TWI619399B - 藉由預測平滑傳輸區塊大小來控制應用程式操作的系統和方法 - Google Patents

藉由預測平滑傳輸區塊大小來控制應用程式操作的系統和方法 Download PDF

Info

Publication number
TWI619399B
TWI619399B TW105101064A TW105101064A TWI619399B TW I619399 B TWI619399 B TW I619399B TW 105101064 A TW105101064 A TW 105101064A TW 105101064 A TW105101064 A TW 105101064A TW I619399 B TWI619399 B TW I619399B
Authority
TW
Taiwan
Prior art keywords
future value
historical
information
transmission block
block size
Prior art date
Application number
TW105101064A
Other languages
English (en)
Other versions
TW201639399A (zh
Inventor
佐菲爾 賽義德
廖琦
愛德華 格琳朋
大衛 弗夏
莎米庫瑪兒 莎爾瑪
Original Assignee
阿爾卡特朗訊美國股份有限公司
阿爾卡特朗訊德國股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿爾卡特朗訊美國股份有限公司, 阿爾卡特朗訊德國股份有限公司 filed Critical 阿爾卡特朗訊美國股份有限公司
Publication of TW201639399A publication Critical patent/TW201639399A/zh
Application granted granted Critical
Publication of TWI619399B publication Critical patent/TWI619399B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/002Algorithms with memory of the previous states, e.g. Markovian models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

平滑傳輸區塊大小係基於在e-節點B獲得的歷史時間序列數據藉由預測未來值訊息被預測。該歷史時間序列數據包括歷史傳輸區塊大小訊息和歷史調變和編碼方式訊息。映射功能被用於將該未來值訊息關聯於歷史傳輸區塊大小訊息。一旦該映射功能被確定,該映射功能藉由將該未來值訊息輸入到該映射功能來預測該平均傳輸區塊大小。該平滑傳輸區塊大小和該未來值訊息接著被發送到在用戶設備的應用伺服器和/或應用用戶端中以控制應用程式的操作。

Description

藉由預測平滑傳輸區塊大小來控制應用程式操作的系統和方法
範例實施例一般關於藉由預測平滑傳輸區塊大小來控制應用程式操作的系統和方法。
圖1顯示傳統的第三代合作夥伴計畫長期演進(3GPP LTE)網路10。網路10包括網際網路協定(IP)連接存取網路(IP-CAN)100和IP封包數據網路(IP-PDN)1001。IP-CAN 100通常包括:伺服閘道器(SGW)101;封包數據網路(PDN)閘道器(PGW)103;策略和計費規則功能(PCRF)106;行動管理實體(MME)108和E-UTRAN節點B(eNB)105(即,基地台,在本文目的中,用語基地台和eNB可以互換地使用)。雖然未顯示,EPS的IP-PDN 1001部分可以包括應用程式或代理伺服器、媒體伺服器、電子郵件伺服器等。
在IP-CAN 100內,eNB 105是被稱為演進通 用行動電信系統(UMTS)陸地無線電存取網路(EUTRAN)的一部分,以及包括SGW 101、PGW 103、PCRF 106和MME 108被稱為演進封包核心(EPC)的IP-CAN 100的一部分。雖然只有單一eNB 105被顯示於圖1中,應該理解的是,EUTRAN可以包括任意數量的eNB。同樣地,雖然只有單一SGW、PGW和MME被顯示於圖1中,應該理解的是,EPC可以包括任意數量的這些核心網路元件。
eNB 105針對一或多個用戶設備(UE)110提供無線資源和無線電覆蓋。這就是說,任何數目的UE 110可以被連接(或附著)到eNB 105。eNB 105被可操作地耦接到SGW 101和MME 108。
SGW 101路由和轉發用戶數據封包,同時在UE的eNB間切換期間也作為用戶平面的行動錨點。SGW 101也作為第三代合作夥伴計畫長期演進(3GPP LTE)和其它3GPP技術之間行動的錨點。對於閒置的UE 110,SGW 101終止下行鏈路數據路徑並且當下行鏈路數據到達時對於UE 110觸發呼叫。
PGW 103藉由UE 110的流量的入口/輸出的點來提供UE 110和外部封包數據網路(例如,IP-PDN)之間的連接。如已知的,給定的UE 110可以具有同時與一個以上的PGW 103連接以存取多個PDN。
PGW 103也執行策略實施、UE 110的封包過濾、收費支援、合法攔截和封包篩選,其中每一個是眾所 皆知的功能。PGW 103也作為用於3GPP和非3GPP技術,例如全球互聯微波存取(WiMAX)和第三代合作夥伴計劃2(3GPP2(碼分多重存取(CDMA)1X和增強語音數據最佳化(EvDO))之間的行動性錨點。
仍參照圖1,eNB 105也可操作地耦接到MME 108。MME 108是用於EUTRAN的控制節點,並且負責閒置模式UE 110的呼叫和標記程序,包括重新傳送。MME 108也負責在UE到網路的初始連接期間,以及在關於核心網(CN)節點重定位的LTE內切換期間選擇用於UE的特定SGW。該MME 108藉由與沒有在圖1中顯示的家用訂戶伺服器(HSS)的互動來驗證UE 110。
非存取層(NAS)信號終止於MME 108,並負責對於UE 110產生和分配臨時身份。MME 108也檢查UE 110的授權以停駐在伺服提供商的公共陸地行動網路(PLMN),並執行UE 110漫遊限制。MME 108網路中用於NAS信號的加密/完整性保護的終止點,並處理安全密鑰管理。
MME 108也提供具有來自在MME 108終止的SGSN(未顯示)介面的LTE和2G/3G存取網路之間的行動性的控制平面功能。
該策略和計費規則功能(PCRF)106是做出策略決定和數套計費規則的實體。它可以存取訂戶數據庫並且在3GPP架構中扮演如同在3GPP TS 23.303中指定的“策略和計費控制架構”。
應用伺服器(AS)102是駐留在IP-PDN 1001的伺服器/節點,其與UE 110介面以便在UE 110上運行應用程式。AS 102可以例如是社交網路網站主機、線上電影伺服提供商等。
圖2顯示傳統的E-UTRAN節點B(eNB)105。eNB 105包括:記憶體225;處理器210;排程器215;無線通訊介面220;針對每個承載用於MCS計算器230的功能;傳輸區塊大小/調變和編碼-方式/從215和210積累度量的實體資源區塊(TMP)度量205;以及後端介面235。處理器210也可以作為核心網路實體處理電路、EPC實體處理電路等。處理器210控制eNB 105(如本文所述)的功能,並且可操作地耦接到記憶體225和通訊介面220。
eNB 105可包括在個人幾何覆蓋扇形區域內的一或多個細胞或扇區服務UE 110。每個細胞分別可以包含圖2所示的元件。在本文中的用語eNB、細胞或扇區應互換使用。
仍參照圖2,通訊介面220包括各種不同的介面,其包括連接到一或多個天線以發送/接收(有線和/或無線地)控制和數據訊號到/從UE 110或經由控制平面或介面到其它EPC網路元件和/或RAN元件的一或多個發射器/接收器。回程介面235是eNB 105的部分,其在IP-CAN 100內與SGW 101和MME 108介面。排程器215將由eNB 105進行發送和接收到和來自UE 110的控制和數 據通訊排程。記憶體225可緩衝和儲存被發送和接收到和來自eNB 105的數據。
每個傳輸時間間隔(TTI),通常等於1毫秒,排程器215可以將一定數量的實體資源區塊(PRB)分配給在下行鏈路方向(即,從eNB 105發送到UE 110)和上行鏈路方向(即從UE 110接收在eNB 105的數據,其在後端235上接收)中無線鏈路上攜帶數據的不同承載。“承載”可以被理解為用於交換訊息以在UE 110上運行應用程式的鏈路或通道。排程器215可確定調變和編碼模式(MCS),其可以定義每赫茲每秒有多少位元的訊息可被封包到PRB的分配數。後者是由3GPP TS36.213表7.1.7.1-1和7.1.7.2.1-1(其內容是藉由引用其整體來併入)所定義,其中MCS是由介於0和28之間的數來定義,其中較高的MCS值指出更多的位元可以被分配在若干PRB。表7.1.7.1-1和7.1.7.2.1-1包括用於若干數據位元的查找表,其可被包括在針對給定的分配數量的PRB和MCS值的每個TTI發送的PRB中。MCS是藉由使用由UE 110報告的通道品質指示符(CQI)值的排程器來計算,其接著可以從測量的UE 110無線通道情況以訊號對干擾和雜訊比(SINR)的形式來衍生。
排程器215可基於代表流量優先級階層的伺服品質(QoS)等級標識(QCI)做出PRB分配決策。目前在LTE中定義有9個QCI等級,以1表示最高的優先級並且以9表示最低的優先級。QCI 1至4被保留用於該 排程器維護某些特定數據流QoS特性的保證位元率(GBR)等級。QCI 5至9被保留用於各種類別的最大努力流量。
通常,TMP度量205可以藉由確定多個實體資源區塊(PRB)和最佳調變和編碼方式(MCS),如在標準3GPP TS 36.213提供的查找表中所定義的,來計算用於將在無線介面220上在下行鏈路方向朝向UE發送的數據封包的合適傳輸區塊大小(TBS)。然而,由於3GPP TS 36.213查找表的凹度,在TBS值的預測(只從具有預測的MCS的查找表推導並且預測的PRB輸入到查找表時)可能是易出錯的。此外,難以精確地預測TBS是由至少兩個額外的原因造成的。首先,了解MCS取決於承載的通道品質訊息和訊號對雜訊比(SINR),而PRB的數量取決於資源分配策略和各種網路狀態變數(例如,實體通道狀態,流量/數據負荷和細胞間干擾等級)。因此,除了精尺度結構和快速現象限制之外,所需的TBS是受所有上述變數影響。這意味著所需的TBS可以在每個時隙間顯著變化。其次,任何雜訊和/或不準確的測量或報告可能會增加在預測的回歸模型到達的難度。
通常,在確定TBS中感興趣的度量是使用以下基本步驟來確定:
1. UE從eNB接收下行鏈路傳輸。
2. UE藉由在接收的訊號中嵌入的導頻音調的方式來計算接收的訊號的SINR。
3. 基於容量計算(作為範例,針對附加的白高斯雜訊、或AWGN、通道),UE計算通道品質指示符(CQI)並向eNB報告CQI。
4. eNB接收CQI並確定用於UE的SINR。
5. eNB獲得要在下一傳送時間指數(TTI)中,藉由使用結合eNB排程器演算法的細胞負載被分配到UE的一些實體資源區塊(PRB)。
6. 在(4)中計算的SINR被用來選擇用於下一TTI的UE的適當的調變編碼方式(MCS)。因此,MCS為嚴格通道品質驅動測量。
7. 在上面(5)和(6)中計算的MCS和PRB藉由3GPP TS 36.213的查找表的方法,被用來計算用於下一TTI的UE的適當的傳輸區塊大小(TBS)。
通常,一直都有關於確定通道品質和/或鏈路品質預測的大量研究。然而,基於MCS和PRB訊息來預測適當的未來適當TBS值沒有得到很好的定義。未來TBS值的預測準確值可被使用以更好地控制應用程式程級行為,特別是關於視訊的應用,並且這種類型的預測也可以被用於其它應用。
至少一個範例實施例關於一種輸出平滑傳輸區塊大小以控制應用程式之操作的方法。
在一個範例實施例中,該方法包括藉由至少 一個網路節點的一或多個處理器,獲得歷史時間序列數據,該歷史時間序列數據包括歷史傳輸區塊大小訊息、歷史調變和編碼方式訊息和歷史實體資源區塊利用訊息;藉由該一或多個處理器,基於該歷史時間序列數據,預測未來值訊息,該未來值訊息包括調變和編碼方式未來值和實體資源區塊未來值;藉由該一或多個處理器,產生映射功能回歸第一輸入數據至第一輸出數據,該第一輸入數據包括該歷史調變和編碼方式訊息和該歷史實體資源區塊利用訊息,該第一輸出數據包括歷史傳輸區塊大小訊息;藉由該一或多個處理器,藉由輸入該未來值訊息到該映射功能來預測平滑傳輸區塊大小;以及藉由該一或多個處理器,將該平滑傳輸區塊大小輸出到網路節點以控制應用程式的操作。
在一個範例實施例中,該方法包括其中該平滑傳輸區塊大小的該輸出包括輸出該平滑傳輸區塊大小到在用戶設備的應用伺服器和應用用戶端伺服器中的至少一個以控制該應用程式的該操作。
在一個範例實施例中,該方法進一步包括在預測該未來值訊息之前,使該歷史時間序列數據平滑,其中該未來值訊息為平滑的未來值訊息。
在一個範例實施例中,該方法包括其中基於該歷史時間序列數據的該未來值訊息的該預測包括使用自回歸整合移動平均(ARIMA)回歸模型來預測該未來值訊息。
在一個範例實施例中,該方法包括其中基於該歷史時間序列數據的該未來值訊息的該預測包括被量化為第一和第二組離散數的該未來值訊息,該第一組離散數為該調變和編碼方式未來值,並且該第二組離散數為該實體資源區塊未來值。
在一個範例實施例中,該方法包括其中該平滑傳輸區塊大小的該預測進一步包括藉由將該第一組離散數和該第二組離散數輸入到該映射功能來預測第三組離散數,該映射功能為功能回歸模型,該第三組離散數為傳輸區塊大小未來值。
在一個範例實施例中,該方法包括其中該第一組離散數、第二組離散數,以及第三組離散數各被分配觀察週期,其中該觀測週期係為預選的、可調節的和可適應的之一。
在一個範例實施例中,該方法包括其中該平滑傳輸區塊大小的該預測進一步包括使該傳輸區塊大小未來值平滑,該平滑係利用平滑頻寬和距離測量經由核心來完成,該平滑頻寬和距離測量係為預選的、可調節的和可適應的之一。
在一個範例實施例中,該方法包括其中該未來值訊息和該預測平均傳輸區塊大小針對即時之前的選擇時間增量被確定。
在一個範例實施例中,該方法包括其中該獲取步驟在電子節點B被執行,並且該預測、該產生和該預 測步驟在該電子節點B之外的管理實體被執行。
在一個範例實施例中,該方法進一步包括,將該調變和該編碼方式未來值和實體資源區塊未來值中之至少一者輸出到在該用戶設備中的該應用伺服器和該應用用戶端中之至少一者,以控制該應用程式的操作。
至少一個範例實施例關於網路節點。
在一個範例實施例中,該網路節點包括一或多個處理器,其配置以,獲得歷史時間序列數據,該歷史時間序列數據包括歷史傳輸區塊大小訊息、歷史調變和編碼方式訊息和歷史實體資源區塊利用訊息,基於該歷史時間序列數據,預測未來值訊息,該未來值訊息包括調變和編碼方式未來值和實體資源區塊未來值,產生映射功能回歸第一輸入數據至第一輸出數據,該第一輸入數據包括該歷史調變和編碼方式訊息和該歷史實體資源區塊利用訊息,該第一輸出數據包括歷史傳輸區塊大小訊息,藉由輸入該未來值訊息到該映射功能來預測平滑傳輸區塊大小,以及將該平滑傳輸區塊大小輸出到網路節點以控制應用程式的操作。
在一個範例實施例中,該網路節點包括其中該一或多個處理器係進一步配置以藉由輸出該平滑的傳輸區塊大小到在用戶設備的應用伺服器和應用用戶端伺服器中的至少一個以控制該應用程式的操作來輸出該平滑的傳輸區塊大小。
在一個範例實施例中,該網路節點包括其中 該一或多個處理器係進一步配置以在預測該未來值訊息之前,使該歷史時間序列數據平滑,其中該未來值訊息為平滑的未來值訊息。
在一個範例實施例中,該網路節點包括其中該一或多個處理器係進一步配置以基於該歷史時間序列數據包括使用自回歸整合移動平均(ARIMA)回歸模型來預測該未來值訊息來預測該未來值訊息。
在一個範例實施例中,該網路節點包括其中該一或多個處理器係進一步配置以基於該歷史時間序列數據藉由該未來值訊息的該預測包括被量化為第一和第二組離散數的該未來值訊息,該第一組離散數為該調變和編碼方式未來值,並且該第二組離散數為該實體資源區塊未來值。
在一個範例實施例中,該網路節點包括其中該一或多個處理器係進一步配置以藉由預測第三組離散數來預測該平滑傳輸區塊大小,該第三組離散數係藉由將該第一組離散數和該第二組離散數輸入到該映射功能來預測,該映射功能為功能回歸模型,該第三組離散數為傳輸區塊大小未來值。
在一個範例實施例中,該網路節點包括其中該一或多個處理器係進一步配置以分配該第一組離散數、第二組離散數,以及第三組離散數之各者的觀察週期,其中該觀測週期係為預選的、可調節的和可適應的之一。
在一個範例實施例中,該網路節點包括其中 該一或多個處理器係進一步配置以藉由使該傳輸區塊大小未來值平滑來預測該平滑傳輸區塊大小,該平滑係利用平滑頻寬和距離測量經由核心來完成,該平滑頻寬和距離測量係為預選的、可調節的和可適應的之一。
在一個範例實施例中,該網路節點包括其中該一或多個處理器係進一步配置以將該調變和該編碼方式未來值和實體資源區塊未來值中之至少一者輸出到在該用戶設備中的該應用伺服器和該應用用戶端中之至少一者,以控制該應用程式的操作。
10‧‧‧網路
10a‧‧‧網路
10b‧‧‧網路
100‧‧‧網際網路協定(IP)連接存取網路(IP-CAN)
100b‧‧‧IP-CAN
101‧‧‧伺服閘道器(SGW)
102‧‧‧應用伺服器
103‧‧‧封包數據網路(PDN)閘道器(PGW)
105‧‧‧E-UTRAN節點B(eNB)
105a‧‧‧eNB
105b‧‧‧eNB
106‧‧‧策略和計費規則功能(PCRF)
108‧‧‧行動管理實體(MME)
110‧‧‧用戶設備(UE)
110a‧‧‧應用用戶端
1001‧‧‧IP封包資料網路(IP-PDN)
205‧‧‧實體資源區塊(TMP)度量
210‧‧‧處理器
215‧‧‧排程器
220‧‧‧無線通訊介面
225‧‧‧記憶體
230‧‧‧MCS計算器
235‧‧‧後端介面
240‧‧‧傳輸區塊大小預測器(TBSF)
240a‧‧‧傳輸區塊大小預測器代理(TBSFA)
240b‧‧‧傳輸區塊大小預測器管理器(TBSFM)
S500‧‧‧步驟
S502‧‧‧步驟
S504‧‧‧步驟
S506‧‧‧步驟
S508‧‧‧步驟
藉由參照附圖詳細描述範例實施例,範例實施例的上述和其它特徵和優點將變得更加清楚。附圖意在描述範例實施例並且不應當解釋為限制申請專利範圍的預期範圍。除非明確地指出,附圖並不被認為是按比例繪製的。
圖1顯示傳統的第三代合作夥伴計畫長期演進(3GPP LTE)網路;圖2顯示傳統的E-UTRAN節點B(eNB);圖3A是根據範例實施例描繪用於預測傳輸區塊大小(TBS)的通用方法的流程圖;圖3B是根據範例實施例描繪用於預測傳輸區塊大小(TBS)和傳輸該預測到應用伺服器和用戶端的通用方法的另一流程圖; 圖4根據範例實施例顯示重配置eNB;圖5為根據範例實施例的預測傳輸區塊大小(TBS)的方法;圖6根據範例實施例顯示重配置3GPP LTE網路;以及圖7根據範例實施例顯示另一重配置3GPP LTE網路。
儘管範例實施例能夠有各種修改和替代形式,其實施例藉由在圖式中範例的方式顯示並且將在本文中詳細描述。然而,應該理解,沒有意圖將範例實施例限制為揭露的特定形式,而是相反地,範例實施例將涵蓋所有在申請專利範圍的範圍之內的修改、等同物和替代物。相同的數字指代相同的附圖的描述的元件。
在更詳細地討論範例實施例之前,應當注意,一些範例實施例被描述為程序或描繪為流程圖的方法。雖然流程圖將操作描述為順序程序,但是許多操作可以並行地、同時地或同步地執行。此外,操作的次序可以被重新安排。當其操作被完成,程序被終止,但也可以具有未包括在圖中的額外步驟。程序可以對應於方法、功能、程序、子例程、子程式等。
下面討論的方法,其中一些是藉由流程圖來說明,可以藉由硬體、軟體、韌體、中間件、微碼、硬體 描述語言,或其任意組合來實現。當以軟體、韌體、中間件或微碼實現時,用以執行必要任務的程式代碼或代碼段可以被儲存在機器或電腦可讀媒體,如儲存媒體,如非暫態儲存媒體。處理器可以執行必要任務。
本文揭露的具體結構和功能細節僅是代表性的用於描述範例實施例的目的。然而,本發明可以體現為許多替代形式,並不應被解釋為僅限於這裡闡述的實施例。
應該理解的是,儘管用語第一、第二等在這裡可以用於描述各種元件,但是這些元件不應被這些用語限制。這些用語僅是用來將一個元件與另一個相區別。例如,第一元件可以被稱為第二元件,並且類似地,第二元件可以被稱為第一元件,而不偏離範例實施例的範圍。如本文中所使用的,用語“和/或”包括一或多個相關所列的項目的任意和所有組合。
應當理解,當元件被稱為“連接”或“耦接”到另一元件時,它可以被直接連接或耦接到另一元件或中間元件可以存在。相反,當一個元件被稱為被“直接連接”或“直接耦接”到另一元件時,不存在中間元件。用於描述元件之間關係的其他詞語應該以類似的方式解釋(例如,“之間”與“直接之間”,“相鄰”與“直接相鄰”等)。
本文所使用的用語僅用於描述特定實施例的目的,而不是意在限制範例實施例。如本文所用,單數形 式“一”、“一個”和“該”也意圖包括複數形式,除非上下文清楚地另外指明。將進一步理解,用語“包含”、“包含”、“包括”和/或“包括”在本文中使用時,指定所陳述的特徵、整數、步驟、操作、元件和/或組件的存在,但不排除存在於或額外的一或多個其它特徵、整數、步驟、操作、元件、組件和/或其組合。
進一步應當注意的是,在一些替代實現中,指出的功能/動作可能不以在圖中指出的順序發生。例如,連續顯示的兩個圖實際上可以同時執行或有時可以以相反的順序被執行,其取決於涉及的功能/動作。
除非另有定義,否則這裡使用的所有用語(包括技術和科學用語)具有如範例實施例屬於的領域的普通技術人員通常理解的相同含義。將進一步理解,用語,例如那些在常用字典中定義的,應當被解釋為具有在相關領域的上下文中的含義一致的含義,並且不會被解釋為理想的或過於正式的意義,除非在此明確定義如此。
範例實施例的部分和對應的詳細描述以電腦記憶體內的軟體,或演算法以及對數據位元操作的符號呈現來表示。這些描述和表示是由本領域普通技術人員有效地傳達他們的工作實質給其他本領域普通技術人員。演算法,如在這裡使用的,並且因為它是通常使用的,被設想為導致期望結果的步驟的前後一致的序列。步驟是那些需要實體量的實體操作。通常,儘管不是必須的,這些量採用能夠被儲存、傳輸、組合、比較,以及操作的光、電, 或磁訊號的形式。它已隨時間證明,主要由於普遍使用的原因,將這些訊號稱為位元、值、元件、符號、字符、項目、數字等。
在下面的描述中,說明性的實施例將參照動作和操作的符號表示來描述(例如,以流程圖的形式),其可以被實現為程式模組或功能程序包括例程、程式、物件、元件、數據結構等,其執行特定任務或實現特定抽象數據類型,並可使用在現有網路元件的現有硬體來實現。這樣的現有硬體可以包括一或多個中央處理單元(CPU)、數位訊號處理器(DSP)、特殊應用積體電路、現場可程式化閘陣列(FPGA)電腦等。
應當牢記,然而,所有這些和類似的用語都將與適當的實體量相關並且僅僅是應用於這些量的方便的標籤。除非特別指出,否則,如從討論中顯而易見的,諸如“處理”或“運算”或“計算”或“顯示”的“確定”等,指的是電腦系統或類似電子計算裝置的動作和處理,其操縱和轉換表示為電腦系統的暫存器和記憶體內的實體、電子量的數據成類似地表示為電腦系統記憶體或暫存器或其它這種訊息儲存器、傳輸或顯示裝置內的實體量的其他數據。
也應注意,範例實施例的軟體實現態樣通常被編碼在某種形式的程式儲存媒體上或者藉由某種類型的傳輸媒體來實現。程式儲存媒體可以是任何非暫態儲存媒體,例如磁性的(例如,軟碟或硬碟)或光學的(例如, 唯讀光碟,或“CD ROM”),並可以是唯讀或隨機存取。類似地,傳輸媒體可以是雙絞線、同軸電纜、光纖,或本領域已知的一些其它合適的傳輸媒體。範例實施例不被任何給定實現的這些態樣限制。
一般方法:
即時範例實施例一般對於準確預測平均(平滑)未來傳輸區塊大小(TBS)值繪製。TBS定義多少字節可以在傳輸區塊中傳輸,並從需要TBS的觀點出發可以不固定,因為這需要可在一段時間內發生變化。因此,平均的TBS值可在主動改進/最佳化網路鏈接以支援封包排程和路由很有幫助。此改進/最佳化可在支援當TBS值可能被錯誤地實現時可能會遇到明顯惡化的視訊等應用特別有幫助。
通常,由UE經歷的SINR可提供以預測預期的SINR的未來值。例如,CQI可以由SINR輸出,並在eNB,該CQI可以被用於計算MCS。如此,過去的MCS和SINR值可以被保存到eNB內的記憶體中。PRB可藉由基於特別是用戶行為和數據需求的細胞負載被決定,並且過去的PRB利用率也可以被保存到eNB內的記憶體中。藉由使用特定載體的過去的MCS和PRB利用率數據,功能回歸技術可以藉由MCS/PRB的一般預測平均(平滑)未來值、就MCS/PRB訊息而言確定TBS的功能關係,並接著使用此訊息預測TBS的平均未來值,被用來計算 TBS的未來值。應當注意的是,平滑的預測值可以被得到,因為度量可以在回歸(使用功能或自回歸整合移動平均(ARIMA)類型的回歸)之前平滑處理可被執行以學習模型,接著這些模型可被用來預測未來值。
根據範例實施例,可能關於預測未來TBS值的方法係顯示於圖3A中。此範例實施例關於兩層結構,包括:預測MCS和若干PRB,接著預測使用該預測的MCS/PRB訊息的TBS值。參照圖3A,四個基本步驟被顯示(標記為I.-IV.)並描述如下:
I.將時間序列數據平滑:此步驟追踪歷史TBS、MCS和PRB值以對這些歷史(過去)值編譯離散值時間序列數據。這些歷史時間序列值可以被“平滑”(如下在圖5的步驟S502所述)以產生平滑的歷史(過去)值。平滑的範例是平均的操作。例如,每個TTI度量的M值可以被加總並除以M,產生可以由被表示為的平滑度量時間序列。在此更平滑之前,度量每個TTI(1毫秒)可被提供一次。在此更平滑之後,該度量每M個TTI(M係以毫秒為單位)可被提供一次。在整個本文的剩餘部分,此M個時間持續時間可以被稱為1時間增量,或者1平滑時間間隔。
II.預測平滑的未來MCS和PRB值:使用平滑的值,回歸模型可以接著用於確定未來MCS值,其可以被表示為。眾所周知的自回歸 整合移動平均(ARIMA)模型可以用來生成程序的ARIMA模型。ARIMA模型和預測在本領域是眾所周知的,例如在“時間序列分析”,George E.P.Box,Gwilym M.Jenkins,Gregory C.Reinsel,第3版,Prentice Hall,1994年,第7-18頁,以及“自動時間序列預測:預測R的封包”,R.J.Hyndman and Y.Khandakar,統計軟體期刊,第27卷,第3號,2008年7月(其內容各藉由引用被整體併入)中描述的。可被獨立地建模為ARIMA程序,其中該模型可以被輸出並且該模型可以用於計算預測值。該預測可在即時之前發生一次性增量,但該預測可在即時之前被推廣到n個時間遞增,其中n>1。
III. 在“訓練階段”使用均過去平滑值和過去平滑來產生功能回歸映射功能:該過去平滑值可被用作“訓練輸入”以建立創造輸出的功能回歸模型。具體而言,此“訓練輸入”可以相比於“平滑”預測TBS值(),其可被視為是“訓練輸出”,以定義功能回歸模型。該功能回歸功能可進一步定義如下。
1. 輸入X可以被定義為,其中i可以是平滑度量的時間索引時間增量(i=1,2,3,....N;N可以是訓練序列長度)。
2. 輸出可被建模為,其中i可以是平滑度量的時間索引(i=1,2,3,....N;N可以是訓練序列 長度)。
3. 關係可以藉由使用參照得出:功能性數據分析中的統計計算:R封包fda.usc”,Manuel Febrero-Bande,Manuel Oviedo de la Fuente,統計軟體期刊,第51卷,第4期,2012年10月(其內容藉由引用被整體併入)。
使用此建模,以下功能可被得出:
其中y(輸出)和X(輸入)如上所定義的可被建模以相關為:
其中可以是誤差項並且K可以是合適的核心(例如,Triweight核心,或其他本領域中眾所皆知的核心)。
其中可以是指示符功能,如果括號條件被滿足該值是1,否則為0。h可以是平滑參數(即,平滑頻寬),並且可以藉由驗證標準(見上述參考文獻)被預定義或最佳化。的功能可以被估計為功能回歸。 d ( X,X i )可以是在點X和點 X i 之間的歐幾里德意義(Euclidean sense)中的距離測量。
IV. 預測平滑的TBS:使用的經訓練 的未來值,(i=N+1,N+2,N+3,....,其中N是在觀測間隔中的若干時間增量),可以被預測如下:
根據上述四個一般的TBS預測步驟,應該理解的是,這些步驟都可以在重配置eNB 105a的傳輸區塊大小預測器(TBSF)240中被實現(參照圖4,在下面更詳細描述)。或者,可選地,四個步驟可在IP-CAN網路內分佈,如圖3B所示。具體地,如圖3B所示,步驟(I)可以在重配置eNB 105b被完成,並且該平滑和預測值如可藉由IP-PDN 1001被發送到獨立的節點240b。例如,節點240b可以是在重配置IP-CAN的網路100b中的獨立的、專用伺服器(參見圖7,在下面描述),其可以由從eNB 105a的處理器210分離的處理器來控制。在節點240b中,預測步驟(II)-(IV)可被實現,並且所得的未來平滑預測值可接著與可能正在運行應用程式的在UE 110中的應用伺服器102和應用用戶端110a共享。該ePC(增強封包核心)包括圖1的區塊101、103、106、108。
圖4根據範例實施例顯示重配置e-節點B105a。在本實施例中,一般預測步驟(I)-(IV),其相對於上面圖3A被描述,也可以在重配置eNB 105a內的傳輸區塊大小預測器(TBSF)240中被完成。具體地,TBSF 240的功能更詳細地被描述,下文關於圖5的詳細方法步驟。
圖5是根據範例實施例預測傳輸區塊大小(TBS)的方法。這些步驟可以在TBSF 240(顯示於圖4)中被執行。在步驟S500中,歷史(過去)TBS、MCS和PRB數據可在TBSF 240被收集。TBSF 240可從TMP度量205獲得此訊息。具體地,TMP度量205從發生在排程器215的排程傳輸得到MCS值,並且TMP度量205從與排程器215和MCS計算器230兩者介面通訊得到TBS和PRB值。歷史(過去)時間序列訊息可以被表示為TBSp、MCSp和PRBp
在步驟S502中,TBSF 240使歷史時間序列值TBSp、MCSp和PRBp“平滑”。該“平滑”的目的是用以調節該歷史時間序列數據以消除在這些值的突然變化,以接著使用數據為“訓練數據”為回歸模型(見下文步驟S506)。為了此目的,平滑方法可以施加到該時間序列值以捕捉該歷史數據中的模式,其可以是無雜訊的、精細尺度結構和/或快速現象。該歷史時間序列數據的“平滑”值可以被分別表示為。平滑的一或多個功效可減少處理器每秒的所需的操作。因為在平滑之後,操作可以用平均窗口的速率來完成。因此,如果我們在100毫秒窗口平滑,處理時間可以比如果在每個TTI的基礎上完成的處理大100倍。
為了執行平滑,平滑功能可以施加在最後N時間單位,其中N可以是可調節值。因為MCS、PRB和TBS數據通常可以在TMP度量205以大約1毫秒的時間 增量獲得,例如,N時間單元可以因此是相應於數毫秒的可調節值。然而,在N時間單位期間,如果UE 110在N時間單位期間不具有任何排程的傳輸,PRB可以是零。在這種情況下,簡單的平滑功能可被應用以在比N時間單位較大的時間週期加總所有非零項。例如,可以使用1秒的時間週期,其中所有非零項可被除以非零項的數目的總和以提供平均值。因此此平均值可以被認為是實體的“平滑”歷史時間序列值。類似的方法可被執行用於TBS值。
MCS值的平滑化可以與PRB和TBS值的平滑化不同,在平滑功能可以施加在只有當PRB可被指派數個時間單位的意義上。MCS值有可能是不相關的,如果所關注的UE可以不在特定的TTI被分配PRB。
由於MCS值的唯一性,各種眾所周知的數據平滑方法/演算法可被應用。這些眾所皆知的方法/演算法可以包括使用移動平均、核心平滑器或卡爾曼濾波器。平滑窗口可根據關注的預測地平線被選擇。該預測地平線可定義可被期望的未來時間單元的數量以預測未來MCS值。如果短期預測(毫秒的10秒到100秒)可被期望,小窗口可以被選擇,而如果相對較長的平滑窗口可被期望,長期預測(秒的1秒到10秒)可以被使用。平滑窗口大小的選擇可以藉由想要預測多遠之前來決定-提供一個步驟向前看預測可以被執行。如果期望預測1秒到未來,過去值需要在1秒的間隔被平均。另一考量可以是每 秒的操作次數。較大的平均減少處理單元上的操作負荷。另一考量可以是應用程式可以指示在未來的預測中多遠之前需要被執行,或什麼時間粒度應當提供給應用程式。例如,如果應用程式每隔1秒改變它的狀態-可以選擇平均窗口是1秒寬。如果應用程式狀態在100米-秒的速度變化-那麼應該選擇平均窗口大小為100米-秒。平滑和平均已在此互換使用。平滑是通用用語-平均是平滑演算法的一個範例。
在步驟S502結束時,TBSF 240可以確定全套歷史(過去)時間序列數據可被“平滑”,其可以被表示為。在平滑操作中,平滑的輸出可被量化成MCS、PRB和TBS的值可以屬於的離散組數字。作為範例,MCS典型值的範圍是在集合{0,1,...31}內。PRB和TBS也屬於有限離散值的集合。
在步驟S504中,TBSF 240可使用眾所皆知的預測方法來預測平滑的MCS和PRB值。具體地,該預測方法可以藉由捕捉時間相關序列的隨機模式來學習模型以基於這些值的歷史時間序列數據來預測未來MCS和PRB值。眾所皆知的預測方法可以包括自回歸方法,其中時間序列預測模型可以是自回歸整合以利用移動平均(ARIMA)模型。擴展以產生向量值數據可以包括多變數時間序列模型,如向量自回歸(VAR),以在基於向量的模型預測MCS和PRB值。平滑的MCS和PRB的預測(將來)值可以被分別表示為。在ARIMA預 測操作中,預測的輸出可以被量化為一組離散的數字,其可包括MCS和PRB的值。作為範例,典型的MCS值的集合可以是集合{0,1,...28}。PRB也可以屬於有限離散集合。線性模型可以適應假設是ARIMA程序,其中ARIMA模型可以被得到並且模型可以被用來預測未來值。該值可以在即時之前1時間增量或提前多個時間增量(相對於即時)被預測。ARIMA建模和預測在本領域是眾所皆知的,並被描述例如在,“時間序列分析”,George E.P.Box,Gwilym M.Jenkins,Gregory C.Reinsel,第3版,Prentice Hall,1994年,第7-18頁,以及“自動時間序列預測:預測R的封包”,R.J.Hyndman and Y.Khandakar,統計軟體期刊,第27卷,第3號,2008年7月(其內容各藉由引用被整體併入)。
在步驟S506中,TBSF 240可以產生功能回歸映射功能,其根據等式1的“訓練階段”(如上所述)來建模輸出和輸入對的功能關係。具體 地,該平滑的的過去值可以被用作“訓練輸入”樣本,而歷史平滑的時間序列如可以被用作“訓練輸出”樣本以適應功能回歸映射。在該適應,距離度量可被用於計算該輸入訓練數據點到模型( d ( X,X i ))的輸入變數的距離。該距離可以是滿足規範距離性質的任何測量。參數( h )可以被用於選擇平滑操作的頻寬。( h )可以基於最佳化、反覆試驗被得到,或者該值可以被預定義。核心可在平滑的距離被使用,其中範例核心在等式3 中被顯示。然而,其它本領域中眾所周知的核心也可以被使用。用於整個訓練集合的平滑值接著可被使用以形成功能關係。在此步驟中的輸入值可以是(來自步驟S502),其中參數可以是 K,h N (其中N可以是該訓練序列長度)。該輸出可以是回歸功能估計(見等式5)。在此回歸功能計算,輸入和輸出訓練樣本可以被量化成MCS、PRB和TBS可能屬於的值的離散組數字。作為範例,MCS的典型集合可以是集合{0,1,...28}。PRB和TBS也可以屬於有限離散集合。在評估中,X的可能值可能只在MCS和PRB可被定義的有限集合值有意義。可用於產生映射功能的可能的眾所皆知的回歸模型可以是高斯程序、功能線性或非線性回歸。可能非常適合於預測TBS值的眾所周知的回歸模型可以包含在“功能性數據分析中的統計計算:R封包fda.usc”,Manuel Febrero-Bande,Manuel Oviedo de la Fuente,統計軟體期刊,第51卷,第4期,64-72,2012年10月(其內容藉由引用被整體併入)。
在步驟S508中,TBSF 240可使用在步驟S506中確定的映射功能,以便預測TBS的未來值,並且這些值可以被表示為。到映射功能的輸入可以包括平滑的預測(將來)值,使用等式5。在此步驟中,輸入可以是來自步驟S504的(在給定的 未來時間間隔),並且該回歸功能可以從步驟S506中得到。輸出可以是在輸入可被定義的時間索 引的預測。在功能回歸預測的輸出操作中,預測的輸出可以被量化為TBS可以屬於的值的一組離散數字。
一旦TBSF 240預測值,此訊息可以被傳送到應用層,或者到應用伺服器102(參照圖6和7),或到UE 110的應用伺服器102和/或應用用戶端110a。調變和編碼方式以及實體資源區塊的未來值也可以被輸出。基於此輸出的訊息,應用伺服器102和/或應用用戶端110a可改變的應用程式的行為。具體地,預測的值 (以及值)可以被輸出以控制應用程式的速率。例如,該訊息可以被用來預測未來的產出量,包括預測細胞負載和通道品質,同時也預測排程器行為(即,系統行為)。
預測的值可以控制應用程式的操作,或者控制應用程式的速度,例如,對於超文件傳輸協定(HTTP)適應串流(HAS)。HAS用戶可以基於計算的網路產出量的估計來從伺服器請求更高或更低的視訊品質。因此,TBS預測可以使得HAS用戶準確地具有通道的速率的知識並且從而適應HAS行為。除了基於預測的網路速率來提供用於用戶的預測能力,適應可以是以基於預測的值限制用戶的請求的視訊品質增加或減少的形式。此適應可以使視訊回播更流暢,並且給用戶品質更好的體驗。
預測的值也可控制應用程式的操作,或控制應用程式的速率,例如,用於傳輸控制協定(TCP)應 用程式。TCP應用程式使用來自接收實體的確認以調整傳輸速率。因此,如果運行TCP應用程式的實體具有未來網路速率的知識,此訊息可以啟用TCP以避免重新傳送。這可能會導致更好地網路資源的利用,無需頻繁重新傳送所接收的實際數據。重新傳送的減少可以致使更好的用戶體驗。
預測的值也可控制應用程式的操作,或控制應用程式的速率,例如,用於視訊電話。視訊編碼速率涉及視訊會議(例如),可以從通道產出量的估計受益以調整視訊編碼速率。例如,這種視訊應用程式可以基於網路的估計來增加視訊速率。因此,預測的值致使視訊編解碼器用以選擇網路能夠支援的更適當編碼率。基於TBS知識的編解碼器可用較少抖動和延遲、更好的終端用戶體驗和更流暢的視訊通話來依次傳送視訊。
預測的值也可控制應用程式的操作,或控制應用程式的速率,對於在相機的遠端操作、汽車的控制區域網路(CAN)、飛機的控制等中的網路預測控制理論。在這些應用程式中,網路可以使用網路延遲的估計,其中在控制理論中的延遲可改變該系統的穩定性。因此,TBS值的進階知識可以幫助控制實體可以允許這些應用程式考慮在適應控制迴路頻寬中的網路速度以最佳化穩定性。這可能會導致更穩定的網路控制,和可能較少工程的網路,從而降低成本。
預測的值可被用於針對承載的未 來速率。該MCS值可以指示位元/秒/赫茲的速率,其可為速率的指示。PRB值可以指示載體的若干區塊,其可以在UE被接收,並且此訊息可以除以可由載體之元的區塊的總數,指示該UE可以接收的頻寬的一部分。知道此頻寬訊息,用於UE和e節點B的需要的網路資源可以被準確地預測。
預測的值也可以預測整個系統。如上所述,MCS、PRB和TBS值定義通道、細胞負載、用戶行為、e節點B演算法等。這些相依關係中的每一個可在ARIMA(用於MCS和PRB)和功能回歸(用於TBS)中被捕獲。具有這些模型的知識意味著系統行為的整體知識。ARIMA程序的相依關係在功能回歸模型經由等式1被捕獲。
圖6根據範例實施例顯示重配置3GPP LTE網路10a。網路10a可包括包含TBSF 240的重配置eNB 105a(在圖4中詳細顯示,並在圖5中功能地描述)。TBSF 240可以與AS 102和/或UE 110共享值,以提高在UE 110的應用程式效能。
圖7根據範例實施例顯示另一重配置3GPP LTE網路10b。在此實施例中,TBSF 240的功能可以被分成兩個位置。具體地,如在圖5中所描述,傳輸區塊大小預測器代理(TBSFA)240a可以執行步驟S500和S502的功能。TB SFA 240a可隨後發射從步驟S502得到的平滑歷史數據到傳輸區塊大小預測器管理器(TBSFM)240b, 其中TBSFM 240b是管理實體,其可以接著執行圖5的步驟S504、S506和S508的功能。
TBSFM 240b可以是獨立的、專用的伺服器,其可以由專用處理器來控制。或者,可選地TBSFM 240b可以包含在IP-CAN 100b的現有節點。更朝近側接近TB SFM 240b是到eNB 105b的TBSFA 240a,該反應更靈敏的系統可以提供預測的值到AS 102和/或UE 110,以協助確定系統產出量和改進可以在UE 110上運行的應用程式的效能。
此外,應該理解的是,不需要僅發送到AS 102和/或用戶端UE 110。相反地,此訊息可被發送到可以使用每個UE訊息的策略伺服器以基於具有協助eNB產出量的總體目標和支援服務提供商政策的集體每個UE訊息來產生個別的UE策略。
平滑的過去值可還被傳輸到預測可以在並行計算集群執行的雲端計算集群。這樣的預測值接著可以被分發到UE 110和AS 102(見圖7)。應注意的是,對於複雜的網路將有多個UE和應用伺服器在系統中。雲端計算平台將協調平滑的度量收集和以有意義的方式向UE和應用伺服器分發預測值-以使只有相關的負載訊息可被傳遞到相應的UE和應用伺服器。例如,如果用戶端可以由第一應用伺服器提供服務,那麼對UE發送預測值對於在由其他應用伺服器提供服務的另一細胞中的不同UE將是不相干的。如果UE屬於特定細胞,則僅與該特定細胞相 關的度量應當被用於形成該UE的預測。此外,利用網路功能虛擬化,創造MCS、PRB和TBS值的eNodeB功能可以位於雲端。因此,此應用程式的內容將以建模計算、預測、在雲端發生的平滑保存。
應當理解,儘管範例實施例關於LTE網路,這些實施例也可以應用於用於發送數據流量的無線資源可以藉由相應的用於資源分配的無線存取技術排程器被分配為細胞負載等功能和每赫茲每秒位元計算(類似於LTE MCS)的其它無線存取網路。這些技術的範例包括但不限於3GPP WCDMA、UMTS、3GPP2 EVDO、WiMAX、Wi-Fi。
範例實施例已從而描述,但是顯而易見的是,可以用許多方式變化。這樣的變化不應被認為是脫離範例實施例的預期精神和範圍,並且所有對於本領域技術人員將是顯而易見的這樣的修改意於被包括在以下的申請專利範圍的範圍之內。
10‧‧‧網路
100‧‧‧網際網路協定(IP)連接存取網路(IP-CAN)
101‧‧‧伺服閘道器(SGW)
102‧‧‧應用伺服器
103‧‧‧封包數據網路(PDN)閘道器(PGW)
105‧‧‧E-UTRAN節點B(eNB)
106‧‧‧策略和計費規則功能(PCRF)
108‧‧‧行動管理實體(MME)
110‧‧‧用戶設備(UE)
1001‧‧‧IP封包資料網路(IP-PDN)

Claims (10)

  1. 一種輸出平滑傳輸區塊大小以控制應用程式之操作的方法,其包含:藉由至少一個網路節點的一或多個處理器來獲得歷史時間序列數據(S500),該歷史時間序列數據包括歷史傳輸區塊大小訊息、歷史調變和編碼方式訊息和歷史實體資源區塊利用訊息;藉由該一或多個處理器,基於該歷史時間序列數據(S504)來預測未來值訊息,該未來值訊息包括調變和編碼方式未來值和實體資源區塊未來值;藉由該一或多個處理器來產生映射功能回歸第一輸入數據至第一輸出數據(S506),該第一輸入數據包括該歷史調變和編碼方式訊息和該歷史實體資源區塊利用訊息,該第一輸出數據包括該歷史傳輸區塊大小訊息;藉由該一或多個處理器,藉由輸入該未來值訊息到該映射功能(S508)來預測平滑傳輸區塊大小;以及藉由該一或多個處理器將該平滑傳輸區塊大小輸出到該網路節點以控制應用程式的操作。
  2. 如申請專利範圍第1項的方法,其中基於該歷史時間序列數據的該未來值訊息的該預測包括使用自回歸整合移動平均(ARIMA)回歸模型來預測該未來值訊息。
  3. 如申請專利範圍第2項的方法,其中基於該歷史時間序列數據的該未來值訊息的該預測包括被量化為第一和第二組離散數的該未來值訊息,該第一組離散數為該調變 和編碼方式未來值,並且該第二組離散數為該實體資源區塊未來值。
  4. 如申請專利範圍第3項的方法,其中該平滑傳輸區塊大小的該預測進一步包括藉由將該第一組離散數和該第二組離散數輸入到該映射功能來預測第三組離散數,該映射功能為功能回歸模型,該第三組離散數為傳輸區塊大小未來值。
  5. 如申請專利範圍第4項的方法,其中該平滑傳輸區塊大小的該預測進一步包括使該傳輸區塊大小未來值平滑,該平滑係利用平滑頻寬和距離測量經由核心來完成,該平滑頻寬和該距離測量係為預選的、可調節的和可適應的之一。
  6. 一種網路節點(105a/105b/240b),其包含:一或多個處理器(210),其配置以,獲得歷史時間序列數據,該歷史時間序列數據包括歷史傳輸區塊大小訊息(S500)、歷史調變和編碼方式訊息和歷史實體資源區塊利用訊息,基於該歷史時間序列數據(S504)來預測未來值訊息,該未來值訊息包括調變和編碼方式未來值和實體資源區塊未來值,產生映射功能回歸第一輸入數據至第一輸出數據(S506),該第一輸入數據包括該歷史調變和編碼方式訊息和該歷史實體資源區塊利用訊息,該第一輸出數據包括該歷史傳輸區塊大小訊息, 藉由輸入該未來值訊息到該映射功能(S508)來預測平滑傳輸區塊大小,以及將該平滑傳輸區塊大小輸出到該網路節點以控制應用程式的操作。
  7. 如申請專利範圍第6項的網路節點,其中該一或多個處理器係進一步配置以基於該歷史時間序列數據的預測該未來值訊息係包括使用自回歸整合移動平均(ARIMA)回歸模型來預測該未來值訊息。
  8. 如申請專利範圍第7項的網路節點,其中該一或多個處理器係進一步配置以藉由該未來值訊息被量化為第一和第二組離散數而基於該歷史時間序列數據預測該未來值訊息,該第一組離散數為該調變和編碼方式未來值,並且該第二組離散數為該實體資源區塊未來值。
  9. 如申請專利範圍第8項的網路節點,其中該一或多個處理器係進一步配置以藉由預測第三組離散數來預測該平滑傳輸區塊大小,該第三組離散數係藉由將該第一組離散數和該第二組離散數輸入到該映射功能來預測,該映射功能為功能回歸模型,該第三組離散數為傳輸區塊大小未來值。
  10. 如申請專利範圍第9項的網路節點,其中該一或多個處理器係進一步配置以藉由使該傳輸區塊大小未來值平滑以預測該平滑傳輸區塊大小,該平滑係利用平滑頻寬和距離測量經由核心來完成,該平滑頻寬和該距離測量係為預選的、可調節的和可適應的之一。
TW105101064A 2015-01-28 2016-01-14 藉由預測平滑傳輸區塊大小來控制應用程式操作的系統和方法 TWI619399B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/607,990 US9474064B2 (en) 2015-01-28 2015-01-28 System and method for controlling an operation of an application by forecasting a smoothed transport block size
US14/607,990 2015-01-28

Publications (2)

Publication Number Publication Date
TW201639399A TW201639399A (zh) 2016-11-01
TWI619399B true TWI619399B (zh) 2018-03-21

Family

ID=55586343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101064A TWI619399B (zh) 2015-01-28 2016-01-14 藉由預測平滑傳輸區塊大小來控制應用程式操作的系統和方法

Country Status (5)

Country Link
US (1) US9474064B2 (zh)
EP (1) EP3251251B1 (zh)
CN (1) CN107210852B (zh)
TW (1) TWI619399B (zh)
WO (1) WO2016120731A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700988B2 (en) * 2015-03-05 2020-06-30 Cisco Technology, Inc. System and method for dynamic bandwidth adjustments for cellular interfaces in a network environment
US10460010B2 (en) * 2016-07-05 2019-10-29 Oracle Financial Services Software Limited Computing scenario forecasts using electronic inputs
US10206131B2 (en) 2016-09-12 2019-02-12 Nokia Technologies Oy System and method for programmable native analytics in 5G mobile networks
JP6803241B2 (ja) * 2017-01-13 2020-12-23 アズビル株式会社 時系列データ処理装置および処理方法
WO2021155911A1 (en) * 2020-02-04 2021-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Technique for determining segmentation parameters for use in segmenting rlc pdus
CN113824533A (zh) * 2020-06-19 2021-12-21 中兴通讯股份有限公司 确定调制编码方式mcs的方法、设备和存储介质
CN113965291B (zh) * 2020-07-20 2024-05-17 中兴通讯股份有限公司 通信控制方法、基站、终端及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178623A2 (en) * 2000-07-31 2002-02-06 Sony Corporation System for transmitting encoded signals using multiple block lengths
CN101527673B (zh) * 2008-03-04 2012-01-11 大唐移动通信设备有限公司 单用户mimo的资源分配方法及系统
CN101552649B (zh) * 2008-03-31 2012-03-28 大唐移动通信设备有限公司 基于正交频分复用多用户多天线的资源调度方法和装置
US8280428B2 (en) * 2002-11-01 2012-10-02 Interdigital Technology Corporation Mobile station with improved channel quality prediction for wireless communications
US20130170469A1 (en) * 2012-01-03 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) Methods and Apparatus for Link Adaptation for Single User and Multi-User Mimo
US20130258926A1 (en) * 2012-03-30 2013-10-03 Fujitsu Limited Apparatus and method for adjusting transmission power of a terminal in a wireless communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639793A (zh) * 2009-08-19 2010-02-03 南京邮电大学 一种基于支持向量回归机的网格负载预测方法
CN101697141B (zh) * 2009-10-30 2012-09-05 清华大学 网格中基于历史数据建模的作业性能预测方法
US8645529B2 (en) * 2010-10-06 2014-02-04 Infosys Limited Automated service level management of applications in cloud computing environment
CN103378924B (zh) * 2012-04-18 2018-09-11 中兴通讯股份有限公司 传输块大小的确定方法及装置、同步方法、装置及系统
CN103516473B (zh) * 2012-06-28 2017-08-29 华为技术有限公司 确定传输块大小的方法和基站
US9961575B2 (en) * 2013-03-15 2018-05-01 Qualcomm Incorporated Predicting channel state
US20150112766A1 (en) * 2013-10-22 2015-04-23 Leaderamp, Inc. Method and Apparatus for Rapid Metrological Calibration, Intervention Assignment, Evaluation, Forecasting and Reinforcement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178623A2 (en) * 2000-07-31 2002-02-06 Sony Corporation System for transmitting encoded signals using multiple block lengths
US8280428B2 (en) * 2002-11-01 2012-10-02 Interdigital Technology Corporation Mobile station with improved channel quality prediction for wireless communications
CN101527673B (zh) * 2008-03-04 2012-01-11 大唐移动通信设备有限公司 单用户mimo的资源分配方法及系统
CN101552649B (zh) * 2008-03-31 2012-03-28 大唐移动通信设备有限公司 基于正交频分复用多用户多天线的资源调度方法和装置
US20130170469A1 (en) * 2012-01-03 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) Methods and Apparatus for Link Adaptation for Single User and Multi-User Mimo
US20130258926A1 (en) * 2012-03-30 2013-10-03 Fujitsu Limited Apparatus and method for adjusting transmission power of a terminal in a wireless communication system

Also Published As

Publication number Publication date
TW201639399A (zh) 2016-11-01
CN107210852B (zh) 2020-04-07
EP3251251A1 (en) 2017-12-06
US20160219563A1 (en) 2016-07-28
US9474064B2 (en) 2016-10-18
WO2016120731A1 (en) 2016-08-04
CN107210852A (zh) 2017-09-26
EP3251251B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
TWI619399B (zh) 藉由預測平滑傳輸區塊大小來控制應用程式操作的系統和方法
US9794825B2 (en) System and method for determining cell congestion level
Gutterman et al. RAN resource usage prediction for a 5G slice broker
JP6416418B2 (ja) アプリケーションを連携制御するためのシステムおよび方法
US9179363B2 (en) Systems and methods for determining a coupling characteristic in a radio communications network
KR101689778B1 (ko) 네트워크 통신 품질 및 트래픽의 실시간 분석에 기반한 개선된 데이터 전달
US9485689B2 (en) Adaptive traffic engineering configuration
WO2016192643A1 (en) Systems and methods for managing network traffic with network operator
TW201639332A (zh) 藉由使用數據承載特性分類應用程式類型來控制應用程式操作的系統和方法
Mushtaq et al. QoE/QoS-aware LTE downlink scheduler for VoIP with power saving
EP2510736A1 (en) Method and arrangement for scheduling control in a telecommunication system
Buyakar et al. Resource allocation with admission control for GBR and delay QoS in 5G network slices
CN111919484A (zh) 基于预测视频编码率分配无线电接入网络资源
Mushtaq et al. Qoe-based lte downlink scheduler for voip
US9826422B2 (en) System and method for controlling an operation of an application
US11252788B2 (en) Systems and methods for content selection and delivery based on radio access network (“RAN”) conditions
Im et al. FLARE: Coordinated rate adaptation for HTTP adaptive streaming in cellular networks
Dababneh Lte traffic generation and evolved packet core (epc) network planning
KR101948412B1 (ko) Lte 환경에서 단기 지연 보장 및 장기 공평성 보장을 위한 패킷 스케줄링 방법 및 시스템
Seyedebrahimi et al. Adaptive resource allocation for QoE-aware mobile communication networks
Triki et al. Anticipating resource management and QoE for mobile video streaming under imperfect prediction
Oliveira et al. A deep map from performance to resources-intelligent resource allocation for network slicing
Casparsen et al. Near Real-Time Data-Driven Control of Virtual Reality Traffic in Open Radio Access Network
Du et al. Integrated bandwidth variation pattern differentiation for HTTP adaptive streaming over 4G cellular networks
Palit Cross Layer Design of Schedulers for Quality of Service Provisioning of Multi-Class Traffic in Wireless Networks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees