TWI621242B - Aluminum nitride (ain) devices with infrared absorption structural layer - Google Patents
Aluminum nitride (ain) devices with infrared absorption structural layer Download PDFInfo
- Publication number
- TWI621242B TWI621242B TW103132242A TW103132242A TWI621242B TW I621242 B TWI621242 B TW I621242B TW 103132242 A TW103132242 A TW 103132242A TW 103132242 A TW103132242 A TW 103132242A TW I621242 B TWI621242 B TW I621242B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- mems
- piezoelectric
- germanium
- substrate
- Prior art date
Links
Landscapes
- Micromachines (AREA)
Abstract
揭露一種微機電系統裝置,其包含第一矽基板,該第一矽基板包含:操作層,該操作層包含第一表面和第二表面,該第二表面包含腔孔;絕緣層,沉積在該操作層的該第二表面上方;裝置層,具有第三表面和第四表面,其中,該第三表面接合於該絕緣層;壓電層,沉積於該裝置層的該第四表面上方;金屬導電層,設置在該壓電層上方;接合層,設置在一部分該金屬導電層上方;以及間隔,形成在該第一矽基板上;其中,該第一矽基板是接合至第二矽基板,該第二矽基板包含:金屬電極,組構用以在該第一矽基板上所形成的該金屬導電層與該第二矽基板之間形成電性連接。 A microelectromechanical system device is disclosed, comprising: a first germanium substrate, the first germanium substrate comprising: an operating layer, the operating layer comprising a first surface and a second surface, the second surface comprising a cavity; an insulating layer deposited thereon Above the second surface of the handle layer; the device layer having a third surface and a fourth surface, wherein the third surface is bonded to the insulating layer; the piezoelectric layer is deposited over the fourth surface of the device layer; a conductive layer disposed over the piezoelectric layer; a bonding layer disposed over a portion of the metal conductive layer; and a spacer formed on the first germanium substrate; wherein the first germanium substrate is bonded to the second germanium substrate The second germanium substrate comprises: a metal electrode configured to form an electrical connection between the metal conductive layer formed on the first germanium substrate and the second germanium substrate.
Description
本揭露是關於一種微機電(micro-electro-mechanical,MEMS)裝置、用於射頻(Radio Frequency,RF)與低寄生(parasitic)應用的MEMS裝置、以及製作具有紅外線吸收結構層的氮化鋁(AlN)裝置的方法。 The present disclosure relates to a micro-electro-mechanical (MEMS) device, a MEMS device for radio frequency (RF) and low parasitic applications, and an aluminum nitride having an infrared absorbing structure layer ( AlN) method of device.
微機電系統(MEMS)是一種廣為使用的科技,其可將微電子電路和機械結構整合在單一晶片上,從而顯著地降低製作成本和晶片尺寸。對於可在低寄生應用中利用的具成本效益的解決方案,有很強的需求。 Microelectromechanical systems (MEMS) are a widely used technology that combines microelectronic circuits and mechanical structures on a single wafer, significantly reducing manufacturing costs and die size. There is a strong need for cost effective solutions that can be utilized in low parasitic applications.
下文呈現說明書的簡化總結,以提供說明書的一些態樣的基本瞭解。此總結並非說明書的廣泛綜述,既不打算識別說明書的關鍵或重要元件,也不打算描述任何範圍特定成說明書的任何實施例或請求項的任何範圍。它的唯一目的僅在於,以簡單的形式,呈現說明書的一些概念,以作為將於稍後呈現的更詳細描述的序文。 A simplified summary of the specification is presented below to provide a basic understanding of some aspects of the specification. This Summary is not an extensive overview of the specification, and is not intended to identify a critical or critical element of the specification, nor is it intended to describe any scope of any embodiment or claim. Its sole purpose is to present some concepts of the specification in a
揭露用於低寄生應用的MEMS裝置。在第 一態樣中,該MEMS裝置包含MEMS晶圓和絕緣層,該MEMS晶圓包含具有一個或多個腔孔的操作晶圓,該操作晶圓含有第一表面和第二表面,該絕緣層沉積於該操作晶圓的該第二表面上。該MEMS裝置也包含裝置層,該裝置層具有第三和第四表面,該第三表面接合於該操作晶圓的該第二表面的該絕緣層;以及金屬導電層,在該第四表面上。該MEMS裝置也包含互補式金屬氧化物半導體(CMOS)晶圓,其接合至該MEMS晶圓。該CMOS晶圓包含至少一個金屬電極,以使該至少一個金屬電極與至少一部分該金屬導電層之間形成電性連接。 MEMS devices for low parasitic applications are disclosed. In the first In one aspect, the MEMS device includes a MEMS wafer and an insulating layer, the MEMS wafer including an operational wafer having one or more vias, the operational wafer having a first surface and a second surface, the insulating layer deposited On the second surface of the wafer. The MEMS device also includes a device layer having third and fourth surfaces bonded to the insulating layer of the second surface of the handle wafer; and a metal conductive layer on the fourth surface . The MEMS device also includes a complementary metal oxide semiconductor (CMOS) wafer bonded to the MEMS wafer. The CMOS wafer includes at least one metal electrode to form an electrical connection between the at least one metal electrode and at least a portion of the metal conductive layer.
在第二態樣中,MEMS裝置包含MEMS基 板,該MEMS基板包含可移動部分及一個或多個間隔,該一個或多個間隔從該基板伸出(protruding);沉積於該一個或多個間隔上的鋁層。該MEMS基板包含電性導電擴散阻障層,設置於該鋁層的頂部;以及鍺層,設置於該電性導電擴散阻障層的頂部。該MEMS裝置還包含CMOS基板,耦接至該MEMS基板,且含有至少一個電極及一個或多個鋁墊。該一個或多個間隔是利用該一個或多個鋁墊與該鍺層之間的共晶點(eutectic point),而接合至該一個或多個鋁墊。 In the second aspect, the MEMS device comprises a MEMS based A slab comprising a movable portion and one or more spaces extending from the substrate; an aluminum layer deposited on the one or more spaces. The MEMS substrate includes an electrically conductive diffusion barrier layer disposed on top of the aluminum layer, and a germanium layer disposed on top of the electrically conductive diffusion barrier layer. The MEMS device further includes a CMOS substrate coupled to the MEMS substrate and including at least one electrode and one or more aluminum pads. The one or more spaces are bonded to the one or more aluminum pads using a eutectic point between the one or more aluminum pads and the tantalum layer.
在第三態樣中,裝置包含具有MEMS裝置的第一基板。該MEMS裝置包含矽可移動元件及壓電元件,以使當施加電壓時,在該壓電元件上引發應變(strain)。該裝置也包含具有至少一個電子電路的第二基板、以及經 由該第一基板與該第二基板的接合所提供的電性連接。從該MEMS裝置至該電子電路的電性連接提供電壓給該壓電元件。 In a third aspect, the device includes a first substrate having a MEMS device. The MEMS device includes a crucible movable element and a piezoelectric element such that when a voltage is applied, strain is induced on the piezoelectric element. The device also includes a second substrate having at least one electronic circuit, and An electrical connection is provided by the bonding of the first substrate and the second substrate. An electrical connection from the MEMS device to the electronic circuit provides a voltage to the piezoelectric element.
在另一個實施例中,揭露和描述一種MEMS 裝置,該MEMS裝置可包含第一矽基板,該第一矽基板可包含:操作層,包含第一表面和第二表面,其中,該第二表面可包含腔孔;絕緣層,沉積於該操作層的該第二表面上方;裝置層,具有第三表面和第四表面,其中,該第三表面接合至該絕緣層;壓電層,沉積於該裝置層的該第四表面上方;金屬導電層,設置於該壓電層上方;接合層,設置於一部分該金屬導電層上方;以及間隔,形成在該第一矽基板上;其中,該第一矽基板是接合至第二矽基板,該第二矽基板包含:金屬電極,組構用以在該第一矽基板上所形成的該金屬導電層與該第二矽基板之間形成電性連接。 In another embodiment, a MEMS is disclosed and described The device, the MEMS device can include a first germanium substrate, the first germanium substrate can include: an operating layer comprising a first surface and a second surface, wherein the second surface can comprise a cavity; an insulating layer deposited on the operation Above the second surface of the layer; the device layer having a third surface and a fourth surface, wherein the third surface is bonded to the insulating layer; the piezoelectric layer is deposited over the fourth surface of the device layer; the metal is electrically conductive a layer disposed over the piezoelectric layer; a bonding layer disposed over a portion of the metal conductive layer; and a spacer formed on the first germanium substrate; wherein the first germanium substrate is bonded to the second germanium substrate, The second germanium substrate comprises: a metal electrode configured to form an electrical connection between the metal conductive layer formed on the first germanium substrate and the second germanium substrate.
依據又一個實施例,是揭露機器/處理器可 實作的方法,包含:沉積絕緣層在操作層上方,該操作層包含第一表面和第二表面,其中,該第二表面包含腔孔,而該絕緣層是形成在該操作層的該第二表面上;將裝置層的第一表面接合至該絕緣層;沉積壓電層在該裝置層的第二表面上;沉積金屬導電層在該壓電層上方;部分地沉積接合層於該金屬導電層上方;在該裝置層的該第二表面上形成間隔;以及,在該金屬導電層與矽基板之間建立電性連接。 According to yet another embodiment, the machine/processor is disclosed The method comprises: depositing an insulating layer above the operating layer, the operating layer comprising a first surface and a second surface, wherein the second surface comprises a cavity, and the insulating layer is formed on the operating layer Bonding a first layer of the device layer to the insulating layer; depositing a piezoelectric layer on the second surface of the device layer; depositing a metal conductive layer over the piezoelectric layer; partially depositing a bonding layer on the metal Above the conductive layer; forming a space on the second surface of the device layer; and establishing an electrical connection between the metal conductive layer and the germanium substrate.
依據另外的態樣及/或實施例,是揭露一種 MEMS裝置,包含:第一矽基板,接合至第二矽基板,該第二矽基板包含:電極,在該第二矽基板上,並且電性接觸該第一矽基板上所設置的導電層;在該第一矽基板上的該導電層是設置在該第一矽基板上的壓電層上方;在該第一矽基板上的該壓電層是沉積在裝置層上方,該裝置層包含間隔,形成在該第一矽基板上;以及,該第一矽基板上的該裝置層是接合至介電層,該介電層是沉積在該第一矽基板上的操作層的表面,該表面包含腔孔。 According to another aspect and/or embodiment, a method is disclosed The MEMS device includes: a first germanium substrate bonded to the second germanium substrate, the second germanium substrate comprising: an electrode on the second germanium substrate and electrically contacting the conductive layer disposed on the first germanium substrate; The conductive layer on the first germanium substrate is disposed over the piezoelectric layer on the first germanium substrate; the piezoelectric layer on the first germanium substrate is deposited over the device layer, and the device layer includes a spacer Formed on the first germanium substrate; and the device layer on the first germanium substrate is bonded to a dielectric layer, the dielectric layer being a surface of an operating layer deposited on the first germanium substrate, the surface Contains cavities.
接下來的描述和附加的圖式提出說明書的 特定例示態樣。然而,這些態樣只是說明書的原則中所可能採用各種方式中的一些指示。說明書的其它優點和新穎特徵,當與圖式一起考慮時,可從接下來的詳細描述,而變得明顯。 The following description and additional drawings present the specification Specific examples. However, these aspects are only some of the various ways in which the principles of the specification may be employed. Other advantages and novel features of the specification will become apparent from the following detailed description.
100、100'、200、300、400、600、700、800、900、934‧‧‧MEMS結構 100, 100', 200, 300, 400, 600, 700, 800, 900, 934‧‧‧ MEMS structures
102、102'、102"、936‧‧‧CMOS晶圓 102, 102', 102", 936‧‧‧ CMOS wafers
104、104'、104"、942‧‧‧MEMS晶圓 104, 104', 104", 942‧‧‧ MEMS wafers
106、106'''‧‧‧矽裝置層 106, 106'''‧‧‧矽 device layer
108‧‧‧操作晶圓 108‧‧‧Operating wafer
109‧‧‧氧化物層 109‧‧‧Oxide layer
110、110'、110"、110'''‧‧‧MEMS鋁 110, 110', 110", 110'''‧‧‧ MEMS aluminum
111、206、206'‧‧‧鍺 111, 206, 206'‧‧‧锗
112‧‧‧間隔 112‧‧‧ interval
112a、112b、402‧‧‧絕緣層 112a, 112b, 402‧‧‧ insulation
113、204、204'、204"‧‧‧CMOS鋁 113, 204, 204', 204" ‧ ‧ CMOS aluminum
114‧‧‧間隔件 114‧‧‧ spacers
117‧‧‧底部金屬層 117‧‧‧ bottom metal layer
302、302"‧‧‧阻障層 302, 302"‧‧‧ barrier layer
502、504、506、508、510、512‧‧‧步驟 502, 504, 506, 508, 510, 512 ‧ ‧ steps
602‧‧‧壓電層 602‧‧‧Piezoelectric layer
604、604'、604"、920‧‧‧底部電極 604, 604', 604", 920‧‧‧ bottom electrode
606‧‧‧頂部電極 606‧‧‧Top electrode
608‧‧‧CMOS鋁墊 608‧‧‧CMOS aluminum pad
610‧‧‧互連 610‧‧‧Interconnection
702、1404‧‧‧二氧化矽層 702, 1404‧‧‧ cerium oxide layer
902、938‧‧‧腔孔 902, 938‧‧‧ cavity
904‧‧‧操作晶圓/層/基板 904‧‧‧Operation Wafer/Layer/Substrate
906‧‧‧二氧化矽層/基板 906‧‧‧2 Oxide layer/substrate
908‧‧‧矽基板/層(結構矽層) 908‧‧‧矽 substrate/layer (structure layer)
910‧‧‧氮化鋁種子層 910‧‧‧Aluminum nitride seed layer
912‧‧‧鉬層 912‧‧‧ molybdenum layer
914‧‧‧氮化鋁堆疊層 914‧‧‧Aluminum nitride stack
916‧‧‧二氧化矽間隔 916‧‧‧2O2 interval
918、1312‧‧‧二氧化矽硬遮罩層 918, 1312‧‧‧ cerium oxide hard mask
922‧‧‧底部電極接點 922‧‧‧Bottom electrode contacts
924‧‧‧氮化鋁頂部接點 924‧‧‧Aluminum nitride top joint
926、1306‧‧‧鋁和鈦層 926, 1306‧‧‧aluminum and titanium layers
928、1308‧‧‧鍺墊 928, 1308‧‧‧锗 pads
930‧‧‧電極 930‧‧‧electrode
932‧‧‧光阻層 932‧‧‧ photoresist layer
934、1314‧‧‧釋放結構 934, 1314‧‧‧ release structure
940‧‧‧MEMS操作晶圓 940‧‧‧MEMS Operating Wafer
944、1318‧‧‧接口 944, 1318‧‧‧ interface
1002‧‧‧部分蝕刻 1002‧‧‧ Partial etching
1102‧‧‧紅外線吸收層 1102‧‧‧Infrared absorption layer
1202‧‧‧壓電堆棧層 1202‧‧‧Piezo stack layer
1302‧‧‧氮化鋁層 1302‧‧‧Aluminum nitride layer
1304‧‧‧氮化鋁層圖案 1304‧‧‧Aluminum nitride layer pattern
1310‧‧‧鋁和鈦墊 1310‧‧‧Aluminum and titanium pads
1316‧‧‧MEMS裝置晶圓 1316‧‧‧MEMS device wafer
1402‧‧‧側壁 1402‧‧‧ side wall
1406‧‧‧側壁保護 1406‧‧‧ Sidewall protection
本揭露的各種態樣、實施例、目的及優點,在考慮接下來的詳細描述,並連同伴隨的圖式後,將變得明顯,其中,相同的編號在全文中表示相同的部件,並且其中:第1A圖例示依據第一實施例的MEMS結構的剖面圖。 The various aspects, embodiments, objects, and advantages of the present invention will be apparent from the description of the accompanying drawings. : Figure 1A illustrates a cross-sectional view of a MEMS structure in accordance with a first embodiment.
第1B圖例示依據第二實施例的MEMS結構的剖面圖。 Fig. 1B illustrates a cross-sectional view of a MEMS structure in accordance with a second embodiment.
第2圖例示依據第三實施例的MEMS結構的剖面圖。 Figure 2 illustrates a cross-sectional view of a MEMS structure in accordance with a third embodiment.
第3圖例示依據第四實施例的MEMS結構的剖面圖。 Figure 3 illustrates a cross-sectional view of a MEMS structure in accordance with a fourth embodiment.
第4圖例示依據第五實施例的MEMS結構的剖面圖。 Figure 4 illustrates a cross-sectional view of a MEMS structure in accordance with a fifth embodiment.
第5圖為用來將壓電層加入至MEMS結構的程序的流程圖。 Figure 5 is a flow diagram of a procedure for adding a piezoelectric layer to a MEMS structure.
第6圖例示依據第六實施例的MEMS結構的剖面圖。 Fig. 6 is a cross-sectional view showing the MEMS structure according to the sixth embodiment.
第7圖例示依據第七實施例的MEMS結構的剖面圖。 Figure 7 illustrates a cross-sectional view of a MEMS structure in accordance with a seventh embodiment.
第8圖例示依據第八實施例的MEMS結構的剖面圖。 Figure 8 illustrates a cross-sectional view of a MEMS structure in accordance with an eighth embodiment.
第9A至9K圖例示依據第九實施例的MEMS結構的剖面圖。 9A to 9K are cross-sectional views illustrating a MEMS structure according to a ninth embodiment.
第10圖例示依據第十實施例的MEMS結構的剖面圖。 Figure 10 illustrates a cross-sectional view of a MEMS structure in accordance with a tenth embodiment.
第11圖例示依據第十一實施例的MEMS結構的剖面圖。 Fig. 11 is a cross-sectional view showing the MEMS structure according to the eleventh embodiment.
第12(a)(i)、12(a)(ii)、12(b)(i)、及12(b)(ii)圖例示依據第十二實施例的MEMS結構的剖面圖。 Sections 12(a)(i), 12(a)(ii), 12(b)(i), and 12(b)(ii) illustrate cross-sectional views of a MEMS structure in accordance with a twelfth embodiment.
第13A至13H圖例示依據第十三實施例的MEMS結構的剖面圖。 13A to 13H are cross-sectional views showing a MEMS structure according to a thirteenth embodiment.
第14A至14C圖例示依據第十四實施例的MEMS結構的剖面圖。 14A to 14C are cross-sectional views illustrating a MEMS structure according to a fourteenth embodiment.
一個或多個實施例現在參考圖式來加以描 述,其中,相同的編號在全文中是表示相同的組件。在接下來的描述中,為了解釋的目的,提出不同的特定細節,以為了提供不同實施例的深入瞭解。然而,很明顯的,即使沒有這些特定細節,例如,沒有應用至任何特別的網路環境或標準,不同的實施例仍可實行。在其它例子中,已知的結構和裝置是以方塊圖的形式顯示,以為了以額外細 節來促進描述該實施例。 One or more embodiments will now be described with reference to the drawings In the above, the same numbers are used to denote the same components throughout. In the following description, for the purposes of illustration However, it will be apparent that different embodiments may be practiced without these specific details, for example, without application to any particular network environment or standard. In other examples, known structures and devices are shown in the form of block diagrams for additional detail Sections to facilitate the description of this embodiment.
主要揭露是關於一種微機電系統(MEMS)裝置,尤是關於一種用於射頻(RF)和低寄生應用的MEMS裝置。呈現接下來的描述,以使本領域中具有通常技術者得以製造和使用本發明,並且具有專利應用及其需要的上下文。針對該描述的實施例和本文所描述的一般原理和特徵的不同修正,對於本領域的熟習技術者而言,將變得明顯。因此,本發明並不打算被限制在所顯示的實施例,而是應符合與本文所描述的原理和特徵一致的最寬廣範圍。 The main disclosure relates to a microelectromechanical system (MEMS) device, and more particularly to a MEMS device for radio frequency (RF) and low parasitic applications. The following description is presented to enable one of ordinary skill in the art to make and use the invention, Different modifications to the described embodiments and the general principles and features described herein will become apparent to those skilled in the art. Therefore, the present invention is not intended to be limited to the embodiments shown, but is to be accorded to the broad scope of the principles and features described herein.
在該描述的實施例中,微機電系統(MEMS)是指使用像是半導體的程序並且展現機械特性(例如,移動或變形的能力)而製作的一種結構或裝置。MEMS通常、但沒有總是與電性訊號互動。MEMS裝置包含,但不限於回轉儀、加速度計、磁力計、壓力感測器、以及射頻組件。含有MEMS結構的矽晶圓是稱為MEMS晶圓。 In the described embodiment, a microelectromechanical system (MEMS) refers to a structure or device that is fabricated using a program such as a semiconductor and exhibits mechanical properties (eg, the ability to move or deform). MEMS usually, but not always, interact with electrical signals. MEMS devices include, but are not limited to, gyroscopes, accelerometers, magnetometers, pressure sensors, and radio frequency components. A germanium wafer containing a MEMS structure is called a MEMS wafer.
在該描述的實施例中,MEMS裝置可指實作成微機電系統的半導體裝置。MEMS結構可指可為較大MEMS裝置的部件的任何特徵。工程處理過的絕緣體上矽(ESOI)晶圓可指在該矽裝置層或基板下方具有腔孔的SOI晶圓。操作晶圓通常是指用作承載件的較厚基板,該承載件是用於絕緣體上矽晶圓中的較薄矽裝置基板。操作基板及操作晶圓可互換。 In the described embodiment, a MEMS device can refer to a semiconductor device implemented as a microelectromechanical system. A MEMS structure can refer to any feature that can be a component of a larger MEMS device. An engineered over-insulator (ESOI) wafer may refer to an SOI wafer having a cavity below the germanium device layer or substrate. Operating a wafer generally refers to a thicker substrate used as a carrier for a thinner germanium device substrate in a germanium on insulator. The operating substrate and the operating wafer are interchangeable.
在該描述的實施例中,腔孔是指開孔或基板晶圓中的凹部,而封閉體(enclosure)則可指完全封閉的 空間。接合腔室(bond chamber)是指一件接合設備中的封閉體,該晶圓接合程序在該接合設備中進行。該接合腔室中的大氣決定該接合晶圓中所密封的大氣。 In the described embodiment, the cavity means a recess in the aperture or substrate wafer, and the enclosure may be completely enclosed. space. A bond chamber refers to an enclosure in a piece of bonding apparatus in which the wafer bonding process is performed. The atmosphere in the bonding chamber determines the atmosphere sealed in the bonded wafer.
此外,依據本發明的系統和方法描述一種 RF MEMS裝置、感測器、及致動器,其包含,但不限於開關、共振器、及可調電容器,其可密封且與積體電路接合,該積體電路可使用電容性感測和靜電性、磁性、或壓電式致動。 Furthermore, a system and method in accordance with the present invention describes a RF MEMS devices, sensors, and actuators, including but not limited to switches, resonators, and tunable capacitors that are sealable and engageable with integrated circuits that can use capacitive sensing and static electricity Sexual, magnetic, or piezoelectric actuation.
第1A圖例示依據第一實施例的MEMS結構 100的剖面圖。第1A圖顯示MEMS結構具有額外的金屬在該矽結構層。該結構包含CMOS晶圓102,接合至MEMS晶圓104。該MEMS晶圓104包含矽裝置層106,透過氧化物層109而熔解接合至操作晶圓108。MEMS鋁110金屬層加入至該矽裝置層106。加入金屬層較只有該矽裝置層106,更能降低該MEMS結構的電阻性,使得它對於需要低寄生(例如,RF MEMS、勞侖茲力(Lorentz force)感測器等)的應用更具有吸引力。在此實施例中,CMOS晶圓102與MEMS晶圓104之間的連接是透過該矽間隔(stand-off)112創造,該矽間隔112使用由鍺111和鋁113所形成的鋁-鍺共晶接合。除了該間隔112外,該金屬層117承載大部分的電流。在實施例中,由絕緣材料(例如,氧化矽或氮化矽)所構成的間隔件114可置放在底部金屬層117,以降低靜摩擦,並進而控制該頂部金屬層110與該底部金屬層117之間的間隙。 FIG. 1A illustrates a MEMS structure according to the first embodiment Sectional view of 100. Figure 1A shows that the MEMS structure has additional metal in the germanium structure layer. The structure includes a CMOS wafer 102 bonded to the MEMS wafer 104. The MEMS wafer 104 includes a germanium device layer 106 that is melt bonded to the handle wafer 108 through the oxide layer 109. A MEMS aluminum 110 metal layer is added to the germanium device layer 106. Adding a metal layer is more than the germanium device layer 106, which reduces the electrical resistance of the MEMS structure, making it more useful for applications requiring low parasitic (eg, RF MEMS, Lorentz force sensors, etc.). Attractive. In this embodiment, the connection between CMOS wafer 102 and MEMS wafer 104 is created by the stand-off 112, which uses aluminum-germanium formed by germanium 111 and aluminum 113. Crystal bonding. In addition to the spacing 112, the metal layer 117 carries most of the current. In an embodiment, a spacer 114 composed of an insulating material (for example, hafnium oxide or tantalum nitride) may be placed on the bottom metal layer 117 to reduce static friction and thereby control the top metal layer 110 and the bottom metal layer. The gap between 117.
第1B圖例示依據第二實施例的MEMS結構100'的剖面圖。第1B圖顯示具有額外絕緣層112a和絕緣層112b的MEMS結構,該絕緣層112a是沉積在該MEMS鋁110上,而該絕緣層112b是沉積在該底部電極117上,以防止短路,並進而於該可移動MEMS結構(其由該矽裝置層106、MEMS鋁110及絕緣層112a所組成)與該CMOS晶圓102上的該電極接觸時,創造良好的電容性間隙。 FIG. 1B illustrates a cross-sectional view of a MEMS structure 100' in accordance with a second embodiment. 1B shows a MEMS structure having an additional insulating layer 112a deposited on the MEMS aluminum 110, and an insulating layer 112b deposited on the bottom electrode 117 to prevent short circuits and further When the movable MEMS structure (which is composed of the germanium device layer 106, the MEMS aluminum 110, and the insulating layer 112a) is in contact with the electrode on the CMOS wafer 102, a good capacitive gap is created.
第2圖例示依據第三實施例的MEMS結構200的剖面圖。第2圖顯示類似於第1A圖的MEMS結構。然而,在此實施例中,該CMOS晶圓102'與該MEMS晶圓104'之間的該電性連接,透過該CMOS晶圓102'上的該CMOS鋁204與該MEMS晶圓104'上的該MEMS鋁110'之間的實體接觸而發生,其中,該CMOS鋁204與該MEMS鋁110'由該CMOS晶圓102'上的鍺206和CMOS鋁204與該MEMS晶圓104'上的該MEMS鋁110'之間的該共晶反應所創造的鋁-鍺層所連接。此實施例的一個可能冒險是該鍺206與該MEMS鋁110'的選擇性氧化反應(preferential reaction)(由於它就是直接沉積在該層上),其與該CMOS鋁204可能具有不足的反應。該不足的反應可導致不良的接合與臨界的(marginal)電性連接。 FIG. 2 illustrates a cross-sectional view of a MEMS structure 200 in accordance with a third embodiment. Figure 2 shows a MEMS structure similar to Figure 1A. However, in this embodiment, the electrical connection between the CMOS wafer 102' and the MEMS wafer 104' is transmitted through the CMOS aluminum 204 and the MEMS wafer 104' on the CMOS wafer 102'. The physical contact between the MEMS aluminum 110' occurs, wherein the CMOS aluminum 204 and the MEMS aluminum 110' are formed on the CMOS wafer 102' by 锗 206 and CMOS aluminum 204 and the MEMS wafer 104' The aluminum-germanium layer created by the eutectic reaction between the MEMS aluminum 110' is connected. One possible risk of this embodiment is the selective oxidation of the crucible 206 to the MEMS aluminum 110' (since it is deposited directly on the layer), which may have insufficient reaction with the CMOS aluminum 204. This insufficient response can result in poor bonding and critical electrical connections.
第3圖例示依據第四實施例的MEMS結構300的剖面圖。第3圖顯示與第2圖相同的MEMS結構,除了阻障層302是沉積在該MEMS鋁110"與鍺206'之間。該阻障層302是電性導電的,並且透過實體接觸而與鋁電 性接觸。該阻障層302的目的是防止該MEMS鋁110"與鍺206'之間的共晶反應,而留下鍺206'與該CMOS鋁204共晶反應。一個這種阻障層可為氮化鈦。在該共晶反應期間,該CMOS鋁204將與鍺206'混合,以創造與該MEMS鋁110"上的該阻障層302的電性接觸和實體接合,從而在該CMOS晶圓102"與MEMS晶圓104"之間創造電性接觸。 Figure 3 illustrates a cross-sectional view of a MEMS structure 300 in accordance with a fourth embodiment. Figure 3 shows the same MEMS structure as in Figure 2, except that barrier layer 302 is deposited between the MEMS aluminum 110" and the crucible 206'. The barrier layer 302 is electrically conductive and is in contact with the physical Aluminum battery Sexual contact. The purpose of the barrier layer 302 is to prevent eutectic reaction between the MEMS aluminum 110" and the germanium 206', leaving the germanium 206' eutectic reaction with the CMOS aluminum 204. One such barrier layer can be nitrided. Titanium. During the eutectic reaction, the CMOS aluminum 204 will be mixed with the crucible 206' to create electrical and physical bonds with the barrier layer 302 on the MEMS aluminum 110", thereby forming the CMOS wafer 102. Create electrical contact between "with MEMS wafer 104".
第4圖例示依據第五實施例的MEMS結構400的剖面圖。第4圖顯示與第3圖相同的MEMS結構,但具有沉積於該MEMS鋁110'''與矽裝置層106'''之間的絕緣層402,從而將該矽與該金屬予以電性絕緣。該絕緣層402在不希望在該矽層中承載任何電性訊號(例如,在RF應用中,其中,在該矽中的訊號傳輸會產生能量耗損)的案例中是需要的。在此實施例中,在RF頻率時,該MEMS鋁110'''仍然可透過該絕緣層402,而電容性地耦接至該矽裝置層106'''。為了達成充分絕緣,該絕緣層必需充足地厚,以最小化電容,或者該矽必需具有充分的電阻性,以最小化與其耦接的電性訊號。 Figure 4 illustrates a cross-sectional view of a MEMS structure 400 in accordance with a fifth embodiment. Figure 4 shows the same MEMS structure as in Figure 3, but with an insulating layer 402 deposited between the MEMS aluminum 110"" and the germanium device layer 106"" to electrically insulate the germanium from the metal. . The insulating layer 402 is desirable in cases where it is undesirable to carry any electrical signals in the germanium layer (e.g., in RF applications where signal transmission in the germanium can create energy losses). In this embodiment, the MEMS aluminum 110"" is still permeable to the insulating layer 402 at the RF frequency and capacitively coupled to the germanium device layer 106"". In order to achieve sufficient insulation, the insulating layer must be sufficiently thick to minimize capacitance, or the crucible must have sufficient electrical resistance to minimize the electrical signals coupled thereto.
第5圖為加入金屬和壓電層至MEMS結構的程序的流程圖。該程序開始於工程處理過的SOI 502。第一金屬層(金屬1)透過步驟504而沉積於該裝置矽表面上,接著透過步驟506進行該壓電層沉積(例如,氮化鋁或PZT)圖案化和蝕刻。接著,透過步驟508,將第二金屬層(金屬2)沉積於該晶圓上,以作為該壓電層的頂部電極,並且提供金屬1與該CMOS基板之間的電性接觸。透過步驟 510,將鍺層沉積在金屬1上,並且予以圖案化,以將鍺墊定義在會發生與CMOS接合的區域中。接著,透過步驟512,該MEMS晶圓接合至CMOS晶圓,以使鍺墊與該CMOS上的鋁墊進行共晶反應,以在該CMOS鋁與MEMS金屬2之間創造電性和實體接觸。 Figure 5 is a flow diagram of the procedure for adding metal and piezoelectric layers to the MEMS structure. The program begins with the engineered SOI 502. The first metal layer (metal 1) is deposited on the surface of the device via step 504, and then patterned and etched by the piezoelectric layer deposition (eg, aluminum nitride or PZT) through step 506. Next, through step 508, a second metal layer (metal 2) is deposited on the wafer as the top electrode of the piezoelectric layer and provides electrical contact between the metal 1 and the CMOS substrate. Through the steps 510, a layer of germanium is deposited on the metal 1 and patterned to define the germanium pad in the region where bonding with CMOS occurs. Next, through step 512, the MEMS wafer is bonded to the CMOS wafer to eutectic the germanium pad with the aluminum pad on the CMOS to create electrical and physical contact between the CMOS aluminum and the MEMS metal 2.
第6圖例示依據利用壓電層的第六實施例的 MEMS結構600的剖面圖。加入壓電層602使應用的範圍包含聲音共振器和篩檢程式以及壓電致動(piezo-actuated)的裝置。為了運作,該壓電層602通常需要底部電極604和頂部電極606。該底部電極604可包含第一金屬層(金屬1)(例如,鋁、釕、鎢、鉬或鉑)。在其它實施例中,矽裝置層可用作底部電極604。該頂部電極606及互連610是由第二金屬層(金屬2)(例如,鋁)組成。該頂部電極606及互連610使用鋁鍺接合,而與該CMOS鋁墊608作出實體和電性接觸。該底部電極604可與該互連610作出實體和電性接觸,從而連接至該CMOS晶圓。電位可施加在頂部電極606與該底部電極604之間、或在個別的頂部電極606之間。這些電位創造電場,以在壓電材料內引發應變。 Fig. 6 illustrates a sixth embodiment according to the use of a piezoelectric layer A cross-sectional view of MEMS structure 600. The addition of the piezoelectric layer 602 allows the range of applications to include acoustic resonators and screening programs as well as piezo-actuated devices. In order to operate, the piezoelectric layer 602 typically requires a bottom electrode 604 and a top electrode 606. The bottom electrode 604 can comprise a first metal layer (metal 1) (eg, aluminum, tantalum, tungsten, molybdenum, or platinum). In other embodiments, the germanium device layer can be used as the bottom electrode 604. The top electrode 606 and interconnect 610 are comprised of a second metal layer (metal 2) (eg, aluminum). The top electrode 606 and interconnect 610 are bonded using an aluminum crucible to make physical and electrical contact with the CMOS aluminum pad 608. The bottom electrode 604 can be in physical and electrical contact with the interconnect 610 to connect to the CMOS wafer. A potential can be applied between the top electrode 606 and the bottom electrode 604, or between the individual top electrodes 606. These potentials create an electric field to induce strain in the piezoelectric material.
第7圖例示依據第七實施例的MEMS結構 700的剖面圖。第7圖顯示與第6圖中相同的結構,並額外具有二氧化矽層702在該裝置層矽106與金屬層604"之間。該二氧化矽層702作為溫度穩定層,以通過使用具有負揚氏溫度係數(Young’s modulus temperature coefficient)的氧化矽來補償(offset)具有正揚氏溫度係數的矽,來改進 該共振器或篩檢程式對於溫度的頻度穩定性。 FIG. 7 illustrates a MEMS structure according to a seventh embodiment Sectional view of 700. Fig. 7 shows the same structure as in Fig. 6, and additionally has a ceria layer 702 between the device layer 106 and the metal layer 604". The ceria layer 702 serves as a temperature stabilizing layer to have Improvement of the Young's modulus temperature coefficient of yttrium oxide to compensate for 矽 with a positive Young's temperature coefficient to improve The frequency stability of the resonator or screening program for temperature.
第8圖例示依據第八實施例的MEMS結構 800的剖面圖。第8圖顯示與第7圖中相同的結構,並額外具有圖案化的底部電極604"。通過圖案化該底部電極604",多個電位可施加至該壓電材料602的底部表面的不伺區域,引導更多設計彈性和更有效率的裝置。對於共振器應用而言,例如,在該壓電結構的底部和頂部輸入電性訊號的能力,可導致較高的耦合效率。在進一步的實施例中,主題申請揭露微機電系統(MEMS)整合流程,以將工程處理過的基板上的氮化鋁(AlN)和與鍺化鋁(AlGe)接合的頂部電極併入至互補式金屬氧化物半導體(CMOS)晶圓/層/基板。 Figure 8 illustrates a MEMS structure according to an eighth embodiment Sectional view of 800. Fig. 8 shows the same structure as in Fig. 7 and additionally has a patterned bottom electrode 604". By patterning the bottom electrode 604", a plurality of potentials can be applied to the bottom surface of the piezoelectric material 602. The area guides more design flexibility and more efficient devices. For resonator applications, for example, the ability to input electrical signals at the bottom and top of the piezoelectric structure can result in higher coupling efficiency. In a further embodiment, the subject application discloses a microelectromechanical system (MEMS) integration process to incorporate aluminum nitride (AlN) on an engineered substrate and a top electrode bonded to aluminum telluride (AlGe) to complement each other Metal oxide semiconductor (CMOS) wafer/layer/substrate.
除了上述內容外,本申請另描述MEMS整 合流程,其包含開始晶圓/層/基板(例如,互補式金屬氧化物半導體(CMOS)晶圓/層/基板、MEMS操作晶圓/層/基板、及/或MEMS裝置晶圓/層/基板)及複數個遮罩層,例如,10層遮罩層,雖然具有通常技術者將體會到,也可使用較小或較大數目的遮罩層,而不致於不當地偏離本揭露的一般性和範圍。 In addition to the above, this application also describes MEMS Process, which includes starting wafer/layer/substrate (eg, complementary metal oxide semiconductor (CMOS) wafer/layer/substrate, MEMS operational wafer/layer/substrate, and/or MEMS device wafer/layer/ a substrate) and a plurality of mask layers, for example, a 10-layer mask layer, although one of ordinary skill in the art will appreciate that a smaller or larger number of mask layers may be used without unduly departing from the general disclosure. Sex and scope.
一般而言,該MEMS操作晶圓/層/基板可以 背側對準標記層予以圖案化,而背側對準標記層用來在熔解接合後前至後對準(front-to-back alignment)。定義懸置的(suspended)MEMS結構的腔孔也可在該MEMS操作晶圓/層/基板的前側予以蝕刻。該MEMS操作層/晶圓/基板可接著 氧化,並且繼而熔解接合至MEMS裝置層/晶圓/基板。 In general, the MEMS handle wafer/layer/substrate can The backside alignment mark layer is patterned while the backside alignment mark layer is used for front-to-back alignment after fusion bonding. A cavity defining a suspended MEMS structure can also be etched on the front side of the MEMS handle wafer/layer/substrate. The MEMS operating layer/wafer/substrate can be followed by Oxidized and then melt bonded to the MEMS device layer/wafer/substrate.
舉例來說,該MEMS裝置層/晶圓/基板可包 含矽(Si)結構層,其可被研磨至目標厚度,在該點上,氮化鋁種子層可設置在該矽結構層的表面上,鉬層可沉積在該氮化鋁種子層上方,氮化鋁堆疊層可沉積在該鉬層上方,及/或二氧化矽間隔層可設置在該氮化鋁堆疊層上。 For example, the MEMS device layer/wafer/substrate can be packaged a germanium-containing (Si) structural layer that can be ground to a target thickness at which point an aluminum nitride seed layer can be disposed on a surface of the germanium structural layer, and a molybdenum layer can be deposited over the aluminum nitride seed layer An aluminum nitride stacked layer may be deposited over the molybdenum layer, and/or a ceria spacer layer may be disposed on the aluminum nitride stack layer.
該二氧化矽間隔層可在該MEMS裝置層/晶 圓/基板上蝕刻,以在該MEMS結構與該互補式金屬氧化物半導體晶圓/層/基板之間提供分離(separation)。該氮化鋁(AlN)堆疊層可接著通過二氧化矽硬遮罩而予以圖案化,該二氧化矽硬遮罩具有結構、底部接點、及/或氮化鋁頂部接點遮罩。此外,鋁、鈦、和鍺可接著從底部至頂部依序沉積,並且圖案化而具有鍺墊和電極。該矽裝置層可接著使用例如異向性蝕刻程序其用來在層/晶圓/基板中創造深穿透(penetration)、陡側孔(steep-sided hole)和溝槽,通常具有高深寬比,例如,深反應離子蝕刻(deep reactive ion etch,DRIE))予以圖案化和蝕刻,以定義釋放結構(release structure)。一般而言,該結構與定義整個釋放結構的釋放層的接合是形成在上腔孔上。 The ceria spacer layer can be in the MEMS device layer/crystal Etching on the circle/substrate to provide separation between the MEMS structure and the complementary metal oxide semiconductor wafer/layer/substrate. The aluminum nitride (AlN) stacked layer can then be patterned by a ruthenium dioxide hard mask having a structure, a bottom contact, and/or an aluminum nitride top contact mask. In addition, aluminum, titanium, and tantalum may then be sequentially deposited from bottom to top and patterned to have mats and electrodes. The germanium device layer can then be used to create deep penetration, steep-sided holes, and trenches in the layer/wafer/substrate, for example, using an anisotropic etch process, typically having a high aspect ratio For example, deep reactive ion etch (DRIE) is patterned and etched to define a release structure. In general, the engagement of the structure with the release layer defining the entire release structure is formed on the upper bore.
底部腔孔可在該互補式金屬氧化物半導體 層/晶圓蝕刻,以形成供該MEMS結構的面外(out-of-plane)移動(例如,接合矽和氮化鋁堆疊層)或減幅控制(damping control)的間隙。該MEMS及互補式金屬氧化物半導體晶圓/層/基板可接著使用鋁-鍺(Al-Ge)共晶接合予以接合,以 創造該MEMS結構的周圍密封以及該MEMS結構與互補式金屬氧化物半導體電路之間的電性互連。之後,該接合的晶圓/層可在該MEMS側予以薄化至希望的厚度,並且介面(port)可形成在該MEMS晶圓/層的該研磨側上,以創造至該周圍環境的接取(access)。之後,可使用例如切單程序(dicing process),移除該MEMS晶圓層上的矽垂片(silicon tab),以暴露該互補式金屬氧化物半導體打線接合墊(wire-bond pad)。 The bottom cavity is available in the complementary metal oxide semiconductor The layer/wafer is etched to form a gap for out-of-plane movement of the MEMS structure (e.g., bonding germanium and aluminum nitride stacked layers) or damping control. The MEMS and complementary metal oxide semiconductor wafer/layer/substrate can then be bonded using an aluminum-germanium (Al-Ge) eutectic bonding to A perimeter seal of the MEMS structure and an electrical interconnection between the MEMS structure and the complementary metal oxide semiconductor circuit are created. Thereafter, the bonded wafer/layer can be thinned to a desired thickness on the MEMS side, and a port can be formed on the polished side of the MEMS wafer/layer to create a connection to the surrounding environment Access. Thereafter, a silicon tab on the MEMS wafer layer can be removed using, for example, a dicing process to expose the complementary metal oxide semiconductor wire-bond pad.
依據先前及參考圖9,例示MEMS裝置900 的剖面圖。該MEMS900可包含操作晶圓/層/基板904,其可經圖案化而具有背側對準標記層,該背側對準標記層將被在熔解接合後,利用於前至後對準。此外,操作晶圓/層/基板904的前側可經蝕刻而形成腔孔902。如所繪示的,操作晶圓/層/基板904可由矽層/基板形成,腔孔902已經蝕刻而進入其內。對於含有腔孔902的該操作晶圓/層/基板904而言,二氧化矽層/基板906可沉積在該矽層/基板904上,從而覆蓋矽層/基板904及形成於其內的腔孔902。由矽908所形成的基板/層可設置及/或沉積在二氧化矽層/基板906上方,並且熔解接合至該二氧化矽層/基板906。依據實施例,含有形成的腔孔902和二氧化矽層906的該操作晶圓/層/基板904可稱為工程處理過的基板,並且為了此揭露的目的,可稱為該MEMS操作層。 MEMS device 900 is illustrated in accordance with previous and with reference to FIG. Sectional view. The MEMS 900 can include an operational wafer/layer/substrate 904 that can be patterned to have a backside alignment mark layer that will be used for front-to-back alignment after fusion bonding. Additionally, the front side of the handle wafer/layer/substrate 904 can be etched to form the cavity 902. As illustrated, the handle wafer/layer/substrate 904 can be formed from a tantalum layer/substrate that has been etched into it. For the handle wafer/layer/substrate 904 containing the via 902, a hafnium layer/substrate 906 can be deposited over the germanium layer/substrate 904 to cover the germanium layer/substrate 904 and the cavity formed therein Hole 902. A substrate/layer formed of 矽 908 may be disposed and/or deposited over the yttria layer/substrate 906 and melt bonded to the yttria layer/substrate 906. Depending on the embodiment, the handle wafer/layer/substrate 904 containing the formed vias 902 and ceria layer 906 may be referred to as an engineered substrate, and may be referred to as the MEMS handle layer for purposes of this disclosure.
參考第9B圖,其繪示MEMS裝置900的進 一步剖面圖,除了以上所注意的含有蝕刻腔孔902的矽層/ 基板904、二氧化矽層/基板906(含有蝕刻的腔孔902的矽層/基板904及二氧化矽層/基板906可形成並可稱為該MEMS操作層/晶圓/基板)、以及由矽所形成的基板/層908,二氧化矽間隔916可通過例如在蝕刻及/或形成二氧化矽間隔916前連續在矽基板/層908上方沉積氮化鋁種子層910、鉬層912、及氮化鋁堆疊層914。該額外的沉積或設置層(其包含在矽基板/層908上方的該氮化鋁種子層910、鉬層912、氮化鋁堆疊層914、及二氧化矽間隔916)可稱為該MEMS裝置層/晶圓/基板及/或壓電層/晶圓/基板。 Referring to FIG. 9B, the MEMS device 900 is shown One-step cross-sectional view, in addition to the above-mentioned layer containing the etched cavity 902 Substrate 904, ruthenium dioxide layer/substrate 906 (layer/substrate 904 containing etched via 902 and yttria layer/substrate 906 may be formed and may be referred to as the MEMS handle layer/wafer/substrate), and The substrate/layer 908 formed by the ruthenium, the ruthenium dioxide spacer 916 may be deposited by continuously depositing an aluminum nitride seed layer 910, a molybdenum layer 912 over the germanium substrate/layer 908, for example, prior to etching and/or forming the germanium dioxide spacer 916, and Aluminum nitride stacked layer 914. The additional deposition or placement layer (which includes the aluminum nitride seed layer 910, the molybdenum layer 912, the aluminum nitride stack layer 914, and the ceria spacer 916) over the germanium substrate/layer 908 may be referred to as the MEMS device. Layer/wafer/substrate and/or piezoelectric layer/wafer/substrate.
矽基板層908可為該MEMS裝置層的該矽 結構層,該MEMS操作層(例如,含有蝕刻的腔孔902的矽層/基板904及二氧化矽層/基板906)可已經熔解接合至該MEMS裝置層/晶圓/基板(例如,矽結構基板/層908、氮化鋁種子層910、鉬層912、氮化鋁堆疊層914、以及間隔916)。應注意到,在熔解接合該MEMS操作層至該MEMS裝置層之前,該MEMS操作層可通常已經氧化,並且在沉積該氮化鋁種子層910、鉬層912、氮化鋁堆疊層914、及由二氧化矽所形成的間隔916之前,該MEMS裝置層的該矽結構層/基板908可已經研磨至目標或預定厚度。間隔916通常是形成在該MEMS裝置層上,以提供該MEMS結構與CMOS晶圓/層/基板之間的分離。 The germanium substrate layer 908 can be the germanium of the MEMS device layer The MEMS operational layer (eg, tantalum layer/substrate 904 containing etched vias 902 and yttria layer/substrate 906) may have been melt bonded to the MEMS device layer/wafer/substrate (eg, germanium structure) Substrate/layer 908, aluminum nitride seed layer 910, molybdenum layer 912, aluminum nitride stack layer 914, and spacer 916). It should be noted that the MEMS operating layer may typically have been oxidized prior to fusing the MEMS operating layer to the MEMS device layer, and depositing the aluminum nitride seed layer 910, the molybdenum layer 912, the aluminum nitride stack layer 914, and Prior to the spacing 916 formed by the cerium oxide, the 矽 structural layer/substrate 908 of the MEMS device layer may have been ground to a target or predetermined thickness. Spacer 916 is typically formed on the MEMS device layer to provide separation between the MEMS structure and the CMOS wafer/layer/substrate.
第9C至9E圖提供例示MEMS裝置900的 進一步剖面圖,該MEMS裝置900包含以上第9A至9B圖所描述的層。在第9C圖中,結構可予以定義,並且可通 過先沉積或設置二氧化矽硬遮罩918於該氮化鋁堆疊層914及間隔916上方,接著再蝕刻通過二氧化矽硬遮罩918,以定義該結構並且雕刻出來分離底部電極920。如所觀察到的,該蝕刻程序蝕刻層/基板(其分別由二氧化矽硬遮罩918、氮化鋁914、鉬912、及氮化鋁種子層910形成)至該矽結構層/基板908。在第9D圖中,可創造底部電極接點922。在第9E圖中,在二氧化矽層918上開孔的蝕刻可予以實施,以定義氮化鋁頂部接點924,並且避免來自於該墊的不必要HBAR共振。如在第9C至9E圖中所繪示的,可通過藉由二氧化矽硬遮罩918而圖案化氮化鋁堆疊層,來定義該結構及雕刻出該底部電極920、創造底部電極接點922、及定義氮化鋁頂部接點924。 Figures 9C through 9E provide illustrations of MEMS device 900 In a further cross-sectional view, the MEMS device 900 includes the layers described above in Figures 9A-9B. In Figure 9C, the structure can be defined and accessible A ceria hard mask 918 is deposited or disposed over the aluminum nitride stack layer 914 and the spacer 916, and then etched through the ceria hard mask 918 to define the structure and engrave to separate the bottom electrode 920. As observed, the etch process etch layer/substrate (which is formed of ceria hard mask 918, aluminum nitride 914, molybdenum 912, and aluminum nitride seed layer 910, respectively) to the germanium structure layer/substrate 908 . In Figure 9D, a bottom electrode contact 922 can be created. In Figure 9E, an etch of openings in the yttria layer 918 can be implemented to define the aluminum nitride top contact 924 and avoid unnecessary HBAR resonance from the pad. As illustrated in FIGS. 9C-9E, the structure can be defined and the bottom electrode 920 can be engraved by creating a bottom electrode contact by patterning the aluminum nitride stack layer by the ruthenium dioxide hard mask 918. 922, and defines an aluminum nitride top contact 924.
如第9F圖中所例示的,為了頂部電極材料 沉積的目的,沉積鋁和鈦層926,並且接著鍺層928是沉積在該鋁和鈦層926上方,以使鍺墊928和電極930可如第9G至9H圖中所繪示的予以圖案化。該裝置層可以光阻層932覆蓋,並且使用深反應離子蝕刻(DRIE)予以圖案化和蝕刻,以定義釋放結構,如第9I圖中所繪示的。只有該結構與釋放層的結合可定義該腔孔902中的完整釋放結構934(見第9J圖)。 As illustrated in Figure 9F, for the top electrode material For the purpose of deposition, an aluminum and titanium layer 926 is deposited, and then a tantalum layer 928 is deposited over the aluminum and titanium layer 926 such that the mat 928 and electrode 930 can be patterned as illustrated in Figures 9G-9H. . The device layer can be covered by a photoresist layer 932 and patterned and etched using deep reactive ion etching (DRIE) to define a release structure, as depicted in Figure 9I. Only the combination of the structure and the release layer can define the complete release structure 934 in the bore 902 (see Figure 9J).
如第9J圖中所繪示的,蝕刻腔孔938進入 CMOS晶圓936,以形成供面外移動MEMS結構934及/或減幅控制的間隙,並且之後該CMOS晶圓936及MEMS裝置晶圓940使用鋁-鍺共晶接合予以接合,以在MEMS結構 934和CMOS電路周圍創造密封,並且形成接合晶圓942。該共晶接合的晶圓942接著可在例如該MEMS晶圓側予以薄化至預定或希望的厚度,並且介面可形成在該MEMS晶圓942的研磨側上,以創造至周圍環境的接取(access),如第9K圖中所繪示的。此外,使用切單程序移除該MEMS晶圓942上的矽垂片,以暴露互補式金屬氧化物半導體打線接合墊。 As shown in FIG. 9J, the etching cavity 938 enters CMOS wafer 936 to form a gap for out-of-plane moving MEMS structure 934 and/or amplitude reduction control, and then CMOS wafer 936 and MEMS device wafer 940 are bonded using aluminum-germanium eutectic bonding to the MEMS structure A seal is created around 934 and the CMOS circuit, and bond wafer 942 is formed. The eutectic bonded wafer 942 can then be thinned to a predetermined or desired thickness, for example, on the MEMS wafer side, and an interface can be formed on the abrasive side of the MEMS wafer 942 to create access to the surrounding environment. (access), as depicted in Figure 9K. In addition, the tabs on the MEMS wafer 942 are removed using a singulation process to expose the complementary metal oxide semiconductor wire bond pads.
依據先前及第10圖中所例示的額外實施例,在定義結構及雕刻出分離底部電極920之後,如第9C圖所例示的,但在創造底部電極接點922之前,如第9D圖中所繪示的,可實施部分矽蝕刻,其中,結構矽層908(例如,該MEMS裝置晶圓的該結構矽層)可部分地被進一步蝕刻1002。可實施該部分蝕刻1002,以部分地薄化該矽裝置層(例如,結構矽層908)。該部分蝕刻1002可以結構層遮罩,並通過矽蝕刻或矽深反應離子蝕刻來加以完成。應注意的是,對於那個先前實施用以定義結構和雕刻出分離底部電極920(如以上參考第9C圖所說明的)而言,該部分蝕刻1002是額外的蝕刻。額外地及/或另外地,部分蝕刻1002及定義結構及雕刻出分離底部電極920所實施的該蝕刻(如第9C圖中所繪示的),可以單一動作完成,而沒有不當及/或不必要偏離主題揭露的意圖和一般性。 According to an additional embodiment previously and illustrated in FIG. 10, after defining the structure and engraving the separated bottom electrode 920, as illustrated in FIG. 9C, but before creating the bottom electrode contact 922, as in FIG. 9D Illustrated, a partial germanium etch can be performed, wherein the structural germanium layer 908 (eg, the structural germanium layer of the MEMS device wafer) can be partially etched 1002. The partial etch 1002 can be implemented to partially thin the germanium device layer (e.g., structural germanium layer 908). The partial etch 1002 can be structured with a layer mask and completed by germanium etching or deep reactive ion etching. It should be noted that for that previous implementation to define the structure and engrave the separate bottom electrode 920 (as explained above with reference to Figure 9C), the partial etch 1002 is an additional etch. Additionally and/or additionally, the partial etching 1002 and defining the structure and engraving the etch performed by the separate bottom electrode 920 (as depicted in FIG. 9C) may be accomplished in a single action without undue and/or It is necessary to deviate from the intention and generality of the subject disclosure.
在進一步額外態樣或實施例中,如第11圖中所例示的,可於蝕刻該MEMS晶圓942的研磨側上的介面944(見例如,第9K圖)之後,實施額外的動作。依據此 態樣,紅外線(IR)吸收層1102可沉積在該MEMS操作晶圓940的背部上。如此例示的,該紅外線吸收層1102不僅可設置在該MEMS操作晶圓940的背部上,也可在先前蝕刻的介面944中。 In further additional aspects or embodiments, as illustrated in FIG. 11, additional actions may be performed after etching the interface 944 on the abrasive side of the MEMS wafer 942 (see, for example, FIG. 9K). According to this In an aspect, an infrared (IR) absorber layer 1102 can be deposited on the back of the MEMS handle wafer 940. As exemplified, the infrared absorbing layer 1102 can be disposed not only on the back of the MEMS handle wafer 940, but also in the previously etched interface 944.
依據進一步揭露的態樣或實施例,如第12 圖中所例示的,可採用額外的及/或另外的間隔916形成技術。如第12(a)(i)圖中所例示的,矽層908可沉積在該MEMS操作層/晶圓/基板(例如,含有腔孔902的矽層/晶圓/基板904及二氧化矽層/基板906)上方,並且之後該沉積的矽層908可部分地蝕刻,以形成間隔916,因此,參考第9A圖並且第12(a)(i)圖中所例示的,間隔916可已經從該MEMS裝置層或壓電層/晶圓/基板的該結構矽層908形成了。或者,如第12(a)(ii)圖中所繪示的,不要部分蝕刻進而結構矽層908,結構矽層908可由二氧化矽層覆蓋,並且之後,該沉積的二氧化矽層可予以圖案化,以創造或形成間隔916,如第12(a)(ii)圖中所例示的。 According to further disclosed aspects or embodiments, such as the 12th Additional and/or additional spacing 916 forming techniques may be employed as illustrated in the figures. As illustrated in FIG. 12(a)(i), a germanium layer 908 can be deposited on the MEMS handle layer/wafer/substrate (eg, germanium layer/wafer/substrate 904 containing vias 902 and germanium dioxide) Above layer/substrate 906), and thereafter the deposited germanium layer 908 may be partially etched to form spacers 916, thus, with reference to Figure 9A and illustrated in Figure 12(a)(i), the spacing 916 may already The structural germanium layer 908 is formed from the MEMS device layer or piezoelectric layer/wafer/substrate. Alternatively, as illustrated in Fig. 12(a)(ii), the structural germanium layer 908 is not partially etched, and the structural germanium layer 908 may be covered by a layer of germanium dioxide, and thereafter, the deposited layer of germanium dioxide may be Patterning to create or form an interval 916 as illustrated in Figure 12(a)(ii).
之後,並且仍然參考第12圖,可實現沉積 壓電堆疊層1202,如參考第9C至9K圖中所描述和例示的,分別繪示在第12(b)(i)圖及第12(b)(ii)圖中。在第12(b)(i)圖的上下文中,將觀察到該接下來的壓電堆疊層1202,如參考第9C至9K圖中所描述的,是覆蓋矽間隔916,而包含該壓電堆疊層1202(如參考第9C至9K圖所揭露的)的該連續層卻覆蓋在二氧化矽間隔916上方,參考第12(b)(ii)圖。 After that, and still refer to Figure 12, deposition can be achieved The piezoelectric stack layer 1202, as described and illustrated with reference to Figures 9C through 9K, is shown in Figures 12(b)(i) and 12(b)(ii), respectively. In the context of Fig. 12(b)(i), the next piezoelectric stack layer 1202 will be observed, as described with reference to Figures 9C to 9K, covering the germanium spacer 916, and including the piezoelectric The continuous layer of stacked layer 1202 (as disclosed with reference to Figures 9C-9K) overlies the cerium oxide spacer 916, see Figure 12(b)(ii).
第13圖例示與參考第9A至9K圖所描述和 揭露不一樣的額外及/或另外的程序流程。在此案例中,並且如第13(a)圖中所繪示的,而且已經參考第12(a)(i)圖所描述的,可通過圖案化及/或部分地蝕刻結構矽層908,來形成矽間隔916。之後,先前參考第9B圖所描述的該壓電層堆疊(例如,氮化鋁種子層910、鉬層912、及氮化鋁堆疊層914)可減少至只有氮化鋁層1302,其中,氮化鋁層1302是覆蓋含有該形成的矽間隔S916的該結構矽層908的頂部,並且予以圖案化。如第13B至13H圖中所例示的,含有矽間隔916的該結構矽層908可使用作為底部電極。在第13C圖中,該氮化鋁層1302可被鋁和鈦層1306覆蓋。 如參考第13C圖所將要注意的,在氮化鋁層1302中的圖案1304將被該鋁和鈦層1306填充。 Figure 13 illustrates the description and reference to Figures 9A through 9K. Explain different additional and/or additional program flows. In this case, and as depicted in Figure 13(a), and as already described with reference to Figure 12(a)(i), the structural layer 908 can be patterned and/or partially etched, To form a 矽 interval 916. Thereafter, the piezoelectric layer stack (eg, aluminum nitride seed layer 910, molybdenum layer 912, and aluminum nitride stack layer 914) previously described with reference to FIG. 9B can be reduced to only the aluminum nitride layer 1302, wherein nitrogen The aluminum layer 1302 is the top of the structural layer 908 that covers the formed germanium space S916 and is patterned. As illustrated in Figures 13B through 13H, the structural germanium layer 908 containing germanium spacers 916 can be used as the bottom electrode. In FIG. 13C, the aluminum nitride layer 1302 can be covered by the aluminum and titanium layers 1306. As will be noted with reference to FIG. 13C, the pattern 1304 in the aluminum nitride layer 1302 will be filled with the aluminum and titanium layers 1306.
在第13D圖中,可定義鍺墊1308,其中, 鍺層可覆蓋鋁和鈦層1306,以形成該鍺墊1308。此外,在第13E圖中,該先前沉積的鋁和鈦層1306可選擇性圖案化,以定義鋁和鈦墊1310,並且暴露該下方的氮化鋁層1302。在第13F圖中,二氧化矽硬遮罩1312可沉積在定義的鍺墊1308、鋁和鈦墊1310、及暴露的氮化鋁層1302上方,並且實施蝕刻或圖案化,以定義該結構1314。 In FIG. 13D, a mattress 1308 can be defined, wherein The tantalum layer may cover the aluminum and titanium layers 1306 to form the mat 1308. Moreover, in FIG. 13E, the previously deposited aluminum and titanium layers 1306 can be selectively patterned to define aluminum and titanium pads 1310 and expose the underlying aluminum nitride layer 1302. In FIG. 13F, the ceria hard mask 1312 can be deposited over the defined crucible pad 1308, the aluminum and titanium pads 1310, and the exposed aluminum nitride layer 1302, and etched or patterned to define the structure 1314. .
一旦結構1314已經被定義,CMOS晶圓936 便可以類似於第9J圖的上下文中所描述和第13G圖中所例示的方式,而共晶地接合至該MEMS裝置晶圓1316。此外,在完成將該CMOS晶圓936共晶接合至該MEMS裝置晶圓 1316後,介面1318可形成在該MEMS裝置晶圓1316的研磨側或表面上,如第13H圖所例示的。 Once structure 1314 has been defined, CMOS wafer 936 The MEMS device wafer 1316 can be eutectic bonded to the manner illustrated in the context of FIG. 9J and illustrated in FIG. 13G. In addition, the CMOS wafer 936 is eutectic bonded to the MEMS device wafer. After 1316, interface 1318 can be formed on the abrasive side or surface of the MEMS device wafer 1316, as illustrated in Figure 13H.
現在參考第14A至14C圖,並且一開始先 參考第14A圖,以為了在不同的蝕刻及/或圖案化階段(其可被採用來建造依據實施例所描述的微機電裝置)提供保護給側壁1402,並且,如第14B圖中所例示的,二氧化矽層1404可予以沉積,以覆蓋第9E圖的上下文中所描述的該層。在檢查第14B圖時,將觀察到該二氧化矽層1404已經沉積,並且遮蓋該側壁1402連同底部電極920及該底部電極接點922。此外,在檢查第14B圖時,將會觀察到該沉積的二氧化矽層1404也將已經遮蓋該氮化鋁頂部接點924。二氧化矽層1404的沉積和圖案化提供隔離。一旦該二氧化矽層1404已經如第14B圖所例示的沉積,該二氧化矽層1404可經受空白反應離子蝕刻,以創造側壁保護1406。 Now refer to Figures 14A through 14C and start with Referring to Figure 14A, in order to provide protection to the sidewalls 1402 at different etch and/or patterning stages (which may be employed to construct the microelectromechanical device described in accordance with the embodiments), and as illustrated in Figure 14B The cerium oxide layer 1404 can be deposited to cover the layer described in the context of Figure 9E. Upon inspection of Figure 14B, it will be observed that the ceria layer 1404 has been deposited and covers the sidewall 1402 along with the bottom electrode 920 and the bottom electrode contact 922. In addition, when examining Figure 14B, it will be observed that the deposited ceria layer 1404 will also have covered the aluminum nitride top contact 924. The deposition and patterning of the cerium oxide layer 1404 provides isolation. Once the yttria layer 1404 has been deposited as illustrated in FIG. 14B, the yttria layer 1404 can be subjected to a blank reactive ion etch to create sidewall protection 1406.
依據先前本申請在一個或多個不同實施例 及態樣中揭露一種MEMS裝置,包含:第一矽基板,包含:操作層,包含第一表面及第二表面,該第二表面包含腔孔;絕緣層,沉積於該操作層的該第二表面上方;裝置層,具有第三表面和第四表面,其中,該第三表面接合至該絕緣層;壓電層,沉積在該裝置層的該第四表面上方;金屬導電層,設置在該壓電層上方;接合層,設置在一部分該金屬導電層上方;以及,間隔,形成在該第一矽基板上;其中,該第一矽基板是接合至第二矽基板,該第二矽基板包 含:金屬電極,組構用以在該第一矽基板上所形成的該金屬導電層與該第二矽基板之間形成電性連接。 In accordance with the prior application in one or more different embodiments And a MEMS device, comprising: a first germanium substrate comprising: an operating layer comprising a first surface and a second surface, the second surface comprising a cavity; an insulating layer deposited on the second of the operating layer a device layer having a third surface and a fourth surface, wherein the third surface is bonded to the insulating layer; a piezoelectric layer deposited over the fourth surface of the device layer; and a metal conductive layer disposed thereon Above the piezoelectric layer; a bonding layer disposed over a portion of the metal conductive layer; and a spacer formed on the first germanium substrate; wherein the first germanium substrate is bonded to the second germanium substrate, the second germanium substrate package And comprising: a metal electrode configured to form an electrical connection between the metal conductive layer formed on the first germanium substrate and the second germanium substrate.
依據先前所描述的,該間隔可形成在該壓 電層上,並且可形成如該裝置層上所沉積的矽層或二氧化矽層。此外及/或另外,該間隔可由該壓電層上所沉積的二氧化矽形成。 According to the previously described, the interval can be formed at the pressure On the electrical layer, a layer of tantalum or germanium dioxide deposited as on the layer of the device may be formed. Additionally and/or additionally, the spacing may be formed by cerium oxide deposited on the piezoelectric layer.
此外,可圖案化及蝕刻該壓電層,以在該 壓電層中形成側壁,其中,第一介電層可插置在該壓電層與該金屬導電層之間,而第二介電層可設置在該壓電層的該側壁上。此外,可在該操作層中形成開孔,以暴露該裝置層,可使用該裝置層中的孔洞來暴露該壓電層,並且該裝置層可包含孔隙。 Additionally, the piezoelectric layer can be patterned and etched to A sidewall is formed in the piezoelectric layer, wherein a first dielectric layer can be interposed between the piezoelectric layer and the metal conductive layer, and a second dielectric layer can be disposed on the sidewall of the piezoelectric layer. Additionally, an opening may be formed in the operating layer to expose the device layer, the holes in the device layer may be used to expose the piezoelectric layer, and the device layer may comprise voids.
依據揭露的態樣,可選擇性或部分地移除 該裝置層,該壓電層在一個實施例中可包含氮化鋁、或在另一實施例中可包含:氮化鋁(AlN)種子層、底部金屬層、及氮化鋁層。此外,紅外線吸收層可沉積在一部分該裝置層上、及/或該紅外線(IR)吸收層可沉積在一部分該壓電層上。 Depending on the aspect of the disclosure, it may be selectively or partially removed The device layer, which in one embodiment may comprise aluminum nitride, or in another embodiment may comprise an aluminum nitride (AlN) seed layer, a bottom metal layer, and an aluminum nitride layer. Further, an infrared absorbing layer may be deposited on a portion of the device layer, and/or the infrared (IR) absorbing layer may be deposited on a portion of the piezoelectric layer.
依據另一個實施例,描述和揭露一種方法。 該方法可包含一序列機器可執行的操作,該操作可包含沉積絕緣層在操作層上方,該操作層包含第一表面和第二表面,其中,該第二表面包含腔孔,而該絕緣層是形成在該操作層的該第二表面上;將裝置層的第一表面接合至該絕緣層;沉積壓電層在該裝置層的第二表面上;沉積金屬導 電層在該壓電層上方;部分地沉積接合層在該金屬導電層上方;形成間隔在該裝置層的該第二表面上;以及,在該金屬導電層與矽基板建立電性連接。 According to another embodiment, a method is described and disclosed. The method can include a sequence of machine-executable operations, the operation comprising depositing an insulating layer over the operating layer, the operating layer comprising a first surface and a second surface, wherein the second surface comprises a cavity and the insulating layer Formed on the second surface of the handle layer; bonding the first surface of the device layer to the insulating layer; depositing the piezoelectric layer on the second surface of the device layer; depositing a metal guide An electrical layer is above the piezoelectric layer; a bonding layer is partially deposited over the metal conductive layer; a second surface is formed on the device layer; and an electrical connection is established between the metal conductive layer and the germanium substrate.
另外的機器可執行方法操作可包含:沉積 矽層或二氧化矽層以形成該間隔;沉積二氧化矽層以形成定位在該壓電層上的間隔;圖案化和蝕刻該壓電層以形成側壁;插置第一介電層在該壓電層與該金屬導電層之間;沉積第二介電層在該壓電層的該側壁上;通過該操作層中的第一開孔暴露該裝置層;以及,透過該第一開孔及該裝置層中的第二開孔暴露該壓電層。 Additional machine-executable method operations may include: deposition a germanium layer or a hafnium oxide layer to form the spacer; depositing a hafnium oxide layer to form a space positioned on the piezoelectric layer; patterning and etching the piezoelectric layer to form a sidewall; interposing the first dielectric layer in the Between the piezoelectric layer and the metal conductive layer; depositing a second dielectric layer on the sidewall of the piezoelectric layer; exposing the device layer through a first opening in the operating layer; and, through the first opening And a second opening in the device layer exposes the piezoelectric layer.
額外的機器可執行方法動作也可包含:選 擇性移除一部分該裝置層;沉積紅外線(IR)吸收層在該裝置層的選擇部分上;以及,沉積紅外線(IR)吸收層在該壓電層的選擇部分上。 Additional machine executable method actions can also include: Optionally removing a portion of the device layer; depositing an infrared (IR) absorbing layer over selected portions of the device layer; and depositing an infrared (IR) absorbing layer over selected portions of the piezoelectric layer.
依據另外的實施例,該揭露描述一種微機 電裝置,其可包含:第一矽基板,接合至第二矽基板,該第二矽基板包含:電極,在該第二矽基板上,並且電性接觸設置在該第一矽基板上的導電層;該第一矽基板上的該導電層是設置在該第一矽基板上的壓電層上方;該第一矽基板上的該壓電層是沉積在裝置層上方,該裝置層包含形成在該第一矽基板上的間隔;以及,該第一矽基板上的該裝置層是接合至壓電層,該壓電層是沉積在該第一矽基板上的操作層的表面上,該表面包含腔孔。 According to a further embodiment, the disclosure describes a microcomputer An electrical device, comprising: a first germanium substrate bonded to the second germanium substrate, the second germanium substrate comprising: an electrode on the second germanium substrate and electrically contacting the conductive layer disposed on the first germanium substrate The conductive layer on the first germanium substrate is disposed above the piezoelectric layer on the first germanium substrate; the piezoelectric layer on the first germanium substrate is deposited over the device layer, and the device layer includes formation a space on the first germanium substrate; and the device layer on the first germanium substrate is bonded to a piezoelectric layer, the piezoelectric layer being deposited on a surface of the operating layer on the first germanium substrate, The surface contains a cavity.
如此申請所使用的,術語"或"是打算意指包 含的"或",而非排它的"或"。也就是,除非另外指明、或從上下文可清楚得知,否則"X採用A或B"是打算意指任何的自然包含排列(natural inclusive permutation)。也就是,如果X採用A;X採用B;或X兼採A和B,則"X採用A或B"在任何先前案例中均滿足。此外,如此申請及附加的權利要求所使用的冠詞"一"一般應解讀為意指"一個或多個",除非特別指明、或從上下文可清楚得知是關於單一形成。此外,本文中所使用的"耦接"這個字是意指直接或間接電性或機械耦接。此外,本文中所使用的"例子"及/或"範例"是意指作為例子、案例、或例示。本文中描述為"例子"及/或"範例"的任何態樣或設計並不需要解讀為較佳或比其它態樣或設計更具有優點。反而是,使用範例這個字是打算以精簡的方式呈現概念。 The term "or" as used in this application is intended to mean the package. Contains "or" rather than exclusive "or". That is, "X employs A or B" is intended to mean any natural inclusive permutation unless otherwise indicated or clear from the context. That is, if X employs A; X employs B; or X combines A and B, then "X employs A or B" is satisfied in any previous case. In addition, the article "a" or "an" or "an" Furthermore, the word "coupled" as used herein refers to either direct or indirect electrical or mechanical coupling. Furthermore, "example" and/or "example" as used herein is intended to mean an example, a case, or an illustration. Any aspect or design described herein as "example" and/or "example" need not be construed as preferred or advantageous over other aspects or designs. Instead, the use of the word is intended to present concepts in a streamlined manner.
以上所描述的包含本揭露的例子。當然, 不可能為了描述主題標的而描述元件或方法的每一個想得到的結合,但應體會到可能有許多另外的本揭露的結合與排列。因此,請求的主題標的是涵蓋落在附加的請求項的精神和範圍內的所有這種改變、修正、及變化。 The examples described above contain examples of the present disclosure. of course, It is not possible to describe every desired combination of elements or methods in order to describe the subject matter, but it should be appreciated that there may be many additional combinations and permutations of the present disclosure. Accordingly, the subject matter of the claims is intended to cover all such changes, modifications, and variations that fall within the spirit and scope of the appended claims.
特別並且針對由以上描述的元件、裝置、 系統及類似者所實施的各種功能而言,用來描述這種元件的這些術語(包含對"手段"(means)的參考)是打算對應(除非另外指示)實施所描述的元件的指定功能的任何元件(例如,功能性等效物),即使沒有在結構上等效於該揭露的結構,該元件實施該等請求的主題標的的例示範例態樣中的 功能。 In particular and for the components, devices, The terms used to describe such elements (including references to "means") are intended to correspond (unless otherwise indicated) to the specified functions of the described elements. Any element (e.g., a functional equivalent), even if it is not structurally equivalent to the disclosed structure, the element performs the exemplary embodiment of the subject matter of the request Features.
該等先前提及的系統已經在幾個元件之間 的互動方面加以描述。可體會到的是,這種系統及/或元件可包含那些元件或指定的次元件、一些該等指定的元件或次元件、及/或額外的元件,並且依據該先前的元件的各種排列和組合。次元件也可實作成與其它元件通訊耦接、而非包含在母組件(架構式)內的組件。此外,應注意到的是,一個或多個元件可組合成提供集合性功能的單一元件、或分割成幾個個別的次元件,而且可設置任何一個或多個中層,以與這種次元件通訊地耦接,以為了提供整合性功能。 本文中所描述的任何元件也可與本文中沒有特定描述的一個或多個其它元件互動。 The previously mentioned systems are already between several components The interactive aspects are described. It will be appreciated that such systems and/or components may include those elements or specified sub-elements, some of those specified or sub-elements, and/or additional elements, and depending on the various arrangements of the combination. The secondary component can also be implemented as a component that is communicatively coupled to other components rather than included in the parent component (architectural). Furthermore, it should be noted that one or more elements may be combined into a single element that provides a collective function, or divided into several individual sub-elements, and any one or more intermediate layers may be provided to interact with such sub-elements. Communication is coupled to provide integrated functionality. Any of the elements described herein can also interact with one or more other elements not specifically described herein.
此外,雖然主題揭露的特別特徵已經在幾 個實作的一者方面有所揭露,但這種特徵可與任何給定或特別應用所希望和有利的其它實作的一個或多個其它特徵結合。此外,"包括""具有"(has)、"含有"(contains)、其變體、和其它類似的用字,是使用在詳細的描述或請求項中,這些用語是打算以類似於"包含"(comprising)的內含方式,以作為開放式轉承用字,而沒有排除其它額外或其它元件。 In addition, although the special features revealed by the theme are already in the One aspect of the implementation is disclosed, but such features may be combined with one or more other features of other implementations that are desired and advantageous for a given or particular application. In addition, "including" "has", "contains", its variants, and other similar words are used in the detailed description or claims, which are intended to be similar to "including" "(comprising) is included as an open-ended word without excluding other additional or other elements.
Claims (25)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361880110P | 2013-09-19 | 2013-09-19 | |
US61/880,110 | 2013-09-19 | ||
US14/480,051 | 2014-09-08 | ||
US14/480,051 US9511994B2 (en) | 2012-11-28 | 2014-09-08 | Aluminum nitride (AlN) devices with infrared absorption structural layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201517246A TW201517246A (en) | 2015-05-01 |
TWI621242B true TWI621242B (en) | 2018-04-11 |
Family
ID=53720479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103132242A TWI621242B (en) | 2013-09-19 | 2014-09-18 | Aluminum nitride (ain) devices with infrared absorption structural layer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104860258B (en) |
TW (1) | TWI621242B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9878899B2 (en) * | 2015-10-02 | 2018-01-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for reducing in-process and in-use stiction for MEMS devices |
US11078075B2 (en) * | 2015-12-31 | 2021-08-03 | Taiwan Semiconductor Manufacturing Company Ltd. | Packaging method and associated packaging structure |
TWI664755B (en) | 2016-03-23 | 2019-07-01 | 伊凡聖斯股份有限公司 | Integration of ain ultrasonic transducer on a cmos substrate using fusion bonding process |
CN108311361B (en) * | 2018-03-26 | 2022-12-16 | 浙江大学 | Micro-electromechanical piezoelectric ultrasonic transducer with specific mode vibration mode |
DE102018217894A1 (en) * | 2018-10-18 | 2020-04-23 | Robert Bosch Gmbh | Microelectromechanical structure with a functional element arranged in a cavern of the microelectromechanical structure |
US11329098B2 (en) * | 2018-11-08 | 2022-05-10 | Vanguard International Semiconductor Singapore Pte. Ltd. | Piezoelectric micromachined ultrasonic transducers and methods for fabricating thereof |
CN113441379B (en) * | 2021-08-27 | 2021-11-23 | 南京声息芯影科技有限公司 | PMUT-on-CMOS unit suitable for high-density integration, array chip and manufacturing method |
CN113560158B (en) * | 2021-08-27 | 2022-06-10 | 南京声息芯影科技有限公司 | Piezoelectric micromechanical ultrasonic transducer, array chip and manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040094815A1 (en) * | 2002-11-14 | 2004-05-20 | Joon Park | Micro electro-mechanical system device with piezoelectric thin film actuator |
US20130032906A1 (en) * | 2010-04-21 | 2013-02-07 | Panasonic Corporation | Ferroelectric device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006001125A1 (en) * | 2004-06-25 | 2008-04-17 | 株式会社村田製作所 | Piezoelectric device |
JP2006289520A (en) * | 2005-04-06 | 2006-10-26 | Toshiba Corp | Semiconductor device using mems technology |
KR101092536B1 (en) * | 2005-11-30 | 2011-12-13 | 삼성전자주식회사 | Piezoelectric RF MEMS Device and the Method for Producing the Same |
KR20090010357A (en) * | 2007-07-23 | 2009-01-30 | 엘지전자 주식회사 | Rf switch |
JP2013538446A (en) * | 2010-07-26 | 2013-10-10 | 富士フイルム株式会社 | Formation of devices with curved piezoelectric films |
US8733272B2 (en) * | 2010-12-29 | 2014-05-27 | Fujifilm Corporation | Electrode configurations for piezoelectric actuators |
CN102590555B (en) * | 2011-11-23 | 2017-03-15 | 中国计量学院 | Resonance dynamic balance capacitance-type triaxial acceleration transducer and manufacture method |
-
2014
- 2014-09-18 TW TW103132242A patent/TWI621242B/en active
- 2014-09-19 CN CN201410483646.XA patent/CN104860258B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040094815A1 (en) * | 2002-11-14 | 2004-05-20 | Joon Park | Micro electro-mechanical system device with piezoelectric thin film actuator |
US20130032906A1 (en) * | 2010-04-21 | 2013-02-07 | Panasonic Corporation | Ferroelectric device |
Also Published As
Publication number | Publication date |
---|---|
CN104860258B (en) | 2017-05-17 |
TW201517246A (en) | 2015-05-01 |
CN104860258A (en) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10294097B2 (en) | Aluminum nitride (AlN) devices with infrared absorption structural layer | |
TWI621242B (en) | Aluminum nitride (ain) devices with infrared absorption structural layer | |
US10508022B2 (en) | MEMS device and process for RF and low resistance applications | |
EP3006396B1 (en) | Cmos-mems integrated device including multiple cavities at different controlled pressures and methods of manufacture | |
TWI500573B (en) | Mems device and methods of forming same | |
US10486964B2 (en) | Method for forming a micro-electro mechanical system (MEMS) including bonding a MEMS substrate to a CMOS substrate via a blocking layer | |
TWI472000B (en) | Mems device and manufacturing method thereof | |
US9260295B2 (en) | MEMS integrated pressure sensor devices having isotropic cavities and methods of forming same | |
US8330559B2 (en) | Wafer level packaging | |
US7618837B2 (en) | Method for fabricating high aspect ratio MEMS device with integrated circuit on the same substrate using post-CMOS process | |
KR101939503B1 (en) | Integrated cmos and mems sensor fabrication method and structure | |
TWI503953B (en) | Mems devices and fabrication methods thereof | |
TW201442173A (en) | Internal electrical contact for enclosed MEMS devices | |
TW201430974A (en) | Method of manufacturing MEMS device | |
TWI511276B (en) | Integrated structure with bidirectional vertical actuation | |
CN105874312A (en) | Inertial and pressure sensors on single chip | |
TWI691455B (en) | Cmos-mems integrated device including a contact layer and methods of manufacture | |
EP3009793B1 (en) | Method of fabricating piezoelectric mems device |