TWI624090B - Resistive random access memory device and method for manufacturing the same - Google Patents
Resistive random access memory device and method for manufacturing the same Download PDFInfo
- Publication number
- TWI624090B TWI624090B TW106119961A TW106119961A TWI624090B TW I624090 B TWI624090 B TW I624090B TW 106119961 A TW106119961 A TW 106119961A TW 106119961 A TW106119961 A TW 106119961A TW I624090 B TWI624090 B TW I624090B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- access memory
- random access
- resistive random
- memory device
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
一種電阻式隨機存取記憶體裝置,包括一底電極、一電阻轉換層、一頂電極、一金屬層、及一阻擋層。電阻轉換層配置於底電極上。頂電極配置於電阻轉換層上。金屬層配置於頂電極上。阻擋層覆蓋金屬層。其中,阻擋層環繞金屬層及頂電極。 A resistive random access memory device includes a bottom electrode, a resistance conversion layer, a top electrode, a metal layer, and a barrier layer. The resistance conversion layer is disposed on the bottom electrode. The top electrode is disposed on the resistance conversion layer. The metal layer is disposed on the top electrode. The barrier layer covers the metal layer. Wherein, the barrier layer surrounds the metal layer and the top electrode.
Description
本揭露一般是有關於一種電阻式隨機存取記憶體裝置,且特別是有關於一種包括阻擋層的電阻式隨機存取記憶體裝置。 The present disclosure relates generally to a resistive random access memory device, and more particularly to a resistive random access memory device including a barrier layer.
電阻式隨機存取記憶體(Resistive random-access memory,ReRAM)是一種具有稱作「憶阻器(memristor)」(記憶體電阻的縮寫)之元件的記憶體。電阻式隨機存取記憶體的電阻隨著所施加的不同電壓而改變。電阻式隨機存取記憶體裝置則藉由改變憶阻器之電阻來作用,以儲存資料。 Resistive random-access memory (ReRAM) is a memory having an element called a memristor (abbreviation of memory resistance). The resistance of the resistive random access memory varies with the different voltages applied. The resistive random access memory device acts by changing the resistance of the memristor to store data.
在製造電阻式隨機存取記憶體裝置的期間,可進行後端製程(back-end process),例如是形成金屬間介電質層(inter-metal dielectric layer,IMD layer)、金屬層、及保護層(passivation)的製程。然而,這些後段製程可能會產生一些氣體(例如是氫氣(H)、氨氣(NH3)、矽烷(SiH4)而造成電阻式隨機存取記憶體裝置之資料保存上的損失。因此,目前仍須開發一種防止電阻式隨機存取記憶體裝置之資料保存損失的方法,並製造出具有優異結構可靠度的電阻式隨機存取記憶體裝置。 During the manufacture of the resistive random access memory device, a back-end process can be performed, such as forming an inter-metal dielectric layer (IMD layer), a metal layer, and protection. The process of the passivation. However, these latter stages may generate some gas (such as hydrogen (H), ammonia (NH 3 ), silane (SiH 4 ), which causes loss of data storage in the resistive random access memory device. Therefore, currently There is still a need to develop a method for preventing data loss of a resistive random access memory device, and to manufacture a resistive random access memory device having excellent structural reliability.
本揭露係有關於一種電阻式隨機存取記憶體裝置及其製造方法。此電阻式隨機存取記憶體裝置具有一阻擋層,阻擋層覆蓋並環繞金屬層,使得電阻式隨機存取記憶體裝置在進行後端製程(例如是形成金屬間介電質層、金屬層、及保護層的製程)之後能夠具有較低的資料保存損失,並改善電阻式隨機存取記憶體裝置之可靠度。 The present disclosure relates to a resistive random access memory device and a method of fabricating the same. The resistive random access memory device has a barrier layer covering and surrounding the metal layer, so that the resistive random access memory device is performing a back end process (for example, forming an intermetal dielectric layer, a metal layer, And the process of the protective layer) can have a lower data retention loss and improve the reliability of the resistive random access memory device.
根據一實施例,本揭露提供一種電阻式隨機存取記憶體。此電阻式隨機存取記憶體包括一底電極、一電阻轉換層、一頂電極、一金屬層、及一阻擋層。電阻轉換層配置於底電極上。頂電極配置於電阻轉換層上。金屬層配置於頂電極上。阻擋層覆蓋金屬層。其中,阻擋層環繞金屬層及頂電極。 According to an embodiment, the present disclosure provides a resistive random access memory. The resistive random access memory includes a bottom electrode, a resistance conversion layer, a top electrode, a metal layer, and a barrier layer. The resistance conversion layer is disposed on the bottom electrode. The top electrode is disposed on the resistance conversion layer. The metal layer is disposed on the top electrode. The barrier layer covers the metal layer. Wherein, the barrier layer surrounds the metal layer and the top electrode.
根據一實施例,本揭露提供一種電阻式隨機存取記憶體裝置的製造方法。此製造方法包括:形成一開口於一絕緣層中;沉積一導電材料於該開口中;移除位於該開口之上的該導電材料以形成一底電極;形成一電阻轉換層於底電極上;形成一頂電極於電阻轉換層上;形成一金屬層於頂電極上;以及形成一阻擋層覆蓋金屬層,其中阻擋層環繞金屬層及頂電極。 According to an embodiment, the present disclosure provides a method of fabricating a resistive random access memory device. The manufacturing method includes: forming an opening in an insulating layer; depositing a conductive material in the opening; removing the conductive material above the opening to form a bottom electrode; forming a resistance conversion layer on the bottom electrode; Forming a top electrode on the resistance conversion layer; forming a metal layer on the top electrode; and forming a barrier layer covering the metal layer, wherein the barrier layer surrounds the metal layer and the top electrode.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下。然而,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In order to better understand the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings are set forth below. However, the scope of the invention is defined by the scope of the appended claims.
10、20、30‧‧‧電阻式隨機存取記憶體裝置 10, 20, 30‧‧‧Resistive random access memory devices
100‧‧‧基板 100‧‧‧Substrate
101‧‧‧初步結構 101‧‧‧ preliminary structure
110‧‧‧井 110‧‧‧ Well
112‧‧‧輕微摻雜汲極 112‧‧‧Slightly doped bungee
120‧‧‧閘極氧化物結構 120‧‧‧ gate oxide structure
122‧‧‧氧化物層 122‧‧‧Oxide layer
124‧‧‧閘極材料層 124‧‧‧ gate material layer
210‧‧‧介電層 210‧‧‧Dielectric layer
210a‧‧‧頂表面 210a‧‧‧ top surface
220、320‧‧‧導電連接結構 220, 320‧‧‧ conductive connection structure
230‧‧‧絕緣層 230‧‧‧Insulation
240‧‧‧開口 240‧‧‧ openings
250、350、450‧‧‧電阻式隨機存取記憶體單元 250, 350, 450‧‧‧Resistive random access memory cells
252、352、452‧‧‧底電極 252, 352, 452‧‧ ‧ bottom electrode
254、354、454‧‧‧電阻轉換層 254, 354, 454‧‧‧ resistance conversion layer
256、356、456‧‧‧頂電極 256, 356, 456‧ ‧ top electrode
260‧‧‧阻擋層 260‧‧‧Block
2521‧‧‧第一底電極層 2521‧‧‧First bottom electrode layer
2522‧‧‧第二底電極層 2522‧‧‧second bottom electrode layer
2561‧‧‧第一頂電極層 2561‧‧‧First top electrode layer
2562‧‧‧第二頂電極層 2562‧‧‧second top electrode layer
M1‧‧‧金屬層 M1‧‧‧ metal layer
M1a‧‧‧側壁 M1a‧‧‧ side wall
第1圖繪示根據本揭露之一實施例的電阻式隨機存取記憶體裝置的剖面圖。 1 is a cross-sectional view of a resistive random access memory device in accordance with an embodiment of the present disclosure.
第2A至2J圖繪示根據本揭露一實施例之製造電阻式隨機存取記憶體裝置的剖面圖。 2A to 2J are cross-sectional views showing the fabrication of a resistive random access memory device in accordance with an embodiment of the present disclosure.
第3圖繪示根據本揭露之另一實施例的電阻式隨機存取記憶體裝置的剖面圖。 3 is a cross-sectional view of a resistive random access memory device in accordance with another embodiment of the present disclosure.
第4圖繪示根據本揭露之又一實施例的電阻式隨機存取記憶體裝置的剖面圖。 4 is a cross-sectional view of a resistive random access memory device in accordance with still another embodiment of the present disclosure.
本揭露之實施例係用於說明一種電阻式隨機存取式記憶體裝置及其製造方法。此種電阻式隨機存取式記憶體裝置及其製造方法提供一種具有阻擋層的電阻式隨機存取記憶體裝置,阻擋層覆蓋並環繞金屬,以保護電阻式隨機存取記憶體單元,使得電阻式隨機存取記憶體裝置在後端製程(例如是形成金屬間介電質層、金屬層、及保護層的製程)之後能夠具有較低的資料保存損失,並改善電阻式隨機存取記憶體裝置之可靠度。 The embodiments of the present disclosure are for explaining a resistive random access memory device and a method of fabricating the same. The resistive random access memory device and the manufacturing method thereof provide a resistive random access memory device with a barrier layer covering and surrounding the metal to protect the resistive random access memory unit, so that the resistor The random access memory device can have lower data retention loss and improve resistive random access memory after the back end process (for example, the process of forming an intermetal dielectric layer, a metal layer, and a protective layer) The reliability of the device.
以下係參照所附圖式敘述本揭露提出之其中多個實施態樣,以描述相關構型與製造方法。相關的結構細節例如相關層別和空間配置等內容如下面實施例內容所述。然而,本揭露並非僅限於所述態樣,本揭露並非顯示出所有可能的實施例。實施例中相同或類似的標號係用以標示相同或類似之部分。再者,未於本揭露提出的其他 實施態樣也可能可以應用。相關領域者可在不脫離本揭露之精神和範圍內對實施例之結構加以變化與修飾,以符合實際應用所需。而圖式係已簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。 Hereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings to describe the related configurations and manufacturing methods. Relevant structural details such as related layers and spatial configurations are as described in the following examples. However, the disclosure is not limited to the described aspects, and the disclosure does not show all possible embodiments. The same or similar reference numerals in the embodiments are used to designate the same or similar parts. Furthermore, other than those disclosed in this disclosure Implementation aspects may also be applicable. Variations and modifications of the structure of the embodiments can be made in the relevant embodiments without departing from the spirit and scope of the disclosure. The drawings have been simplified to clearly illustrate the contents of the embodiments, and the dimensional ratios in the drawings are not drawn to scale in terms of actual products. Therefore, the description and illustration are for illustrative purposes only and are not intended to be limiting.
再者,說明書與請求項中所使用的序數例如”第一”、”第二”、”第三”等之用詞,以修飾請求項之元件,其本身並不意含及代表該請求元件有任何之前的序數,也不代表某一請求元件與另一請求元件的順序、或是製造方法上的順序,該些序數的使用僅用來使具有某命名的一請求元件得以和另一具有相同命名的請求元件能作出清楚區分。 Furthermore, the terms used in the specification and the claims, such as "first", "second", "third" and the like, are used to modify the elements of the claim, which are not intended to be Any previous ordinal does not represent the order of a request element and another request element, or the order of the manufacturing method. The use of these ordinals is only used to make one request element with a certain name the same as the other. Named request elements can make a clear distinction.
第1圖繪示根據本揭露之一實施例的電阻式隨機存取記憶體裝置的剖面圖。 1 is a cross-sectional view of a resistive random access memory device in accordance with an embodiment of the present disclosure.
請參照第1圖,電阻式隨機存取記憶體裝置10包括一基板100、一介電層210(例如是層間介電質(inter-layer dielectric(ILD))、一導電連接結構220、一絕緣層230、一底電極252、一電阻轉換層254、一頂電極256、一金屬層M1、及一阻擋層260。導電連接結構220配置於基板100上且穿過介電層210。絕緣層230配置於介電層210與導電連接結構220上。底電極252配置於基板100之上及導電連接結構220上。電阻轉換層254配置於底電極252上。頂電極256配置於電阻轉換層254上。金屬層M1配置於頂電極256上。阻擋層260覆蓋金屬層M1。底電極252、電阻轉換層254及頂電極256形成一電阻式隨機存取記憶體單元250。 Referring to FIG. 1 , the resistive random access memory device 10 includes a substrate 100 , a dielectric layer 210 (eg, an inter-layer dielectric (ILD)), a conductive connection structure 220 , and an insulating layer. The layer 230, a bottom electrode 252, a resistive conversion layer 254, a top electrode 256, a metal layer M1, and a barrier layer 260. The conductive connection structure 220 is disposed on the substrate 100 and passes through the dielectric layer 210. The insulating layer 230 The bottom electrode 252 is disposed on the substrate 100 and the conductive connection structure 220. The resistance conversion layer 254 is disposed on the bottom electrode 252. The top electrode 256 is disposed on the resistance conversion layer 254. The metal layer M1 is disposed on the top electrode 256. The barrier layer 260 covers the metal layer M1. The bottom electrode 252, the resistance conversion layer 254, and the top electrode 256 form a resistive random access memory unit 250.
在本實施例中,阻擋層260環繞絕緣層230、底電極252、電阻轉換層254、頂電極256及金屬層M1,且阻擋層260接觸於絕緣層230的一側壁、頂電極256之一側壁以及金屬層M1的一側壁M1a。介電層210具有一頂表面210a,且阻擋層260連續性地覆蓋頂表面210a、絕緣層230、頂電極256及金屬層M1。底電極252及電阻轉換層254係配置於絕緣層230的開口240中(如第2C圖所示)。 In this embodiment, the barrier layer 260 surrounds the insulating layer 230, the bottom electrode 252, the resistance conversion layer 254, the top electrode 256, and the metal layer M1, and the barrier layer 260 contacts one sidewall of the insulating layer 230 and one sidewall of the top electrode 256. And a side wall M1a of the metal layer M1. The dielectric layer 210 has a top surface 210a, and the barrier layer 260 continuously covers the top surface 210a, the insulating layer 230, the top electrode 256, and the metal layer M1. The bottom electrode 252 and the resistance conversion layer 254 are disposed in the opening 240 of the insulating layer 230 (as shown in FIG. 2C).
在一些實施例中,基板100可由含矽氧化物或其他適合用於基板的材料所形成。井110與輕微摻雜汲極(lightly doped drain implant,LDD)112可形成於基板100中。井110可以是一P型摻雜井或一N型摻雜井,且可以是一源極或一汲極。閘極氧化物結構120可形成於基板100上。閘極氧化物結構120可包括一氧化物層122及一閘極材料層124。閘極材料層124可由多晶矽所形成。間隙物(spacer)(未繪示)可形成於閘極氧化物結構120的側壁上。場氧化物層(未繪示)可形成於基板100上。 In some embodiments, substrate 100 may be formed of a cerium-containing oxide or other material suitable for use in a substrate. A well 110 and a lightly doped drain implant (LDD) 112 may be formed in the substrate 100. Well 110 can be a P-type doped well or an N-type doped well and can be a source or a drain. The gate oxide structure 120 may be formed on the substrate 100. The gate oxide structure 120 can include an oxide layer 122 and a gate material layer 124. The gate material layer 124 can be formed of polysilicon. A spacer (not shown) may be formed on the sidewall of the gate oxide structure 120. A field oxide layer (not shown) may be formed on the substrate 100.
在一些實施例中,介電層210可為多層,例如是由未摻雜的矽玻璃(Undoped Silicate Glass,USG)、磷摻雜的矽玻璃(phosphosilicate glass(PSG)、氮化矽層(SiN layer)、及四乙氧基矽烷(tetraethoxysilane,TEOS)所形成的多層。絕緣層230可由介電材料所形成,且厚度的範圍在200埃(angstrom)至2000埃之間。在本實施例中,絕緣層230是由氧化物所形成,且厚度為1000埃。 In some embodiments, the dielectric layer 210 can be a plurality of layers, such as Undoped Silicate Glass (USG), Phosphorus-doped Phosphorus Glass (PSG), and Tantalum Nitride Layer (SiN). A layer formed of a layer and a tetraethoxysilane (TEOS). The insulating layer 230 may be formed of a dielectric material and has a thickness ranging from 200 angstroms to 2000 angstroms. In this embodiment The insulating layer 230 is formed of an oxide and has a thickness of 1000 angstroms.
在一些實施例中,導電連接結構220可以是單層結構或雙層結構。導電連接結構220可由金屬所形成,例如是鎢(W)、氮化鈦(TiN)或其之組合。 In some embodiments, the electrically conductive connection structure 220 can be a single layer structure or a two layer structure. The conductive connection structure 220 may be formed of a metal such as tungsten (W), titanium nitride (TiN), or a combination thereof.
在一些實施例中,底電極252可包括(但不限定於)鎢(W)、銅(Cu)、鐵(Fe)、鈦(Ti)、鎳(Ni)、鉿(Hf)、氮化鈦(TiN)、氮化鉭(TaN)、及其他可應用之材料。底電極252可以是單層結構或雙層結構,例如是由鎢(W)及氮化鈦(TiN)所形成的雙層結構。底電極252的厚度可以是在200埃至2000埃的範圍中。在本實施例中,底電極252的厚度為1000埃。在本實施例中,底電極252是形成於介電層210之頂表面210a之上,且接觸於導電連接結構220。 In some embodiments, the bottom electrode 252 can include, but is not limited to, tungsten (W), copper (Cu), iron (Fe), titanium (Ti), nickel (Ni), hafnium (Hf), titanium nitride. (TiN), tantalum nitride (TaN), and other applicable materials. The bottom electrode 252 may be a single layer structure or a two layer structure, for example, a two-layer structure formed of tungsten (W) and titanium nitride (TiN). The thickness of the bottom electrode 252 may be in the range of 200 angstroms to 2000 angstroms. In the present embodiment, the bottom electrode 252 has a thickness of 1000 angstroms. In the present embodiment, the bottom electrode 252 is formed on the top surface 210a of the dielectric layer 210 and is in contact with the conductive connection structure 220.
電阻轉換層254可包括選自於氮化鈦(TiN)、氧化鎢(WOX)、氧化鉭(Ta2O5)、氧化鉿(HfO2)、二氧化矽(SiO2)的材料。電阻轉換層254的材料並不限定於此,而可以是任何其他適於作為電阻式隨機存取記憶體裝置之電阻轉換層的材料。底電極252及導電連接結構220可包括相同的材料。 The resistance conversion layer 254 may include a material selected from the group consisting of titanium nitride (TiN), tungsten oxide (WO X ), tantalum oxide (Ta 2 O 5 ), hafnium oxide (HfO 2 ), and hafnium oxide (SiO 2 ). The material of the resistance conversion layer 254 is not limited thereto, and may be any other material suitable as a resistance conversion layer of a resistive random access memory device. The bottom electrode 252 and the conductive connection structure 220 may comprise the same material.
在一些實施例中,頂電極256可以是單層結構或多層結構。例如,頂電極256可以是由氮化鈦(TiN)及鈦(Ti)所形成的雙層結構。 In some embodiments, the top electrode 256 can be a single layer structure or a multilayer structure. For example, the top electrode 256 may be a two-layer structure formed of titanium nitride (TiN) and titanium (Ti).
在一些實施例中,金屬層M1的材料可以是任何的金屬材料,例如是鋁(Al)、銅(Cu)。 In some embodiments, the material of the metal layer M1 may be any metal material such as aluminum (Al) or copper (Cu).
在一些實施例中,阻擋層260可包括一氮氧化物材料,例如是氮氧化矽(SiON)、氮氧化鈦(TiON)或氮氧化鈦矽(TiSiON)。阻 擋層260的厚度可以是在50埃至1000埃的範圍中。在本實施例中,阻擋層260是由氮氧化矽(SiON)所形成,且厚度為500埃。 In some embodiments, the barrier layer 260 can comprise an oxynitride material such as bismuth oxynitride (SiON), titanium oxynitride (TiON) or strontium titanium oxide (TiSiON). Resistance The thickness of the barrier layer 260 can be in the range of 50 angstroms to 1000 angstroms. In the present embodiment, the barrier layer 260 is formed of bismuth oxynitride (SiON) and has a thickness of 500 angstroms.
在一些實施例中,電阻式隨機快取記憶體裝置10可包括配置於介電層210之上之1個或大於1個的介電層(例如是金屬間介電質層(IMD layer),且保護層可形成於介電層210及金屬層間介電質層之上(未繪示)。金屬層間介電質層可覆蓋阻擋層260,且層間連接點(via)可形成於金屬層M1之上並穿透一部分的阻擋層260(未繪示)。 In some embodiments, the resistive random access memory device 10 can include one or more than one dielectric layer (eg, an inter-metal dielectric layer (IMD layer)) disposed over the dielectric layer 210. The protective layer may be formed on the dielectric layer 210 and the inter-metal dielectric layer (not shown). The inter-metal dielectric layer may cover the barrier layer 260, and interlayer vias may be formed on the metal layer M1. A portion of the barrier layer 260 (not shown) is penetrated and penetrated.
在一些實施例中,電阻式隨機存取記憶體單元250可形成於配置於金屬層M1上的層間連接點上,而非配置於導電連接結構220上,阻擋層260可覆蓋並接觸於其他配置於層間連接點之上的金屬層上,而非覆蓋並接觸於介電層210(未繪示)。亦即,阻擋層260可環繞位於層間連接點之上的金屬層及電阻式隨機存取記憶體單元(未繪示)。 In some embodiments, the resistive random access memory cell 250 can be formed on the interlayer connection point disposed on the metal layer M1 instead of the conductive connection structure 220, and the barrier layer 260 can cover and contact other configurations. On the metal layer above the interlayer connection point, instead of covering and contacting the dielectric layer 210 (not shown). That is, the barrier layer 260 can surround the metal layer and the resistive random access memory cell (not shown) located above the connection point between the layers.
由於阻擋層260連續性地覆蓋介電層210的頂表面210a及金屬層M1,亦環繞頂電極256及金屬層M1,電阻式隨機存取記憶體單元250可受到完善的保護,可免於受到後端製程(例如是形成金屬間介電質層、金屬層、及保護層的製程)所產生的氣體(例如是氫氣(H)、氨氣(NH3)、矽烷(SiH4)的影響。由於本揭露的阻擋層260是直接形成於金屬層M1上且環繞頂電極256及金屬層M1,阻擋層260並非是形成於金屬層M1與頂電極256之間,故不需要在金屬層M1與頂電極256之間形成另外的導電結構。因此,本揭露之製程方法相較於將阻擋層形成在金屬層及頂電極之間的比較例而言,顯得更為簡單及快速。 Since the barrier layer 260 continuously covers the top surface 210a and the metal layer M1 of the dielectric layer 210, and also surrounds the top electrode 256 and the metal layer M1, the resistive random access memory unit 250 can be fully protected from being protected from The gas generated by the back end process (for example, a process for forming an inter-metal dielectric layer, a metal layer, and a protective layer) (for example, hydrogen (H), ammonia (NH 3 ), and decane (SiH 4 ). Since the barrier layer 260 of the present disclosure is formed directly on the metal layer M1 and surrounds the top electrode 256 and the metal layer M1, the barrier layer 260 is not formed between the metal layer M1 and the top electrode 256, so the metal layer M1 is not required. An additional conductive structure is formed between the top electrodes 256. Therefore, the process of the present disclosure is simpler and faster than the comparative example in which the barrier layer is formed between the metal layer and the top electrode.
第2A至2J圖繪示根據本揭露一實施例之製造電阻式隨機存取記憶體裝置10的剖面圖。 2A to 2J are cross-sectional views showing the fabrication of the resistive random access memory device 10 in accordance with an embodiment of the present disclosure.
請參照第2A圖,提供一初步結構101。初步結構101可藉由習知的金氧半導體製程(CMOS process)中之前端製程(front-end process)所形成。初步結構101可包括一基板100、形成於基板100中的一井110、形成於基板100中的一輕微摻雜汲極112、形成於基板100上的閘極氧化物結構120、形成於基板100上的一介電層210(例如是層間介電層)、及一導電連接結構220。導電連接結構220形成於基板100上且穿過介電層210。閘極氧化物結構120可包括一氧化物層122及一閘極材料層124。閘極材料層124可由多晶矽所形成。間隙物(spacer)(未繪示)可形成於閘極氧化物結構120的側壁上。場氧化物層(未繪示)可形成於基板100上。導電連接結構220對應於形成在基板100中的井110。可藉由進行一化學機械研磨(Chemical Mechanical Polishing,CMP)製程暴露介電層210的頂表面210a及導電連接結構220。 Please refer to FIG. 2A to provide a preliminary structure 101. The preliminary structure 101 can be formed by a front-end process in a conventional CMOS process. The preliminary structure 101 may include a substrate 100, a well 110 formed in the substrate 100, a slightly doped gate 112 formed in the substrate 100, a gate oxide structure 120 formed on the substrate 100, and formed on the substrate 100. A dielectric layer 210 (eg, an interlayer dielectric layer) and a conductive connection structure 220 are disposed. The conductive connection structure 220 is formed on the substrate 100 and passes through the dielectric layer 210. The gate oxide structure 120 can include an oxide layer 122 and a gate material layer 124. The gate material layer 124 can be formed of polysilicon. A spacer (not shown) may be formed on the sidewall of the gate oxide structure 120. A field oxide layer (not shown) may be formed on the substrate 100. The conductive connection structure 220 corresponds to the well 110 formed in the substrate 100. The top surface 210a of the dielectric layer 210 and the conductive connection structure 220 may be exposed by performing a chemical mechanical polishing (CMP) process.
請參照第2B圖,絕緣層230可藉由一沉積製程(例如是電漿輔助化學氣相沉積(Plasma-Enhanced Chemical Vapor Deposition,PECVD)、化學氣相沉積(Chemical Vapor Deposition,CVD))形成於介電層210及導電連接結構220上。絕緣層230的材料可以是由介電材料所形成,且厚度的範圍可以是在200埃至2000埃。在本揭露中,絕緣層230是由氧化物所形成,且厚度為1000埃。 Referring to FIG. 2B, the insulating layer 230 can be formed by a deposition process (for example, Plasma-Enhanced Chemical Vapor Deposition (PECVD), Chemical Vapor Deposition (CVD)). The dielectric layer 210 and the conductive connection structure 220. The material of the insulating layer 230 may be formed of a dielectric material and may have a thickness ranging from 200 angstroms to 2000 angstroms. In the present disclosure, the insulating layer 230 is formed of an oxide and has a thickness of 1000 angstroms.
請參照第2C圖,藉由一蝕刻製程(例如是一乾蝕刻製程)形成開口240於絕緣層230中。開口240暴露一部分的導電連接結構220,並定義用於形成底電極252的區域。開口240的寬度是小於導電連接結構220的寬度。 Referring to FIG. 2C, an opening 240 is formed in the insulating layer 230 by an etching process (for example, a dry etching process). The opening 240 exposes a portion of the conductive connection structure 220 and defines a region for forming the bottom electrode 252. The width of the opening 240 is less than the width of the conductive connection structure 220.
請參照第2D圖,形成一第一底電極層2521及一第二底電極層2522於絕緣層230上及開口240中。第一底電極層2521及一第二底電極層2522可藉由沉積一導電材料於絕緣層230上及開口240中所形成。在一實施例中,第一底電極層2521的材料可以是鈦(Ti)或氮化鈦(TiN),第二底電極層2522的材料可以包括(但非限定於)鎢(W)、銅(Cu)、鐵(Fe)、鈦(Ti)、鎳(Ni)、鉿(Hf)、氮化鈦(TiN)、氮化鉭(TaN)、及其他可應用之材料。第一底電極層2521的厚度可以是在10埃至200埃的範圍中。第二底電極層2522的厚度可以是在1000至3000埃的範圍中。在本實施例中,第一底電極層2521的厚度為25埃,且第二底電極層2522的厚度為2500埃。 Referring to FIG. 2D, a first bottom electrode layer 2521 and a second bottom electrode layer 2522 are formed on the insulating layer 230 and in the opening 240. The first bottom electrode layer 2521 and the second bottom electrode layer 2522 can be formed by depositing a conductive material on the insulating layer 230 and in the opening 240. In an embodiment, the material of the first bottom electrode layer 2521 may be titanium (Ti) or titanium nitride (TiN), and the material of the second bottom electrode layer 2522 may include, but is not limited to, tungsten (W), copper. (Cu), iron (Fe), titanium (Ti), nickel (Ni), hafnium (Hf), titanium nitride (TiN), tantalum nitride (TaN), and other applicable materials. The thickness of the first bottom electrode layer 2521 may be in the range of 10 angstroms to 200 angstroms. The thickness of the second bottom electrode layer 2522 may be in the range of 1000 to 3000 angstroms. In the present embodiment, the thickness of the first bottom electrode layer 2521 is 25 angstroms, and the thickness of the second bottom electrode layer 2522 is 2500 angstroms.
請參照第2E圖,藉由機械研磨法移除一部分的第一底電極層2521及第二底電極層2522,將位於開口240之上的導電材料移除。亦即,位於開口240之上的第一底電極層2521及第二底電極層2522是被完全地移除。接著,在開口240中形成穿過絕緣層230且接觸導電連接結構220之包括第一底電極層2521及第二底電極層2522的底電極252。 Referring to FIG. 2E, a portion of the first bottom electrode layer 2521 and the second bottom electrode layer 2522 are removed by mechanical grinding to remove the conductive material located above the opening 240. That is, the first bottom electrode layer 2521 and the second bottom electrode layer 2522 located above the opening 240 are completely removed. Next, a bottom electrode 252 including the first bottom electrode layer 2521 and the second bottom electrode layer 2522 passing through the insulating layer 230 and contacting the conductive connection structure 220 is formed in the opening 240.
請參照第2F圖,接著藉由對於底電極252進行氧化製程而形成一電阻轉換層254。在一些實施例中,氧化製程是藉由一電漿 氧化製程所進行。電阻轉換層254可包括選自於氮化鈦(TiN)、氧化鎢(WOX)、氧化鉭(Ta2O5)、氧化鉿(HfO2)、二氧化矽(SiO2)的材料。在本實施例中,電阻轉換層254是由氧化鎢(WOX)所形成。 Referring to FIG. 2F, a resistance conversion layer 254 is formed by performing an oxidation process on the bottom electrode 252. In some embodiments, the oxidation process is performed by a plasma oxidation process. The resistance conversion layer 254 may include a material selected from the group consisting of titanium nitride (TiN), tungsten oxide (WO X ), tantalum oxide (Ta 2 O 5 ), hafnium oxide (HfO 2 ), and hafnium oxide (SiO 2 ). In the present embodiment, the resistance conversion layer 254 is formed of tungsten oxide (WO X ).
請參照第2G圖,藉由一沉積製程依序形成第一頂電極層2561及第二頂電極層2562於絕緣層230上。第一頂電極層2561可由鈦(Ti)所形成,且厚度是在10埃至100埃的範圍中。第二頂電極層2562可由氮化鈦(TiN)所形成,且厚度是在100埃至1000埃的範圍中。 Referring to FIG. 2G, the first top electrode layer 2561 and the second top electrode layer 2562 are sequentially formed on the insulating layer 230 by a deposition process. The first top electrode layer 2561 may be formed of titanium (Ti) and has a thickness in the range of 10 angstroms to 100 angstroms. The second top electrode layer 2562 may be formed of titanium nitride (TiN) and has a thickness in the range of 100 angstroms to 1000 angstroms.
請參照第2H圖,藉由一蝕刻製程(例如是一乾蝕刻製程)移除一部分的絕緣層230、第一頂電極層2561及第二頂電極層2562,以便形成包括第一頂電極層2561及第二頂電極層2562的頂電極256。第一頂電極層2561可作為電阻轉換層254及第二頂電極層2562之間之緩衝層(buffer layer)。在蝕刻製程之後,絕緣層230的剩餘部分可覆蓋一部分的介電層210之頂表面210a以及導電連接結構220,且絕緣層230之側壁可對齊於頂電極256之側壁。如此一來,即形成包括底電極252、電阻轉換層254、及頂電極256的電阻式隨機存取記憶體單元250。頂電極256係示範性地繪示為雙層結構,然頂電極256的結構並不限於此。 Referring to FIG. 2H, a portion of the insulating layer 230, the first top electrode layer 2561 and the second top electrode layer 2562 are removed by an etching process (for example, a dry etching process) to form the first top electrode layer 2561 and The top electrode 256 of the second top electrode layer 2562. The first top electrode layer 2561 can serve as a buffer layer between the resistance conversion layer 254 and the second top electrode layer 2562. After the etching process, the remaining portion of the insulating layer 230 may cover a portion of the top surface 210a of the dielectric layer 210 and the conductive connection structure 220, and the sidewalls of the insulating layer 230 may be aligned with the sidewalls of the top electrode 256. As a result, the resistive random access memory cell 250 including the bottom electrode 252, the resistance conversion layer 254, and the top electrode 256 is formed. The top electrode 256 is exemplarily illustrated as a two-layer structure, and the structure of the top electrode 256 is not limited thereto.
請參照第2I圖,形成金屬層M1於導電連接結構220及頂電極256上。接著,藉由一蝕刻製程形成對應於導電連接結構220的金屬層M1。金屬層M1的一側壁M1a對齊於頂電極256的側壁及絕緣層230的側壁。金屬層M1的材料可以是任何的金屬材料,例如是鋁(Al)、銅(Cu)。 Referring to FIG. 2I, a metal layer M1 is formed on the conductive connection structure 220 and the top electrode 256. Next, a metal layer M1 corresponding to the conductive connection structure 220 is formed by an etching process. A side wall M1a of the metal layer M1 is aligned with the sidewall of the top electrode 256 and the sidewall of the insulating layer 230. The material of the metal layer M1 may be any metal material such as aluminum (Al) or copper (Cu).
請參照第2J圖,藉由一沉積製程形成阻擋層260,阻擋層260覆蓋介電層210的頂表面210a、絕緣層230、電阻式隨機存取記憶體單元250及金屬層M1。在一些實施例中,阻擋層260可包括一氮氧化物材料,例如是氮氧化矽(SiON)、氮氧化鈦(TiON)或氮氧化鈦矽(TiSiON)。阻擋層260的厚度可以是在50埃至1000埃的範圍中。在本實施例中,阻擋層260是由氮氧化矽(SiON)所形成,且厚度為500埃。如此一來,即形成根據本揭露之一實施例的電阻式隨機存取記憶體裝置10。 Referring to FIG. 2J, the barrier layer 260 is formed by a deposition process. The barrier layer 260 covers the top surface 210a of the dielectric layer 210, the insulating layer 230, the resistive random access memory cell 250, and the metal layer M1. In some embodiments, the barrier layer 260 can comprise an oxynitride material such as bismuth oxynitride (SiON), titanium oxynitride (TiON) or strontium titanium oxide (TiSiON). The thickness of the barrier layer 260 may range from 50 angstroms to 1000 angstroms. In the present embodiment, the barrier layer 260 is formed of bismuth oxynitride (SiON) and has a thickness of 500 angstroms. As such, the resistive random access memory device 10 according to an embodiment of the present disclosure is formed.
第3圖繪示根據本揭露之另一實施例的電阻式隨機存取記憶體裝置20的剖面圖。請同時參照第1圖。再者,第3圖和第1圖中相同和/或相似元件係沿用相同和/或相似標號,且相同元件/層的構型、製法與各層功能在此不再贅述。 FIG. 3 is a cross-sectional view of a resistive random access memory device 20 in accordance with another embodiment of the present disclosure. Please also refer to Figure 1. In the drawings, the same and/or similar elements are denoted by the same and/or the same reference numerals, and the configuration, the manufacturing method and the functions of the layers of the same elements/layers are not described herein again.
請參照第3圖,可藉由不同的沉積製程形成具有相同材料及寬度的底電極352與導電連接結構320。或者,可藉由相同的製程形成結構實質上相同的底電極352及導電連接結構320。底電極352可形成於介電材料210的一開口中,且可藉由對於底電極352進行一氧化製程形成電阻轉換層354。底電極352及電阻轉換層354可形成於頂表面210a之下。頂電極356可形成於一部分的頂表面210a及電阻轉換層354上。如此一來,可在導電連接結構320上形成包括底電極352、電阻轉換層354及頂電極356的電阻式隨機存取記憶體單元350。金屬層M1配置於頂電極356上。阻擋層260連續性地覆蓋頂表面210a及金屬 層M1,並環繞金屬層M1及頂電極356。阻擋層260亦接觸頂電極356之側壁及金屬層M1之側壁M1a。 Referring to FIG. 3, the bottom electrode 352 and the conductive connection structure 320 having the same material and width can be formed by different deposition processes. Alternatively, the bottom electrode 352 and the conductive connection structure 320 having substantially the same structure may be formed by the same process. The bottom electrode 352 can be formed in an opening of the dielectric material 210, and the resistance conversion layer 354 can be formed by performing an oxidation process on the bottom electrode 352. The bottom electrode 352 and the resistance conversion layer 354 may be formed under the top surface 210a. The top electrode 356 may be formed on a portion of the top surface 210a and the resistance conversion layer 354. As such, a resistive random access memory cell 350 including a bottom electrode 352, a resistance conversion layer 354, and a top electrode 356 can be formed on the conductive connection structure 320. The metal layer M1 is disposed on the top electrode 356. The barrier layer 260 continuously covers the top surface 210a and the metal Layer M1 surrounds metal layer M1 and top electrode 356. The barrier layer 260 also contacts the sidewall of the top electrode 356 and the sidewall M1a of the metal layer M1.
第4圖繪示根據本揭露之又一實施例的電阻式隨機存取記憶體裝置30的剖面圖。請同時參照第1圖。再者,第4圖和第1圖中相同和/或相似元件係沿用相同和/或相似標號,且相同元件/層的構型、製法與各層功能在此不再贅述。 4 is a cross-sectional view of a resistive random access memory device 30 in accordance with yet another embodiment of the present disclosure. Please also refer to Figure 1. Furthermore, the same and/or similar elements in the fourth and the first drawings are given the same and/or similar reference numerals, and the configuration, the manufacturing method and the functions of the layers of the same elements/layers are not described herein again.
請參照第4圖,底電極452並非是形成於介電層上之絕緣層的開口中,而是直接形成於頂表面210a及導電連接結構220上。介電層210之頂表面210a上可能沒有剩餘的絕緣層,且底電極452覆蓋並接觸於一部分的頂表面210a及導電連接結構220。底電極452之寬度大於導電連接結構220之寬度。電阻轉換層454配置於底電極452上,且頂電極456配置於電阻轉換層454。如此一來,即在導電連接結構220上形成包括底電極452、電阻轉換層454及頂電極456的電阻式隨機存取記憶體單元450。金屬層M1配置於頂電極456上。阻擋層260是連續性地覆蓋頂表面210a及金屬層M1,並環繞金屬層M1及電阻式隨機存取記憶體單元450。並且,阻擋層260接觸於底電極452之側壁、電阻轉換層454之側壁、頂電極456之側壁及金屬層M1之側壁M1a。 Referring to FIG. 4, the bottom electrode 452 is not formed in the opening of the insulating layer formed on the dielectric layer, but is formed directly on the top surface 210a and the conductive connection structure 220. There may be no remaining insulating layer on the top surface 210a of the dielectric layer 210, and the bottom electrode 452 covers and contacts a portion of the top surface 210a and the conductive connection structure 220. The width of the bottom electrode 452 is greater than the width of the conductive connection structure 220. The resistance conversion layer 454 is disposed on the bottom electrode 452, and the top electrode 456 is disposed on the resistance conversion layer 454. As a result, a resistive random access memory cell 450 including a bottom electrode 452, a resistance conversion layer 454, and a top electrode 456 is formed on the conductive connection structure 220. The metal layer M1 is disposed on the top electrode 456. The barrier layer 260 continuously covers the top surface 210a and the metal layer M1, and surrounds the metal layer M1 and the resistive random access memory unit 450. Moreover, the barrier layer 260 is in contact with the sidewall of the bottom electrode 452, the sidewall of the resistance conversion layer 454, the sidewall of the top electrode 456, and the sidewall M1a of the metal layer M1.
根據上文的敘述,阻擋層覆蓋金屬層,且環繞頂電極及金屬層,使得電阻式隨機存取記憶體單元可受到完善的保護,可免於受到後端製程(例如是形成金屬間介電質層、金屬層、及保護層的製程)所產生的氣體(例如是氫氣(H)、氨氣(NH3)、矽烷(SiH4)的影響。藉由在形成金屬層之後才形成阻擋層,阻擋層可直接形成於金屬層上。亦 即,金屬層與頂電極之間的電性連接可不受到阻擋層的中斷,而不需要在金屬層與頂電極之間形成另外的導電結構,故本揭露之製程方法相較於將阻擋層形成在金屬層及頂電極之間的比較例而言,顯得更為簡單及快速。因此,本揭露之電阻式隨機存取記憶體裝置可具有較低的資料保存損失,並具備較佳的電阻式隨機存取記憶體可靠度,且本揭露之電阻式隨機存取記憶體裝置的製造方法可花費較低的成本及時間。 According to the above description, the barrier layer covers the metal layer and surrounds the top electrode and the metal layer, so that the resistive random access memory cell can be perfectly protected from the back end process (for example, forming an intermetal dielectric) The gas generated by the process of the metal layer, the metal layer, and the protective layer (for example, hydrogen (H), ammonia (NH 3 ), decane (SiH 4 )). The barrier layer is formed after the metal layer is formed. The barrier layer can be formed directly on the metal layer. That is, the electrical connection between the metal layer and the top electrode can be interrupted by the barrier layer without forming an additional conductive structure between the metal layer and the top electrode. The process method of the present disclosure is simpler and faster than the comparative example in which the barrier layer is formed between the metal layer and the top electrode. Therefore, the resistive random access memory device of the present disclosure can have a lower The data storage loss and the better resistive random access memory reliability, and the manufacturing method of the resistive random access memory device of the present disclosure can be low in cost and time.
其他實施例,例如元件的已知構件有不同的設置與排列等,亦可能可以應用,係視應用時之實際需求與條件而可作適當的調整或變化。因此,說明書與圖式中所示之結構僅作說明之用,並非用以限制本揭露欲保護之範圍。另外,相關技藝者當知,實施例中構成部件的形狀和位置亦並不限於圖示所繪之態樣,亦是根據實際應用時之需求和/或製造步驟在不悖離本揭露之精神的情況下而可作相應調整。 Other embodiments, such as known components of components, may have different arrangements and arrangements, and may be applied, depending on the actual needs and conditions of the application, and may be appropriately adjusted or changed. Therefore, the structures shown in the specification and drawings are for illustrative purposes only and are not intended to limit the scope of the disclosure. In addition, it is to be understood by those skilled in the art that the shapes and positions of the components in the embodiments are not limited to those illustrated in the drawings, and the requirements and/or manufacturing steps according to actual applications are not deviated from the spirit of the disclosure. In the case of the situation can be adjusted accordingly.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106119961A TWI624090B (en) | 2017-06-15 | 2017-06-15 | Resistive random access memory device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106119961A TWI624090B (en) | 2017-06-15 | 2017-06-15 | Resistive random access memory device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI624090B true TWI624090B (en) | 2018-05-11 |
TW201906206A TW201906206A (en) | 2019-02-01 |
Family
ID=62951707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106119961A TWI624090B (en) | 2017-06-15 | 2017-06-15 | Resistive random access memory device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI624090B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201613153A (en) * | 2014-09-24 | 2016-04-01 | Winbond Electronics Corp | Resistive random access memory device and method for fabricating the same |
TW201705450A (en) * | 2015-07-28 | 2017-02-01 | 台灣積體電路製造股份有限公司 | Dummy bottom electrode in interconnect to reduce CMP dishing |
TW201717317A (en) * | 2015-11-13 | 2017-05-16 | 台灣積體電路製造股份有限公司 | Integrated chip and method of forming the same |
-
2017
- 2017-06-15 TW TW106119961A patent/TWI624090B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201613153A (en) * | 2014-09-24 | 2016-04-01 | Winbond Electronics Corp | Resistive random access memory device and method for fabricating the same |
TW201705450A (en) * | 2015-07-28 | 2017-02-01 | 台灣積體電路製造股份有限公司 | Dummy bottom electrode in interconnect to reduce CMP dishing |
TW201717317A (en) * | 2015-11-13 | 2017-05-16 | 台灣積體電路製造股份有限公司 | Integrated chip and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
TW201906206A (en) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108336022B (en) | Interconnection structure of semiconductor device | |
US7348617B2 (en) | Semiconductor device | |
KR102247015B1 (en) | Semiconductor device including a capacitor and method of fabricating the same | |
US11594594B2 (en) | Semiconductor device and method for fabricating the same | |
TWI635578B (en) | Methods of fabricating an f-ram | |
CN109560194B (en) | Semiconductor device and method for manufacturing the same | |
US8445991B2 (en) | Semiconductor device with MIM capacitor and method for manufacturing the same | |
CN109817620B (en) | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers | |
US20160225986A1 (en) | Resistive random access memory structure and method for forming the same | |
JP2006222389A (en) | Semiconductor storage device and manufacturing method thereof | |
US10158068B1 (en) | Resistive random access memory device and method for manufacturing the same | |
US7132709B2 (en) | Semiconductor device including a capacitor having a capacitive insulating film of an insulating metal oxide | |
JP2009200154A (en) | Semiconductor device and manufacturing method thereof | |
TWI795992B (en) | Semiconductor device | |
TWI624090B (en) | Resistive random access memory device and method for manufacturing the same | |
CN109148682A (en) | Resistive random access memory and its manufacturing method | |
US9543152B2 (en) | MIM capacitors for leakage current improvement | |
US20180130871A1 (en) | Capacitor structure and manufacturing method thereof | |
US11101179B2 (en) | Semiconductor structure with protection portions and method for forming the same | |
US20090095993A1 (en) | Semiconductor memory device and fabricating method for semiconductor memory device | |
TWI641084B (en) | Semiconductor device and method for manufacturing the same | |
TWI642143B (en) | Resistive random access memory device and method for manufacturing the same | |
KR20150092581A (en) | Wiring structure and method of forming the same | |
TWI823534B (en) | Integrated chip structure and forming method thereof | |
US20240321940A1 (en) | Semiconductor device |