the voltage of the solar panel 91 is higher than the system starting voltage setting value, the system power supply starts to operate and wakes up the control circuit 80. After the control circuit 80 is started, it will detect the output power voltage of the system, that is, the output voltage of the DC-AC conversion circuit 50 and the input voltage of the solar panel, that is, the input voltage of the first DC conversion circuit 10, whether both exist at the same time. And to determine whether the voltage value is operated under the set conditions, the relevant setting conditions are the conditions of the flow operation that need to be satisfied under the general inverter specification requirements.

當條件成立時,控制電路80將判斷此系統操作在市電92併網模式,此時控制電路80將會送一控制訊號給第一直流轉換電路10,進行DC/DC轉換運作,將太陽能的能量提供給電池70使用。由於太陽能於清晨或黃昏時能量很低,所以會先作基本能量負載測試,當通過測試設定條件後,逆變器就會進入正常運作的條件,當太陽能板91提供能量足以提供給電池70後,控制電路80將會控制第二直流轉換電路20將電池70的能量轉換到Vbus,將Vbus電壓提高到市電92峰值電壓以上。 When the condition is met, the control circuit 80 will judge that the system operates in the grid connection mode of the utility power 92. At this time, the control circuit 80 will send a control signal to the first DC conversion circuit 10 for DC/DC conversion operation, which will be solar energy. Energy is provided for use by battery 70. Since the solar energy is very low in the morning or at dusk, the basic energy load test will be performed first. When the conditions are set by the test, the inverter will enter the normal operating condition, and when the solar panel 91 provides enough energy to supply the battery 70, The control circuit 80 will control the second DC conversion circuit 20 to convert the energy of the battery 70 to Vbus and raise the Vbus voltage above the mains 92 peak voltage.

當此條件成立後並送第一訊號給切換開關60並使切換開關60的第1端點及第2端點連接後進行市電92連結,以防止市電92突波電流產生,此時太陽能提供給電池70且多餘的能量也將藉由將藉由第二直流轉換電路20與直流交 流轉換電路50提供給市電92,已達節電功能。另外從市電92併網運作的效能分析來看,在市電92併網及電池70充電:a.市電92併網是η2xη3xη4,b.電池70充電是η1。 When this condition is satisfied, the first signal is sent to the changeover switch 60, and the first end point and the second end point of the changeover switch 60 are connected, and then the mains 92 is connected to prevent the utility power 92 surge current from being generated. Battery 70 and excess energy will also be passed through DC by second DC conversion circuit 20 The stream conversion circuit 50 is supplied to the commercial power source 92 and has reached the power saving function. In addition, from the performance analysis of the grid connection operation of the mains 92, the grid connection and the battery 70 are charged in the mains 92: a. the grid 92 is η2xη3xη4, b. the battery 70 is charged η1.

如第5圖所示,有關非市電併網模式之動作說明:當太陽能板電壓高於系統起動電壓設定值時,系統電源開始動作並喚醒控制電路80。控制電路80啟動後會去偵測系統輸出市電電壓與太陽能板輸入電壓是否存在且電壓值是否操作在設定條件下,當輸出無市電電壓存在時,控制電路80將判斷此系統操作在非市電92併網模式。 As shown in FIG. 5, the operation of the non-mains grid-connected mode indicates that when the solar panel voltage is higher than the system starting voltage set value, the system power supply starts to operate and wakes up the control circuit 80. After the control circuit 80 is started, it will detect whether the system output mains voltage and the solar panel input voltage are present and the voltage value is operated under the set condition. When the output no mains voltage exists, the control circuit 80 will judge that the system operates in the non-commercial power 92. Grid mode.

當操作在此模式下,控制電路80將提供一第二訊號給切換開關60,將切換開關60的第2點與第3點連結並偵測電池70是否存在,當電池70存在時,則第一直流轉換電路10動作,把太陽能板91能量轉移至電池70對電池70充電,同時第二直流轉換電路20也把能量提供給Vbus,並藉由直流交流轉換電路50將直流電壓轉換成交流電提供給後端交流負載93使用。另外從非市電92併網運作的效能分析來看,在非市電92併網及電池70充電:a.非市電92併網是η2xη3xη4,b.電池70充電是η1;在非市電92併網及電池70放電是η2xη3xη4。 When operating in this mode, the control circuit 80 will provide a second signal to the switch 60, connect the second point of the switch 60 to the third point and detect the presence of the battery 70. When the battery 70 is present, the first A DC conversion circuit 10 operates to transfer the energy of the solar panel 91 to the battery 70 to charge the battery 70, while the second DC conversion circuit 20 also supplies energy to the Vbus, and converts the DC voltage into an AC power by the DC AC conversion circuit 50. Provided to the back end AC load 93 for use. In addition, from the performance analysis of non-mains 92 grid-connected operation, the non-commercial power grid 92 and battery 70 are charged: a. non-commercial power grid 92 is η2xη3xη4, b. battery 70 is charged η1; The discharge of the battery 70 is η2xη3xη4.

如第6圖所示,有關市電充電模式之動作說明:當太陽能板91沒有能量提供給電池70時,控制電路80將會偵測太陽能板輸入電壓、電池電壓與市電電壓,當設定條件達成時,控制電路80會送一訊號給第二直流轉換電路20,把Vbus電壓提升到市電92峰值電壓以上,又將控制電路80會送第一訊號給切換開關60將切換開關60之第1點及第2點連接以進行市電92連結。另外,控制電路80判斷市電92連結後且各設定數值都在正常範圍下,將控制直流交流轉換電路50與第二直流轉換電路20動作,將市電92能量提供給電池70充電。 As shown in FIG. 6, the operation description of the mains charging mode: when the solar panel 91 has no energy to be supplied to the battery 70, the control circuit 80 will detect the solar panel input voltage, the battery voltage and the mains voltage, when the setting conditions are met. The control circuit 80 sends a signal to the second DC conversion circuit 20 to raise the Vbus voltage to above the peak voltage of the mains 92, and the control circuit 80 sends the first signal to the switch 60 to switch the first point of the switch 60 and The second point is connected to connect the mains 92. Further, the control circuit 80 determines that the commercial power 92 is connected and the respective setting values are within the normal range, and controls the DC-to-AC conversion circuit 50 and the second DC conversion circuit 20 to supply the commercial power 92 to the battery 70 for charging.

請參閱第1圖至第6圖,綜合以上所述,將本實施例與先前技術之習知太陽能轉換系統一(以下簡稱習知一)及習知太陽能轉換系統二(以下簡稱習知二)進行對照,並以表列之方式說明如下: Referring to FIG. 1 to FIG. 6 , in combination with the above, the conventional solar energy conversion system of the prior art (hereinafter referred to as the conventional one) and the conventional solar energy conversion system 2 (hereinafter referred to as the second) For comparison, the following is explained in the table:

在系統拓撲數方面之比較: Comparison of the number of system topologies:

在運作效能方面之比較: 由以上比較可以清楚的得知,本實施較先前技術有顯著的進步及功效的提升。 Comparison of operational effectiveness: It can be clearly seen from the above comparison that the present embodiment has significant progress and improvement in efficacy over the prior art.

惟上述各實施例係用以說明本創作之特點,其目的在使熟習該技術者能瞭解本創作之內容並據以實施,而非限定本創作之專利範圍, 故凡其他未脫離本創作所揭示之精神而完成之等效修飾或修改,仍應包含在以下所述之申請專利範圍中。 However, the above embodiments are intended to illustrate the features of the present invention, and the purpose thereof is to enable those skilled in the art to understand the contents of the present invention and to implement it, and not to limit the scope of the patent of the present invention. All other equivalent modifications or modifications made without departing from the spirit of the present invention should be included in the scope of the claims described below.

Claims (5)

一種混合型太陽能轉換系統,其包括: 一第一直流轉換電路,用以輸入一太陽能板電壓; 一第二直流轉換電路,電性連接於該第一直流轉換電路之輸出端; 一變壓電路,電性連接於該第二直流轉換電路之輸出端; 一 第三直流轉換電路,電性連接於該變壓電路之輸出端; 一直流交流轉換電路,電性連接於該第三直流轉換電路之輸出端; 一切換開關,電性連接於該直流交流轉換電路之輸出端及一市電端及負載端; 一電池,電性連接於該第一直流轉換電路及該第二直流轉換電路之間;以及 一控制電路,電性連接於該第一直流轉換電路、該第三直流轉換電路、該電路及該切換開關,該控制電路執行下列步驟: 判斷市電併網型模式,當該市電電壓與輸入之該太陽能板電壓,兩電壓同時存在的情況下,則該控制電路傳送一第一訊號給該切換開關,將該直流交流轉換電路與該市電連結並將該太陽能板的能量反饋給該市電; 判斷非市電併網型模式,當該市電電壓不存在的情況下,則該控制電路將傳送一第二訊號給該切換開關,將該直流交流轉換電路與一負載連結並將該太陽能板的能量反饋給該負載;及 判斷市電充電模式,當該太陽能板沒有能量提供給該電池時,則控制電路傳送該第一控制訊號給該切換開關,將該直流交流轉換電路與該市電連結,又該控制電路控制該直流交流轉換電路與該第二直流轉換電路動作,將該市電能量提供給該電池充電。A hybrid solar energy conversion system, comprising: a first DC conversion circuit for inputting a solar panel voltage; a second DC conversion circuit electrically connected to an output end of the first DC conversion circuit; a voltage circuit electrically connected to the output end of the second DC conversion circuit; a third DC conversion circuit electrically connected to the output end of the transformer circuit; a DC AC conversion circuit electrically connected to the third DC An output end of the conversion circuit; a switch electrically connected to the output end of the DC-AC conversion circuit and a mains terminal and a load end; a battery electrically connected to the first DC conversion circuit and the second DC conversion And a control circuit electrically connected to the first DC conversion circuit, the third DC conversion circuit, the circuit and the switch, the control circuit performing the following steps: determining a grid connection mode of the utility When the mains voltage and the input solar panel voltage and the two voltages exist simultaneously, the control circuit transmits a first signal to the switch, and a DC-to-AC conversion circuit is coupled to the utility power and feeds back energy of the solar panel to the utility power; determining a non-mains grid-connected mode, when the utility voltage does not exist, the control circuit transmits a second signal to the Switching the switch, connecting the DC-to-AC conversion circuit to a load and feeding back energy of the solar panel to the load; and determining a mains charging mode, when the solar panel has no energy to supply the battery, the control circuit transmits the first The control signal is applied to the switch, the DC-to-AC conversion circuit is coupled to the mains, and the control circuit controls the DC-to-AC conversion circuit and the second DC conversion circuit to operate, and the utility energy is supplied to the battery for charging. 如申請專利範圍第1項所述之混合型太陽能轉換系統,其中該第一直流轉換電路為一太陽電池充電控制器。The hybrid solar energy conversion system of claim 1, wherein the first direct current conversion circuit is a solar battery charging controller. 如申請專利範圍第1項所述之混合型太陽能轉換系統,其中該第二直流轉換電路為一最大功率點跟蹤控制器。The hybrid solar energy conversion system of claim 1, wherein the second DC conversion circuit is a maximum power point tracking controller. 如申請專利範圍第1項所述之混合型太陽能轉換系統,其進一步包括一第四直流轉換電路,其係電性連接於該電池,且又電性連接於外加電池。The hybrid solar energy conversion system of claim 1, further comprising a fourth DC conversion circuit electrically connected to the battery and electrically connected to the external battery. 如申請專利範圍第1項所述之混合型太陽能轉換系統,其進一步具有一輔助電力,其電性連接於該第一直流轉換電路之輸入端或該電池之輸出端。The hybrid solar energy conversion system of claim 1, further comprising an auxiliary power electrically connected to an input end of the first direct current conversion circuit or an output end of the battery.
TW106125085A 2017-07-26 2017-07-26 Hybrid solar conversion system TWI625020B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125085A TWI625020B (en) 2017-07-26 2017-07-26 Hybrid solar conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125085A TWI625020B (en) 2017-07-26 2017-07-26 Hybrid solar conversion system

Publications (2)

Publication Number Publication Date
TWI625020B true TWI625020B (en) 2018-05-21
TW201911697A TW201911697A (en) 2019-03-16

Family

ID=62951781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125085A TWI625020B (en) 2017-07-26 2017-07-26 Hybrid solar conversion system

Country Status (1)

Country Link
TW (1) TWI625020B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723852B (en) * 2020-04-23 2021-04-01 映興電子股份有限公司 Solar power system with battery wake-up charging function
CN113629839A (en) * 2020-05-06 2021-11-09 映兴电子股份有限公司 Solar power generation system with battery awakening charging function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201904637U (en) * 2010-12-28 2011-07-20 广东易事特电源股份有限公司 Solar charging control circuit
CN102035238B (en) * 2010-12-28 2012-10-31 广东易事特电源股份有限公司 Solar charging control circuit
TWI524618B (en) * 2011-12-09 2016-03-01 台達電子工業股份有限公司 Power management apparatus and method of controlling the same
CN104242701B (en) * 2013-06-13 2017-06-16 台达电子工业股份有限公司 Switcher for changing DC into AC, micro- inverter and its solar energy system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201904637U (en) * 2010-12-28 2011-07-20 广东易事特电源股份有限公司 Solar charging control circuit
CN102035238B (en) * 2010-12-28 2012-10-31 广东易事特电源股份有限公司 Solar charging control circuit
TWI524618B (en) * 2011-12-09 2016-03-01 台達電子工業股份有限公司 Power management apparatus and method of controlling the same
CN104242701B (en) * 2013-06-13 2017-06-16 台达电子工业股份有限公司 Switcher for changing DC into AC, micro- inverter and its solar energy system

Also Published As

Publication number Publication date
TW201911697A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
Sahoo et al. Review and comparative study of single-stage inverters for a PV system
TWI373900B (en) High efficiency charging circuit and power supplying system
TWI387176B (en) Intelligent hybrid power conversion control system
US10355490B2 (en) Hybrid solar power generation system
CN202978746U (en) Inverter and grid-connected power generation system
CN102163871B (en) Multi-power supply system and method
CN105515167A (en) Uninterruptible power supply UPS device and power supply method thereof
CN101499675A (en) Charging circuit and power supply system
CN102005803A (en) Photovoltaic UPS (Uninterrupted Power Supply) system and control method
CN102082462B (en) Photovoltaic UPS system and control method
TWI625020B (en) Hybrid solar conversion system
CN203660592U (en) Photovoltaic mobile power supply
WO2014079268A1 (en) Bi-directional storing inverter used in grid connected power system
CN204089279U (en) Medical electric source control system
US9450453B2 (en) Uninterruptible power supply system with energy feedback to chargers and sinusoidal output
TWI746097B (en) Power conversion device with dual-mode control
CN101640407A (en) Power supply conversion device and method thereof
CN211830317U (en) Multifunctional power supply system and power supply equipment
CN207447573U (en) A kind of lithium battery inverter welder circuit
CN104269897B (en) Medical power source control system
CN106712156A (en) Multi-energy-converted inversion device and control method thereof
CN201918758U (en) Photovoltaic UPS (Uninterrupted Power Supply) system
CN111313528A (en) Multifunctional power supply system and power supply equipment
CN219918724U (en) Power supply device for energy storage converter control system
CN203219216U (en) Solar energy system including energy optimizing devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees