TWI620152B - Fall detection method - Google Patents
Fall detection method Download PDFInfo
- Publication number
- TWI620152B TWI620152B TW105133705A TW105133705A TWI620152B TW I620152 B TWI620152 B TW I620152B TW 105133705 A TW105133705 A TW 105133705A TW 105133705 A TW105133705 A TW 105133705A TW I620152 B TWI620152 B TW I620152B
- Authority
- TW
- Taiwan
- Prior art keywords
- fall
- data
- acceleration
- analysis
- comparison data
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 18
- 238000004458 analytical method Methods 0.000 claims abstract description 145
- 230000001133 acceleration Effects 0.000 claims abstract description 102
- 238000000034 method Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Landscapes
- Emergency Alarm Devices (AREA)
Abstract
本發明係一種跌倒偵測之方法,分析目標物判斷是否發生跌倒行為,該偵測分析方法包括,偵測目標物的加速度訊號並產生複數連續性的加速度波形數據、該些加速度波形數據則由分析表進行計算,分析表主要區分有加速度上限值、加速度下限值、加速度中間值、跌倒數據速度第一臨界值、跌倒數據速度第二臨界值及一加速度臨界值,依照分析表取得第一跌倒分析比對數據、第二跌倒分析比對數據及第三跌倒分析比對數據,依據第一跌倒分析比對數據、第二跌倒分析比對數據及第三跌倒分析比對數據判斷該目標物是否發生跌倒行為,藉以做出提前警示或是由醫療中心進行監控等。 The invention relates to a fall detection method, which analyzes a target object to determine whether a fall behavior occurs, and the detection analysis method comprises: detecting an acceleration signal of a target object and generating complex continuous acceleration waveform data, wherein the acceleration waveform data is The analysis table is calculated. The analysis table mainly distinguishes the upper acceleration limit, the lower acceleration limit, the intermediate acceleration value, the first critical value of the fall data speed, the second critical value of the fall data speed, and an acceleration threshold. a fall analysis comparison data, a second fall analysis comparison data, and a third fall analysis comparison data, and determining the target according to the first fall analysis comparison data, the second fall analysis comparison data, and the third fall analysis comparison data Whether the object has a fall behavior, in order to make an early warning or to be monitored by a medical center.
Description
本發明係一種偵測跌倒,尤指一種跌倒偵測之方法。 The invention is a method for detecting a fall, especially a fall detection.
按,隨著人口老齡化逐漸嚴重,社會福利方面則相對更加重要,因此為了因應此社會現象對於老人福利、看護以及醫療方面則必須不斷的調整。老年人隨著年紀愈大身體機能老化的程度愈明顯,對於身體肌肉量的部分也會愈加退化,尤其是腿部的肌力方面,當腿力不足時則十分容易造成軟腳或是跌倒的情況,而有年紀的老年人若發生跌倒十分容易造成骨折等嚴重的意外,進而加速老化的程度。有鑑於此,市面上針對此問題已開發出多種用來輔助監測的跌倒偵測系統與設備。 According to the aging of the population, social welfare is relatively more important. Therefore, in order to respond to this social phenomenon, the welfare, care and medical care of the elderly must be constantly adjusted. The older the older the body, the more obvious the degree of physical functioning, and the part of the body's muscle mass will be more degraded, especially in terms of the muscle strength of the leg. When the leg strength is insufficient, it is very easy to cause soft feet or fall. The situation, while older people who fall down is very likely to cause serious accidents such as fractures, thus accelerating the degree of aging. In view of this, a variety of fall detection systems and devices have been developed for assisting monitoring on this issue.
然,現有的跌倒偵測系統十分容易發生誤判的情況,例如受測者的日常動作中做出蹲下、跳躍或是上下浮動過大的動作時,十分容易被判斷發生跌倒,而造成後端醫療分析上出現較明顯的誤差值,造成不正確的醫療判斷。 However, the existing fall detection system is very prone to misjudgment. For example, when the subject's daily movements are made to squat, jump, or move up and down too much, it is easy to be judged to fall, resulting in back-end medical treatment. Significant error values appear on the analysis, resulting in incorrect medical judgment.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art.
本發明之主要目的在於:利用分析表對連續性的加速度波形數據採取多點積分計算以產生複數第一分析數據,同時比對跌倒數據速度第一臨界值以取得第一跌倒分析比對數據,且針對超過該加速度臨界值之該加速度波形數據界定為第二跌倒分析比對數據,同時針對上波形區域及下波形區域進行區域分析得到第三跌倒分析比對數據,當第一跌倒分析比對數據、第二跌倒分析比對數據及第三跌倒分析比對數據皆發生時,即可判定為發生皆跌倒行為,藉此能夠精準的判斷目標物是否發生跌倒的監測資訊,並可提供醫療中心進行監控等。 The main object of the present invention is to use a analysis table to perform multi-point integral calculation on continuous acceleration waveform data to generate a plurality of first analysis data, and compare the first critical value of the fall data speed to obtain the first fall analysis comparison data. And the acceleration waveform data exceeding the acceleration threshold is defined as the second fall analysis comparison data, and the third fall analysis comparison data is obtained for the upper waveform region and the lower waveform region, when the first fall analysis is compared. When the data, the second fall analysis comparison data, and the third fall analysis comparison data both occur, it can be determined that the fall behavior occurs, thereby accurately determining whether the target has a fall monitoring information, and providing a medical center. Monitor and so on.
為達上述目的,本發明係一種跌倒偵測之方法,分析目標物判斷是否發生跌倒行為,該偵測分析方法包括:偵測該目標物的加速度訊號並產生複數連續性的加速度波形數據;由一分析表計算該加速度波形數據,該分析表區分一加速度上限值、一加速度下限值、一加速度中間值、一跌倒數據速度第一臨界值、一跌倒數據速度第二臨界值及一加速度臨界值,其中以該加速度中間值為中心,位於該加速度中間值上方的速度區間界定為該加速度上限值,而下方的速度區間則界定為該加速度下限值,至於該跌倒數據速度第一臨界值界定於速度零之下,及該跌倒數據速度第二臨界值則界定在速度零之下及該跌倒數據速度第一臨界值之上;針對形成於該加速度中間值與該加速度下限值之間的下波形區域進行多點積分計算以產生複數第一分析數據;依據各該第一分析數據並比對該跌倒數據速度第一臨界值以取得第一跌倒分析比對數據;針對超過該加速度臨界值之該加速度波形數據界定為第二跌倒分析比對數據;同時針對各該加速度波形數據界定之形成於該加速度上限值及該加速度中間值之間的上波形區域及 該下波形區域進行區域分析得到一第三跌倒分析比對數據;及依據該第一跌倒分析比對數據、該第二跌倒分析比對數據及該第三跌倒分析比對數據判斷該目標物是否發生跌倒行為。 In order to achieve the above object, the present invention is a fall detection method for analyzing a target object to determine whether a fall behavior occurs, and the detection analysis method includes: detecting an acceleration signal of the target object and generating complex continuous acceleration waveform data; An analysis table calculates the acceleration waveform data, the analysis table distinguishes an acceleration upper limit value, an acceleration lower limit value, an acceleration intermediate value, a fall data speed first critical value, a fall data speed second critical value, and an acceleration a threshold value, wherein the acceleration intermediate value is defined as the acceleration upper limit value, and the lower speed interval is defined as the acceleration lower limit value, and the fall data speed is first The threshold is defined below the velocity zero, and the second threshold of the fall data velocity is defined below the velocity zero and above the first threshold of the fall data velocity; for the intermediate value formed at the acceleration and the lower limit of the acceleration Multi-point integration calculation between the lower waveform regions to generate a plurality of first analysis data; And comparing the first critical value of the fall data speed to obtain the first fall analysis comparison data; the acceleration waveform data exceeding the acceleration threshold is defined as the second fall analysis comparison data; and for each of the acceleration waveform data Defining an upper waveform region formed between the upper acceleration limit value and the intermediate value of the acceleration Performing a region analysis on the lower waveform region to obtain a third fall analysis comparison data; and determining whether the target object is based on the first fall analysis comparison data, the second fall analysis comparison data, and the third fall analysis comparison data A fall occurs.
根據本發明之一實施例,其中判斷該第一跌倒分析比對數據之步驟包括:針對各該第一分析數據產生一分析曲線;對該分析曲線判斷是否超過跌倒數據速度第一臨界值;及超過跌倒數據速度第一臨界值則判斷該分析曲線回彈是否小於該跌倒數據速度第二臨界值,所謂回彈代表上波形區域17之區域面積與下波形區域18之區域面積相減產生回彈之曲線。 According to an embodiment of the present invention, the step of determining the first fall analysis comparison data includes: generating an analysis curve for each of the first analysis data; determining, by the analysis curve, whether the first critical value of the fall data speed is exceeded; and If the first critical value of the fall data speed is exceeded, it is determined whether the rebound of the analysis curve is smaller than the second critical value of the fall data speed, and the so-called rebound represents the area of the area of the upper waveform area 17 and the area of the area of the lower waveform area 18 is subtracted to generate a rebound. The curve.
根據本發明之一實施例,其中判斷該第三跌倒分析比對數據之步驟包括:先行分析單一該加速度波形數據中之下波形區域之該區域面積;及後分析接連該下波形區域之該上波形區域之該區域面積,並與該下波形區域之該區域面積比對。 According to an embodiment of the present invention, the step of determining the third fall analysis comparison data comprises: first analyzing the area of the area of the lower waveform region in the single acceleration waveform data; and analyzing the upper portion of the lower waveform region The area of the area of the waveform area and compared to the area of the area of the lower waveform area.
根據本發明之一實施例,其中判斷該第三跌倒分析比對數據之步驟更包括:該上波形區域等於該下波形區域即表示該第三跌倒分析比對數據代表未發生跌倒行為。 According to an embodiment of the present invention, the step of determining the third fall analysis comparison data further comprises: the upper waveform region being equal to the lower waveform region, that is, the third fall analysis comparison data represents that no fall behavior occurs.
根據本發明之一實施例,其中判斷該第三跌倒分析比對數據之步驟更包括:該上波形區域小於該下波形區域即表示該第三跌倒分析比對數據代表可能發生跌倒行為。 According to an embodiment of the present invention, the step of determining the third fall analysis comparison data further comprises: the upper waveform region being smaller than the lower waveform region, that is, the third fall analysis comparison data represents that a fall behavior may occur.
根據本發明之一實施例,其中判斷該第三跌倒分析比對數據之步驟更包括:代表可能發生跌倒行為之該第三跌倒分析比對數據需與確定超過該跌倒數據速度第一臨界值之該分析曲線比對以顯示確實發生跌倒行為。 According to an embodiment of the present invention, the step of determining the third fall analysis comparison data further comprises: the third fall analysis comparison data representing the possible fall behavior needs to be determined to exceed the first critical value of the fall data speed The analysis curves are compared to show that a fall behavior does occur.
1‧‧‧分析表 1‧‧‧Analysis form
10‧‧‧加速度上限值 10‧‧‧Acceleration upper limit
11‧‧‧加速度下限值 11‧‧‧Acceleration lower limit
12‧‧‧加速度中間值 12‧‧‧ acceleration intermediate value
130‧‧‧跌倒數據速度第一臨界值 130‧‧‧ falls the first critical value of data speed
132‧‧‧跌倒數據速度第二臨界值 132‧‧‧ falls the second critical value of data rate
14‧‧‧加速度臨界值 14‧‧‧ acceleration threshold
16‧‧‧加速度波形數據 16‧‧‧Acceleration waveform data
17‧‧‧上波形區域 17‧‧‧Upper waveform area
18‧‧‧下波形區域 18‧‧‧lower waveform area
180‧‧‧第一分析數據 180‧‧‧ first analytical data
182‧‧‧分析曲線 182‧‧‧ analysis curve
2‧‧‧第一跌倒分析比對數據 2‧‧‧First fall analysis comparison data
3‧‧‧第二跌倒分析比對數據 3‧‧‧Second fall analysis comparison data
4、4a、4b‧‧‧第三跌倒分析比對數據 4, 4a, 4b‧‧‧ third fall analysis comparison data
圖1 為本發明較佳實施例之流程示意圖。 FIG. 1 is a schematic flow chart of a preferred embodiment of the present invention.
圖2 為本發明判斷第一跌倒分析比對數據之流程示意圖。 FIG. 2 is a schematic flowchart of determining the first fall analysis comparison data according to the present invention.
圖3 為本發明判斷第三跌倒分析比對數據之流程示意圖。 FIG. 3 is a schematic flow chart of determining the third fall analysis comparison data according to the present invention.
圖4 為本發明偵測第一及第二跌倒分析比對數據之曲線圖。 4 is a graph of detecting first and second fall analysis comparison data according to the present invention.
圖5 為本發明偵測加入第三跌倒分析比對數據之曲線圖。 FIG. 5 is a graph of detecting and adding third fall analysis comparison data according to the present invention.
以下藉由具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。 The other embodiments of the present invention will be readily understood by those skilled in the art from this disclosure.
本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如“一”、“兩”、“上”等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當亦視為本發明可實施之範疇。 The structure, the proportions, the sizes, and the like of the present invention are only used to clarify the contents disclosed in the specification for the understanding and reading of those skilled in the art, and are not intended to limit the implementation of the present invention. The conditions are not technically meaningful, and any modification of the structure, change of the proportional relationship or adjustment of the size should remain in the present invention without affecting the effects and the achievable objectives of the present invention. The technical content revealed can be covered. In the meantime, the terms "a", "an", "the" and "the" are used in the description, and are not intended to limit the scope of the invention. Adjustments, where there is no material change, are considered to be within the scope of the invention.
請參閱圖1所示,為本發明較佳實施例之流程示意圖。一種跌倒偵測之方法,分析目標物判斷是否發生跌倒行為,該偵測分析方法包括以下步驟:a、先偵測目標物的加速度訊號並產生複數連續性的加速度波形數據;b、由一分析表計算該加速度波形數據,該分析表區分一加速度上限值、一加速度下限值、一加速度中間值、一跌倒數據速度第一臨界值、 一跌倒數據速度第二臨界值及一加速度臨界值;c、針對形成於該加速度中間值與該加速度下限值之間的下波形區域進行多點積分計算以產生複數第一分析數據;d、依據各該第一分析數據並比對該跌倒數據速度第一臨界值以取得第一跌倒分析比對數據;e、針對超過該加速度臨界值之該加速度波形數據界定為第二跌倒分析比對數據;f、同時針對各該加速度波形數據界定之形成於該加速度上限值及該加速度中間值之間的上波形區域及該下波形區域進行區域分析得到一第三跌倒分析比對數據;及g、依據該第一跌倒分析比對數據、該第二跌倒分析比對數據及該第三跌倒分析比對數據判斷該目標物是否發生跌倒行為。 Please refer to FIG. 1 , which is a schematic flowchart of a preferred embodiment of the present invention. A fall detection method for analyzing a target object to determine whether a fall behavior occurs, the detection analysis method comprising the steps of: a: first detecting an acceleration signal of the target object and generating a complex continuous acceleration waveform data; b. The table calculates the acceleration waveform data, and the analysis table distinguishes an acceleration upper limit value, an acceleration lower limit value, an acceleration intermediate value, a fall data speed first critical value, a fall data speed second threshold value and an acceleration threshold value; c. performing multi-point integral calculation on the lower waveform region formed between the acceleration intermediate value and the acceleration lower limit value to generate a plurality of first analysis data; d, Determining the first fall analysis comparison data according to the first analysis data and comparing the first critical value of the fall data speed; e, defining the acceleration waveform data exceeding the acceleration threshold as the second fall analysis comparison data And f. simultaneously performing regional analysis on the upper waveform region and the lower waveform region defined between the acceleration upper limit value and the intermediate value of the acceleration waveform data to obtain a third fall analysis comparison data; and g And determining, according to the first fall analysis comparison data, the second fall analysis comparison data, and the third fall analysis comparison data, whether the target has a fall behavior.
一併參考圖2及圖3所示,為本發明判斷第一跌倒分析比對數據之流程示意圖及判斷第三跌倒分析比對數據之流程示意圖。前述中對於第一跌倒分析比對數據之判斷步驟包括:針對各該第一分析數據產生一分析曲線;及藉由該分析曲線判斷是否超過跌倒數據速度第一臨界值。此外,第三跌倒分析比對數據的判斷步驟包括:先行分析單一該加速度波形數據中之下波形區域之該區域面積;及後分析接連該下波形區域之該上波形區域之該區域面積,並與該下波形區域之該區域面積比對。其中判斷該第三跌倒分析比對數據之步驟更包括:該上波形區域等於該下波形區域即表示該第三跌倒分析比對數據代表未發生跌倒行為,或是該上波形區域小於該下波形區域即表示該第三跌倒分析比對數據代表可能發生跌倒行為,而後代表可能發生跌倒行為之該第三跌倒分析比對數據需與確定超過該跌倒數據速度第一臨界值及跌倒數據速度第二臨界值之該分析曲線比對以顯示確實發生跌倒行為。 Referring to FIG. 2 and FIG. 3 together, it is a schematic flowchart of determining the first fall analysis comparison data and a flow chart for determining the third fall analysis comparison data according to the present invention. The determining step of the first fall analysis comparison data includes: generating an analysis curve for each of the first analysis data; and determining, by the analysis curve, whether the first critical value of the fall data speed is exceeded. In addition, the determining step of the third fall analysis comparison data includes: first analyzing the area of the area of the lower waveform region in the single acceleration waveform data; and analyzing the area of the upper waveform region of the lower waveform region, and The area of the area of the lower waveform region is aligned. The step of determining the third fall analysis comparison data further comprises: the upper waveform region being equal to the lower waveform region, that is, the third fall analysis comparison data represents that no fall behavior occurs, or the upper waveform region is smaller than the lower waveform. The area indicates that the third fall analysis comparison data represents a possible fall behavior, and then the third fall analysis of the possible fall behavior is required to determine and exceed the first critical value of the fall data speed and the second fall data speed. The analytical curve of the cutoff is aligned to show that the fall behavior does occur.
一併參考圖4及圖5所示,為本發明偵測第一及第二跌倒分析比對數據之曲線圖及加入第三跌倒分析比對數據之曲線圖。本發明的跌倒偵測之方法主要透過外部攜帶式的偵測器進行配戴者行走時的速度變化,並藉由分析表來掌握配戴者的行走動態,以確切掌握並記錄行走狀態。本實施例比對分析,首先配戴者行走時所配戴的偵測器會對配戴者(目標物)持續偵測其加速度並產生訊號以產生複數連續性的加速度波形數據16(步驟a)。而後利用分析表計算加速度波形數據16,分析表1主要區分有加速度上限值10、加速度下限值11、加速度中間值12、跌倒數據速度第一臨界值130、跌倒數據速度第二臨界值132及加速度臨界值14,其中以加速度中間值12為中心,位於加速度中間值12上方的速度區間界定為加速度上限值10,而下方的速度區間則界定為加速度下限值11,至於該跌倒數據速度第一臨界值130界定於速度零之下,及該跌倒數據速度第二臨界值132則界定在速度零之下及該跌倒數據速度第一臨界值130之上,加速度波形數據16以加速度中間值12為中心並在加速度上限值10及加速度下限值11之間波動,而加速度臨界值14則高於加速度上限值10(步驟b)。前述中的加速度波形數據16主要區分有上波形區域17及下波形區域18,上波形區域17被界定在加速度中間值12與加速度上限值10之間,下波形區域18則界定在加速度中間值12與加速度下限值11之間,因此針對下波形區域18則進行多點積分計算以產生複數第一分析數據180(步驟c)。此第一分析數據180足以得知與跌倒數據速度第一臨界值130之間的關係,積分運算後的第一分析數據180會有不同的數據,至於第一分析數據180與跌倒數據速度第一臨界值130之間的判斷步驟包括:針對各該第一分析數據180產生一分析曲線182;對該分析曲線182判 斷是否超過跌倒數據速度第一臨界值130;及超過跌倒數據速度第一臨界值130則判斷該分析曲線182回彈是否小於該跌倒數據速度第二臨界值132,所謂回彈代表上波形區域17之區域面積與下波形區域18之區域面積相減產生回彈之曲線。藉此得到第一跌倒分析比對數據2(步驟d)。針對超過該加速度臨界值14之該加速度波形數據16界定為第二跌倒分析比對數據3(步驟e),針對各加速度波形數據16界定之上波形區域17及下波形區域18進行區域分析得到,所謂的上波形區域17被界定在加速度中間值12與加速度上限值10之間,下波形區域18則界定在加速度中間值12與加速度下限值11之間,由上波形區域17及下波形區域18的區域分析可以得到第三跌倒分析比對數據4(步驟f)當取得第一跌倒分析比對數據2、第二跌倒分析比對數據3及第三跌倒分析比對數據4後,則可依據第一跌倒分析比對數據2、第二跌倒分析比對數據3及第三跌倒分析比對數據4判斷該目標物是否發生跌倒行為(步驟g)。換言之,倘若第一跌倒分析比對數據2超過跌倒數據速度第一臨界值130以及加速度波形數據16超過加速度臨界值14而出現第二跌倒分析比對數據3時,則須判斷第三跌倒分析比對數據4,若僅只有發生第一跌倒分析比對數據2或第二跌倒分析比對數據3,則可直接認為並未發生跌倒之行為。 Referring to FIG. 4 and FIG. 5 together, the graph of detecting the first and second fall analysis comparison data and the graph of adding the third fall analysis comparison data according to the present invention are shown. The fall detection method of the present invention mainly uses the external portable detector to change the speed of the wearer while walking, and uses the analysis table to grasp the walking dynamics of the wearer to accurately grasp and record the walking state. In the comparative analysis of the embodiment, first, the detector worn by the wearer continuously detects the acceleration of the wearer (target) and generates a signal to generate complex continuity acceleration waveform data 16 (step a) ). Then, the acceleration waveform data 16 is calculated by using the analysis table. The analysis table 1 mainly distinguishes the acceleration upper limit value 10, the acceleration lower limit value 11, the acceleration intermediate value 12, the fall data speed first threshold value 130, and the fall data speed second threshold value 132. And an acceleration threshold 14 in which the acceleration interval intermediate value 12 is centered, the speed interval above the acceleration intermediate value 12 is defined as the acceleration upper limit value 10, and the lower speed interval is defined as the acceleration lower limit value 11 as for the fall data. The speed first threshold 130 is defined below the speed zero, and the fall data speed second threshold 132 is defined below the speed zero and above the fall data speed first threshold 130, the acceleration waveform data 16 is in the middle of the acceleration The value 12 is centered and fluctuates between the upper acceleration limit 10 and the lower acceleration limit 11, and the acceleration threshold 14 is higher than the upper acceleration limit 10 (step b). The acceleration waveform data 16 in the foregoing is mainly distinguished by an upper waveform region 17 and a lower waveform region 18, the upper waveform region 17 is defined between the acceleration intermediate value 12 and the acceleration upper limit value 10, and the lower waveform region 18 is defined at the intermediate acceleration value. 12 is between the lower acceleration limit value 11, and therefore the multi-point integration calculation is performed for the lower waveform region 18 to generate a plurality of first analysis data 180 (step c). The first analysis data 180 is sufficient to know the relationship with the fall data speed first threshold 130, and the first analysis data 180 after the integration operation has different data, and the first analysis data 180 and the fall data speed are first. The determining step between the threshold values 130 includes: generating an analysis curve 182 for each of the first analysis data 180; determining the analysis curve 182 Whether the break exceeds the fall data speed first threshold 130; and exceeds the fall data speed first threshold 130 determines whether the analysis curve 182 rebound is less than the fall data speed second threshold 132, the so-called rebound represents the upper waveform region 17 The area of the area is subtracted from the area of the area of the lower waveform area 18 to produce a rebound curve. Thereby, the first fall analysis comparison data 2 is obtained (step d). The acceleration waveform data 16 exceeding the acceleration threshold 14 is defined as the second fall analysis comparison data 3 (step e), and the upper waveform region 17 and the lower waveform region 18 are defined for each acceleration waveform data 16 for region analysis. The so-called upper waveform region 17 is defined between the acceleration intermediate value 12 and the acceleration upper limit value 10, and the lower waveform region 18 is defined between the acceleration intermediate value 12 and the acceleration lower limit value 11, from the upper waveform region 17 and the lower waveform region. The area analysis of the area 18 can obtain the third fall analysis comparison data 4 (step f), after obtaining the first fall analysis comparison data 2, the second fall analysis comparison data 3, and the third fall analysis comparison data 4, The fall behavior may be determined based on the first fall analysis comparison data 2, the second fall analysis comparison data 3, and the third fall analysis comparison data 4 (step g). In other words, if the first fall analysis comparison data 2 exceeds the fall data speed first threshold 130 and the acceleration waveform data 16 exceeds the acceleration threshold 14 and the second fall analysis comparison data 3 occurs, the third fall analysis ratio must be determined. For the data 4, if only the first fall analysis comparison data 2 or the second fall analysis comparison data 3 occurs, it can be directly considered that the fall does not occur.
上述中第三跌倒分析比對數據4的判斷步驟包括:先行分析單一該加速度波形數據16中之下波形區域18之該區域面積;及後分析接連該下波形區域之該上波形區域17之該區域面積,並與該下波形區域之該區域面積比對。當第三跌倒分析比對數據4a代表未發生跌倒行為時即表示上波形區域17之區域面積等於下波形區域18之區域面積,同時匯入第一跌倒分析比對數據2及第二跌倒分析比對數據3進行綜合判斷,則可精準的表示 出目標物並未發生跌倒行為。 The determining step of the third fall analysis comparison data 4 includes: first analyzing the area of the area of the lower waveform area 18 in the single acceleration waveform data 16; and analyzing the upper waveform area 17 of the lower waveform area. The area of the area is compared with the area of the area of the lower waveform area. When the third fall analysis comparison data 4a represents that the fall behavior does not occur, the area of the area of the upper waveform area 17 is equal to the area of the area of the lower waveform area 18, and the first fall analysis comparison data 2 and the second fall analysis ratio are simultaneously input. A comprehensive judgment of the data 3 can be accurately expressed There is no fall behavior in the target.
反之,當上波形區域17之區域面積小於下波形區域18之區域面積即表示該第三跌倒分析比對數據代表可能發生跌倒行為,同時匯入第一跌倒分析比對數據2及第二跌倒分析比對數據3進行綜合判斷,則可精準的表示出目標物發生跌倒行為。此外,分析曲線182則判斷超過跌倒數據速度第一臨界值130,當超過跌倒數據速度第一臨界值130的分析曲線182回彈且小於跌倒數據速度第二臨界值132時則判定為發生跌倒行為,所謂回彈代表上波形區域17之區域面積與下波形區域18之區域面積相減產生回彈之曲線。 On the contrary, when the area of the area of the upper waveform area 17 is smaller than the area of the area of the lower waveform area 18, it means that the third fall analysis comparison data represents a possible fall behavior, and the first fall analysis comparison data 2 and the second fall analysis are simultaneously introduced. The comprehensive judgment of the comparison data 3 can accurately indicate the falling behavior of the target. In addition, the analysis curve 182 determines that the fall data speed first threshold 130 is exceeded, and when the analysis curve 182 exceeding the fall data speed first threshold 130 rebounds and is less than the fall data speed second threshold 132, it is determined that a fall behavior occurs. The so-called rebound represents a curve in which the area of the region of the upper waveform region 17 is subtracted from the area of the region of the lower waveform region 18 to produce a rebound.
由上述可清楚了解,本發明主要是利用分析表1對連續性的加速度波形數據16採取多點積分計算以產生複數第一分析數據180,同時比對跌倒數據速度第一臨界值130以取得第一跌倒分析比對數據2,針對超過該加速度臨界值14之該加速度波形數據16界定為第二跌倒分析比對數據3,另外由加速度波形數據16所定義出的上波形區域17及下波形區域18的區域分析可以得到第三跌倒分析比對數據4,依據該第一跌倒分析比對數據2、第二跌倒分析比對數據3及第三跌倒分析比對數據4判斷該目標物是否發生跌倒行為,藉此能夠精準的判斷目標物是否發生跌倒的監測資訊,並可提供醫療中心進行監控等。 It is clear from the above that the present invention mainly uses the analysis table 1 to perform multi-point integration calculation on the continuous acceleration waveform data 16 to generate a plurality of first analysis data 180, and compares the fall data speed first threshold value 130 to obtain the first A fall analysis comparison data 2 is defined as the second fall analysis comparison data 3 for the acceleration waveform data 16 exceeding the acceleration threshold 14 , and the upper waveform region 17 and the lower waveform region defined by the acceleration waveform data 16 The regional analysis of 18 can obtain the third fall analysis comparison data 4, and judge whether the target falls or not according to the first fall analysis comparison data 2, the second fall analysis comparison data 3, and the third fall analysis comparison data 4. Behavior, in order to accurately determine whether the target has a fall monitoring information, and provide medical center for monitoring.
上述實施例僅為例示性說明本發明的原理及其功效,而非用於限制本發明。任何熟悉此項技藝的人士均可在不違背本發明的精神及範疇下,對上述實施例進行修改。因此本發明的權利保護範圍,應如後述申請專利範圍所列。 The above embodiments are merely illustrative of the principles of the invention and its effects, and are not intended to limit the invention. Any of the above-described embodiments may be modified by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as listed in the scope of the patent application described later.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105133705A TWI620152B (en) | 2016-10-19 | 2016-10-19 | Fall detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105133705A TWI620152B (en) | 2016-10-19 | 2016-10-19 | Fall detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI620152B true TWI620152B (en) | 2018-04-01 |
TW201816733A TW201816733A (en) | 2018-05-01 |
Family
ID=62639758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105133705A TWI620152B (en) | 2016-10-19 | 2016-10-19 | Fall detection method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI620152B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI683278B (en) * | 2018-06-28 | 2020-01-21 | 拓連科技股份有限公司 | Confirmation management systems of specific event occurrence and event confirmation methods using a detection device, and related computer program products |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM463402U (en) * | 2013-06-14 | 2013-10-11 | Univ Hungkuang | Falling down detection system with automatic tracking |
CN204375113U (en) * | 2015-01-07 | 2015-06-03 | 新疆大学 | A kind of wearable human accidentally tumble detection and location device |
US20150228177A1 (en) * | 2014-02-07 | 2015-08-13 | Dr. Dujiang Wan | Fall Detection Method and System |
CN204759694U (en) * | 2015-05-19 | 2015-11-11 | 湖南农业大学 | Wearing formula human body tumble warning positioner and monitoring terminal |
JP2016177401A (en) * | 2015-03-19 | 2016-10-06 | セコム株式会社 | Fall detection terminal and program |
-
2016
- 2016-10-19 TW TW105133705A patent/TWI620152B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM463402U (en) * | 2013-06-14 | 2013-10-11 | Univ Hungkuang | Falling down detection system with automatic tracking |
US20150228177A1 (en) * | 2014-02-07 | 2015-08-13 | Dr. Dujiang Wan | Fall Detection Method and System |
CN204375113U (en) * | 2015-01-07 | 2015-06-03 | 新疆大学 | A kind of wearable human accidentally tumble detection and location device |
JP2016177401A (en) * | 2015-03-19 | 2016-10-06 | セコム株式会社 | Fall detection terminal and program |
CN204759694U (en) * | 2015-05-19 | 2015-11-11 | 湖南农业大学 | Wearing formula human body tumble warning positioner and monitoring terminal |
Also Published As
Publication number | Publication date |
---|---|
TW201816733A (en) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pang et al. | Detection of near falls using wearable devices: a systematic review | |
JP2011050731A5 (en) | ||
Balsalobre-Fernández et al. | Validity and reliability of the push wearable device to measure movement velocity during the back squat exercise | |
JP5695778B2 (en) | Fall detection system | |
JP5647240B2 (en) | Fall prevention | |
EP3246888A1 (en) | Paralysis detection and alarming apparatus and processing method thereof | |
WO2016192235A1 (en) | Drowning detection method and device | |
RU2015145376A (en) | FALL DETECTION METHOD AND FALL DETECTOR | |
JP2014519856A5 (en) | ||
US20060214806A1 (en) | System and method for human body fall detection | |
NZ772572A (en) | Monitoring respiratory pressure therapy | |
TWI616850B (en) | System and method for monitoring abnormal behavior | |
KR101565970B1 (en) | Apparatus and method for determining stroke during the sleep | |
NZ703966A (en) | Methods and devices with leak detection | |
US10066391B2 (en) | Floor covering having adjustable hardness | |
KR20130066175A (en) | Device for detecting tap and method for detecting tap | |
TWI620152B (en) | Fall detection method | |
JP2007252747A (en) | Sleeping state determining device | |
JP2020507434A5 (en) | ||
Dumitrache et al. | Fall detection algorithm based on triaxial accelerometer data | |
US10825317B2 (en) | Method for avoiding misjudgment during human fall detection and apparatus thereof | |
CN104864886B (en) | The motion monitoring method and system of 3-axis acceleration sensor based on micro/nano level | |
WO2020149171A1 (en) | Number of steps measuring device, method, and program | |
JP2016030177A (en) | Respiratory disturbance determination device, respiratory disturbance determination method, and program | |
Yang et al. | On developing a real-time fall detecting and protecting system using mobile device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |